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We prove several basic extension theorems for reductive group schemes via
extending Lie algebras and via taking schematic closures. We also prove that,
for each scheme Y , the category in groupoids of adjoint group schemes over Y
whose Lie algebra OY -modules have perfect Killing forms is isomorphic, via
the differential functor, to the category in groupoids of Lie algebra OY -modules
which have perfect Killing forms and which, as OY -modules, are coherent and
locally free.

1. Introduction

A group scheme H over a scheme S is called reductive if the morphism H → S
has the following two properties: (i) it is smooth and affine (and therefore of finite
presentation), and (ii) its geometric fibers are reductive groups over spectra of fields
and therefore are connected (see [SGA 3 III 1970, Exposé XIX, Sections 2.7, 2.1,
and 2.9]). If, moreover, the center of H is trivial, then H is called an adjoint
group scheme over S. Let OS be the structure ring sheaf of S. Let Lie(H) be the
Lie algebra OS-module of H . As an OS-module, Lie(H) is coherent and locally free.

The main goal of the paper is to prove Theorems 1.2 and 1.4 below (see Sections 3
and 4) and to apply them and their proofs to obtain new extension theorems for
homomorphisms between reductive group schemes (see Section 5). We begin by
introducing two groupoids on sets (i.e., two categories whose morphisms are all
isomorphisms).

1.1. Two groupoids on sets. Let Y be an arbitrary scheme. Let Adj-perfY be the
category whose objects are adjoint group schemes over Y with the property that
their Lie algebra OY -modules have perfect Killing forms (i.e., the Killing forms
induce naturally OY -linear isomorphisms from them into their duals) and whose
morphisms are isomorphisms of group schemes. Let Lie-perfY be the category
whose objects are Lie algebra OY -modules which have perfect Killing forms and
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which as OY -modules are coherent and locally free and whose morphisms are
isomorphisms of Lie algebra OY -modules.

Theorem 1.2. Let LY : Adj-perfY → Lie-perfY be the functor which associates to
a morphism f : G −→∼ H of Adj-perfY the morphism d f : Lie(G) −→∼ Lie(H) of
Lie-perfY which is the differential of f . Then the functor LY is an equivalence of
categories.

We have a variant of this theorem for simply connected semisimple group
schemes instead of adjoint group schemes; see Corollary 3.7. This theorem im-
plies the classification of Lie algebras over fields of characteristic at least 3 that
have nondegenerate Killing forms obtained previously by Curtis [1957], Seligman
[1967], Mills [1957], Mills and Seligman [1957], Block–Zassenhaus [1964], and
Brown [1969] (see Remark 3.6(a)). The functor LY is an equivalence of nonempty
categories if and only if Y is a Spec Z

[ 1
2

]
-scheme; see Corollary 3.8. Directly from

Theorem 1.2 we get our first extension result:

Corollary 1.3. We assume that Y = Spec A is an affine scheme. Let K be the ring
of fractions of A. Let GK be an adjoint group scheme over Spec K such that the
symmetric bilinear Killing form on the Lie algebra Lie(GK ) of GK is perfect (i.e.,
it induces naturally a K-linear isomorphism Lie(GK ) −→

∼ HomK (Lie(GK ), K )).
We assume that there exists a Lie algebra g over A such that the following two
properties hold:

(i) we have an identity Lie(GK )= g⊗A K and the A-module g is projective and
finitely generated;

(ii) the symmetric bilinear Killing form on g is perfect.

Then there exists a unique adjoint group scheme G over Y that extends GK , with
an identity Lie(G)= g that extends the identity of property (i).

Let U be an open, Zariski-dense subscheme of Y . We call the pair (Y, Y \U )
quasipure if each finite étale cover of U extends uniquely to a finite étale cover
of Y (to be compared with [SGA 2 1968, Exposé X, Definition 3.1]).

Theorem 1.4. We assume that Y is a normal, noetherian scheme and the codimen-
sion of Y \U in Y is at least 2. Then the following two properties hold:

(a) Let GU be an adjoint group scheme over U. We assume that the Lie algebra OU -
module Lie(GU ) of GU extends to a Lie algebra OY -module that is a locally free
OY -module. Then GU extends uniquely to an adjoint group scheme G over Y .

(b) Let HU be a reductive group scheme over U. We assume that the pair (Y, Y \U )
is quasipure and that the Lie algebra OU -module Lie(GU ) of the adjoint group
scheme GU of HU extends to a Lie algebra OY -module that is a locally free
OY -module. Then HU extends uniquely to a reductive group scheme H over Y .
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The proof of Theorem 1.2 that we include combines the cohomology theory
of Lie algebras with a simplified variant of [Vasiu 1999, Claim 2, p. 464] (see
Theorem 3.3 and Section 3.4). The proof of Theorem 1.4(a) is an application of
[Colliot-Thélène and Sansuc 1979, Corollary 6.12] (see Section 4.1). The classical
purity theorem of Nagata and Zariski (see [SGA 2 1968, Exposé X, Theorem 3.4(i)])
says that the pair (Y, Y \U ) is quasipure, provided Y is regular and U contains
all points of Y of codimension 1 in Y . In such a case, a slightly weaker form of
Theorem 1.4(b) was obtained in [Colliot-Thélène and Sansuc 1979, Theorem 6.13].
In general, the hypotheses of Theorem 1.4 are needed (see Remark 4.3). See
[Moret-Bailly 1985] (resp. [Faltings and Chai 1990; Vasiu 1999; 2004; Vasiu and
Zink 2010]) for different analogues of Theorem 1.4 for Jacobian (resp. abelian)
schemes. For instance, in [Vasiu and Zink 2010, Corollary 1.5] it is proved that if
Y is a regular, formally smooth scheme over the spectrum of a discrete valuation
ring of mixed characteristic (0, p) and index of ramification at most p− 1 and if
U contains all points of Y that are of either characteristic 0 or codimension 1 in Y ,
then each abelian scheme over U extends uniquely to an abelian scheme over Y .

Notation and basic results are presented in Section 2. In Section 3 we prove
Theorem 1.2. In Section 4 we prove Theorem 1.4.

Section 5 contains two results on extending homomorphisms between reductive
group schemes. Proposition 5.1 is an application of Theorem 1.4(b) and pertains
to extensions of homomorphisms in codimension at least 2 over normal bases.
Proposition 5.2 pertains to extensions of homomorphisms via schematic closures
and refines [Vasiu 1999, Lemma 3.1.6]; its role is to achieve natural reductions
such as the reduction to the case of either a torus or a semisimple group scheme.

Our main motivation for Theorems 1.2 and 1.4 stems from the meaningful
applications to crystalline cohomology one gets by combining them with either
Faltings’ results [1999, Section 4] (see [Vasiu 1999; 2008]) or de Jong’s extension
theorem [1998, Theorem 1.1] (see [Vasiu 2012a; 2012b]). The manuscripts [Vasiu
2012a; 2012b] apply the results of the current paper to extend our prior work
on integral canonical models of Shimura varieties of Hodge type in unramified
mixed characteristic (0, p) with p ≥ 5 (see [Vasiu 1999]) to unramified mixed
characteristics (0, 2) and (0, 3). In addition, this paper can be used to get relevant
simplifications of certain parts of the mentioned prior work (see [Vasiu 2008]).

2. Preliminaries

Our notation is gathered in Section 2.1, and then we include four basic results that
are often used in Sections 3 to 5.

2.1. Notation and conventions. Let K̄ be an algebraic closure of a field K . Let
H be a reductive group scheme over a scheme S. Let Z(H), H der, H ad, and H ab
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denote the center, the derived group scheme, the adjoint group scheme, and the
abelianization of H (respectively). We have H ab

= H/H der and H ad
= H/Z(H).

The center Z(H) is a group scheme of multiplicative type; see [SGA 3 III 1970,
Exposé XXII, Corollary 4.1.7]. Let Z0(H) be the maximal torus of Z(H); the
quotient group scheme Z(H)/Z0(H) is a finite, flat group scheme over S of multi-
plicative type. Let H sc be the simply connected semisimple group scheme cover of
the derived group scheme H der.

See [SGA 3 III 1970, Exposé XXII, Corollary 4.3.2] for the quotient group scheme
H/F of H by a flat, closed, multiplicative type subgroup scheme F of Z(H).

If X or XS is an S-scheme, let XA1 (resp. XS1) be its pullback via a morphism
Spec A1→ S (resp. S1→ S).

If S is either affine or integral, let KS be the ring of fractions of S. If S is a
normal, noetherian, integral scheme, let D(S) be the set of local rings of S that are
discrete valuation rings.

Let Gm,S be the rank-1 split torus over S; similarly, the group schemes Ga,S ,
GLd,S with d ∈ N∗, etc., will be understood to be over S. Let Lie(H) be the Lie
algebra OS-module of H . If S = Spec A is affine, then let Gm,A := Gm,S , etc., and
let Lie(F) be the Lie algebra over A of a closed subgroup scheme F of H . For A-
modules, we have Lie(F)=Ker(F(A[x]/x2)→ F(A)), where the A-epimorphism
A[x]/(x2) � A takes x to 0. The Lie bracket on Lie(F) is defined by taking
the (total) differential of the commutator morphism [ , ] : F ×S F→ F at identity
sections. If S=Spec A is affine, then Lie(H)=Lie(H)(S) is the Lie algebra over A
of global sections of Lie(H) and it is a projective, finitely generated A-module.

If N is a projective, finitely generated A-module, let N ∗ := HomA(N , A), let
GLN be the reductive group scheme over Spec A of linear automorphisms of N ,
and let glN := Lie(GLN ). Thus glN is the Lie algebra associated to the A-algebra
EndA(N ). A bilinear form bN : N × N → A on N is called perfect if it induces an
A-linear map N → N ∗ that is an isomorphism. If bN is symmetric, then its kernel
is the A-submodule

Ker(bN ) := {a ∈ N | bN (a, b)= 0 for all b ∈ N }

of N . For a Lie algebra g over A that is a projective, finitely generated A-module,
let ad : g→ glg be the adjoint representation of g and let Kg : g× g→ A be the
Killing form on g. For a, b ∈ g we have ad(a)(b)= [a, b], and Kg(a, b) is the trace
of the endomorphism ad(a) ◦ ad(b) of g. The kernel Ker(Kg) is an ideal of g.

We denote by k an arbitrary field. Let n ∈ N∗. See [Bourbaki 2002, Chapter VI,
Section 4] and [Humphreys 1972, Chapter III, Section 11] for the classification of
connected Dynkin diagrams. For

[ ∈ {An, Bn,Cn | n ∈ N∗} ∪ {Dn | n ≥ 3} ∪ {E6, E7, E8, F4,G2},
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we say that H is of isotypic [ Dynkin type if the connected Dynkin diagram of each
simple factor of an arbitrary geometric fiber of H ad is [; if H ad is absolutely simple,
we drop the word ‘isotypic’. We recall that A1 = B1 = C1, B2 = C2, and A3 = D3.

Proposition 2.2. Let Y be a normal, noetherian, integral scheme. Let K := KY .

(a) If Y = Spec A is affine, then inside the field K we have A =
⋂

V∈D(Y )V .

(b) Let U be an open subscheme of Y such that Y \U has codimension in Y at
least 2. Let W be an affine Y-scheme of finite type. Then the natural restriction
map HomY (Y,W )→HomY (U,W ) is a bijection. If , moreover, W is integral,
normal and such that we have D(W )= D(WU ), then W is determined (up to
unique isomorphism) by WU .

(c) Suppose that Y = Spec A is local, regular, and has dimension 2. Let y be the
closed point of Y and let U := Y \ {y}. Then each locally free OU -module of
finite rank extends uniquely to a free OY -module.

Proof. See [Matsumura 1980, Theorem 38] for (a). To check (b), we can assume
Y = Spec A is affine. We write W = Spec B. The A-algebra of global functions
of U is A; see (a). We have HomY (U,W ) = HomA(B, A) = HomY (Y,W ). If,
moreover, B is a normal ring and we have D(W ) = D(WU ), then B is uniquely
determined by D(WU ) (see (a)) and therefore by WU . From this (b) follows. See
[SGA 2 1968, Exposé X, Lemma 3.5] for (c). �

Proposition 2.3. Let G be a reductive group scheme over a scheme Y . Then
the functor on the category of Y-schemes that parametrizes maximal tori of G is
representable by a smooth, separated Y-scheme of finite type. Thus G has split,
maximal tori, locally in the étale topology of Y .

Proof. See [SGA 3 II 1970, Exposé XII, Corollary 1.10] for the first part. The
second part follows easily from the first part (see also [SGA 3 III 1970, Exposé XIX,
Proposition 6.1]). �

Lemma 2.3.1. Let Y be a reduced scheme. Let G be a reductive group scheme
over Y . Let K := KY . Let fK : G ′K → GK be a central isogeny of reductive group
schemes over Spec K . We assume that either G is split or Y is normal. We have:

(a) There exists (up to a canonical identification) at most one central isogeny
f :G ′→G that extends fK :G ′K→GK . If Y is integral (i.e., K is a field), then
there exists a unique central isogeny f : G ′→ G that extends fK : G ′K → GK .

(b) If Y is normal and integral, then G ′ is the normalization of G in (the field of
fractions of ) G ′K .

Proof. We first prove (a) in the case when G is split. Let T be a split, maximal torus
of G. We first prove the existence part; thus K is a field. As fK is a central isogeny,
the inverse image T ′K of TK in G ′K is a split torus. Thus G ′K is split. Let R′→R be
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the 1-morphism of root data in the sense of [SGA 3 III 1970, Exposé XXI, Definition
6.8.1] which is associated to the central isogeny fK : G ′K → GK that extends the
isogeny T ′K → TK . Let f̃ : G̃ ′→ G be a central isogeny of split, reductive group
schemes over Y which extends an isogeny of split tori T̃ ′→ T and for which the
1-morphism of root data associated to it and to the isogeny T̃ ′→ T is R′→R (see
[SGA 3 III 1970, Exposé XXV, Theorem 1.1]). From loc. cit. we also get that there
exists an isomorphism iK : G̃ ′K −→

∼ G ′K such that we have f̃K = fK ◦iK . Obviously, iK

is unique. Let G ′ be the unique group scheme over Y such that iK extends (uniquely)
to an isomorphism i : G̃ ′ −→∼ G ′. Let f := f̃ ◦ i−1

: G ′→ G be a central isogeny.
To check the uniqueness part, we consider two central isogenies G ′→ G and

G ′1→ G that extend a central isogeny fK : G ′K → GK (thus G ′K = G ′1,K ). Let G ′2
be the schematic closure of G ′K embedded diagonally into the product G ′×Y G ′1.
We are left to check that the two projections π1 : G ′2→ G ′ and π2 : G ′2→ G ′1 are
isomorphisms, as in such a case the composite isomorphism π2 ◦π

−1
1 : G

′
−→∼ G ′1

is an isomorphism that extends the identity G ′K = G ′1,K . This statement is local for
the étale topology of Y , and therefore we can assume, based on Proposition 2.3,
that the inverse images of T to G ′ and G ′1 are split tori. From this and [SGA 3 III

1970, Exposé XXIII, Theorem 4.1] we get that there exists a unique isomorphism
θ : G1 −→

∼ G ′1 which extends the identity G ′K = GK . This implies that G ′2 is the
graph of θ , and therefore the two projections π1 and π2 are isomorphisms. We
conclude that (a) holds if G is split.

We now prove simultaneously (a) and (b) in the case when Y is normal. If a G ′

as in (a) exists, then it is a smooth scheme over the normal scheme Y and thus it
is a normal scheme; from this and the fact that f : G ′→ G is a finite morphism,
we get that G ′ is the normalization of G in G ′K and, in particular, that it is unique.

Thus to finish the proof of the lemma, it suffices to show that the normalization G ′

of G in G ′K is a reductive group scheme equipped with a central isogeny f :G ′→G,
locally in the étale topology of Y . As each connected, étale scheme over Y is a
normal, integral scheme, based on Proposition 2.3 we can assume that G has a split,
maximal torus T . Thus the fact that G ′ is a reductive group scheme equipped with
a central isogeny f : G ′→ G follows from the previous three paragraphs. �

Lemma 2.3.2. Let Y = Spec A be an affine scheme. Let K := KY . Let T be a torus
over Y equipped with a homomorphism ρ : T → G, where G is a reductive group
scheme over Y . Then the following three properties hold:

(a) the kernel Ker(ρ) is a group scheme over Y of multiplicative type;

(b) the kernel Ker(ρ) is trivial (resp. finite) if and only if the kernel Ker(ρK ) is
trivial (resp. finite);

(c) the quotient group scheme T/Ker(ρ) is a torus and we have a closed embed-
ding homomorphism T/Ker(ρ) ↪→ G.
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Proof. The statements of the lemma are local for the étale topology of Y . Thus
we can assume that Y is local and (see Proposition 2.3) that T and G are split.
As Y is connected, the split reductive group scheme G has constant Lie type.
Thus G is the pullback to Y of a reductive group scheme GZ over Spec Z; see
[SGA 3 III 1970, Exposé XXV, Corollary 1.2]. As GZ can be embedded into a general
linear group scheme over Spec Z (for instance, see [SGA 3 I 1970, Exposé VIB,
Remark 11.11.1]), there exists a closed embedding homomorphism G ↪→ GLM ,
with M a free A-module of rank d ∈N∗. By replacing ρ with its composite with
this closed embedding homomorphism G ↪→ GLM , we can assume that G = GLM

is a general linear group scheme over Y . The representation of T on M is a finite
direct sum of representations of T of rank 1; see [Jantzen 2003, Part I, Section 2.11].
Thus ρ factors as the composite of a homomorphism ρ1 : T → Gm

m,A with a closed
embedding homomorphism Gm

d,A ↪→ GLM . The kernel Ker(ρ1) is a group scheme
over Y of multiplicative type; see [SGA 3 II 1970, Exposé IX, Proposition 2.7(i)].
As Ker(ρ)= Ker(ρ1), we get that (a) holds. As (a) holds, Ker(ρ) is flat over Y as
well as the extension of a finite, flat group scheme T1 by a torus T0. But T1 (resp.
T0) is a trivial group scheme if and only if T1,K (resp. T0,K ) is trivial. From this
(b) follows. The quotient group scheme T/Ker(ρ) exists and is a closed subgroup
scheme of Gm

m,A that is of multiplicative type; see [SGA 3 II 1970, Exposé IX,
Proposition 2.7(i) and Corollary 2.5]. As the fibers of T/Ker(ρ) are tori, we get
that T/Ker(ρ) is a torus. Thus (c) holds. �

The following lemma is only a variant of [Vasiu 2005a, Lemma 2.1].

Lemma 2.4. Suppose that k = k̄. Let H be a reductive group over Spec k. Let n be
a nonzero ideal of Lie(H) which is a simple left H-module. We assume that there
exists a maximal torus T of H such that we have Lie(T )∩n= 0. Then char(k)= 2
and H der has a normal, subgroup F which is isomorphic to SO2n+1,k for some
n ∈ N∗ and for which we have an inclusion n⊆ Lie(F).

Remark 2.4.1. If n is assumed to be a restricted Lie subalgebra of Lie(H) (for
instance, this holds if n is the Lie algebra of a subgroup of H ), then there exists
a purely inseparable isogeny H → H/n (see [Borel 1991, Chapter V, Proposition
17.4]) and in this case Lemma 2.4 can be also deduced easily from [Prasad and
Yu 2006, Lemma 2.2] applied to such isogenies with H ad absolutely simple. In
this paper, Lemma 2.4 will be applied only in such situations in which n is the Lie
algebra of a subgroup of H .

Theorem 2.5. Let f : G1→ G2 be a homomorphism between group schemes over
a scheme Y . We assume that G1 is reductive, that G2 is separated and of finite
presentation, and that all fibers of f are closed embeddings. Then f is a closed
embedding.
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Proof. As G1 is of finite presentation over Y , the homomorphism f is locally of
finite type. As the fibers of f are closed embeddings and thus monomorphisms,
f itself is a monomorphism (see [SGA 3 I 1970, Exposé VIB, Corollary 2.11]). Thus
the theorem follows from [SGA 3 II 1970, Exposé XVI, Corollary 1.5(a)]. �

Lemma 2.5.1. Let G be an adjoint group scheme over an affine scheme Y =Spec A.
Let Aut(G) be the group scheme over Y of automorphisms of G. Then the natural
adjoint representation Ad : Aut(G)→ GLLie(G) is a closed embedding.

Proof. To prove the lemma, we can work locally in the étale topology of Y and
therefore (see Proposition 2.3) we can assume that G is split and that Y is connected.
We have a short exact sequence 1→G→Aut(G)→C→1 that splits (see [SGA 3 III

1970, Exposé XXIV, Theorem 1.3]), where C is a finite, étale, constant group scheme
over Y . Thus G is the identity component of Aut(G), and Aut(G) is a finite disjoint
union of right translates of G via certain Y-valued points of Aut(G). If the fibers
of Ad are closed embeddings, then the restriction of Ad to G is a closed embedding
(see Theorem 2.5), and thus also the restriction of Ad to any right translate of G
via a Y-valued point of Aut(G) is a closed embedding. The last two sentences
imply that Ad is a closed embedding. Thus, to finish the proof, we are left to check
that the fibers of Ad are closed embeddings. For this, we can assume that A is an
algebraically closed field.

As G is adjoint and A is a field, the restriction of Ad to G is a closed embedding.
Thus the representation Ad is a closed embedding if and only if each element
g ∈Aut(G)(A) that acts trivially on Lie(G) is trivial. We show that the assumption
that there exists a nontrivial element g leads to a contradiction. For this, we can
assume that G is absolutely simple and that g is a nontrivial outer automorphism
of G. Let T be a maximal torus of a Borel subgroup B of G and let n be the
dimension of T .

For t ∈ Lie(T ), let CG(t) be its centralizer in G; it is a subgroup of G that
contains T . In this paragraph we check that, as G is adjoint, we can choose t such
that CG(t)0 = T . We consider the root decomposition Lie(G)= Lie(T )

⊕
α∈8 gα

with respect to T , where 8 is the root system of G and where each gα is a one-
dimensional A-vector space normalized by T . Let 1 be the basis for 8 such
that we have Lie(B) = Lie(T )

⊕
α∈1 gα. As G is adjoint, 1 is a basis for the

dual A-vector space Lie(T )∗ (to be compared with [SGA 3 III 1970, Exposé XXI,
Definition 6.2.6 and Exposé XXII, Definition 4.3.3]). Thus for each root α ∈ 1,
Ker(α) is an A-vector subspace of Lie(T ) of dimension n − 1. As each α ∈ 8
is conjugate under the Weyl group of 8 (equivalently of G) to an element of 1
(see [Humphreys 1972, Chapter III, Section 10, Theorem]), we get that for each
α ∈1 its kernel Ker(α) is an A-vector subspace of Lie(T ) of dimension n−1. We
choose t ∈ Lie(T ) \

⋃
α∈8Ker(α). This implies that Lie(CG(t)) = Lie(T ). From
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this and the fact that T is a subgroup of CG(t), we get that CG(t) is a smooth group
of dimension n and therefore that CG(t)0 = T .

As g fixes t and Lie(B), it normalizes both CG(t)0 = T and B. But it is well
known that a nontrivial outer automorphism g of G that normalizes both T and B
cannot fix Lie(B). Contradiction. Thus Ad is a closed embedding. �

We follow the ideas of [Vasiu 1999, Proposition 3.1.2.1(c) and Remark 3.1.2.2(3)]
in order to prove the next proposition.

Proposition 2.5.2. Let V be a discrete valuation ring whose residue field is k. Let
Y = Spec V and let K := KY . Let f : H1→ H2 be a homomorphism between flat,
finite type, affine group schemes over Y such that H1 is a reductive group scheme
and the generic fiber fK : H1,K → H2,K of f is a closed embedding. We have:

(a) The subgroup scheme Ker( fk : H1,k→ H2,k) of H1,k has a trivial intersection
with each torus T1,k of H1,k . In particular, Lie(Ker( fk))∩Lie(T1,k)= 0.

(b) The homomorphism f is finite.

(c) If char(k)= 2, we assume that H1,K has no normal subgroup that is adjoint of
isotypic Bn Dynkin type for some n ∈ N∗. Then f is a closed embedding.

Proof. Let ρ : H2 ↪→ GLM be a closed embedding homomorphism, with M a
free V-module of finite rank (see [SGA 3 I 1970, Exposé VIB, Remark 11.11.1]).
To prove the proposition we can assume that V is complete, that k = k̄, and that
fK : H1,K → H2,K is an isomorphism. Let H0,k := Ker( fk). We now show that
the group scheme H0,k ∩ T1,k is trivial by adapting arguments from [Vasiu 1999,
Remark 3.1.2.2(3) and proof of Lemma 3.1.6]. As V is strictly henselian, the
maximal torus T1,k of H1,k is split and (see Proposition 2.3) it lifts to a maximal
torus T1 of H1. The restriction of ρ ◦ f to T1 has a trivial kernel (as its fiber
over Spec K is trivial; see Lemma 2.3.2(b)) and therefore it is a closed embedding
(see Lemma 2.3.2(c)). Thus the restriction of f to T1 is a closed embedding
homomorphism T1 ↪→ H2. Therefore, the intersection H0,k ∩ T1,k is a trivial group
scheme. Thus (a) holds.

We check (b). The identity component of the reduced scheme of Ker( fk) is a
reductive group that has 0 rank (see (a)) and therefore it is a trivial group. Thus f is
a quasifinite, birational morphism. From Zariski’s main theorem (see [Grothendieck
1966, Theorem 8.12.6]) we get that H1 is an open subscheme of the normalization
H n

2 of H2. Let H3 be the smooth locus of H n
2 over Spec V ; it is an open subscheme

of H n
2 that contains H1. As H3 is an open subscheme of the affine scheme H n

2 , it is
a quasiaffine scheme.

As H3 is smooth over Spec V , the products H3×Spec V H n
2 and H n

2 ×Spec V H3

are smooth over H n
2 and thus are normal schemes. The product H n

2 ×Spec V H n
2

is a flat scheme over Spec V whose generic fiber is smooth over Spec K . Its
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normalization (H n
2 ×Spec V H n

2 )
n contains both H3×Spec V H n

2 and H n
2 ×Spec V H3

as open subschemes and is equipped with a finite surjective morphism given by
(H n

2 ×Spec V H n
2 )

n
→ H n

2 ×Spec V H n
2 whose generic fiber is an isomorphism. The

product morphism H2×Spec V H2→ H2 induces a natural product-type morphism
2 : (H n

2 ×Spec V H n
2 )

n
→ H n

2 . Its restrictions to H3×Spec V H n
2 and H n

2 ×Spec V H3

induce product-type morphisms H3×Spec V H n
2 → H n

2 and H n
2 ×Spec V H3→ H n

2 .
This implies that for each valued point z ∈ H n

2 (V ) it makes sense to speak about
the left zH3 and the right H3z translations of H3 through z; they are smooth open
subschemes of H n

2 and thus of H3. This implies that H3(V )= H n
2 (V ) and that 2

restricts to a product morphism H3×Spec V H3→ H3. The inverse automorphisms of
the (Spec V )-schemes H1 and H2 induce an inverse automorphism of the (Spec V )-
scheme H n

2 which restricts to an inverse automorphism of the (Spec V )-scheme H3.
With respect to its product morphism, its inverse automorphism, and its identity
section inherited from H1, the subscheme H3 gets the structure of a (quasiaffine)
group scheme over Spec V that is of finite type.

As V is complete, it is also excellent (see [Matsumura 1980, Section 34]). Thus
the morphism H n

2 → H2 is finite. The homomorphism f is finite if and only if
H1 = H n

2 and thus if and only if the set H n
2 (k) \ H1(k) is empty. We show that

the assumption H1 6= H n
2 leads to a contradiction. Let x ∈ H n

2 (k) \ H1(k). From
[Vasiu 2012c, Lemma 4.1.5] applied to the completion of the local ring of x in H n

2 ,
we get that there exists a finite, flat discrete valuation ring extension V ′ of V for
which we have a valued point z′ ∈ H n

2 (V
′) that lifts x (we recall that loc. cit. is

only a local version of the global result [Grothendieck 1967, Corollary 17.16.2]).
The flat (Spec V ′)-scheme H n

2,V ′ might not be normal but we have H1 6= H n
2 if and

only if H1,V ′ 6= H n
2,V ′ . Thus to reach a contradiction we can replace V by V ′, and

therefore we can assume that there exists a valued point z ∈ H n
2 (V )= H3(V ) which

lifts x . As x ∈ H n
2 (k) \ H1(k), we have z ∈ H3(V ) \ H1(V ). As H1 is a subgroup

scheme of H3, all fibers of the homomorphism H1→ H3 are closed. From this
and Theorem 2.5 we get that H1 is a closed subscheme of H3. Thus, as H3 is an
integral scheme and as H3,K = H1,K , we get that H1 = H3. This contradicts the
fact that z ∈ H3(V ) \ H1(V ). Thus (b) holds.

We check (c). We show that the assumption Lie(H0,k) 6= 0 leads to a contra-
diction. From Lemma 2.4 applied to H1,k and to any simple H1,k-submodule of
the left H1,k-module Lie(H0,k), we get that char(k)= 2 and that H1,k has a normal
subgroup H4,k isomorphic to SO2n+1,k for some n ∈ N∗. As H4,k is adjoint, we
have a product decomposition H1,k = H4,k ×Spec k H5,k of reductive groups. It lifts
(see [SGA 3 III 1970, Exposé XXIV, Proposition 1.21]) to a product decomposition
H1 = H4 ×Spec V H5, where H4 is isomorphic to SO2n+1,V and where H5 is a
reductive group scheme over Spec V . This contradicts the extra hypothesis of (c).
Thus we have Lie(H0,k) = 0. Therefore, H0,k is a finite, étale, normal subgroup
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of H1,k . But H1,k is connected and thus its action on H0,k via inner conjugation
is trivial. Therefore, we have H0,k 6 Z(H1)k 6 T1,k . Thus H0,k = H0,k ∩ T1,k is
the trivial group; see (a). In other words, the homomorphism fk : H1,k→ H2,k is a
closed embedding. Thus f : H1→ H2 is a closed embedding homomorphism; see
Theorem 2.5. �

Remark 2.5.3. See [Vasiu 2005b, Theorem 1.2(b)] and [Prasad and Yu 2006,
Theorem 1.2] for two other proofs of Proposition 2.5.2(c).

3. Lie algebras with perfect Killing forms

Let A be a commutative Z-algebra. Let g be a Lie algebra over A which as an
A-module is projective and finitely generated. In this section we will assume that
the Killing form Kg on g is perfect. Let Ug be the enveloping algebra of g, i.e.,
the quotient of the tensor algebra Tg of g by the two-sided ideal of Tg generated
by the subset {x ⊗ y − y ⊗ x − [x, y] | x, y ∈ g} of Tg. Let Z(Ug) be the center
of Ug. The categories of left g-modules and of left Ug-modules are canonically
identified. We view g as a left g-module via the adjoint representation ad : g→ glg;
let ad :Ug→End(g) be the A-homomorphism corresponding to the left g-module g.
We refer to [Cartan and Eilenberg 1956, Chapter XIII] for the cohomology groups
H i (g, v) of a left g-module v (here i ∈N). We denote also by Kg : g⊗A g→ A the
A-linear map defined by Kg : g×g→ A. Thus we have Kg ∈ (g⊗A g)

∗
= g∗⊗A g

∗.
Let φ : g−→∼ g∗ be the A-linear isomorphism defined naturally by Kg. It induces
an A-linear isomorphism φ−1

⊗ φ−1
: g∗ ⊗A g∗ −→∼ g ⊗A g. The image � of

φ−1
⊗ φ−1(Kg) ∈ g⊗A g ⊆ Tg in Ug is called the Casimir element of the adjoint

representation ad : g→ glg.

Lemma 3.1. For the Casimir element � ∈Ug the following four properties hold:

(a) if the A-module g is free and if {x1, . . . , xm} and {y1, . . . , ym} are two A-bases
for g such that for all i, j ∈ {1, . . . ,m} we have Kg(xi ⊗ yj ) = δi j , then � is
the image of the element

∑m
i=1 xi ⊗ yi of Tg in Ug;

(b) we have � ∈ Z(Ug);

(c) the Casimir element � is fixed by the group of Lie automorphisms of g (i.e.,
if σ : Ug −→

∼ Ug is the A-algebra automorphism induced by a Lie algebra
automorphism σ : g−→∼ g, then we have σ(�)=�);

(d) the Casimir element � acts identically on g (i.e., ad(�)= 1g).

Proof. Parts (a) and (b) are proved in [Bourbaki 1989, Chapter I, Section 3.7,
Proposition 11]. Strictly speaking, loc. cit. is stated over a field but its proof
applies over any commutative Z-algebra. This is so, as the essence of the proof
is [Bourbaki 1989, Chapter I, Section 3.5, Example 2] which is worked out over
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any commutative Z-algebra. In particular, [Bourbaki 1989, Chapter I, Section 3.5,
Example 3] can be easily stated over a commutative Z-algebra (by involving a perfect
invariant bilinear form over a commutative Z-algebra instead of a nondegenerate
invariant bilinear form over a field). We recall here that Kg is g-invariant, i.e.,
for all a, b, c ∈ g we have an identity Kg(ad(a)(b), c)+Kg(b, ad(a)(c))= 0 (see
[Bourbaki 1989, Chapter I, Section 3.6, (13) and Proposition 8]), and this is the
very essence of (b).

To check (c) and (d), we can assume that the A-module g is free. Let {x1, . . . , xm}

and {y1, . . . , ym} be two A-bases for g as in (a). Thus� is the image of
∑m

i=1 xi⊗yi

in Ug. Therefore, σ(�) is the image of
∑m

i=1 σ(xi )⊗ σ(yi ) in Ug. As we have
Kg(σ (xi ), σ (yj )) = δi j for i, j ∈ {1, . . . ,m}, from (a) we get that the image of∑m

i=1 σ(xi )⊗ σ(yi ) ∈ Tg in Ug is �. Thus σ(�)=�.
We check (d). Let z, w ∈ g. We write ad(z) ◦ ad(w)(xi )=

∑m
j=1 aj i xj , with the

aj i s in A. Using the g-invariance of Kg we compute

Kg(ad(�)(z), w)

= Kg

( m∑
i=1

ad(xi ) ◦ ad(yi )(z), w
)
=−

m∑
i=1

Kg(ad(yi )(z), ad(xi )(w))

=

m∑
i=1

Kg(ad(z)(yi ), ad(xi )(w))=−

m∑
i=1

Kg(yi , ad(z) ◦ ad(xi )(w))

=

m∑
i=1

Kg(yi , ad(z) ◦ ad(w)(xi ))=

m∑
i, j=1

aj iδj i =

m∑
i=1

ai i = Kg(z, w),

where the last equality is due to the very definition of Kg. This implies that, for each
z ∈ g, we have ad(�)(z)− z ∈ Ker(Kg)= 0. Thus ad(�)(z)= z, i.e., (d) holds. �

Fact 3.2. Let i ∈ N. Let v be a left g-module on which � acts identically. Then the
cohomology group H i (g, v) is trivial.

Proof. We have an identity H i (g, v)= ExtiUg
(A, v) of Z(Ug)-modules; see [Cartan

and Eilenberg 1956, Chapter XIII, Sections 2 and 8]. As � ∈ Z(Ug) acts trivially
on A and identically on v, the group �ExtiUg

(A, v) is on one hand trivial and on the
other hand equal to ExtiUg

(A, v). Therefore, ExtiUg
(A, v)= 0, and H i (g, v)= 0. �

Theorem 3.3. We recall that the Killing form Kg on g is perfect. Then the group
scheme Aut(g) over Spec A of Lie automorphisms of g is smooth and locally of
finite presentation.

Proof. To check this, we can assume that the A-module g is free. The group scheme
Aut(g) is a closed subgroup scheme of GLg defined by a finitely generated ideal
of the ring of functions of GLg. Thus Aut(g) is of finite presentation. Therefore,
to show that Aut(g) is smooth over Spec A, it suffices to show that, for each
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affine morphism Spec B→ Spec A and for each ideal j of B such that j2 = 0, the
restriction map Aut(g)(B)→Aut(g)(B/j) is onto (see [Bosch et al. 1990, Chapter 2,
Section 2.2, Proposition 6]). So as not to introduce extra notation by repeatedly
tensoring with B over A, we will assume that B = A. Thus j is an ideal of A and
we have to show that the restriction map Aut(g)(A)→ Aut(g)(A/j) is onto.

Let σ̄ : g/jg −→∼ g/jg be a Lie automorphism. Let σ0 : g −→∼ g be an A-linear
automorphism that lifts σ̄ . Let jgσ̄ be the left g-module which as an A-module is jg
and whose left g-module structure is defined as follows: if x ∈ g, then x acts on jgσ̄
in the same way as ad(σ̄ (x)) (equivalently, as ad(σ0(x))) acts on the A-module
jg = jgσ̄ ; this makes sense as j2 = 0. Let θ : g× g→ jgσ̄ be the alternating map
defined by the rule

θ(x, y) := [σ0(x), σ0(y)] − σ0([x, y]) for all x, y ∈ g. (1)

We check that θ is a 2-cocycle, i.e., for all x, y, z ∈ g we have an identity

dθ(x, y, z)

:= x(θ(y, z))− y(θ(x, z))+z(θ(x, y))−θ([x, y], z)+θ([x, z], y)−θ([y, z], x)

= 0.

Substituting (1) in the definition of dθ , we get that the expression dθ(x, y, z) is a
sum of 12 terms which can be divided into three groups as follows. The first group
contains the three terms

−σ0([[x, y], z]), σ0([[x, z], y]), −σ0([[y, z], x]);

their sum is 0 due to the Jacobi identity and the fact that σ0 is an A-linear map. The
second group contains the six terms

[σ0(x), σ0[y, z]], −[σ0(x), σ0[y, z]], [σ0(y), σ0[x, z]],

− [σ0(y), σ0[x, z]], [σ0(z), σ0[x, y]], − [σ0(z), σ0[x, y]];

obviously their sum is 0. The third group contains the three terms

[σ0(x), [σ0(y), σ0(z)]], −[σ0(y), [σ0(x), σ0(z)]], [σ0(z), [σ0(x), σ0(y)]];

their sum is 0 due to the Jacobi identity. Thus, indeed, dθ = 0.
As� (i.e., ad(�)) acts identically on g (see Lemma 3.1(d)), it also acts identically

on jg. But�modulo j is fixed by the Lie automorphism σ̄ of g/jg; see Lemma 3.1(c).
Thus � also acts identically on the left g-module jgσ̄ . From this and Fact 3.2 we
get that H 2(g, jgσ̄ )= 0. Thus θ is the coboundary of a 1-cochain δ : g→ jgσ̄ , i.e.,
we have

θ(x, y)= x(δ(y))− y(δ(x))− δ([x, y]) for all x, y ∈ g. (2)
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Let σ :g−→∼ g be the A-linear isomorphism defined by the rule σ(x) :=σ0(x)−δ(x);
here δ(x) is an element of the A-module jg = jgσ̄ . Due to formulas (1) and (2),
we compute

σ([x, y])= σ0([x, y])− δ([x, y])

= [σ0(x), σ0(y)] − θ(x, y)− δ([x, y])

= [σ0(x), σ0(y)] − x(δ(y))+ y(δ(x))

= [σ0(x), σ0(y)] − ad(σ̄ (x))(δ(y))+ ad(σ̄ (y))(δ(x))

= [σ0(x), σ0(y)] − ad(σ0(x))(δ(y))+ ad(σ0)(y)(δ(x))

= [σ0(x), σ0(y)] − [σ0(x), δ(y)] + [σ0(y), δ(x)]

= [σ0(x)− δ(x), σ0(y)− δ(y)] − [δ(x), δ(y)]

= [σ(x), σ (y)] − [δ(x), δ(y)]

= [σ(x), σ (y)],

where the last identity follows from j2= 0. Therefore, σ is a Lie automorphism of g
that lifts the Lie automorphism σ̄ of g/jg. Thus the restriction map Aut(g)(A)→
Aut(g)(A/j) is onto. �

3.4. Proof of Theorem 1.2. The functor LY is faithful; see Lemma 2.5.1. Thus to
prove Theorem 1.2 it suffices to show that LY is surjective on objects and that LY

is fully faithful. To check this, as Adj-perfY and Lie-perfY are groupoids on sets
and as LY is faithful, we can assume that Y = Spec A is affine. Thus to finish the
proof it suffices to check the following three properties:

(i) if g is an object of Lie-perfY (identified with a Lie algebra over A), then
there exists a unique open subgroup scheme Aut(g)0 of Aut(g) which is an
adjoint group scheme over Y and whose Lie algebra is the Lie subalgebra ad(g)
of glg (therefore g= ad(g) is the image through LY of the object Aut(g)0 of
Adj-perfY );

(ii) the group scheme Aut(Aut(g)0) of automorphisms of Aut(g)0 is Aut(g) acting
on Aut(g)0 via inner conjugation (therefore Aut(g)(A)= Aut(Aut(g)0)(A));

(iii) if G and H are two objects of Adj-perfY such that Lie(G)= Lie(H), then G
and H are isomorphic.

To check the first two properties, we can assume that the A-module g is free
and of rank m ∈ N∗. Let k be the residue field of an arbitrary point y ∈ Y . It is
well known that the Lie algebra Lie(Aut(g)k) is the Lie algebra of derivations of
gk := g⊗A k. As this fact plays a key role in this paper, we include a proof of it.
The tangent space of Aut(g)k at the identity element is identified with the set of



Extension theorems for reductive group schemes 103

automorphisms a of gk ⊗k k[ε]/(ε2), which modulo ε̄ = ε+ (ε2) are the identity
automorphism of gk . We can write each such automorphism as

a = 1gk⊗kk[ε]/(ε2)+ Da ⊗ ε̄,

where Da is a k-linear endomorphism of gk . The condition that a respects the Lie
bracket (i.e., a([u, v]⊗1)=[a(u⊗1), a(v⊗1)] for all u, v ∈ gk) is equivalent to the
condition that Da is a derivation of gk . The association a 7→ Da identifies the tangent
space of Aut(g)k at the identity element with the k-vector space of derivations
of gk . Under this identification, the Lie bracket of a with an automorphism b of
gk ⊗k k[ε1]/(ε

2
1), which modulo ε̄1 = ε1+ (ε

2
1) is the identity automorphism of gk ,

is the derivation of gk which corresponds to the automorphism

aba−1b−1
= 1gk⊗k[εε1]/(ε2ε2

1)
+ [Da, Db]ε̄ε̄1

of gk⊗k k[εε1]/(ε
2ε2

1) and thus is the Lie bracket [Da, Db] (ε1 is used here instead
of ε so that this last part makes sense). Therefore, Lie(Aut(g)k) is the Lie algebra
of derivations of gk .

As the Killing form Kgk is perfect, one argues as in [Humphreys 1972, Chapter II,
Section 5.3, Theorem] that each derivation of gk is an inner derivation. Thus we
have Lie(Aut(g)k)= ad(g)⊗A k. As the group scheme Aut(g) over Y is smooth and
locally of finite presentation (see Theorem 3.3), from [SGA 3 I 1970, Exposé VIB,
Corollary 4.4] we get that there exists a unique open subgroup scheme Aut(g)0 of
Aut(g)whose fibers are connected. The fibers of Aut(g)0 are open-closed subgroups
of the fibers of Aut(g) and thus are affine.

Let Nk be a smooth, connected, unipotent, normal subgroup of Aut(g)0k . The Lie
algebra Lie(Nk) is a nilpotent ideal of Lie(Aut(g)0k)= ad(g)⊗A k. Thus

Lie(Nk)⊆ Ker(KLie(Aut(g)0k)
)= Ker(Kad(g)⊗Ak);

see [Bourbaki 1989, Chapter I, Section 4.4, Proposition 6(b)]. As the Killing
form Kad(g)⊗Ak is perfect, we get Lie(Nk)= 0. Thus Nk is the trivial subgroup of
Aut(g)0k , and therefore the unipotent radical of Aut(g)0k is trivial. Thus Aut(g)0k is
an affine, connected, smooth group over Spec k whose unipotent radical is trivial.
Therefore, Aut(g)0k is a reductive group over Spec k; see [Borel 1991, Chapter IV,
Section 11.21]. As Lie(Aut(g)0k)= ad(g)⊗A k has trivial center, the group Aut(g)0k
is semisimple. Thus the smooth group scheme Aut(g)0 of finite presentation over Y
has semisimple fibers. Therefore, Aut(g)0 is a semisimple group scheme over Y ;
see [SGA 3 II 1970, Exposé XVI, Theorem 5.2(ii)]. As Z(Aut(g)0)k acts trivially on
Lie(Aut(g)0k)= ad(g)⊗A k and as Z(Aut(g)0)k is a subgroup of Aut(g)k , the group
Z(Aut(g)0)k is trivial. This implies that the finite, flat group scheme Z(Aut(g)0) is
trivial and thus Aut(g)0 is an adjoint group scheme.
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The Lie subalgebras Lie(Aut(g)0) and ad(g) of glg are free A-submodules of the
Lie subalgebra l of glg formed by derivations of g. As, for each point y of Y , we
have Lie(Aut(g)0k)= ad(g)⊗A k= l⊗A k, the Lie subalgebra l is locally generated by
either Lie(Aut(g)0) or ad(g). We easily get the identities Lie(Aut(g)0)= ad(g)= l.

The group scheme Aut(g) acts via inner conjugation on Aut(g)0. As we have
Lie(Aut(g)0) = ad(g) and as Aut(g) is a closed subgroup scheme of GLg, the
inner conjugation homomorphism Aut(g)→ Aut(Aut(g)0) has trivial kernel. As
Aut(Aut(g)0) is a closed subgroup scheme of Aut(Lie(Aut(g)0))=Aut(ad(g)) (see
Lemma 2.5.1), we can identify naturally Aut(Aut(g)0) with a closed subgroup
scheme of Aut(g). From the last two sentences, we get that Aut(Aut(g)0)=Aut(g).
Thus both properties (i) and (ii) hold.

To check that property (iii) holds, let g = Lie(G) = Lie(H). It suffices to
show that G and H are identified with Aut(g)0. We will work only with G. The
adjoint representation G → GLg factors as composite closed embedding homo-
morphisms G → Aut(g)0 → Aut(g) → GLg (see Lemma 2.5.1 and [SGA 3 III

1970, Exposé XXIV, Theorem 1.3]). We get a closed embedding homomorphism
G → Aut(g)0 between adjoint group schemes that have the same Lie algebra g

(see also property (i)). By reasons of dimensions, the geometric fibers of the
closed embedding homomorphism G→ Aut(g)0 are isomorphisms, and therefore
G→ Aut(g)0 is an isomorphism. Thus property (iii) holds as well. �

The next proposition details the range of applicability of Theorem 1.2.

Proposition 3.5. (a) We recall that k is a field. Let H be a nontrivial semisimple
group over Spec k. Then the Killing form KLie(H) is perfect if and only if the
following two conditions hold:

(i) either char(k) equals 0 or char(k) is an odd prime p and H ad has no simple
factor of isotypic Apn−1, Bpn+ 1−p

2
, Cpn−1, or Dpn+1 Dynkin type (here n ∈N∗);

(ii) if char(k) = 3 (resp. char(k) = 5), then H ad has no simple factor of isotypic
E6, E7, E8, F4, G2 (resp. isotypic E8) Dynkin type.

(b) If KLie(H) is perfect, then the central isogenies H sc
→ H→ H ad are étale; thus,

by identifying tangent spaces at identity elements, Lie(H sc)= Lie(H)= Lie(H ad).

Proof. We can assume that k = k̄ and that tr deg(k) <∞. If char(k) = 0, then
Lie(H) is a semisimple Lie algebra over k and therefore the proposition follows
from [Humphreys 1972, Chapter II, Section 5.1, Theorem]. Thus we can assume
char(k) is a prime p ∈N∗. If conditions (i) and (ii) hold, then p does not divide the
order of the finite group scheme Z(H sc)= Ker(H sc

→ H ad) (see [Bourbaki 2002,
Plates I to IX]) and therefore (a) implies (b).

Let W (k) be the ring of p-typical Witt vectors with coefficients in k. Let HW (k) be
a semisimple group scheme over Spec W (k) that lifts H ; see [SGA 3 III 1970, Exposé
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XXIV, Proposition 1.21]. Then Lie(H sc
W (k))

[ 1
p

]
= Lie(HW (k))

[ 1
p

]
= Lie(H ad

W (k))
[ 1

p

]
.

This implies that:

(iii) the Killing form KLie(HW (k)) is the composite of the natural W (k)-linear map
Lie(HW (k))×Lie(HW (k))→ Lie(H ad

W (k))×Lie(H ad
W (k)) with KLie(H ad

W (k))
;

(iv) the Killing form KLie(H sc
W (k))

is the composite of the natural W (k)-linear map
Lie(H sc

W (k))×Lie(H sc
W (k))→ Lie(HW (k))×Lie(HW (k)) with KLie(HW (k)).

We prove (a). We have Ker(Lie(H)→ Lie(H ad)) ⊆ Ker(KLie(H)); see prop-
erty (iii). If KLie(H) is perfect, then Ker(Lie(H)→ Lie(H ad)) = 0 and therefore
Lie(H) = Lie(H ad). Thus to prove (a) we can assume that H = H ad is adjoint.
Even more, to prove (a) we can also assume that the adjoint group H is simple; let
[ be the Lie type of H . If [ is not of classical Lie type, then KLie(H) is perfect if
and only if either p > 5 or p = 5 and [ 6= E8 (see [Humphreys 1995, Table, p. 49]).
Thus to prove (a), we can assume that [ is a classical Lie type. We fix a morphism
Spec C→ Spec W (k).

Suppose that [ is either An or Cn . By the standard trace form on Lie(H sc)

(resp. Lie(H sc
W (k)) or Lie(H sc

C
)) we mean the trace form T (resp. TW (k) or TC)

associated to the faithful representation of H sc (resp. H sc
W (k) or H sc

C
) of rank n+ 1

if [= An and of rank 2n if [=Cn . We have KLie(H sc
C
) = 2(n+1)TC; see [Helgason

1978, Chapter III, Section 8, (5) and (22)]. This identity implies that we also
have KLie(H sc

W (k))
= 2(n + 1)TW (k) and thus KLie(H sc) = 2(n + 1)T. If p does not

divide 2(n + 1), then Lie(H sc) = Lie(H) and it is well known that T is perfect;
thus KLie(H sc) = KLie(H) = 2(n+ 1)T is perfect. Suppose that p divides 2(n+ 1).
This implies that KLie(H sc) is the trivial bilinear form on Lie(H sc). From this and
property (iv) we get that the restriction of KLie(H) to Im(Lie(H sc)→ Lie(H)) is
trivial. As dimk(Lie(H)/ Im(Lie(H sc)→ Lie(H)))= 1 and as dimk(Lie(H))≥ 3,
we easily get that KLie(H) is degenerate.

Suppose that [ = Bn (resp. [ = Dn with n ≥ 4). If p > 2, then we have
Lie(H sc)= Lie(H). Moreover, using [Helgason 1978, Chapter III, Section 8, (11)
and (15)], as in the previous paragraph we argue that KLie(H) is perfect if p does not
divide 2(2n−1) (resp. if p does not divide 2(n−1)) and is degenerate if p divides
2n− 1 (resp. if p divides 2(n− 1)).

We are left to show that KLie(H) is degenerate if p= 2 and [= Bn . The group H
is (isomorphic to) the SO-group of the quadratic form x2

0+ x1xn+1+· · ·+ xnx2n on
W := k2n+1. Let {ei, j | i, j ∈{0, 1, . . . , n} be the standard k-basis for glW . The direct
sum nn :=

⊕2n
i=1 ke0,i is a nilpotent ideal of Lie(H); see [Borel 1991, Chapter V,

Section 23.6]. Thus nn ⊆ Ker(KLie(H)), by [Bourbaki 1989, Chapter I, Section 4.4,
Proposition 6(b)] applied to the adjoint representation of Lie(H). Therefore, KLie(H)

is degenerate.
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We conclude that KLie(H) is perfect if and only if both conditions (i) and (ii) hold.
Therefore, (a) (and thus also (b)) holds. �

Remark 3.6. Let A and g be as in the beginning of this section.

(a) Let p ∈ N∗ be a prime. Suppose that A is an algebraically closed field of
characteristic p. Let G be an adjoint group over Spec A such that g = Lie(G);
see Theorem 1.2. We have p 6= 2; see Proposition 3.5. Let GZ be the unique
(up to isomorphism) split, adjoint group scheme over Spec Z such that G is the
pullback of GZ to Spec A; see [SGA 3 III 1970, Exposé XXV, Corollary 1.3]. We
have g= Lie(GZ)⊗Z A, i.e., g has a canonical model Lie(GZ) over Z. For p > 7,
this result was obtained in [Curtis 1957, Section 5, Theorem]. For p> 3, this result
was obtained by Seligman [1967, Chapter II, Section 10], Mills [1957], Mills and
Seligman [1957], and Block and Zassenhaus [1964]. For p = 3, this result was
obtained in [Brown 1969, Theorem 4.1]. It seems to us that the fact that p 6= 2 (i.e.,
that all Killing forms of finite dimensional Lie algebras over fields of characteristic 2
are degenerate) is new.

(b) Let B� A be an epimorphism of commutative Z-algebras whose kernel j is
a nilpotent ideal. Then g has, up to isomorphisms, a unique lift to a Lie algebra
over B which as a B-module is projective and finitely generated. One can prove
this statement using cohomological methods as in the proof of Theorem 3.3. The
statement also follows from Theorem 1.2 and the fact that Aut(g)0 has, up to
isomorphisms, a unique lift to an adjoint group scheme over Spec B (this can be
easily checked at the level of torsors of adjoint group schemes; see [SGA 3 III 1970,
Exposé XXIV, Corollaries 1.17 and 1.18]).

Corollary 3.7. Let Sc-perfY be the category whose objects are simply connected
semisimple group schemes over Y with the property that their Lie algebra OY -
modules have perfect Killing forms and whose morphisms are isomorphisms of
group schemes. Then the functor Lsc

Y : Sc-perfY → Lie-perfY , which associates to
a morphism f : G −→∼ H of Sc-perfY the morphism d f : Lie(G) −→∼ Lie(H) of
Lie-perfY which is the differential of f , is an equivalence of categories.

Proof. The functor Lsc
Y is the composite of the canonical (‘division by the centers’)

functor ZY : Sc-perfY → Adj-perfY with LY ; the functor ZY makes sense (see
Proposition 3.5(b)) and it is an equivalence of categories. Thus the corollary follows
from Theorem 1.2. �

Corollary 3.8. The category Lie-perfY has a nonzero object if and only if Y is a
nonempty Spec Z

[1
2

]
-scheme.

Proof. The ‘if’ part is implied by the fact that an sl2 Lie algebra OY -module
has perfect Killing form. The ‘only if’ part follows from the relation p 6= 2 of
Remark 3.6(a). �
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4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. See Sections 4.1 and 4.2 for the proofs of
Theorem 1.4(a) and Theorem 1.4(b) (respectively). In Remark 4.3 we point out
that the hypotheses of Theorem 1.4 are indeed needed in general. We will use the
notation presented in Section 1.

4.1. Proof of Theorem 1.4(a). To prove Theorem 1.4 we can assume Y is also
integral. Let K := KY be a field. If H is a reductive group scheme over Y , then we
have D(H)= D(HU ) and thus the uniqueness parts of Theorem 1.4 follow from
Proposition 2.2(b). Let l be the Lie algebra OY -module which extends Lie(GU ).

We prove Theorem 1.4(a). Due to the uniqueness part, to prove Theorem 1.4(a)
we can assume Y = Spec A is also local and strictly henselian. Let g := l(Y ) be the
Lie algebra over A of global sections of l.

As U is connected, based on [SGA 3 III 1970, Exposé XXII, Proposition 2.8] we
can speak about the split, adjoint group scheme S over Y of the same Lie type as all
geometric fibers of GU . Let s :=Lie(S). Let Aut(S) be the group scheme over Y of
automorphisms of S. We have a short exact sequence 1→ S→ Aut(S)→ C→ 1,
where C is a finite, étale, constant group scheme over Y (see [SGA 3 III 1970,
Exposé XXIV, Theorem 1.3]). Let γ ∈ H 1(U,Aut(S)U ) be the class that defines
the form GU of SU .

We recall that GLg and GLs are the reductive group schemes over Y of linear
automorphisms of g and s (respectively). The adjoint representations define closed
embedding homomorphisms jU : GU ↪→ GLg,U and i : S ↪→ GLs and, moreover,
i extends naturally to a closed embedding homomorphism Aut(S) ↪→ GLs; see
Lemma 2.5.1. Let δ ∈ H 1(U, (GLs,U )) be the image of γ via the homomorphism
Aut(S)U ↪→ GLs,U .

We recall that the quotient sheaf for the faithfully flat topology of Y of the
action of S on GLs via right translations is representable by a Y-scheme GLs /S
that is affine and that causes GLs to be a right torsor of S over GLs /S (see [Colliot-
Thélène and Sansuc 1979, Corollary 6.12]). Thus GLs /S is a smooth, affine
Y-scheme. The finite, étale, constant group scheme C acts naturally (from the
right) on GLs /S and this action is free (see Lemma 2.5.1). From [SGA 3 I 1970,
Exposé V, Theorem 4.1] we get that the quotient Y-scheme (GLs /S)/C is affine
and that the quotient epimorphism GLs /S � (GLs /S)/C is a finite étale cover.
Thus (GLs /S)/C is a smooth, affine scheme over Y that represents the quotient
sheaf for the faithfully flat topology of Y of the action of Aut(S) on GLs via right
translations. From constructions we get that GLs is a right torsor of Aut(S) over
GLs /Aut(S) := (GLs /S)/C .

The twist of iU via the class γ is jU . This implies that the class δ defines the torsor
that parametrizes isomorphisms between the pullbacks to U of the vector group
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schemes over Y defined by s and g. Therefore, as the A-modules s and g are isomor-
phic (being free and of equal ranks), the class δ is trivial. Thus γ is the cobound-
ary of a class in H 0(U,GLs,U /Aut(S)U ). But H 0(U,GLs,U /Aut(S)U ) equals
H 0(Y,GLs /Aut(S)) (see Proposition 2.2(b)) and therefore γ is the restriction of a
class in H 1(Y,Aut(S)). As Y is strictly henselian, each class in H 1(Y,Aut(S)) is
trivial. Thus γ is the trivial class. Therefore, the group schemes GU and SU are iso-
morphic. Thus GU extends to an adjoint group scheme G over Y isomorphic to S. �

4.2. Proof of Theorem 1.4(b). Let η : K̄ →U be the geometric point of U which
is the composite of the natural morphisms Spec K̄ → Spec K and Spec K → U .
We denote also by η : K̄ → Y the resulting geometric point of Y . As Y (resp. U ) is
normal and locally noetherian, from [SGA 3 II 1970, Exposé X, Theorems 5.16 and
7.1] we get that there exists an antiequivalence of categories between the category
of tori over Y (resp. U ) and the category of continuous π1(Y, η)-representations
(resp. continuous π1(U, η)-representations) on free Z-modules of finite rank. As the
pair (Y, Y \U ) is quasipure, we have a canonical identification π1(U, η)= π(Y, η).
From the last two sentences we get that there exists a unique torus H ab over Y
which extends H ab

U .
Let H ad be the adjoint group scheme over Y that extends H ad

U ; see Theorem 1.4(a).
Let F→ H ad

×Y H ab be the central isogeny over Y that extends the central isogeny
HK→H ad

K ×Spec K H ab
K ; see Lemma 2.3.1(a). Both FU and HU are the normalization

of H ab
U ×U H ad

U in HK ; see Lemma 2.3.1(b). Thus HU = FU extends uniquely to a
reductive group scheme H := F over Y (see the first paragraph of Section 4.1 for
the uniqueness part). �

Remark 4.3. (a) Let Y1 → Y be a finite, nonétale morphism between normal,
noetherian, integral Spec Z(2)-schemes such that there exists an open subscheme U
of Y with the properties that: (i) Y \U has codimension in Y at least 2, and (ii)
Y1×Y U →U is a Galois cover of degree 2. Let HU be the rank-1 nonsplit torus
over U that splits over Y1×Y U . Then HU does not extend to a smooth, affine group
scheme over Y . If, moreover, Y = Spec A is an affine Spec F2-scheme, then we
have Lie(HU )(U )= A and therefore Lie(HU ) extends to a Lie algebra OY -module
which as an OY -module is free. Thus the quasipure part of the hypotheses of
Theorem 1.4(b) is needed in general.

(b) Suppose that Y = Spec A is local, strictly henselian, regular, and of dimension
n ≥ 3. Let K := KY . Let d ∈ N∗ be such that there exists an A-submodule M
of K d that contains Ad , is of finite type, is not free, and satisfies the identity
M =

⋂
V∈D(Y )M ⊗A V (inside M ⊗A K ). A typical example (communicated to us

by Serre) is d = n− 1 and M −→∼ Coker( f ), where the A-linear map f : A→ An

takes 1 to an n-tuple (x1, . . . , xn) ∈ An of regular parameters of A.
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Let F be the coherent OY -module defined by M . Let U be an open subscheme
of Y such that Y \U has codimension in Y at least 2 and the restriction FU of F

to U is a locally free OU -module. Let HU be the reductive group scheme over U
of linear automorphisms of FU . We recall the reason why the assumption that HU

extends to a reductive group scheme H over Y leads to a contradiction. The group
scheme H is isomorphic to GLd,A (as A is strictly henselian), and therefore there
exists a free A-submodule L of K d of rank d such that H =GLL . As A is a unique
factorization domain (being local and regular), it is easy to see that there exists an
element f ∈ K such that the identity M⊗A V = f L⊗A V holds for each V ∈D(Y ).
This implies that M = f L . Thus M is a free A-module. Contradiction.

As HU does not extend to a reductive group scheme over Y and as the pair
(Y, Y \U ) is quasipure, from Section 4.2 we get that H ad

U also does not extend to an
adjoint group scheme over Y . Thus the Lie part of the hypotheses of Theorem 1.4(a)
is needed in general.

5. Extending homomorphisms via schematic closures

In this section we prove two results on extending homomorphisms of reductive
group schemes via taking (normalizations of) schematic closures. Proposition 5.1
complements Theorem 1.4(b) and Proposition 2.5.2, and Proposition 5.2 refines
[Vasiu 1999, Lemma 3.1.6].

Proposition 5.1. Let Y be a normal, noetherian, integral scheme. Let K := KY . Let
U be an open subscheme of Y such that the codimension of Y \U in Y is at least 2.
Let HU be a reductive group scheme over U and let G be a reductive group scheme
over Y . We assume we have a finite homomorphism ρU : HU → GU whose generic
fiber over Spec K is a closed embedding. We assume that one of the following two
properties holds:

(i) HU extends to a reductive group scheme H over Y , or

(ii) Y =Spec R is a local regular scheme of dimension 2 (thus U is the complement
in Y of the closed point of Y ).

Then the following three properties hold:

(a) There exists a unique reductive group scheme H over Y which extends HU .

(b) The homomorphism ρU extends uniquely to a finite homomorphism ρ : H→G
between reductive group schemes over Y .

(c) If there exists a point of Y \U of characteristic 2, we assume that HK has no
normal subgroup that is adjoint of isotypic Bn Dynkin type for some n ∈ N∗.
Then ρ : H → G is a closed embedding.
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Proof. If (i) holds, then the uniqueness of HU follows from Proposition 2.2(b). Thus
to prove (a) we can assume that property (ii) holds. As (ii) holds, the pair (Y, Y \U )
is quasipure (see Section 1) and the Lie algebra OU -module Lie(HU ) extends to a
Lie algebra OY -module which is a free OY -module (by Proposition 2.2(c) and the
fact that Y is local). Thus the hypotheses of Theorem 1.4(b) hold, and therefore
from Theorem 1.4(b) we get that there exists a unique reductive group scheme H
over Y that extends HU . Thus (a) holds.

To prove (b) and (c) we can assume that Y =Spec R is an affine scheme. We write
H = Spec RH and G = Spec RG . As D(H) = D(HU ) and D(G) = D(GU ), from
Proposition 2.2(a) we get that RH and RG are the R-algebras of global functions of
HU and GU (respectively). Let RG→ RH be the R-homomorphism defined by ρU

and let ρ : H → G be the morphism of Y-schemes it defines. The morphism ρ is a
homomorphism, as it is so generically. To check that ρ is finite, we can assume
that R is complete. Thus RH and RG are excellent rings; see [Matsumura 1980,
Section 34]. Therefore, the normalization H ′ = Spec RH ′ of the schematic closure
of HK in G is a finite, normal G-scheme.

The identity components of the reduced geometric fibers of ρ are trivial groups;
see Proposition 2.5.2(a) or (b). Thus ρ is a quasifinite morphism. From Zariski’s
main theorem (see [Grothendieck 1966, Theorem 8.12.6]) we get that H is an open
subscheme of H ′. But from Proposition 2.5.2(b) we get that the morphism H→ H ′

satisfies the valuative criterion of properness with respect to discrete valuation
rings which contain R. As each local ring of H ′ is dominated by such a discrete
valuation ring, we get that the morphism H→ H ′ is surjective. Therefore, the open,
surjective morphism H → H ′ is an isomorphism. Thus ρ is finite, i.e., (b) holds.

We prove (c). The pullback of the homomorphism ρ : H→G via each dominant
morphism Spec V → Y , with V a discrete valuation ring, is a closed embedding
(see Proposition 2.5.2(c)). This implies that the fibers of ρ are closed embeddings.
Thus the homomorphism ρ is a closed embedding; see Theorem 2.5. �

We have the following refinement of [Vasiu 1999, Lemma 3.1.6].

Proposition 5.2. Let G be a reductive group scheme over a reduced, affine scheme
Y =Spec A. Let K be a localization of A. Let s ∈N∗. For j ∈ {1, . . . , s} let Gj,K be
a reductive, closed subgroup scheme of GK . We assume that the group subschemes
Gj,K commute among themselves and that either

(i) the direct sum
⊕s

j=1Lie(Gj,K ) is a Lie subalgebra of Lie(GK ), or

(ii) s = 2, G1,K is a torus, and G2,K is a semisimple group scheme.

Then the closed subgroup scheme G0,K of GK generated by the group subschemes
Gj,K exists and is reductive. Moreover:

(a) If condition (i) holds, then Lie(G0,K )=
⊕s

j=1Lie(Gj,K ).
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(b) We assume that for each j ∈ {1, . . . , s} the schematic closure Gj of Gj,K in G
is a reductive group scheme over Y . Then the schematic closure G0 of G0,K

in G is a reductive, closed subgroup scheme of G.

Proof. Let3 be the category whose objects Ob(3) are finite subsets of K and whose
morphisms are the inclusions of subsets. For α ∈Ob(3), let Kα be the Z-subalgebra
of K generated by α and let Aα := A ∩ Kα. We have K = ind limα∈Ob(3)Kα and
A= ind limα∈Ob(3)Aα . The reductive group schemes Gj,K are of finite presentation.
Based on this and [Grothendieck 1966, Theorems 8.8.2 and 8.10.5], one gets that
there exists a β ∈ Ob(3) such that each Gj,K is the pullback of a closed subgroup
scheme Gj,Kβ of GKβ . For α⊇β, the set C(α) of points of Spec Kα with the property
that the fibers over them of all morphisms Gj,Kα → Spec Kα are (geometrically)
connected is a constructible set (see [Grothendieck 1966, Theorem 9.7.7]). We have
proj limα∈Ob(3)C(α)=Spec K . From this and [Grothendieck 1966, Theorem 8.5.2],
we get that there exists a β1 ∈ Ob(3) such that β1 ⊇ β and C(β1) = Spec Kβ1 .
Thus, by replacing β with β1, we can assume that the fibers of all morphisms
Gj,Kβ→ Spec Kβ are connected. A similar argument shows that, by enlarging β, we
can assume that all morphisms Gj,Kβ→ Spec Kβ are smooth and that their fibers are
reductive groups (the role of [Grothendieck 1966, Theorem 9.7.7] being replaced
by [Grothendieck 1966, Corollary 9.9.5] applied to the OGj,Kα

-module Lie(Gj,Kα )

and by [SGA 3 III 1970, Exposé XIX, Corollary 2.6]). Thus each Gj,Kβ is a reductive
closed subgroup scheme of GKβ . The smooth group schemes Gj,Kβ commute
among themselves, as this is so after pullback through the dominant morphism
Spec K → Spec Kβ . By enlarging β, we can also assume that either condition (i) or
condition (ii) holds for the Gj,Kβ s and that Kβ is a localization of Aβ . By replacing
A with the local ring of Spec Aβ dominated by A, to prove the proposition we can
assume that A is a localization of a reduced, finitely generated Z-algebra.

Using induction on s ∈N∗, it suffices to prove the proposition for s=2. Moreover,
we can assume that K = KY . For the sake of flexibility, in what follows we will
only assume that A is a reduced, noetherian Z-algebra; thus K is a finite product of
fields. As all the statements of the proposition are local for the étale topology of Y ,
it suffices to prove the proposition under the extra assumption that G1 and G2 are
split (see Proposition 2.3). Let CK := G1,K ∩G2,K be a closed subgroup scheme
of Gj,K that commutes with Gj,K , j ∈ {1, 2}. The Lie algebra Lie(CK ) is included
in Lie(G1,K )∩Lie(G2,K ) and therefore it is trivial if condition (i) holds. Thus if
condition (i) holds, then CK is a finite, étale, closed subgroup scheme of Z(Gj,K ). If
condition (ii) holds, then CK is a closed subgroup scheme of both G1,K = Z(G1,K )

and Z(G2,K ) and thus (as K is a finite product of fields) it is a finite group scheme
of multiplicative type.

Let C be the schematic closure of CK in G. Let Tj be a maximal torus of Gj .
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We have

CK 6 Z(G1,K )∩ Z(G2,K )6 T1,K ∩ T2,K 6 G1,K ∩G2,K = CK

and thus CK = T1,K ∩T2,K . Let T1×Y T2→G be the product homomorphism. The
kernel K of this product homomorphism is a group scheme over Y of multiplicative
type (see Lemma 2.3.2(a)) isomorphic to T1 ∩ T2. But KK −→

∼ CK is a finite
group scheme over Spec K and therefore K is a finite, flat group scheme over Y of
multiplicative type (see Lemma 2.3.2(b)). Thus T1∩T2 is a finite, flat group scheme
over Y . From this, the identity CK = (T1∩T2)K , and the definition of C we get that
C=T1∩T2. We conclude that C is a finite, flat group scheme over Y of multiplicative
type contained in the center of both G1 and G2. We embed C in G1×Y G2 via the nat-
ural embedding C ↪→G1 and via the composite of the inverse isomorphism C −→∼ C
with the natural embedding C ↪→ G2. Let G1,2 := (G1×Y G2)/C be a reductive
group scheme over Y . We have a natural product homomorphism q : G1,2→ G
whose pullback to Spec K can be identified with the closed embedding homomor-
phism G0,K ↪→ GK . Therefore, G0,K is a reductive group scheme over Spec K .
Moreover, if condition (i) holds, then as CK is étale we have natural identities

Lie(G1,K )⊕Lie(G2,K )= Lie(G1,2,K )= Lie(G0,K ).

Thus (a) holds. If q is a closed embedding, then q induces an isomorphism
G1,2 −→

∼ G0, and therefore G0 is a reductive, closed subgroup scheme of G. Thus
to finish the proof of (b), we only have to show that the homomorphism q is a
closed embedding.

To check that q is a closed embedding, it suffices to check that the fibers of q
are closed embeddings (see Theorem 2.5). For this we can assume that A is a
complete discrete valuation ring which has an algebraically closed residue field k;
this implies that G0 is a flat, closed subgroup scheme of G. Let n := Lie(Ker(qk)).
From Proposition 2.5.2(a) and Lemma 2.4 we get that either (iii) n = 0 or (iv)
char(k)= 2 and there exists a normal subgroup Fk of G1,2,k which is isomorphic to
SO2n+1,k for some n ∈ N∗ and for which we have Lie(Fk)∩ n 6= 0. We show that
the assumption that condition (iv) holds leads to a contradiction. Let F be a normal,
closed subgroup scheme of G1,2 that lifts Fk and that is isomorphic to SO2n+1,A

(see the last paragraph of the proof of Proposition 2.5.2(c)). Let j0 ∈ {1, 2} be
such that F C Gj0 C G1,2 (if condition (ii) holds, then j0 = 2). As Gj0 is a closed
subgroup scheme of G, we have Lie(Gj0,k)∩n=0 and therefore also Lie(Fk)∩n=0.
Contradiction. Thus condition (iv) does not hold, and therefore condition (iii) holds.
Consequently, Ker(qk) has a trivial Lie algebra, and so it is a finite, étale, normal
subgroup of G1,2,k . Thus Ker(qk) is a subgroup of Z(G1,2,k) and therefore also of
each maximal torus of G1,2,k . From this and Proposition 2.5.2(a) we get that Ker(qk)

is trivial. Therefore, qk is a closed embedding; thus q is a closed embedding. �
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