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associated to a non-CM Hida family

Jaclyn Lang

Fix a prime p > 2. Let ρ : Gal(Q/Q)→ GL2(I) be the Galois representation
coming from a non-CM irreducible component I of Hida’s p-ordinary Hecke
algebra. Assume the residual representation ρ̄ is absolutely irreducible. Under
a minor technical condition we identify a subring I0 of I containing Zp[[T ]]
such that the image of ρ is large with respect to I0. That is, Im ρ contains
ker
(
SL2(I0)→ SL2(I0/a)

)
for some nonzero I0-ideal a. This paper builds on

recent work of Hida who showed that the image of such a Galois representation is
large with respect to Zp[[T ]]. Our result is an I-adic analogue of the description
of the image of the Galois representation attached to a non-CM classical modular
form obtained by Ribet and Momose in the 1980s.

1. Introduction

A Hida family F that is an eigenform and has coefficients in a domain I has an
associated Galois representation ρF : Gal(Q/Q)→ GL2(Q(I)), where Q(I) is the
field of fractions of I. A fundamental problem is to understand the image of such a
representation. One expects the image to be “large” in an appropriate sense, so long
as F does not have any extra symmetries; that is, as long as F does not have CM.
(In the CM case there is a nontrivial character η such that ρF

∼= ρF ⊗η. This forces
the image of ρF to be “small”.) This notion of “largeness” can be defined relative to
any subring I0 of I, and one can then ask whether Im ρF is large with respect to I0.
Even when F does not have CM it might happen that there is an automorphism σ of
I and a nontrivial character η such that ρσF ∼= ρF ⊗ η. Such automorphisms, called
conjugate self-twists of F , can be thought of as weak symmetries of F . In this
paper we explain how conjugate self-twists constrict the image of ρF . In particular,
let I0 be the subring of I fixed by all conjugate self-twists of F . Our main result is
that Im ρF is “large” with respect to I0.

The study of the image of the Galois representation attached to a modular form,
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and showing that it is large in the absence of CM, was first carried out by Serre [1973]
and Swinnerton-Dyer [1973]. They studied the Galois representation attached to a
modular form of level 1 with integral coefficients. Ribet [1980; 1985] and Momose
[1981] generalized the work of Serre and Swinnerton-Dyer to cover all Galois
representations coming from classical modular forms. Ribet’s work dealt with the
weight two case, and Momose proved the general case. The main theorem in this
paper is an analogue of their results in the I-adic setting. In fact, their work is a key
input for our proof.

Shortly after Hida constructed the representations ρF , Mazur and Wiles [1986]
showed that if I= Zp[[T ]] and the image of the residual representation ρ̄F contains
SL2(Fp) then Im ρF contains SL2(Zp[[T ]]). Under the assumptions that I is a power
series ring in one variable and the image of the residual representation ρ̄F contains
SL2(Fp), our main result was proved by Fischman [2002]. Fischman’s work is the
only previous work that considers the effect of conjugate self-twists on Im ρF . Hida
[2015] has shown under some technical hypotheses that if F does not have CM
then Im ρF is large with respect to the ring Zp[[T ]], even when I ) Zp[[T ]]. The
methods he developed play an important role in this paper. The local behavior of
ρF at p was studied by Ghate and Vatsal [2004] and later by Hida [2013]. They
showed, under some assumptions later removed by Zhao [2014], that ρF |Dp is
indecomposable, where Dp denotes the decomposition group at p in GQ. We will
make use of this result later. Finally, Hida and Tilouine [2015] showed that certain
GSp4-representations associated to Siegel modular forms have large image.

Our result is the first to describe the effect of conjugate self-twists on the image
of ρF without any assumptions on I and without assuming that the image of ρ̄F
contains SL2(Fp). We do need an assumption on ρ̄F , namely that ρ̄F is absolutely
irreducible and another small technical condition, but this is much weaker than
assuming Im ρ̄F ⊇ SL2(Fp).

2. Main theorems and structure of paper

We begin by fixing notation that will be in place throughout the paper. Let p > 2
be prime. Fix algebraic closures Q of Q and Qp of Qp as well as an embedding
ιp : Q → Qp. Let GQ = Gal(Q/Q) be the absolute Galois group of Q. Let
Z+ denote the set of positive integers. Fix N0 ∈ Z+ prime to p; it will serve as
our tame level. Let N = N0 pr for some fixed r ∈ Z+. Fix a Dirichlet character
χ : (Z/NZ)×→ Q× which will serve as our nebentypus. Let χ1 be the product
of χ |(Z/N0Z)× with the tame p-part of χ , and write c(χ) for the conductor of χ .
During the proof of the main theorem we will assume that the order of χ is a power
of 2 and that 2c(χ)|N . The fact that we can assume these restrictions on χ for the
purpose of demonstrating I0-fullness is shown in Proposition 3.9.
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For a valuation ring W over Zp, let 3W =W [[T ]]. Let Zp[χ ] be the extension of
Zp generated by the values of χ . When W = Zp[χ ] we write 3χ for 3W . When
W = Zp then we let 3 = 3Zp . For any valuation ring W over Zp, an arithmetic
prime of 3W is a prime ideal of the form

Pk,ε := (1+ T − ε(1+ p)(1+ p)k)

for an integer k ≥ 2 and character ε : 1+ pZp→W× of p-power order. We shall
write r(ε) for the nonnegative integer such that pr(ε) is the order of ε. If R is a
finite extension of 3W , then we say a prime of R is arithmetic if it lies over an
arithmetic prime of 3W .

For a Dirichlet character ψ : (Z/MZ)×→Q×, let Sk(00(M), ψ) be the space of
classical cusp forms of weight k, level00(M), and nebentypusψ . Let hk(00(M), ψ)
be the Hecke algebra of Sk(00(M), ψ), and let hord

k (00(M), ψ) denote the p-
ordinary Hecke algebra. Let ω be the p-adic Teichmüller character. We can
describe Hida’s big p-ordinary Hecke algebra hord(N , χ;3χ ) as follows [Hida
2015]. It is the unique 3χ -algebra that is

(1) free of finite rank over 3χ ,

(2) equipped with Hecke operators T (n) for all n ∈ Z+, and

(3) satisfies the following specialization property: for every arithmetic prime Pk,ε

of 3χ there is an isomorphism

hord(N , χ;3χ )/Pk,εhord(N , χ;3χ )∼= hord
k (00(N pr(ε)), χ1εω

−k)

that sends T (n) to T (n) for all n ∈ Z+.

For a commutative ring R, we use Q(R) to denote the total ring of fractions of
R. Hida [1986a] has shown that there is a Galois representation

ρN0,χ : GQ→ GL2
(
Q(hord(N0, χ;3χ ))

)
that is unramified outside N and satisfies tr ρN0,χ (Frob`)= T (`) for all primes `
not dividing N . Let Spec I be an irreducible component of Spec hord(N0, χ;3χ ).
Assume further that I is primitive in the sense of [Hida 1986b, Section 3]. Let
λF : hord(N0, χ;3χ )→ I be the natural 3χ -algebra homomorphism coming from
the inclusion of spectra. By viewing

Q(hord(N0, χ;3χ ))= hord(N0, χ;3χ )⊗3χ Q(3χ )

and composing ρN0,χ with λF ⊗ 1 we obtain a Galois representation

ρF : GQ→ GL2(Q(I))
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that is unramified outside N and satisfies

tr ρF (Frob`)= λF (T (`))

for all primes ` not dividing N .
Henceforth for any n ∈ Z+ we shall let a(n, F) denote λF (T (n)). Let F be the

formal power series in q given by

F =
∞∑

n=1

a(n, F)qn.

Let I′ =3χ [{a(`, F) : ` - N }] which is an order in Q(I) since F is primitive. We
shall consider the Hida family F and the associated ring I′ to be fixed throughout
the paper. For a local ring R we will use mR to denote the unique maximal ideal of
R. Let F := I′/mI′ , the residue field of I′. We exclusively use the letter P to denote
a prime of I, and P′ shall always denote P∩ I′. Conversely, we exclusively use P′

to denote a prime of I′ in which case we are implicitly fixing a prime P of I lying
over P′.

If P is a height one prime of I then we write fP for the p-adic modular form
obtained by reducing the coefficients of F modulo P. In particular, if P is an
arithmetic prime lying over Pk,ε then fP ∈ Sk(00(N pr(ε)), εχ1ω

−k).
Recall that Hida [1986a] has shown that there is a well defined residual rep-

resentation ρ̄F : GQ→ GL2(I/mI) of ρF . Throughout this paper we impose the
following assumption.

Assume that ρ̄F is absolutely irreducible. (abs)

By the Chebotarev density theorem, we see that tr ρ̄F is valued in F. Under (abs)
we may use pseudorepresentations to find a GL2(I

′)-valued representation that is
isomorphic to ρF over Q(I). Thus we may (and do) assume that ρF takes values in
GL2(I

′).

Definition 2.1. Let g=
∑
∞

n=1 a(n, g)qn be either a classical Hecke eigenform or a
Hida family of such forms. Let K be the field generated by {a(n, g) : n ∈ Z+} over
either Q in the classical case or Q(3χ ) in the 3χ -adic case. We say a pair (σ, ησ )
is a conjugate self-twist of g if ησ is a Dirichlet character, σ is an automorphism of
K , and

σ(a(`, g))= ησ (`)a(`, g)

for all but finitely many primes `. If there is a nontrivial character η such that (1, η)
is a conjugate self-twist of g, then we say that g has complex multiplication or CM.
Otherwise, g does not have CM.
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If a modular form does not have CM then a conjugate self-twist is uniquely
determined by the automorphism.

We shall always assume that our fixed Hida family F does not have CM. Let

0 = {σ ∈ Aut(Q(I)) : σ is a conjugate self-twist of F}.

Under the assumption (abs) it follows from a lemma of Carayol and Serre [Hida
2000b, Proposition 2.13] that if σ ∈ 0 then ρσF ∼= ρF ⊗ ησ over I′. As ρF is
unramified outside N we see that in fact σ(a(`, F))= ησ (`)a(`, F) for all primes
` not dividing N . Therefore σ restricts to an automorphism of I′. Let I0 = (I

′)0.
Define

H0 :=
⋂
σ∈0

ker ησ

and
H := H0 ∩ ker(det(ρ̄F )).

These open normal subgroups of GQ play an important role in our proof.
For a commutative ring B and ideal b of B, write

0B(b) := ker(SL2(B)→ SL2(B/b)).

We call 0B(b) a congruence subgroup of GL2(B) if b 6= 0. We can now define
what we mean when we say a representation is “large” with respect to a ring.

Definition 2.2. Let G be a group, A a commutative ring, and r : G → GL2(A)
a representation. For a subring B of A, we say that r is B-full if there is some
γ ∈ GL2(A) such that γ (Im r)γ−1 contains a congruence subgroup of GL2(B).

Let Dp be the decomposition group at p in GQ. That is, Dp is the image of
GQp := Gal(Qp/Qp) under the embedding GQp ↪→ GQ induced by ιp. Recall
that over Q(I) the local representation ρF |Dp is isomorphic to

(
ε u
0 δ
)

[Hida 2000a,
Theorem 4.3.2]. Let ε̄ and δ̄ denote the residual characters of ε and δ, respectively.

Definition 2.3. For any open subgroup G0 ≤ GQ we say that ρF is G0-regular if
ε̄|Dp∩G0 6= δ̄|Dp∩G0 .

The main result of this paper is the following.

Theorem 2.4. Assume p > 2 and let F be a primitive non-CM p-adic Hida family.
Assume |F| 6= 3 and that the residual representation ρ̄F is absolutely irreducible
and H0-regular. Then ρF is I0-full.

The strategy of the proof is to exploit the results of Ribet [1980; 1985] and
Momose [1981]. Since an arithmetic specialization of a non-CM Hida family
cannot be CM, their work implies that if P′ is an arithmetic prime of I′ then
there is a certain subring O ⊆ I′/P′ for which ρF mod P′ is O-full. To connect
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their ring O with I0, in Section 6 we show that Q(O) = Q(I0/Q), where Q =
I0 ∩P′. The proof that Q(O) = Q(I0/Q) relies on establishing a relationship
between conjugate self-twists of F and conjugate self-twists of the arithmetic
specializations of F . As this may be of independent interest we state the result
here.

Theorem 2.5. Let P be an arithmetic prime of I and σ be a conjugate self-twist of
fP that is also an automorphism of the local field Qp({a(n, fP) : n ∈ Z+}). Then
σ can be lifted to σ̃ ∈ 0 such that σ̃ (P′)=P′, where P′ =P∩ I′.

The proof, in Section 3, uses a combination of abstract deformation theory
and automorphic techniques. Deformation theory is used to lift σ to an au-
tomorphism of the universal deformation ring of ρ̄F . Then we use automor-
phic methods to show that this lift preserves the irreducible component Spec I.
The key technical input is that hord(N , χ;3χ ) is étale over arithmetic points
of 3.

The remainder of the paper consists of a series of reduction steps that allow
us to deduce our theorem from the aforementioned results of Ribet and Momose.
Our methods make it convenient to modify ρF to a related representation ρ :
H → SL2(I0) and show that ρ is I0-full. We axiomatize the properties of ρ at the
beginning of Section 4 and use ρ in the next three sections to prove Theorem 2.4.
Then in Section 7 we explain how to show the existence of ρ with the desired
properties.

The task of showing that ρ is I0-full is done in three steps. In Section 4 we
consider the projection of Im ρ to

∏
Q|P SL2(I0/Q), where P is an arithmetic prime

of 3 and Q runs over all primes of I0 lying over P . We show that if the image of
Im ρ in

∏
Q|P SL2(I0/Q) is open then ρ is I0-full. This uses Pink’s theory of Lie

algebras for p-profinite subgroups of SL2 over p-profinite semilocal rings [Pink
1993] and the related techniques developed by Hida [2015].

In Section 5 we show that if the image of Im ρ in SL2(I0/Q) is I0/Q-full
for all primes Q of I0 lying over P , then the image of Im ρ is indeed open in∏

Q|P SL2(I0/Q). The argument is by contradiction and uses Goursat’s lemma. It
was inspired by an argument of Ribet [1975]. This is the only section where we
make use of the assumption that |F| 6= 3.

The final step showing that the image of Im ρ in SL2(I0/Q) is I0/Q-full for
every Q lying over P is done in Section 6. The key input is Theorem 2.5 from
Section 3 together with the work of Ribet and Momose on the image of the Galois
representation associated to a non-CM classical modular form. We give a brief
exposition of their work and a precise statement of their result at the beginning
of Section 6. We reiterate the structure of the proof of Theorem 2.4 at the end of
Section 6.
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3. Lifting twists

LetP1 andP2 be (not necessarily distinct) arithmetic primes of I, and letP′i=Pi∩I′.
We shall often view Pi as a geometric point in Spec(I)(Qp). Suppose there is an
isomorphism σ : I/P1 ∼= I/P2 and a Dirichlet character η : GQ→ Q(I/P2)

× such
that

σ(a(`, fP1))= η(`)a(`, fP2)

for all primes ` not dividing N . We may (and do) assume without loss of generality
that η is primitive since the above relation holds even when η is replaced by its
primitive character. In this section we show that σ can be lifted to a conjugate
self-twist of F .

Theorem 3.1. Assume that η takes values in Zp[χ ] and that the order of χ is a
power of 2. If η is ramified at 2, assume further that 2c(χ)|N. Then there is an
automorphism σ̃ : I′→ I′ such that

σ̃ (a(`, F))= η(`)a(`, F)

for all but finitely many primes ` and σ ◦P′1 =P′2 ◦ σ̃ . In particular, P′1 and P′2
necessarily lie over the same prime of I0.

Remark. The condition that the order of χ be a power of 2 looks restrictive.
However in Proposition 3.9 we show that for the purpose of proving I0-fullness we
may replace F with a family whose nebentypus has order a power of 2. The same
proposition shows that the condition that 2c(χ)|N is not restrictive when proving
I0-fullness.

There are two steps in the proof of Theorem 3.1. First we use abstract deformation
theory to construct a lift 6 of σ to the universal deformation ring of ρ̄F (or some
base change of that ring). This allows us to show that η is necessarily quadratic.
Then we show that the induced map on spectra 6∗ sends the irreducible component
Spec I′ to another modular component of the universal deformation ring. Since σ is
an isomorphism between I/P1 and I/P2 it follows that the arithmetic point P′1 lies
on both Spec I′ and 6∗(Spec I′). Since the Hecke algebra is étale over arithmetic
points of 3, it follows that 6∗(Spec I′) = Spec I′ and hence 6 descends to the
desired automorphism of I′.

Lifting σ to the universal deformation ring. Let W be the ring of Witt vectors of
F. Let QN be the maximal subfield of Q unramified outside N and infinity, and let
G N

Q
:= Gal(QN/Q). Note that ρF factors through G N

Q
. For the remainder of this

section we shall consider G N
Q

to be the domain of ρF and ρ̄F .
We set up the notation for deformation theory. For our purposes universal

deformation rings of pseudorepresentations are sufficient. However, since we are
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assuming that ρ̄F is absolutely irreducible, we use universal deformation rings of
representations to avoid introducing extra notation for pseudorepresentations.

Let C denote the category of complete local p-profinite W -algebras with residue
field F. Let π̄ : G N

Q
→ GLn(F) be an absolutely irreducible representation. We

say an object Rπ̄ ∈ C and representation π̄univ
: G N

Q
→ GLn(Rπ̄ ) is a universal

couple for π̄ if: π̄univ mod mRπ̄
∼= π̄ and for every A ∈ C and representation

r : G N
Q
→ GLn(A) such that r mod mA ∼= π̄ , there exists a unique W -algebra

homomorphism α(r) : Rπ̄ → A such that r ∼= α(r) ◦ π̄univ. Mazur [1989] proved
that a universal couple always exists (and is unique) when π̄ is absolutely irreducible.

Since η takes values in Zp[χ ] which may not be contained in W , we need to
extend scalars. Let O =W [η]. We recommend the reader assume O =W on the
first read. In fact, in Proposition 3.4 we will use deformation theory to conclude
that η is quadratic, but we cannot assume that from the start. For a commutative
W -algebra A, let OA :=O⊗W A. It will be important that we are tensoring on the
left by O as we will sometimes want to view OA as a right W -algebra.

Let σ̄ denote the automorphism of F induced by σ and η̄ the projection of η to
F. The automorphism σ̄ of F induces an automorphism W (σ̄ ) on W . For any W -
algebra A, let Aσ̄ := A⊗W (σ̄ ) W , where W is considered as a W -algebra via W (σ̄ ).
Note that Aσ̄ is a W -bimodule with different left and right actions. Namely there
is the left action given by w(a⊗w′)= aw⊗w′, which may be different from the
right action given by (a⊗w′)w= a⊗ww′. In particular, OAσ̄ =O⊗W A⊗W (σ̄ ) W .
Let ι(σ̄ , A) : A → Aσ̄ be the usual map given by ι(σ̄ , A)(a) = a ⊗ 1. It is an
isomorphism of rings with inverse given by ι(σ̄−1, A). Furthermore, ι(σ̄ , A) is a
left W -algebra homomorphism.

The next lemma describes the relationship between the deformation rings arising
from the universal couples (Rρ̄F

, ρ̄ univ
F ), (Rρ̄σ̄F , (ρ̄

σ̄
F )

univ), and (Rη̄⊗ρ̄F
, (η̄⊗ ρ̄F )

univ).

Lemma 3.2. (1) If ρ̄ σ̄F ∼= η̄⊗ ρ̄F then the universal couples (Rρ̄σ̄F , (ρ̄
σ̄
F )

univ) and
(Rη̄⊗ρ̄F

, (η̄⊗ ρ̄F )
univ) are canonically isomorphic.

(2) There is a canonical isomorphism ϕ : Rσ̄ρ̄F
→ Rρ̄σ̄F of right W -algebras such

that
(ρ̄ σ̄F )

univ ∼= ϕ ◦ ι(σ̄ , Rρ̄F
) ◦ ρ̄ univ

F .

(3) Viewing (η̄⊗ρ̄F )
univ as a representation valued in GL2(

ORη̄⊗ρ̄F
) via the natural

map Rη̄⊗ρ̄F
→

ORη̄⊗ρ̄F
, there is a natural W -algebra homomorphism ψ :

Rη̄⊗ρ̄F
→

ORρ̄F
such that

η⊗ ρ̄ univ
F
∼= (1⊗ψ) ◦ (η̄⊗ ρ̄F )

univ.

Proof. The first statement follows directly from the definition of universal couples.
For (2), we show that the right W -algebra Rσ̄ρ̄F

satisfies the universal property for
ρ̄ σ̄F . Let A ∈ C and r : G N

Q
→ GL2(A) be a deformation of ρ̄ σ̄F . Then ι(σ̄−1, A) ◦ r
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is a deformation of ρ̄F , viewing Aσ̄
−1

as a right W -algebra. By universality there
is a unique right W -algebra homomorphism α(ι(σ̄−1, A) ◦ r) : Rρ̄F

→ Aσ̄
−1

such
that ι(σ̄−1, A) ◦ r ∼= α(ι(σ̄−1, A) ◦ r) ◦ ρ̄ univ

F . Tensoring α(ι(σ̄−1, A) ◦ r) with W
over W (σ̄ ) gives a homomorphism of right W -algebras α(ι(σ̄−1, A) ◦ r)⊗W (σ̄ ) 1 :
Rσ̄ρ̄F
→ A such that r ∼= (α(ι(σ̄−1, A) ◦ r)⊗W (σ̄ ) 1) ◦ ι(σ̄ , Rρ̄F

) ◦ ρ̄ univ
F . This shows

that the right W -algebra Rσ̄ρ̄F
satisfies the universal property for ρ̄ σ̄F . With notation

as above, when r = (ρ̄ σ̄F )
univ we set ϕ = α(ι(σ̄−1, Rρ̄σ̄F ) ◦ (ρ̄

σ̄
F )

univ)⊗W (σ̄ ) 1, so

(ρ̄ σ̄F )
univ ∼= ϕ ◦ ι(σ̄ , Rρ̄F

) ◦ ρ̄ univ
F . (1)

In particular, ϕ is a right W -algebra homomorphism.
Finally, let i : Rη̄⊗ρ̄F

→
ORη̄⊗ρ̄F

be the map given by x 7→ 1⊗ x . If A is a W -
algebra and r : G N

Q
→GL2(A) is a deformation of ρ̄F then η⊗ r : G N

Q
→GL2(

OA)
is a deformation of η̄⊗ ρ̄F . Hence there is a unique W -algebra homomorphism
α(η⊗ r) : Rη̄⊗ρ̄F

→
OA such that η⊗ r ∼= α(η⊗ r) ◦ (η̄⊗ ρ̄F )

univ. We can extend
α(η⊗ r) to an O-algebra homomorphism 1⊗α(η⊗ r) : ORη̄⊗ρ̄F

→
OA by sending

x⊗ y to (x⊗1)α(η⊗ r)(y). In particular, η⊗ r ∼= (1⊗α(η⊗ r))◦ i ◦ (η̄⊗ ρ̄F )
univ.

When r = ρ̄ univ
F , let ψ denote α(η⊗ ρ̄ univ

F ), so

η⊗ ρ̄ univ
F
∼= (1⊗ψ) ◦ i ◦ (η̄⊗ ρ̄F )

univ. �

Let A be a W -algebra. We would like to define a ring homomorphism m(σ̄ , A) :
Aσ̄ → A such that m(σ̄ , A) ◦ ι(σ̄ , A) is a lift of σ̄ . When A = F we can do this
by defining m(σ̄ , F)(x ⊗ y) = σ̄ (x)y. Similarly, when A = W we can define
m(σ̄ ,W )(x ⊗ y) = W (σ̄ )(x)y. If A = W [T ] or W [[T ]] then Aσ̄ = W σ̄

[T ] or
W σ̄
[[T ]], and we can define m(σ̄ , A) by simply applying m(σ̄ ,W ) to the coefficients

of the polynomials or power series. However, for a general W -algebra A it is not
necessarily possible to define m(σ̄ , A) or to lift σ̄ . (If A happens to be smooth over
W then it is always possible to lift σ̄ to A.) Note that by Nakayama’s lemma, if
m(σ̄ , A) exists then m(σ̄ , A) ◦ ι(σ̄ , A) is a ring automorphism of A.

Fortunately, we do not need m(σ̄ , A) to exist for all W -algebras; just for I′. Our
strategy is to prove that if ρ̄ σ̄F ∼= η̄⊗ ρ̄F , then the ring homomorphism m(σ̄ ,ORρ̄F

)

exists.

Lemma 3.3. If ρ̄F is absolutely irreducible and ρ̄ σ̄F ∼= η̄⊗ ρ̄F then there is a ring
homomorphism m(σ̄ ,ORρ̄F

) : ORσ̄ρ̄F
→

ORρ̄F
that is a lift of m(σ̄ , F). In particular,

m(σ̄ ,ORρ̄F
) ◦ ι(σ̄ ,ORρ̄F

) is a lift of σ̄ .

Proof. With notation as in Lemma 3.2 define m(σ̄ ,ORρ̄F
)= (1⊗ψ) ◦ (1⊗ϕ). We

will show that 1⊗ ϕ induces m(σ̄ , F) and 1⊗ψ induces the identity on F. Note
that F is the residue field of O since χ̄ , and hence η̄, takes values in F. Therefore
all of the tensor products with O residually disappear. Hence it suffices to show
that ϕ induces m(σ̄ , F) and ψ acts trivially on F.
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By definition F is generated by {a(`, F) :` - N }. Therefore it suffices to check that
ψ acts trivially on a(`, F) for any prime ` not dividing N . But ψ ◦ (η̄⊗ ρ̄F )

univ ∼=

η⊗ ρ̄ univ
F . Evaluating at Frob`, taking traces, and reducing to the residue field shows

that ψ induces the identity on F.
Let ϕ̄ : F⊗σ̄ F→ F be the residual map induced by ϕ. By reducing (1) to the

residue field we find that σ̄ ◦ ρ̄F
∼= ϕ̄◦ ι(σ̄ , F)◦ ρ̄F . By universality we conclude that

σ̄ = ϕ̄ ◦ ι(σ̄ , F). But σ̄ = m(σ̄ , F) ◦ ι(σ̄ , F) and hence ϕ̄ = m(σ̄ , F), as desired. �

Define 6 = (1⊗ψ) ◦ (1⊗ ϕ) ◦ (1⊗ ι(σ̄ , Rρ̄F
)). By the proof of Lemma 3.3

we see that 6 is a lift of σ̄ to ORρ̄F
. In the next subsection we use automorphic

techniques to descend 6 to I′. In order to do so we need the following properties
of 6.

Proposition 3.4. (1) For all w ∈W we have 6(1⊗w)= 1⊗W (σ̄ )(w).

(2) For all x ∈O we have 6(x ⊗ 1)= x ⊗ 1.

(3) The automorphism σ̄ of F is necessarily trivial and hence, under the assumption
that the order of χ is a power of 2 and p 6= 2, it follows that η is a quadratic
character.

(4) The automorphism 6 of Rρ̄F
is a lift of σ .

Proof. The first point is the most subtle. The key point is that ϕ is a right W -algebra
homomorphism. Let w ∈W . Then

(1⊗ ι(σ̄ ,ORρ̄F
))(1⊗w)= 1⊗w⊗ 1= 1⊗ 1⊗W (σ̄ )(w).

Since ϕ is a right W -algebra homomorphism and ψ is a W -algebra homomorphism
we see that 6(1⊗w)= 1⊗W (σ̄ )(w), as claimed.

The fact that 6(x ⊗ 1)= x ⊗ 1 for all x ∈O follows directly from the definition
of 6.

The first two facts imply that W (σ̄ ) is trivial. Indeed, for any w ∈W we have
w⊗ 1= 1⊗w ∈ ORρ̄F

. Therefore by the first two facts, in ORρ̄F
we have

w⊗ 1=6(w⊗ 1)=6(1⊗w)= 1⊗W (σ̄ )(w)=W (σ̄ )(w)⊗ 1.

The ring homomorphism O→ ORρF
is injective since Rρ̄F

covers I′ and I′ ⊃ O.
Therefore W (σ̄ ) and hence σ̄ must be trivial.

Therefore ρ̄F
∼= η̄⊗ ρ̄F . Taking determinants we find that det ρ̄F = η̄

2 det ρ̄F
and hence η̄ is quadratic. Therefore the values of η are of the form ±ζ , where ζ
is a p-power root of unity. But by assumption η takes values in Zp[χ ] and χ has
2-power order. Since p 6= 2 it follows that η must be quadratic.

In view of the previous parts of the current proposition we see that O = W
and hence ORρ̄F

= Rρ̄F
. Furthermore, the first two maps in the definition of 6

become trivial and hence 6 =ψ . By definition of ψ we have ψ ◦ ρ̄ univ
F
∼= η⊗ ρ̄ univ

F .
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Let α = α(ρF ) : Rρ̄F
→ I′ and regard P′i : I

′
→Qp as an algebra homomorphism.

Since ρσ1 ∼= η⊗ ρ2 it follows from the definitions of all maps involved that

σ ◦P′1 ◦α ◦ ρ̄
univ
F
∼=P′2 ◦α ◦6 ◦ ρ̄

univ
F .

By universality σ ◦P′1 ◦α =P′2 ◦α ◦6 and thus 6 is a lift of σ . �

Descending 6 to I′ via automorphic methods. To prove Theorem 3.1 it now re-
mains to show that6 descends to an automorphism of I′. Let us describe the strategy
of proof before proceeding. We begin by showing that the character η is unramified
at p. Once we know this, it is fairly straightforward to check that the irreducible
component 6∗(Spec I′) is modular in the sense that it is an irreducible component
of an ordinary Hecke algebra of some tame level and nebentypus. We then verify
that the tame level and nebentypus of 6∗(Spec I′) match those for Spec I′, so we
have two irreducible components of the same Hecke algebra. Finally, P′1 is an
arithmetic point on both Spec I′ and 6∗(Spec I′). As the ordinary Hecke algebra is
étale over 3 at arithmetic points [Hida 2006, Proposition 3.78], the two irreducible
components 6∗(Spec I′) and Spec I′ must coincide. In other words, 6 descends
to I′ as desired. There is a technical point that Spec I′ and 6∗(Spec I′) are only
irreducible components of the algebra generated by Hecke operators away from N ,
so in order to use étaleness we must associate to 6∗(Spec I′) a primitive irreducible
component Spec J of the full Hecke algebra. See the discussion after Corollary 3.7.

Lemma 3.5. Let ρ1, ρ2 : GQp → GL2(Qp) be ordinary representations such that
the inertia group acts by an infinite order character on the kernel of the unique
p-unramified quotient of each ρi . Assume there is an automorphism σ ∈ GQp and a
finite order character η such that ρσ1 ∼= η⊗ ρ2. Then η is unramified at p.

Proof. Since ρi is p-ordinary, by choosing bases appropriately we may assume
ρi =

( εi ∗
0 δi

)
with δi unramified. By assumption εi |Ip has infinite order. As ρσ1 ∼=

η⊗ ρ2, it follows that for some x ∈ GL2(Qp) we have ρσ1 = x(η⊗ ρ2)x−1. Write
x =

(
a b
c d

)
and η⊗ρ2 =

(ηε2 u
0 ηδ2

)
. A straightforward matrix computation shows that

on Ip we have(
εσ1 ∗

0 1

)
=

1
ad − bc

(
(adε2−bc)η− acu ∗

c(dη(ε2− 1)− cu) (ad−bcε2)η+ acu

)
.

Hence either c = 0 or cu = dη(ε2− 1).
If c = 0 then on Ip we have(

εσ1 ∗

0 1

)
=

(
ηε2 ∗

0 η

)
,

and so η|Ip = 1, as desired. If cu = dη(ε2− 1) then on Ip we have(
εσ1 ∗

0 1

)
=

(
η ∗

0 ηε2

)
.



166 Jaclyn Lang

Therefore we have εσ1 |Ip = η|Ip = ε
−1
2 |Ip . But this is impossible since εi |Ip has

infinite order by assumption while η has finite order. Therefore ηmust be unramified.
�

In what follows we use Wiles’s interpretation of Hida families [Wiles 1988].
Namely for a finite extension J of 3χ , a formal power series G =

∑
∞

n=1 a(n,G)qn

is a J-adic cusp form of level 00(N ) and character χ if for almost all arithmetic
primes P of J, the specialization of G at P gives the q-expansion of an element gP
of Sk(00(N pr(ε)), εχω−k), where P lies over Pk,ε. One defines the Hecke operators
by the usual formulae on coefficients of q-expansions. We say G is ordinary if it is
an eigenform for the Hecke operators whose eigenvalue under U (p) is in J×. Let
S(N , χ; J) be the J-submodule of J[[q]] spanned by all J-adic cusp forms of level
00(N ) and character χ that are also Hecke eigenforms. Let Sord(N , χ; J) denote
the J-subspace of S(N , χ; J) spanned by all ordinary J-adic cusp forms.

For each Dirichlet character ψ , we shall write c(ψ) ∈ Z+ for the conductor of ψ .
Let ψ : (Z/LZ)×→ Q× be a Dirichlet character. Let η be a primitive Dirichlet
character with values in Z[χ ]. (Every twist character of F has this property by
Lemma 3.11.) Denote by M(ψ, η) the least common multiple of L , c(η)2, and
c(ψ)c(η). By [Shimura 1971, Proposition 3.64], there is a linear map

Rψ,η : Sk(00(M(ψ, η)), ψ)→ Sk(00(M(ψ, η)), η2ψ)

f =
∞∑

n=1

a(n, f )qn
7→ η f =

∞∑
n=1

η(n)a(n, f )qn.

We now show that there is an analogous map in the J-adic setting.

Lemma 3.6. There is a well defined J-linear map

Rχ,η : S(M(χ, η), χ; J)→ S(M(χ, η), η2χ; J)

G =
∞∑

n=1

a(n,G)qn
7→ ηG =

∞∑
n=1

η(n)a(n,G)qn.

If p - c(η) then Rχ,η sends Sord(M(χ, η), χ; J) to Sord(M(χ, η), η2χ; J).

Proof. Let P be an arithmetic prime of J, and let Pk,ε be the arithmetic prime of 3
lying under P. If G ∈ Sord(M(χ, η), χ; J) then

gP ∈ Sk(00(M(χ, η)pr(ε)), εχω−k).

Let ψ = εχω−k . It follows easily from the definitions that M(ψ, η)=M(χ, η)pr(ε).
Therefore

ηgP = Rψ,η(gP) ∈ Sk(00(M(ψ, η)), η2ψ)= Sk(00(M(χ, η)pr(ε)), η2εχω−k),
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so ηG ∈ S(M(χ, η), η2χ; J).
For the statement about ordinarity, we may assume G is a normalized eigenform,

so a(p,G) is the eigenvalue of G under the U (p) operator. If G is ordinary then
a(p,G) ∈ J×. Hence η(p)a(p,G)= a(p, ηG) ∈ J× if and only if η(p) 6= 0. �

Corollary 3.7. The representation associated to 6∗(Spec I′) is modular of level
M(χ, η) and nebentypus χ .

Proof. The representation associated to 6∗(Spec I′) is isomorphic to η⊗ ρF . Con-
sider the formal q-expansion ηF :=

∑
∞

n=1 η(n)a(n, F)qn
∈ I[[q]]. By Lemma 3.6

and Lemma 3.5 we see that ηF is a Hida family of level 00(M(χ, η)) and neben-
typus η2χ . Clearly the Galois representation of ηF is isomorphic to η⊗ ρF since
their traces on Frobenius elements agree on all but finitely many primes. Since
η⊗ ρF

∼= α ◦6 ◦ ρ̄ univ
F , it follows that 6∗(Spec I′) is modular of level M(χ, η)

and nebentypus η2χ . By Proposition 3.4 we know that η is quadratic and hence
η2χ = χ . �

For any integer multiple M of N , let hord(M, χ;3χ )′ be the 3χ -subalgebra
of hord(M, χ;3χ ) generated by {T (n) : (n, N ) = 1}. Corollary 3.7 shows that
6∗(Spec I′) is an irreducible component of Spec hord(M(χ, η), χ;3χ )′. There is a
natural map β :Spec hord(M, χ;3χ )→Spec hord(M, χ;3χ )′ coming from the nat-
ural inclusion of algebras. An irreducible component Spec J′ of hord(M, χ;3χ )′ es-
sentially corresponds to the data of the Fourier coefficients away from N . The preim-
age β−1(Spec J′) is a union of irreducible components whose Fourier coefficients
agree with those of J′ away from N . By the theory of newforms we know that there
is a unique primitive irreducible component Spec J of hord(M, χ;3χ ) that projects
to Spec J′ under β. Let Spec J be the primitive component of hord(M(χ, η), χ;3χ )
that projects to6∗(Spec I′) under β. By the proof of Corollary 3.7, J is the primitive
form associated to ηF and so ρJ

∼= η⊗ ρF .
Since N |M(χ, η) there is a natural inclusion

Spec hord(N , χ;3χ ) ↪→ Spec hord(M(χ, η), χ;3χ ).

We wish to show that Spec J is an irreducible component of Spec hord(N , χ;3χ ).
We do this locally by computing the level of Spec J at each prime `. Let v` denote
the usual `-adic valuation on the integers, normalized such that v`(`)= 1.

Proposition 3.8. The primitive component Spec J is an irreducible component of
Spec hord(N , χ;3χ ).

Proof. First note that if ` - c(η) then v`(M(χ, η)) = v`(N ) since c(χ)|N . In
particular, by Lemma 3.5 we have vp(M(χ, η))= vp(N ).

Fix a prime ` 6= p at which η is ramified. For a pro-p ring A and representation
π :GQ`

→GL2(A), let C`(π) denote the `-conductor of π . See [Hida 2015, p. 659]
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for the precise definition. When π is the representation associated to a classical
form f , the `-conductor of π is related to the level of f by the proof of the local
Langlands conjecture for GL2. Indeed, when f is a classical newform of level N
we have C`(ρ f )= `

v`(N ). If f is new away from p and ` 6= p then we still have
C`(ρ f )= `

v`(N ).
First suppose that ρF |I` is not reducible indecomposable. Then (η⊗ρF )|I` is not

reducible indecomposable either. Therefore C`(ρF )= C`(ρ fP1
) and C`(η⊗ρF )=

C`(η⊗ ρ fP2
) [Hida 2015, Lemma 10.2(2)]. Since Galois action does not change

conductors we have

C`(ρF )= C`(ρ fP1
)= C`(ρσfP1

)= C`(η⊗ ρ fP2
)= C`(η⊗ ρF ).

Since F is a primitive form we have that fP1 is new away from p and hence
C`(ρ fP1

) = `v`(N ). On the other hand since J is primitive we have C`(ρJ) =

C`(η⊗ ρF ) is equal to the `-part of the level of J, which gives the desired result
at `.

Now assume that ρF |I` is reducible indecomposable. By Lemma 10.1(4) of [Hida
2015] we have a character ψ : GQ`

→ I× such that ρF |GQ`

∼=
(Nψ ∗

0 ψ

)
, where N is

the unramified cyclotomic character acting on p-power roots of unity and ψ |I` has
finite order. Note that since η is a quadratic character, c(η) is squarefree away from 2.
Similarly, since χ has 2-power order it follows that c(χ) is a power of 2 times a
product of distinct odd primes. Therefore, for odd primes ` it is enough to show that
c`(η)2|N . We use the description of the conductor of a locally reducible indecompos-
able representation given on page 660 of [Hida 2015]. Let ψ1 =ψ mod P1. Then
ρ fP2
|I`
∼=
( η−1ψσ1 ∗

0 η−1ψσ1

)
. If ψ1 is unramified then η−1ψσ1 is ramified and hence

c`(η)2 = c`(η−1)2 = c`(η−1ψσ1 )
2
= C`(ρ fP2

).

Since ρ fP2
is a specialization of ρF we have C`(ρ fP2

)|N giving the desired result.
Now suppose that ψ1 is ramified. Then c`(η)= `|c`(ψ1) and C`(ρ fP1

)= c`(ψ1)
2.

Again, since ρ fP1
is a specialization of ρF we see that c`(η)2|N .

Finally the case `= 2 follows from the assumption that 2c(χ)|N . We are able
to make this hypothesis by Proposition 3.9.

Therefore Spec J is an irreducible component of hord(N , χ;3χ ), as desired. �

Proof of Theorem 3.1. We first lift σ to an automorphism 6 of ORρ̄F
by Lemma 3.3.

We are able to use the definition of6 to show that ORρ̄F
= Rρ̄F

and that η is quadratic
in Proposition 3.4. By Proposition 3.8 we see that 6∗(Spec I′) is a component of
Spec hord(N , χ;3χ )′. Since ρσfP1

∼= η⊗ρ fP2
it follows that the arithmetic point P′1

is a point on both Spec I′ and6∗(Spec I′). We claim that in fact P1 ∈Spec I∩Spec J.
Note that J is the primitive family passing through f σP1

. (We know f σP1
is

primitive since fP1 is an arithmetic specialization of the primitive family F , and
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Galois conjugation does not change the level.) Indeed, J is the primitive form of
ηF . Let P∈ Spec J such that J mod P= f σP1

. On the other hand the kernel of the
specialization map giving rise to f σP1

is P1, since f σP1
= σ(F mod P1). Therefore

P=P1 ∈ Spec I∩Spec J.
Since hord(N , χ;3χ ) is étale over arithmetic points of 3 by [Hida 2006, Propo-

sition 3.78] it follows that the irreducible components Spec I and Spec J must
coincide and hence 6∗(Spec I′) = Spec I′. Therefore 6 descends to the desired
automorphism σ̃ of I′. The fact that σ̃ (a(`, F))= η(`)a(`, F) for almost all primes
` follows from specializing 6 ◦ ρ̄ univ

F
∼= η⊗ ρ̄ univ

F to I′ and taking traces. Finally,
σ ◦P′1 =P′2 ◦ σ̃ since 6 is a lift of σ by Proposition 3.4. �

Nebentypus and twist characters. We end this section with some information about
twist characters. In particular Proposition 3.9 shows that we may assume from the
beginning that χ has 2-power order with 2c(χ)|N .

Note that the ring I0 depends on F . However, if ψ is a character then ψF has
the same group of conjugate self-twists as that of F , and thus the same fixed ring I0.
Indeed, if σ is a conjugate self-twist of F with character η, then a straightforward
calculation shows that ψσηψ−1 is the twist character of σ on ψF .

Proposition 3.9. There is a Dirichlet character ψ such that the nebentypus ψ2χ of
ψF has order a power of 2 and 2c(ψ2χ)|M(χ, ψ). Furthermore, ρF is I0-full if
and only if ρψF is I0-full.

Proof. It is well known that the nebentypus of ψF is ψ2χ [Shimura 1971, Propo-
sition 3.64]. Write χ = χ2ξ , where χ2 is a character whose order is a power of 2
and ξ is an odd order character. Let 2n− 1 denote the order of ξ . Then ξ 2n

= ξ , so
taking ψodd = ξ

−n we see that ψ2
oddχ = χ2ξ

−2nξ = χ2 is a character whose order
is a power of 2.

Let 2t−1 be the order of ψ2
oddχ , and let ψ2 : (Z/2t Z)×→Q× be the associated

primitive character. Let ψ = ψ2ψodd. Then 22t
|M(χ, ψ) whereas c2(ψ

2χ)|2t−1.
Since t ≥ 1 we see that

2c2(ψ
2χ)|2t

|M(χ, ψ),

as desired.
Suppose that ρψF is I0-full. Since ψ is a finite order character, kerψ is an open

subgroup of GQ. Thus ρψF |kerψ is also I0-full. Note that ρψF |kerψ = ρF |kerψ .
Thus ρF is I0-full. �

We finish this section by recalling a lemma of Momose that shows that twist
characters are valued in Zp[χ ]. Thus Theorem 3.1 says that whenever a conjugate
self-twist of a classical specialization fP of F induces an automorphism of Qp( fP),
that conjugate self-twist can be lifted to a conjugate self-twist of the whole family F .
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Lemma 3.10 [Momose 1981, Lemma 1.5]. If σ is a conjugate self-twist of f ∈
Sk(00(N ), χ), then ησ is the product of a quadratic character with some power
of χ . In particular, ησ takes values in Z[χ ].

The proof of Lemma 3.10 is not difficult and goes through without change in the
I-adic setting. For completeness, we give the proof in that setting.

Lemma 3.11. If σ is a conjugate self-twist of F then ησ is the product of a quadratic
character with some power of χ . In particular, ησ has values in Z[χ ].

Proof. As ρ̄F is absolutely irreducible, ρσF ∼= ησ ⊗ρF . Thus σ(det ρF )= η
2
σ det ρF .

Define κ : 1+ pZp→3× by κ((1+ p)s)= (1+T )s for s ∈ Zp. Recall that for all
primes ` not dividing N we have

det ρF (Frob`)= χ(`)κ(〈`〉)`−1.

Substituting this expression for det ρF into σ(det ρF ) = η
2
σ det ρF yields η2

σ =

χσχ−1.
Recall that χσ = χα for some integer α > 0. To prove the result it suffices to

show that there is some i ∈ Z such that η2
σ = χ

2i . If χ has odd order then there is a
positive integer j for which χ = χ2 j . Thus η2

σ = χ
σ−1
= χ2 j (α−1). If χ has even

order then χσ also has even order since σ is an automorphism. Thus α must be
odd. Then α− 1 is even and η2

σ = χ
σχ−1

= χα−1, as desired. �

4. Sufficiency of open image in product

Recall that H0=
⋂
σ∈0 ker(ησ ) and H = H0∩ker(det ρ̄F ). For a variety of reasons,

our methods work best for representations valued in SL2(I0) rather than GL2(I
′).

Therefore, for the next three sections we assume the following theorem, the proof
of which is given in Section 7.

Theorem 4.1. Assume that ρ̄F is absolutely irreducible and H0-regular. If V = I′2

is the module on which GQ acts via ρF , then there is a basis for V such that all of
the following happen simultaneously:

(1) ρF is valued in GL2(I
′).

(2) ρF |Dp is upper triangular.

(3) ρF |H0 is valued in GL2(I0).

(4) There is a matrix j =
( ζ 0

0 ζ ′
)
, where ζ and ζ ′ are roots of unity, such that j

normalizes the image of ρF and ζ 6≡ ζ ′ mod p.

Let H ′ = ker(det ρ̄F ). For any h ∈ H ′ we have det ρF (h) ∈ 1+mI′ . Since p 6= 2
and I′ is p-adically complete, we have

√
det ρF (h)=

∞∑
n=0

(
1
2
n

)
(det ρF (h)− 1)n ∈ I′×.
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Since ρF is a 2-dimensional representation ρF |H ′ ⊗
(√

det ρF |H ′
)−1 takes values

in SL2(I
′). Restricting further it follows from Theorem 4.1 that

ρ := ρF |H ⊗
(√

det ρF |H

)−1

takes values in SL2(I0). Note that the image of ρ is still normalized by the matrix j
of Theorem 4.1 since we only modified ρF by scalars, which commute with j . In
Proposition 4.10 we show that ρF is I0-full if and only if ρ is I0-full. The proof of
Proposition 4.10 is postponed until the end of the current section since it uses the
theory of Pink–Lie algebras developed below. In the next three sections we prove
that ρ is I0-full.

The purpose of the current section is to make the following reduction step in the
proof of Theorem 2.4.

Proposition 4.2. Assume there is an arithmetic prime P of 3 such that the image
of Im ρ in

∏
Q|P SL2(I0/Q) is open in the product topology. Then ρ (and hence ρF )

is I0-full.

In the proof we use a result of Pink [1993] that classifies p-profinite subgroups
of SL2(A) for a complete semilocal p-profinite ring A. (Our assumption that p> 2
is necessary for Pink’s theory.) We give a brief exposition of the relevant parts of
his work for the sake of establishing notation. Define

2 : SL2(A)→ sl2(A), x 7→ x− 1
2 tr(x),

where we consider 1
2 tr(x) as a scalar matrix. Let G be a p-profinite subgroup of

SL2(A). Define L1(G) to be the closed subgroup of sl2(A) that is topologically
generated by 2(G). Let L1 · L1 be the closed (additive) subgroup of M2(A) topo-
logically generated by {x y : x, y ∈ G}. Let C denote tr(L1 · L1). Sometimes we
will view C ⊂ M2(A) as a set of scalar matrices. For n ≥ 2 define Ln(G) to be the
closed (additive) subgroup of sl2(A) generated by

[L1(G), Ln−1(G)] := {x y− yx : x ∈ L1(G), y ∈ Ln−1(G)}.

Definition 4.3. The Pink–Lie algebra of a p-profinite group G is L2(G). Whenever
we write L(G) without a subscript we shall always mean L2(G).

As an example one can compute that for an ideal a of A, the p-profinite subgroup
G=0A(a) has Pink–Lie algebra L2(G)=a2sl2(A). This example plays an important
role in what follows.

For n ≥ 1, define

Mn(G)= C ⊕ Ln(G)⊂ M2(A)

Hn(G)= {x ∈ SL2(A) :2(x) ∈ Ln(G) and tr(x)− 2 ∈ C}.
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Pink proves that Mn(G) is a closed Zp-Lie algebra of M2(A) and that Hn =

SL2(A)∩ (1+Mn) for all n ≥ 1. Furthermore, write

G1 = G, Gn+1 = (G,Gn),

where (G,Gn) is the closed subgroup of G topologically generated by the commuta-
tors {ggng−1g−1

n : g ∈ G, gn ∈ Gn}.

Theorem 4.4 [Pink 1993]. With notation as above, G is a closed normal subgroup
of H1(G). Furthermore, Hn(G)= (G,Gn) for n ≥ 2.

There are two important functoriality properties of the correspondence G 7→ L(G)
that we will use. First, since 2 is constant on conjugacy classes of G it follows
that Ln(G) is stable under the adjoint action of the normalizer NSL2(A)(G) of G in
SL2(A). That is, for g ∈ NSL2(A)(G), x ∈ Ln(G) we have gxg−1

∈ Ln(G). If a is
an ideal of A such that A/a is p-profinite, then we write Ga for the p-profinite
group G ·0A(a)/0A(a)⊆ SL2(A/a). The second functoriality property is that the
canonical linear map L(G)→ L(Ga) induced by x 7→ x mod a is surjective.

Let m0 be the maximal ideal of I0, and let G denote the p-profinite group
Im ρ ∩0I0(m0). The proof of Proposition 4.2 consists of showing that if GPI0 is
open in

∏
Q|P SL2(I0/Q) then G contains 0I0(a0) for some nonzero I0-ideal a0. Let

L = L(G) be the Pink–Lie algebra of G. Since GPI0 is open, for every prime Q of
I0 lying over P there is a nonzero I0/Q-ideal aQ such that

GPI0 ⊇

∏
Q|P

0I0/Q(aQ).

Thus L(GPI0)⊇⊕Q|Pa
2
Qsl2(I0/Q).

Recall from Theorem 4.1 that we have roots of unity ζ and ζ ′ such that ζ 6≡
ζ ′ mod p and the matrix j :=

( ζ 0
0 ζ ′
)

normalizes G. Let α=ζ ζ ′−1. A straightforward
calculation shows that the eigenvalues of Ad( j) acting on sl2(I0) are α, 1, α−1. Note
that since ζ 6=ζ ′ either all of α, 1, α−1 are distinct or else α=−1. For λ∈{α, 1, α−1

}

let L[λ] be the λ-eigenspace of Ad( j) acting on L . One computes that L[1] is
the set of diagonal matrices in L . If α =−1 then L[−1] is the set of antidiagonal
matrices in L . If α 6= −1 then L[α] is the set of upper nilpotent matrices in L ,
and L[α−1

] is the set of lower nilpotent matrices in L . Regardless of the value of
α, let u denote the set of upper nilpotent matrices in L and ut denote the set of
lower nilpotent matrices in L . Let L be the Zp-Lie algebra generated by u and ut

in sl2(I0).

Lemma 4.5. The matrix J :=
(

1+T 0
0 1

)
normalizes Im ρ, and L is a 3-submodule

of sl2(I0).

Proof. First we show that L is a 3-module assuming that J normalizes Im ρ. Since
L is a Zp-Lie algebra and3=Zp[[T ]], it suffices to show that x ∈L implies T x ∈L.
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If x ∈ u then a simple computation shows that J x J−1
= (1+ T )x. As L is an

abelian group it follows that T x = (1+ T )x− x ∈ u. Similarly, for y ∈ ut we have
T y ∈ ut . It follows that T [x, y] = [T x, y] ∈ L. Any element in L can be written
as a sum of elements in u, ut , and [u, ut

]. Therefore L is a 3-submodule of sl2(I0).
Now we show that J normalizes Im ρ. The proof is nearly identical to the

proof of [Hida 2015, Lemma 1.4] except we do not require ζ, ζ ′ ∈ Zp. As in the
proof of Proposition 4.10, we know there is an element τ =

(
1+T u

0 1

)
∈ Im ρF . A

straightforward matrix calculation shows that τ ∈ Im ρF |H . Writing t = (1+ T )1/2

and u′ = t−1u we see that τ ′
=
( t u′

0 t−1

)
∈ Im ρ. Since ρF |H and ρ differ only by a

character, their images have the same normalizer. In particular, the matrix j from
Theorem 4.1 normalizes Im ρ. Hence the commutator (τ ′, j) ∈ Im ρ and we can
compute

(τ ′, j)=
(

1 u′t (1−α)
0 1

)
.

Let v=
{

x ∈ I0 :
(

0 x
0 0

)
∈ u
}
. Then v is a Zp[α]-module. Indeed, it is a Zp-module

since we can raise unipotent matrices to Zp-powers, so it suffices to show that v is
closed under multiplication by α. This follows by conjugating unipotent elements
by j . Since α 6≡ 1 mod p we have that 1−α is a unit in Zp[α]. Therefore u′t ∈ v.
Let β = τ ′−1( 1 u′t

0 1

)
τ ′
∈ Im ρ. Then t−1 J = τ ′β−1 (and hence J) normalizes

Im ρ. �

The proof of Proposition 4.2 is easier when α 6= −1, so we start with that case.

Proof of Proposition 4.2 when α 6= −1. We will show that the finitely generated
3-module

X := sl2(I0)/L

is a torsion 3-module. From this it follows that there is a nonzero 3-ideal a such
that asl2(I0)⊆ L. Thus

(aI0)
2sl2(I0)⊆ L⊆ L

since I0sl2(I0)= sl2(I0). But (aI0)
2sl2(I0) is the Pink–Lie algebra of 0I0(aI0) and

so 0I0(aI0)⊆ G2 ⊆ G, as desired.
To show that X is a finitely generated 3-module, recall that the arithmetic prime

P in the statement of Proposition 4.2 is a height one prime of 3. By Nakayama’s
lemma it suffices to show that X/P X is 3/P-torsion. The natural epimorphism
sl2(I0)/Psl2(I0)� X/P X has kernel L · Psl2(I0)/Psl2(I0), so

X/P X ∼= sl2(I0/PI0)/(L · Psl2(I0)/Psl2(I0)).

We use the following notation:

L = L(GPI0) = the Pink–Lie algebra of GPI0,
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L[λ] = the λ-eigenspace of Ad( j) on L, for λ ∈ {α, 1, α−1
},

L = the Zp-algebra generated by L[α] and L[α−1
].

By the functoriality of Pink’s construction, the canonical surjection I0 � I0/PI0

induces surjections
L[λ]� L[λ]

for all λ ∈ {α, 1, α−1
}. Therefore the canonical linear map L → L is also a

surjection. That is, L · Psl2(I0)/Psl2(I0) = L and so X/P X ∼= sl2(I0/PI0)/L.
Since GPI0 ⊇

∏
Q|P 0I0/Q(aQ), it follows that

L[α] ⊇
{(

0 x
0 0

)
: x ∈ ⊕Q|Pa

2
Q

}
,

L[α−1
] ⊇

{(
0 0
x 0

)
: x ∈ ⊕Q|Pa

2
Q

}
.

Since α 6= −1 we have u= L[α] and ut
= L[α−1

]. Therefore

L⊇⊕Q|Pa
4
Qsl2(I0/Q).

Since each aQ is a nonzero I0/Q-ideal, it follows that ⊕Q|Psl2(I0/Q)/a4
Qsl2(I0/Q)

is 3/P-torsion. Finally, the inclusions

⊕Q|Pa
4
Qsl2(I0/Q)⊆ L⊆ sl2(I0/PI0)⊆⊕Q|Psl2(I0/QI)

show that sl2(I0/PI0)/L∼= X/P X is 3/P-torsion. �

Let

v=

{
v ∈ I0 :

(
0 v

0 0

)
∈ u

}
and vt

=

{
v ∈ I0 :

(
0 0
v 0

)
∈ ut

}
.

Definition 4.6. A 3-lattice in Q(I0) is a finitely generated 3-submodule M of
Q(I0) such that the Q(3)-span of M is equal to Q(I0). If in addition M is a subring
of I0 then we say M is a 3-order.

Proof of Proposition 4.2 when α = −1. We show in Lemmas 4.7 and 4.8 that v
and vt are 3-lattices in Q(I0). To do this we use the fact that the local Galois
representation ρF |Dp

is indecomposable [Ghate and Vatsal 2004; Zhao 2014].
We then show in Proposition 4.9 that any 3-lattice in Q(I0) contains a nonzero

I0-ideal. Let b and bt be nonzero I0-ideals such that b⊆ v and bt
⊆ vt . Let a0= bbt .

Then from the definitions of v, vt , and L, we find that

L⊇ a2
0sl2(I0).

By Pink’s theory it follows that G⊇ 0I0(a0). �
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Finally, we prove the three key facts used in the proof of Proposition 4.2 when
α =−1.

Lemma 4.7. With notation as above, v is a 3-lattice in Q(I0).

Proof. Let L = L(GPI0). Recall that L[1] surjects onto L[1]. Now L[1] contains{(
a 0
0 −a

)
: a ∈ ⊕Q|Pa

2
Q

}
,

and ⊕Q|Pa
2
Q is a 3/P-lattice in Q(I0/PI0). It follows from Nakayama’s lemma

that the set of entries in the matrices of L[1] contains a 3-lattice a for Q(I0).
By a theorem of Ghate and Vatsal [2004] (later generalized by Hida [2013] and

Zhao [2014]) we know that ρF |Dp
is indecomposable. Hence there is a matrix in the

image of ρ whose upper right entry is nonzero. This produces a nonzero nilpotent
matrix in L1. Taking the Lie bracket of this matrix with a nonzero element of L[1]
produces a nonzero nilpotent matrix in L which we will call

(
0 v
0 0

)
. Note that for

any a ∈ a we have (
0 2av
0 0

)
=

[(
a 0
0 −a

)
,

(
0 v

0 0

)]
∈ L .

Thus the lattice av is contained in v, so Q(3)v= Q(I0). The fact that v is finitely
generated follows from the fact that3 is noetherian and v is contained in the finitely
generated 3-module I0. �

Lemma 4.8. With notation as above, vt is a 3-lattice in Q(I0).

Proof. Let c̄ ∈ ⊕Q|Pa
2
Q. Since L[−1] surjects to L[−1] there is some

(
0 b
c 0

)
∈ L

such that b ∈ PI0 and c mod PI0= c̄. Since v is a3-lattice in Q(I0) by Lemma 4.7,
it follows that there is some nonzero α ∈3 such that αb ∈ v.

We claim that there is some nonzero β ∈3 for which
( 0 αb
βc 0

)
∈ L . Assuming

the existence of β, since αb ∈ v it follows that βc ∈ vt . That is, c ∈ Q(3)vt . Since
c̄ runs over ⊕Q|Pa

2
Q, it follows from Nakayama’s lemma that vt is a 3-lattice

in Q(I0).
To see that β exists, recall that L is normalized by the matrix J =

(
1+T 0

0 1

)
by

Lemma 4.5. Thus(
0 b
c 0

)
+

(
0 T b

((1+ T )−1
− 1)c 0

)
=

(
1+ T 0

0 1

)(
0 b
c 0

)(
(1+ T )−1 0

0 1

)
∈ L .

Write α = f (T ) as a power series in T . Since (1+ T )−1
− 1 is divisible by T ,

we can evaluate f at (1+ T )−1
− 1 to get another element of Zp[[T ]]. Taking

β = f ((1+ T )−1
− 1), the calculation above shows the desired inclusion:(

0 αb
βc 0

)
∈ L , �
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Proposition 4.9. Every 3-lattice in Q(I0) contains a nonzero I0-ideal.

Proof. Let M be a 3-lattice in Q(I0). Define

R = {x ∈ I0 : x M ⊆ M}.

Then R is a subring of I0 that is also a 3-lattice for Q(I0). Thus R is a 3-order in
I0, and M is an R-module. Therefore

c := {x ∈ I0 : xI0 ⊆ R}

is a nonzero I0-ideal. Note that Q(R) = Q(I0) = Q(3)M . Since M is a finitely
generated 3-module there is some nonzero r ∈ I0 such that r M ⊆ R. As r M is
still a 3-lattice for Q(I0), by replacing M with r M we may assume that M is an
R-ideal.

Now consider a= c · (MI0), where MI0 is the ideal generated by M in I0. Note
that a is a nonzero I0-ideal since both c and MI0 are nonzero I0-ideals. To see that
a⊆ M , let x ∈ I0 and c ∈ c. Then xc ∈ R by definition of c. If a ∈ M then xca ∈ M
since M is an R-ideal. Thus xca ∈ M , so a⊆ M . �

Remark. Note that the only property of I0 that is used in the proof of Proposition 4.9
is that I0 is a 3-order in Q(I0). Thus, once we have shown that ρ (or ρF ) is I0-full,
it follows that the representation is R-full for any 3-order R in Q(I0). In particular,
if Ĩ0 is the maximal 3-order in Q(I0) then ρF is Ĩ0-full.

Finally, we show that for the purposes of proving I0-fullness it suffices to work
with ρ instead of ρF .

Proposition 4.10. The representation ρF is I0-full if and only if ρ is I0-full.

Proof. Note that Im ρF |H0
∩SL2(I0)⊆ Im ρ by definition. Thus if ρF is I0-full then

so is ρ.
Now assume that ρ is I0-full. As in the proof of [Hida 2015, Theorem 8.2], let

0 = {(1+ T )s : s ∈ Zp} and

K = {x ∈ ρF (H0) : det x ∈ 0}.

Note that K is a finite index subgroup of Im ρF . Since F is ordinary and non-CM we
can find an element of the form τ =

(
1+T u

0 1

)
∈ Im ρF [Hida 2000a, Theorem 4.3.2].

Let n = [GQ : H0]. By replacing 0 with {(1+ T )ns
: s ∈ Zp} and τ with τ n , we

may assume that τ ∈ K.
Let S=K∩SL2(I0) and T ={τ s

: s ∈Zp}. We can write K as a semidirect product

K = T nS.

Indeed, given x ∈ K there is a unique s ∈ Zp such that det x = (1+ T )s . Thus we
identify x with (τ s, τ−s x) ∈ T nS.
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Let K′ be the image of K under the natural map

8 : K→ Im ρ, x 7→ x(det x)−1/2.

Then K′ is a finite index subgroup of Im ρ and therefore contains 0I0(a) for some
nonzero I0-ideal a since ρ is I0-full. Note that ker8 is precisely the set of scalar
matrices in K. Therefore, for some 0≤ r ≤∞,

ker8∼= {(1+ T )s : s ∈ pr Zp},

where r =∞means ker8={1}. If r 6=∞ then by passing to finite index subgroups
of K, K′, and 0 we may assume that ker8 = 0. Thus, given any y ∈ 0I0(a) we
can find x ∈ K such that 8(x)= y. Let s ∈ Zp such that det x = (1+ T )s/2. Then
the scalar matrix (1+ T )−s/2 is in 0 hence in K. Hence x(1+ T )−s/2

∈ S and
8(x(1+T )s/2)= y. But8 is the identity on S, so y= x(1+T )−s/2

∈S. Therefore
0I0(a)⊆ S and ρF is I0-full.

It remains to deal with the case when ker8= {1}. In this case 8 is an isomor-
phism onto K′ and we can use 8−1 to get a continuous group homomorphism from
K′ onto Zp:

s : K′ ∼= K ∼= T nS � T ∼= Zp.

Note that ker s = S, so we want to show that ker s is I0-full. By assumption there
is a nonzero I0-ideal a0 such that 0I0(a0) ⊆ K′. Let v = {b ∈ a0 :

(
1 b
0 1

)
∈ ker s}

and vt
= {c ∈ a0 :

(
1 0
c 1

)
∈ ker s}. Both v and vt are 3-lattices in Q(I0). We shall

prove this for v; the proof for vt is similar. Note that v is a Zp-module: if
(

1 b
0 1

)
∈S

then
(

1 sb
0 1

)
=
(

1 b
0 1

)s
∈ S since S is closed (as it is the determinant 1 image of a

Galois representation). To see that v is a 3-module, recall that S is normalized
by J =

(
1+T 0

0 1

)
by the proof of Lemma 4.5. Therefore conjugation by J gives an

action of T on v as in the proof of Lemma 4.5. Now we consider the 3-module
a0/v which, as a group, is isomorphic to a closed subgroup of Zp. Therefore a0/v

is a torsion 3-module. Since a0 is a 3-lattice in Q(I0) it follows that v must also
be a 3-lattice in Q(I0), as claimed.

We have shown that there are nonzero I0-ideals b⊆ v and bt
⊆ vt such that the

Pink–Lie algebra L(S) contains{(
0 b
0 0

)
: b ∈ b

}
∪

{(
0 0
c 0

)
: c ∈ bt

}
.

By letting c= bbt and taking Lie brackets of the upper and lower nilpotent matrices
above we find that L(S)⊇ c2sl2(I0). Therefore S is I0-full, as desired. �
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5. Open image in product

The purpose of this section is to prove the following reduction step in the proof of
Theorem 2.4.

Proposition 5.1. Assume that |F| 6= 3. Fix an arithmetic prime P of 3. Assume
that for every prime Q of I0 lying over P , the image of Im ρ in SL2(I0/Q) is open.
Then the image of Im ρ in

∏
Q|P SL2(I0/Q) is open in the product topology.

Thus if we can show that there is some arithmetic prime P of 3 satisfying the
hypothesis of Proposition 5.1, then combining the above result with Proposition 4.2
yields Theorem 2.4.

Fix an arithmetic prime P of 3 satisfying the hypothesis of Proposition 5.1.
Note that Zp does not contain any p-power roots of unity since p > 2. Therefore
P = Pk,1 for some k ≥ 2. Recall that G = Im ρ ∩ 0I0(m0), and write G for the
image of G in

∏
Q|P SL2(I0/Q). We begin our proof of Proposition 5.1 with the

following lemma of Ribet which allows us to reduce to considering products of
only two copies of SL2.

Lemma 5.2 [Ribet 1975, Lemma 3.4]. Let S1, . . . , St(t > 1) be profinite groups.
Assume for each i that the following condition is satisfied: for each open subgroup
U of Si , the closure of the commutator subgroup of U is open in Si . Let G be a
closed subgroup of S = S1× · · ·× St that maps to an open subgroup of each group
Si × S j (i 6= j). Then G is open in S.

Apply this lemma to our situation with {S1, . . . , St } = {SL2(I0/Q) : Q|P} and
G =G. The lemma implies that it is enough to prove that for all primes Q1 6=Q2 of
I0 lying over P , the image G of G under the projection to SL2(I0/Q1)×SL2(I0/Q2)

is open. We shall now consider what happens when this is not the case. Indeed, the
reader should be warned that the rest of this section is a proof by contradiction.

Proposition 5.3. Let P be an arithmetic prime of 3 satisfying the hypotheses of
Proposition 5.1, and assume |F| 6= 3. Let Q1 and Q2 be distinct primes of I0 lying
over P. Let Pi be a prime of I lying over Qi . If G is not open in SL2(I0/Q1)×

SL2(I0/Q2) then there is an isomorphism σ : I0/Q1 ∼= I0/Q2 and a character
ϕ : H → Q(I0/Q2)

× such that

σ(a(`, fP1))= ϕ(`)a(`, fP2)

for all primes ` for which Frob` ∈ H.

Proof. Our strategy is to mimic the proof of [Ribet 1975, Theorem 3.5]. Let Gi

be the projection of G to SL2(I0/Qi ), so G ⊆ G1×G2. By hypothesis Gi is open
in SL2(I0/Qi ). Let πi : G→ Gi be the projection maps and set N1 = kerπ2 and
N2 = kerπ1. Though a slight abuse of notation, we view Ni as a subset of Gi .
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Goursat’s lemma implies that the image of G in G1/N1×G2/N2 is the graph of
an isomorphism

α : G1/N1 ∼= G2/N2.

Since G is not open in G1 × G2 by hypothesis, either N1 is not open in G1

or N2 is not open in G2. (Otherwise N1 × N2 is open and hence G is open.)
Without loss of generality we may assume that N1 is not open in G1. From the
classification of subnormal subgroups of SL2(I0/Q1) in [Tazhetdinov 1983] it
follows that N1 ⊆ {±1} since N1 is not open. If N2 is open in SL2(I0/Q2) then α
gives an isomorphism from either G1 or PSL2(I0/Q1) to the finite group G2/N2.
Clearly this is impossible, so N2 is not open in SL2(I0/Q2). Again by [Tazhetdinov
1983] we have N2 ⊆ {±1}. Recall that Gi comes from G = Im ρ ∩ 0I0(m0) by
reduction. In particular, −1 6∈ Gi since all elements of G reduce to the identity in
SL2(F). Thus we must have Ni = {1}. Hence α gives an isomorphism G1 ∼= G2.
We note that the theorem in [loc. cit.] requires |F| 6= 3. This invocation of [loc. cit.]
is the only reason we assume |F| 6= 3.

The isomorphism theory of open subgroups of SL2 over a local ring was studied
by Merzljakov [1973]. (There is a unique theorem in his paper, and that is the
result to which we refer. His theorem applies to more general groups and rings,
but it is relevant in particular to our situation.) Although his result is stated only
for automorphisms of open subgroups, his proof goes through without change for
isomorphisms. His result implies that α must be of the form

α(x)= η(x) y−1σ(x) y, (2)

where η ∈ Hom(G1, Q(I0/Q2)
×), y ∈ GL2(Q(I0/Q2)) and σ : I0/Q1 ∼= I0/Q2 is a

ring isomorphism. By σ(x) we mean that we apply σ to each entry of the matrix x.
For any g ∈ G we can write g = (x, y) with x ∈ G1, y ∈ G2. Since G is the

graph of α we have α(x) = y. By definition of G there is some h ∈ H such that
x = P1(ρ(h)) and y = P2(ρ(h)). Recall that for almost all primes ` for which
Frob` ∈ H we have tr(ρ(Frob`)) =

(√
det ρF (Frob`)

)−1a(`, F). Furthermore
det ρF (Frob`) mod P = χ(`)`k−1 since P = Pk,1. Using these facts together with
Equation (2) we see that for almost any Frob` ∈ H we have

σ(a(`, fP1))= ϕ(`)a(`, fP2),

where

ϕ(`) := η−1(P1(ρ(Frob`))
)σ (√χ(`)`k−1

)√
χ(`)`k−1

,

as claimed. �

To finish the proof of Proposition 5.1 we need to remove the condition that
Frob` ∈ H from the conclusion of Proposition 5.3. That is, we would like to



180 Jaclyn Lang

show that there is an isomorphism σ̃ : I′/P′1
∼= I′/P′2 extending σ and a character

ϕ̃ : GQ→ Q(I′/P′2)
× extending ϕ such that

σ̃ (a(`, fP1))= ϕ̃(`)a(`, fP2)

for almost all primes `. If we can do this, then applying Theorem 3.1 allows us to
lift σ̃ to an element of 0 that sends P′1 to P′2. (We also need to verify that ϕ̃ takes
values in Zp[χ ] in order to apply Theorem 3.1.) But this is a contradiction since P′1
and P′2 lie over different primes of I0. Hence it follows from Proposition 5.3 that G
must be open in SL2(I0/Q1)×SL2(I0/Q2) and Lemma 5.2 implies Proposition 5.1.

We show the existence of σ̃ and ϕ̃ using obstruction theory as developed in [Hida
2000b, §4.3.5]. For the sake of notation, we briefly recall the theory here. For
the proofs we refer the reader to [Hida 2000b]. Let K be a finite extension of Qp,
n ∈ Z+, and r : H → GLn(K ) be an absolutely irreducible representation. For all
g ∈ GQ define a twisted representation on H by r g(h) := r(ghg−1). Assume the
following condition:

r ∼= r g over K for all g ∈ GQ. (3)

Under Hypothesis (3) it can be shown that there is a function c : GQ→ GLn(K )
with the following properties:

(1) r = c(g)−1r gc(g) for all g ∈ GQ;

(2) c(hg)= r(h)c(g) for all h ∈ H, g ∈ GQ;

(3) c(1)= 1.

As r is absolutely irreducible, it follows that b(g, g′) := c(g)c(g′)c(gg′)−1 is a
2-cocycle with values in K×. In fact b factors through 1 := GQ/H and hence
represents a class in H 2(1, K×). We call this class Ob(r). It is independent of
the function c satisfying the above three properties. The class Ob(r) measures the
obstruction to lifting r to a representation of GQ. We say a continuous representation
r̃ : GQ→ GLn(K ) is an extension of r to GQ if r̃ |H = r .

Proposition 5.4. (1) There is an extension r̃ of r to GQ if and only if Ob(r) =
0 ∈ H 2(1, K×).

(2) If Ob(r)= 0 and r̃ is an extension of r to GQ, then all other extensions of r to
GQ are of the form r̃ ⊗ψ for some character ψ :1→ K×.

For ease of notation we shall write Ki = Q(I/Pi ) and Ei = Q(I0/Qi ). Write
ρi : GQ → GL2(Ki ) for ρ fPi

. By Theorem 4.1 we see that ρi |H takes values
in GL2(Ei ). Proposition 5.3 gives an isomorphism σ : E1 ∼= E2 and a character
ϕ : H → E×2 such that

tr(ρ1|
σ
H )= tr(ρ2|H ⊗ϕ).
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In order to use obstruction theory to show the existence of σ̃ and ϕ̃ we must
show that all of the representations in question satisfy Hypothesis (3).

Lemma 5.5. Let L i be a finite extension of Ki . View ρ1 as a representation
over L1 and ρ2|H , ρ1|

σ
H , ρ2|H ⊗ ϕ, and ϕ as representations over L2. Then

ρi |H , ρ1|
σ
H , ρ2|H ⊗ ϕ, and ϕ all satisfy Hypothesis (3). Furthermore we have

Ob(ρi |H )= 0,Ob(ρ1|
σ
H )= Ob(ρ2|H ⊗ϕ), and

Ob(ρ2|H ⊗ϕ)= Ob(ρ2|H )+Ob(ϕ) ∈ H 2(1, (L2)
×).

Proof. Recall that a continuous representation of a compact group over a field of
characteristic 0 is determined up to isomorphism by its trace. Therefore to verify
(3) it suffices to show that if r is any of the representations listed in the statement
of the lemma, then

tr r = tr r g

for all g ∈ GQ. This is obvious when r is ρ1|H or ρ2|H since both extend to
representations of GQ and hence

tr ρg
i (h)= tr ρi (g)ρi (h)ρi (g)

−1
= tr ρi (h).

Since ρi is an extension of ρi |H and L i ⊇ Ki we have Ob(ρi |H )= 0.
When r = ρ1|

σ
H , let τ : K1 ↪→Qp be an extension of σ . Then ρτ1 is an extension

of ρ1|
σ
H and hence we can use the same argument as above to conclude that tr ρ1|

σ
H =

tr(ρ1|
σ
H )

g. (Note that for this particular purpose, we do not care about the field in
which τ takes values.)

When r = ρ2|H ⊗ ϕ, recall that tr ρ1|
σ
H = ϕ tr ρ2|H . Since both ρ1|

σ
H and ρ2|H

satisfy Hypothesis (3) so does ρ2|H ⊗ ϕ. Furthermore, tr ρ1|
σ
H = tr(ρ2|H ⊗ ϕ)

implies that ρ1|
σ
H
∼= ρ2|H ⊗ϕ and hence Ob(ρ1|

σ
H )= Ob(ρ2|H ⊗ϕ).

Since (ρ1|
σ
H )

g ∼= ρ2|
g
H ⊗ϕ

g for any g ∈ GQ and since both ρi |H satisfy (3) we
see that

ϕg tr ρ2|H = ϕ tr ρ2|H . (4)

Thus if we know tr ρ2|H is nonzero sufficiently often then we can deduce that ϕ satis-
fies (3) . More precisely, let m ∈Z+ be the conductor for ϕ, so ϕ : (Z/mZ)×→Q×.
Then we have a surjection H � Gal(Q(ζm)/Q)∼= (Z/mZ)× with kernel κ . Choose
a set S of coset representatives of κ in H , so H = ts∈Ssκ . If we can show that
tr ρ2(sκ) 6= {0} for all s ∈ S, then it follows from Equation (4) that ϕg

= ϕ for all
g ∈ GQ. Recall that ρ2 is a Galois representation attached to a classical modular
form, and so by Ribet [1980; 1985] and Momose’s [1981] result we know that its
image is open. (See Theorem 6.1 for a precise statement of their result.) Then the
restriction of ρ2 to any open subset of GQ also has open image and hence tr ρ2 is
not identically zero. Each sκ is open in GQ, so ϕg

= ϕ.
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Finally, note that if c : GQ→ GL2(L2) is a function satisfying conditions 1–3
above for r = ρ2|H and η : GQ→ L×2 is a function satisfying conditions 1–3 above
for ϕ, then ηc is a function satisfying conditions 1–3 for ρ2|H ⊗ ϕ. From this it
follows that Ob(ρ2|H ⊗ϕ)= Ob(ρ2|H )+Ob(ϕ). �

With L i as in the previous lemma, suppose there is an extension σ̃ : L1 ∼= L2 of
σ and an extension ϕ̃ : GQ→ L×2 of ϕ. We now show that this gives us the desired
relation among traces.

Lemma 5.6. If there exists extensions σ̃ of σ and ϕ̃ of ϕ, then there exists a
character η : GQ→ L×2 that is also a lift of ϕ such that ρ σ̃1 ∼= ρ2⊗ η.

Proof. Note that since F does not have CM, ρ1|H and ρ2|H are absolutely irre-
ducible by results of Ribet [1977]. For any absolutely irreducible representation
π : GQ→ GL2(L2) Frobenius reciprocity gives

〈π, IndGQ

H (ρ1|
σ
H )〉GQ

= 〈π |H , ρ1|
σ
H 〉H = 〈π |H , ρ2|H ⊗ϕ〉H . (5)

Thus if π is a 2-dimensional irreducible constituent of Ind(ρ1|
σ
H ) then ρ1|

σ
H is a

constituent of π |H . As both are 2-dimensional, it follows that ρ1|
σ
H
∼= π |H and thus

π is an extension of ρ1|
σ
H . Since σ̃ exists by hypothesis, we know that ρ σ̃1 is also

an extension of ρ1|
σ
H .

Since ϕ̃ exists by hypothesis, we can take π = ρ2⊗ ϕ̃. Then (5) implies that π
is an irreducible constituent of IndG

H (ρ1|
σ
H ). By Proposition 5.4 there is a character

ψ :1→ L×2 such that ρ2⊗ ϕ̃
∼= ρ σ̃1 ⊗ψ . That is,

ρ σ̃1
∼= ρ2⊗ (ϕ̃ψ

−1).

Setting η = ϕ̃ψ−1 gives the desired conclusion. �

Finally, we turn to showing the existence of σ̃ and ϕ̃. With notation as in
Lemma 5.5, suppose there exists σ̃−1

: L2 ∼= L1 that lifts σ−1. Then σ̃−1 induces
an isomorphism H 2(1, L×2 ) ∼= H 2(1, L×1 ) that sends Ob(ρ1|

σ
H ) to Ob(ρ1|H ). It

follows from Lemma 5.5 that Ob(ρ1|
σ
H ) = 0 and hence Ob(ρ2|H ⊗ ϕ) = 0. But

0 = Ob(ρ2|H ⊗ ϕ) = Ob(ρ2|H )+Ob(ϕ) = Ob(ϕ), and thus we can extend ϕ to
ϕ̃ : GQ→ L×2 .

The above argument requires that we find L i ⊇ Ki such that L1 is isomorphic
to L2 via a lift of σ . We can achieve this as follows. Let τ : K1 ↪→ Qp be an
extension of σ . Let L2 = K2τ(K1). Let σ̃−1

: L2 ↪→ Qp be an extension of τ−1

and set L1 = σ̃
−1(L2). This construction satisfies the desired properties. Applying

Lemma 5.6 we see that there is a character η : GQ→ L×2 such that

tr ρ σ̃1 = tr ρ2⊗ η. (6)

This is almost what we want. Note that by (6) it follows that σ̃ restricts to an
isomorphism from (I′/P′1)[η] to (I′/P′2)[η]. The only problem is that σ̃ may not
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send I′/P′1 to I′/P′2 and η may have values in L2 that are not in (I′/P′2)
×. We shall

show that this cannot be the case.
Recall that χ is the nebentypus of F , and P1 and P2 lie over the arithmetic

prime Pk,1 of 3. Thus for almost all primes ` we have det ρi (Frob`)= χ(`)`k−1.
Applying this to Equation (6) we find that

χ σ̃ (`)`k−1
= η2(`)χ(`)`k−1.

Recall that χ(`) is a root of unity and hence χ σ̃ (`) is just a power of χ(`). Thus
η2(`) ∈ Zp[χ ] ⊆ I′/P′i and hence [(I′/P′i )[η] : I

′/P′i ] ≤ 2. Thus we may assume
that L2 = K2[η], which is at most a quadratic extension of K2.

Note that since η2 takes values in I′/P′i we can obtain (I′/P′i )[η] from I′/P′i
by adjoining a 2-power root of unity. (Write η as the product of a 2-power order
character and an odd order character and note that any odd order root of unity is
automatically a square in any ring in which it is an element.)

Lemma 5.7. We have (I′/P′i )[η] = I′/P′i for i = 1, 2. Therefore σ̃ : I′/P′1 ∼= I′/P′2
and η takes values in Zp[χ ].

Proof. Suppose first that I′/P′2 = (I
′/P′2)[η] but [(I′/P′1)[η] : I

′/P′1] = 2. Then we
have that σ̃ : (I′/P′1)[η] ∼= I′/P′2. Note that (I′/P′1)[η] is unramified over I′/P′1
since it is obtained by adjoining a prime-to-p root of unity (namely a 2-power
root of unity). Thus the residue field of (I′/P′1)[η] must be a quadratic extension
of the residue field F of I′/P′1. But F is also the residue field of I′/P′2 and since
(I′/P′1)[η]

∼= I′/P′2 they must have the same residue field, a contradiction. Therefore
we must have (I′/P′1)[η] = I′/P′1.

It remains to deal with the case when [(I′/P′1)[η] : I
′/P′1]=[(I

′/P′2)[η] : I
′/P′2]=

2. As noted above, these extensions must be unramified and hence the residue field
of (I′/P′i )[η] must be the unique quadratic extension E = F[η̄] of F. Note that σ̃
induces an automorphism σ̂ of E that necessarily restricts to an automorphism of F.
From χ σ̃ = η2χ we find that

χ̄ σ̂ = η̄2χ̄ .

On the other hand σ̂ is an automorphism of F and hence is equal to some power
of Frobenius. So we see that for some s ∈ Z we have η̄2

= χ̄ ps
−1. Since p is

odd, ps
− 1 is even and hence η̄2 takes values in Fp[χ̄

2
]. Thus η̄ takes values in

Fp[χ̄ ] ⊆ F, a contradiction to the assumption that [F[η̄] : F] = 2.
Since η2 takes values in Zp[χ ] and Fp[η̄] ⊆ Fp[χ̄ ], it follows that in fact η must

take values in Zp[χ ]. Hence we may take L i = Ki and σ̃ : I′/P′1 ∼= I′/P′2. �

Proof of Proposition 5.1. By Lemma 5.2 it suffices to show that, for any two primes
Q1 6=Q2 of I0 lying over Pk,1, the image of Im ρ in SL2(I0/Q1)× SL2(I0/Q2) is
open. Proposition 5.3 says that if that is not the case, then there is an isomorphism
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σ : I0/Q1 ∼= I0/Q2 and a character ϕ : H → Q(I0/Q2)
× such that tr ρ fP1

|
σ
H =

tr ρ fP2
|H ⊗ ϕ. The obstruction theory arguments allow us to lift σ and ϕ to σ̃ :

I′/P′1
∼= I′/P′2 and ϕ̃ :GQ→Q(I/P2)

× such that tr ρ σ̃fP1
= tr ρ fP2

⊗ϕ̃. Theorem 3.1
allows us to lift σ̃ to an element of 0 that sends P′1 to P′2. But P′1 and P′2 lie over
different primes of I0 and 0 fixes I0, so we reach a contradiction. Therefore the
image of Im ρ in the product SL2(I0/Q1)×SL2(I0/Q2) is open. �

6. Proof of main theorem

In this section we use the compatibility between the conjugate self-twists of F and
those of its classical specializations established in Section 3 to relate I0/Q to the
ring appearing in the work of Ribet [1980; 1985] and Momose [1981]. This allows
us to use their results to finish the proof of Theorem 2.4.

We begin by recalling the work of Ribet and Momose. We follow [Ribet 1985]
closely. Let f =

∑
∞

n=1 a(n, f )qn be a classical eigenform of weight k. Let
K = Q({a(n, f ) : n ∈ Z+}) with ring of integers O. Denote by 0 f the group of
conjugate self-twists of f . Let E = K0 f and H f =

⋂
σ∈0 f

ker ησ . For any character
ψ , let G(ψ) denote the Gauss sum of the primitive character of ψ . For σ, τ ∈ 0 f

Ribet defined
c(σ, τ ) :=

G(η−1
σ )G(η

−σ
τ )

G(η−1
στ )

.

One shows that c is a 2-cocycle on 0 f with values in K×.
Let X be the central simple E-algebra associated to c. Then K is the maximal

commutative semisimple subalgebra of X. It can be shown that X has order two
in the Brauer group of E , and hence there is a 4-dimensional E-algebra D that
represents the same element as X in the Brauer group of E . Namely, if X has order
one then D = M2(E) and otherwise D is a quaternion division algebra over E .

For a prime p, recall that we have a Galois representation

ρ f,p : GQ→ GL2(OK ⊗Z Zp)

associated to f . The following theorem is due to Ribet [1980] in the case when f
has weight 2.

Theorem 6.1 [Momose 1981]. We may view ρ f,p|H f as a representation valued
in (D⊗Q Qp)

×. Furthermore, letting n denote the reduced norm map on D, the
image of ρ f,p|H f is open in

{x ∈ (D⊗Q Qp)
×
: nx ∈Q×p }.

In particular, when D⊗Q Qp is a matrix algebra, the above theorem tell us that
Im ρ f,p|H f is open in

{x ∈ GL2(OE ⊗Z Zp) : det x ∈ (Z×p )
k−1
}.
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Let p be a prime of OE lying over p, and let ρ f,p be the representation obtained
by projecting ρ f,p|H f to the OEp-component. Under the assumption that D⊗Q Qp

is a matrix algebra Theorem 6.1 implies that ρ f,p is OEp-full. Finally, Brown and
Ghate [2003, Theorem 3.3.1] proved that if f is ordinary at p, then D⊗Q Qp is a
matrix algebra.

Thus, the Galois representation associated to each classical specialization of our
I-adic form F is OEp-full with respect to the appropriate ring OEp . We must show
that Ep is equal to Q(I0/Q), where Q corresponds to p in a way we will make
precise below.

Recall that we have a fixed embedding ιp :Q ↪→Qp. Let P ∈ Spec(I)(Qp) be
an arithmetic prime of I, and let Q be the prime of I0 lying under P. As usual, let
P′ =P∩ I′. Let D(P′|Q)⊆ 0 be the decomposition group of P′ over Q. Let

KP =Q({ι−1
p (a(n, fP)) : n ∈ Z+})⊂Q,

and let 0P be the group of all conjugate self-twists of the classical modular form fP.
Set EP = K0P

P . Let qP be the prime of KP corresponding to the embedding ιp|KP ,
and set pP = qP ∩ EP. Let D(qP|pP) ⊆ 0P be the decomposition group of qP
over pP. Thus we have that the completion KP,qP of KP at qP is equal to Q(I/P)
and Gal(KP,qP/EP,pP)= D(qP|pP). Thus we may view D(qP|pP) as the set of
all automorphisms of KP,qP that are conjugate self-twists of fP.

With this in mind, we see that there is a natural group homomorphism

8 : D(P′|Q)→ D(qP|pP)

since any element of D(P′|Q) stabilizes P′ and hence induces an automorphism
of Q(I′/P′)= Q(I/P)= KP,qP . The induced automorphism will necessarily be a
conjugate self-twist of fP since we started with a conjugate self-twist of F . Thus
we get an element of D(qP|pP). The main compatibility result is that 8 is an
isomorphism.

Proposition 6.2. The natural group homomorphism 8 is an isomorphism. Hence
Q(I0/Q)= EP,pP .

Proof. The fact that 8 is injective is easy. Namely, if σ ∈ D(P′|Q) acts trivially on
KP,qP then for almost all ` we have

a(`, fP)= a(`, fP)σ = ησ (`)a(`, fP).

Since F (and hence its arithmetic specialization fP) does not have CM it follows
that ησ = 1. Hence σ = 1 and 8 is injective.

To see that 8 is surjective, let σ ∈ D(qP|pP). By Theorem 3.1 we see that
there is σ̃ ∈ Aut I′ that is a conjugate self-twist of F and σ ◦P =P ◦ σ̃ . That is,
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σ̃ ∈ D(P′|Q) and 8(σ̃ )= σ . We have

EP,pP = K D(qP|pP)
P,qP

= Q(I′/P′)D(P|Q).

A general fact from commutative algebra [Bourbaki 1972, Theorem V.2.2.2] tells
us that Q(I′/P′)D(P|Q)

= Q(I0/Q), as desired. �

Corollary 6.3. Let Q be a prime of I0 lying over an arithmetic prime of 3. There
is a nonzero I0/Q-ideal aQ such that

0I0/Q(aQ)⊆ Im(ρF mod QI′)⊆
∏
P′|Q

GL2(I
′/P′),

where the inclusion of 0I0/Q(aQ) in the product is via the diagonal embedding
GL2(I0/Q) ↪→

∏
P′|Q GL2(I

′/P′). Hence the image of Im ρ in SL2(I0/Q) is open.

Proof. For a prime P of I, write OP for the ring of integers of EP,pP . By
Theorem 6.1 and the remarks following it, for each prime P of I lying over Q
we have that Im ρ fP contains 0OP(aP) for some nonzero OP-ideal aP. While
I0/Q need not be integrally closed, by Proposition 6.2 we see that aP ∩ (I0/Q) is a
nonzero I0/Q-ideal.

Thus we have

0I0/Q(aP ∩ I0/Q)⊆ 0OP(aP)⊆ Im ρ fP = Im ρF mod P⊆ GL2(I
′/P′).

Let aQ =
⋂

P|Q aP ∩ I0/Q. This is a finite intersection of nonzero I0/Q-ideals and
hence is nonzero. The first statement follows from the above inclusions.

For the statement about ρ, recall that ρF |H0
is valued in GL2(I0) and conse-

quently Im ρF |H0 mod Q lies in the diagonally embedded copy of GL2(I0/Q) in∏
P′|Q GL2(I

′/P′). Since H is open in GQ, by replacing aQ with a smaller I0/Q-
ideal if necessary, we may assume that 0I0/Q(aQ) is contained in the image of
ρF |H in GL2(I0/Q). Since ρ and ρF are equal on elements of determinant 1 and
0I0/Q(aQ)⊆ SL2(I0/Q), it follows that 0I0/Q(aQ) is contained in the image of Im ρ

in SL2(I0/Q). That is, the image of Im ρ in SL2(I0/Q) is open. �

Summary of Proof of Theorem 2.4. Theorem 4.1, which will be proved in the next
section, allows us to create a representation ρ : H → SL2(I0) with the property
that if ρ is I0-full then so is ρF . This is important for the use of Pink’s theory in
Section 4 as well as for the techniques of Section 5. Proposition 4.2 shows that it
is sufficient to prove that the image of Im ρ in

∏
Q|P SL2(I0/Q) is open for some

arithmetic prime P of 3. Proposition 5.1 further reduces the problem to showing
that the image of ρ modulo Q is open in SL2(I0/Q) for all primes Q of I0 lying
over a fixed arithmetic prime P of 3.

This reduces the problem to studying the image of a Galois representation
attached to one of the classical specializations of F (twisted by the inverse square
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root of the determinant). Hence we can apply the work of Ribet and Momose, but
only after we show that Q(I0/Q) is the same field that occurs in their work. This is
done in Proposition 6.2, though the main input is Theorem 3.1. �

7. Obtaining an SL2(I0)-valued representation

In this section we prove:

Theorem 4.1. Assume that ρ̄F is absolutely irreducible and H0-regular. If V = I′2

is the module on which GQ acts via ρF , then there is a basis for V such that all of
the following happen simultaneously:

(1) ρF is valued in GL2(I
′);

(2) ρF |Dp
is upper triangular;

(3) ρF |H0
is valued in GL2(I0);

(4) There is a matrix j =
( ζ 0

0 ζ ′
)
, where ζ and ζ ′ are roots of unity, such that j

normalizes the image of ρF and ζ 6≡ ζ ′ mod p.

It is well known that so long as ρ̄F is absolutely irreducible we may assume
that ρF has values in GL2(I

′) and the local representation ρF |Dp
is upper triangular

[Hida 2000a, Theorem 4.3.2]. To show that ρF |H0
has values in GL2(I0) we begin

by investigating the structure of 0.

Proposition 7.1. The group 0 is a finite abelian 2-group.

Proof. Let S be the set of primes ` for which a(`, F)σ = ησ (`)a(`, F) for all σ ∈0,
so S excludes only finitely many primes. For ` ∈ S, let

b` :=
a(`, F)2

det ρF (Frob`)
.

It turns out that b` ∈ I0. To see this, note that since ρ̄F is absolutely irreducible,
for any σ ∈ 0 we have ρσF ∼= ησ ⊗ ρF over I′. Taking determinants we find that
det ρσ−1

F = η2
σ . Thus we have

(a(`, F)σ )2 = ησ (`)2a(`, F)2 = det ρF (Frob`)σ−1a(`, F)2,

from which it follows that bσ` = b`. Solving for a(`, F) in the definition of b` we
find that

Q(I′)= Q(I0)
[√

b` det ρF (Frob`) : ` ∈ S
]
.

Recall that for ` ∈ S we have det ρF (Frob`) = χ(`)κ(〈`〉)`−1, where κ(〈`〉) ∈
1+m3. (Currently all that matters is that κ is valued in 1+m3. For a precise
definition of κ , see the proof of Lemma 3.11.) In particular,

√
κ(〈`〉)∈3. Similarly,

we can write ` = 〈`〉ω(`) with 〈`〉 ∈ 1+ pZp and ω(`) ∈ µp−1. So
√
〈`〉 ∈ 3 as

well.
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Let
K = Q(I0)

[√
b`,
√

det ρF (Frob`) : ` ∈ S
]
,

which is an abelian extension of Q(I0) since it is obtained by adjoining square roots.
The above argument shows that in fact K is obtained from Q(I0)[

√
b` : ` ∈ S] by

adjoining finitely many roots of unity, namely the square roots of the values of χ
and the square roots of µp−1. As odd order roots of unity are automatically squares,
we can write K = Q(I0)[

√
b` : ` ∈ S][µ2s ] for some s ∈ Z+. Thus we have

Gal(K/Q(I0))∼= Gal
(
Q(I0)[

√
b` : ` ∈ S]/Q(I0)

)
×Gal

(
Q(I0)[µ2s ]/Q(I0)

)
.

By Kummer theory the first group is an elementary abelian 2-group. The second
group is isomorphic to (Z/2sZ)× and hence is a 2-group. As 0 is a quotient of
Gal(K/Q(I0)) it follows that 0 is a finite abelian 2-group, as claimed. �

For ease of notation let π = ρ̄F |H0
: H0→ GL2(F). Let D be a nonsquare in F,

and let E= F[
√

D] be the unique quadratic extension of F.

Lemma 7.2. Let K be a field and S ⊂ GLn(K ) a set of nonconstant semisimple
operators that can be simultaneously diagonalized over K . If y ∈GLn(K ) such that
yS y−1

⊂ GLn(K ), then there is a matrix z ∈ GLn(K ) such that zS z−1
= yS y−1.

In particular, if π is irreducible over F but not absolutely irreducible, then E is the
splitting field for π .

Proof. Let σ ∈ G K := Gal(K/K ). Then for any x ∈ S we have yσ x y−σ =
( yx y−1)σ = yx y−1, so y−1 yσ centralizes x. As elements in S are simultaneously
diagonalizable, they have the same centralizer in GLn(K ). Since elements of S are
semisimple, their centralizer is a torus and hence isomorphic to (K )⊕n . It’s not
hard to show that a :G K → (K×)⊕n given by σ 7→ y−1 yσ is a 1-cocycle. (Here we
view (K×)⊕n as a G K -module by letting elements of G K act componentwise.) By
Hilbert’s theorem 90 we have H 1(G K , (K×)⊕n)= H 1(G K , K×)⊕n

= 0. Hence a
is a coboundary. That is, there is some α ∈ (K×)⊕n such that

aσ = y−1 yσ = α−1ασ

for all σ ∈ G K . Thus ( yα−1)σ = yα−1 for all σ ∈ G K , so z := yα−1
∈ GLn(K ).

But α commutes with S and so zS z−1
= yS y−1, as claimed.

To deduce the claim about π , let S = Imπ . The fact that S is semisimple
follows from Clifford’s theorem since ρ̄F is absolutely irreducible [Isaacs 1976,
Theorem 6.5, Corollary 6.6]. If π is not absolutely irreducible then there is a
matrix y ∈ GL2(F) that simultaneously diagonalizes S. Note that every matrix
in Imπ has eigenvalues in E. Indeed every matrix has a quadratic characteristic
polynomial and E is the unique quadratic extension of F. Thus, taking K = E we
see that yS y−1

⊂ GL2(K ). The first statement of the lemma tells us that Imπ is
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diagonalizable over E. Since π is irreducible over F and [E : F] = 2, it follows that
E is the smallest extension of F over which Imπ is diagonalizable. �

Let Z be the centralizer of Imπ in M2(F). Since ρ̄F is H0-regular, exactly one
of the three cases must occur:

1. The representation π is absolutely irreducible. In this case Z consists of scalar
matrices over F.

2. The representation π is not absolutely irreducible, but π is irreducible over F.
In this case we may assume

Z =
{(
α βD
β α

)
: α, β ∈ F

}
∼= E.

3. The representation π is reducible over F. In this case we may assume that Z
consists of diagonal matrices over F.

Recall that since ρ̄F is absolutely irreducible, for any σ ∈0 we have ρσF ∼=ησ⊗ρF .
That is, there is some tσ ∈ GL2(I

′) such that

ρF (g)
σ
= ησ (g)tσρF (g)t

−1
σ

for all g ∈ GQ. Then for all σ, τ ∈ 0, g ∈ GQ we have

ηστ (g)tστρF (g)t
−1
στ = ρ(g)

στ
= ητσ (g)ητ (g)t

τ
σ tτρF (g)t

−1
τ t−τσ .

Using the fact that ηστ = η
τ
σητ we see that c(σ, τ ) := t−1

στ tτσ tτ commutes with the
image of ρF . As ρF is absolutely irreducible, c(σ, τ ) must be a scalar. Hence c
represents a 2-cocycle of 0 with values in I′×.

We will need to treat case 2 (π is irreducible over F but not absolutely irreducible)
a bit differently, so we establish notation that will unify the proofs that follow. For
a finite extension M of Qp, let OM denote the ring of integers of M . Let K be
the largest finite extension of Qp for which OK [[T ]] is contained in I′. So K has
residue field F. Let L be the unique unramified quadratic extension of K . Write
J=3OL [{a(`, F) : ` - N }]. Note that the residue field of J is the unique quadratic
extension of F. Let

A =
{

J in case 2,
I′ else.

Let κ be the residue field of A, so κ = E in case 2 and κ = F otherwise.
Since L is obtained from K by adjoining some prime-to-p root of unity, in

case 2 it follows that Q(A) is Galois over Q(I0) with Galois group isomorphic to
0×Z/2Z. In particular, we have an action of 0 on A in all cases. Let B = A0 . In
case 2, A is a quadratic extension of B and B ∩ I′ = I0. Otherwise B = I0. We may
consider the 2-cocycle c in H 2(0, A×).
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Lemma 7.3. With notation as above, [c] = 0∈ H 2(0, A×). Thus there is a function
ζ : 0→ A× such that c(σ, τ )= ζ(στ)−1ζ(σ )τ ζ(τ ) for all σ, τ ∈ 0.

Proof. Consider the exact sequence 1→ 1+mA→ A×→ κ×→ 1. Note that for
j > 0 we have H j (0, 1+mA)= 0 since 1+mA is a p-profinite group for p > 2
and 0 is a 2-group by Proposition 7.1. Thus the long exact sequence in cohomology
gives isomorphisms

H j (0, A×)∼= H j (0, κ×)

for all j > 0. Hence it suffices to prove that [c̄] = 0 ∈ H 2(0, κ×).
Let σ ∈ 0 and h ∈ H0. Recall that 0 acts trivially on F by Proposition 3.4. Since

ρσF (h)= ησ (h)tσρF (h)t
−1
σ and ησ (h)= 1 it follows that t̄σ ∈ Z .

We now split into the three cases depending on the irreducibility of π . Suppose
we are in case 1, so π is absolutely irreducible and κ=F. Then t̄σ must be a scalar in
F×. Call it ζ̄ (σ ). Then c̄(σ, τ )= ζ̄ (σ τ )−1ζ̄ (σ )τ ζ̄ (τ ), and so [c̄] = 0 ∈ H 2(0, F×).

In case 2, using the description of Z above we see that t̄σ =
(
ασ βσ D
βσ ασ

)
for some

ασ , βσ ∈ F. This becomes a scalar, say ζ̄ (σ ) = ασ + βσ
√

D, over E = κ . Thus
t̄σ = ζ̄ (σ ). As above c̄(σ, τ )= ζ̄ (σ τ )−1ζ̄ (σ )τ ζ̄ (τ ), and thus [c̄] = 0 ∈ H 2(0, κ×).

Finally, in case 3 we have that t̄σ is a diagonal matrix. The diagonal map
F ↪→ F⊕F induces an injection H 2(0, F×) ↪→ H 2(0, F×⊕F×). The fact that t̄σ is
a diagonal matrix allows us to calculate that the image of [c̄] in H 2(0, F×⊕ F×) is
0. Since the map is an injection, it follows that [c̄] = 0 ∈ H 2(0, F×), as desired. �

Replace tσ ∈GL2(I
′) by tσ ζ(σ )−1

∈GL2(A). Then we still have ρσF=ησ tσρF t−1
σ ,

and now tστ = tτσ tτ . That is, σ 7→ tσ is a nonabelian 1-cocycle with values in GL2(A).
Since F is primitive we have Q(I)= Q(I′). Thus by [Hida 2000a, Theorem 4.3.2]
we see that ρF |Dp

is isomorphic to an upper triangular representation over Q(I′).
Under the assumptions that ρ̄F is absolutely irreducible and H0-regular, the proof
of [Hida 2000a, Theorem 4.3.2] goes through with I′ in place of I. That is, ρF |Dp

is isomorphic to an upper triangular representation over I′. Let V = I′2 be the
representation space for ρF with basis chosen such that

ρF |Dp
=

(
ε u
0 δ

)
,

and assume ε̄ 6= δ̄. Let V [ε] ⊂ V be the free direct summand of V on which Dp

acts by ε and V [δ] be the quotient of V on which Dp acts by δ. Let VA = V ⊗I′ A.
Similarly for λ ∈ {ε, δ} let VA[λ] := V [λ]⊗I′ A. For v ∈ VA, define

v[σ ] := t−1
σ vσ , (7)

where σ acts on v componentwise. Note that in case 2 we are using the action of 0
on A described prior to Lemma 7.3.
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Lemma 7.4. For all σ, τ ∈ 0 we have (v[σ ])[τ ] = v[στ ], so this defines an action of
0 on VA. Furthermore, this action stabilizes VA[ε] and VA[δ].

Proof. The formula (7) defines an action since σ 7→ tσ is a nonabelian 1-cocycle.
Let λ be either δ or ε. Let v ∈ VA[λ] and σ ∈ 0. We must show that v[σ ] ∈ VA[λ].
Let d ∈ Dp. Using the fact that v ∈ VA[λ] and ρσF = ησ tσρF t−1

σ we find that

ρF (d)v
[σ ]
= η−1

σ (d)λ
σ (d)v[σ ].

Note that for all d ∈ Dp(
εσ(d) uσ(d)

0 δσ(d)

)
=ρσF (d)=ησ (d)tσρF (d)t

−1
σ =ησ (d)tσ

(
ε(d) u(d)

0 δ(d)

)
t−1
σ . (8)

Using the fact that ε 6= δ and that ρF |Dp
is indecomposable [Ghate and Vatsal

2004; Zhao 2014] we see that u/(ε− δ) cannot be a constant. (If u/(ε− δ)= α is
a constant, then conjugating by

(
1 α
0 1

)
makes ρF |Dp

diagonal.) Hence tσ must be
upper triangular. Therefore (8) implies that λσ (d)= ησ (d)λ(d), and thus

ρF (d)v
[σ ]
= η−1

σ (d)λ
σ (d)v[σ ] = λ(d)v[σ ]. �

We are now ready to show that ρF |H0
takes values in GL2(I0).

Theorem 7.5. Let ρF : GQ → GL2(I
′) such that ρF |Dp

is upper triangular. As-
sume that ρ̄F is absolutely irreducible and H0-regular. Then ρF |H0

takes values
in GL2(I0).

Proof. We have an exact sequence of A[Dp]-modules

0→ VA[ε] → VA→ VA[δ] → 0 (9)

that is stable under the new action of 0 defined in Lemma 7.4. Tensoring with κ
over A we get an exact sequence of κ-vector spaces

Vκ [ε̄] → Vκ→ Vκ [δ̄] → 0. (10)

Since VA[ε] is a direct summand of VA, the first arrow is injective. Since VA[ε] and
VA are free A-modules, it follows that dimκ Vκ [ε̄] = 1 and dimκ Vκ = 2. Counting
dimensions in (10) now tells us that dimκ Vκ [δ̄] = 1.

Going back to the exact sequence (9) we can take 0-invariants since all of the
modules are stable under the new action of 0. This gives an exact sequence of
B[Dp ∩ H0]-modules

0→ VA[ε]
0
→ V 0

A → VA[δ]
0
→ H 1(0, VA[ε]).

Since 0 is a 2-group by Proposition 7.1 and VA[ε] ∼= A is p-profinite, we find that
H 1(0, VA[ε])= 0. Tensoring with κ0 over B we get an exact sequence

VA[ε]
0
⊗B κ

0
→ V 0

A ⊗B κ
0
→ VA[δ]

0
⊗B κ

0
→ 0.
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If dimκ0 VA[λ]
0
⊗B κ

0
= 1 for λ ∈ {ε, δ}, then it follows from Nakayama’s

lemma that VA[λ]
0 is a free B-module of rank 1. Hence V 0

A is a free B-module
of rank 2. In all the cases except case 2, this completes the proof. In case 2 the
above argument tells us that if we view ρF as a GL2(A)-valued representation, then
ρF |H0

takes values in GL2(B). We know that ρF actually has values in GL2(I
′) and

hence ρF |H0
has values in GL2(B ∩ I′)= GL2(I0).

Thus we must show that for λ ∈ {ε, δ} we have dimκ0 VA[λ]
0
⊗B κ

0
= 1. Note

that VA[λ]
0
⊗B κ

0
= Vκ [λ̄]0 . When we are not in case 2, 0 acts trivially on κ and

hence

dimF VF[λ̄]
0
= dimF VF[λ̄] = 1.

Now assume we are in case 2, so κ = E. Write 0 for the quotient of 0 that acts
on E. That is, 0 = Gal(E/F). Let σ ∈ 0 be a generator. Since dimE VE[λ̄] = 1 we
can choose some nonzero v ∈ VE[λ̄]. We would like to show that

v+ v[σ ] 6= 0

since the right hand side is 0-invariant.
Since VE[λ̄] is 1-dimensional, there is some α ∈ E× such that v[σ ] = αv. Thus

v+v[σ ] = (1+α)v. If α 6= −1 then we are done. Otherwise we can change v to av
for any a ∈ E×. It is easy to see that (av)[σ ] = aσαa−1(av) and thus changing v to
av changes α to aσa−1α. So we need to show that there is some a ∈ E× such that
aσa−1

6= 1. But clearly this holds for any a ∈ E \ F. Therefore dimF VE[λ̄]
0
≥ 1.

To get equality, let 0 6= w ∈ VE[λ̄]
0. Since VE[λ̄]

0
⊆ VE[λ̄] and dimE VE[λ̄] = 1,

any element of VE[λ̄]
0 is an E-multiple of w. If β ∈ E \ F then σ does not fix β.

Thus

(βw)[σ ] = βσw[σ ] = βσw 6= βw.

Hence VE[λ̄]
0
= Fw and dimF VE[λ̄]

0
= 1, as desired. �

Finally, we modify ρF to obtain the normalizing matrix j in the last part of
Theorem 4.1.

Lemma 7.6. Suppose ρF : GQ→ GL2(I
′) such that ρF |Dp

is upper triangular and
ρF |H0

is valued in GL2(I0). Assume ρ̄F is absolutely irreducible and H0-regular.
Then there is an upper triangular matrix x ∈ GL2(I0) and roots of unity ζ and ζ ′

such that j :=
( ζ 0

0 ζ ′
)

normalizes the image of xρF x−1 and ζ 6≡ ζ ′ mod p.

Proof. This argument is due to Hida [2000a, Lemma 4.3.20]. As ρ̄F is H0-regular
there is an h ∈ H0 such that ε̄(h) 6= δ̄(h). Let ζ and ζ ′ be the roots of unity in I0

satisfying ζ ≡ ε(h) mod m0 and ζ ′ ≡ δ(h) mod m0. By our choice of h we have
ζ 6≡ ζ ′ mod p.
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Let q = |F|. Then for some u ∈ I0

lim
n→∞

ρF (h)
qn
=

(
ζ u
0 ζ ′

)
.

Conjugating ρF by
( 1 u/(ζ−ζ ′)

0 1

)
preserves all three of the desired properties, and the

image of the resulting representation is normalized by j =
( ζ 0

0 ζ ′
)
. �
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