
Algebra &
Number
Theory

msp

Volume 10

2016
No. 1

Linear relations in families
of powers of elliptic curves
Fabrizio Barroero and Laura Capuano



msp
ALGEBRA AND NUMBER THEORY 10:1 (2016)

dx.doi.org/10.2140/ant.2016.10.195

Linear relations in families
of powers of elliptic curves

Fabrizio Barroero and Laura Capuano

Motivated by recent work of Masser and Zannier on simultaneous torsion on the
Legendre elliptic curve Eλ of equation Y 2

= X (X − 1)(X − λ), we prove that,
given n linearly independent points P1(λ), . . . , Pn(λ) on Eλ with coordinates in
Q(λ), there are at most finitely many complex numbers λ0 such that the points
P1(λ0), . . . , Pn(λ0) satisfy two independent relations on Eλ0 . This is a special
case of conjectures about unlikely intersections on families of abelian varieties.

1. Introduction

Let n ≥ 2 be an integer and let Eλ denote the elliptic curve in the Legendre form
defined by

Y 2
= X (X − 1)(X − λ). (1-1)

Masser and Zannier [2010; see also 2008] showed that there are at most finitely
many complex numbers λ0 6= 0, 1 such that the two points(

2,
√

2(2− λ0)
)
,

(
3,
√

6(3− λ0)
)

both have finite order on the elliptic curve Eλ0 . Stoll [2014] recently noted that
there is actually no such λ0. Later, Masser and Zannier [2012] proved that one can
replace 2 and 3 with any two distinct complex numbers (6= 0, 1) or even choose
distinct X-coordinates (6= λ) defined over an algebraic closure of C(λ).

In his book, Zannier [2012] asks if there are finitely many λ0 ∈ C such that
two independent relations between the points

(
2,
√

2(2− λ0)
)
,
(
3,
√

6(3− λ0)
)

and(
5,
√

20(5− λ0)
)

hold on Eλ0 .
In this article we prove that this question has a positive answer, as Zannier

expected in view of very general conjectures. We actually prove a more general
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result, analogous to the one in [Masser and Zannier 2012] but, at the moment,
we are only able to replace 2, 3 and 5 with any three pairwise distinct algebraic
numbers, or choose X-coordinates defined over an algebraic closure of Q(λ), with
the obvious exceptions 0, 1 and λ since the corresponding points are identically
2-torsion. Moreover, our method allows us to deal with arbitrarily many points since
we consider a curve C ⊆ A2n+1 with coordinate functions (x1, y1, . . . , xn, yn, λ),
where λ is nonconstant, such that, for every j = 1, . . . , n, the points Pj = (xj , yj )

lie on the elliptic curve Eλ. As the point c varies on the curve C, the specialized
points Pj (c) = (xj (c), yj (c)) will lie on the specialized elliptic curve Eλ(c). We
implicitly exclude the finitely many c with λ(c)= 0 or 1, since in that case Eλ(c) is
not an elliptic curve.

Theorem 1.1. Let C ⊆ A2n+1 be an irreducible curve defined over Q with coordi-
nate functions (x1, y1, . . . , xn, yn, λ), where λ is nonconstant. Suppose that, for
every j = 1, . . . , n, the points Pj = (xj , yj ) lie on Eλ and there are no integers
a1, . . . , an ∈ Z, not all zero, such that

a1 P1+ · · ·+ an Pn = O, (1-2)

identically on C. Then there are at most finitely many c ∈ C such that the points
P1(c), . . . , Pn(c) satisfy two independent relations on Eλ(c).

Note that the case n = 2 is covered by the main proposition of [Masser and
Zannier 2012] in the more general setting of a curve defined over C.

Moreover, Rémond and Viada [2003] proved an analogue of Theorem 1.1 for
a power of a constant elliptic curve with complex multiplication, where one must
allow the coefficients a1, . . . , an in (1-2) to lie in the larger endomorphism ring.
For the general case of powers of a constant elliptic curve, the result follows from
works of Viada [2008] and Galateau [2010]. If n = 2 this is nothing but Raynaud’s
theorem [1983], also known as the Manin–Mumford conjecture.

We already mentioned the example of the three points with fixed abscissas
2, 3 and 5. It is easy to see that this will follow from Theorem 1.1 once we
show that there is no identical relation between the three points on the generic
curve Eλ. Indeed, the minimal fields of definition of these three points are disjoint
quadratic extensions of Q(λ), and by conjugating one can see that the points would
be identically torsion on Eλ. This is not possible, as it can be seen in different
ways (see [Zannier 2012, p. 68]). For instance, applying the Lutz–Nagell theorem
[Silverman 2009, Corollary 7.2], one can show that the point of abscissa 2 is not
torsion on E6.

One may ask if finiteness holds if we impose only one relation. This is not the
case. Indeed, there are infinitely many λ0 such that a point with fixed algebraic
abscissa is torsion (see [Zannier 2012, Notes to Chapter 3]). On the other hand,
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the values of λ such that at least one relation holds are “sparse”, as follows from
[Masser 1989b]. Actually, a well-known theorem of Silverman [1983] implies that
the absolute Weil height of such values is bounded. A direct effective proof of this
can be found in Masser’s Appendix C of [Zannier 2012]. In particular, there are at
most finitely many λ0 yielding one relation in a given number field or of bounded
degree over Q.

Our proof follows the general strategy introduced in [Pila and Zannier 2008]
and used in [Masser and Zannier 2008; 2010; 2012]. In particular, we consider the
elliptic logarithms z1, . . . , zn of P1, . . . , Pn and the equations

z j = uj f + vj g,

for j = 1, . . . , n, where f and g are suitably chosen basis elements of the period
lattice of Eλ. If we consider the coefficients uj , vj as functions of λ and restrict
them to a compact set, we obtain a subanalytic surface S in R2n . The points of C
that yield two independent relations on the elliptic curve will correspond to points
of S lying on linear varieties defined by equations of some special form and with
integer coefficients. In the case n = 2, one faces the simpler problem of counting
rational points with bounded denominator in S. For this, a previous result of Pila
[2004] suffices together with the fact that the surface is “sufficiently” transcendental.
In the general case we adapt ideas of Pila (see [Capuano et al. 2016, Appendix]) to
obtain an upper bound of order T ε for the number of points of S lying on subspaces
of the special form mentioned above and integral coefficients of absolute value at
most T , provided S does not contain a semialgebraic curve segment. Under the
hypothesis that no identical relation holds on C, using a result of Bertrand [1990],
we are able to show that there are no such semialgebraic curve segments.

Now, we use [Masser 1988; 1989a; David 1997] and exploit the boundedness of
the height to show that the number of points of S considered above is of order at
least T δ for some δ > 0. Comparing the two estimates leads to an upper bound for
T and thus for the coefficients of the two relations, concluding the proof.

With similar methods, a toric analogue of Theorem 1.1 was proved in [Capuano
2014] and [Capuano et al. 2016], giving an alternative proof of a result appearing
in [Bombieri et al. 1999] and generalized in [Maurin 2008] (see also [Bombieri
et al. 2008]).

We will use γ1, γ2, . . . to denote positive constants. The indices are reset at the
end of each section.

2. The Zilber–Pink conjectures

In this section we see how our theorem relates to the so-called Zilber–Pink conjec-
tures on unlikely intersections.
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First, let us examine the objects we are investigating from the point of view
of dimensions. We consider our elliptic curve Eλ as an elliptic scheme over
P1
\ {0, 1,∞}. Our ambient space is then the fiber power of n copies of this elliptic

scheme and has dimension n + 1. Now, for any choice of linearly independent
vectors (a1, . . . , an), (b1, . . . , bn)∈Zn , imposing the two corresponding conditions
yields an (n− 1)-fold. Therefore, the intersection of a curve and an (n− 1)-fold
in a space of dimension n+ 1 is indeed unlikely to be nonempty and one expects
finiteness for varying integer vectors.

Our result fits in the framework of very general conjectures formulated by Zilber
[2002] and Bombieri, Masser and Zannier [Bombieri et al. 2007] in the toric case
and by Pink [2005] in a more general setting, also known as the Zilber–Pink
conjectures.

In a series of papers by Masser and Zannier [2010; 2012; 2014; 2015], the
authors proved a variant of Pink’s conjecture in the case of a curve in an abelian
surface scheme over Q, and over C in the nonsimple case. On the other hand, Pink’s
conjecture concerns families of semiabelian varieties. However, Bertrand [2011]
found a counterexample to this, for a suitable nonsplit extension of a CM elliptic
constant family E0× B (over a curve B) by Gm . This situation is rather “special”;
in fact, as it is shown in [Bertrand et al. 2016], the possible presence of the so-called
“Ribet sections” is the only obstruction to the validity of the conjecture in the case
of semiabelian surface schemes.

Now, let us see how our Theorem 1.1 implies a statement in the spirit of the
conjectures mentioned above. In particular, we translate our result in the language of
schemes, borrowing some terminology and results from a work of Habegger [2013].

Let S be an irreducible and nonsingular quasiprojective curve defined over Q

and let E → S be an elliptic scheme over S, i.e., a group scheme whose fibers
are elliptic curves. Let n ≥ 2. We define A to be the n-fold fibered power
E ×S · · · ×S E with the structural morphism π : A→ S. We suppose that E is
not isotrivial. In other words, E→ S cannot become a constant family after a finite
étale base change.

A subgroup scheme G of A is a closed subvariety, possibly reducible, which
contains the image of G ×S G under the addition morphism and the image of
the zero section S → A, and is mapped to itself by the inversion morphism.
A subgroup scheme G is called flat if π|G : G → S is flat, i.e., all irreducible
components of G dominate the base curve S (see [Hartshorne 1977, Chapter III,
Proposition 9.7]).

Theorem 2.1. Let A be as above and let A{2} be the union of the flat subgroup
schemes of A with codimension at least 2. Let C be a curve in A defined over Q

and suppose π(C) dominates S. Then C ∩A{2} is contained in a finite union of flat
subgroup schemes of positive codimension.
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In order to prove that this theorem is a consequence of Theorem 1.1, we need
some notation and facts from [Habegger 2013].

For every a = (a1, . . . , an) ∈ Zn we have a morphism a :A→ E defined by

a(P1, . . . , Pn)= a1 P1+ · · ·+ an Pn.

We identify the elements of Zn with the morphisms they define. The fibered product
α = a1×S · · ·×S ar , for a1, . . . , ar ∈ Zn , defines a morphism A→ B over S where
B is the r -fold fibered power of E . The kernel of α, denoted by kerα, indicates the
fibered product of α : A→ B with the zero section S→ B. We consider it as a
closed subscheme of A.

Lemma 2.2. Let G be a codimension-r flat subgroup scheme of A with 1≤ r ≤ n.
Then there exist independent a1, . . . , ar ∈ Zn such that G ⊆ ker(a1×S · · · ×S ar ).
Moreover, ker(a1×S · · · ×S ar ) is a flat subgroup scheme of A of codimension r.

Proof. This follows from Lemma 2.5 of [Habegger 2013] and its proof. �

Consider the Legendre family defined by (1-1). This gives an example of an
elliptic scheme, which we call EL , over the modular curve Y (2)= P1

\ {0, 1,∞}.
We write AL for the n-fold fibered power of EL .

Lemma 2.3 [Habegger 2013, Lemma 5.4]. Let A be as above. After possibly replac-
ing S by a Zariski open, nonempty subset, there exists an irreducible, nonsingular,
quasiprojective curve S′ defined over Q such that we have a commutative diagram

A
f

←−−− A′ e
−−−→ AL

π

y y yπL

S ←−−−
l

S′ −−−→
λ

Y (2)

where l is finite, λ is quasifinite, A′ is the abelian scheme A×S S′, f is finite and
flat and e is quasifinite and flat. Moreover, the restriction of f and e to any fiber of
A′→ S′ is an isomorphism of abelian varieties.

Lemma 2.4. If G is a flat subgroup scheme of A, then e( f −1(G)) is a flat subgroup
scheme of AL of the same dimension. Moreover, let X be a subvariety of A
dominating S and not contained in a proper flat subgroup scheme of A, let X ′′ be an
irreducible component of f −1(X) and let X ′ be the Zariski closure of e(X ′′) in AL .
Then X ′ has the same dimension as X , dominates Y (2) and is not contained in a
proper flat subgroup scheme of AL .

Proof. This follows from the proof of Lemma 5.5 of [Habegger 2013]. �
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Proof of Theorem 2.1. First, we can assume that C is not contained in a flat subgroup
scheme of A of positive codimension. Therefore, it is enough to prove that C∩

⋃
G

is finite where the union is taken over all flat subgroup schemes of A of codimension
at least 2.

Consider the Zariski closure C′ of e(C′′) for a component C′′ of f −1(C). By
Lemma 2.4, C′ is a curve in AL dominating Y (2) and not contained in a proper flat
subgroup scheme.

Now, since e is quasifinite, if e( f −1(C ∩A{2})) is finite then C ∩A{2} is finite
and by Lemma 2.4 we have

e( f −1(C ∩A{2}))⊆ e( f −1(C))∩A{2}L .

Therefore, we can reduce to proving our claim for the Legendre family and for C′.
By Lemma 2.2, each flat subgroup scheme of codimension at least 2 of AL is

contained in ker(a1 ×Y (2) a2) for some independent a1, a2 ∈ Zn . Therefore, it is
enough to show that C′∩

⋃
ker(a1×Y (2) a2) is finite, where the union is taken over

all pairs of independent a1, a2 ∈ Zn . The claim follows by applying Theorem 1.1
since C′ is not contained in a proper flat subgroup scheme. �

3. O-minimal structures and a result of Pila

In this section we introduce the notion of an o-minimal structure, recall some
definitions and properties we will need later and state a result from [Pila 2011]. For
the basic properties of o-minimal structures we refer to [van den Dries 1998] and
[van den Dries and Miller 1996].

Definition 3.1. A structure is a sequence S = (SN ), N ≥ 1, where each SN is a
collection of subsets of RN such that, for each N ,M ≥ 1:

(1) SN is a boolean algebra (under the usual set-theoretic operations);

(2) SN contains every semialgebraic subset of RN ;

(3) if A ∈ SN and B ∈ SM then A× B ∈ SN+M ;

(4) if A ∈ SN+M then π(A) ∈ SN , where π : RN+M
→ RN is the projection onto

the first N coordinates.

If S is a structure and, in addition,

(5) S1 consists of all finite union of open intervals and points,

then S is called an o-minimal structure.

Given a structure S, we say that S ⊆ RN is a definable set if S ∈ SN .
Let U ⊆ RN+M and let π1 and π2 be the projection maps on the first N and

on the last M coordinates, respectively. Now, for t0 ∈ π2(U ), we define Ut0 =

{x ∈ RN
: (x, t0) ∈U } = π1(π

−1
2 (t0)) and call U a family of subsets of RN , while
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Ut0 is called the fiber of U above t0. If U is a definable set then we call it a definable
family and one can see that the fibers Ut0 are definable sets too. Let S ⊆ RN

and let f : S → RM be a function. We call f a definable function if its graph
{(x, y) ∈ S×RM

: y = f (x)} is a definable set. It is not hard to see that images
and preimages of definable sets via definable functions are still definable.

There are many examples of o-minimal structures; see [van den Dries and Miller
1996]. In this article we are interested in the structure of globally subanalytic sets,
usually denoted by Ran. We will not dwell on details about this structure because it is
enough for us to know that if D⊆RN is a compact definable set, I is an open neigh-
borhood of D and f : I→RM is an analytic function, then f (D) is definable in Ran.

We now fix an o-minimal structure S. Many important properties of o-minimal
structures follow from the cell decomposition theorem [van den Dries and Miller
1996, 4.2]. One of these is the fact that definable families have a uniform bound on
the number of connected components of the fibers.

Proposition 3.2 [van den Dries and Miller 1996, 4.4]. Let U be a definable family.
There exists a positive integer γ such that each fiber of U has at most γ connected
components.

Now, let S ⊆ RN be a nonempty definable set and let e be a nonnegative integer.
The set of regular points of dimension e, denoted by rege(S), is the set of points x ∈ S
such that there is an open neighborhood I of x for which S ∩ I is a C1 (embedded)
submanifold of RN of dimension e. The dimension of S is the maximum e such
that S has a regular point of dimension e. Note that if S has dimension e then
S \ rege(S) has dimension ≤ e− 1.

Definition 3.3. A definable block of dimension e in RN is a connected definable
set B of dimension e contained in some semialgebraic set A of dimension e, such
that every point of B is a regular point of dimension e in B and A. Dimension zero
is allowed: a point is a definable block. Moreover, a definable block family is a
definable family whose nonempty fibers are all definable blocks.

We now need to define the height of a rational point. The height used in [Pila
2011] is not the usual projective Weil height, but a coordinatewise affine height.
If a/b is a rational number written in lowest terms, then H(a/b)=max(|a|, |b|)
and, for an N-tuple (α1, . . . , αN ) ∈QN , we set H(α1, . . . , αN )=max H(αi ). For
a subset Z of RN and a positive real number T we define

Z(Q, T )= {(α1, . . . , αN ) ∈ Z ∩QN
: H(α1, . . . , αN )≤ T }. (3-1)

The following theorem is a special case of [Pila 2011, Theorem 3.6] (see also
[Pila 2009]). Here, if f and g are real functions of T , the notation f (T )�Z ,ε g(T )
means that there exists a constant γ , depending on Z and ε, such that f (T )≤γ g(T )
for T large enough.
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Theorem 3.4 [Pila 2011]. Let Z ⊆ RN
×RM be a definable family, and let ε > 0.

Then there exist a J = J (Z , ε) ∈ N and a collection of definable block families
B( j)
⊆ RN

× (RM
×RMj ), for j = 1, . . . , J , such that

(1) each point in each fiber of B( j) is regular of dimension ej ;

(2) for each (t, u) ∈ RM
×RMj , the fiber B( j)

(t,u) is contained in Z t ;

(3) for every t ∈ π2(Z), the set Z t(Q, T ) is contained in the union of �Z ,ε T ε

definable blocks, each a fiber of one of the B( j).

4. Points lying on rational linear varieties

Let n ≥ 2 be an integer and let `1, . . . , `n , f , g be holomorphic functions on a
connected neighborhood I of some closed disc D ⊆ C. Suppose that

`1, . . . , `n are algebraically independent over C( f, g) on D, (4-1)

and that f (λ) and g(λ) are R-linearly independent for every λ ∈ D.
For some positive real T , denote by D(T ) the set of λ ∈ D such that{

a1`1(λ)+ · · ·+ an`n(λ)= an+1 f (λ)+ an+2g(λ),
b1`1(λ)+ · · ·+ bn`n(λ)= bn+1 f (λ)+ bn+2g(λ),

(4-2)

for some linearly independent vectors (a1, . . . , an), (b1, . . . , bn) ∈ (Z∩ [−T, T ])n

and some an+1, an+2, bn+1, bn+2 ∈ Z.
The following proposition gives the desired upper bound mentioned in the

introduction. We postpone its proof until the end of this section after developing
some auxiliary tools.

Proposition 4.1. Under the above hypotheses, for every ε>0, we have |D(T )|�εT ε .

Define
1= f ḡ− f̄ g,

which does not vanish on D, since f (λ) and g(λ) are R-linearly independent for
every λ ∈ D. Moreover, let

uj =
`j ḡ− `j g

1
, vj =−

`j f̄ − `j f
1

.

One can easily check that these are real-valued and, furthermore, that we have

`j = uj f + vj g.

If we view D and I as a subsets of R2, then uj and vj are real analytic functions on I .
Define

2 : D→ R2n, λ 7→ (u1(λ), v1(λ), . . . , un(λ), vn(λ)),
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and set S=2(D). This is a definable set in Ran. In what follows, (u1,v1, . . . ,un,vn)

will just indicate coordinates in R2n .
For T > 0, we call S(T ) the set of points of S of coordinates (u1, v1, . . . , un, vn)

such that there exist linearly independent vectors (a1, . . . , an+2), (b1, . . . , bn+2)

in Qn+2 of height at most T with
a1u1+ · · ·+ anun = an+1,

a1v1+ · · ·+ anvn = an+2,

b1u1+ · · ·+ bnun = bn+1,

b1v1+ · · ·+ bnvn = bn+2.

(4-3)

Lemma 4.2. For every choice of a1, . . . , an+2, b1, . . . , bn+2 ∈ R, not all zero, the
subset of S for which (4-3) holds is finite.

Proof. By contradiction suppose that the subset of S of points satisfying (4-3)
for some choice of coefficients is infinite. We can suppose that at least one aj is
nonzero. This would imply that there exists an infinite set E ⊆ D on which, for
every λ ∈ E ,

a1`1(λ)+ · · ·+ an`n(λ)= an+1 f (λ)+ an+2g(λ).

Since this relation holds on a set with an accumulation point, it must hold on all of D
(see [Lang 1985, Chapter III, Theorem 1.2(ii)]), contradicting hypothesis (4-1). �

The following proposition is the main tool used to prove Proposition 4.1.

Proposition 4.3. For every ε > 0, we have |S(T )| �ε T ε .

Proof. We are counting points of S that lie on linear varieties of R2n defined by
systems of the form (4-3).

Let us consider the set W ⊂ R4n+4 defined as

W =
{
(u1, v1, . . . , un, vn, a1, . . . , an+2, b1, . . . , bn+2) ∈ S×R2n+4

:

(4-3) holds and (a1, . . . , an+2), (b1, . . . , bn+2) are linearly independent
}
,

which is a definable set. Denote by π1 the projection on S and by π2 the projection
on the last 2n + 4 coordinates. Given a point L of π2(W ), we write τ(L) for
the set of points of S that lie on the affine subspace corresponding to L , i.e.,
τ(L) = π1(π

−1
2 (L)). In other words, if we consider W as a family of subsets

of R2n , then τ(L) is just the fiber WL . This is a definable subset of S and it must
be zero-dimensional by Lemma 4.2. By Proposition 3.2, there exists a positive
integer γ1 such that |τ(L)| ≤ γ1, for every L ∈ π2(W ). If V ⊆ π2(W ), we write
τ(V ) for π1(π

−1
2 (V )).

Now, let us set Ŵ = π2(W ) ⊆ R2n+4. Recall the definition in (3-1) and note
that S(T ) ⊆ τ(Ŵ (Q, T )). By Theorem 3.4, there is a finite number of definable
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block families such that, for every ε1, the set Ŵ (Q, T ) is contained in the union
of�W,ε1 T ε1 definable blocks, each a fiber of one of these families. We have that
S(T ) ⊆

⋃
B τ(B), where the union is taken over the �W,ε1 T ε1 definable blocks

mentioned above.
Let us fix a definable block family U with fibers Ut ⊆ Ŵ . We claim that, for

every ε2, each fiber Ut of U gives rise to �U,ε2 T ε2 points on S(T ), i.e., that
|τ(Ut)∩ S(T )| �U,ε2 T ε2 for every fiber Ut . Once we prove this, the claim of the
proposition follows easily after fixing ε1 and ε2 with ε1ε2 = ε, e.g., ε1 = ε2 =

√
ε.

We proceed by induction on the dimension e of the fibers of U . By Lemma 4.2,
the claim is true for e = 0.

Suppose now e > 0. We denote by Bη(L) the Euclidean ball centered in L of
radius η and define, for m = 1, . . . , γ1,

V (m)
=
{
(L , t) ∈U : there exist an η > 0 and A1, . . . , Am ∈ S such that,

for all L ′ ∈ Bη(L)∩Ut ,we have τ(L ′)= {A1, . . . , Am}
}
.

These are definable families and so is V :=
⋃γ1

m=1V (m), as it is a finite union of
definable sets. Hence, by Proposition 3.2, there exists a γ2 such that all fibers Vt have
at most γ2 connected components. It is clear that, for each L in the same connected
component, τ(L) consists of the same set of not more than γ1 points; therefore, each
fiber Vt of V gives rise to at most γ1γ2 points of S(T ), i.e., |S(T )∩ τ(Vt)| ≤ γ1γ2.

Now we want to prove that all the fibers of Z = U \ V have dimension < e.
Suppose not and let L be an e-regular point of a fiber Z t . We fix a ball Bη(L)
such that Bη(L) ∩ Ut is connected and contained in Z t . We set {A1, . . . , Am}

equal to
⋂

L ′∈Bη(L)∩Z t
τ(L ′), i.e., the set of points of S that lie on all subspaces in

Bη(L)∩ Z t . By definition of Z , we know τ−1({A1, . . . , Am})∩ Bη(L)∩ Z t must
be of dimension < e; therefore, there exist an L0 ∈ Bη(L)∩ Z t and an η0 such that,
for every L ′ ∈ Bη0(L0)∩ Z t , we have τ(L ′)) {A1, . . . , Am}. Thus, we can define a
function f : Bη0(L0)∩ Z t → S that associates to L ′ a point in τ(L ′) different from
A1, . . . , Am . This is a definable function and, taking η0 small enough (and possibly
choosing a different L0), we can also suppose that it is differentiable [van den Dries
and Miller 1996, C.2 Lemma].

Now, assume the derivative of f is zero in all directions. Then f is constant
and there exists a point Am+1 ∈ τ(L ′) for all L ′ ∈ Bη0(L0) ∩ Z t . We repeat this
procedure of finding a point, a ball and a function like above and continue until
this function has nonzero derivative in some direction. This procedure must stop
because otherwise we would have a point L ′ with |τ(L ′)|> γ1, contradicting the
above considerations.

We can therefore suppose that there are an L0 ∈ Bη(L)∩ Z t and an η0 such that
f is differentiable on Bη0(L0)∩ Z t and has nonzero derivative in some direction.
Now, recall that L0 is an e-regular point of Ut and, by definition of definable block,
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of a semialgebraic set that contains it. Therefore, Bη0(L0) ∩Ut = Bη0(L0) ∩ Z t

is semialgebraic. Thus, if we intersect it with a suitable linear variety, we get an
algebraic curve segment C in Bη0(L0)∩ Z t , passing through L0 in the direction for
which the derivative of f is nonzero. The function f is nonconstant on C . Consider
C ′ = f (C)×C . By definition of f , we know C ′ is a real-analytic curve segment in
W . Moreover, let us define D′ =2−1( f (C)). As f is not constant on C , we know
D′ is an infinite subset of D.

Now, on D′ the coordinate functions a1, . . . , an+2, b1, . . . , bn+2 satisfy 2n+ 3
independent algebraic relations with coefficients in C and, combining the relations
of (4-3), we have also{

a1`1+ · · ·+ an`n = an+1 f + an+2g,
b1`1+ · · ·+ bn`n = bn+1 f + bn+2g.

Each of these two relations is independent of the previous 2n + 3 relations, and
they are independent of each other because (a1, . . . , an+2) and (b1, . . . , bn+2) are
required to be linearly independent. Therefore, as the 3n+4 functions a1, . . . , an+2,
b1, . . . , bn+2, `1, . . . , `n satisfy 2n+ 5 independent algebraic relations with coef-
ficients in C[ f, g] on the infinite set D′, they continue to do so on I . Therefore,
if F := C( f, g),

tr degF F(`1, . . . , `n) < n.

This contradicts hypothesis (4-1).
We have just proved that there cannot be any e-regular point on any fiber of Z . We

apply Pila’s result (Theorem 3.4) again on Z . There is a finite number of definable
block families such that, for each ε3 and for each fiber Z t , the set Z t(Q, T ) is
contained in the union of�Z ,ε3 T ε3 definable blocks, each a fiber of one of these
families. The fibers of these families must have dimension < e; therefore, our
inductive hypothesis implies that if U ′ is one of them, then, for every ε4 > 0, we
have |τ(U ′t ′)∩ S(T )| �U ′,ε4 T ε4 for every fiber U ′t ′ of U ′. This means that, after
choosing ε3= ε4=

√
ε2, for each fiber Z t , we have |τ(Z t)∩ S(T )|�Z ,ε2 T ε2 . Now

recall that we have Ut = Vt∪Z t and that Vt gives rise to at most γ1γ2 points of S(T ).
This proves our claim and the proposition. �

Remark. We would like to point out that this last proposition can be deduced from
recent work of Habegger and Pila [2014, Corollary 7.2].

Proof of Proposition 4.1. Since f and g are linearly independent, if λ ∈ D satisfies
(4-2) then (4-3) holds for 2(λ). Now, since D is a compact subset of R2, each
`j (D) is bounded and, therefore, if `1(λ), . . . , `n(λ), f (λ), g(λ) satisfy (4-2), then
|an+1|, |an+2|, |bn+1|, |bn+2| are bounded in terms of |a1|, . . . , |an|, |b1|, . . . , |bn|

and thus of T . Therefore, 2(λ) ∈ S(γ3T ) for some γ3 independent of T . Now,
using Proposition 3.2 and Lemma 4.2, we see that there exists a γ4 such that, for
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any choice of a1, . . . , an+2, b1, . . . , bn+2, there are at most γ4 elements λ in D such
that `1(λ), . . . , `n(λ), f (λ), g(λ) satisfy (4-2). Thus |D(T )| � |S(γ3T )| and the
claim follows from Proposition 4.3. �

5. Periods and elliptic logarithms

In this section we introduce the functions to which we will apply Proposition 4.1.
We follow [Masser and Zannier 2012].

It is well-known that there is an analytic isomorphism between Eλ(C) and C/Lλ,
where Lλ is a rank-2 lattice in C. Consider the hypergeometric function

F(t)= F
( 1

2 ,
1
2 , 1; t

)
=

∞∑
m=0

(2m)!2

24mm!4
tm,

and let
f (t)= πF(t) and g(t)= π i F(1− t). (5-1)

Define
3= {t ∈ C : |t |< 1, |1− t |< 1}.

The functions f and g are well-defined and analytic in 3, as functions of t . More-
over, they are well-defined as functions of c in λ−1(3)⊂ C(C).

By [Husemöller 1987, Chapter 9, (6.1) Theorem, p. 179], f (λ) and g(λ) are
basis elements of the period lattice Lλ of Eλ with respect to dX/(2Y ). Therefore,
if expλ is the associated exponential map from C to Eλ(C), we have

expλ( f (λ))= expλ(g(λ))= O,

where O denotes the origin in Eλ. Let Pj = (xj , yj ), where xj , yj are coordinate
functions in C(C). We can suppose, for every j , that xj 6= 0, 1, λ identically;
otherwise the corresponding Pj would be identically 2-torsion, contradicting the
hypothesis of Theorem 1.1.

Now, we want to define suitable functions z j (c) such that expλ(c)(z j (c))= Pj (c);
in other words, we want z j to be the elliptic logarithm of Pj .

Let Ĉ be the subset of points c∈C such that λ(c), xj (c) 6=0, 1,∞ and xj (c) 6=λ(c)
for every j = 1, . . . , n, and such that c is not a singular point or a point on which
the differential of λ vanishes.

Note that, in this way, we exclude finitely many c ∈ C, and these are algebraic
points of C. Moreover, on Ĉ, the coordinate function λ has everywhere a local
inverse.

We now follow the construction of [Masser and Zannier 2012, p. 459]. Fix a
point c∗ ∈ Ĉ and choose a path in the xj -plane from xj (c∗) to∞ and not passing
through 0, 1 and λ(c∗). We also fix a determination of Y =

√
X (X − 1)(X − λ(c∗))

that is equal to yj (c∗) at X = xj (c∗). Therefore, the path corresponds to a path on
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the elliptic curve Eλ(c∗) from the point Pj (c∗) to the origin O . Hence we can define
z j (c∗) as the integral

z j (c∗)=
∫
∞

xj (c∗)

dX
2
√

X (X−1)(X−λ(c∗))
.

We can extend it to a c close to c∗ by

z j (c)=
∫
∞

xj (c∗)

dX
2
√

X (X−1)(X−λ(c))
+

∫ xj (c)

xj (c∗)

dX
2
√

X (X−1)(X−λ(c))
.

In fact, in the first integral on the right we use the same path fixed before and the
integrand is determined by continuity from the previously chosen determination
of Y . Hence, this term is an analytic function in λ(c). For the second term, we
can take any local path from xj (c∗) to xj (c). We can extend the integrand as a
double power series in λ(c)− λ(c∗) and in X − xj (c∗); the result will be a double
power series in λ(c)− λ(c∗) and xj (c)− xj (c∗). Notice that we have, at any rate,
expλ(c)(z j (c))= Pj (c) for every j = 1, . . . , n.

In this way, fixing a c∗ ∈ λ−1(3)∩ Ĉ, the functions z1, . . . , zn are well-defined
on a small neighborhood N∗ of c∗ on C. Moreover, if we take N∗ small enough, we
can see them as analytic functions of λ on λ−1(N∗).

We will need the following transcendence result.

Lemma 5.1. The functions z1, . . . , zn are algebraically independent over C( f, g)
on N∗.

Proof. The functions z1, . . . , zn , f , g are analytic functions of λ, linearly indepen-
dent over Z. Indeed, a relation a1z1+ · · · + anzn = an+1 f + an+2g, with integer
coefficients, would map via expλ to a relation of the form (1-2) on N∗, and therefore
on all of C, which cannot hold by the hypothesis of the theorem. Moreover, if ℘λ is
the Weierstrass ℘-function associated to Lλ, the ℘λ(zi ) are algebraic functions of
λ because ℘λ(z j )= xj −

1
3(λ+ 1) (see [Masser and Zannier 2010, (3.8), p. 1683]).

Therefore, the hypotheses of [Bertrand 1990, Théorème 5, p. 136] are satisfied and
we can apply it to get the claim. �

We would like now to extend our functions f , g, z1, . . . , zn on Ĉ.
If c ∈ Ĉ, one can continue f and g to a neighborhood Nc of c. In fact, if we

choose c ∈ Ĉ and a path from c∗ to c lying in Ĉ, we can easily continue f and g
along the path using (5-1).

To continue z j from a point c∗ to a c in Ĉ, it is sufficient to verify that if N1 and N2

are two open small subsets in Ĉ, with N1 ∩ N2 connected, and if z j has analytic
definitions z′j on N1 and z′′j on N2, then z j has an analytic definition on the union
N1∪ N2. But we saw that expλ(z j )= Pj for every j = 1, . . . , n; hence on N1∩ N2

we have expλ(z
′

j ) = expλ(z
′′

j ). This means that there exist rational integers u, v
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with z′′j = z′j +u f +vg on this intersection, and they must be constant there. Hence
it is enough to change z′′j to z′′j − u f − vg on N2.

Using the same path, it is clear that we can continue the function ( f, g, z1, . . . , zn)

from a small neighborhood of c∗ to a small neighborhood Nc ⊆ Ĉ of c, and that the
obtained function ( f c, gc, zc

1, . . . , zc
n) is analytic on Nc. Moreover, the functions

preserve algebraic independence, as the following lemma shows.

Lemma 5.2. The functions zc
1, . . . , zc

n are algebraically independent over C( f c, gc)

on Nc.

Proof. Any algebraic relation can be continued to a neighborhood N∗ of some
c∗ ∈ λ−1(3), contradicting Lemma 5.1. �

Furthermore, the lattice Lλ is still generated by f c and gc on Nc; see Lemma 6.1
of [Masser and Zannier 2012] or Lemma 4.1 of [Masser and Zannier 2010].

Now fix c ∈ C and Nc ⊆ Ĉ. Since we are avoiding singular points and points on
which the differential of λ vanishes, λ gives an analytic isomorphism λ : Nc→λ(Nc).
Therefore, we can view zc

1, . . . , zc
n , f c, gc as analytic functions on λ(Nc).

6. Linear relations on a fixed curve

In this section we prove a general fact about linear relations on elliptic curves.
For a point (α1, . . . , αN )∈QN , the absolute logarithmic Weil height is defined by

h(α1, . . . , αN )=
1

[Q(α1, . . . , αN ) :Q]

∑
v

log max{1, |α1|v, . . . , |αN |v},

where v runs over a suitably normalized set of valuations of Q(α1, . . . , αN ).
Let α be an algebraic number and consider the Legendre curve E = Eα defined

by the equation Y 2
= X (X − 1)(X − α). Let P1, . . . , Pn be linearly dependent

points on E , defined over some finite extension K of Q(α) of degree κ = [K :Q].
Suppose that P1, . . . , Pn have Néron–Tate height ĥ at most q (for the definition of
Néron–Tate height, see for example [Masser 1988, p. 255]). In case the P1, . . . , Pn

are all torsion, i.e., ĥ(Pj )= 0 for all j , we set q = 1. We define

L(P1, . . . , Pn)= {(a1, . . . , an) ∈ Zn
: a1 P1+ · · ·+ an Pn = O},

a sublattice of Zn of some positive rank r . We want to show that L(P1, . . . , Pn)

has a set of generators with small max norm |a| =max{|a1|, . . . , |an|}.

Lemma 6.1. Under the above hypotheses, there are generators a1, . . . , ar of
L(P1, . . . , Pn) with

|ai | ≤ γ1κ
γ2(h(α)+ 1)2nq

1
2 (n−1),

for some positive constants γ1, γ2 depending only on n.
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Proof. The Weierstrass form Ẽ = Ẽα of E = Eα has equation

Ỹ 2
= 4X̃3

− g2 X̃ − g3,

where g2 =
4
3(α

2
− α+ 1) and g3 =

4
27(α− 2)(α+ 1)(2α− 1) (see [Masser and

Zannier 2010, (3.7), p. 1683]). The isomorphism φ from E to Ẽ is given by

X̃ = X − 1
3(α+ 1), Ỹ = 2Y.

Now, Ẽ is clearly defined over Q(α) and any linear relation a1 P1+· · ·+an Pn=O
on E carries on to Ẽ and vice versa. Moreover, the Qi =φ(Pi )will have coordinates
in K and the same Néron–Tate height of the Pi , and hence ĥ(Qi )≤ q .

First, suppose that at least one of the points has infinite order. By Theorem E of
[Masser 1988], if Q1, . . . , Qn are linearly dependent points on Ẽ(K ) of Néron–Tate
height at most q ≥ η, then L(Q1, . . . , Qn) is generated by vectors with max norm
at most

nn−1ω

(
q
η

)1
2 (n−1)

,

where ω = |Ẽtors(K )| and η = inf ĥ(P), for P ∈ Ẽ(K ) \ Ẽtors(K ). We need to
bound ω and η. The constants γ3, . . . , γ9 are absolute constants.

For the first we use Théorème 1.2(i) of [David 1997]: choosing any archimedean v
and noting that, by David’s definition, hv(Ẽ)≥

√
3

2 , one has

ω ≤ γ3(κh+ κ log κ),

where h=max{1, h( jẼ)}. Now, jẼ = 28(α2
−α+1)3/(α2(α−1)2) (see for instance

[Husemöller 1987], p. 83). Therefore, h ≤ γ4(h(α)+ 1) and

ω ≤ γ5(h(α)+ 1)κ2. (6-1)

For the lower bound on η, we use a result of Masser [1989a, Corollary 1]. In
Masser’s bound a constant depending on κ appears in the denominator. However,
going through the proof one can see that this constant is polynomial in κ , as noted
on [David 1997, p. 109]. Therefore,

η ≥
γ6

wκγ7+3(w+ log κ)2
≥ γ8κ

−(γ7+5)w−3,

where w = max{1, h(g2), h(g3)}. As g2 and g3 are polynomials in α, we have
w ≤ γ9(h(α)+ 1). Consequently, L(Q1, . . . , Qn) will have generators of norms
at most

γ1κ
γ2(h(α)+ 1)2nq

1
2 (n−1),

with γ1, γ2 depending only on n.
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If all the points are torsion points, it is clear that one can take |ai | ≤ ω and
use (6-1). �

7. Bounded height

In this section we see that the height of the points on the curve C for which there is
at least one dependence relation is bounded and a few consequences of this fact.

Let k be a number field over which C is defined. Suppose also that the finitely
many points we excluded from C to get Ĉ, which are algebraic, are defined over k.
Clearly, there are f1, . . . , fn ∈ k[T ] such that f j (xj , λ)= 0 for every j , identically
on the curve.

Let C′ be the set of points of Ĉ such that P1, . . . , Pn satisfy two independent
relations on the specialized curve and let c0 ∈ C′. Since C is defined over Q, the
xj (c0) and λ(c0) must be algebraic, unless the Pj are identically linearly dependent,
which we excluded by hypothesis. Then by Silverman’s specialization theorem
[1983] (see also of [Zannier 2012, Appendix C]) there exists a γ1 > 0 such that

h(λ(c0))≤ γ1. (7-1)

We see now a few consequences of this bound. If δ > 0 is a small real number,
let us set

3δ = {t ∈ C : |t | ≤ 1/δ, |t − λ(c)| ≥ δ for all c ∈ C \ Ĉ}.

Lemma 7.1. There is a positive δ such that there are at least 1
2 [k(λ(c0)) :k] different

k-embeddings σ of k(λ(c0)) in C such that σ(λ(c0)) lies in 3δ for all c0 ∈ C′.

Proof. See Lemma 8.2 of [Masser and Zannier 2012]. �

Remark. We would like to point out that, as suggested by the referee, it might be
possible to avoid the restriction to a compact domain and the use of the previous
lemma by exploiting the work of Peterzil and Starchenko [2004], who proved that
it is possible to define the Weierstrass ℘ function globally in the structure Ran,exp.

Lemma 7.2. There exist positive constants γ2, γ3 such that, for every c0 ∈ C′ and
every j = 1, . . . , n, we have

ĥ(Pj (c0))≤ γ2,

and the Pj (c0) are defined over some number field K ⊇ k(λ(c0)) with

[K :Q] ≤ γ3[k(λ(c0)) : k].

Proof. Recall that each xj (c0) is a root of f j (X, λ(c0)). This already implies the
second statement. Now, we have h(Pj (c0))≤ γ4(h(λ(c0))+ 1) and, using the work
of Zimmer [1976], we have ĥ(Pj (c0)) ≤ h(Pj (c0))+ γ5(h(λ(c0))+ 1). The first
claim now follows from (7-1). �
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8. Proof of Theorem 1.1

We want to show that there are at most finitely many c on the curve such that
P1(c), . . . , Pn(c) satisfy two linearly independent relations on Eλ(c). By Northcott’s
theorem [1949] and (7-1), we only need to bound the degree d of λ(c) over k.

Let c0 ∈ C′, λ0 = λ(c0) and d0 = [k(λ(c0)) : k]. First, by Lemma 7.1, we can
choose δ, independent of c0, such that λ0 has at least d0/2 conjugates in 3δ . Now,
since 3δ is compact, it can be covered by γ2 closed discs Dc1, . . . , Dcγ2

⊆ λ(Ĉ),
where Dci is centered in λ(ci ), for some ci ∈ Ĉ.

We can suppose that the closed disc Dc1 contains at least d0/(2γ2) conjugates λσ0 .
Now, each such conjugate comes from a cσ0 ∈ Nc1 and the corresponding points
P1(cσ0 ), . . . , Pn(cσ0 ) satisfy the same linear relations. So there are linearly indepen-
dent (a1, . . . , an), (b1, . . . , bn) such that

a1 P1(cσ0 )+ · · ·+ an Pn(cσ0 )= b1 P1(cσ0 )+ · · ·+ bn Pn(cσ0 )= O (8-1)

on Eλ(cσ0 ).
By Lemma 7.2, ĥ(Pj (cσ0 )) is at most γ3 and the points are defined over some

finite extension of k(λ(cσ0 )) of degree at most γ4d0. Therefore, applying Lemma 6.1
and recalling (7-1), we can suppose that the aj and bj are in absolute value less
than or equal to γ5dγ6

0 .
Now, recall that, in Section 5, on λ(Nc1) ⊇ Dc1 , we defined f c1 , gc1 to be

generators of the period lattice Lλ and the elliptic logarithms zc1
1 , . . . , zc1

n such that

expλ(z
c1
j (λ))= Pj (λ) (8-2)

on λ(Nc1). We know that zc1
1 , . . . , zc1

n , f c1 , gc1 are holomorphic functions on a
neighborhood of Dc1 , with f c1(λ) and gc1(λ) linearly independent over R for every
λ ∈ Dc1 , and, by Lemma 5.2, that zc1

1 , . . . , zc1
n are algebraically independent over

C( f c1, gc1) on Dc1 . Therefore, the hypotheses of Proposition 4.1 are satisfied.
By (8-1) and (8-2), we have

a1zc1
1 (λ

σ
0 )+ · · ·+ anzc1

n (λ
σ
0 )≡ b1zc1

1 (λ
σ
0 )+ · · ·+ bnzc1

n (λ
σ
0 )≡ 0 (mod Lλσ0 ).

Therefore, there are an+1, an+2, bn+1, bn+2 ∈ Z such that{
a1zc1

1 (λ
σ
0 )+ · · ·+ anzc1

n (λ
σ
0 )= an+1 f c1(λσ0 )+ an+2gc1(λσ0 ),

b1zc1
1 (λ

σ
0 )+ · · ·+ bnzc1

n (λ
σ
0 )= bn+1 f c1(λσ0 )+ bn+2gc1(λσ0 ).

Thus all λσ0 ∈ Dc1 are in Dc1(γ5dγ6
0 ) (recall the definition of D(T ) just above

Proposition 4.1).
By Proposition 4.1, we have |Dc1(γ5dγ6

0 )| �ε dγ6ε

0 . But by our choice of Dc1 we
have at least d0/(2γ2) points in Dc1(γ5dγ6

0 ). Therefore, if we choose ε < 1/γ6 we
have a contradiction when d0 is large enough.
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We just deduced that d0 is bounded and, by (7-1) and Northcott’s theorem, we
have finiteness of the possible values of λ(c0), which proves Theorem 1.1.
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