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Weight functions on Berkovich curves
Matthew Baker and Johannes Nicaise

Let C be a curve over a complete discretely valued field K . We give tropical
descriptions of the weight function attached to a pluricanonical form on C and
the essential skeleton of C . We show that the Laplacian of the weight function
equals the pluricanonical divisor on Berkovich skeleta, and we describe the
essential skeleton of C as a combinatorial skeleton of the Berkovich skeleton
of the minimal snc-model. In particular, if C has semistable reduction, then the
essential skeleton coincides with the minimal skeleton. As an intermediate step,
we describe the base loci of logarithmic pluricanonical line bundles on minimal
snc-models.

1. Introduction

We denote by R a complete discrete valuation ring with quotient field K and
algebraically closed residue field k. Let X be a smooth and proper K-variety.
Mustat,ă and Nicaise [2015] defined the essential skeleton Sk(X) of X , which is a
finite simplicial complex embedded in the Berkovich analytification X an of X . It
is a union of faces of the Berkovich skeleton of any strict normal crossings model
of X , but it does not depend on the choice of such a model. It was proven in [Nicaise
and Xu 2013] that, when k has characteristic zero and the canonical line bundle
on X is semiample, the essential skeleton is a strong deformation retract of X an

and can be identified with the dual intersection complex of the special fiber of any
minimal dlt-model of X over R. The definition of the essential skeleton was based
on the construction of a weight function wtω on X an attached to a pluricanonical
form ω on X , which measures the degeneration of the pair (X, ω) locally at a point
of X an. The aim of the present paper is to give an explicit description of the weight
function and the essential skeleton in the case where X is a curve, and to relate
them to potential theory on graphs.

Let C be a smooth, proper, geometrically connected curve over K . Denote
by H0(C) the Berkovich analytification Can minus the points of type I and IV. In
Section 2 we construct a metric on H0(C) using the geometry of normal crossings
models of C over R. This is similar to the construction of the skeletal metric in
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the case where K is algebraically closed [Baker et al. 2013], but our metric is not
invariant under base change and cannot be obtained from the skeletal metric in
any direct way. Using this metric, we can speak of integral affine functions on
finite subgraphs of Can and Laplacians of such functions. Section 3 is the heart of
the paper; here we provide combinatorial descriptions of the weight function wtω
attached to a rational m-canonical form ω on C and of the essential skeleton of C .
Our first main result, Theorem 3.2.3, states that the Laplacian of the restriction of
the weight function to the Berkovich skeleton of a suitable snc-model of C equals
the m-canonical divisor of the Berkovich skeleton, which is defined in terms of
graph theory. Our second main result, Theorem 3.3.13, states that the essential
skeleton of a curve C of positive genus is the subgraph of the Berkovich skeleton of
the minimal snc-model of C obtained by contracting all the tails of rational curves.
In particular, if C has semistable reduction, then the essential skeleton of C is equal
to the Berkovich skeleton of its minimal snc-model. The proof of Theorem 3.3.13 is
based on Theorem 3.3.6, which describes the base locus of the logarithmic relative
pluricanonical bundles of the minimal snc-model of C . We also prove that, in the
semistable reduction case, it suffices to look at weight functions of 2-canonical forms
to recover the essential skeleton; moreover, if the essential skeleton of C is bridgeless,
then canonical forms suffice (see Theorem 3.4.6). Finally, in the Appendix, we
describe a different natural metric on H0(C) which behaves better under (tame)
base change and which is closer to the skeletal metric from [Baker et al. 2013].

1.1. Notation.

1.1.1. We denote by R a complete discrete valuation ring with quotient field K
and algebraically closed residue field k. We assume that the valuation vK on K
is normalized, i.e., that vK (t) = 1 for any uniformizer t in R, and we define an
absolute value | · |K on K by setting |a|K = exp(−vK (a)) for every a in K ∗. We
fix an algebraic closure K a of K . The absolute value | · |K extends uniquely to
an absolute value on K a , which we still denote by | · |K . We write K̂ a for the
completion of K a with respect to | · |K .

1.1.2. By a curve over K , we will mean a geometrically connected smooth proper
K-variety of dimension one. For every scheme S we denote by Sred the maximal
reduced closed subscheme. For every R-scheme X we set XK = X ×R K and
Xk = X×R k. If L is a line bundle on a scheme X and D is a Cartier divisor on X ,
then we write L(D) for the line bundle L⊗OX (D), as usual.

1.1.3. We will work with the category of K-analytic spaces as defined by Berkovich
[1990]. We assume a basic familiarity with the theory of analytic curves over K ;
see for instance [Baker et al. 2013].
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2. The metric on the Berkovich analytification of a K-curve

2.1. Metric graphs associated to curves with normal crossings.

2.1.1. When we speak of a discrete graph G, we mean a finite connected undirected
multigraph, i.e., we allow multiple loops and multiple edges between vertices. We
denote the vertex set of G by V (G) and the set of edges by E(G). A weighted
discrete graph is a couple (G, w) where G is a discrete graph and w is a function

w : V (G)→ R.

2.1.2. A discrete graph G has a geometric realization 0, which is defined as follows:
We start from the set V (G) and we attach one copy of the closed interval [0, 1]
between two vertices v1 and v2 for each edge of G with endpoints {v1, v2}. If G is
endowed with a weight function w that takes values in Z>0, then we can turn the
topological space 0 into a metric space by declaring that the length of every edge e
between two adjacent vertices v1 and v2 is equal to

`(e)= 1
w(v1)·w(v2)

. (2.1.3)

In these definitions, we allow the possibility that v1= v2. We call the metric space 0
the metric graph associated with (G, w).

2.1.4. Let X be a connected separated k-scheme of finite type of pure dimension
one. We say that X has normal crossings if the only singular points of Xred are
ordinary double points. We associate a weighted discrete graph (G(X), w) to X as
follows. The vertex set of G(X) is the set of irreducible components of X and the
edge set of G(X) is the set of singular points of Xred. If e is an edge corresponding
to a singular point x of Xred, then the end points of e are the vertices corresponding
to the irreducible components of X containing x . In particular, e is a loop if and
only if x is a singular point of an irreducible component of X . If v is a vertex of
G(X) corresponding to an irreducible component E of X , then the weight w(v) is
defined to be the multiplicity of X along E , i.e., the length of the local ring of X
at the generic point of E . The metric graph associated with (G(X), w) will be
denoted by 0(X).

2.2. Models with normal crossings.

2.2.1. Let C be a curve over K . An nc-model of C is a regular flat proper R-
scheme C, endowed with an isomorphism of K-schemes CK → C , such that the
special fiber Ck has normal crossings. We call C an snc-model of C if, moreover, Ck

has strict normal crossings, which means that its irreducible components (endowed
with the induced reduced structure) are regular. If C and C′ are nc-models of C ,
then a morphism of R-schemes h : C′ → C is called a morphism of nc-models
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if the morphism hK : C
′

K → CK obtained by base change to K commutes with
the isomorphisms to C . Morphisms of snc-models are defined analogously. We
say that C′ dominates C if there exists a morphism of nc-models C′→ C; such
a morphism is automatically unique. We denote this property by C′ ≥ C. The
relation ≥ defines a partial ordering on the set of isomorphism classes of nc-models
of C . This partial ordering is filtered, and the snc-models form a cofinal subset
since any nc-model can be transformed into an snc-model by blowing up at the
self-intersection points of the irreducible components of the special fiber. We say
that the curve C has semistable reduction if any relatively minimal nc-model of C
has a reduced special fiber. Beware that this does not imply that the minimal snc-
model has reduced special fiber, as blowing up at self-intersection points introduces
components of multiplicity two.

2.2.2. Denote by Can the Berkovich analytification of C , and let C be an snc-model
of C . If E is an irreducible component of Ck and v denotes the corresponding vertex
of the weighted discrete graph (G(Ck), w), then w(v) is precisely the multiplicity
of E in the divisor Ck . Mustat,ă and Nicaise [2015, §3.1] defined a canonical topo-
logical embedding of the metric graph 0(Ck) into Can, generalizing a construction
by Berkovich. The image of this embedding is called the Berkovich skeleton of
the model C and denoted by Sk(C). By [Mustat,ă and Nicaise 2015, 3.1.5], the
embedding of Sk(C) into Can has a canonical continuous retraction

ρC : Can
→ Sk(C).

If we let C vary over the class of snc-models of C , ordered by the domination
relation, then the maps ρC induce a homeomorphism

Can
→ lim
←−

C

Sk(C).

This is easily proven by an adaptation of the argument in [Baker et al. 2013,
Theorem 5.2] (where it is assumed that the base field is algebraically closed). It is
straightforward to generalize these constructions to nc-models, either by copying
the arguments or by observing that blowing up C at all the self-intersection points
of irreducible components of Ck , we get an snc-model C′ of C and the morphism
C′→C induces an isometry 0(C′k)→0(Ck) (the effect of this operation on 0(Ck)

is that we add a vertex in the middle of every loop).

2.3. Definition of the metric.

2.3.1. Let C be a curve over K , and denote by H0(C) the subset of Can obtained
by removing the points of type I and IV.

Lemma 2.3.2. For every nc-model C of C , the Berkovich skeleton Sk(C) is con-
tained in H0(C). Moreover, H0(C) is the union of the skeleta Sk(C) where C runs
through any cofinal set of nc-models of C.
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Proof. The points of type II on Can are precisely the divisorial points in the sense
of [Mustat,ă and Nicaise 2015, 2.4.7], and the points of type II and III are precisely
the monomial points. Thus the first part of the statement is obvious from the
construction of Sk(C). The second part follows from the fact that every monomial
point lies in the skeleton of some snc-model and the fact that, if C′ → C is a
morphism of nc-models of C , the skeleton Sk(C) is included in Sk(C′) [Mustat,ă
and Nicaise 2015, Proposition 3.1.7]. �

The following theorem explains how to define a natural metric on the set H0(C).

Theorem 2.3.3. There exists a unique metric on H0(C) such that, for every nc-
model C of C , the map

0(Ck)→ H0(C)

is an isometric embedding.

Proof. The uniqueness of the metric is obvious from Lemma 2.3.2. Thus it
suffices to prove its existence. Let C and C′ be nc-models of C such that C′

dominates C. Then the skeleton Sk(C) is contained in Sk(C′) by [Mustat,ă and
Nicaise 2015, Proposition 3.1.7], and it suffices to show that the corresponding
embedding 0(Ck)→0(C′k) is an isometry. Since we can decompose the morphism
C′→ C into a finite composition of point blow-ups, we can assume that C′→ C

is the blow-up of C at a closed point x of Ck . If x is a regular point of (Ck)red

then the claim is obvious. If x is a singular point then (G(C′k), w) is obtained from
(G(Ck), w) by adding a vertex on the edge e corresponding to x and giving it weight
w(v1)+w(v2), where v1 and v2 are the (not necessarily distinct) endpoints of e. The
lengths of the segment e in the metric graphs 0(Ck) and 0(C′k) are the same, because

1
w(v1)·w(v2)

=
1

w(v1)·(w(v1)+w(v2))
+

1
(w(v1)+w(v2))·w(v2)

. �

Remark 2.3.4. There is another metric on H0(C) that is induced by the piecewise
integral affine structure on the skeleta of snc-models; we will explain its construction
in the Appendix. Although this second metric arises more naturally and behaves
better under base change, the one we defined in Theorem 2.3.3 seems to be the
correct one for the purposes of potential theory. A similar discrepancy appears in
the nonarchimedean study of germs of algebraic surfaces, which is in many ways
analogous to the setup we consider here, see Section 7.4.10 of [Jonsson 2015].

3. The weight function and the essential skeleton

3.1. The weight function attached to a pluricanonical form.

3.1.1. We fix a K-curve C . Let m be a positive integer and let ω be a nonzero
rational m-canonical form on C . Thus ω is a nonzero rational section of the m-
canonical line bundle ω⊗m

C/K . As such, it defines a Cartier divisor on C , which we
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denote by divC(ω). If C is any snc-model of C , we can also view ω as a rational
section of the logarithmic relative m-canonical line bundle

ωC/R(Ck,red)
⊗m

and we denote the corresponding divisor on C by divC(ω). Note that the horizontal
part of divC(ω) is simply the schematic closure of divC(ω) in C.

3.1.2. Mustat,ă and the second author [2015, 4.5.4] attached to ω a so-called weight
function wtω. In our setting (the case of curves) we can characterize its restriction
to H0(C) in the following way. Recall that the points of type II on Can are precisely
the divisorial points in the sense of [Mustat,ă and Nicaise 2015, 2.4.7], and that the
points of type II and III are precisely the monomial points.

Proposition 3.1.3. The weight function

wtω : H0(C)→ R

is the unique function with the following properties for every snc-model C of C :

(1) The restriction of wtω to Sk(C) is continuous with respect to the metric topol-
ogy (which coincides with the Berkovich topology on Sk(C)).

(2) Let E be an irreducible component of Ck . We denote by N and ν the multi-
plicities of E in Ck and divC(ω), respectively. If x is the divisorial point of
Can attached to (C, E) (equivalently, the vertex of Sk(C) corresponding to E),
then

wtω(x)=
ν

N
.

Proof. It is shown in [Mustat,ă and Nicaise 2015, 4.4.3] that the weight function is
continuous (even piecewise affine) on Sk(C), and the description at divisorial points
is part of its definition. Uniqueness is clear from Lemma 2.3.2 and the fact that the
divisorial points are dense in the skeleton of every snc-model of C (by the proof of
[Mustat,ă and Nicaise 2015, 2.4.8], they correspond precisely to the points on 0(C)
with rational barycentric coordinates in the sense of 3.1.2 of the same work. �

3.1.4. Beware that the weight function is not continuous with respect to the
Berkovich topology on H0(C) (see [Mustat,ă and Nicaise 2015, Remark 4.6]
for a counterexample). The explicit description of the weight function given in
Theorem 3.2.3 below shows in particular that it is continuous with respect to the
metric topology on H0(C) (which is strictly finer than the Berkovich topology).

3.2. The Laplacian of the weight function.

3.2.1. By a pair over K , we mean a couple (C, δ) consisting of a K-curve C and
a divisor δ on C . An nc-model of a pair (C, δ) is an nc-model C of C such that
the sum of Ck with the schematic closure of δ is a normal crossings divisor on C.
An snc-model of (C, δ) is defined analogously. Note that for every point x in the
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support of δ, the specialization of x to Ck lies in a unique irreducible component E
of Ck , and the multiplicity of Ck along E is equal to the degree of x over K , by the
normal crossings condition. The skeleton of (C, δ) is defined to be the intersection
of H0(C) with the convex hull in Can of Sk(C) and the support of δ. We will denote
it by Sk(C, δ). Thus we obtain Sk(C, δ) from Sk(C) by adding, for each point x in
the support of δ, the open branch running from Sk(C) towards x . This construction
is similar to the definition of the skeleton of a strictly semistable pair in [Gubler
et al. 2016], but there it is assumed that K is algebraically closed and that Ck is
reduced and has strict normal crossings. By restricting the metric on H0(C) to the
skeleton Sk(C, δ), we can view the skeleton as a metric graph with some half-open
edges of infinite length. Then it makes sense to speak about a Z-affine function f
on Sk(C, δ) (i.e., a continuous real-valued function that is integral affine on every
edge) and the Laplacian 1( f ) of such a function (the divisor on Sk(C, δ) whose
degree at a vertex is the sum of the outgoing slopes of f ).

3.2.2. Our aim is to give a combinatorial description of the weight function wtω on
H0(C) attached to a nonzero rational m-canonical form ω on C . For this description
we need to introduce the m-canonical divisor of a labeled graph. Let G be a discrete
graph without loops, where we allow some of the edges of G to be half-open (i.e.,
the edge has only one adjacent vertex and is unbounded at the other side). Assume
that each vertex v of G is labeled by a couple of nonnegative integers (N (v), g(v)).
Then the canonical divisor of G is defined by

KG =
∑

v∈V (G)

N (v)(val(v)+ 2g(v)− 2)v,

where val(v) denotes the valency at v, that is, the number of edges (bounded and
unbounded) in G adjacent to v. When N (v)= 1 and g(v)= 0 for every vertex v,
this is just the usual definition of the canonical divisor of a discrete graph. The
m-canonical divisor of G is defined as m times the canonical divisor KG .

Theorem 3.2.3. We fix a K-curve C. Let m be a positive integer and let ω be a
nonzero rational m-canonical form on C. Let δ be any divisor on C whose support
contains the support of divC(ω) and let C be an snc-model for the pair (C, δ):

(1) The weight function wtω is Z-affine on every edge of Sk(C, δ).

(2) For every point x in the support of δ, the weight function wtω has constant
slope on the path running from Sk(C) to x in Can, and this slope is equal to

N (m+ degx(divC(ω))),

where N denotes the multiplicity of the unique component in Ck containing the
specialization of x.

(3) The Laplacian of the restriction of wtω to Sk(C, δ) is equal to the m-canonical
divisor of the graph Sk(C, δ) if we label each vertex v with (N (v), g(v)),
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where N (v) is the multiplicity of the corresponding irreducible component
in Ck and g(v) denotes its genus.

Proof. (1) It follows from the proof of [Mustat,ă and Nicaise 2015, 4.4.3] that wtω
is Z-affine on Sk(C), because no point in the support of divC(ω) specializes to a
singular point of (Ck)red. Here some care is needed, since the Z-affine structure in
[Mustat,ă and Nicaise 2015] is not the same as the one induced by our metric; it
corresponds to the metric one obtains by replacing the definition in (2.1.3) by

`(e)= 1
lcm{w(v1), w(v2)}

.

Since this multiplies every edge length by an integer factor, every Z-affine function
in the sense of [Mustat,ă and Nicaise 2015] is also Z-affine with respect to the metric
we use; we will come back to this point in the Appendix. The fact that wtω is also
Z-affine on the unbounded edges of Sk(C, δ) is a consequence of (2).

(2) Let x be a closed point of C . We can compute the slope of wtω on the path
running from Sk(C) to x as follows. Denote by E the unique irreducible component
of Ck containing the specialization xk of x . Denote by N the multiplicity of E in Ck

and by ν the multiplicity of E in divC(ω). Let h : C′→ C be the blow-up at xk .
Then C′ is again an snc-model of (C, δ) and its skeleton Sk(C′) is obtained from
Sk(C) by adding a closed interval I in the direction of x . The length of this interval
is 1/N 2, since the exceptional component E ′ of the blow-up has multiplicity N in C′k .
Moreover, the multiplicity of E ′ in divC′(ω) is equal to

ν+m+ degx(divC(ω))),

because
ω⊗m

C′/R(C
′

k,red)= (h
∗ω⊗m

C/R(Ck,red))⊗OC′(m E ′)

as submodules of the pushforward of ω⊗m
C/K to C′. Thus if we denote by v and v′ the

vertices of Sk(C′) corresponding to E and E ′, respectively, then wtω(v)= ν/N and

wtω(v′)= (m+ ν+ degx(divC(ω)))/N .

Since v and v′ are precisely the endpoints of I , we see that wtω has slope

N (m+ degx(divC(ω)))

on I if we orient I from v to v′. Replacing C by C′ and repeating the argument,
we conclude that wtω has constant slope

N (m+ degx(divC(ω)))

along the whole path from v to x .
(3) It remains to compute the Laplacian 1(wtω) of wtω on Sk(C, δ). Let v0 be

a vertex of Sk(C) corresponding to an irreducible component E0 of Ck . Denote
by x1, . . . , xa the points in the support of δ that specialize to a point in E0, and by
y1, . . . , yb the intersection points of E0 with the other irreducible components of Ck .
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For each i ∈ {1, . . . , b} we denote by Ei the unique irreducible component of Ck

intersecting E0 at yi . For each i ∈{0, . . . , b}we write νi and Ni for the multiplicities
of Ei in divC(ω) and Ck , respectively. Then the edges of Sk(C) adjacent to v0

correspond precisely to the points y1, . . . , yb, and the unbounded edges of Sk(C, δ)
adjacent to v0 are precisely the paths from v0 to the points x1, . . . , xa . We have
already computed the slopes of wtω along these unbounded edges, and taking into
account the edge lengths of Sk(C) we find that the degree of1(wtω) at v0 is equal to

a∑
i=1

(N0m+ degxi
(divC(ω)))+

b∑
j=1

(νj N0− ν0 Nj ).

This is nothing but

m N0a+ N0(E0 · (divC(ω)−
ν0
N0

Ck))= m N0a+ N0(E0 · divC(ω)).

By adjunction, the restriction of the line bundle ωC/R(Ck,red)
⊗m to E0 is precisely

ωE0/k(y1+ · · ·+ yb)
⊗m .

By computing the degree of this line bundle we find that the degree of 1(wtω) at
v0 is equal to

m N0(a+ b+ 2g(E0)− 2),

where g(E0) denotes the genus of E0. By definition, this is exactly the degree of
the m-canonical divisor of Sk(C, δ) at v0. �

3.2.4. We can use Theorem 3.2.3 to describe the Laplacian of the restriction of the
weight function to the skeleton of any snc-model C of C . Beware that the weight
function is not necessarily affine on the edges of Sk(C), only piecewise affine. The
Laplacian of such a function is still defined, but it is no longer supported on the
vertices of Sk(C), in general. We denote by (ρC)∗ the map on divisors induced by
linearity from the retraction map ρC : Can

→ Sk(C). We have

(ρC)∗(x)= deg(x) · ρC(x)

for every type I point x of Can.

Corollary 3.2.5. Let C be any snc-model of C. We denote by f the restriction of
wtω to Sk(C) and by mKSk(C) the m-canonical divisor of Sk(C), where we label
each vertex of Sk(C) by its multiplicity and genus as before. Then

1( f )= mKSk(C)− (ρC)∗(divC(ω)).

In particular, if ω is regular, then 1( f )≤ mKSk(C).

Proof. We can always dominate C by an snc-model C′ of the pair (C, divC(ω)).
If we denote by f ′ the restriction of wtω to Sk(C′), then it follows easily from
Theorem 3.2.3 that

1( f ′)= mKSk(C′)− (ρC′)∗(divC(ω)).
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Denote by ρ : Sk(C′)→ Sk(C) the map of metric graphs obtained by restricting ρC

to Sk(C′). Since the fibers of ρ are metric trees, it is straightforward to check that
1( f )= ρ∗(1( f ′)). On the other hand, we also have that

ρ∗(ρC′)∗(divC(ω))= (ρC)∗(divC(ω)),

and by factoring C′→ C into point blow-ups, one sees that ρ∗(KSk(C′))= KSk(C).
Thus the formula is valid for C, as well. �

Example 3.2.6. Let C be an elliptic curve over K of Kodaira–Néron reduction
type II (see [Silverman 1994, IV§8]) and let ω be a generator for the relative
canonical line bundle of the minimal regular model of C . Let C be the minimal
snc-model of C . Then the special fiber of C is of the form

Ck = E1+ 2E2+ 3E3+ 6E4,

where each component Ei is a rational curve, E4 intersects each other component in
precisely one point, and there are no other intersection points. The skeleton Sk(C)
consists of four vertices v1, . . . , v4 corresponding to the components E1, . . . , E4.
These are joined by three edges of respective lengths `(v1v4)= 1/6, `(v2v4)= 1/12
and `(v3v4)= 1/18. Moreover,

divC(ω)= E1+ 2E2+ 3E3+ 5E4

and the weight function wtω is affine on Sk(C) with values 1, 1, 1, 5/6 at the
vertices v1, v2, v3, v4, respectively. Direct computation shows that

1wtω = 6v4− v1− 2v2− 3v3,

which is also the canonical divisor of Sk(C) (labeled with multiplicities and genera).

Remark 3.2.7. It is worth noting that Corollary 3.2.5 uniquely determines wtω up
to an additive constant as a function on H0(C), and that this description of wtω
does not require K to be discretely valued (if we replace snc-models by semistable
models). This gives us a way to define wtω for any curve C over any nontrivially
valued nonarchimedean field K and any nonzero rational m-canonical form ω on C .
M. Temkin [2014] has recently discovered a different way to extend the definition
of wtω to the nondiscretely valued setting, and his method works in any dimension.

3.3. The essential skeleton.

3.3.1. Let C be a K-curve of genus g(C) ≥ 1 and let ω be a nonzero regular m-
canonical form on C , for some positive integer m. Then it is easy to deduce from
the properties of the weight function wtω in Theorem 3.2.3 that this function is
bounded below, and that its locus of minimal values is a union of closed faces of
Sk(C) for any snc-model C of (C, divC(ω)). Corollary 3.2.5 shows that this remains
true for any snc-model C of C (one needs to observe that the weight function is
concave on every edge of Sk(C) because its Laplacian is nonpositive at each point
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in the interior of an edge), see [Mustat,ă and Nicaise 2015, Theorem 4.7.5] for
a more general statement. The locus of minimal values of wtω was called the
Kontsevich–Soibelman skeleton of the pair (C, ω) in [Mustat,ă and Nicaise 2015,
4.7.1] and denoted by Sk(C, ω). The essential skeleton Sk(C) is the union of the
Kontsevich–Soibelman skeleta Sk(C, ω) over all the nonzero regular pluricanonical
forms ω on C , see [Mustat,ă and Nicaise 2015, Definition 4.10]. The aim of this
section is to compare the essential skeleton Sk(C) to the skeleton Sk(C) of the
minimal snc-model C of C .

3.3.2. We first recall the description of Sk(C, ω), the Kontsevich–Soibelman skele-
ton, in terms of an snc-model C of C (see [Mustat,ă and Nicaise 2015, Theo-
rem 4.7.5] for a more general result; in our setting, it can also be easily deduced
from Proposition 3.1.3 and Theorem 3.2.3). We write

Ck =
∑
i∈I

Ni Ei

and we denote by νi the multiplicity of Ei in divC(ω), for every i ∈ I . We say that
the vertex of Sk(C) corresponding to a component E j , j ∈ I , is ω-essential if

νj

Nj
=min

{ νi

Ni

∣∣∣ i ∈ I
}
.

We say that an edge in Sk(C) is ω-essential if its adjacent vertices are ω-essential
and the point of Ck corresponding to the edge is not contained in the closure of
divC(ω) (i.e., the horizontal part of divC(ω)). Then Sk(C, ω) is the union of the
ω-essential faces of Sk(C). Note however that, by its very definition, Sk(C, ω)
does not depend on the choice of a particular model C.

3.3.3. In order to determine the essential skeleton Sk(C), we will need a description
of the base locus of the logarithmic pluricanonical bundle on the minimal snc-model
of C . Let C be any snc-model of C . We label the vertices of the skeleton Sk(C) by
the multiplicities and genera of the corresponding irreducible components of Ck . We
define a tail in Sk(C) as a connected subchain with successive vertices v0, . . . , vn

where vn has valency one in Sk(C), vi has valency 2 in Sk(C) for 1≤ i < n, and vi

has genus zero for 1 ≤ i ≤ n. We say that the tail is maximal if v0 has valency
at least 3 in Sk(C) or v0 has positive genus. The vertex v0 is called the starting
point of the maximal tail and vn is called its end point. We call the components
of Ck corresponding to the vertices v1, . . . , vn inessential components of Ck . The
combinatorial skeleton of Sk(C) is the subspace that we obtain by replacing every
maximal tail by its starting point. Thus in Example 3.2.6, the combinatorial skeleton
of Sk(C) consists only of the vertex v4. Note that contracting maximal tails may
create new ones, but we do not repeat the operation to contract those. For instance,
if C is an elliptic K-curve of reduction type I ∗n (see [Silverman 1994, IV§8])
and C is its minimal snc-model, then the combinatorial skeleton of Sk(C) is the
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subchain formed by the n+ 1 vertices of multiplicity two. Note that Ck can never
consist entirely of inessential components, by our assumption that g(C)≥ 1 (this
follows from basic intersection theory and adjunction, see for instance [Nicaise
2013, Lemma 3.1.2]). We also observe that, if C has semistable reduction and C

is its minimal snc-model, there are no inessential components in Ck because the
end point of a tail would correspond to a rational (−1)-curve, which contradicts
the minimality of C.

3.3.4. We will need a technical lemma on two-dimensional log regular schemes.
We refer to [Kato 1989] for the basic theory of log schemes, and to [Kato 1994] for
the theory of log regular schemes.

Lemma 3.3.5. Let A be a normal Noetherian local ring of dimension 2 and let
D = D0 + D1 be a reduced Weil divisor on X = Spec A with prime components
D0 and D1. We define a log scheme X+ by endowing X with the divisorial log
structure induced by D. Assume that X+ is log regular. Then D0 and D1 are
Q-Cartier, and D0 · D1 ≤ 1 with equality if and only if A is regular.

Proof. We denote by M the multiplicative monoid consisting of the elements of A
that are invertible on X \ D, and we consider the characteristic monoid

M=M/A×.

By the log regularity assumption, D0 and D1 are regular and M is a toric monoid
of dimension 2. In particular, its groupification Mgp is a rank two lattice. The ring
A is regular if and only if the monoid M is generated by two elements, that is,
M∼= N2.

Let e0 and e1 be the primitive generators of the one-dimensional faces of M.
Then e0

∧
e1 generates

m ·
2∧
(Mgp),

for a unique positive integer m (in other words, m is the absolute value of the
determinant of (e0, e1)), and m = 1 if and only if A is regular. Since the fan of
the log scheme Spec A is canonically isomorphic with SpecM by [Kato 1994,
Proposition 10.1], we know that (up to renumbering), Di is the zero locus in Spec A
of the prime ideal M\Nei of M, for i = 0, 1 (by which we mean the zero locus of
its inverse image in M). Moreover, any representative ẽi of ei in M is a regular
local parameter on Di , and the characteristic monoid at the generic point of Di is
M/Ne1−i , see the proof of [Eriksson et al. 2015, Proposition 4.3.2(1)] for a similar
computation. It follows that m Di = div(̃e1−i ), so that D1 and D2 are Q-Cartier,
and m D1 · D2 = 1. Thus

D1 · D2 = 1/m ≤ 1,

with equality if and only if A is regular. �
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Theorem 3.3.6. Let C be a K-curve of genus g(C) ≥ 1 and let C be its minimal
snc-model. If m is a sufficiently divisible positive integer, then the base locus of the
line bundle ωC/R(Ck,red)

⊗m on C is the union of the inessential components of Ck .

Proof. Let m be a positive integer. Using adjunction, one sees that the line bundle
ωC/R(Ck,red)

⊗m has negative degree or degree 0 on each rational curve in Ck that
intersects the other components in precisely one point or two points, respectively.
It follows at once that the union of the inessential components in Ck is contained in
the base locus of ωC/R(Ck,red)

⊗m . We will show there are no other points in the
base locus if m is sufficiently divisible. If Ck,red is either an elliptic curve or a loop
of rational curves, then C has genus one and ωC/R(Ck,red)

⊗m is trivial for some
m > 0 by [Liu et al. 2004, Lemma 5.7 and Theorem 6.6]. Thus we can discard
these cases in the remainder of the proof.

We can choose a reduced divisor H on C with the following properties:

• The divisor H does not contain any prime component of Ck (in other words,
H is horizontal) and H +Ck is a divisor with strict normal crossings.

• We have H · E = 1 if E is a prime component of Ck that corresponds to the
end point of a maximal tail in Sk(C), and H · E = 0 for every other prime
component of Ck .

We denote by S+ the scheme S = Spec R endowed with its standard log structure
(the divisorial log structure induced by the closed point of S) and by C+ the log
scheme we obtain by endowing C with the divisorial log structure associated with
the divisor Ck + H . Then C+ is log regular in the sense of [Kato 1994] because
Ck + H has strict normal crossings.

By Lipman’s generalization [1969, Theorem 27.1] of Artin’s contractibility
criterion, any chain of rational curves in Ck can be contracted to a rational singularity.
In particular, there exists a morphism h : C→ D of normal proper R-models of C
that contracts precisely the rational components of Ck that meet the rest of the
special fiber in exactly one or two points. We endow D with the divisorial log
structure associated with Dk + h∗H and denote the resulting log scheme by D+. It
follows from [Ito and Schröer 2015, §3] that D+ is still log regular (this is the reason
why we added the horizontal divisor H ). The morphism h induces a morphism of
log schemes h : C+→D+, and this morphism is log étale since it is a composition
of log blow-ups.

We consider the canonical line bundle

ωC+/S+ = det�1
C+/S+

on C. It follows easily from [Eriksson et al. 2015, Proposition 3.3.4] that ωC+/S+ is
isomorphic to ωC/R(Ck,red+ H). We can copy the proofs of [Eriksson et al. 2015,
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3.3.2 and Proposition 3.3.6] to show that the coherent sheaf �1
D+/S+ on D is perfect,

so that we can define the canonical line bundle

ωD+/S+ = det�1
D+/S+

on D (the results in [Eriksson et al. 2015] were formulated for H = 0 but the
arguments carry over immediately). Since h is log étale, [Eriksson et al. 2015, Propo-
sition 3.3.6] also implies that we have a canonical isomorphism ωC+/S+ ∼= h∗ωD+/S+ .

By Lemma 3.3.5, the divisor h∗H is Q-Cartier. Thus by choosing m sufficiently
divisible, we can assume that mh∗H is Cartier. We will prove that the line bundle
ω⊗m

D+/S+(−mh∗H) on D is ample. This implies that its pullback to C is semiample
(that is, some tensor power is generated by its global sections). But this pullback
is isomorphic to ω⊗m

C+/S+(−h∗h∗m H), which is a subbundle of

ω⊗m
C+/S+(−m H)∼= ωC/R(Ck,red)

⊗m

that coincides with ωC/R(Ck,red)
⊗m away from the inessential components of Ck

(note that, for every closed point x of h∗H , the inverse image h−1(x) is a maximal
tail of inessential components in Ck).

Thus it is enough to show that ω⊗m
D+/S+(−mh∗H) is ample. By [Liu 2002, Chap-

ter 7, Proposition 5.5], it suffices to show that it has positive degree on every prime
component E of Dk . By adjunction, the restriction of ωD+/S+ to E is isomorphic to
ωE/k(F) where F is the reduced divisor on E supported on the intersection points
of E with the other components of Dk + h∗H . Note that either E has positive
genus, or F consists of at least three points including at least two intersections
points of E with the other components of Dk , since we contracted all the other
components in Ck . Therefore, we only need to show that h∗H0 · E < 1 for every
prime component H0 of H . This follows from Lemma 3.3.5 (note that D is singular
at every point of h∗H

⋂
Dk by minimality of C). �

Remark 3.3.7. In the language of [Nicaise and Xu 2013], the proof of Theorem
3.3.6 can also be interpreted as follows: The model C′ for C that we obtain from the
minimal snc-model C by contracting all the inessential components in the special
fiber is a minimal dlt-model of C . Even for curves, minimal dlt-models are not
unique, because we can construct a new one by blowing up an intersection point of
two components in the special fiber (in the language of the minimal model program,
the minimality of a dlt-model only expresses that the logarithmic relative canonical
line bundle is semiample). However, the set of isomorphism classes of minimal
dlt-models has a unique minimal element with respect to the dominance relation
(defined as in 2.2.1), and this is precisely the isomorphism class of C′. Beware that
such a unique minimal isomorphism class need no longer exist if we replace C by
a K-variety of dimension ≥ 2.
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3.3.8. If C has semistable reduction, we can be more precise; we will show in
Theorem 3.3.11 that the logarithmic 2-canonical line bundle on the minimal snc-
model of C is generated by global sections. This follows at once from Theorem 7
in [Lee 2005], which states that ω⊗m

Cmin/R is generated by global sections if m ≥ 2
and Cmin is the minimal regular model of a curve C of genus g ≥ 2 (recall that
the minimal regular model of a curve with semistable reduction coincides with
its minimal nc-model). Although we only deal with the semistable case, we feel
that our alternative proof of Theorem 3.3.11 is still interesting, because it uses a
different method and it is substantially simpler than the proof of the more general
result in [Lee 2005]. It does not seem possible to deduce Theorem 3.3.6 from
the semiampleness of ωCmin/R in a direct way, because of the discrepancy between
the minimal regular model and the minimal nc-model of C if C does not have
semistable reduction. We start by proving two elementary lemmas.

Lemma 3.3.9. Let X be a regular flat proper R-scheme of relative dimension one
and let L be a line bundle on X. Let E be an irreducible component of multiplicity N
in Xk and let a be an integer in {1, . . . , N }. If the restriction of L((1− a)E) to E
has negative degree, then

H 0(aE,L|aE)= 0.

Proof. We prove this by induction on a. The case a = 1 is obvious. Assume that
a> 1 and that the property holds for a−1. If L((1−a)E) has negative degree on E
then the same holds for L((b− a)E) for all b ≥ 1 because E2

≤ 0. We consider
the short exact sequence

0−→ L|aE ⊗ I −→ L|aE −→ L|(a−1)E −→ 0,

where I is the ideal sheaf of (a − 1)E in aE . By our induction hypothesis, it
suffices to show that

H 0(aE,L|aE ⊗ I)= 0.

This follows from the isomorphism of OaE -modules

L|aE ⊗ I ∼= L((1− a)E)|E
on E . �

Lemma 3.3.10. Let X be a regular flat proper R-scheme of relative dimension one
and let L be a line bundle on X. Let D be a reduced connected divisor supported
on Xk . Suppose that the restriction of L to each component in D has nonpositive
degree, and that this degree is negative for at least one component. Then

H 0(D,L|D)= 0.

Proof. This follows easily by induction on the number r of irreducible components
of D. If r = 1 the result is obvious. Suppose that r > 1 and let E be a component
of D on which L has negative degree. Then every section of L on D vanishes on E ,
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so it is also a section of L(−E) on D. The line bundle L(−E) has negative degree
on each irreducible component of D that intersects E , so we can apply the induction
hypothesis to this line bundle and to every connected component of D− E . �

Theorem 3.3.11. Let C be a K-curve of genus g(C)≥ 1 with semistable reduction
and let C be its minimal snc-model. Then the logarithmic 2-canonical line bundle
ωC/R(Ck,red)

⊗2 on C is generated by its global sections.

Proof. It will be convenient to start from the minimal nc-model C′ of C instead of
the minimal snc-model C. We will show that ω⊗2

C′/R is generated by global sections.
This implies the desired result; the line bundle ωC/R(Ck,red) is isomorphic to the
pullback of ωC′/R ∼= ωC′/R(C

′

k) through the morphism g : C′ → C, since C′k is
reduced and C is a composition of log blow-ups if we endow both models with the
divisorial log structure associated with their special fibers. We can assume that C
has genus at least 2, since otherwise ωC′/R is trivial.

Let x be a closed point of C′k and denote by h : D→ C′ the blow-up of C′ at x
and by E0 the exceptional curve of h. Then ω⊗2

C′/R is globally generated at x if and
only if the morphism

H 0(D, h∗ω⊗2
C′/R)→ H 0(E0, h∗ω⊗2

C′/R|E0)

is surjective. To prove surjectivity, it suffices to show that H 1(D, h∗ω⊗2
C′/R(−E0))

vanishes. By Serre duality, this is equivalent to showing that H 0(Dk,L)= 0, with

L= (ωD/R ⊗ (h∗ω−2
C′/R)(E0))|Dk

∼= (ω
−1
D/R(3E0))|Dk .

We write

Dk = N0 E0+

r∑
i=1

Ei ,

where N0 is one or two, depending on whether x is a regular or singular point of C′k .
We first observe that the restriction of L to N0 E0 has no nonzero global sections.

Because the restriction of the line bundle L((1− N0)E0) to E0 has negative degree
we can apply Lemma 3.3.9. Thus every section of L on Dk is also a section of

L′ = (ω−1
D/R((3− N0)E0))|Dk .

Note that L′ has degree −1 on E0 if N0 = 1 and degree 0 if N0 = 2. Next, we
consider any component Ei 6= E0 in Dk . By the adjunction formula, the degree of
L′ on Ei is given by

deg(L′|Ei )= 2− 2pa(Ei )+ E2
i + (3− N0)E0 · Ei . (3.3.12)

By the projection formula, E2
i = h(Ei )

2
− δ, where

• δ = 0 if x does not lie on h(Ei ),

• δ = 1 if x is a regular point of h(Ei ) (then E0 · Ei = 1),

• δ = 4 if x is a self-intersection point of h(Ei ) (then N0 = 2 and Ei · E0 = 2).
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Thus if E2
i +(3−N0)E0 ·Ei is positive, we have δ= 1 and h(Ei )

2
= 0, which means

that C′k = h(Ei ) and pa(Ei )= pa(h(Ei ))≥ 2 by our assumption on the genus of C .
Note also that E2

i + (3− N0)E0 · Ei = 0 implies that δ = 1 and h(Ei )
2
=−1, and

thus pa(Ei )= pa(h(Ei )) > 0, since otherwise h(Ei ) would be an exceptional curve
on C′, contradicting minimality.

It follows that the number in (3.3.12) is negative, unless

• pa(Ei )= 1 and E2
i + (3− N0)E0 · Ei = 0, or

• pa(Ei )= 0 and E2
i + (3− N0)E0 · Ei ∈ {−2,−1}.

If pa(Ei )= 1 and E2
i +(3−N0)E0 ·Ei = 0 then h(Ei ) is a (−1)-curve of arithmetic

genus one and x is a point on h(Ei ) that does not lie on any other component of C′k .
Similarly, if pa(Ei ) = 0 and E2

i + (3− N0)E0 · Ei = −1 then h(Ei ) must be a
regular rational (−2)-curve and x is a point on h(Ei ) that does not lie on any other
component of C′k . Finally, if pa(Ei )= 0 and E2

i +(3−N0)E0 ·Ei =−2 then h(Ei )

contains x or h(Ei ) is a regular rational curve of self-intersection number −2.
From these observations, we can deduce the following properties:

• The divisor Dk contains at most one component Ei on which L′ has positive
degree. In that case, this degree equals one, and h(Ei ) is a regular rational (−2)-
curve and it is the only component of C′k that contains x . Then each connected
component of Dk − N0 E0 − Ei contains a curve on which L′ has negative
degree, since such a component cannot consist entirely of regular rational (−2)-
curves. It follows from Lemma 3.3.10 that L′ has no nonzero global sections
on Dk − N0 E0− Ei . Then L has no nonzero global sections on Dk , because
every section vanishes at the two intersection points of Ei with Dk − N0 E0.

• Assume that L′ has nonpositive degree on every component of Dk . The divisor
Dk contains at least one component Ei on which L′ has negative degree, if x lies
on only one component of C′k then we can take Ei = E0. In the other case, all
components of Dk on which L′ has degree zero are regular rational curves that
intersect the rest of Dk in precisely two points, and Dk cannot consist entirely of
such curves because of our assumption that g(C)≥2. Thus Lemma 3.3.10 again
implies that L′ has no nonzero global sections on Dk,red, so that H 0(Dk,L)= 0.

This concludes the proof. �

We are now ready to compare the essential skeleton of a K-curve C of posi-
tive genus to the Berkovich skeleton Sk(C) of its minimal snc-model C. Recall
from 3.3.3 that the combinatorial skeleton of Sk(C) is the subspace that we obtain
by replacing every maximal tail by its starting point.

Theorem 3.3.13. Let C be a K-curve of genus g(C)≥ 1 and let C be its minimal
snc-model.
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(1) The essential skeleton Sk(C) is equal to the combinatorial skeleton of Sk(C)
(as a subspace of Can). In particular, Sk(C) is a strong deformation retract
of Can.

(2) If C has semistable reduction, then Sk(C)= Sk(C). Moreover,

Sk(C)=
⋃
ω

Sk(C, ω),

where ω runs through the set of nonzero regular 2-canonical forms on C.

Proof. (1) It follows from Corollary 3.2.5 that, for every nonzero regular pluri-
canonical form ω on C , the weight function wtω is strictly increasing along every
tail of Sk(C) if we orient the tail from its starting point to its end point. Thus the
essential skeleton Sk(C) is contained in the combinatorial skeleton of Sk(C). The
converse inclusion is a consequence of Theorem 3.3.6; we choose a positive integer
m such that the base locus of ωC/R(Ck,red)

⊗m is the union of inessential components
of Ck . If x is a singular point of Ck,red that does not lie on an inessential component
and ω is a global section of ωC/R(Ck,red)

⊗m that does not vanish at x , then the
weight function wtω vanishes on the edge of Sk(C) and it is nonnegative on the
whole skeleton Sk(C), so that the edge belongs to Sk(C, ω). Thus the combinatorial
skeleton of Sk(C) is equal to ⋃

ω

Sk(C, ω),

where ω runs through any basis of the R-module

H 0(C, ωC/R(Ck,red)
⊗m).

(2) As we have already observed in 3.3.3, the special fiber of C does not contain
any inessential components. Therefore, the combinatorial skeleton of Sk(C) is
equal to Sk(C) and thus also to the essential skeleton Sk(C) by point (1). The proof
of (1), together with Theorem 3.3.11, shows that 2-canonical forms ω suffices to
generate the whole essential skeleton Sk(C). �

3.4. The subset of the essential skeleton cut out by canonical forms.

3.4.1. Let C be a K-curve of genus g ≥ 1 and denote by C its minimal snc-model.
We assume that Ck is reduced. Looking at the definition of the essential skeleton in
3.3.1, it is natural to ask which part of the essential skeleton we recover by taking
the union of the Kontsevich–Soibelman skeleta Sk(C, ω) where ω runs through the
set of nonzero canonical (rather than pluricanonical) forms on C . In this section,
we will show that one obtains the union of all the closed nonbridge edges and
all the vertices of positive genus of the skeleton Sk(C). Recall that a bridge in a
graph G is an edge that is not contained in any nontrivial cycle, or equivalently,
that is contained in every spanning tree.
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3.4.2. Let G =G(Ck) be the dual graph of the special fiber Ck , and let ν : C̃k→Ck

be a normalization morphism. The set V (G) of vertices v of G is in bijection with
the set of connected components Cv of C̃k . Let E(G) denote the set of edges of G,
each endowed with a fixed (but arbitrary) orientation. If x is the singular point
of Ck corresponding to an edge e, then the choice of an orientation on e amounts
to choosing a point y in ν−1(x); if the oriented edge Ee points towards the vertex v,
then we take y to be the unique point of ν−1(x) lying on Cv.

3.4.3. By the cohomological flatness of C→ Spec(R) and Grothendieck–Serre
duality, the module H 1(C, ωC/R) is free, so that

H 0(Ck, ωC/R)⊗ k ∼= H 0(Ck, ωCk/k).

We can identify H 0(Ck, ωCk/k) with the space of Rosenlicht differentials on Ck . A
Rosenlicht differential ω is, by definition, the data of a meromorphic differential ωv
on Cv for each v ∈ V (G) such that:

(1) Each ωv has at worst logarithmic poles at the inverse images under ν of the
singular points of Ck , and is regular everywhere else.

(2) If x is a singular point of Ck and ν−1(x)= {y1, y2}, then the residues of ω at
y1 and y2 sum to zero.

Given ω ∈ H 0(Ck, ωCk/k) and an oriented edge Ee ∈ E(G), let resEe(ω) be the residue
of ω at the point of C̃k corresponding to Ee. By the residue theorem, the sum

res(ω) :=
∑

e∈E(G)

resEe(ω)(Ee)

belongs to H1(G, k), so that we obtain a morphism of k-vector spaces

res : H 0(Ck, ωCk/k)→ H1(G, k),

which is called the residue map.

Lemma 3.4.4. The residue map fits into a short exact sequence of k-vector spaces:

0−→⊕v∈V (G)H 0(Cv, ωCv/k)
α
−→ H 0(Ck, ωCk/k)

res
−→ H1(G, k)−→ 0.

Proof. By the definition of Rosenlicht differentials and the residue map, the kernel
of res is equal to

⊕
v∈V (G) H 0(Cv, ωCv/k). Surjectivity of the residue map now

follows by a dimension count, since

dimk H 0(Ck, ωCk/k)= dimk H1(G, k)+
∑

v∈V (G)

dimk H 0(Cv, ωCv/k)= g. �

Lemma 3.4.5. Let ω be a regular canonical form on C and let v be a vertex of
genus zero of Sk(C). Then v belongs to Sk(C, ω) if and only if some edge adjacent
to v belongs to Sk(C, ω).
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Proof. The “if” part follows from the fact that Sk(C, ω) is closed, so we only
need to prove the converse implication. We denote by f the restriction of wtω
to Sk(C). Assume that v lies in Sk(C, ω), that is, f reaches its minimal value at v.
By Corollary 3.2.5 and the assumption that v has genus zero, the degree of 1( f )
at v is strictly less than the valency of v in Sk(C). Since f has integer slopes, this
means that at least one of the outgoing slopes of f from v must be zero, so that the
corresponding edge also lies in Sk(C, ω). �

Theorem 3.4.6. If C is a K-curve of genus g ≥ 1 whose minimal snc-model C over
R is semistable, then the union S =

⋃
ω Sk(C, ω), as ω runs through the set of

nonzero global sections of ωC/K , is equal to the union of all the closed nonbridge
edges and all the vertices of positive genus of Sk(C).

Proof. Multiplying a nonzero canonical form ω with a ∈ K× shifts the weight
function wtω by vK (a) and does not affect Sk(C, ω). Moreover, since Ck is reduced,
wtω takes integer values at the vertices of Sk(C). Thus in the definition of S, we
only need to consider canonical forms ω whose minimal value on Sk(C) equals
zero (recall from 3.3.1 that this minimal value is always reached at a vertex).

Now it is clear from the definition of the weight function that wtω vanishes at an
edge, or vertex, of Sk(C) if and only if ω generates ωC/R(Ck) at the corresponding
point of Ck or at the generic point of the corresponding irreducible component of
Ck , respectively. Thus, in order to find the faces of Sk(C) that lie in S, we need to
determine which singular points and irreducible components of Ck lie in the base
locus of

ωC/R(Ck)∼= ωC/R.

For this aim, we can use Rosenlicht differentials; a point of Ck lies in the base locus
of ωC/R if and only if it lies in the base locus of ωCk/k on Ck , by the surjectivity of
the reduction map

H 0(C, ωC/R)→ H 0(Ck, ωCk/k).

Using the morphism α in Lemma 3.4.4, we can find an element of H 0(Ck, ωCk/k)

that generates ωCk/k at the generic point of every component of positive genus
of Ck . In particular, all the vertices of positive genus of Sk(C) belong to S. By
Lemma 3.4.5, it now suffices to determine which edges of Sk(C) lie in S. The
residue theorem immediately implies that a bridge never belongs to S, while the
surjectivity of the residue map in Lemma 3.4.4 shows that every nonbridge edge
lies in S. This concludes the proof. �

Remark 3.4.7. By Theorem 3.3.13, the essential skeleton Sk(C) is always con-
nected, but it is easy to use the proof of Theorem 3.4.6 to produce examples of a
curve C and a nonzero canonical form ω such that Sk(C, ω) is disconnected (for
instance, when Sk(C) is a chain with vertices of positive genus).



Weight functions on Berkovich curves 2073

3.5. An alternate approach to computing the essential skeleton of a maximally
degenerate semistable curve.

3.5.1. Let C be a K-curve of genus g ≥ 1 and denote by C its minimal snc-model.
There is an elegant way to prove Theorems 3.3.13(2) and 3.4.6 using potential
theory on metric graphs if we assume that C is a maximally degenerate K-curve.
This assumption is common in tropical geometry; it means that Ck is reduced and
that all the irreducible components of Ck are rational curves. This implies that the
metric graph Sk(C) still has genus g. The proofs yield some additional information
about the structure of Sk(C, ω) for certain explicit 2-canonical forms ω. They also
have the advantage that they can be extended to the nondiscretely valued setting
(see Remark 3.2.7).

3.5.2. For background on potential theory on metric graphs, see for instance [Baker
2008]. We recall that a tropical rational function on a metric graph 0 is a real-valued
continuous piecewise affine function on 0 with integral slopes, and that the divisor
of such a function is defined by div( f ) = −1( f ). In other words, the degree of
div( f ) at a point of 0 is the sum of the incoming slopes of f . Two divisors on 0
are called equivalent if they differ by the divisor of a tropical rational function. We
begin with a combinatorial lemma needed for our alternate proof of Theorem 3.4.6.

Lemma 3.5.3. Let G be a discrete graph without loops and denote by 0 the metric
graph associated with G. Let T be a spanning tree of 0, let e be an edge of 0
not contained in T , and let Z(T, e) be the unique cycle in T ∪ e. Let D be an
effective divisor on 0 which is equivalent to the canonical divisor KG and whose
support contains a point pi from the relative interior of each edge ei 6= e contained
in the complement of T . Finally, let f be a tropical rational function on 0 with
div( f )= D− KG . Then the locus of points p ∈ 0 where f achieves its minimum
value is equal to Z(T, e).

Proof. Let Sk( f ) be the locus of p ∈ 0 at which f attains its minimum value. For
each p ∈Sk( f ), f can be strictly increasing in at most val(p)−2 tangent directions,
since it has slope at least 1 in each such direction and nonnegative slope in every
other direction and the total sum of outgoing slopes of f at p is at most

degp KG = val(p)− 2.

Thus there are at least two tangent directions at p along which f is constant. It
follows that every connected component of Sk( f ) is a graph in which every vertex
has valency at least 2. However, Sk( f ) cannot contain any of the points pi , since the
sum of the outgoing slopes of f at pi is equal to− degpi

D<0. Thus Sk( f )⊂ T ∪e,
and the only possible cycle in Sk( f ) is Z(T, e). Hence, Sk( f )= Z(T, e) . �

We obtain the following strengthening of Theorem 3.4.6 in this context (it can
also be deduced directly from Lemma 3.4.4 and the proof of Theorem 3.4.6):
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Proposition 3.5.4. Assume that C is maximally degenerate. If e is a nonbridge
edge of Sk(C), then there exists a nonzero canonical form ω ∈ H 0(C, ωC/K ) such
that Sk(C, ω) is a simple cycle with e in its support.

Proof. Since e is not a bridge, there exists a spanning tree T of Sk(C) not con-
taining e. Let e = e0, e1, . . . , eg−1 be the edges of Sk(C) not contained in T , and
choose a type II point pi in the relative interior of ei for every i in {1, . . . , g− 1}
(type II points are the divisorial points in the terminology of [Mustat,ă and Nicaise
2015]). We set D0= p1+· · ·+ pg−1. We would like to find a divisor D̃0 on C such
that (ρC)∗(D̃0)= D0. Unfortunately, this is not possible, since only the vertices of
Sk(C) lift to K-rational points of C .

This issue can be solved in the following way. Let K ′ be a finite Galois extension
of K whose degree n = [K ′ : K ] is not divisible by the characteristic of k. We
denote by R′ the valuation ring of K ′. Set C ′ = C×K K ′ and let C′ be the minimal
resolution of C ×R R′. Then it is well known, and easy to see, that C′ is the
minimal snc-model of C ′, and C′k is reduced. Moreover, the projection morphism
π : (C ′)an

→ Can induces a homeomorphism Sk(C′)= π−1(Sk(C))→ Sk(C), and
Sk(C′) is obtained from Sk(C) by subdividing each edge into n edges. Now we
choose each point pi to be a vertex of Sk(C′) in the relative interior of ei . Then we
can find a divisor D̃0 on C ′ such that (ρC′)∗(D̃0)= D0.

Since H 0(C ′, ωC ′/K ′) has dimension g and D̃0 has degree g− 1, there exists a
nonzero ω′ ∈ H 0(C ′, ωC ′/K ′(−D̃0)). Let f be the restriction of wtω′ to Sk(C′). By
Corollary 3.2.5, we have

div( f )= (ρC′)∗(divC ′(ω
′))− KSk(C′).

If we set D= (ρC′)∗(divC ′(ω
′)), then D≥ D0 by construction. Now it follows from

Lemma 3.5.3 that Sk(C ′, ω′)= Sk( f ) is a simple cycle that contains e.
It remains to produce a nonzero element ω of H 0(C, ωC/K ) such that Sk(C, ω)=

Sk(C ′, ω′). Multiplying ω′ with a suitable element of (K ′)×, we can assume that
the minimal value of wtω′ on Sk(C′) is equal to 0. We denote by ω ∈ H 0(C, ωC/K )

the trace of ω′ with respect to the Galois extension K ′/K . Then it is easy to see
that wtω = wtω⊗K K ′ ≥ wtω′ on Sk(C). It is also clear that every singular point x
of C′k is fixed under the action of Gal(K ′/K ). Thus the logarithmic residues at x
of the conjugates of ω′ are all equal, and their sum is nonzero if and only if the
logarithmic residue of ω′ at x is nonzero. It follows that an edge of Sk(C′) lies in
the zero locus of wtω′ if and only if it lies in the zero locus of wtω. Since Sk(C ′, ω′)
is a union of edges, it follows that

Sk(C, ω)= Sk(C ′, ω′). �

Remark 3.5.5. The statement and proof of both Lemma 3.4.5 and Proposition 3.5.4
are closely related to Lemma 3.2 and Proposition 3.3, respectively, of [Jensen and
Payne 2016].
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We now show that if e is a bridge edge of Sk(C), then there exists a 2-canonical
form ω such that Sk(C, ω) contains e, providing a new proof of Theorem 3.3.13(2)
in the present context.

Lemma 3.5.6. Let G be a discrete graph without loops and denote by 0 the metric
graph associated with G. We assume that G has no 1-valent vertices. Choose any
maximal chain B of bridge edges in 0. We denote by v1, v2 the endpoints of B.
Let T be a spanning tree in 0. Let D be an effective divisor on 0 equivalent to 2KG

satisfying the following properties:

(1) The support of D contains a point from the relative interior of each edge
contained in the complement of T .

(2) D ≥ KG − (v1)− (v2).

Finally, let f be a tropical rational function on 0 with div( f )= D− 2KG . Then
the locus of points p ∈ 0 where f achieves its minimum value is equal to B.

Proof. Let Sk( f ) be the locus of p ∈ 0 at which f attains its minimum value.
We can argue in the same way as in the proof of Lemma 3.5.3. By condition (2),
for each p 6= v1, v2 in Sk( f ) there are at least two tangent directions at p along
which f is constant, and if p ∈ {v1, v2} there is at least one such direction. Thus
every connected component of Sk( f ) is a graph in which every vertex different
from v1, v2 has valency at least two, and it cannot be equal to {v1} or {v2}. On the
other hand, by condition (1), the set Sk( f ) cannot contain any cycles. It follows
that Sk( f )= B. �

Proposition 3.5.7. Assume that C is maximally degenerate. Let B be any maximal
chain of bridge edges of Sk(C). Then there exists a nonzero 2-canonical form
ω ∈ H 0(C, ω⊗2

C/K ) such that Sk(C, ω)= B.

Proof. We can assume that g≥2 since in the genus one case Sk(C) is a cycle and does
not contain any bridges. Since C is the minimal snc-model of C and Ck is reduced,
Sk(C) has no 1-valent vertices. We set0=Sk(C). We choose a spanning tree T of0.
We define K ′, C ′, and C′ as in the proof of Proposition 3.5.4. Then, by the same argu-
ments as in that proof, it suffices to find a nonzero element ω′ ∈ H 0(C ′, ω⊗2

C ′/K ′) such
that Sk(C ′, ω′)= B. We can find an effective divisor D̃0 on C ′ of degree 3g− 4=
g+(2g−4) over K ′ such that D0= (ρC′)∗(D̃0) satisfies properties (1) and (2) from
the statement of Lemma 3.5.6. Since the space H 0(C ′, ω⊗2

C ′/K ′) has dimension 3g−3
by Riemann–Roch, there exists a nonzero 2-canonical form ω′ ∈ H 0(C, ω⊗2

C ′/K ′)

with divC ′(ω
′)≥ D̃0. We set D = (ρC′)∗(divC ′(ω

′)). Then D ≥ D0 by construction.
Let f be the restriction of wtω′ to 0. By Theorem 3.2.3, we have

div( f )= D− 2K0.

The result now follows from Lemma 3.5.6. �
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Appendix: The stable metric on H0(C)

A.1. Definition of the stable metric.

A.1.1. Let C be a K-curve. The metric on H0(C) defined in Theorem 2.3.3 was well-
suited for the description of the Laplacian of the weight function in Theorem 3.2.3,
but it does not behave well under extensions of the base field K . We will now define
an alternative metric on H0(C), which we call the stable metric, which has better
properties with respect to base change. In particular, if k has characteristic zero, one
can compare it to the skeletal metric from [Baker et al. 2013] (see Proposition A.2.3).

A.1.2. We first put a metric on the geometric realization 0 of a weighted discrete
graph (G, w) by replacing the formula in (2.1.3) by

`(e)= 1
lcm{w(v1), w(v2)}

.

Now the same arguments as in Section 2.3 show that this definition induces a unique
metric on H0(C) such that, for every snc-model C of C , the embedding

0(Ck)→ H0(C)

is an isometry onto Sk(C). We call this metric the stable metric on H0(C). Note
that, if Ck is reduced, the stable metric on Sk(C) coincides with the one defined in
Theorem 2.3.3.

A.1.3. By [Mustat,ă and Nicaise 2015, §3.2], the skeleton Sk(C) of an nc-model
C of C carries a natural Z-affine structure. If e is an edge of Sk(C) with endpoints v1

and v2, then a Z-affine function

f : e \ {v1, v2} → R

is a function of the form

(x1, x2) 7→ ax1/N1+ bx2/N2+ c,

where a, b, c are integers, N1 = w(v1), N2 = w(v2), and x1 and x2 = 1− x1 are
barycentric coordinates on e\{v1, v2} ∼= ]0, 1[ such that the limit of x1 at v1 is 1 and
the limit of x2 at v2 is 1 (beware that we are not excluding the possibility v1 = v2).
This definition is motivated by the following fact: if h 6= 0 is a rational function
on C , then

Sk(C)→ R, x 7→ − ln |h(x)|

is continuous and piecewise Z-affine, and this function is affine on an edge e if and
only if the point of Ck corresponding to e does not belong to the horizontal part
of the divisor divC(h) on C (see [Mustat,ă and Nicaise 2015, Proposition 3.2.2]).
Moreover, if e is an edge of Sk(C) that is not a loop, then every Z-affine function
on e \ {v1, v2} can be written as

x 7→ − ln |h(x)|,
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for some rational function h 6= 0 on C (simply consider a monomial with suitable
integer exponents in the local equations for the components corresponding to the
vertices adjacent to e).

A.1.4. The Z-affine structure on Sk(C) induces the stable metric on Sk(C)=0(Ck),
in the following sense: the length of e is equal to

inf
f
{|lim0 f − lim1 f |},

where f runs through the set of injective Z-affine functions

f : e \ {v1, v2} → R,

and where limi f denotes the limit of f at i for i = 0, 1, where we choose any
homeomorphism to identify e \ {v1, v2} with the open interval ]0, 1[.

To see this, note that this infimum is equal to the smallest positive element of
the set

{a/N1− b/N2 | a, b ∈ Z},

which is precisely
gcd(N1, N2)

N1 N2
=

1
lcm(N1, N2)

.

Thus our definition of the length of e is the unique one such that the affine functions
on e \ {v1, v2} are precisely the differentiable functions with constant integer slope
whose value at v1 is a multiple of 1/N1.

A.2. Comparison with the skeletal metric.

A.2.1. The set

H0(C ×K K̂ a)= (C ×K K̂ a)an
\ {points of type I and IV}

carries a natural metric, which was called the skeletal metric in [Baker et al. 2013].
Its construction is described in detail in [Baker et al. 2013, §5.3]. We will now com-
pare it to the metric we defined on H0(C), in the case where k has characteristic zero.

A.2.2. Let C be a K-curve and let C be an snc-model for C . An irreducible
component of Ck is called principal if it has positive genus or it is a rational curve
that intersects the rest of Ck in at least three points. A principal vertex of Sk(C) is
a vertex corresponding to a principal component in Ck .

Proposition A.2.3. Assume that k has characteristic zero. Let C be a K-curve and
let C be an snc-model of C. Denote by π the canonical projection C ×K K̂ a→ C.
Then the corestriction

πC : π
−1(Sk(C))→ Sk(C)

of π to Sk(C) is a local isometry over the complement of the principal vertex set
of Sk(C). Moreover, if C is semistable, then πC is an isometry.
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Proof. This can be deduced in a rather straightforward way from the results in
Sections 1 and 4 of Chapter 3 in [Halle and Nicaise 2012]. Since the arguments are
somewhat tedious and the result is not needed in this paper, we omit the proof. �
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