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Let K be a number field and let C/K be a curve of genus 2 with Jacobian
variety J. We study the canonical height ĥ : J (K )→ R. More specifically, we
consider the following two problems, which are important in applications:

(1) for a given P ∈ J (K ), compute ĥ(P) efficiently;
(2) for a given bound B > 0, find all P ∈ J (K ) with ĥ(P)≤ B.

We develop an algorithm running in polynomial time (and fast in practice) to deal
with the first problem. For the second problem, we show how to tweak the naive
height h to obtain significantly improved bounds for the difference h− ĥ, which
allows a much faster enumeration of the desired set of points.

Our approach is to use the standard decomposition of h(P)− ĥ(P) as a sum
of local “height correction functions”. We study these functions carefully, which
leads to efficient ways of computing them and to essentially optimal bounds. To
get our polynomial-time algorithm, we have to avoid the factorization step needed
to find the finite set of places where the correction might be nonzero. The main
innovation is to replace factorization into primes by factorization into coprimes.

Most of our results are valid for more general fields with a set of absolute
values satisfying the product formula.
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1. Introduction

Let K be a global field and let C/K be a curve of genus 2 with Jacobian variety J.
There is a map κ : J → P3 that corresponds to the class of twice the theta divisor
on J ; it identifies a point on J with its negative, and its image is the Kummer
surface KS of J. Explicit versions of κ can be found in the book [Cassels and Flynn
1996] for C given in the form y2

= f (x) and in the paper [Müller 2010] by the
first author for general C (also in characteristic 2). Thus κ gives rise to a height
function h : J (K )→ R, which we call the naive height on J. It is defined by

h(P)=
∑
v∈MK

log max{|κ1(P)|v, |κ2(P)|v, |κ3(P)|v, |κ4(P)|v},

where κ(P)= (κ1(P) : κ2(P) : κ3(P) : κ4(P)), MK is the set of places of K, and
| · |v is the v-adic absolute value, normalized so that the product formula holds:∏

v∈MK

|x |v = 1 for all x ∈ K×.

By general theory [Hindry and Silverman 2000, Chapter B] the limit

ĥ(P)= lim
n→∞

h(nP)
n2
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exists; it is called the canonical height (or Néron–Tate height) of P ∈ J (K ). The
difference h − ĥ is bounded. The canonical height induces a positive definite
quadratic form on J (K )/J (K )tors (and on the R-vector space J (K )⊗Z R).

In this paper, we tackle the following two problems:

Problem 1.1. Find an efficient algorithm for the computation of ĥ(P) for a given
point P ∈ J (K ).

Problem 1.2. Find an efficient algorithm for the enumeration of all P ∈ J (K )
which satisfy ĥ(P)≤ B, where B is a given real number.

These problems are important because such algorithms are needed if we want
to saturate a given finite-index subgroup of J (K ) (see the discussion at the end of
Section 18). This, in turn, is necessary for the computation of generators of J (K ).
Such generators are required, for instance, to carry out the method described in
[Bugeaud et al. 2008] for the computation of all integral points on a hyperelliptic
curve over Q. Furthermore, the regulator of J (K ) appearing in the conjecture
of Birch and Swinnerton-Dyer is the Gram determinant of a set of generators of
J (K )/J (K )tors with respect to the canonical height. So Problems 1.1 and 1.2 are
also important in the context of gathering numerical evidence for this conjecture as
in [Flynn et al. 2001].

It is a classical fact, going back to work by Néron [1965], that ĥ(P) and the
difference h(P)− ĥ(P) can be decomposed into a finite sum of local terms. In
our situation, this can be done explicitly as follows. The duplication map P 7→ 2P
on J induces a morphism δ : KS → KS, given by homogeneous polynomials
(δ1, δ2, δ3, δ4) of degree 4; explicit equations can again be found in [Cassels and
Flynn 1996] and [Müller 2010]. For a point Q ∈ J (Kv), where Kv is the completion
of K at a place v ∈ MK , such that κ(Q)= (x1 : x2 : x3 : x4) ∈ KS(Kv), we set

ε̃v(Q)=−log max{|δj (x1, x2, x3, x4)|v : 1≤ j ≤ 4}+4 log max{|x j |v : 1≤ j ≤ 4}.

Note that this does not depend on the scaling of the coordinates. We can then write
ĥ(P) in the following form (compare Lemma 2.4):

ĥ(P)= h(P)−
∑
v∈MK

∞∑
n=0

4−(n+1)ε̃v(2n P).

We set, for Q ∈ J (Kv) as above,

µ̃v(Q)=
∞∑

n=0

4−(n+1)ε̃v(2n Q), (1-1)

and we deduce the decomposition

h(P)− ĥ(P)=
∑
v∈MK

µ̃v(P), (1-2)
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which is valid for all points P ∈ J (K ). In addition, ε̃v = µ̃v = 0 for all but finitely
many v (the exceptions are among the places of bad reduction, the places where
the given equation of C is not integral and the archimedean places). The maps
ε̃v : J (Kv)→ R are continuous maps (with respect to the v-adic topology) with
compact domains, so they are bounded. Therefore µ̃v is also bounded.

Let us first discuss Problem 1.1. Because of (1-2), it suffices to compute h(P)
(which is easy) and

∑
v∈MK

µ̃v(P) in order to compute ĥ(P) for a point P ∈ J (K ).
Building on earlier work of Flynn and Smart [1997], the second author introduced an
algorithm for the computation of µ̃v(P) in [Stoll 2002]. One of the main problems
with this approach is that we need integer factorization to compute the sum µ̃f(P) :=∑

v µ̃v(P), where v runs through the finite primes v such that µ̃v(P) 6= 0, because
we need to find these primes, or at least a finite set of primes containing them.

We use an idea which was already exploited in [Müller and Stoll 2016] to obtain
a polynomial-time algorithm for the computation of the canonical height of a point
on an elliptic curve (in fact, we first used this technique in genus 2 and only later
realized that it also works, and is actually easier to implement, for elliptic curves).
When v is nonarchimedean, there is a constant cv > 0 such that the function

µv := µ̃v/cv

maps J (Kv) to Q. More precisely, µ̃f(P) is a sum of rational multiples of log-
arithms of positive integers. As in [Müller and Stoll 2016], we find a bound on
the denominator of µv that depends only on the valuation of the discriminant; this
allows us to devise an algorithm that computes µ̃f(P) in quasilinear time. We can
compute µ̃v(P) for archimedean v essentially from the definition of µ̃v . This leads
to a factorization-free algorithm that computes ĥ(P) in polynomial time:

Theorem 1.3. Let J be the Jacobian of a curve of genus 2 defined over Q, and let
P ∈ J (Q). There is an algorithm that computes ĥ(P) in time quasilinear in the
size of the coordinates of P and the coefficients of the given equation of C , and
quasiquadratic in the desired number of digits of precision.

See Theorem 14.5 for a precise statement. We expect a similar result to be true
for any number field K in place of Q.

We now move on to Problem 1.2. If we have an upper bound β for h − ĥ,
then the set of all points P ∈ J (K ) such that h(P) ≤ B + β contains the set
{P ∈ J (K ) : ĥ(P) ≤ B}. Since the naive height h is a logarithmic height, β
contributes exponentially to the size of the box we need to search for the enumeration.
Therefore it is crucial to keep β as small as possible.

We write β̃v =max{µ̃v(Q) : Q ∈ J (Kv)}, and we obtain the bound

h(P)− ĥ(P)≤
∑
v∈MK

β̃v
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from (1-2). If we write

γ̃v =max{ε̃v(Q) : Q ∈ J (Kv)},

then clearly 1
4 γ̃v ≤ β̃v ≤

1
3 γ̃v. In [Stoll 1999], it is shown that for curves given in

the form y2
= f (x), where f has v-adically integral coefficients, we have

γ̃v ≤−log |24 disc( f )|v =−log |2−41|v,

with disc( f ) denoting the discriminant of f considered as a polynomial of degree 6
and 1 denoting the discriminant of the given equation of C . When v is nonar-
chimedean and the normalized additive valuation of1 is 1, we can take γ̃v = β̃v = 0
[Stoll 2002].

The results of the present paper improve on this; they are based on a careful
study of the functions µ̃v. It turns out that when v is nonarchimedean, the set
of points where µv (or equivalently, µ̃v) vanishes forms a group. Moreover, the
function µv factors through the component group of the Néron model of J when
the given model of C/Kv, which we assume to have v-integral coefficients in the
following, has rational singularities; see Theorem 7.4. If the minimal proper regular
model of C is semistable, then we can use results of Zhang [1993] and Heinz
[2004] to give explicit formulas for µv in terms of the resistance function on the
reduction graph of C (which is essentially the dual graph of the special fiber of
the minimal proper regular model, suitably metrized). We use this to find simple
explicit formulas for µv that apply in the most frequent cases of bad reduction,
namely nodal or cuspidal reduction. These explicit formulas give us the optimal
bounds for µ̃v in these cases. By reducing to the semistable case and tracking how
µv changes as we change the Weierstrass equation of C , we deduce the general
upper bound

β̃v ≤−
1
4 log |1|v (1-3)

for nonarchimedean v; see Theorem 11.3.
When v is archimedean, we also get a new bound for µ̃v by iterating the bound

obtained in [Stoll 1999], leading to vast improvements for β̃v. Combining the
archimedean and nonarchimedean bounds, we find a nearly optimal bound β
for h− ĥ.

To get even smaller search spaces for the enumeration, we make use of the
observation that we can replace the naive height h by any function h′ such that
|h′− h| is bounded. Using the results on nearly optimal bounds for µv and such
a modified naive height h′ (which is also better suited than h for the enumeration
process itself) we get a much smaller bound on the difference h′− ĥ than what was
previously possible. This makes the enumeration feasible in many cases that were
completely out of reach so far.
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As an example, we compute explicit generators for the Mordell–Weil group of
the Jacobian of the curve

C : y2
= 82342800x6

− 470135160x5
+ 52485681x4

+ 2396040466x3
+ 567207969x2

− 985905640x + 247747600 (1-4)

over Q, conditional on the generalized Riemann hypothesis (which is needed to
show that the rank is 22). See Proposition 19.1. This curve has at least 642 rational
points, which is the current record for the largest number of known rational points
on a curve of genus 2; see [Stoll 2008].

The paper is divided into four parts. In Part I, we first generalize the usual
notion of the naive height on projective space and clarify the relation between these
generalized naive heights and suitable canonical heights, all in Section 2. We then
introduce local height correction functions ε and µ (=µv in the notation introduced
above) on the Jacobian of a genus-2 curve over a nonarchimedean local field in
Section 3. This is followed in Section 4 by a study of certain canonical local heights
constructed in terms of µ. We close Part I by introducing and investigating the
notion of stably minimal Weierstrass models of curves of genus 2 in Section 5 and
recalling some well-known results on Igusa invariants in Section 6.

Part II is in some sense the central part of the present paper. Here we study
the local height correction function µ over a nonarchimedean local field. Using
Picard functors, we show in Section 7 that µ factors through the component group
of the Néron model of the Jacobian when the given model of the curve has rational
singularities. We then relate µ to the reduction graph of C in Section 8. Building on
this, the following sections contain simple explicit formulas forµwhen the reduction
of the curve is nodal (Section 9), respectively cuspidal (Section 10). A simple
argument then gives the improved general upper bound (1-3) for µ; see Section 11.

In Part III we describe our factorization-free algorithm for the computation of
ĥ(P) for P ∈ J (K ), where K is a global field. We start in Section 12 by showing
how to compute µv(P) for nonarchimedean v, using a bound on its denominator.
The following section deals with archimedean places, before we finally combine
these results in Section 14 into an algorithm for the computation of ĥ(P) that
runs in polynomial time; this proves Theorem 1.3. Some examples are discussed
in Section 15.

In Part IV we turn to Problem 1.2. Section 16 contains two methods for bounding
µ̃v for archimedean v. In Section 17 we describe a modified naive height h′ such
that the bound on the difference h′− ĥ becomes small. We use this, the results of
Section 16, and our nearly optimal bounds for the nonarchimedean height correction
functions from Part II to give an efficient algorithm for the enumeration of the set
of rational points with bounded canonical height in Section 18. In Section 19 we
compute generators of the Mordell–Weil group of the record curve (1-4).
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Part I. Generalities on heights and genus-2 Jacobians

2. Generalized naive heights

Let K be a field with a set MK of places v and associated absolute values | · |v
satisfying the product formula∏

v∈MK

|x |v = 1 for all x ∈ K×.

We write Kv for the completion of K at v. For a tuple x = (x1, . . . , xm) ∈ K m
v we

set ‖x‖v =max{|x1|v, . . . , |xm |v}.
In the following we will introduce some flexibility into our notion of height on

projective spaces. (This is similar to the framework of “admissible families” in
[Zarkhin 1995].)

Definition 2.1. (1) Let v ∈ MK . A local height function on Pm at v is a map
hv : K m+1

v \ {0} → R such that

(i) hv(λx)= log |λ|v + hv(x) for all x ∈ K m+1
v \ {0} and all λ ∈ K×v , and

(ii)
∣∣hv(x)− log ‖x‖v

∣∣ is bounded.

(2) A function h : Pm(K )→ R is a height on Pm over K if there are local height
functions hv such that for all x ∈ Pm(K ) we have

h((x1 : x2 : · · · : xm+1))=
∑
v∈MK

hv(x1, x2, . . . , xm+1)

and hv(x)= log ‖x‖v for all but finitely many places v.

Note that property (i) of local height functions together with the product formula
imply that h is invariant under scaling of the coordinates and hence is well-defined.

One example of such a height is the standard height hstd, which we obtain by
setting hv(x)= log ‖x‖v for all v. We then have the following simple fact.

Lemma 2.2. Let h be any height on Pm over K and let hstd be the standard height.
Then there is a constant c = c(h) such that

|h(P)− hstd(P)| ≤ c for all P ∈ Pm(K ).

Proof. This follows from property (ii) of local height functions and the requirement
that hv(x)= log ‖x‖v for all but finitely many v. �

Example 2.3. Other examples of heights can be obtained in the following way. For
each place v, fix a linear form lv(x1, . . . , xm+1)= av,1x1+· · ·+ av,m+1xm+1, with
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av,1, . . . , av,m+1 ∈ Kv and av,m+1 6= 0, such that lv(x) = xm+1 for all but finitely
many v. Then

h((x1 : · · · : xm : xm+1))=
∑
v∈MK

log max{|x1|v, . . . , |xm |v, |lv(x1, . . . , xm+1)|v}

is a height on Pm.
More generally, we could consider a family of automorphisms Av of K m+1

v with
Av equal to the identity for all but finitely many v, and take

h(x)=
∑
v∈MK

log max ‖Av(x)‖v.

Now consider a projective variety V ⊂ Pm
K and an endomorphism ϕ : V → V of

degree d (i.e., given by homogeneous polynomials of degree d). Then by general the-
ory (see, e.g., [Hindry and Silverman 2000, Theorem B.2.5]) |hstd(ϕ(P))−dhstd(P)|
is bounded on V (K ). We write ϕ◦n for the n-fold iteration of ϕ. Then the canonical
height

ĥ(P)= lim
n→∞

d−nhstd(ϕ
◦n(P))

exists (and satisfies ĥ(ϕ(P))=dĥ(P)) [Hindry and Silverman 2000, Theorem B.4.1].
Let h be any height on Pm. Since |h− hstd| is bounded, we can replace hstd by h
in the definition of ĥ without changing the result. We can then play the usual
telescoping series trick in our more general setting.

Lemma 2.4. Let

ϕ((x1 : · · · : xm+1))= (ϕ1(x) : · · · : ϕm+1(x))

with homogeneous polynomials ϕj ∈ K [x1, . . . , xm+1] of degree d. We have

ĥ(P)= h(P)−
∑
v∈MK

µ̃v(P),

where

µ̃v(P)=
∞∑

n=0

d−(n+1)ε̃v(ϕ
◦n(P))

and, when P = (x1 : · · · : xm+1) and x = (x1, . . . , xm+1),

ε̃v(P)= dhv(x)− hv(ϕ1(x), . . . , ϕm+1(x)).

Proof. Note that ε̃v is well-defined: scaling x by λ adds |λ|v to hv(x) and d|λ|v to
hv(ϕ1(x), . . . , ϕm+1(x)). Let x be projective coordinates for P and write x (n) for



Canonical heights on genus-2 Jacobians 2161

the result of applying (ϕ1, . . . , ϕm+1) n times to x = x (0). Then

ĥ(P)= lim
n→∞

d−nh(ϕ◦n(P))

= h(P)+
∞∑

n=0

d−(n+1)(h(ϕ◦(n+1)(P))− dh(ϕ◦n(P))
)

= h(P)+
∞∑

n=0

d−(n+1)
∑
v∈MK

(
hv(x (n+1))− dhv(x (n))

)
= h(P)−

∑
v∈MK

∞∑
n=0

d−(n+1)ε̃v(ϕ
◦n(P))

= h(P)−
∑
v∈MK

µ̃v(P). �

We call the functions µ̃v : Pm(Kv)→ R local height correction functions.
Note that when Kv is a discretely valued field such that |x |v = exp(−cvv(x)) for

x ∈ K× with a constant cv > 0 (and where we abuse notation and write v : K×v � Z

also for the normalized additive valuation associated to the place v) and h = hstd,
then we have

µ̃v(P)= cvµv(P) and ε̃v(P)= cvεv(P),

where

µv(P)=
∞∑

n=0

d−(n+1)εv(P)

and

εv(P)=min{v(ϕ1(x)), . . . , v(ϕm+1(x))}− d min{v(x1), . . . , v(xm+1)},

if x = (x1, . . . , xm+1) are homogeneous coordinates for P. This is the situation
that we will study in some detail in Part II of this paper, for the special case when
V ⊂ P3 is the Kummer surface associated to a curve of genus 2 and its Jacobian J
and ϕ is the duplication map (then d = 4).

To deal with Problem 1.1, we work with the standard height hstd. We use
our detailed results on the local height correction functions to deduce a bound
on the denominator of µv (its values are rational) in terms of the valuation of
the discriminant of the curve. This is the key ingredient that leads to our new
factorization-free and fast algorithm for computing ĥ; see Part III.

To deal with Problem 1.2, we use the flexibility in choosing the (naive) height h
and modify the standard height in such a way that the sum

∑
v∈MK

sup µ̃v(J (Kv))
that bounds the difference h− ĥ is as small as we can make it. The local height
functions we use are as in Example 2.3 above, with lv(x1, x2, x3, x4)= x4/sv for
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certain sv ∈ K×v in most cases. Every height function of this type has the property
that for any point P = (x1 : x2 : x3 : x4)∈P3(K ) different from (0 : 0 : 0 : 1) we have

0≤ hstd((x1 : x2 : x3))≤ h(P).

This is relevant, since we can fairly easily enumerate all points P as above that are
on the Kummer surface and satisfy hstd((x1 : x2 : x3))≤ B; see Part IV. Refinements
of the standard height constructed using Arakelov theory were also used by Holmes
[2014] to give an “in principle” algorithm for the enumeration of points of bounded
canonical height on Jacobians of hyperelliptic curves over global fields.

3. Local height correction functions for genus-2 Jacobians

Until further notice, we let k be a nonarchimedean local field with additive valu-
ation v, normalized to be surjective onto Z. Let O denote the valuation ring of k
with residue class field k and let π be a uniformizing element of O. We consider a
smooth projective curve C of genus 2 over k, given by a Weierstrass equation

Y 2
+ H(X, Z)Y = F(X, Z) (3-1)

in weighted projective space Pk(1, 3, 1), with weights 1, 3 and 1 assigned to the
variables X, Y and Z , respectively. Here

F(X, Z)= f0 Z6
+ f1 X Z5

+ f2 X2 Z4
+ f3 X3 Z3

+ f4 X4 Z2
+ f5 X5 Z + f6 X6

and
H(X, Z)= h0 Z3

+ h1 X Z2
+ h2 X2 Z + h3 X3

are binary forms of degrees 6 and 3, respectively, such that the discriminant1(F, H)
of the Weierstrass equation (3-1) is nonzero. In characteristic different from 2, this
discriminant is defined as

1(F, H)= 2−12 disc(4F + H 2) ∈ Z[h0, . . . , h3, f0, . . . , f6],

and in general, we define it by the generic polynomial given by this formula. The
curve defined by the equation is smooth if and only if 1(F, H) 6= 0.

For the remainder of this section we assume that F, H ∈O[X, Z ], so that (3-1)
defines an integral Weierstrass model C of the curve in the terminology of Section 5
below. The discriminant of this model is then defined to be 1(C) :=1(F, H). We
may assume that C is given by such an integral equation if k is the completion at
a nonarchimedean place of a number field K and C is obtained by base change
from K, since we can choose a globally integral Weierstrass equation for the curve.
But also in general, we can always assume that C is given by an integral equation
after applying a transformation defined over k, since we know from Corollary 4.6 in
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the next section how the local height correction function µ defined in Definition 3.1
below behaves under such transformations.

We now generalize the definition of ε given in [Stoll 2002] (where the author
works with Weierstrass equations that have H = 0) to our more general setting. As
in the Introduction, let J denote the Jacobian of C and let KS be its Kummer surface,
constructed explicitly together with an explicit embedding into P3 in [Cassels and
Flynn 1996] in the case H = 0 and in [Müller 2010] in the general case. Also let
κ : J → P3 denote the composition of the quotient map from J to KS with this
embedding; it maps the origin O ∈ J (k) to the point (0 : 0 : 0 : 1). A quadruple
x = (x1, x2, x3, x4) ∈ k4 is called a set of Kummer coordinates on KS if x is a set
of projective coordinates for a point in KS(k); we denote the set of sets of Kummer
coordinates on KS by KSA (this is the set of k-rational points on the pointed affine
cone over KS). For x ∈ KSA we write v(x)=min{v(x1), . . . , v(x4)}, and we say
that x is normalized if v(x) = 0. If P ∈ J (k), we say that x ∈ KSA is a set of
Kummer coordinates for P if κ(P)= (x1 : x2 : x3 : x4).

We let δ denote the duplication map on KS, which is given by homogeneous poly-
nomials δ1, . . . , δ4 ∈O[x1, . . . , x4] of degree 4 such that δ(0, 0, 0, 1)= (0, 0, 0, 1).
We recall that there is a symmetric matrix B = (Bi j )1≤i, j≤4 of polynomials that
are bihomogeneous of degree 2 in x1, . . . , x4 and also in y1, . . . , y4 and have
coefficients in O. They have the following properties; see Chapter 3 of [Cassels
and Flynn 1996] and [Müller 2010].

(i) Let x, y ∈ KSA be Kummer coordinates for P, Q ∈ J (k). Then there are
Kummer coordinates w, z ∈KSA for P+Q and P−Q, respectively, such that

w ∗ z := (wi z j + ni jwj zi )1≤i, j≤4 = B(x, y)

and hence v(w)+v(z)= v(B(x, y)); here ni j = 1 if i 6= j and ni j = 0 if i = j.

(ii) If x ∈ KSA, then B(x, x)= δ(x) ∗ (0, 0, 0, 1).

We specialize the notions introduced in Section 2 to our situation: we consider
the Kummer surface KS⊂ P3 with the duplication map δ of degree d = 4. We use
the standard local height on P3.

Definition 3.1. Let x ∈ KSA be a set of Kummer coordinates on KS. Then we set

ε(x)= v(δ(x))− 4v(x) ∈ Z and µ(x)=
∞∑

n=0

1
4n+1 ε(δ

◦n(x)),

where δ◦n denotes the n-fold composition δ ◦ · · · ◦ δ.

Because δ is given by homogeneous polynomials of degree 4, ε(x) does not
depend on the scaling of x , so it makes sense to define ε(P) = ε(x) for points
P ∈ KS(k), where x ∈ KSA is any set of Kummer coordinates for P, and to define
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ε(P)= ε(κ(P)) for points P ∈ J (k). We likewise extend the definition of µ. Then
we have

µ(2P)− 4µ(P)=−ε(P) for all P ∈ J (k).

Note that our assumption F, H ∈O[X, Z ] implies that ε≥ 0. If k is a local field (as
we assume here), then KS(k) is compact in the v-adic topology, and ε is continuous,
so ε is bounded.

Remark 3.2. More generally, if k is a field with a discrete valuation and not
of characteristic 2, then the arguments in [Stoll 1999] show that when H = 0,
ε ≤ v(24 disc(F)), so ε is bounded also for these more general fields.

If k is any field with a discrete valuation, then one can still conclude that ε is
bounded, by making use of the fact that the duplication map is well-defined on KS,
which implies that the ideal generated by the δj and the polynomial δ0 defining
KS contains a power of the irrelevant ideal. So for some N > 0, one can express
every x N

j as a linear combination of δ0(x), . . . , δ4(x) with coefficients that are
homogeneous polynomials of degree N − 4 with coefficients in k. The negative of
the minimum of the valuations of these coefficients then gives a bound for ε.

Remark 3.3. If k is the completion of a global field at a place v, then for α ∈ k×,
v(α)/ log ‖α‖v = −cv is a negative constant. So for P ∈ J (k) we have ε(P) =
cv ε̃v(P) and µ(P)= cvµ̃v(P), where ε̃v and µ̃v are as defined in the introduction.

We will also have occasion to use the following function. Let x, y ∈ KSA and
define

ε(x, y)= v(B(x, y))− 2v(x)− 2v(y). (3-2)

In the same way as for ε(x) above, we can extend this to points in KS(k) and J (k).

Lemma 3.4. Let x, y, w, z∈KSA be Kummer coordinates satisfyingw∗z= B(x, y).
Then we have

δ(w) ∗ δ(z)= B(δ(x), δ(y)).

Proof. The proof carries over verbatim from the proof of [Stoll 2002, Lemma 3.2].
�

We deduce the following:

Lemma 3.5. Let x, y, w, z∈KSA be Kummer coordinates satisfyingw∗z= B(x, y).
Then we have

ε(δ(x), δ(y))+ 2ε(x)+ 2ε(y)= ε(w)+ ε(z)+ 4ε(x, y).

Proof. Using Lemma 3.4, relation (3-2), and property (i) above for δ(w), δ(z), δ(x)
and δ(y), we obtain

v(δ(w))+ v(δ(z))= v(B(δ(x), δ(y)))= ε(δ(x), δ(y))+ 2v(δ(x))+ 2v(δ(y)).
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Subtracting four times the corresponding relation for w, z, x and y, we get

ε(w)+ ε(z)= ε(δ(x), δ(y))− 4ε(x, y)+ 2ε(x)+ 2ε(y),

which is the claim. �

We state a few general facts on the functions ε and µ.

Lemma 3.6. For points P, Q ∈ J (k), we have the relation

µ(P + Q)+µ(P − Q)− 2µ(P)− 2µ(Q)=−ε(P, Q).

Proof. Let x and y be Kummer coordinates for P and Q, respectively; then w and z
as in Lemma 3.5 are Kummer coordinates for P + Q and P − Q (in some order).
The claim now follows from the formula in Lemma 3.5:

µ(P + Q)+µ(P − Q)− 2µ(P)− 2µ(Q)

=

∞∑
n=0

4−n−1(ε(2n P + 2n Q)+ ε(2n P − 2n Q)− 2ε(2n P)− 2ε(2n Q)
)

=

∞∑
n=0

4−n−1(ε(δ◦n(w))+ ε(δ◦n(z))− 2ε(δ◦n(x))− 2ε(δ◦n(y))
)

=

∞∑
n=0

4−n−1(ε(δ◦(n+1)(x), δ◦(n+1)(y))− 4ε(δ◦n(x), δ◦n(y))
)

=−ε(x, y)=−ε(P, Q). �

Lemma 3.7. If P ∈ J (k) satisfiesµ(P)=0, thenµ(P+Q)=µ(Q) for all Q∈ J (k).

Proof. We apply Lemma 3.6 with P and Q replaced by Q+nP and P, respectively,
where n ∈ Z. Taking into account that µ(P) = 0 and writing an for µ(Q + nP),
this gives

an+1− 2an + an−1 =−ε(P, Q+ nP).

As k is a nonarchimedean local field, the multiples of P accumulate at the origin O
in J (k). Recall that ε is locally constant. This implies that every value ε(P, Q+nP)
occurs for infinitely many n ∈ Z, since Q+ (n+ N )P will be close to Q+ nP for
suitably chosen N. We have for any m > 0

am+1− am − a−m + a−m−1 =

m∑
n=−m

(an+1− 2an + an−1)=−

m∑
n=−m

ε(P, Q+ nP).

Since µ is bounded, the left-hand side is bounded independently of m. We also
know that ε(P, Q + nP) ≥ 0. But if ε(P, Q + nP) were nonzero for some n,
then by the discussion above, the right-hand side would be unbounded as m→∞.
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Therefore it follows that ε(P, Q + nP) = 0 for all n ∈ Z. This in turn implies
an+1− 2an+an−1 = 0 for all n ∈ Z. The only bounded solutions of this recurrence
are constant sequences. In particular, we have

µ(P + Q)= a1 = a0 = µ(Q). �

Proposition 3.8. The subset U = {P ∈ J (k) : µ(P) = 0} is a subgroup of finite
index in J (k). The functions ε and µ factor through the quotient J (k)/U.

Proof. Lemma 3.7 shows that U is a subgroup. We have ε(P) = 0 for P ∈ J (k)
sufficiently close to the origin. So taking a sufficiently small subgroup neighborhood
U ′ of the origin in J (k), we see that ε(2n P)= 0 for all P ∈U ′ and all n ≥ 0. This
implies that µ= 0 on U ′, so U ⊃U ′. Because k is a local field, U ′ and therefore
also U have finite index in J (k). By Lemma 3.7 again, µ factors through J (k)/U,
and since ε(P)= 4µ(P)−µ(2P), the same is true for ε. �

We will now show that we actually have

U = {P ∈ J (k) : ε(P)= 0}

(the inclusion “⊂” is clear from the definition and Proposition 3.8). This is equivalent
to the implication ε(x)=0⇒ ε(δ(x))=0 and generalizes [Stoll 2002, Theorem 4.1].
For this we first provide a characteristic-2 analogue of Proposition 3.1(1) of the
same paper.

We temporarily let k denote an arbitrary field. Let CF,H be a (not necessarily
smooth) curve in the weighted projective plane with respective weights 1, 3, 1
assigned to the variables X , Y , Z that is given by an equation

Y 2
+ H(X, Z)Y = F(X, Z), (3-3)

where F, H ∈ k[X, Z ] are binary forms of respective degrees 6 and 3. Let KSF,H

denote the subscheme of P3 given by the vanishing of the equation defining the
Kummer surface of CF,H if CF,H is nonsingular. Then the construction of δ =
(δ1, δ2, δ3, δ4) still makes sense in this context, but we may now have δi (x)= 0 for
all 1≤ i ≤ 4 (which we abbreviate by δ(x)= 0) for a set x of Kummer coordinates
on KSF,H . We generalize Proposition 3.1 in [Stoll 2002] (which assumes H = 0)
to the case considered here.

Note that two equations (3-3) for CF,H are related by a transformation τ acting
on an affine point (ξ, η) by

τ(ξ, η)=

(
aξ + b
cξ + d

,
eη+U (ξ, 1)
(cξ + d)3

)
, (3-4)
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type H F conditions

1 0 0
2 Z3 0
3 Z3 aX Z5 a 6= 0
4 X Z2 aX Z5 a 6= 0
5 X Z2 bX3 Z3 b 6= 0
6 Z3 aX Z5

+ bX3 Z3 ab 6= 0
7 X Z2 0
8 X Z(X + Z) 0
9 X Z(X + Z) bX3 Z3 b(b+ 1) 6= 0
10 X Z(X + Z) aX Z5

+ bX3 Z3 a(a+ b)(a+ b+ 1) 6= 0
11 X Z2 aX Z5

+ bX3 Z3 ab 6= 0
12 0 X Z5

13 0 X3 Z3

Table 1. Representatives in characteristic 2.

where A =
(a

c
b
d

)
∈ GL2(k), e ∈ k× and U ∈ k[X, Z ] is homogeneous of degree 3.

The transformation τ also acts on the forms F and H by

τ ∗F(X, Z)= (ad − bc)−6(e2 F A
+ (eH A

−U A)U A),

τ ∗H(X, Z)= (ad − bc)−3(eH A
− 2U A),

where we write
S A
= S(d X − bZ ,−cX + aZ)

for a binary form S ∈ k[X, Z ].

Lemma 3.9. Let x ∈ KSF,H (k). If δ(δ(x))= 0, then we already have δ(x)= 0.

Proof. If k has characteristic different from 2, we can apply a transformation so
that the new Weierstrass equation will have H = 0; the statement is then [Stoll
2002, Proposition 3.1(1)]. So from now on, k has characteristic 2. We may assume
without loss of generality that k is algebraically closed. If the given curve is smooth,
then the result is obvious, because the situation described in the statement can never
occur. If it is not smooth, we can act on F and H using transformations of the
form (3-4), so it is enough to consider only one representative of each orbit under
such transformations. This is analogous to the strategy in the proof of [Stoll 2002,
Proposition 3.1]. We can, for example, pick the representatives listed in Table 1.

For these representatives, elementary methods as in that proof can be used to
check that δ(x)= 0 indeed follows from δ(δ(x))= 0. �

We can use the above to analyze the group U.
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Theorem 3.10. Suppose that k is a nonarchimedean local field and that J is the
Jacobian of a smooth projective curve of genus 2, given by a Weierstrass equation
(3-1) with integral coefficients. Then the set {P ∈ J (k) : ε(P) = 0} equals the
subgroup U in Proposition 3.8. In particular, U is a subgroup of finite index in
J (k) and ε and µ factor through the quotient J (k)/U. Moreover we have that
ε(−P) = ε(P) and U contains the kernel of reduction J (k)1 with respect to the
given model of J, i.e., the subgroup of points whose image in KS(k) equals that of O.

Proof. The statement in Lemma 3.9 implies ε(P) = 0 ⇒ ε(2P) = 0 for points
P ∈ J (k), since ε(P)= 0 is equivalent to δ(x̃) 6= 0 if x are normalized Kummer
coordinates for P, with reduction x̃ . This shows that ε(P)= 0 implies µ(P)= 0
(and conversely), so {P ∈ J (k) : ε(P) = 0} = {P ∈ J (k) : µ(P) = 0} = U. The
remaining statements now are immediate from Proposition 3.8, taking into account
that, for P in the kernel of reduction, we trivially have ε(P)= 0. �

An algorithm for the computation of µ(P) which is based on Theorem 3.10 (for
H = 0) is given in [Stoll 2002, §6]. Using the relation in Lemma 3.6, we obtain
the following alternative procedure for computing µ(P).

1. Let x be normalized Kummer coordinates for P. Set y0 = (0, 0, 0, 1) and
y1 = x .

2. For n = 1, 2, . . . , do the following.

a. Using pseudoaddition (see [Flynn and Smart 1997, §4]), compute nor-
malized Kummer coordinates yn+1 for nP from x , yn−1 and yn; record
ε(P, nP), which is the shift in valuation occurring when normalizing yn+1.

b. If ε(P, nP) = 0, check whether v(δ(yn)) = 0 (by Theorem 3.10, this is
equivalent to nP ∈U ). If yes, let N = n and exit the loop.

3. Return

µ(P)=
1

2N

N−1∑
n=1

ε(P, nP).

To see that this works, note that by Lemma 3.6 we have

µ((n+ 1)P)− 2µ(nP)+µ((n− 1)P)= 2µ(P)− ε(P, nP).

The sequence (µ(nP))n∈Z is periodic with period N, where N is the smallest
positive integer n such that nP ∈ U (which exists according to Theorem 3.10).
Taking the sum over one period gives

2Nµ(P)=
N−1∑
n=0

ε(P, nP)=
N−1∑
n=1

ε(P, nP).
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From the periodicity we can also deduce the possible denominators of µ(P). As
ε has integral values, we see that µ(P) ∈ 1

2N Z if N is a period of (µ(nP))n∈Z. In
fact, we can show a little bit more.

Corollary 3.11. Let P ∈ J (k) and N =min{n ∈ Z>0 : µ(nP)= 0}. Then

µ(P) ∈


1
N

Z if N is odd,

1
2N

Z if N is even.

Proof. The sequence (ε(P, nP))n∈Z has period N and is symmetric. So if N is odd,
we actually have

µ(P)= 1
2N

N−1∑
n=1

ε(P, nP)= 1
N

1
2 (N−1)∑

n=1

ε(P, nP) ∈ 1
N

Z. �

Analyzing the possible denominators of µ(P) will play a key role in Section 12,
where we discuss another algorithm for the computation of µ(P).

4. Canonical local heights on Kummer coordinates

We now define a notion of canonical local height for Kummer coordinates. We
keep the notation of the previous section.

Definition 4.1. Let x ∈KSA be a set of Kummer coordinates on KS. The canonical
local height of x is given by

λ̂(x)=−v(x)−µ(x).

Remark 4.2. We can also define the canonical local height on an archimedean local
field in an analogous way. Then, if K is a global field and x is a set of Kummer
coordinates for a point J (K ), we have

ĥ(P)=
∑
v∈MK

1
cv
λ̂v(x),

where cv is the constant introduced in Remark 3.3 for a nonarchimedean place v
and cv = [Kv : R]−1 if v is archimedean.

The canonical local height λ̂ on Kummer coordinates has somewhat nicer prop-
erties than the canonical local height defined (for instance, in [Flynn and Smart
1997] or, more generally, in [Hindry and Silverman 2000, §B.9]) with respect to a
divisor on J.

Proposition 4.3. Let x, y, z, w ∈ KSA. Then the following hold:

(i) λ̂(δ(x))= 4λ̂(x).
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(ii) If w ∗ z = B(x, y), then λ̂(z)+ λ̂(w)= 2λ̂(x)+ 2λ̂(y).

(iii) λ̂(x)=−limn→∞ 4−nv(δ◦n(x)).

(iv) If k ′/k is a finite extension of ramification index e and λ̂′ is the canonical local
height over k ′, then we have λ̂′(x)= e · λ̂(x).

Proof. (i) This follows easily from the two relations

v(δ(x))= 4v(x)+ ε(x) and µ(δ(x))= 4µ(x)− ε(x).

(ii) This is similar, using Lemma 3.6 and ε(x, y)= v(w)+ v(z)− 2v(x)− 2v(y).

(iii) This follows from (i) and the fact that µ(x) is a bounded function, implying

λ̂(x)= 4−nλ̂(δ◦n(x))=−4−nv(δ◦n(x))+ O(4−n).

(iv) This is obvious from the definition of λ̂. �

The canonical local height on Kummer coordinates also behaves well under
isogenies.

Proposition 4.4. Let C and C ′ be two curves of genus 2 over k given by Weierstrass
equations, with associated Jacobians J and J ′, Kummer surfaces KS and KS′ and
sets of sets of Kummer coordinates KSA and KS′A, respectively. Let α : J → J ′ be
an isogeny defined over k. Then α induces a map α : KS→ KS′; let d denote its
degree. We also get a well-defined induced map α : KSA→ KS′A if we fix a ∈ k×

and require α(0, 0, 0, 1)= (0, 0, 0, a). Then we have

λ̂(α(x))= dλ̂(x)− v(a) for all x ∈ KSA.

Proof. All assertions except for the last one are obvious. By the definition of λ̂, we
can reduce to the case a = 1. Using part (iii) of Proposition 4.3 it is then enough to
show that

v(δ◦n(α(x)))= dv(δ◦n(x))+ O(1).

However, we have v(α(x))−dv(x)=O(1) by assumption, so it suffices to show that

v(δ◦n(α(x)))= v(α(δ◦n(x))). (4-1)

But since α : J → J ′ is an isogeny, δ◦n(α(x)) and α(δ◦n(x)) represent the same
point on KS′, hence they are projectively equal. Because they also have the same
degree, the factor of proportionality is independent of x . It therefore suffices to
check (4-1) for a single x ; we take x= (0, 0, 0, 1)∈KSA. Because we have δ(x)= x
and, by assumption, α(x)= x ′, where x ′ = (0, 0, 0, 1) ∈ KS′A(k), we find

δ◦n(α(x))= x ′ and α(δ◦n(x))= x ′,

thereby proving (4-1) and hence the proposition. �
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Remark 4.5. Canonical local heights with similar functorial properties were con-
structed by Zarhin [1995] on total spaces of line bundles (without the zero section).
See also [Bombieri and Gubler 2006] for an approach to canonical local heights
using rigidified metrized line bundles.

The preceding proposition is particularly useful for analyzing the behavior of
the canonical local height under a change of Weierstrass equation of the curve.

Recall that two Weierstrass equations for C are related by a transformation τ as
in (3-4), specified by a triple (A, e,U ), where A =

(a
c

b
d

)
∈ GL2(k), e ∈ k× and

U = u0 Z3
+ u1 X Z2

+ u2 X2 Z + u3 X3
∈ k[X, Z ]

is homogeneous of degree 3. Such a transformation induces a map on KSA as
follows: Let x = (x1, x2, x3, x4) ∈ KSA. Then τ(x) is given by the quadruple

(ad − bc)−1(d2x1+ cdx2+ c2x3, 2bdx1+ (ad + bc)x2+ 2acx3,

b2x1+ abx2+ a2x3, (ad − bc)−2(e2x4+ l1x1+ l2x2+ l3x3)
)
,

where l1, l2, l3 do not depend on x . More precisely, we can write

li = li,1+ li,2+ li,3,

where

li,1 =
e2

(ad−bc)4
l ′i,1 with l ′i,1 ∈ Z[ f0, . . . , f6, a, b, c, d],

li,2 =
e

(ad−bc)4
l ′i,2 with l ′i,2 ∈ Z[h0, . . . , h3, u0, . . . , u3, a, b, c, d],

li,3 =
1

(ad−bc)4
l ′i,3 with l ′i,3 ∈ Z[u0, . . . , u3, a, b, c, d]

for i = 1, 2, 3. All of the l ′i, j are homogeneous of degree 8 in a, b, c, d and
homogeneous in the other variables.

So we see that τ acts on k4 as a linear map τ ′ whose determinant has valuation

v(τ) := v(det(τ ′))= 2v(e)− 3v(ad − bc).

In this situation, Proposition 4.4 implies:

Corollary 4.6. Let τ = ([a, b, c, d], e,U ) be a transformation (3-4) between two
Weierstrass equations W and W ′ of a smooth projective curve C/k of genus 2 and
let KS be the model of the Kummer surface associated to W . Then we have

λ̂(τ (x))= λ̂(x)− v(τ) for all x ∈ KSA.

In particular,
µ(x)= µ(τ(x))+ v(τ(x))− v(x)− v(τ).
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This can be used to construct a canonical local height which does not depend on
the choice of Weierstrass equation.

Definition 4.7. Let C/k be a smooth projective curve of genus 2 given by a Weier-
strass equation (3-1) with discriminant 1 and let KS be the associated Kummer
surface. We call the function

λ̃ : KSA→ R, x 7→ λ̂(x)+ 1
10v(1),

the normalized canonical local height on KSA.

Corollary 4.8. The normalized canonical local height is independent of the given
Weierstrass equation of C , in the following sense: if W and W ′ are two Weierstrass
equations for C , with associated sets of sets of Kummer coordinates KSA and KS′A
and canonical local heights λ̃ and λ̃′, respectively, and τ is a transformation (3-4)
between them, then for all x ∈ KSA we have λ̃′(τ (x))= λ̃(x).

Proof. Let 1 and 1′ be the respective discriminants of W and W ′. By [Liu 1996,
§2], we have

v(1′)= v(1)+ 10v(τ), (4-2)

so, using Corollary 4.6,

λ̃′(τ (x))= λ̂′(τ (x))+ 1
10v(1

′)

= λ̂(x)− v(τ)+ 1
10v(1

′)

= λ̂(x)+ 1
10v(1)= λ̃(x). �

We will not need the normalized canonical local height in the remainder of this
paper.

5. Stably minimal Weierstrass models

In this section, k continues to denote a nonarchimedean local field with valuation
ring O and residue field k. We build on results established by Liu [1996] in the
more general context of hyperelliptic curves of arbitrary genus.

Recall that an equation of the form (3-1) defining a curve C over k of genus 2 is
an integral Weierstrass model of C if the polynomials F and H have coefficients
in O. (Note that this is slightly different from the notion of an “integral equation” as
defined in [Liu 1996, Définition 2], but the difference is irrelevant for our purposes,
since any minimal Weierstrass model is actually given by an integral equation; see
[Liu 1996, Remarque 4].) It is a minimal Weierstrass model of C if it is integral and
the valuation of its discriminant is minimal among all integral Weierstrass models
of C [Liu 1996, Définition 3]. We introduce the following variant of this notion.

Definition 5.1. An integral Weierstrass model of a smooth projective curve C over k
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of genus 2 is stably minimal if it is a minimal Weierstrass model for C over k ′ for
every finite field extension k ′ of k.

Stably minimal Weierstrass models can be characterized in terms of the multi-
plicities of the points on the special fiber.

Definition 5.2. Only for this definition let k be an arbitrary field, and let CF,H be a
curve in Pk(1, 3, 1) given by an equation of the form (3-1) over k; we assume that
CF,H is reduced. The multiplicity m(P,CF,H ) of a geometric point P ∈ CF,H (k̄) is
defined as follows:

• If P is a singular point of type An (relative to the embedding of CF,H into
Pk(1, 3, 1)), then m(P,CF,H )= n+ 1.

• If P is fixed by the involution ι(X : Y : Z)= (X : −Y − H(X, Z) : Z) and is
nonsingular, then m(P,CF,H )= 1.

• Otherwise m(P,CF,H )= 0.

Singularities of type An were defined by Arnold over the complex numbers, and
hence for arbitrary fields of characteristic zero; see for instance [Barth et al. 1984,
§II.8]. For the case of positive characteristic, see [Greuel and Kröning 1990]. Note
that if the characteristic of k is not 2, then π(P) is a root of multiplicity m(P,CF,H )

of F2
+ 4H, where π : CF,H → P1 sends (X : Y : Z) to (X : Z).

We will use this notion in the context of points on the special fiber of a Weierstrass
model of a curve of genus 2 over a complete local field. In this context, Definition 5.2
is equivalent to [Liu 1996, Définition 9] when the curve is reduced; see [Liu 1996,
Remarque 8].

An algorithm that computes the multiplicity was given by Liu [1996, §6.1]. Liu
defines [1996, Définition 10] further multiplicities λr (P) for points on the special
fiber of an integral Weierstrass model (and r ≥ 1) that allow us to characterize when
such a model is minimal. We note here that λr (P) gives the value of λ(P)= λ1(P)
after making a field extension of ramification index r . Also, Lemme 7(e) of [Liu
1996] states for r sufficiently large that λr (P)=m(P) if the special fiber is reduced
and implies that λr (P)≥ r if the special fiber is nonreduced. In the reduced case,
we also have λ(P)≤ m(P).

Setting λ = λ1, Corollaire 2 in [Liu 1996] states (for g = 2) that the model is
minimal if and only if λ(P)≤3 and λ′(P)≤4 (and is the unique minimal Weierstrass
model up to O-isomorphism, if and only if in addition λ′(P)≤ 3) for all k-points P
on the special fiber, where λ′(P) is a number satisfying λ′(P) ≤ 2dλ(P)/2e; see
[Liu 1996, Lemme 9(c)].

Lemma 5.3. An integral Weierstrass model of a smooth projective curve C over k
of genus 2 is stably minimal if and only if its special fiber is reduced and the
multiplicity of every geometric point on the special fiber is at most 3.
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If the special fiber is reduced and all multiplicities are at most 2, then the model
is the unique minimal Weierstrass model of C over any finite extension k ′ of k, up to
isomorphism over the valuation ring of k ′.

Proof. First note that the multiplicity of a point is a geometric property; it does
not change when we replace k by a finite extension. If the special fiber of an
integral Weierstrass model has the given properties, then it follows from Liu’s
results mentioned above that λ(P) ≤ m(P) ≤ 3 and therefore λ′(P) ≤ 4 for all
points P on the special fiber, even after replacing k by a finite extension. It follows
that the model is stably minimal.

If m(P) ≤ 2 for all P, then λ(P) ≤ 2 and λ′(P) ≤ 2, so by Liu’s results, the
model is the unique minimal Weierstrass model of C over k ′.

Conversely, assume that the special fiber does not have the given properties. Then
either the special fiber is nonreduced, or else there is a point P on the special fiber of
multiplicity m(P)≥ 4. If the special fiber is nonreduced, then after replacing k by
a sufficiently ramified extension k ′, there is a point P on the special fiber such that
λ(P) > 3 over k ′ (ramification index 4 is sufficient). If the special fiber is reduced
and there is a (geometric) point P on the special fiber with m(P)>3, then again after
replacing k by a sufficiently large finite extension k ′ (such that P is defined over the
residue field and the ramification index is at least m(P)), we have λ(P)=m(P)> 3
over k ′. Liu’s results then show that the model is not minimal over k ′. �

Lemma 5.4. If C is a smooth projective curve over k of genus 2, then there is a
finite extension k ′ of k such that

(i) the minimal proper regular model of C over the valuation ring of k ′ has
semistable reduction, and

(ii) each minimal Weierstrass model of C over k ′ is already stably minimal.

Proof. That there is a finite extension with the first property is a special case of
the semistable reduction theorem [Deligne and Mumford 1969]. After a further
unramified extension, we can assume that all geometric components of the special
fiber of the minimal proper regular model (which all have multiplicity 1) are defined
over the residue field and that at least one component has a smooth point defined
over the residue field. This implies by Hensel’s lemma that C(k ′) 6= ∅. It then
follows from [Liu 1996, Corollaire 5] that every minimal Weierstrass model of C
over k ′ is dominated by the minimal proper regular model. Since the latter has
reduced special fiber, the same is true for each minimal Weierstrass model.

Now assume that there exists a stably minimal Weierstrass model of C over k ′.
Then every minimal Weierstrass model of C over k ′ must already be stably minimal,
since both models must have the same valuation of the discriminant, and the
discriminant of the stably minimal model remains minimal over any finite field
extension of k ′. So it is enough to show that a stably minimal model exists.
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We now consider the various possibilities for the special fiber of the minimal
proper regular model. The possible configurations are shown in Figures 1, 2, 3
and 5 (on pages 2187, 2188, 2189 and 2196). If the reduction type is [Im1−m2−m3]

in the notation of [Namikawa and Ueno 1973], then the Weierstrass model whose
special fiber contains the component(s) that are not (−2)-curves has the property
that all points on the special fiber have multiplicity at most 2; this is then the unique
minimal Weierstrass model, and it is stably minimal by Lemma 5.3. It remains to
consider reduction type [Im1 − Im2 − l]. We see that the Weierstrass models that
correspond to components in the chain linking the two polygons and also those
coming from the component of one of the polygons that is connected to the chain
satisfy the conditions of Lemma 5.3 and are thus stably minimal. On the other hand,
Weierstrass models whose special fiber does not correspond to a component in the
chain or to one of its neighbors have a point in the special fiber whose multiplicity
is at least 4 and so cannot be stably minimal. �

6. Igusa invariants

In this section we describe how we can easily distinguish between different types
of reduction using certain invariants of genus-2 curves introduced by Igusa [1960].
The results of this section are essentially due to Liu [1993]; see also [Mestre 1991].

Let k be an arbitrary field of characteristic not equal to 2 and consider the
invariants J2, J4, J6, J8, J10 defined in [Igusa 1960], commonly called Igusa
invariants. Then J2i (F) is an invariant of degree 2i of binary sextics, and if

F(X, Z)= f0 Z6
+ f1 X Z5

+ f2 X2 Z4
+ f3 X3 Z3

+ f4 X4 Z2
+ f5 X5 Z + f6 X6

is a binary sextic, then

J2i (F) ∈ Z
[1

2 , f0, . . . , f6
]
.

For example, J10(F)= 2−12 disc(F). It is shown in [Igusa 1960] that the invariants
J2, J4, J6, J10 generate the even-degree part of the ring of invariants of binary
sextics.

Now let F and H be the generic binary forms over Z of degrees 6 and 3,
respectively, with coefficients f0, . . . , f6 and h0, . . . , h3 as before. It turns out that
J2i (4F + H 2) is an element of Z[ f0, . . . , f6, h0, . . . , h3].

Definition 6.1. Let k be an arbitrary field and let H, F ∈ k[X, Z ] be binary forms
of respective degrees 3 and 6 over k. Let CF,H be the curve given by the equation
Y 2
+ H(X, Z)Y = F(X, Z) in the weighted projective plane Pk(1, 3, 1). For

1≤ i ≤ 5 we define the Igusa invariant J2i (CF,H ) of CF,H as

J2i (CF,H )= J2i (4F + H 2).
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Following [Liu 1993], we also define two additional invariants, namely

I4(CF,H )= J2(CF,H )
2
− 24J4(CF,H )

and

I12(CF,H )=−8J4(CF,H )
3
+ 9J2(CF,H )J4(CF,H )J6(CF,H )

− 27J6(CF,H )
2
− J2(CF,H )

2 J8(CF,H ).

The following is a consequence of [Liu 1993, Théorème 1].

Proposition 6.2. Let k be a field and let CF,H/k be the curve given by the equation

Y 2
+ H(X, Z)Y = F(X, Z)

in Pk(1, 3, 1), where H, F ∈ k[X, Z ] are binary forms of degree 3 and 6, respec-
tively. For 1≤ i ≤ 5 and j ∈ {4, 12} we set J2i = J2i (CF,H ) and Ij = Ij (CF,H ).

(i) CF,H is smooth⇐⇒ J10 6= 0.

(ii) CF,H has a unique node and no point of higher multiplicity⇐⇒ J10 = 0 and
I12 6= 0.

(iii) CF,H has exactly two nodes⇐⇒ J10 = I12 = 0, I4 6= 0, and J4 6= 0 or J6 6= 0.

(iv) CF,H has three nodes⇐⇒ J10 = I12 = J4 = J6 = 0 and I4 6= 0.

(v) CF,H has a cusp⇐⇒ J10 = I12 = I4 = 0 and J2i 6= 0 for some i ≤ 4.

(vi) CF,H is nonreduced or has a point of multiplicity at least 4⇐⇒ J2i = 0 for all i .

When C is a curve of genus 2 over a nonarchimedean local field, then Igusa
invariants can also be used to obtain information on the reduction type of C ; see
[Liu 1993, Théorème 1, Proposition 2].

Proposition 6.3. Let k be a nonarchimedean local field with normalized additive
valuation v : k× � Z and valuation ring O, and let C/k be a smooth projective
genus-2 curve, given by a minimal Weierstrass model with reduced special fiber.
Suppose that the minimal proper regular model Cmin of C over SpecO is semistable
and has reduction type K in the notation of [Namikawa and Ueno 1973]. We set
J2i = J2i (C) for i ∈ {1, . . . , 5} and I4 = I4(C), I12 = I12(C).

(i) If K = [Im−0−0], where m > 0, then m = v(J10).

(ii) If K = [Im1−m2−0], where 0< m1 ≤ m2, then

m1 =min
{
v(I12),

1
2v(J10)

}
and m2 = v(J10)−m1.
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(iii) If K = [Im1−m2−m3], where 0< m1 ≤ m2 ≤ m3, then

m1 =min
{
v(J4),

1
3v(J10),

1
2v(I12)

}
,

m2 =min
{
v(I12)−m1,

1
2(v(J10)−m1)

}
, and

m3 = v(J10)−m1−m2.

(iv) If K = [I0− I0− l], then l = 1
12v(J10).

(v) If K = [Im1 − I0− l], where m1 > 0, then

l = 1
12v(I12) and m1 = v(J10)− v(I12).

(vi) If K = [Im1 − Im2 − l], where m2 ≥ m1 > 0 and l > 0, then

l = 1
4v(I4),

m1 =min
{
v(I12)− 3v(I4),

1
2(v(J10)− 3v(I4))

}
, and

m2 = v(J10)− 3v(I4)−m1.

Part II. Study of local height correction functions

In Part II of the paper, k will always denote a nonarchimedean local field with
residue field k, valuation ring O and normalized additive valuation v : k× � Z.
We let C be a curve of genus 2 over k, given by an integral Weierstrass model C,
which we consider as a subscheme of the weighted projective plane PS(1, 3, 1),
where S = Spec(O). In the following five sections we find explicit formulas and
bounds for the local height correction function µ for the most frequent cases of bad
reduction and use these to deduce a general bound on µ. We denote the minimal
proper regular model of C over S by Cmin. Let J be the Jacobian of C ; we denote
its Néron model over S by J. We write Cv, Cmin

v and Jv for the respective special
fibers of C, Cmin and J.

7. The “kernel” of µ

By Theorem 3.10, the set

U = {P ∈ J (k) : ε(P)= 0}

is a group and the local height correction function µ factors through the quotient
J (k)/U. In this section we relate U to the Néron model of J when C has ratio-
nal singularities. See [Artin 1986] for a brief account of the theory of rational
singularities on arithmetic surfaces.

For the remainder of this section we assume that C/S is normal and reduced.
We let J 0 denote the fiberwise-connected component of the identity of J. Then
J 0 has generic fiber Jk ∼= J and special fiber J 0

v , the connected component of the
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identity of Jv. If C′→ C is a desingularization of C, then the identity components
Pic0

C′/S and Pic0
C/S of the respective relative Picard functors of C′ and C can both be

represented by separated schemes; see [Bosch et al. 1990, Theorem 9.7.1]. There
are canonical S-group scheme morphisms

Pic0
C/S→ Pic0

C′/S −→
∼ J 0

; (7-1)

the latter map is an isomorphism by [Bosch et al. 1990, Theorem 9.4.2]. Let
α : Pic0

C/S→ J 0 denote the composition of the morphisms from (7-1); note that
α does not depend on the choice of the desingularization C′. We will show that if
P ∈ J (k) has reduction on J in the image of α, then ε(P)= µ(P)= 0. The idea
is to first show that this is true for points in the image of a certain open subscheme;
we then prove that this suffices for the general case.

Let Csm be the smooth locus of C. Following [Bosch et al. 1990, §9.3], we define
an S-subscheme W of the symmetric square C(2)sm of Csm consisting of the points
w ∈ C(2)sm that satisfy the following conditions:

• H 1(C,OC(Dw))= 0, where D is the universal Cartier divisor D ⊂ C×S C(2)sm

induced by the canonical map C(2)sm → Div2
C/S .

• Ifw={w1, w2} withw1, w2 geometric points on the special fiber of C, then the
hyperelliptic involution ι maps the component containing w1 to the component
containing w2.

Then W has the following properties:

(i) W is an open subscheme of C(2)sm.

(ii) There is a strict S-birational group law on W, induced by the group law on
PicC/S .

(iii) Pic0
C/S is the S-group scheme associated with this strict S-birational group law.

For (ii) and (iii) see the discussion preceding [Bosch et al. 1990, Theorem 9.3.7].
Let Pic[2]C/S be the open subfunctor of PicC/S whose elements have total degree 2.

Let ρ : W → Pic[2]C/S be the canonical map induced by D; by [Bosch et al. 1990,
Lemma 9.3.5] it is an open immersion. Replacing S by the spectrum of the valuation
ring of a finite unramified extension of k, if necessary, we can find a section
x0 ∈ P1

S(S) such that its pullback D0 under the covering map C→ P1
S is horizontal

and does not intersect the singular locus of C. We denote by c0 the class of D0

in Pic[2]C/S . Let w = {P1, P2} ∈ W ; using the condition on the action of ι on the
components P1 and P2 lie on, we find that

ρ0(w) := ρ(w)− c0 ∈ Pic0
C/S .

In fact, ρ0 defines an open immersion ρ0 : W → Pic0
C/S; see [Bosch et al. 1990,

Lemma 9.3.6].
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Lemma 7.1. Suppose that the residue characteristic of k is not 2. Let P ∈ J (k)
such that the reduction of P on Jv is in α(ρ0(W )). Then ε(P)= 0.

Proof. We may assume that C : Y 2
= F(X, Z). Let JF denote the model of J in

P15 constructed in [Cassels and Flynn 1996, Chapter 2] and let JF/S denote the
model it defines over S. Following [Bruin and Stoll 2010, §5], we denote by J 0

F
the fiberwise-connected component of the identity of the smooth locus of JF , so
that the generic fiber is JF and the special fiber J 0

F,v is the connected component
of the identity of the smooth locus of the special fiber JF,v. We have a morphism
ψ : C(2)sm → J 0

F , defined using the expressions for the coordinates on JF in [Cassels
and Flynn 1996, Chapter 2]; see the proof of [Bruin and Stoll 2010, Lemma 5.7].
We also denote the restriction of this morphism to W by ψ .

The Néron mapping property yields a natural map ϕ : J 0
F→J. In general, its im-

age can be a proper subset of J 0. Nevertheless, the following diagram of S-scheme
morphisms is commutative by [Liu 2002, Proposition 3.3.11], since W is reduced,
J 0 is separated and the diagram is commutative when restricted to generic fibers:

W

ρ0

��

ψ
// J 0

F

ϕ

��

Pic0
C/S

α
// J 0

(7-2)

It follows from [Bruin and Stoll 2010, Proposition 5.10] that a point P ∈ J (k)
satisfies ε(P) = 0 if and only if P reduces to J 0

F,v(k). So if P has reduction in
α(ρ0(W )), then the commutativity of the diagram (7-2) shows that ε(P)= 0. �

If the residue characteristic is 2, then no explicit analogue of the group scheme JF

is known. Instead, we have to work with explicit expressions to prove a result
analogous to Lemma 7.1.

Let F̃ and H̃ be the reductions of F and H, respectively. In analogy with [Bruin
and Stoll 2010, Definition 5.1], we define the subscheme D̃ of A3

k × A4
k × A5

k

consisting of all triples

(A, B,C)=
(
(a0, a1, a2), (b0, b1, b2, b3), (c0, c1, c2, c3, c4)

)
∈ A3

k ×A4
k ×A5

k

such that
AC = F̃ − B2

− BH̃ ,

where
A = a0 Z2

+ a1 X Z + a2 X2,

B = b0 Z3
+ b1 X Z2

+ b2 X2 Z + b3 X3,

C = c0 Z4
+ c1 X Z2

+ c2 X2 Z2
+ c3 X3 Z + c4 X4.
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Moreover, we set D := (π2× id)(pr12(D̃)), where pr12 is the projection onto the first
two factors and π2 is the canonical map A3

k \ {(0, 0, 0)} → P2
k .

Note that if the curve Cv defined by Y 2
+ H̃(X, Z)Y = F̃(X, Z) in Pk(1, 3, 1)

is nonsingular, then D(k) is in bijective correspondence with the possible Mumford
representations of effective divisors of degree 2 on Cv.

In general, this correspondence still holds for the subset D′ of all (A, B) ∈ D
such that A does not vanish at the image in P1 of a singular point of Cv , and those
effective divisors with support in the smooth locus of Cv . More precisely, we get a
map ζ : D′→ C (2)

v such that if ζ((A, B))= {P̃1, P̃2}, then there are representatives
(Xi , Yi , Zi ) of P̃i (i = 1, 2) satisfying

(i) A(X, Z)= (Z1 X − X1 Z)(Z2 X − X2 Z),

(ii) Yi = B(Xi , Zi ) for i = 1, 2.

If Cv is nonsingular, and (A, B) ∈D, then we can compose the natural surjection
D→ Jac(Cv) \ {O} with the quotient map Jac(Cv)→ KSF̃,H̃ . In the general case
one can also define a surjection ω : D→ KSF̃,H̃ \{(0 : 0 : 0 : 1)} with the following
property: if P = [(P1)−(P2)] ∈ J (k) is such that the reductions P̃1 and P̃2 are both
smooth points on Cv , and if (A, B) ∈ D′ is such that ζ((A, B))= {P̃1, ˜ι(P2)}, then
the reduction of κ(P) on KSF̃,H̃ is ω((A, B)). The image of a pair (A, B) ∈ D
under ω is of the form (a0 : −a1 : a2 : x4).

Lemma 7.2. Suppose that the residue characteristic of k is 2. Let P ∈ J (k) such
that the reduction of P on J is in α(ρ0(W )). Then ε(P)= 0.

Proof. Let (A, B) ∈ D′
F̃,H̃

such that ζ((A, B))= {P̃1, P̃2} ∈W. By the discussion
preceding the lemma, it suffices to show that we have δ(x) 6= 0 for x = ω((A, B)).

Changing the given model, if necessary, we can assume that H̃ and F̃ are as
in the list of representatives 1–13 in Table 1. Table 2 contains conditions on x
which are equivalent to the vanishing of δ(x) for each representative and additional
conditions which a point x = (x1 : x2 : x3 : x4) ∈ P3 satisfying δ(x) = 0 must
satisfy in order to lie on KSF̃,H̃ . Finally, we have listed the multiplicities m(∞),
m(0), m(1) that Cv has at the points with (X : Z)= (1 : 0), (X : Z)= (0 : 1) and
(X : Z) = (1 : 1), respectively, in case the multiplicities there are greater than 1.
Note that we do not have to treat type 1, as Cv is assumed to be reduced.

Since A(X, Z) does not vanish at the image in P1 of a singular point, we get
x1 6= 0 and, if (0, 0) is a singular point, also x3 6= 0. Using Table 2, this already
implies that δ(x) 6= 0 whenever Cv is irreducible. In the reducible cases 2, 7 and 8,
Cv has two irreducible components, and one checks easily that x4 does not vanish
because, by definition of W, ι maps the component containing P̃1 to the component
containing P̃2. Hence δ(x) 6= 0 by Table 2. �

The next proposition follows from Lemmas 7.1 and 7.2.
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type condition additional m(∞) m(0) m(1)

1 x4 = 0
2 x4 = 0 6
3 x4 = 0 x1 = 0 5
4 x4 = 0 x1 = 0 4
5 x1x3 = x4 = 0 3 2
6 x1 = x4 = 0 3
7 x4 = 0 4 2
8 x4 = 0 2 2 2
9 x1x3 = x4 = 0 2 2

10 x1 = x4 = 0 2
11 x1 = x4 = 0 3
12 x4 = 0 x1 = 0 5
13 x4 = 0 x1x3 = 0 3 3

Table 2. Conditions for the vanishing of δ(x).

Proposition 7.3. Let α : Pic0
C/S → J 0 be the canonical homomorphism. If the

reduction of P ∈ J (k) on Jv is in the image of α, then ε(P)= µ(P)= 0.

Proof. If T is an S-scheme and x ∈ Pic0
C/S(T ), then by properties (ii) and (iii) of W,

there is an étale cover T ′/T and w1, . . . , wn ∈W (T ′) such that

x = ρ0(w1)+ · · ·+ ρ0(wn),

where the sum is taken with respect to the group law on Pic0
C/S . In fact we can

take n = 2; this follows from [Bosch et al. 1990, Lemma 5.1.4] and the discussion
following Lemma 5.2.4 of the same paper. Using this and Theorem 3.10, it suffices
to show that ε(P)= 0 when the reduction of P on Jv is in α(ρ0(W )). Hence the
result follows from Lemmas 7.1 and 7.2. �

Let J0(k) denote the subgroup of J (k) consisting of points whose image on the
special fiber of J is in J 0(k). By [Bosch and Liu 1999, Lemma 2.1] the group
8(k) of k-rational points in the component group 8 of J satisfies

8(k)∼= J (k)/J0(k).

We can now give a criterion for when ε and µ factor through 8(k).

Theorem 7.4. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model C with rational
singularities. Then ε and µ factor through 8(k).

Proof. First note that if C has rational singularities, then C is normal and reduced.
Moreover, according to [Bosch et al. 1990, Theorem 9.7.1], the homomorphism α

is an isomorphism if and only if C has rational singularities. This implies that the



2182 Jan Steffen Müller and Michael Stoll

image of α, restricted to the generic fiber, is J0(k). By Proposition 7.3, we have
ε(P) = µ(P) = 0 for P in the image of α. Theorem 3.10 implies that µ and ε
factor through 8(k). �

Remark 7.5. A nonminimal Weierstrass model cannot have rational singularities.
Moreover, there are minimal (even stably minimal) Weierstrass models of curves of
genus 2 that have nonrational singularities. See Example 10.4 for a stably minimal
Weierstrass model having µ(P) 6= 0 for some points P ∈ J0(k).

This behavior cannot occur for elliptic curves; here µ always factors through
8(k), provided the given Weierstrass model is minimal; see [Silverman 1988]. This
is crucial for the usual algorithms to compute canonical heights on elliptic curves.
Note that a Weierstrass model of an elliptic curve is minimal if and only if it has
rational singularities by [Conrad 2005, Corollary 8.4].

8. Néron functions and reduction graphs

Our next goal is to derive a formula for µ(P) in the case when the minimal proper
regular model of C is semistable and µ factors through 8(k). To this end, we need
the notion of Néron functions. The following result is due to Néron; see [Lang
1983, §11.1].

Proposition 8.1. Let A be an abelian variety defined over a local field k. Then
we can associate to any divisor D ∈ DivA(k̄) a function λD : A(k̄) \ supp(D)→ R

such that the following conditions are satisfied, where we write λ≡ λ′ mod const.
to indicate that the functions λ and λ′ differ by a constant.

(1) If D, E ∈ DivA(k̄), then λD+E ≡ λD + λE mod const.

(2) If D = div( f ) ∈ DivA(k̄) is principal, then λD ≡ v̄ ◦ f mod const., where v̄ is
the extension of v to k̄.

(3) If D ∈ DivA(k̄) and TP : A→ A is the translation map by a point P ∈ A(k̄),
then we have λT ∗P D ≡ λD ◦ TP mod const.

Also, λD is uniquely determined up to adding a constant.

We call a function λD as in Proposition 8.1 a Néron function associated with D.
We can use local heights on Kummer coordinates to construct Néron functions on

the Jacobian J of our genus-2 curve C . If P0 ∈ C(k̄), then we have an embedding
Ck̄→ Jk̄ (defined over k̄) that maps P ∈ C(k̄) to the divisor class [(P)− (P0)] ∈

Pic0
C(k̄) = J (k̄). Its image is the theta divisor 2P0 . We set 2±P0

= 2P0 +2ι(P0);
then 2±P0

is symmetric and in the linear equivalence class of 22 (where 2 is a theta
divisor coming from taking a Weierstrass point as base-point). For the following,
fix a point∞∈ C(k̄) at infinity. For i ∈ {1, . . . , 4}, we set

Di =2
±

∞
+ div

(
κi

κ1

)
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and we define a function λ̂i : J (k) \ supp(Di )→ R by

λ̂i (P)= λ̂
(
κ(P)
κi (P)

)
.

Lemma 8.2. Let∞ ∈ C(k̄) be a point at infinity as above and let i ∈ {1, . . . , 4}.
Then Di is defined over k and the function λ̂i is a Néron function associated with Di .

Proof. If ∞ /∈ C(k), then we have ∞ ∈ C(k ′) for some quadratic extension k ′

of k and the nontrivial element of the Galois group Gal(k ′/k) maps ∞ to ι(∞),
proving the first assertion. For a proof of the second assertion, see [Uchida 2011,
Theorem 5.3]. �

Definition 8.3. Assume that C has semistable reduction over k. Let C ′ = Cmin
v,k̄

denote the special fiber of the minimal proper regular model Cmin of C , considered
over the algebraic closure of the residue field k. The reduction graph R(C) of C
is a graph with vertex set the set of irreducible components of C ′; two vertices
01 and 02 are connected by n edges, where n is the number of intersection points
of 01 and 02 if 01 6= 02, and n is the number of nodes of 01 if 01 = 02. The Galois
group of k acts on R(C) in a natural way.

We consider R(C) as a metric graph by giving each edge length 1. For two
vertices 01 and 02, we define r(01, 02) as the resistance between the vertices, when
R(C) is considered as an electric network with unit resistance along every edge.

Remark 8.4. We can compute r(01, 02) as follows. Order the vertices of R(C)
in some way and let M be the intersection matrix with respect to this ordering.
Since all components of the special fiber have multiplicity one, the kernel of M
is spanned by the “all-ones” vector and the image of M consists of the vectors
whose entries sum to zero. Let v be the vector with entries zero except that the
entry corresponding to 01 is 1 and the entry corresponding to 02 is −1. Then there
is a vector g with rational entries such that Mg = v, and

r(01, 02)=−g · v

is, up to sign, the standard inner product of the two vectors. (Note that g is not
unique, but adding a vector in the kernel of M to it will not change the result.) See
for instance [Cinkir 2011, Lemma 6.1].

Note that the linear map given by M on the space of functions on the vertices can
be interpreted as the discrete Laplace operator on the graph R(C). It is then easy to
see that g, viewed as a function on the vertices, is piecewise linear along sequences
of edges not containing 01, 02 or a vertex of degree at least 3. This makes it quite
easy to find g and to compute r(01, 02).

The reduction graph is unchanged when we replace k by an unramified extension.
If we base-change to a ramified extension k ′ of k with ramification index e, then
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the new reduction graph is obtained by subdividing the edges of R(C) into e new
edges. We can give these new edges length 1/e; then the underlying metric space
remains the same. In particular, r(01, 02) does not depend on k ′. This allows us to
replace k by a finite extension if necessary. The scaling of the length corresponds
to extending the valuation v : k× � Z to k̄× → Q instead of considering the
normalized valuation on k ′. All notions defined in terms of the valuation (for
example, intersection numbers) are then scaled accordingly.

Proposition 8.5. We assume that Cmin is semistable. Let P = [(P1)− (P2)] ∈ J (k),
with P1, P2 ∈ C(k) mapping to components 01 and 02, respectively, of the special
fiber of Cmin. We make the following further assumptions.

(i) If Q1,Q2∈C(k)map to01 and02, respectively, thenµ(P)=µ([(Q1)−(Q2)]).

(ii) There is a constant µ1 ∈Q such that µ([(Q1)− (Q′1)])= µ1 for all Q1, Q′1 ∈
C(k) mapping to 01 such that the images of Q1 and Q′1 on the special fiber of
Cmin are distinct.

(iii) There is a constant µ2 ∈Q such that µ([(Q2)− (Q′2)])= µ2 for all Q2, Q′2 ∈
C(k) mapping to 02 such that the images of Q2 and Q′2 on the special fiber of
Cmin are distinct.

Then we have
µ(P)= r(01, 02)+

1
2(µ1+µ2).

Proof. By the discussion preceding the statement of the theorem, we can assume
that k is sufficiently large for C(k) to contain all points we might be interested in.

Let P0∈C(k). The embedding with respect to P0 is obtained from the “difference
map” ψ : C × C → J that sends a pair of points (P1, P2) to [(P1) − (P2)] by
specializing the second argument to P0. One easily checks that

ψ∗2P0 =1C + ({ι(P0)}×C)+ (C ×{P0}),

where 1C denotes the diagonal and ι is the hyperelliptic involution on C . We then
have

ψ∗2±P0
= 21C + pr∗1 D0+ pr∗2 D0,

where D0 = (P0)+ (ι(P0)). By the results in [Heinz 2004] this implies that, taking
λ0 to be a Néron function associated to 2±P0

,

λ0([(P1)− (P2)])= 2〈P1, P2〉+ 〈P1+ P2, P0+ ι(P0)〉+ c

for all points P1, P2 ∈ C(knr) with P1 6= P2 and {P1, P2} ∩ {P0, ι(P0)} =∅, where
〈 · , · 〉 is the pairing in [Heinz 2004, Theorem 4.4] and c ∈ R is a constant.

If Cmin has semistable reduction, then, by [Heinz 2004, Remark 4.6], the pairing
〈 · , · 〉 coincides with Zhang’s admissible pairing ( · , · )a [1993] in terms of harmonic
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analysis on the reduction graph R(C). In these terms, we have, for Q, Q′ ∈ C(knr),

〈Q, Q′〉 = (Q, Q′)a = i(Q, Q′)+ gν(0, 0′),

where i(Q, Q′) is the intersection multiplicity of the sections Q, Q′ ∈ Cmin(Onr)

induced by Q and Q′, respectively, and gν(0, 0′) is the Green’s function associated
to a certain measure ν on R(C), with 0 and 0′ being the respective components of
the special fiber of Cmin that Q and Q′ reduce to. See [Zhang 1993, §4]. We extend
gν to a bilinear map on the free abelian group generated by the vertices of R(C).

Lemma 8.2 gives, for P0 =∞ and P = [(P1)− (P2)] with normalized Kummer
coordinates x(P)= (x1(P), . . . , x4(P)),

µ(P)= v(x1(P))− λ̂1(P)

= v(x1(P))− 2i(P1, P2)− i(P1+ P2, P0+ ι(P0))

− 2gν(01, 02)− gν(01+02, 00+0
′

0)− c,

where 01 and 02 are the respective components that P1 and P2 reduce to, and
00 and 0′0 are the respective components that P0 and ι(P0) reduce to. We assume
for a moment that the images of P1 and P2 on the special fiber of the original
model C are distinct from the images of the points at infinity. By assumption (i),
µ(P) is unchanged when we replace the points P1 and P2 by other points still
mapping to 01 and 02, respectively. We can therefore assume that the images of P1

and P2 on the special fiber of Cmin are distinct from each other and also from the
images of P0 and ι(P0). This implies that v(x1(P))= 0 and that the intersection
numbers in the formula above are zero. We can choose further points Q1 and Q2

that also reduce to 01 and 02 with reductions on the special fiber of C distinct from
those of P0 and ι(P0) and such that P1, P2, Q1 and Q2 all reduce to distinct points
on the special fiber of Cmin. Using assumptions (ii) and (iii), we obtain the relations

−
1
2µ1 =−

1
2µ([(P1)− (Q1)])= gν(01, 01)+ gν(01, 00+0

′

0)+
1
2 c,

µ(P)= µ([(P1)− (P2)])=−2gν(01, 02)− gν(01+02, 00+0
′

0)− c,

−
1
2µ2 =−

1
2µ([(P2)− (Q2)])= gν(02, 02)+ gν(02, 00+0

′

0)+
1
2 c.

Adding them together gives

µ(P)− 1
2(µ1+µ2)= gν(01−02, 01−02)= r(01, 02),

as desired. See [Zhang 1993, §3] for the last equality.
If our assumption that the images of P1 and P2 on the special fiber of the original

model C are distinct from the images of the points at infinity is not satisfied, then
we choose another point P0 for which the assumption is satisfied. We can then
perform a change of coordinates τ over O that moves P0 to infinity and apply the
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result above. By Corollary 4.6 (note that v(τ) = 0 in this case) and the fact that
v(τ(x))= v(x), µ(P) is unchanged by τ . �

Remark 8.6. We see from the proof that for two points Q, Q′ both having image
on a component 0, but with distinct reductions that are also distinct from those of
P0 and ι(P0), we always have

µ([(Q)− (Q′)])=−2gν(0, 0)− 2gν(0, 00+0
′

0)− c.

So the assumption that this value does not depend on the choice of Q and Q′ is not
really necessary.

Theorem 8.7. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model. Let J be the
Jacobian of C and J its Néron model over S = SpecO. Assume that the minimal
proper regular model Cmin of C over S is semistable and that µ factors through the
component group8(k) of J. Let P ∈ J (k) be such that its image in8(k) is [01−02],
where 01 and 02 are components of the special fiber of Cmin. Then we have

µ(P)= r(01, 02).

Proof. Since µ factors through8(k), it follows that µ([(P1)−(P2)]) vanishes when
P1 and P2 map to the same component on the special fiber of Cmin and in general
depends only on the components P1 and P2 map to. This shows that assumptions
(i)–(iii) in Proposition 8.5 are satisfied with µ1 = µ2 = 0. The claim follows. �

9. Formulas and bounds for µ(P) in the nodal reduction case

In this section and the next, we will deduce explicit formulas for µ(P) when we
have a stably minimal Weierstrass model C. Recall that Cmin denotes the minimal
proper regular model of C. In the following, when we speak of components, points,
and so on, of the special fiber of C or Cmin, we always mean geometric components,
points, and so on.

In this section we shall use Theorem 8.7 and Remark 8.4 to find explicit formulas
for µ(P) whenever C/k has nodal reduction, i.e., the special fiber Cv of C is reduced
and all multiplicities are at most 2. In this case C is semistable and therefore it has
rational singularities. Let 1=1(C) denote the discriminant of C; we assume that
there is at least one node, so that v(1) > 0.

Since there are at most three nodes in the special fiber of C, we have to consider
three different cases.

First suppose that there is a unique node in the special fiber of C and set m= v(1).
In the notation of [Namikawa and Ueno 1973] this is reduction type [Im−0−0]. If
m = 1, then C is regular over S. In general, there is a unique component, which we
denote by A, of genus 1 in the special fiber of Cmin. As in the case of multiplicative
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A
B1

B2

Bm−1

Bm−2 A

B1

B2

Bm−1
Bm−2

Figure 1. The special fiber of reduction type [Im−0−0] and its
reduction graph.

reduction of elliptic curves (see, for example, [Silverman 1994]), the singular point
on the special fiber is replaced by a string of m − 1 components of Cmin, all of
genus 0 and multiplicity 1. We choose one of the two components intersecting A
and call it B1 and number the other components B2, . . . , Bm−1 consecutively as in
Figure 1.

Using [Bosch et al. 1990, Theorem 9.6.1], it is easy to see that the geometric com-
ponent group 8(k̄) of the Néron model is generated by [B1− A] and is isomorphic
to Z/mZ. We have [Bj − A] = j · [B1− A] in 8(k̄).

We set B0 := Bm := A. Then we have the following result.

Proposition 9.1. Suppose that there is a unique node in the special fiber of C; let m
and the notation for the components of the special fiber of Cmin be as above. If
P ∈ J (k) maps to [Bi − A] in the component group, then we have

µ(P)=
i(m− i)

m
.

Proof. Since the given model is semistable, we can use Theorem 8.7 and Remark 8.4.
One choice of g as in Remark 8.4 is given by

g(Bj )=


−

j (m− i)
m

if 0≤ j ≤ i ,

−
i(m− j)

m
if i ≤ j ≤ m.

Then

µ(P)= r(Bi , A)=−(g(Bi )− g(A))=
i(m− i)

m
. �

Remark 9.2. Proposition 9.1 resembles the formula for the canonical local height on
an elliptic curve with split multiplicative reduction given, for instance, in [Silverman
1988].

Now suppose that there are precisely two nodes in the special fiber of C. The
reduction type is [Im1−m2−0] in the notation of [Namikawa and Ueno 1973], where
m1,m2 ≥ 1 and m1+m2 = v(1). The special fiber of Cmin is obtained by blowing
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Cm2−2

Figure 2. The special fiber of reduction type [Im1−m2−0] and its
reduction graph.

up the two singular points of the special fiber of C repeatedly and replacing them
with a chain of m1− 1 and m2− 1 curves of genus 0, respectively. We call these
components B1, . . . , Bm1−1,C1, . . . ,Cm2−1, numbered as in Figure 2, where A
contains all images of points reducing to a nonsingular point and we pick components
B1 and C1 intersecting A as in the case of a unique node. The component group
8(k̄) is isomorphic to Z/m1Z×Z/m2Z and is generated by [B1− A] and [C1− A];
this follows again using [Bosch et al. 1990, Theorem 9.6.1]. If we have m1 = 1 or
m2 = 1, then the corresponding singular point on the special fiber of C is regular
and is therefore not blown up.

We set B0 := Bm1 := C0 := Cm2 := A. Then every element of the component
group has a representative of the form [Bi −Cj ] with 0≤ i ≤ m1 and 0≤ j ≤ m2.
The following result expresses µ(P) in terms of this representative.

Proposition 9.3. Suppose that there are exactly two nodes in the special fiber of C;
let m1 and m2 and the notation for the components of the special fiber of Cmin be as
above. If P ∈ J (k) maps to [Bi −Cj ] in the component group, then we have

µ(P)=
i(m1− i)

m1
+

j (m2− j)
m2

.

Proof. This is an easy computation along the same lines as in the proof of
Proposition 9.1. �

The final case that we have to consider is the case of three nodes in the special
fiber of C, which then has two components. We call these components A and E .
The special fiber of the minimal proper regular model is obtained using a sequence
of blowups of the singular points; they are replaced by a chain of mi − 1 curves
of genus 0 and multiplicity 1, respectively, where v(1)= m1+m2+m3. Hence
the special fiber of Cmin contains the two components A and E , connected by
three chains of curves of genus 0 that we call B1, . . . , Bm1−1, C1, . . . ,Cm2−1 and
D1, . . . , Dm3−1, respectively, where B1, C1 and D1 intersect A, as shown in Figure 3.
The reduction type is [Im1−m2−m3].



Canonical heights on genus-2 Jacobians 2189

A
B1

B2

Bm1−2

Bm1−1

C1

C2

Cm2−2

Cm2−1

D1

D2

Dm3−2

Dm3−1
E

A

B1

B2

C1
C2

D1
D2

E

Bm1−1

Bm1−2

Cm2−1
Cm2−2

Dm3−1
Dm3−2

Figure 3. The special fiber of reduction type [Im1−m2−m3] and its
reduction graph.

By [Bosch et al. 1990, Proposition 9.6.10], the group 8(k̄) is isomorphic to
Z/dZ×Z/nZ, where

d = gcd(m1,m2,m3) and n =
m1m2+m1m3+m2m3

d
.

We set B0 := C0 := D0 := A and Bm1 := Cm2 := Dm3 := E . Then it is not hard
to see that each element of 8(k̄) can be written in one of the forms

[Bi −Cj ], [Cj − Dl] or [Dl − Bi ]

with 0≤ i ≤m1, 0≤ j ≤m2, 0≤ l ≤m3. The following result allows us to express
µ(P) for any P ∈ J (k) in terms of the component P maps to.

Proposition 9.4. Suppose that there are three nodes in the special fiber of C; let
m1, m2, m3 and the notation for the components of the special fiber of Cmin be as
above. If P maps to [Bi −Cj ] in the component group for some 0 ≤ i ≤ m1 and
0≤ j ≤ m2, then we have

µ(P)=
m2i(m1− i)+m3(i + j)(m1− i +m2− j)+m1 j (m2− j)

m1m2+m1m3+m2m3
.

The formulas for [Cj − Dl] and [Dl − Bi ] are analogous.

Proof. The proof is analogous to those of Propositions 9.1 and 9.3. To find g, use
that it is piecewise linear on the segments AB1 · · · Bi , Bi · · · Bm1−1 E , AC1 · · ·Cj ,
Cj · · ·Cm2−1 E , AD1 · · · Dm3−1 E and the relations at the vertices A, E , Bi , Cj . �
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Remark 9.5. Using the relation ε(P) = 4µ(P) − µ(2P), one can show by a
somewhat tedious computation involving a number of different cases that if the
image of P in 8(k) is [01−02], where 01 and 02 are components of the special
fiber of Cmin, then ε(P) is the “distance” between 01 and 02 in the reduction graph,
where the “length” of the path between Bi and Bj (say, analogously for Ci , Cj and
Di , Dj ) is min{2|i − j |,m1}, and otherwise “lengths” are additive. In particular, if
8(k)=8(k̄), then

γ =max{ε(P) : P ∈ J (k)} =max{mi +mj − δi j : 1≤ i < j ≤ 3},

where δi j = 0 if both mi and mj are even, and δi j = 1 otherwise.

Remark 9.6. In order to use the results of this section to actually compute µ(P) for
a given point P ∈ J (k), we need to be able to find the component of Jv that P reduces
to. One approach is to find P1, P2∈C such that P=[(P1)−(P2)] and find the reduc-
tions of P1 and P2 to Cmin

v . Another approach is to use a transformation (possibly de-
fined over an unramified extension of k) to move the singular points to∞, (0, 0) and
(1, 0), respectively. Then we can (possibly after applying another transformation)
read off the component that P maps to directly from the Kummer coordinates of P.

The discussion of this section shows that we get the following results on the local
height constant β =max{µ(P) : P ∈ J (k)}. Recall that γ =max{ε(P) : P ∈ J (k)}
and that 1

4γ ≤ β ≤
1
3γ . We will see that in many cases the lower bound is attained.

Let P be a node on Cv; it is defined over a finite extension of k. We say that the
node P is split if the two tangent directions of the branches at P are defined over
every extension that P is defined over, otherwise P is nonsplit. We say that P is even
if its contribution mi to the valuation of the discriminant is even, and odd otherwise.

Corollary 9.7. Suppose that C/k is a smooth projective curve of genus 2 given by
an integral Weierstrass model C such that there is a unique node in the special fiber
of C and let m = v(1). Then we have

β =
1

2m

⌊
m2

2

⌋
≤
v(1)

4

if the node is split or even, and β = 0 otherwise.

Proof. This follows from Proposition 9.1, taking into account that if m is odd and
the node is nonsplit, then the group 8(k) is trivial. �

Remark 9.8. Using the relation ε(P)= 4µ(P)−µ(2P), one can check that

ε(P)= 2 min{i,m− i} if P maps to [Bi − A] in 8(k).

If m is even (and β > 0), then β = 1
4 m = 1

4γ . If m is odd, then β = 1
4

(
m− 1

m

)
and

γ =m− 1, so β/γ = 1
4

(
1+ 1

m

)
approaches 1

4 as m→∞, but for m = 3 (the worst
case), we have β = 1

3γ .
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Corollary 9.9. Suppose that C/k is a smooth projective curve of genus 2 given by
an integral Weierstrass model C such that there are exactly two nodes in the special
fiber of C. Let v(1)= m1+m2 as above. Then we have

β =
1

2m1

⌊
m2

1

2

⌋
+

1
2m2

⌊
m2

2

2

⌋
≤
v(1)

4

if each of the nodes is split or even,

β =
1

2mi

⌊
m2

i

2

⌋
if the node corresponding to mi is split or even and the other node is nonsplit and
odd, and β = 0 if both nodes are nonsplit and odd.

Proof. This follows from Proposition 9.3, taking into account the action of Frobenius
on 8(k̄). �

If we have three nodes, then it helps to take the field of definition of the nodes
into account.

Corollary 9.10. Suppose that C/k is a smooth projective curve of genus 2 given
by an integral Weierstrass model C such that there are three nodes in the special
fiber of C. We say that C is split if the two components A and E of the special fiber
of Cmin are defined over k; otherwise C is nonsplit. Let v(1) = m1+m2+m3 as
above and set M = m1m2+m1m3+m2m3.

(a) If all nodes are k-rational, C is split, and we have m1 ≥ m3 and m2 ≥ m3, then

β =
1

2M

(
m2

⌊
m2

1

2

⌋
+m3

⌊
(m1+m2)

2

2

⌋
+m1

⌊
m2

2

2

⌋)
≤

m1+m2

4
<
v(1)

4
.

(b) If all nodes are k-rational, but C is nonsplit, then

β =max{0} ∪
{ 1

4(mi +mj ) : 1≤ i < j ≤ 3, mi and mj even
}
.

(c) If two of the nodes lie in a quadratic extension of k and are conjugate over k
and one is k-rational, then

β=



m1

M
max

{⌊
m2

1

2

⌋
+m1m3,

⌊
m2

3

2

⌋
+m1

⌊
m3

2

⌋}
if C is split,

m1

2
if C is nonsplit and m1 is even,

0 otherwise,

where m3 corresponds to the rational node (and m1 = m2).
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(d) If all nodes are defined over a cubic extension of k and are conjugate over k,
then m1 = m2 = m3 =

1
3v(1) and

β =

{
1
9v(1) if C is split,

0 otherwise.

Proof. The proof of (a) follows easily from Proposition 9.4.
For the other cases, note that in the nonsplit case some power of Frobenius

acts as negation on the component group 8(k̄), so the only elements of 8(k) are
elements of order 2 in 8(k̄), which correspond to [Bm1/2−Cm2/2] if m1 and m2 are
even

(
where µ takes the value 1

4(m1+m2)
)
, and similarly with the obvious cyclic

permutations.
In the situation of (c), we must have m1 = m2. If P = [(P1)− (P2)] ∈ J (k) and

P1 ∈ C(k̄) maps to one of the conjugate nodes, then P2 must map to the other, so
all P ∈ J (k) must map to a component of the form [Bi −Cj ] or [Di − Dj ]. Now
the result in the split case follows from a case distinction depending on whether
m1 ≤ m3 or not. In the nonsplit case, the only element of order 2 that is defined
over k is [Bm1/2−Cm1/2] if it exists.

In the situation of (d), the group 8(k) is of order 3 (generated by [E − A]) in
the split case and trivial in the nonsplit case. �

Extending the valuation v : k×� Z to v̄ : k̄×→Q, we get extensions of ε and µ
to J (k̄). Denote max{µ(P) : P ∈ J (k̄)} by β̄ and max{ε(P) : P ∈ J (k̄)} by γ̄ . Then
by the discussion at the beginning of Section 8 and the results above, we find that

β̄ = 1
4 γ̄ =

1
4v(1),

when there are one or two nodes, and

1
6v(1)≤ β̄ =

1
4 γ̄ =

1
4(v(1)−min{m1,m2,m3}) <

1
4v(1),

when there are three nodes. (Equality is achieved as soon as the Galois action on
R(C) is trivial and the ramification index is even.)

10. Formulas and bounds for µ(P) in the cuspidal reduction case

In this section we consider the case of a stably minimal Weierstrass model C such
that there are (one or two) points of multiplicity 3 on the special fiber. These points
are either both k-rational or they are defined over a quadratic extension of k and are
conjugate over k.

In the notation of [Namikawa and Ueno 1973], the reduction type is of the form
[K1−K2− l], where l ≥ 0 and K j is an elliptic Kodaira type for j ∈ {1, 2}. We can
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A

2

Figure 4. The special fiber of reduction type [I0− I∗0− 0].

compute K1, K2 and l as in [Liu 1994, §6.1]. By [Liu 1994, §7], we have

8(k̄)∼=81(k̄)×82(k̄),

where 8j is the component group of an elliptic curve with Kodaira type K j . As in
the previous section, we write 1=1(C) for the discriminant of the model C.

If C is not regular, then we can compute the minimal proper regular model
Cmin of C from C by a sequence of blowups in the singular point(s) of C, so the
corresponding morphism ζ : Cmin

→ C is the minimal desingularization of C.
Suppose that l > 0. Then the special fiber of Cmin consists of Kodaira types

K1 and K2, connected by a chain of l−1 rational curves. See for example Figure 5.
The desingularization ζ contracts K2 to one of the singular points; in this case we
say that this point corresponds to K2. If there is another singular point in Cv(k̄),
then it corresponds to K1; otherwise we must have K1 = I0.

Suppose now that l = 0. If both K1 and K2 are good or multiplicative, then we
are in the situation [Im1−m2−0] for some m1,m2 ≥ 0, which we have discussed in
the previous section. So we may assume that at least one of the K j is additive,
say K2. Then Cmin

v looks like Kodaira type K2, but with one of the rational curves
replaced by (see [Namikawa and Ueno 1973]):

• a curve A of genus 1 if K1 = I0 (see Figure 4 for the case K2 = I∗0);

• one of the rational components of K1, otherwise; the remainder of K1 is then
attached to this component.

We say that a singularity corresponds to one of the Kodaira types K1 or K2 similarly
to the case l > 0.

Lemma 10.1. Suppose that the residue characteristic of k is not 2. Let C be given
by a stably minimal Weierstrass model with reduction type [K1−K2− l]. Then after
at most a quadratic unramified extension of k there is a stably minimal Weierstrass
model

C : Y 2
= F(X, Z)= f6 X6

+ f5 X5 Z+ f4 X4 Z2
+X3 Z3

+ f2 X2 Z4
+ f1 X Z5

+ f0 Z6

of C , isomorphic to the given model of C , such that the elliptic curve with Weier-
strass model

E1 : Y 2 Z = X3
+ f2 X2 Z + f1 X Z2

+ f0 Z3
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has Kodaira type K1 and the elliptic curve with Weierstrass model

E2 : Y 2 Z = X3
+ f4 X2 Z + f5 X Z2

+ f6 Z3

has Kodaira type K2.

Proof. After possibly making a quadratic unramified extension and applying a
transformation, we can assume that there is a unique point∞ ∈ Cv(k) at infinity
on the special fiber and that it is a cusp, corresponding to K2; see the discussion
preceding the lemma. Moreover, we can assume that if there is another singular point
in Cv(k̄), then this point is P= (0, 0)∈Cv(k) (in which case it must correspond to K1).

Because the residue characteristic is not 2, we may assume that C has H = 0 and
that f3 is a unit. By Hensel’s lemma there is a factorization F = F1 F2, where F2

is a cubic form reducing to Z3. Similarly, we may assume that F1 reduces to X3 if
there is a cusp at P and to X2(X+aZ) with a 6= 0 if there is a node at P ; otherwise
F1 is squarefree. Consider the elliptic curves given by the Weierstrass models

D1 : Y 2 Z = F1(X, Z) and D2 : Y 2 Z = F2(Z , X).

We first show that D1 has Kodaira type K1 and D2 has Kodaira type K2.
If D1 is not minimal, then we can apply a transformation to C which makes D1

minimal. This decreases the valuation of the discriminant 1(D1), but increases the
valuation of 1(D2) by the same amount. The resulting model is still stably minimal
and the resulting F2 still reduces to Z3. Hence we may assume that D1 is minimal.

Let Q = (0, 0) ∈ D1,v(k); then D1 is smooth outside Q. Note that F2 is a unit
in OC,P , so that P is a smooth point if and only if Q is a smooth point, in which
case D1 has reduction type I0 = K1. More generally, C is regular at P if and only
if D1 is regular at Q, and P is a node (resp. a cusp) if and only if Q is a node (resp.
a cusp). Recall that P corresponds to K1, so that D1 has reduction type I1 (resp. II)
if and only if K1 = I1 (resp. K1 = II).

Now suppose that C is not regular at P and D1 is not regular at Q. The minimal
desingularization ξ : C′ → C in P can be computed by a sequence of blowups,
starting with the blowup of C in P. The preimage of P under the latter map is
contained in the chart C1 obtained by dividing the x- and y-coordinates by the uni-
formizing element π . Similarly, in order to compute the minimal desingularization
ξ1 : D′1→D1 in Q, we first blow up D1 in Q; then the chart D1

1 obtained by dividing
the x- and y-coordinates by π contains the preimage of Q. But because F2 reduces
to Z3, the special fibers of C1 and D1

1 are identical. This continues to hold after
further blowups (if any are necessary), so we have ξ−1(P)= ξ−1

1 (Q). There are no
exceptional components in these preimages, since we assumed that D1 is minimal.
Therefore D′1 is in fact the minimal proper regular model of the elliptic curve defined
by D1. Since the minimal desingularization of C′ in the point ∞ ∈ C′v(k) leads
to Cmin, and since P corresponds to K1, we deduce that D1 has Kodaira type K1.
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A similar argument (for which we first apply a transformation to make D2

minimal) shows that D2 has Kodaira type K2. To complete the proof of the lemma,
we therefore only need to make sure that Ei has the same reduction type as Di

for i = 1, 2. This is certainly satisfied if the coefficients of Ei and Di agree
modulo π Ni+1, where Ni is the number of blowups needed to construct the minimal
desingularization of Di . Suppose that F1 = a0 Z3

+ a1 X Z2
+ a2 X2 Z + a3 X3 and

F2 = b3 Z3
+ b2 X Z2

+ b1 X2 Z + b0 X3. Writing out the coefficients of F in terms
of the coefficients of F1 and F2, we see that it suffices to have

v(a0b2) > v(a1), v(a0b1+ a2b2) > v(a2),

v(b0a2) > v(b1), v(a1b0+ a2b1) > v(b2).

If this is not satisfied, it can be achieved by acting on the given stably minimal
Weierstrass model via a suitable element of GL2(O) as in Section 4. Finally, we
scale the variables to get f3 = 1. �

Remark 10.2. If the residue characteristic is 2, then it is not hard to see that one
can also construct a stably minimal Weierstrass model C and corresponding elliptic
Weierstrass models E1 and E2 as in the lemma in a similar way. The construction is
more cumbersome, since we cannot assume H = 0.

In view of Theorem 7.4 we want a condition for C to have rational singularities.

Lemma 10.3. The model C has rational singularities if and only if l = 0.

Proof. We may assume that C is as in Lemma 10.1 or Remark 10.2. Then all points in
Cv(k̄)\ {∞, P} are nonsingular, where∞∈ Cv(k) is the unique point at infinity, and
P = (0, 0) ∈ Cv(k). If C is regular in P, then P is a rational singularity. If not, then,
by [Artin 1966, Theorem 3], P is a rational singularity if and only if the fundamental
cycle of ξ−1(P) has arithmetic genus 0, where ξ is any desingularization of P.
In particular, the assertion that P is a rational singularity depends only on the
configuration of ξ−1(P), where ξ : C′→ C is the minimal desingularization of P.
Now let E1 be as in Lemma 10.1 or Remark 10.2, and let ξ1 : E ′1 → E1 denote
the minimal desingularization of the singular point Q = (0, 0) ∈ E1,v(k); then
the assertion that Q is a rational singularity depends only on the configuration
of ξ−1

1 (Q). We have ξ−1(P)= ξ−1
1 (Q) as in the proof of Lemma 10.1 (this also

works when char k= 2 and does not require minimality of E1). In particular, P is a
rational singularity if and only if Q is a rational singularity.

A similar argument proves the corresponding statement for E2. Hence C has
rational singularities if and only if both E1 and E2 have rational singularities. By
[Conrad 2005, Corollary 8.4] a Weierstrass model of an elliptic curve has rational
singularities if and only if it is minimal. But it is easy to see that E1 and E2 are both
minimal if and only if l = 0. �
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Figure 5. The special fiber of reduction type [Im1 − Im2 − l] and
its reduction graph.

According to Lemma 10.3, not all singularities of the given stably minimal
Weierstrass model C are rational when l > 0. The following example shows that in
this situation ε(P) 6= 0, and hence µ(P) 6= 0, can indeed occur for P ∈ J0(k).

Example 10.4. Let p be an odd prime and let C/Qp be given by

Y 2
= Z(X2

+ Z2)(X3
+ p5 X Z2

+ p8 Z3).

Let P1 = (0, p4) ∈ C(Qp) and P2 = ι(P1). The reduction type is [I0− III− 1] and
hence #8(k̄)= 2. It turns out that both P1 and P2 map to the same component and
so we have P = [(P1)− (P2)] ∈ J0(k). The image of P on the Kummer surface is
of the form (x1 : 0 : 0 : x4), where v(x4)− v(x1) = 2. We get ε(P) = ε(2P) = 6
and µ(P)= µ(2P)= 2.

The case of semistable reduction, corresponding to reduction type [Im1− Im2− l]
(see Figure 5) deserves special attention. Here l ≥ 1, by the discussion above. Note
that m1 = 0 (or m2 = 0) is possible; in that case A (or E) is a curve of genus 1 and
there are no components Bi (or Di ). If m1= 1 (or m2= 1), then A (or E) is a nodal
curve (again there are no Bi or Di ). After perhaps an unramified quadratic extension,
we can assume that all components in the “chain” that connects the two polygons in
the special fiber of Cmin are defined over k. There are then l + 1 different (meaning
pairwise nonisomorphic over O) minimal Weierstrass models of the curve; compare
the proof of Lemma 5.4. Explicitly, these models can be taken to have the form

C j : Y 2
+ (h0π

3 j Z3
+ h1π

j Z2 X + h2π
l− j Z X2

+ h3π
3(l− j)X3)Y

= f0π
6 j Z6
+ f1π

4 j X Z5
+ f2π

2 j X2 Z4
+ X3 Z3

+ f4π
2(l− j)X4 Z2

+ f5π
4(l− j)X5 Z + f6π

6(l− j)X6 (10-1)
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for j = 0, 1, . . . , l, where

y2
+ h1xy+ h0 y = x3

+ f2x2
+ f1x + f0

and
y2
+ h2xy+ h3 y = x3

+ f4x2
+ f5x + f6

are minimal Weierstrass equations of elliptic curves of reduction types Im1 and Im2 ,
respectively. Such a model corresponds to the vertex Cj of the reduction graph
(where we set C0 = A and Cl = E); the corresponding component of the special
fiber of Cmin is the one that is visible in the special fiber of C j . The valuation of
the discriminant of C j is m1+m2+ 12l and does not depend on j.

A simple path in R(C) is a subgraph that is a tree without vertices of valency ≥ 3.
Let P1, P2 ∈ C(k) reduce to components 01 and 02 of the special fiber of Cmin,
respectively. Consider the model C j of C . If there is a simple path from 01 to 02

in the reduction graph that passes through Cj , then we say that C j lies between
P1 and P2. We denote the µ-function computed with respect to C j by µj .

Proposition 10.5. Assume that C has semistable reduction of type [Im1 − Im2 − l].
Let P1, P2 ∈ C(k) be points reducing to components 01 and 02 of the special fiber
of Cmin and let j ∈ {0, 1, . . . , l}. Define jmin and jmax to be the smallest and largest
j ′ ∈ {0, 1, . . . , l} such that C j ′ lies between P1 and P2. Let P =[(P1)−(P2)] ∈ J (k).
Then

r(01, 02)+ jmax− jmin ≤ µj (P)≤ r(01, 02)+ | j − jmax| + | j − jmin|.

If C j lies between P1 and P2, then the inequalities are equalities.

Proof. First note that the last statement follows from the first, since jmin ≤ j ≤ jmax

implies jmax− jmin = | j − jmax| + | j − jmin|.
Let B0 = Bm1 = A and D0 = Dm2 = E . We prove a number of lemmas.

Lemma 10.6. If j = jmax = jmin ∈ {0, l}, then µj (P)= r(01, 02).

Proof. We assume that j = jmax = jmin = l; the other case is analogous. Then
01 and 02 are both of the form Di , and we consider the model Cl . We first claim that
µ(P)= 0 if 01 = 02, but the images of P1 and P2 on 01 are distinct. This is clear
if 01 = D0 = E , since in this case P is in the image of α; compare Lemmas 7.1
and 7.2. Otherwise, we note that the points with nonzero multiplicity on the special
fiber of Cl have multiplicities 1, 2 and 3. Transforming the equation over O if
necessary, we can assume that its reduction is case 7 in Table 1 of [Stoll 2002] or
(if the residue characteristic is 2) case 5 in Table 2 here.

Recall that 01 = 02 = Di , where we can assume 0 < i ≤ 1
2 m2. Applying a

transformation, we may assume that the points P1= (ξ1 : η1 : 1) and P2= (ξ2 : η2 : 1)
both reduce to (0 : 0 : 1) modulo π and that m2=min{v( f0), 2v( f1)}. First suppose



2198 Jan Steffen Müller and Michael Stoll

that i < 1
2 m2. We then have v(ξ1) = v(ξ2) = v(ξ1 − ξ2) = i . Normalizing the

Kummer coordinates x of P so that x1 = 1, we can check that v(x2) and v(x3)

are positive, but that v(x4) = 0. This follows because 01 = Di = 02 implies that
v( f2ξ1ξ2+ 2η1η2)= 2i if char(k) 6= 2 and H = 0 and that v(ξ1η2+ ξ2η1)= 2i if
char(k)= 2. By a similar argument, the reduction of the image of P on the Kummer
surface has nonvanishing last coordinate if m2 is even and i = 1

2 m2. According to
the tables, this implies that ε(P)= 0 and therefore also µ(P)= 0.

Now consider the case that 01 and 02 do not necessarily coincide. The con-
siderations above imply that the assumptions of Proposition 8.5 are satisfied with
µ1 = µ2 = 0 (where we use Lemma 3.7 for the first assumption); the proposition
then establishes the claim. �

Lemma 10.7. Assume that 01 = 02 = Cj with 0< j < l. Then µj (P)= 0.

Proof. In this case, P is in the image of α, so the claim follows by Proposition 7.3. �

Note that Lemmas 10.6 and 10.7 establish the claim of Proposition 10.5 in all
cases such that j = jmin = jmax.

Lemma 10.8. Assume that both C j and C j+1 lie between P1 and P2, where 0≤ j < l.
Then µj (P)= µj+1(P).

Proof. Let τ : (ξ : η : ζ ) 7→ (πξ : η : π−1ζ ); then τ gives an isomorphism from the
generic fiber of C j to that of C j+1. The induced map on Kummer coordinates is

(x1, x2, x3, x4) 7→ (π−2x1, x2, π
2x3, x4);

we have v(τ) = 0. Since both C j and C j+1 lie between P1 and P2, assuming
that 01 is to the left and 02 to the right of Cj and Cj+1, we must have that the
x-coordinate of P1 on C j does not reduce to infinity, whereas that of P2 does. For
normalized Kummer coordinates x = (x1, x2, x3, x4) of P on the Kummer surface
associated to C j , this implies v(x2)= 0 (the point is not in the kernel of reduction,
so v(x4)≥min{v(x1), v(x2), v(x3)}) and v(x1) > 0. Comparing valuations in the
equation of C j , we see that P2 = (1 : η : ζ ) must have v(ζ ) ≥ 2, which implies
v(x1) ≥ 2. It follows that v(τ(x)) = 0 = v(x). By Corollary 4.6 we also have
λ̂(τ (x))= λ̂(x) (recall that v(τ)= 0). Since

−v(x)−µj (P)= λ̂(x)= λ̂(τ (x))=−v(τ(x))−µj+1(P),

the claim follows. �

Lemma 10.9. If C j lies between P1 and P2, then µj (P) depends only on 01 and 02.

Proof. Let P ′1, P ′2 ∈ C(k) be points also mapping to 01 and 02, respectively. We
assume without loss of generality that 01 is to the left of 02. By Lemma 10.6 or
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Lemma 10.7, we have that µjmin([(P1)− (P ′1)]) = 0 and µjmax([(P2)− (P ′2)]) = 0.
Using Lemmas 10.8 and 3.7, we obtain

µj ([(P ′1)− (P
′

2)])= µjmin([(P
′

1)− (P
′

2)])= µjmin([(P1)− (P ′2)])

= µjmax([(P1)− (P ′2)])= µjmax([(P1)− (P2)])= µj (P). �

Lemma 10.10. Let P ′1, P ′2 ∈ C(k) be points mapping to distinct points on the same
component of the special fiber of Cmin and let P ′ = [(P ′1)− (P

′

2)] ∈ J (k). Let j0 be
the unique index such that C j0 lies between P ′1 and P ′2. Then µj (P ′)= 2| j − j0|.

Proof. By Lemmas 10.6 and 10.7, we have µj0(P
′) = 0. Since the images of P ′1

and P ′2 on the special fiber of Cmin are distinct, P ′ is not in the kernel of reduction
with respect to C j0 . If

x ( j0) =
(
x ( j0)

1 , x ( j0)
2 , x ( j0)

3 , x ( j0)
4

)
are normalized Kummer coordinates for P ′ on the Kummer surface associated
to C j0 , we therefore have

0= v(x ( j0))=min
{
v(x ( j0)

1 ), v(x ( j0)
2 ), v(x ( j0)

3 )
}
.

Applying a suitable power of τ (see the proof of Lemma 10.8), we find that

x ( j)
=
(
π2( j0− j)x ( j0)

1 , x ( j0)
2 , π2( j− j0)x ( j0)

3 , x ( j0)
4

)
are (not necessarily normalized) Kummer coordinates for P ′ on the Kummer surface
associated to C j . For definiteness, assume that j > j0, the case j = j0 being clear.
Similarly to the proof of Lemma 10.8, we find that 0= v(x ( j0))= v(x ( j0)

1 ), which
implies that v(x ( j))=−2( j − j0). In the same way as in the proof of Lemma 10.8,
we deduce µj (P ′)= 2( j − j0)= 2| j − j0|. �

To continue the proof of the proposition, we now first consider the case that C j lies
between P1 and P2. In this case, Lemmas 10.9 and 10.10 show that the assumptions
in Proposition 8.5 hold with µ1= 2| j− jmin| and µ2= 2| j− jmax| or conversely. So
the statement follows from Proposition 8.5 and | j− jmax|+| j− jmin| = jmax− jmin.

Now assume that C j does not lie between P1 and P2. We assume for definiteness
that j > jmax. For normalized Kummer coordinates x ( jmax) for P = [(P1)− (P2)]

on the Kummer surface associated to C jmax , we have

v(x ( jmax)

2 )≤min
{
v(x ( jmax)

1 ), v(x ( jmax)

3 )
}
;

compare the proof of Lemma 10.8 above. Then x ( j)
= τ j− jmax(x ( jmax)) are Kummer

coordinates for [(P1)− (P2)] on the Kummer surface associated to C j , and we have

v(x ( jmax))− 2( j − jmax)≤ v(x ( j))≤ v(x ( jmax)).
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It follows that

µj (P)−µjmax(P)=
(
−λ̂(x ( j))− v(x ( j))

)
−
(
−λ̂(x ( jmax))− v(x ( jmax))

)
= v(x ( jmax))− v(x ( j)) ∈ {0, 1, . . . , 2( j − jmax)}.

As µjmax(P) = r(01, 02)+ jmax − jmin by the case already discussed, the result
follows, and the proof of Proposition 10.5 is finished. �

Corollary 10.11. Let C be a stably minimal Weierstrass model of C with discrimi-
nant 1; assume that C has reduction type [Im1 − Im2 − l] with l > 0. As usual, let

β(C)=max{µ(P) : P ∈ J (k)} and β̄(C)=max{µ(P) : P ∈ J (k̄)},

where µ is computed with respect to C. Then we have

β(C)≤ β̄(C)= 1
4(m1+m2)+ 2l < 1

4v(1) and β̄ ≥ 1
6v(1).

Proof. The assumption on the reduction type implies that the model is equiv-
alent to one of the form (10-1). Proposition 10.5 then gives upper bounds for
µ([(P1) − (P2)]), with P1, P2 ∈ C(k̄), depending on the images 01 and 02 of
P1 and P2 in the reduction graph. The maximizing case occurs for 01 = Bm1/2 and
02 = Dm2/2, giving

µ([(P1)− (P2)])= r(Bm1/2, Dm2/2)+ l = 1
4 m1+ l + 1

4 m2+ l.

For the remaining inequalities, recall that v(1)=m1+m2+ 12l and that l > 0. �

We state a technical lemma which will be needed for the proof of Theorem 10.13.

Lemma 10.12. Suppose that the residue characteristic of k is not 2. Consider a
degenerate Weierstrass equation of the form

C : Y 2
= f0 Z6

+ f1 X Z5
+ f2 X2 Z4

+ X3 Z3

and let
E : y2

= f0+ f1x + f2x2
+ x3

be an elliptic Weierstrass equation. If Q1 = (x1, y1) and Q2 = (x2, y2) are points
in E(k), then P1 = (x1 : y1 : 1) and P2 = (x2 : y2 : 1) are points in C(k), and if
x1, x2 ∈O, then µC([(P1)− (P2)])≤ µE(Q1− Q2).

Here µE is the height correction function for the elliptic curve E , and µC denotes
the height correction function defined in the same way as µ in the smooth case in
terms of the equation C.

Proof. Let δC= (δC,1, δC,2, δC,3, δC,4) be the duplication polynomials on the Kummer
surface associated to C, and let δE = (δE,1, δE2) be the duplication polynomials for
the numerator and denominator of the x-coordinate associated to E . Then a generic
computation shows that, if (ξ1 : ξ2 : ξ3 : ξ4) is the image of [(P1) − (P2)] on
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the Kummer surface, we have (ξ4 : ξ1) = x(Q1 − Q2). In addition, we find that
δC,1(ξ1, ξ2, ξ3, ξ4)= δE,2(ξ4, ξ1) and δC,4(ξ1, ξ2, ξ3, ξ4)= δE,1(ξ4, ξ1) (as polynomi-
als in the ξ j ).

That P1, P2 ∈ C(k) is obvious from the equations. For the last statement, we
observe that min{v(ξ1), v(ξ2), v(ξ3), v(ξ4)} =min{v(ξ1), v(ξ4)} (this is where we
use that x1 and x2 are integral), which implies

µC([(P1)− (P2)])= lim
n→∞

4−nv(δ◦nC (ξ))− v(ξ)

≤ lim
n→∞

4−nv(δ◦nE (ξ4, ξ1))−min{v(ξ1), v(ξ4)}

= µE(Q1− Q2). �

The following consequence is useful for practical purposes. For simplicity, we
state it for the case of residue characteristic 6= 2, but we expect that the statement
remains true for residue characteristic 2.

Theorem 10.13. Suppose that the residue characteristic of k is not 2. Let C be a
stably minimal Weierstrass model of C such that C has reduction type [K1−K2−l].
Then

β(C)≤ β(K1)+β(K2)+ 2l,

where β(K) denotes the maximum of µ for an elliptic curve of reduction type K,
taking the action of Frobenius into account. (See Table 1 in [Cremona et al. 2006]
for the values of β(K).)

Proof. We may assume that the point(s) of multiplicity 3 on the special fiber are
defined over k, at the cost of an at most quadratic unramified extension of k. Then
we can move these points to have x-coordinates 0 and ∞, respectively, and so
we can assume that our model C is as in Lemma 10.1. Let P ∈ J (k); we write
P = [(P1)− (P2)] with points P1, P2 ∈C(k ′) for a finite extension k ′ of k such that
the reduction of C over k ′ is semistable. We can find C0, C= C j and Cl as vertices in
the reduction graph of the minimal proper regular model of C over k ′. Then the part
of the graph to the left of C0 corresponds to the reduction graph of E1 over k ′, in the
sense that we consider a semistable model that dominates E1 (and is minimal with
that property); the graph then is either a line segment (potentially good reduction) or
a line segment joined to a circle (potentially multiplicative reduction), with E1 corre-
sponding to the end of the line segment joined to the remaining graph of C. Similarly,
the part of the graph to the right of Cl corresponds to the reduction graph of E2 over k ′.

Now assume that both P1 and P2 map (strictly) to the left of C0 in the reduction
graph. This means that the x-coordinates of the points have positive valuation. We
can then find points P ′1 and P ′2 in E1(k ′)with the same x-coordinates as P1 and P2 and
nearby y-coordinates. Then P ′1−P ′2 is in E1(k) and P ′1 and P ′2 have the same images
as P1 and P2 in the reduction graph. By our previous results for the semistable
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case, the value of (or at least the upper bound given in Proposition 10.5 for) µ0(P)
depends only on the part of the graph to the left of C0. We can therefore let l tend
to infinity; then Lemma 10.12 and the discussion preceding Lemma 10.3 show that
µ0(P) is bounded by the value of µE1 on the difference P ′1− P ′2. By the arguments
in the proof of Proposition 10.5, we have

µC(P)= µj (P)≤ µ0(P)+ 2 j ≤ β(K1)+ 2l.

The case that P1 and P2 both map to the right of Cl is similar.
If (say) P1 maps to the left of C0 and P2 maps to the right of C0, but not to the

right of Cl , then by the formula of Proposition 10.5, we can bound µC(P) by µ1+2l,
where µ1 comes from the part of the graph between P1 and C0. By an argument
similar to the one used in the previous paragraph, µ1 can be bounded by µE1(P

′

1),
where P ′1 is the point on E1 corresponding to P1 and we take the second point to
be on the component visible in C0. If P2 maps to the right of Cl , then we similarly
obtain a bound of the form µ1 +µ2 + 2l ≤ β(K1)+ β(K2)+ 2l. The remaining
cases are similar or follow directly from Proposition 10.5. �

The example in Section 19 demonstrates the effect of the improved bounds on β
as given in the preceding section. For other examples the bounds established in this
section will be similarly useful.

11. General upper and lower bounds for β̄

In this section we derive an upper bound for the geometric height constant β̄(C) in
the general case by reducing to the semistable situation. We also give a lower bound
of the same order of magnitude. We note the following consequence of the results
obtained so far; see the discussion at the end of Section 9 and Corollary 10.11.

Corollary 11.1. Assume that C is a stably minimal Weierstrass model of C over k
and that the minimal proper regular model Cmin of C over k has semistable reduction.
Denoting the discriminant of C by 1 and writing β̄(C)=max{µC(P) : P ∈ J (k̄)},
where µC denotes µ with respect to the model C and J is the Jacobian of C , we have

1
6v(1)≤ β̄(C)≤

1
4v(1).

When Cmin does not have semistable reduction, the idea is to pass to a suitable
field extension k ′/k and apply Corollary 11.1 over k ′. In order to compare the
corresponding geometric height constants β̄, we need to analyze how µ changes
under minimization. We first prove the following key lemma:

Lemma 11.2. There exists a transformation τ : C→ C′, defined over k, such that C′

is a minimal Weierstrass model and

v(τ(x))+ v(τ)≤ v(x) for all x ∈ KSA.



Canonical heights on genus-2 Jacobians 2203

Proof. If C is already minimal, then there is nothing to prove. Otherwise, [Liu 1996,
Remarque 11] implies that we can compute a minimal Weierstrass model by going
through the following steps for finitely many points P on the special fiber of C.

(a) Move P to (0, 0).

(b) Scale x by 1/π .

(c) Replace C by the normalization of the resulting model.

As transformations of the form (a) do not change v(x) and have determinant of
valuation 0, it suffices to prove

v(τ(x))+ v(τ)≤ v(x) for all x ∈ KSA

for a transformation τ =σ ◦ρ, where ρ is as in (b) and σ is as in (c). Note that such a
transformation decreases the valuation of the discriminant; cf. [Liu 1996, Lemme 9,
Corollaire 2]. By the discussion following Proposition 4.4, the transformation ρ
maps x ∈ KSA to (πx1, x2, π

−1x3, π
3x4).

Suppose v(2) = 0 and, without loss of generality, H = 0. According to [Liu
1996, Remarque 2], the normalization can be computed using the transformation σ
mapping an affine point (ξ, η) to σ(ξ, η)= (ξ, ηπ−s) for some nonnegative integer s.
As v(τ)=3−2s, we must have s≥2, since otherwise τ would increase the valuation
of the discriminant. Because τ(x) = (πx1, x2, π

−1x3, π
3−2s x4) for x ∈ KSA, we

find that v(τ(x))≤ v(x)+ 1, implying

v(τ(x))+ v(τ)− v(x)≤−2s+ 4≤ 0.

The case v(2) > 0 is slightly more complicated. Here one computes the normaliza-
tion by repeatedly applying transformations

(ξ, η) 7→

(
ξ,
η+ R(ξ, 1)

π

)
, (11-1)

where R ∈O[X, Z ] is a certain cubic form, until the minimum of the valuations of
the coefficients of F + RH − R2 is equal to 1. See [Liu 1996, Remarque 2]. Such
a transformation maps Kummer coordinates x = (x1, x2, x3, x4) to

(x1, x2, x3, π
−2x4+ l1x1+ l2x2+ l3x3)

and the expressions for the li given in Section 4 show that v(li )≥−2 for all i . As
the determinant of a transformation (11-1) has valuation −2, we need to apply at
least two such transformations, because otherwise the valuation of the discriminant
would increase. In other words, σ = σs ◦ · · · ◦ σ1, where s ≥ 2 and every σi is of
the form (11-1).

By the properties of the transformations (11-1), it suffices to show the desired
inequality for the case s = 2, since further applications of transformations σi will
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only make the left-hand side of the desired inequality smaller and will not change
the right-hand side. So suppose that σ = σ2 ◦ σ1; then τ = σ ◦ ρ maps x ∈ KSA to

τ(x)=
(
πx1, x2, π

−1x3, π
−1x4+πl1x1+πl2x2+πl3x3+πl ′1x1+l ′2x2+π

−1l ′3x3
)
,

where the li arise from σ1 and the l ′i arise from σ2. As v(τ)=−1, it clearly suffices
to prove that

v(τ(x))≤ v(x)+ 1. (11-2)

But if (11-2) is false, then v(x)= v(x4) <min{v(x1), v(x2)+1, v(x3)+2}. In this
situation it follows from the lower bounds v(li )≥−2 and v(l ′i )≥−2 that we get

v
(
πl1x1+πl2x2+πl3x3+πl ′1x1+ l ′2x2+π

−1l ′3x3
)
> v(x4)− 1.

This implies (11-2) and therefore finishes the proof of the lemma. �

Theorem 11.3. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model C. Then we have

β̄(C)≤ 1
4v(1(C)).

Proof. By Lemma 5.4 there is a finite extension k ′/k such that the minimal proper
regular model of C over k ′ is semistable and such that all minimal Weierstrass
models of C over k ′ are stably minimal. By Corollary 11.1, the claim therefore
holds for any minimal Weierstrass model of C over k ′.

It follows from Lemma 11.2 that there is a transformation τ : C→ C′ defined
over k ′ such that C′ is a minimal (and hence stably minimal) Weierstrass model
over k ′ and such that

v(τ(x))+ v(τ)≤ v(x) (11-3)

for all x ∈ KSA.
Then, by the above, we have

µ(τ(x))≤ 1
4v(1(C

′)).

Now using Corollary 4.6 and the relation (4-2), we find

µ(x)= µ(τ(x))− v(x)+ v(τ(x))− v(τ)

≤
1
4v(1(C

′))− v(x)+ v(τ(x))− v(τ)

=
1
4v(1(C))− v(x)+ v(τ(x))+

3
2v(τ)

≤
1
4v(1(C)),

where we have used (11-3) and v(τ)≤ 0. �
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Remark 11.4. When the residue characteristic is not 2, then we can easily show
that β̄(C) is indeed always comparable to v(1(C)). We can assume that H = 0 and
write F = cF0 with F0 primitive. We consider the points of order 2 on J. Such
a point P is given by a factorization F0 = G1G2 with G1 and G2 primitive of
degrees 2 and 4, respectively. An explicit computation shows that

ε(P)= 4v(c)+ 2v(R(P)),

where R(P) denotes the resultant of G1 and G2, and we have 4µ(P)= ε(P). Since
v(1(C))= v(disc(F))= 10v(c)+ v(disc(F0)) and 4v(disc(F0)) is the sum of the
valuations of the 15 resultants R(P), we find that

β̄(C)≥ 1
4 max

O 6=P∈J [2]
(4v(c)+ 2v(R(P)))≥ v(c)+ 1

30

∑
O 6=P∈J [2]

v(R(P))

= v(c)+ 2
15v(disc(F0))≥

1
10v(1(C)).

A similar statement should be true when the residue characteristic is 2.

Recall that we denote max{ε(P) : P ∈ J (k̄)} by γ̄ (C).

Corollary 11.5. Let C be a smooth projective curve of genus 2 defined over a nonar-
chimedean local field k, given by an integral Weierstrass model C. Then we have

γ̄ (C)≤ v(1(C)).

If H = 0 and char(k) 6= 2, then this can be improved to

γ̄ (C)≤ v(2−41(C)).

Proof. The first inequality follows from ε(P)= 4µ(P)−µ(2P) and Theorem 11.3.
The second inequality is Theorem 6.1 of [Stoll 1999]. �

Question 11.6. If C is a minimal Weierstrass model, does β̄(C) only depend on the
special fiber of Cmin?

Note that the corresponding statement holds for elliptic curves [Cremona et al.
2006]. In our situation, however, there may be several nonisomorphic minimal
Weierstrass models, which complicates the picture.

Part III. Efficient computation of canonical heights

In this part we show how to compute the canonical height ĥ(P) efficiently for
a point P over a number field, global function field or more general field with a
system of absolute values as in Section 2. We first explain how to compute the local
height correction functions. We use M(d) to denote the time needed to multiply
two d-bit integers.
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12. Computing µ at nonarchimedean places

In this section, k is a nonarchimedean local field again, with valuation ring O,
uniformizer π , normalized valuation v and residue class field k. Let C be an integral
Weierstrass model for a genus-2 curve C over k. We make no assumptions on the
reduction type of C . We already discussed a method for the computation of µ(P)
for a given point P ∈ J (k) in Section 3. In this section, we provide an alternative
fast algorithm and show that its running time is

� (log v(1))M
(
(log v(1))v(1)(log #k)

)
,

where 1=1(C).

Lemma 12.1. Assume that M is a positive integer such that Mµ(P) ∈ Z. Further
assume that max{ε(P) : P ∈ J (k)} ≤ B. Then

µ(P)=
1
M

⌈
M

⌊
log
( 1

3 BM
)
/ log 4

⌋∑
n=0

4−n−1ε(2n P)
⌉
.

Proof. This follows from Mµ(P) ∈ Z and from

0≤ M
∑
n≥m

4−n−1ε(2n P)≤
BM

3 · 4m . �

If we know that the reduction is nodal, then we get an upper bound B for ε(P) and
all possible denominators of µ(P) from the results of Section 9. More generally, if
we know the smallest positive period N of the sequence (µ(nP))n , then we can take
M = N (respectively, M = 2N ) if N is odd (respectively, even) by Corollary 3.11.
Also note that we can always take B = v(1) (or even B = v(2−41) if char(k) 6= 2
and the equation of the curve has H = 0); see Corollary 11.5.

If we only know an upper bound for the denominator of µ(P), then the following
alternative approach can be used. This is analogous to [Müller and Stoll 2016,
Lemma 4.2].

Lemma 12.2. Assume that M ≥ 2 is an integer such that M ′µ(P) ∈ Z for some
0< M ′ ≤ M. Assume in addition that max{ε(P) : P ∈ J (k)} ≤ B, and set

m =
⌊

log
( 1

3 BM2
)

log 4

⌋
.

Then µ(P) is the unique fraction with denominator less than or equal to M in the
interval [µ0, µ0+ 1/M2

], where

µ0 =

m∑
n=0

4−n−1ε(2n P).
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Proof. Note that

µ0 ≤ µ(P)≤ µ0+
∑
n>m

4−n−1 B < µ0+
1

M2 .

But since M ≥ 2, the interval [µ0, µ0+ 1/M2
] contains at most one fraction with

denominator bounded by M ; by assumption, µ(P) is such a fraction. �

In order to apply Lemma 12.2, we now find a general upper bound M on the
possible denominators of µ. Let J denote the Néron model of J over S = Spec(O)
and write 8 for the component group of J.

Proposition 12.3. Let N denote the exponent of 8(k̄) and let P ∈ J (k). Then we
have

µ(P) ∈
1

2N
Z.

If N is odd or if C has a knr-rational Weierstrass point, then we have

µ(P) ∈
1
N

Z.

Proof. Let i ∈ {1, . . . , 4} be such that κi (P) 6= 0. Recall from Lemma 8.2 that the
function λ̂i = λ̂ ◦ (κ/κi ) is a Néron function with respect to the divisor Di . As
P /∈ supp Di , we find

µ(P)≡ λ̂(x)≡ λ̂i (P) (mod Z)

for any set of Kummer coordinates x for P. It follows from the results of [Néron
1965] and [Lang 1983, §11.5] that

λ̂i (P)≡ j (Di , (P)− (O)) (mod Z),

where j ( · , · ) denotes Néron’s bilinear j-pairing, defined in [Néron 1965, §III.3].
By [Néron 1965, Proposition III.2], the values of the j -pairing lie in 1

2N ′Z, where
N ′ = #8(k̄). It is easy to see that we can replace N ′ by the exponent N in the proof
of [Néron 1965, Proposition III.2], so the first statement of the proposition follows.

For the second statement, note that the j-pairing takes values in 1
N Z if N is

odd, again by [Néron 1965, Proposition III.2] and its proof. If C has a knr-rational
Weierstrass point P0, then the divisor Di is linearly equivalent over knr to 22P0 ,
where 2P0 is the theta divisor with respect to P0. The Néron model does not change
under unramified extensions, and µ(P) mod Z does not depend on the Weierstrass
model of C by Corollary 4.6. Hence we can assume that i = 1 and D1 = 22P0 , so
the linearity of the j-pairing in the first variable proves the claim. �

Remark 12.4. In the notation of [Namikawa and Ueno 1973], the only reduction
types for which Proposition 12.3 does not show that µ(P) ∈ 1

N Z (where N is the
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exponent of 8(k̄)), are [2III− l] and [2III∗ − l] for l ≥ 0; [2I∗n − l] for n, l ≥ 0;
and [2In − l] for n > 0 even and l ≥ 0. We have not found an example where
µ(P) /∈ 1

N Z.

We can compute the group 8(k̄) in practice using [Bosch et al. 1990, §9.6]. For
this we need to know the intersection matrix of the special fiber of a regular model
of C over S. This is implemented in Magma, but can be rather slow. If the residue
characteristic is not 2, then we can apply Liu’s algorithm [1994] to compute the
reduction type and read off 8(k̄).

In general, an upper bound for the exponent of8(k̄) suffices to apply Lemma 12.2.
We give a bound which only depends on the valuation of the discriminant1=1(C).

Lemma 12.5. The exponent of 8(k̄) is bounded from above by

M :=max
{
2,
⌊ 1

3v(1)
2⌋}.

Moreover, the denominator of µ(P) is bounded from above by M for all P ∈ J (k).

Proof. This follows from a case-by-case analysis, using the list of groups 8(k̄)
from [Liu 1994, §8] for all reduction types in [Namikawa and Ueno 1973], and
Proposition 12.3. �

Remark 12.6. By going through all reduction types, it is possible to obtain better
upper bounds for the denominator M ′ of µ(P) from the Igusa invariants discussed
in Section 6. First note that if the special fiber of C is nonreduced, then we have

(i) M ′ ≤ 4 if v(1)≤ 12,

(ii) M ′ ≤max{12, v(1)− 15} otherwise.

Suppose that C is reduced; then, by Proposition 6.2, we can use the Igusa invariants
of the special fiber to distinguish between the multiplicities of its singularities.

(i) If all points on the special fiber of C have multiplicity at most 2, then we can
bound M ′ using Proposition 6.3(i)–(iii) and Propositions 9.1, 9.3, and 9.4.

(ii) If there is a point of multiplicity 3 on the special fiber, then we have
• M ′ ≤min{6, v(1)+ 1} if v(1)≤ 10,
• M ′ ≤ 12 if v(1)≤ 20,
• M ′ ≤

⌊1
4(v(1)− 12)2

⌋
otherwise.

(iii) If there is a point of multiplicity ≥ 4 on the special fiber, then we have
• M ′ ≤ 3v(1)− 10 if v(1)≤ 10,
• M ′ ≤ 4v(1)− 20 if v(1) > 10 and the model is minimal,
• M ′ ≤

⌊1
3(v(1)− 10)2

⌋
if the model is not minimal.

The results of this section lead to an efficient algorithm for the computation
of µ(P), which is analogous to Algorithm 4.4 of [Müller and Stoll 2016]. We
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assume that the coefficients of F and H and the coordinates of P are given to
sufficient v-adic precision (in practice, they will be given exactly as elements of a
number field or function field).

1. If char(k) 6= 2 and H = 0, set B := v(2−41). Otherwise, set B := v(1).

2. Set M :=max
{
2,
⌊ 1

3v(1)
2
⌋}

.

3. Set m :=
⌊

log
( 1

3 BM2
)
/ log 4

⌋
.

4. Set µ0 := 0. Let x be normalized Kummer coordinates for P with (m+1)B+1
v-adic digits of precision.

5. For n := 0 to m do:

a. Compute x ′ := δ(x) (to (m+ 1)B+ 1 v-adic digits of precision).
b. If v(x ′)= 0, then return µ0.
c. Set µ0 := µ0+ 4−n−1v(x ′).
d. Set x := π−v(x

′)x ′.

6. Return the unique fraction with denominator at most M in the interval between
µ0 and µ0+ 1/M2.

The fraction in the final step can be computed easily, for instance, using continued
fractions.

For the complexity analysis in the following proposition, we assume that elements
of O are represented as truncated power series in π , whose coefficients are taken
from a complete set of representatives for the residue classes. Operations on these
coefficients can be performed in time�M(log #k).

Proposition 12.7. The algorithm above computes µ(P). Its running time is

� (log v(1))M
(
(log v(1))v(1)(log #k)

)
as v(1)→∞, with an absolute implied constant.

Proof. The following proof is analogous to the proof of [Müller and Stoll 2016,
Proposition 4.5]. Corollary 11.5 shows that B is a suitable upper bound for ε and
Lemma 12.5 shows that M is an upper bound for the denominator of µ. Because
M ≥ 2, the loop in step 5 computes the sum in Lemma 12.2. Note that when
v(x ′)= 0 in step 5b, we have µ(P)= µ0 by Theorem 3.10. At each duplication
step, the precision loss is ε(2n P)≤ B, so that with our choice of starting precision,
after the m+1 steps in the loop the resulting x still has at least one digit of precision.
This proves the correctness of the algorithm.

Clearly the running time of the algorithm is dominated by the running time of
the loop in step 5. Step 5a consists of a fixed number of additions and multipli-
cations of elements of O which are given to a precision of (m + 1)B + 1 digits.
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Because steps 5b–5d take negligible time compared to step 5a, each pass through
the loop takes

�M
(
((m+ 1)B+ 1)(log #k)

)
operations, leading to a total running time that is

� (m+ 1)M
(
((m+ 1)B+ 1)(log #k)

)
� m M(m B(log #k))

� (log v(1))M
(
(log v(1))v(1)(log #k)

)
as v(1)→∞. Here we use that B�v(1) and M�v(1)2, so that m� log v(1). �

Remark 12.8. In step 2, we can use Remark 12.6 to compute a sharper upper
bound for the denominator of µ. See also the discussion following Remark 12.4.
Of course, if we want to find µ(P) for several points P, the quantities M, B and m
only have to be computed once.

Remark 12.9. We can compute µ(P) using the algorithm above in more general
situations. Suppose that k is any discretely valued field with valuation ring O and
uniformizer π . In that case, the sequence (µ(nP))n might not have a finite period,
so the method for the computation of µ(P) discussed in Section 3 might not be
applicable. However, Lemmas 12.1, 12.2 and 12.5 and Proposition 12.3 remain
valid. If char(k) 6= 2 and if H = 0, then we have the upper bound ε(P)≤ v(2−41)

(cf. Remark 3.2), so the algorithm above can be used and Proposition 12.7 remains
valid as well, in the sense that the computation can be done using � log v(1)
operations with elements of O/πnO, where n� v(1) log v(1). In the remaining
cases, we can compute an upper bound B on ε as in Remark 3.2, and we can apply
the algorithm with this choice of B.

13. Computing µ at archimedean places

In this section, k is an archimedean local field, so k = R or k = C. We assume that
the curve C is given by a Weierstrass equation C with H = 0. In the following,
log+ x =max{0, log x}.

Let x ∈ k4 be a set of Kummer coordinates. Recall that

ε̃(x)=−[k : R](log ‖δ(x)‖∞− 4 log ‖x‖∞)

and

µ̃(x)=
∞∑

n=0

4−n−1ε̃(δ◦n(x)).

We easily obtain a lower bound for ε̃ using the standard estimate for ‖δ(x)‖∞.
Since the coefficients of the duplication polynomials δj are universal polynomials
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of degree at most 4 in the coefficients of F, this gives

−ε̃� 1+ log+‖F‖∞,

where ‖F‖∞ is the maximum norm of the coefficient vector of F. We recall that
the method described in Section 7 of [Stoll 1999], leading to equation (7.1) there,
provides an upper bound γ̃ for ε̃ that can be explicitly computed for any given
Weierstrass equation C of the curve (provided H = 0). It is given by

γ̃ = log max
i

(∑
{S,S′}
|ai,{S,S′}|

√∑
1≤ j≤4

|b{S,S′}, j |

)2

≤ log 400+ 2 log max
i,{S,S′}

|ai,{S,S′}| + log max
{S,S′}, j

|b{S,S′}, j |

with certain numbers ai,{S,S′}, b{S,S′}, j , where i, j ∈ {1, 2, 3, 4} and {S, S′} runs
through the ten partitions of the set of roots of F into two sets of three. Using the
formulas in [Stoll 1999, §10] and Mignotte’s bound (see, for example, [von zur
Gathen and Gerhard 1999, Corollary 6.33]), we see that

log max
{S,S′}, j

|b{S,S′}, j | � 1+ log+‖F‖∞

and
log max

i,{S,S′}
|ai,{S,S′}| � 1+ log+‖F‖∞+ log+max

{S,S′}
|R(S, S′)|−1,

where R(S, S′) is the resultant of the two factors G, G ′ of F corresponding to the
partition of the roots. Using Mignotte’s bound again, we find that

|R(S, S′)|−1
=

√
|disc G| |disc G ′|
√
|disc F |

� ‖F‖2
∞
|1(C)|−1/2,

leading finally to the estimate

|ε̃| � 1+ log+‖F‖∞+ log+ |1(C)|
−1
=: s(F).

If |ε̃(x)| ≤ η̃ for all x ∈ KSA, then we have∣∣∣∣∑
n≥N

4−n−1ε̃(δ◦n(x))
∣∣∣∣≤ 1

3 η̃4−N ,

so we need to sum the first

N =
⌈

d
2
+

log
(1

3 η̃
)

log 4

⌉
� d + log s(F)

terms to obtain an accuracy of 2−d. Comparing the largest term in any of the δj and
the lower bound on ‖δ(x)‖∞, we obtain a bound θ̃ on the loss of relative precision
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(in terms of bits) in the computation of δ(x); we have θ̃ � s(F). To achieve the
desired precision at the end, we therefore need to compute with an initial precision of

d + 1+ N θ̃ � (d + log s(F))s(F)

bits. The time needed for each duplication is then

�M((d + log s(F))s(F)).

A logarithm can be computed to d bits of precision in time� (log d)M(d) by one
of several quadratically converging algorithms (see, for example, [Borwein and
Borwein 1987, Chapter 7]), so we obtain the following result.

Proposition 13.1. Given Kummer coordinates x of a point P in J (k) (or KS(k)) to
sufficient precision, we can compute µ̃(P) to an accuracy of d bits in time

� (d + log s(F))(log d)M((d + log s(F))s(F)),
where

s(F)= 1+ log+‖F‖∞+ log+ |1(C)|
−1.

In the applications, k will be the completion of a number field at a real or
complex place. If the number field is Q and the given equation C of C is integral,
then |1(C)| ≥ 1 and we have s(F)= 1+log ‖F‖∞= 1+h(F), where h(F) denotes
the (logarithmic) height of the coefficient vector of F as a point in affine space. In
general, we have the estimate (denoting the value of s(F) for a place v by sv(F))∑

v|∞

sv(F)≤ [K :Q] +
∑
v|∞

log+‖F‖v +
∑
v|∞

log+ |1(C)|
−1
v

≤ [K :Q] + h(F)+ h(1(C))� h(F)

for h(F) large. This implies that we can compute the infinite part of the height
correction function in time

� (d + log h(F))(log d)M((d + log h(F))h(F)),

which is polynomial in d and h(F).

14. Computing the canonical height of rational points

The first algorithm for computing the canonical height on a genus-2 Jacobian over Q

was introduced by Flynn and Smart [1997]. It does not require any integer factoriza-
tion, but can be impractical even for simple examples; see the discussion in [Stoll
2002, §1]. A more practical algorithm was introduced in [Stoll 2002]; here the local
height correction functions are computed separately, so some integer factorization
is required. Uchida [2011] later introduced a similar algorithm. De Jong and Müller
[2014] used division polynomials for a different approach.
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Building on the Arakelov-theoretic Hodge index theorem for arithmetic surfaces
due to Faltings and Hriljac, Holmes [2012] and Müller [2014] independently devel-
oped algorithms for the computation of canonical heights of points on Jacobians of
hyperelliptic curves of arbitrary genus over global fields. While these algorithms
can be used to compute canonical heights for genus as large as 10 (see [Müller
2014, Example 6.2]), they are much slower than the algorithm from [Stoll 2002]
when the genus is 2.

In this section we now combine the results of Sections 12 and 13 into an efficient
algorithm for computing the canonical height of a point on the Jacobian of a curve
of genus 2 over a global field K.

If K is a function field, then there are no archimedean places and factorization
is reasonably cheap. So in this case, the best approach seems to be to first find
the places v of K such that µv(P) is possibly nonzero (this includes the places
at which the given equation of the curve is nonintegral) and then compute the
corrections µv(P) for each place separately as in the algorithm of Proposition 12.7,
if necessary changing first to an integral model and correcting for the transformation
afterwards. In fact this approach can be used whenever K is a field with a set of
absolute values that satisfy the product formula, because the algorithm before
Proposition 12.7 is applicable over any discretely valued field; see Remark 12.9.
This includes function fields such as Q(t) and C(t).

If K is a number field, then we compute the contribution from the archimed-
ean places as described in Section 13. The finite part of our algorithm is anal-
ogous to our quasilinear algorithm for the computation of the finite part of the
canonical height of a point on an elliptic curve in [Müller and Stoll 2016]; see
Proposition 14.3 below. For simplicity, we take K to be Q in the following. We
write εp and µp for the local height correction functions over Qp as given by
Definition 3.1 and µ̃∞ for the local height correction function over R as defined
in equation (1-1).

We assume that our curve is given by a model C : Y 2
= F(X, Z)with F ∈Z[X, Z ],

and we set 1=1(C). Our goal is to devise an algorithm for the computation of
ĥ(P) that runs in time polynomial in log ‖F‖∞, h(P) and the required precision d
(measured in bits after the binary dot). We note that h(P) can be computed in time

� log(h(P)+ d)M(h(P)+ d),

since it is just a logarithm. By Proposition 13.1, the height correction function
µ̃∞(P) can be computed in polynomial time. So we only have to find an efficient
algorithm for the computation of the “finite part” µ̃f(P) :=

∑
p µp(P) log p of the

height correction.
Fix P ∈ J (Q). We call a set x of Kummer coordinates for P primitive if x ∈ Z4

and gcd(x)= 1. We set gn = gcd(δ(x (n))), where x (n) is a primitive set of Kummer
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coordinates for 2n P. Then

µ̃f(P)=
∞∑

n=0

4−n−1 log gn.

We also know by [Stoll 1999] that gn divides D = 1
24 |1| = 24

|disc(F)|, which
implies that log gn ≤ log D for all n. To achieve a precision of 2−d, it is therefore
enough to take the sum up to

n = m :=
⌊ 1

2 d + log
( 1

3 log D
)⌋
� d + log log D� d + log log ‖F‖∞.

Since at each duplication step we have to divide by gn to obtain primitive coordinates
again, it suffices to do the computation modulo Dm+2. This leads to the following
algorithm.

1. Let D = 1
16 |1| and set m :=

⌊1
2 d + log log D− log 3

⌋
.

2. Let x be primitive Kummer coordinates for P.

3. Set µ := 0.

4. For n := 0 to m do:

a. Compute x ′ := δ(x) mod Dm+2.
b. Set gn := gcd(D, gcd(x ′)) and x := x ′/gn .
c. Set µ := µ+ 4−n−1 log gn (to d bits of precision).

5. Return µ̃f(P)≈ µ.

Proposition 14.1. This algorithm computes µ̃f(P) to d bits of precision in time

� (d + log log D) log(d + log log D)M((d + log log D) log D)+ h(P).

Proof. The discussion preceding the algorithm shows that it is correct. The duplica-
tion in step 4a can be computed in time

�M((m+ 2) log D)�M((d + log log D) log D),

while the gcd in step 4b can be computed in time

�M((m+ 2) log D) log((m+ 2) log D)

� log(d + log log D)M((d + log log D) log D);

the division is even faster, since gn is small. The computation of the logarithm takes
time� log(d + log D)M(d + log D); this is dominated by the time for computing
the gcd. This gives a time complexity of

� (d + log log D) log(d + log log D)M((d + log log D) log D)+ h(P),

where the last term comes from processing the input x . �
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Note that log D� log ‖F‖∞, so this bound is similar to (and even better by a
factor of log d than) the complexity for computing µ̃∞(P).

Remark 14.2. An alternative way to proceed is to compute

x ′ = δ◦(m+1)(x) mod Dm+2

(without dividing out gcds in between) and then use µ= 4−m−1 log gcd(x ′). The
advantage of the algorithm above is that we can actually work mod Dm+2−n, which
makes the computation more efficient. The advantage of the alternative is that it
can also be used when working over a number field with nontrivial class group
(replacing log gcd(x ′) by the logarithm of the ideal norm of the ideal generated
by x ′). The resulting complexity is similar, with the implied constant depending on
the base field.

We now show that we can in fact do quite a bit better than this, by using the
strategy already employed in [Müller and Stoll 2016]. Note that µ̃f(P) is a rational
linear combination of logarithms of positive integers. We can compute such a
representation exactly and efficiently by the following algorithm. We again assume
that x is a set of primitive Kummer coordinates for P.

1. Set x ′ := δ(x), g0 := gcd(x ′) and x := x ′/g0.

2. Set D := gcd(24 disc(F), g∞0 ) and B := blog D/ log 2c.

3. If B ≤ 1, return 0. Otherwise, set M :=max
{
2,
⌊1

3(B+ 4)2
⌋}

and m :=
⌊

log
( 1

3 B3 M2
)
/ log 4

⌋
.

4. For n := 1 to m do:

a. Compute x ′ := δ(x) mod Dm+1g0.
b. Set gn := gcd(D, gcd(x ′)) and x := x ′/gn .

5. Using the algorithm in [Bernstein 2004] (or in [Bernstein 2005]), compute a
sequence (q1, . . . , qr ) of pairwise coprime positive integers such that each gn

(for n = 0, . . . ,m) is a product of powers of the qi : gn =
∏r

i=1 qei,n
i .

6. For i := 1 to r do:

a. Compute a :=
∑m

n=0 4−n−1ei,n .
b. Let µi be the simplest fraction between a and a+ 1/(B2 M2).

7. Return
∑r

i=1 µi log qi (a formal linear combination of logarithms).

Proposition 14.3. The preceding algorithm computes µ̃f(P) in time

� (log log D)2 M((log log D)(log D))+M(h(P))(log h(P)).

Note that D ≤ 1
16 |1| and log D� log ‖F‖∞.
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Proof. If B ≤ 1 in step 3, then we either have g0 = 1 and µ̃f(P)= 0, or we have
D ∈ {2, 3}. In the latter case, g0 is a power of p = 2 or 3 and vp(1) = 1, which
would imply that εp(P)= 0 by [Stoll 2002, Proposition 5.2], so g0 = 1, and we get
a contradiction.

If a prime p does not divide g0, then εp(P)= 0, implying µp(P)= 0. Suppose
now that p divides g0; then we have vp(D)≤ B and vp(1)≤ B+4, so B, M and m
are suitable values for Lemma 12.2. We have vp(gn) = εp(2n P) for all n ≤ m,
because p(m+1)vp(D)+1

| Dm+1g0 (compare the proof of Proposition 12.7). All the gn

are power products of the qi , so there will be exactly one i = i(p)∈ {1, . . . , r} such
that p | qi(p). Setting bp = vp(qi(p)) and a =

∑m
n=0 4−n−1ei(p),n , we have

m∑
n=0

4−n−1εp(2n P)=
m∑

n=0

4−n−1vp(gn)= bpa,

implying

µp(P)=
∞∑

n=0

4−n−1εp(2n P)= bpa+
∞∑

n=m+1

4−n−1εp(2n P).

Here the last sum is in [0, 1/(B2 M2)] by the definition of m (compare the proof of
Lemma 12.2). Therefore

a ≤
µp(P)

bp
≤ a+

1
bp B2 M2 ≤ a+

1
B2 M2 .

Since the denominator ofµp(P) is at most M and since we have bp≤vp(D)≤ B, the
denominator of µp(P)/bp is at most BM. Hence µp(P)/bp is the unique fraction
in [a, a+ 1/(B2 M2)] with denominator bounded by BM, so µp(P)/bp = µi(p) by
step 6b. Now∑

p

µp(P) log p =
∑

p

µi(p)bp log p =
r∑

i=1

µi

∑
p|qi

bp log p =
r∑

i=1

µi log qi ,

so the algorithm is correct.
The complexity analysis is as in the proof of Proposition 6.1 in [Müller and Stoll

2016]. Namely, the computations in step 1 can be done in time�M(h(P)) log h(P).
The computations in steps 2 and 3 take negligible time. Each pass through the loop
in step 4 takes time� log((m+ 2) log D)M((m+ 2) log D), so the total time for
step 4 is

� m M(m log D) log(m log D)� (log log D)2 M((log log D)(log D)),

because m� log log D. The coprime factorization algorithm in [Bernstein 2004] (or
in [Bernstein 2005]) computes suitable qi for a pair (a, b) of positive integers in time
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� (log ab)(log log ab)2. We iterate this algorithm, applying it first to g0 and g1,
then to each of the resulting qi and g2, and so on. There are always � log D
terms in the sequence of the qi and we have gn ≤ D for all n. Hence step 5 takes
time� log D(log log D)3. Because this is dominated by the time for the loop and
because the remaining steps take negligible time, the result follows. �

Note that the complexity of the algorithm above is quasilinear in log D and h(P).
In practice, the efficiency of this approach can be improved somewhat:

• We can split off the contributions of all sufficiently small primes p by choosing
a suitable bound T and trial factoring 1 up to T ; the corresponding µp can then be
computed using the algorithm of Proposition 12.7; see also Remark 12.8. In step 3,
we can then set B := blog D′/ log T c, where D′ is the unfactored part of D, and
replace B+ 4 by B in the definition of M. If the coefficients of F are sufficiently
large, then this trial division can become quite expensive (even for small values of T ).
So when h(F) is large, it is usually preferable to avoid trial division altogether.

• We can update the qi after each pass through the loop in step 4 using the new gn;
we can also do the computation in step 4a modulo suitable powers of the qi instead
of modulo Dm+1g0. Moreover, it is possible to use separate values of B, M and m
for each qi ; these will usually be smaller than those computed in steps 2 and 3. In
this way, we can integrate steps 4, 5 and 6 into one loop.

Remark 14.4. Over a more general number field K in place of Q, the algorithm
as stated does not quite work, since we cannot always divide out greatest common
divisors. In this case we first compute x (1) = δ(x) and the ideal g0 generated by D
and the entries of x (1). Then we compute x (2) = δ(x (1)), . . . , x (m+1)

= δ(x (m))
modulo the ideal Dm+1g0. Let G j be the ideal generated by the entries of x ( j) and
Dm+1 and set

g1 = g−4
0 G2, g2 = G−4

2 G3, g3 = G−4
3 G4, . . . gm = G−4

m Gm+1.

The coprime factorization algorithms in [Bernstein 2004; 2005] also work for
ideals. In the final result, log qi has to be replaced by log N (qi ), where N (qi ) is
the norm of the ideal qi . This should result in a complexity similar to that over Q

(with the implied constant depending on K ), or at least one that is dominated
by the complexity of computing the naive height and the contributions from the
archimedean places. Unfortunately, no complexity analysis for standard operations
with ideals in number fields seems to be available in the literature; this prevents us
from making a precise statement. Alternatively, we can take the approach described
in Remark 14.2.

Combining this with the results for archimedean places, we obtain an efficient
algorithm for computing the canonical height ĥ(P) of a point P ∈ J (Q). As
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mentioned above, we expect a similar result to hold for any number field K in place
of Q, with the implied constant depending on K.

Theorem 14.5. Let C be given by the model Y 2
= F(X, Z) with F ∈ Z[X, Z ] and

let P ∈ J (Q) be given by primitive Kummer coordinates x (i.e., the coordinates are
coprime integers). We can compute ĥ(P) to d bits of precision in time

� log(d + h(P))M(d + h(P))

+ (d + log log‖F‖∞)(log d + log log‖F‖∞)M((d + log log‖F‖∞) log‖F‖∞).

Proof. The first term comes from computing h(P). The second term dominates
both the complexity bound for µ̃∞(P) from Proposition 13.1 and the complexity of
computing µ̃f(P) using the algorithm of Proposition 14.3, since we have D≤ 1

16 |1|

and log D� log ‖F‖∞. The time for the numerical evaluation of the logarithms
log qi to d bits of precision is also dominated by this term. �

Note that the complexity is quasilinear in log ‖F‖∞ and in h(P), and quasi-
quadratic in d . The latter is caused by the (only) linear convergence of the computa-
tion of µ̃∞(P). For elliptic curves one can use a quadratically convergent algorithm
due to Bost and Mestre [1993] (see also [Müller and Stoll 2016]); such an algorithm
in the genus-2 case would lead to a complexity that is quasilinear in d as well.

In Section 15 below we illustrate the efficiency of our algorithm by applying it
to a family of curves and points with the property that the number g0 above is large,
so that the previously known algorithms have problems factoring it.

15. Examples

We have implemented our algorithm using the computer algebra system Magma
[Bosma et al. 1997]. For the factorization into coprimes we have implemented a
simple quadratic algorithm due to Buchmann and Lenstra [1994, Proposition 6.5]
instead of the quasilinear, but more complicated, algorithms of [Bernstein 2004] or
[Bernstein 2005].

Since the estimates for the required precision in the computation of the archimed-
ean contribution as given in Section 13 are too wasteful in practice, we instead
compute this contribution repeatedly using a geometrically increasing sequence of
digits of precision until the results agree up to the desired number of bits.

We now compare our implementation with Magma’s built-in CanonicalHeight
(version 2.21-2), which is based on [Flynn and Smart 1997] and [Stoll 2002], for a
family of genus-2 curves. In CanonicalHeight, the duplication on the Kummer
surface is done using arithmetic over Q, making the implementation slow when
points with large coordinates show up during the computation. No factorization of
the discriminant is required. However, to find a set of primes such that µp(P) 6= 0
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for every prime p not in the set, CanonicalHeight factors the integer gcd(δ(x)),
where x are primitive Kummer coordinates for P.

Example 15.1. For an integer a 6= 0, consider the curve Ca of genus 2 defined by
the integral Weierstrass model y2

= x5
+a2x+a2. Let Ja denote the Jacobian of Ca .

Then the point P = [((0, a))− (∞)] ∈ Ja(Q) is nontorsion. A set of primitive
Kummer coordinates is given by x = (0, 1, 0, 0) and we have δ(x)= (4a2, 0, 0, a4).
Hence CanonicalHeight needs to factor a2.

We choose this family of curves because (a) there is an obvious rational point P
on the Jacobian that is generically nontorsion and (b) gcd(δ(x)) involves a large
integer, where x is a set of primitive integral Kummer coordinates for P. For a
random sextic polynomial in Z[x], very likely the discriminant will have a large
squarefree part, and so gcd(δ(x)) will be fairly small. Of course, the advantages of
our algorithm show most clearly when gcd(δ(x)) is too large to be factored quickly.

Consider

a = 580765860498857094216036712228682450578792019063967819
607220990444681533984530140793610237063603282,

with partial factorization 2 · 7 · 643 · 804743 ·a′, where a′ has 89 decimal digits, and
its smallest prime factor has 34 decimal digits. Our implementation computes ĥ(P)
in 0.51 seconds, whereas Magma’s CanonicalHeight needs about 15 minutes.

Next, we look at

a = 2004037729560594889502897895078536177197017605286267684456693
371856523790027402225238543540575431528468305556200069359999

066088091821746622820780762863572550314577271857779581968920.

This factors as a= 23
·5·17·a′, where a′ has 178 decimal digits and no prime divisor

with less than 50 decimal digits. Here, our implementation took 1.04 seconds to
compute ĥ(P), whereas Magma did not terminate in 8 weeks.

For a = p ·q , where p and q are the smallest primes larger than 10200 and 10250,
respectively, the canonical height of P was computed in 5.87 seconds using our
implementation.

For the computations in these examples, we used a single-core Xeon CPU E7-8837
having 2.67GHz. All heights were computed to 30 decimal digits of precision.

We conclude this part with an example over the rational function field Q(t).

Example 15.2. Consider the curve C/Q(t) given by the equation

y2
= x6
− 2t (t + 1)x5

+ (t + 1)(t3
− 5t2

+ 4t − 2)x4
+ 2t (t + 1)2(3t2

+ 1)x3

− (t + 1)(3t4
− 2t2

+ 4t − 1)x2
− 4t2(t + 1)3(t2

+ 2t − 1)x + 4t4(t + 1)4.
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It has the points

P1 = (1 : 1 : 0), P2 = (0,−2t2(t + 1)2), P3 = (t + 1, 2t (t − 1)(t + 1))

(and also points with x-coordinate t (t + 1) and a Weierstrass point (−t − 1, 0)).
Let Q = [(P1)− 2(P2)+ (P3)] ∈ J (Q(t)). Its image on the Kummer surface has
coordinates

(1 : −t + 1 : −2t2(t + 1) : 0).

Applying the duplication polynomials and looking at the gcd of the result, we see
that we have to compute the height correction functions at the places given by t = 0,
t = 1 and t =−1. We also have to consider the place at infinity, since our model
of C is not integral there. We use the algorithms of Section 12. Consider the place
t = 0. From the valuations of the Igusa invariants (see Section 6) we can deduce
that the reduction type is [I7−3−2], which gives us M = 41 for the exponent of the
component group and a bound B = 10 for ε. We follow Lemma 12.1 and compute

µ0(Q)=
1
41

⌈
41

3∑
n=0

4−n−1ε0(2n Q)
⌉
=

1
41

⌈
41
(

8
4
+

4
42 +

7
43 +

6
44

)⌉
=

98
41
.

At t = 1, the model is not stably minimal. We can deduce from the Igusa invariants
that there is a stably minimal model over an extension of ramification index 4, which
has reduction type [I12−2−2]. This shows that the denominator of µ1 is divisible by
4 · 26= 104. With M = 104 and B = 9 we get m = 4 in Lemma 12.1; we obtain

µ1(Q)=
1

104

⌈
104

4∑
n=0

4−n−1ε1(2n Q)
⌉
=

1
104

⌈
104

(
4
4
+

4
42+

3
43+

2
44+

2
45

)⌉
=

17
13
.

At t=−1, the situation is similar. There is a stably minimal model over an extension
with ramification index 4 again, which has reduction type [I20−0−0]. This leads to
M = 4 · 20= 80 and B = 20, so m = 4, and

µ−1(Q)=
1
80

⌈
80

4∑
n=0

4−n−1ε−1(2n Q)
⌉
=

1
80

⌈
80
(

7
4
+

10
42 +

8
43 +

10
44 +

8
45

)⌉
=

51
20
.

Finally, at the infinite place, there is a stably minimal integral model over an
extension with ramification degree 2, which has reduction type [I8−0−0]. In a
similar way as for t = −1 and taking into account a shift of −8 coming from
making the model integral, we obtain µ∞(Q)= 19

4 − 8=− 13
4 . This results in

ĥ(Q)= h(Q)−µ0(Q)−µ1(Q)−µ−1(Q)−µ∞(Q)

= 3−
98
41
−

17
13
−

51
20
+

13
4
=

11
5330

.
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To our best knowledge, the point Q is the point of smallest known nonzero canonical
height on the Jacobian of a curve of genus 2 over Q(t). The curve was found by
Andreas Kühn (a student of the second author) in the course of a systematic search
for curves with many points mapping into a subgroup of rank 1 in the Jacobian.

Part IV. Efficient search for points with bounded canonical height

16. Bounding the height difference at archimedean places

We now describe two approaches for getting a better upper bound β̃ on µ̃ than the
one coming from the bound on ε̃ given in [Stoll 1999, Equation (7.1)], when k is
an archimedean local field and C/k is a smooth projective curve of genus 2, given
by a Weierstrass equation Y 2

= F(X, Z) in PK (1, 3, 1).
We write ‖x‖∞ =max{|x1|, |x2|, |x3|, |x4|} for the maximum norm.

16A. Bounding ε̃ closely. For the first approach we assume that k = R. We
describe how to approximate max{ε̃(P) : P ∈ J (R)} to any desired accuracy, which
gives us an essentially optimal bound γ̃ . Recall that

ε̃(P)=−log
max{|δ1(x1, x2, x3, x4)|, . . . , |δ4(x1, x2, x3, x4)|}

max{|x1|, |x2|, |x3|, |x4|}4
,

where (x1 : x2 : x3 : x4) is the image of P ∈ J (R) on the Kummer surface. We
can normalize the Kummer coordinates in such a way that ‖x‖∞ = 1 and one of
the coordinates is 1. We then have to minimize max{|δ1|, . . . , |δ4|} over four three-
dimensional unit cubes, restricted to the points on the Kummer surface that are in the
image of J (R). This means that the relevant points satisfy the equation defining the
Kummer surface and in addition the value of (at least) one of four further auxiliary
polynomials is positive. (In general, the values of these polynomials are squares
if the point comes from the Jacobian, and the converse holds for any one of the
polynomials when its value is nonzero. One can choose four such polynomials in
such a way that they do not vanish simultaneously on the Kummer surface.)

The idea is now to successively subdivide the given cubes. For each small cube,
we check if it may contain points in the image of J (R), by evaluating the various
polynomials at the center of the cube and bounding the gradient on the cube. If it
can be shown that the defining equation cannot vanish on the cube or that one of
the auxiliary polynomials takes only negative values on the cube, then the cube can
be discarded. Otherwise, we find upper and lower estimates for max{|δ1|, . . . , |δ4|}

in a similar way. If the lower bound is larger than our current best upper bound for
the minimum, the cube can also be discarded. (At the beginning, we have a trivial
upper bound of 1 for the minimum, coming from the origin.) Otherwise, we keep it
and subdivide it further. We continue until the difference of the upper and lower
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bounds for ε̃ on the cube with the smallest lower bound for max{|δ1|, . . . , |δ4|}

becomes smaller than a specified tolerance. The upper bound for ε̃ on that cube is
then our bound γ̃ , and we take (as before) β̃ = 1

3 γ̃ .
We have implemented this approach in Magma [Bosma et al. 1997]. After a

considerable amount of fine-tuning, our implementation usually takes a few seconds
to produce the required bound. In many cases the new bound, which is essentially
optimal as a bound on ε̃, is considerably better than the bound of [Stoll 1999,
Equation (7.1)], but there are also cases for which it turns out that the old bound is
actually pretty good.

We used the following tricks to get the implementation reasonably fast.

• We keep the polynomials shifted and rescaled so that the cube under consider-
ation is [−1, 1]3.

• The shifting and scaling is done using linear algebra (working with vectors of
coefficients and matrices) and not using polynomial arithmetic.

• The coordinates of the centers and vertices of all cubes are dyadic fractions.
We scale everything (by 24

= 16 at each subdivision step — note that the poly-
nomials involved are of degree 4) so that we can compute with integers instead.

16B. Iterating Stoll’s bound. We now describe a different approach that also works
for complex places. Instead of trying to get an optimal bound on ε̃, we aim at a
bound on µ̃ by iterating the bound obtained from equation (7.1) in [Stoll 1999]. We
recall how this bound was obtained. There is an elementary abelian group scheme
G of order 32 that maps onto J [2] and acts on the space of quadratic forms in the
coordinates of the P3 containing the Kummer surface. This representation splits
into a direct sum of ten one-dimensional representations that correspond to the
ten partitions {S, S′} of the set of ramification points of the double cover C→ P1

into two sets of three. We write y{S,S′} for suitably normalized generators of these
eigenspaces ([Stoll 1999] gives explicit formulas in the case H = 0). We can then
express the squares x2

i as linear combinations of these quadratic forms,

x2
i =

∑
{S,S′}

ai,{S,S′}y{S,S′}(x),

for certain complex numbers ai,{S,S′} that can be explicitly determined. On the other
hand, y2

{S,S′} is a quartic form invariant under the action of J [2] (the representation
of G on quartic forms descends to a representation of J [2]) and is therefore a
linear combination of the duplication polynomials δj and the quartic defining the
Kummer surface. So there are complex numbers b{S,S′}, j that can also be explicitly
determined such that

y{S,S′}(x)2 =
∑

1≤ j≤4

b{S,S′}, jδj (x)
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if x is a set of Kummer coordinates. Taking absolute values and using the triangle
inequality, we obtain

|xi |
4
≤

(∑
{S,S′}
|ai,{S,S′}||y{S,S′}(x)|

)2

≤

(∑
{S,S′}
|ai,{S,S′}|

√∑
1≤ j≤4

|b{S,S′}, j ||δj (x)|
)2

for all (x1 : x2 : x3 : x4) ∈ KS(C). This gives a bound for ε̃ in terms of the ai,{S,S′}

and b{S,S′}, j as in equation (7.1) of [Stoll 1999].
We refine this as follows. Define a function ϕ : R4

≥0→ R4
≥0 by

(d1, d2, d3, d4) 7→

√∑
{S,S′}
|ai,{S,S′}|

√∑
1≤ j≤4

|b{S,S′}, j |dj


1≤i≤4

.

Lemma 16.1. Define a sequence (bn)n in R4
≥0 by

b0 = (1, 1, 1, 1) and bn+1 = ϕ(bn).

Then (bn) converges to a limit b and we have

µ̃(P)≤
4N

4N − 1
log ‖bN‖∞

for all N ≥ 1 and all P ∈ J (C). In particular, sup µ̃(J (C))≤ log ‖b‖∞.

Proof. By our previous considerations, it is clear that |δj (x)| ≤ dj for all j implies
|xi | ≤ ϕi (d1, d2, d3, d4) for all i . We deduce by induction on N that

log ‖x‖∞ ≤ log ‖bN‖∞+ 4−N log ‖δ◦N (x)‖∞

for all N ≥ 1. Writing

µ̃(P)=−
∞∑

m=0

4−m N (log ‖κ(2m N P)‖∞− 4−N log ‖δ◦N (κ(2m N P))‖∞
)
,

we obtain an upper bound of log ‖bN‖∞ for each of the terms in parentheses, which
gives the desired bound.

To see that (bn) converges, we consider

8(x)=
(
logϕi (exp(x1), . . . , exp(x4))

)
1≤i≤4.

It is easy to see that the partial derivatives ∂8i/∂x j are positive and that, for each i ,
summing them over j gives 1

4 .
(
This comes from the fact that ϕi is homogeneous of

degree 1
4 .
)

This implies that ‖8(x ′)−8(x)‖∞≤ 1
4‖x
′
−x‖∞, so that8 is contracting

with contraction factor ≤ 1
4 . The Banach fixed point theorem then guarantees the
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existence of a unique fixed point of 8, which every iteration sequence converges to.
This implies the corresponding statement for ϕ. �

If we are dealing with a real place, then we may gain a little bit more by making
use of the fact that the δj (x) are real, while some of the coefficients b{S,′S}, j may
be genuinely complex. This can lead to a better bound on |y{S,S′}|.

For example, considering the curve with the record number of known rational
points, we get an improvement from 7.726 to 0.973 for the upper bound on −µ̃
using Lemma 16.1. See Section 19 for more details. In practice it appears that this
second approach is at the same time more efficient and leads to better bounds than
the approach described in Section 16A above.

The approach described here can also be applied in the context of heights on
genus-3 hyperelliptic Jacobians; see [Stoll 2014].

17. Optimizing the naive height

We now consider an arbitrary local field k, with absolute value | · |. Let C be given
by an equation

Y 2
= F(X, Z),

and let W be the canonical class on C . The first three coordinates of the image of a
point P =[(X1 : Y1 : Z1)+(X2 : Y2 : Z2)]−W ∈ J on the Kummer surface are given
by Z1 Z2, X1 Z2+ Z1 X2, X1 X2, whereas the fourth coordinate is homogeneous of
degree 1 in the coefficients f j of F

(
if we consider Y1 and Y2 to be of degree 1

2

)
. This

has the effect that the fourth coordinate usually differs by a factor of about ‖F‖ :=
max{| f0|, | f1|, . . . , | f6|} from the other three, which gives this last coordinate a
much larger (when ‖F‖ is large; this is usually the case when k is archimedean)
or smaller (this may occur when k is nonarchimedean) influence on the local
contribution to the naive height when k= Kv and K is a global field. This imbalance
tends to increase the difference hstd− ĥ between naive and canonical height. This
observation suggests to modify the naive height in the following way, so as to give
all coordinates roughly the same weight. Compare Section 2 for the general setup.
Let x be a set of Kummer coordinates over a global field K and set

h′(x) :=
∑
v∈MK

log max{|x1|v, |x2|v, |x3|v, |x4|v/‖F‖v}.

This is a height as in Example 2.3.
We state the following simple result, which will help us use this modified height.

Lemma 17.1. Let F0 ∈ k[X, Z ] be squarefree and homogeneous of degree 6. For
c ∈ k×, let C (c) denote the curve Y 2

= cF0(X, Z). The Kummer surfaces KS(1)
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of C (1) and KS(c) of C (c) are isomorphic via

ι : KS(1)→ KS(c), (x1 : x2 : x3 : x4) 7→ (x1 : x2 : x3 : cx4).

We abuse notation and write ι also for the linear map

(x1, x2, x3, x4) 7→ (x1, x2, x3, cx4).

Write δ(c) for the duplication polynomials on KS(c). Then

δ(c)(ι(x))= c3ι(δ(1)(x)) for each x ∈ KS(1)A .

Proof. This can be checked by an easy calculation. �

If k is nonarchimedean and we use the modified local height given by

h′v(x)= log max{|x1|v, |x2|v, |x3|v, |x4|v/‖F‖v},

then we need to change the definition of ε accordingly to (compare Lemma 2.4)

ε(x)=min{v(δ1(x)), v(δ2(x)), v(δ3(x)), v(δ4(x))− v(F)}

− 4 min{v(x1), v(x2), v(x3), v(x4)− v(F)},

where v(F) = v({ f0, . . . , f6}). By Lemma 17.1 with c = πv(F), where π is a
uniformizer of k, and F0 = c−1 F, we then have, denoting the objects associated
to F0 by δ0, ε0 and µ0,

ε(x)= v
(
ι−1(δ(x))

)
− 4v(ι−1(x))

= v
(
c3δ0(ι

−1(x))
)
− 4v(ι−1(x))= 3v(F)+ ε0(ι

−1(x)).

This impliesµ(x)=v(F)+µ0(ι
−1(x)). Let C0 be the curve given by Y 2

= F0(X, Z).
We then get that

β(C)≤ v(F)+ β̄(C0).

Note that the Jacobians of C and C0 are in general only isomorphic over the
ramified quadratic extension k(

√
π), so we cannot necessarily use β(C0) here.

If v(F) is even, however, then the isomorphism is defined over k, and we have
β(C)= v(F)+β(C0).

So, except for the correction term v(F), the effect is that we use the Kummer
surface associated to the quadratic twist C0 of C , which has a primitive polynomial
on the right-hand side of its equation. Note in addition that this also allows us to
deal with nonintegral equations; in this case, we again implicitly scale to make the
polynomial on the right integral and primitive.

When k = Kv ∼= Q2 (say) and we can write F = 4F1+ H 2 with binary forms
F1 and H with integral coefficients, then C is isomorphic to the curve C ′ given by
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the Weierstrass equation

Y 2
+ H(X, Z)Y = F1(X, Z),

and we can use the Kummer surface of the latter to define the local contribution to
the naive height. The isomorphism between the Kummer surfaces is given by (see
[Müller 2010, p. 53]; note that this is the inverse of the map given there)

(x1 : x2 : x3 : x4) 7→
(
x1 : x2 : x3 :

1
4 x4+

1
2(h0h2x1+ h0h3x2+ h1h2x3)

)
.

The scaling factor this induces for the δ polynomials is 26 in this case. So defining
the local component at v of h′(x) to be

log max
{
|x1|v, |x2|v, |x3|v,

∣∣ 1
4 x4+

1
2(h0h2x1+ h0h3x2+ h1h2x3)

∣∣
v

}
,

we can replace the bound for µv by the bound we get on C ′ plus 2. If we use this
at the places above 2 where it applies (instead of, or combined with, the scaling
described above), we still obtain a height as in Example 2.3.

If v is an archimedean place, then the approach described in Section 16B above
can easily be adapted to the modified naive height. We just have to replace
b{S,S′},4 = 1 by ‖F‖v and a4,{S,S′} by a4,{S,S′}/‖F‖2v. This will usually lead to
a negative upper bound for µ̃v , which is fairly close to −log ‖F‖v , at least when F
is reduced in the sense of [Stoll and Cremona 2003] and its roots are not too close to-
gether. This is because the scaled ai,{S,S′} are now all of size≈‖F‖−2

∞
and the scaled

b{S,S′}, j are all of size≈‖F‖∞, so8 as in the proof of Lemma 16.1 roughly satisfies
‖8(x)‖∞ ≈− 3

4 log ‖F‖∞+ 1
4‖x‖∞, which has −log ‖F‖∞ as its fixed point.

Note that for a point (0 : 0 : 0 : 1) 6= P = (x1 : x2 : x3 : x4) ∈KS(K ) we have, for
all versions h′ of the modified height,

hstd((x1 : x2 : x3))≤ h′(P).

We will therefore find all points P with h′(P)≤ B, if we can enumerate all P with
hstd((x1 : x2 : x3))≤ B. This can be done (over Q) by using the -a option of the sec-
ond author’s program j-points, which is available at [Stoll 2006]. (This option is
also available in Magma version 2.22 or later.) In this way, enumerating all points as
above with B up to roughly log 50 000 is feasible. See the discussion in Section 18.

Note that it is quite possible that we end up with a bound

hstd((x1 : x2 : x3))≤ h′(P)≤ ĥ(P)+ β̃ for all P ∈ J (Q) \ {O}

with β̃ < 0. In this case −β̃ is a lower bound on the canonical height of any
nontrivial point in J (Q); in particular, the torsion subgroup of J (Q) must be trivial.
To give an indication of when we can expect β̃ to be close to zero or negative,
write |24 disc(F)| = DD′ with D and D′ coprime and D′ squarefree and odd. Then
the contribution of the finite places to β̃ can be bounded by 1

4 log D, and we get
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β̃ ≈ − log ‖F‖∞ + 1
4 log D. So if D � ‖F‖4

∞
, we are in good shape. Note that

|disc(F)| � ‖F‖10
∞

, so this means that 60% or more of log |disc(F)| comes from
primes p dividing the discriminant exactly once. For curves that are not very special
this is very likely to be the case.

In Section 19 we show how this approach can be used to get a very small bound
for the height difference even for a curve with ten-digit coefficients.

18. Efficient enumeration of points of bounded canonical height

Let C : y2
= f (x) be a curve of genus 2 over Q with Jacobian J. In this section we de-

scribe the algorithm for enumerating all points P ∈ J (Q)with ĥ(P)≤ B that follows
from the considerations above. We assume that f ∈ Z[x] and proceed as follows.

1. Compute the complex roots of f numerically.

2. Compute the coefficients ai,{S,S′} and b{S,S′}, j from the roots and the leading
coefficient of f according to the formulas given in [Stoll 1999, §10].

3. Multiply all a4,{S,S′} by ‖ f ‖−2
∞

and multiply all b{S,S′},4 by ‖ f ‖∞.

4. Iterate the function ϕ from Section 17 (but using the modified coefficients)
a number of times, starting at (1, 1, 1, 1), until there is little change; let β̃∞ be
the upper bound for µ̃∞ as in Lemma 16.1.

5. Factor the discriminant of f . Let g be the gcd of the coefficients of f .

6. For each prime divisor p of 2 disc( f ), do the following.
a. Let ep be the p-adic valuation of g and set f1 = p−ep f .
b. If p = 2 and f1 = h2

+ 4 f2 for polynomials f2, h ∈ Z[x], then set
C1 : y2

+h(x)y= f2(x) and replace g by 4g; otherwise set C1 : y2
= f1(x).

Let J1 be the Jacobian of C1.
c. If ep is even, let βp be the bound for µp on J1(Qp) as obtained in Part II.

Otherwise, let βp be the bound for µp on J1(Qp).

7. Set β̃ = β̃∞+
∑

p βp log p+ log g.

8. Use j-points with the -a option to enumerate all points O 6= P ∈ J (Q) such
that hstd((κ1(P) : κ2(P) : κ3(P)))≤ B+ β̃.

9. Add O to this set and return it.

Note that log g is the sum of the correction terms vp( f ) log p.
It follows from the discussion in the previous sections that the set returned by

this algorithm contains all points with canonical height at most B. If necessary,
one can compute the actual canonical heights using the algorithm from Part III and
discard the points whose height is too large.

The actual enumeration is done by running through all points (x1 : x2 : x3)∈P2 of
(standard) height at most B+ β̃ and checking whether there are rational numbers x4
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such that (x1 : x2 : x3 : x4) is on the Kummer surface. For each of these points on the
Kummer surface, we then check if it lifts to the Jacobian. Both these conditions are
equivalent to some expression in the coordinates (and the coefficients of f ) being
a square. The j-points program tries to do this efficiently by using information
modulo a number of primes to filter out triples that do not lift to rational points
on J. Let N = bexp(B+ β̃)c. Then j-points usually takes a couple of seconds
when N = 1000, a few minutes when N = 5000 and a few days when N = 50 000.
The running time scales with N 3, but the scaling factor depends on how effective
the sieving mod p is. For Jacobians of high rank, the program tends to take longer
than for “random” Jacobians.

Since the running time depends exponentially on B+ β̃, it is very important to
obtain a small bound β̃ for the difference between naive and canonical height. The
improvement at the infinite place that we can achieve by considering a modified naive
height is crucial for making the enumeration feasible also in cases when the defining
polynomial has large coefficients. This is demonstrated by the example in Section 19.

If the discriminant of f is too large to be factored, then one can use

β̃ = β̃∞+
1
4 log |disc( f1)| + log g

(or use information from small prime divisors as in the algorithm above and 1
4 log D

for the remaining primes, where D is the unfactored part of the discriminant). But
note that it is usually a great advantage to know the bad primes, since we can take
βp = 0 for primes p such that vp(disc( f ))= 1. In most cases, this leads to a much
smaller bound β̃.

One of the most important applications of this enumeration algorithm is its use
in saturating a given finite-index subgroup of J (Q), which gives (generators of)
the full group J (Q). This is a necessary ingredient of the method for obtaining
all integral points on C developed in [Bugeaud et al. 2008], for example, and for
computing the regulator of J (Q).

There are essentially two ways of performing the saturation. Let G ⊂ J (Q)
denote the known subgroup.

(i) Let ρ be (an upper bound for) the covering radius of the lattice3= (G/G tors, ĥ).
Then J (Q) is generated by G together with all points P ∈ J (Q) that satisfy
ĥ(P) ≤ ρ2; see [Stoll 2002, Proposition 7.1]. This approach is feasible when
β̃ + ρ2 is sufficiently small.

(ii) Let I = (J (Q) :G) denote the index; we assume J (Q)tors⊂G. If m1, . . . ,mr are
the successive minima of3 and there are no points P ∈ J (Q)\G with ĥ(P)< B, then

I ≤

√
R · γ r

r∏r
j=1 min{mj , B}

;
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see [Flynn and Smart 1997, §7]. Here γr is (an upper bound for) the Hermite
constant for lattices of rank r , and R is the regulator of G (i.e., the determinant of
the Gram matrix of any basis of 3). This can be used to get a bound on I whenever
B is strictly positive, so for the enumeration we only need β̃ to be sufficiently small.
(If β̃ < 0, then we can do entirely without enumeration to get an index bound.) In a
second step, one then has to check that G is p-saturated in J (Q) (or find the largest
group G ⊂ G ′ ⊂ J (Q) with (G ′ : G) a power of p) for all primes p up to the index
bound. This can be done by considering the intersection of the kernels of the maps
J (Q)/pJ (Q)→ J (Fq)/pJ (Fq) for a set of good primes q (such that the group on
the right is nontrivial). If this intersection is trivial, then G is p-saturated; otherwise
it tells us where to look for points that are potentially divisible by p. Since the
index bound gets smaller with increasing B (as long as B < mr ), it makes sense to
pick B in such a way as to balance the time spent in the two steps of this approach.

19. Example

As an example that demonstrates the use of our nearly optimal upper bound for the
difference h− ĥ between naive and canonical height (which is based on the optimal
bounds for the µp obtained in Sections 9, 10 and 11 and the variation of the naive
height discussed in Section 17), we consider the curve

C : y2
= 82342800x6

− 470135160x5
+ 52485681x4

+ 2396040466x3
+ 567207969x2

− 985905640x + 247747600.

This curve is of interest, since it holds the current record for the largest number of
known rational points (which is 642 for this curve); see [Stoll 2008]. A 2-descent
on its Jacobian J (assuming GRH) as described in [Stoll 2001] and implemented
in Magma gives an upper bound of 22 for the rank of J (Q), and the differences of
the known rational points generate a group of rank 22. The latter statement can be
checked by computing the determinant R of the height pairing matrix of the 22 points
in J (Q) listed in Table 3, which is fairly fast using the algorithm for computing
canonical heights described in Section 14. The points are given in Mumford repre-
sentation (a(x), b(x)), which stands for [(θ1, b(θ1))+(θ2, b(θ2))]−W, where θ1, θ2

are the two roots of a(x) and W is the canonical class. Not all of these points are
differences of rational points, but they are linear combinations of such differences.

We can easily check that J (Q) has trivial torsion subgroup by computing the
order of J (Fp) for a few good primes p.

The discriminant of C factors as

1= 247
· 35
· 59
· 112
· 132
· 176
· 194
· 232
· 414
· 733

· 2707 · 43579 · 108217976921 · 8723283517315751077.
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(x2
+ x, 18868x + 15740),

(
x2
−

1
3 x, 216800

3 x − 15740
)
,(

x2
+

2
3 x − 1

3 ,
11747

3 x + 21131
3

)
, (x2

+ 5x + 4, 276256x + 273128),(
x2
+

4
3 x − 5

9 , 16315x + 26195
9

)
,
(
x2
+

53
12 x + 5

3 ,
1433669

6 x + 371650
3

)
,

(x2
− 3x − 4, 34104x + 30976), (x2

− 4x − 5, 65987x + 69115),(
x2
+

8
5 x + 3

5 , 67671x + 64543
)
,
(
x2
− 5x − 6, 883626

7 x + 905522
7

)
,(

x2
−

3
4 x − 7

4 , 31875x + 35003
)
,
(
x2
+

5
7 x − 2

7 ,
432898

49 x + 279626
49

)
,(

x2
+

29
6 x − 178

9 ,
3014179

6 x − 10824742
9

)
,
(
x2
+

19
84 x − 65

84 ,
4287373

294 x + 5207005
294

)
,(

x2
+

97
42 x − 37

42 ,
23742013

294 x − 5459431
294

)
,
(
x2
−

5
11 x, 1089388

121 x − 15740
)
,(

x2
+

325
84 x − 11

21 ,
30014567

147 x − 2230444
147

)
,
(
x2
−

683
140 x − 279

140 ,
45519013

490 x + 5478709
490

)
,(

x2
−

91
769 x − 584

769 ,
6911886712

591361 x + 16665656516
591361

)
,
(
x2
−

259
96 x + 163

72 ,
52305719

768 x − 13101271
576

)
,(

x2
−

3073
2307 x − 1252

769 ,
54505985456

1774083 x + 25990632928
591361

)
,
(
x2
−

137
51 x + 40

51 ,
47131040

867 x − 8471860
867

)
.

Table 3. Generators of the known part of J (Q).

The results of [Stoll 1999; Stoll 2002] lead to a bound of

1
3(43 log 2+ 3 log 3+ 9 log 5+ 2 log 11+ 2 log 13

+ 6 log 17+ 4 log 19+ 2 log 23+ 4 log 41+ 3 log 73)≈ 40.1

for the contribution of the finite places to the height difference bound. When trying
to get a better bound (for γp) by essentially doing an exhaustive search over the
p-adic points of the Kummer surface, Magma gets stuck at p = 2 for a long while,
but eventually finishes with a contribution of 26.434 from the finite places and
a total bound of 34.163. This contribution turns out to be 1

3γp log p in all cases
except for p = 73, where it is 2

3 log 73 instead of 1
3 log 73. Our new results from

this paper give bounds on the local contributions as shown in Table 4. 8p is the
component group (ε and µ factor through it in all cases) and “gain” gives the gain
in the bound on the height difference obtained by using the optimal bound on µ
versus the bound 1

3γ , where γ is the maximum of the values of ε.
This now gives a bound of ≈ 20.429 for the contribution of the finite places. The

optimization of the naive height does not give any improvement at the odd finite
places, since the polynomial f defining the curve is primitive. On the other hand,
we note that f is congruent to a square mod 4, so we could use the Kummer surface
of the curve y2

+ (x2
+ x)y = f1(x) (where f (x) = 4 f1(x)+ (x2

+ x)2) for the
local height at 2, but this results in no improvement, since we have already used a
minimal model to get our bound.

Now we consider the contribution of the infinite place. The bound obtained from
[Stoll 1999, Equation (7.1)] is 7.726. Using Lemma 16.1 with N = 10 improves
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p reduction type 8p βp
1
3γp gain

2 [I10−9−8] Z/242Z 2+ 1145/242 26/3 1.341
3 [I0− IV− 0] Z/3Z 2/3 2/3 0.000
5 [I4−3−2] Z/26Z 22/13 2 0.495

11 [I2−0−0] Z/2Z 1/2 2/3 0.400
13 [I2−0−0] Z/2Z 1/2 2/3 0.427
17 [I2−2−2] Z/2Z×Z/6Z 1 4/3 0.944
19 [I2−1−1] Z/5Z 3/5 2/3 0.196
23 [I2−0−0] Z/2Z 1/2 2/3 0.523
41 [I2−1−1] Z/5Z 3/5 2/3 0.248
73 [I1−1−1] Z/3Z 1/3 1/3 0.000

Table 4. Bounds for βp.

this to 0.973; increasing N further gives no significant improvement. However,
modifying the local height at the infinite place by scaling the contribution of the
fourth coordinate by ‖ f ‖−1

∞
reduces this bound drastically to µ̃∞ ≤ −19.25654

(compare this to −log ‖ f ‖∞ ≈−21.59708). This finally gives

h′(P)≤ ĥ(P)+ 1.17273

for our modified naive height h′.
So if we enumerate all points P ∈ J (Q) with h′(P) ≤ log N and do not find

points that are not in the known subgroup G, then we obtain a bound for the index
I = (J (Q) : G) as follows (see the discussion at the end of Section 18):

I ≤

√√√√ R · γ 22
22∏22

j=1 min{mj , log N − 1.17273}
.

Here R is the regulator of G and m1,m2, . . . ,m22 are the successive minima of the
lattice (G, ĥ), which are

8.5276, 8.5668, 8.5956, 8.8594, 9.0256, 9.0776, 9.1426, 9.1753,
9.4456, 9.7428, 9.7747, 9.9047, 9.9465, 9.9611, 9.9704, 10.1408,

10.3472, 10.3784, 10.5284, 10.5356, 10.6318, 10.9287.

With N = 10 000 we obtain I ≤ 6842, with N = 20 000 we get I ≤ 2835 and with
N ≥ 178 245 we obtain the best possible bound I ≤ 900. We checked that there are
no unknown points P with κ(P)= (x1 : x2 : x3 : x4) such that hstd((x1 : x2 : x3))≤

log 20 000 and verified that the index is not divisible by any prime p ≤ 2835. The
first computation took about two days on a single core, the second less than half a
day. This implies the following.
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Proposition 19.1. Assume the generalized Riemann hypothesis. Let

C : y2
= 82342800x6

− 470135160x5
+ 52485681x4

+ 2396040466x3
+ 567207969x2

− 985905640x + 247747600

and denote by J the Jacobian of C. Then J (Q) is a free abelian group of rank 22,
freely generated by the points listed in Table 3. In particular, J (Q) is generated by
the differences of rational points on C.
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