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We prove a Voronoi formula for coefficients of a large class of L-functions includ-
ing Maass cusp forms, Rankin–Selberg convolutions, and certain noncuspidal
forms. Our proof is based on the functional equations of L-functions twisted by
Dirichlet characters and does not directly depend on automorphy. Hence it has
wider application than previous proofs. The key ingredient is the construction of
a double Dirichlet series.

1. Introduction

A Voronoi formula is an identity involving Fourier coefficients of automorphic
forms, with the coefficients twisted by additive characters on either side. A history
of the Voronoi formula can be found in [Miller and Schmid 2004]. Since its
introduction in [loc. cit.], the Voronoi formula on GL(3) of Miller and Schmid has
become a standard tool in the study of L-functions arising from GL(3), and has
found important applications such as those in [Blomer 2012; Blomer et al. 2013;
Khan 2012; Li 2009; 2011; Li and Young 2012; Miller 2006; Munshi 2013; 2015].
As of yet the general GL(N ) formula has had fewer applications, a notable one
being found in [Kowalski and Ricotta 2014].

The first proof of a Voronoi formula on GL(3) was found by Miller and Schmid
[2006] using the theory of automorphic distributions. Later, a Voronoi formula
was established for GL(N ) with N ≥ 4 in [Goldfeld and Li 2006; 2008; Miller
and Schmid 2011], with [Miller and Schmid 2011] being more general and earlier
than [Goldfeld and Li 2008] (see the addendum there). Goldfeld and Li’s proof
[2008] is more akin to the classical proof in GL(2) [Good 1981], obtaining the
associated Dirichlet series through a shifted “vertical” period integral and making
use of automorphy. An adelic version was established by Ichino and Templier
[2013], allowing ramifications and applications to number fields. Another direction
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of generalization with more complicated additive twists on either side has been
considered in an unpublished work of Li and Miller and in [Zhou 2016].

In this article, we prove a Voronoi formula for a large class of automorphic objects
or L-functions, including cusp forms for SL(N ,Z), Rankin–Selberg convolutions,
and certain noncuspidal forms. Previous works [Miller and Schmid 2011; Goldfeld
and Li 2008; Ichino and Templier 2013] do not offer a Voronoi formula for Rankin–
Selberg convolutions or noncuspidal forms. Even for Maass cusp forms, our new
proof is shorter than any previous one, and uses a completely different set of
techniques.

Let us briefly summarize our method of proof. We first reduce the statement of a
Voronoi formula to a formula involving Gauss sums of Dirichlet characters. We
construct a complex function of two variables and write it as double Dirichlet series
in two different ways by applying a functional equation. Using the uniqueness
theorem of Dirichlet series, we get an identity between coefficients of these two
double Dirichlet series. This leads us to the Voronoi formula with Gauss sums.

One of our key steps in obtaining the Voronoi formula is the use of functional
equations of L-functions twisted by Dirichlet characters. The relationship between
the Dirichlet twists and the additive twists was expected, but not fully understood,
such as in [Duke and Iwaniec 1990; Goldfeld and Li 2006, Section 4; Buttcane
and Khan 2015; Zhou 2016]. In these works, only prime modulus is dealt with,
which is a significant restriction. Miller and Schmid [2006, Section 6] derived
the functional equation of L-functions twisted by a Dirichlet character of prime
conductor from the Voronoi formula. However there is a combinatorial difficulty in
reversing this process, i.e., obtaining additive twists of general nonprime conductors
from multiplicative ones, which was acknowledged in both [Miller and Schmid
2006, p. 430] and [Ichino and Templier 2013, p. 68]. The method presented here is
able to overcome this difficulty by discovering an interlocking structure among a
family of Voronoi formulas with different conductors.

Our proof of the Voronoi formula is complete for additive twists of all conductors,
prime or not, and unlike [Ichino and Templier 2013], [Miller and Schmid 2006],
or [Miller and Schmid 2011], does not depend directly on automorphy of the cusp
forms. This fact allows us to apply our theorem to many conjectural Langlands
functorial transfers. For example, the Rankin–Selberg convolutions (also called
functorial products) for GL(m)×GL(n) are not yet known to be automorphic on
GL(m× n) in general. Yet we know the functional equations of GL(m)×GL(n)
L-functions twisted by Dirichlet characters. Thus, our proof provides a Voronoi
formula for the Rankin–Selberg convolutions on GL(m)×GL(n) (see Example 1.7).
Voronoi formulas for these functorial cases are unavailable from [Goldfeld and Li
2008], [Miller and Schmid 2011] or [Ichino and Templier 2013]. In Theorem 1.3
we reformulate our Voronoi formula like the classical converse theorem of Weil, i.e.,
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assuming every L-function twisted by a Dirichlet character is entire, has an Euler
product (or satisfies Hecke relations), and satisfies the precise functional equations,
then the Voronoi formula as in Theorem 1.1 is valid. We do not have to assume it
is a standard L-function coming from a cusp form.

Furthermore, by Theorem 1.3, we obtain a Voronoi formula for certain noncuspi-
dal forms, such as isobaric sums (see Example 1.8). This is not readily available
from any previous work but it is believed (see [Miller and Schmid 2011, p. 176])
that one may derive a formula by using formulas on smaller groups through a
possibly complicated procedure. Such complication does not occur in our method
because we work directly with L-functions.

We first state the main results for Maass cusp forms. Denote

e(x) := exp(2π i x)

for x ∈ R. Let N ≥ 3 be an integer. Let a, n ∈ Z, c ∈ N and let

q = (q1, q2, . . . , qN−2) and d = (d1, d2, . . . , dN−2)

be tuples of positive integers satisfying the divisibility conditions

d1|q1c, d2

∣∣∣ q1q2c
d1

, . . . , dN−2

∣∣∣ q1 · · · qN−2c
d1 · · · dN−3

. (1)

In this case, to simplify notation we set

ξi :=
q1 · · · qi c
d1 · · · di

.

Define the hyper-Kloosterman sum as

Kl(a, n, c; q, d) =
∑∗

x1 mod ξ1

∑∗

x2 mod ξ2

· · ·

∑∗

xN−2 mod ξN−2

e
(

d1x1a
c
+

d2x2x1

ξ1
+ · · ·+

dN−2xN−2xN−3

ξN−3
+

nxN−2

ξN−2

)
,

where
∑
∗ indicates that the summation is over reduced residue classes, and xi

denotes the multiplicative inverse of xi modulo ξi . When N = 3, Kl(a, n, c; q1, d1)

becomes the classical Kloosterman sum S(aq1, n; ξ1). For the degenerate case
N = 2, we define Kl(a, n, c; , ) := e(an/c).

Let F be a Hecke–Maass cusp form for SL(N ,Z) with the spectral parameters
(λ1, . . . , λN ) ∈ CN. Let A(m1, . . . ,m N−1), with (m1, . . . ,m N−1) ∈ NN−1, be the
Fourier–Whittaker coefficients of F normalized as A(1, . . . , 1) = 1. We refer to
[Goldfeld 2006] for the definitions and the basic results of Maass forms for SL(N ,Z).
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The Fourier coefficients satisfy the Hecke relations

A(m1m′1, . . . ,m N−1m′N−1)= A(m1, . . . ,m N−1)A(m′1, . . . ,m′N−1) (2)

if (m1 · · ·m N−1,m′1 · · ·m
′

N−1)= 1 is satisfied,

A(1, . . . , 1, n)A(m N−1, . . . ,m1)

=

∑
d0···dN−1=n

d1|m1,...,dN−1|m N−1

A
(

m N−1dN−2

dN−1
, . . . ,

m2d1

d2
,

m1d0

d1

)
,

(3)

and

A(n, 1, . . . , 1)A(m1, . . . ,m N−1)

=

∑
d0···dN−1=n

d1|m1,...,dN−1|m N−1

A
(

m1d0

d1
,

m2d1

d2
, . . . ,

m N−1dN−2

dN−1

)
. (4)

The dual Maass form of F is denoted by F̃ . Let B(∗, . . . , ∗) be the Fourier–
Whittaker coefficients of F̃ . These coefficients satisfy

B(m1, . . . ,m N−1)= A(m N−1, . . . ,m1). (5)

Define the ratio of Gamma factors

G±(s) := i−Nδπ−N (1/2−s)
N∏

j=1

0

(
δ+ 1− s− λ j

2

)
0

(
δ+ s− λ j

2

)−1

, (6)

where for even Maass forms, we define δ = 0 in G+ and δ = 1 in G−, and for odd
Maass forms, we define δ = 1 in G+ and δ = 0 in G−. We refer to [Goldfeld 2006,
Section 9.2] for the definition of even and odd Maass forms.

Theorem 1.1 (Voronoi formula on GL(N ) of Miller and Schmid [2011]). Let F be
a Hecke–Maass cusp form with coefficients A(∗, . . . , ∗), and G± a ratio of Gamma
factors as in (6). Let c > 0 be an integer and let a be any integer with (a, c) = 1.
Denote by ā the multiplicative inverse of a modulo c. Let the additively twisted
Dirichlet series be given as

Lq

(
s, F, a

c

)
=

∞∑
n=1

A(qN−2, . . . , q1, n)
ns e

( ān
c

)
(7)

for <(s) > 1. This Dirichlet series has an analytic continuation to all s ∈ C and
satisfies the functional equation
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Lq(s, F, a/c)

=
G+(s)−G−(s)

2

∑
d1|q1c

∑
d2|

q1q2c
d1

· · ·

∑
dN−2|

q1···qN−2c
d1···dN−3

∞∑
n=1

A(n, dN−2, . . . , d2, d1)Kl(a, n, c; q, d)
n1−scNs−1d1d2 · · · dN−2

d(N−1)s
1 d(N−2)s

2 · · · d2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

+
G+(s)+G−(s)

2

∑
d1|q1c

∑
d2|

q1q2c
d1

· · ·

∑
dN−2|

q1···qN−2c
d1···dN−3

∞∑
n=1

A(n, dN−2, . . . , d2, d1)Kl(a,−n, c; q, d)
n1−scNs−1d1d2 · · · dN−2

d(N−1)s
1 d(N−2)s

2 · · · d2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

, (8)

in the region of convergence of the expression on the right-hand side (<(s) < 0).

The traditional Voronoi formula, involving weight functions instead of Dirichlet
series, is obtained after taking an inverse Mellin transform against a suitable test
function.

Choose a Dirichlet character χ modulo c, which is not necessarily primitive,
multiply both sides of (8) by χ(a), and sum this equality over the reduced residue
system modulo c. We obtain the following Voronoi formula with Gauss sums. In
Section 3B we show through elementary finite arithmetic that the formulas (8) and
(11) are equivalent.

Theorem 1.2 (Voronoi formula with Gauss sums). Let χ be a Dirichlet character
modulo c, induced from the primitive character χ∗ modulo c∗ with c∗ | c. Define for
q = (q1, . . . , qN−2) a tuple of positive integers

H(q; c, χ∗, s)=
∞∑

n=1

A(qN−2, . . . , q1, n)g(χ∗, c, n)
ns(c/c∗)1−2s (9)

for <(s) > 1, and

G(q; c, χ∗, s)=
G(s)χ∗(−1)

cNs−1(c/c∗)1−2s

∑
d1c∗|q1c

∑
d2c∗| q1q2c

d1

· · ·

∑
dN−2c∗|

q1···qN−2c
d1···dN−3

∞∑
n=1

A(n, dN−2, . . . , d1)

n1−sd1d2 · · · dN−2

d(N−1)s
1 d(N−2)s

2 · · · d2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

× g(χ∗, c, d1)g(χ∗, ξ1, d2) · · · g(χ∗, ξN−3, dN−2)g(χ∗, ξN−2, n) (10)

for <(s) < 0, where G equals G+ or G− depending on whether χ∗(−1) is 1 or −1,
and g(χ∗, `c∗, ∗) is the Gauss sum of the induced character modulo `c∗ from χ∗,
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which is defined in Definition 2.1. Both functions have analytic continuation to all
s ∈ C, and the equality

H(q; c, χ∗, s)= G(q; c, χ∗, s) (11)

is satisfied.

In proving (11), we define

Z(s, w)=
Lq(2w− s, F)L(s, F ×χ∗)

L(2w− 2s+ 1, χ∗)
, (12)

where q = (q1, . . . , qN−2) is a tuple of positive integers, and the function Lq(s, F)
is given as the Dirichlet series

Lq(s, F)=
∞∑

n=1

A(qN−2, . . . , q1, n)
ns

for <(s)� 1. We express Z(s, w) as a double Dirichlet series in two different
ways. In one region of convergence we express the L-functions as Dirichlet series
and obtain

Z(s, w)=
∞∑

n=1

an(s)
n2w .

On the other hand, we apply the functional equation of L(s, F ×χ∗), replacing s
with 1− s, and write Z(s, w) as the Dirichlet series

Z(s, w)=
∑

n

bn(s)
n2w .

By the uniqueness of Dirichlet series, we must have an(s)= bn(s). This equality
leads us to the Voronoi formula with Gauss sums.

Our proof only uses the Hecke relations about the Fourier coefficients of F and
the exact form of the functional equations. The expression of Gamma factors, or
the automorphy of F , plays no role. Hence we can formulate our theorem in a style
similar to the classical converse theorem of Weil. First, let us list the properties of
Fourier coefficients that we use in order to state the following theorem.

The Fourier coefficients of F grow moderately, i.e.,

A(m1, . . . ,m N−1)� (m1 · · ·m N−1)
σ (13)

for some σ > 0. Given a primitive Dirichlet character χ∗ modulo c∗, define the
twisted L-function

L(s, F ×χ∗)=
∞∑

n=1

A(1, . . . , 1, n)χ∗(n)
ns (14)
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for <(s) > σ + 1. It has analytic continuation to the whole complex plane, and
satisfies the functional equation

L(s, F ×χ∗)= τ(χ∗)N c∗−Ns G(s)L(1− s, F̃ ×χ∗), (15)

where G(s)= G+(s) or G−(s) depending on whether χ∗(−1)= 1 or −1.

Theorem 1.3. Let F be a symbol and assume that with F come numbers

A(m1, . . . ,m N−1) ∈ C

attached to every (N − 1)-tuple (m1, . . . ,m N−1) of natural numbers. Assume
A(1, . . . , 1)= 1.

Assume that these “coefficients” A(∗, . . . , ∗) satisfy the aforementioned Hecke
relations (2), (3) and (4). Further assume that they grow moderately as in (13).

Let F̃ be another symbol whose associated coefficients B(∗, . . . , ∗)∈C are given
as in (5) and assume that they also satisfy the same properties. Further, assume
that there are two meromorphic functions G+(s) and G−(s) associated to the pair
(F, F̃), so that for a given primitive character χ∗, the function L(s, F × χ∗) as
defined in (14) satisfies the functional equation (15).

Under all these assumptions, Lq(s, F, a/c), defined as in (7) for <(s) > 1+ σ ,
has analytic continuation to all s ∈ C, and satisfies the Voronoi formula (8). (The
Dirichlet series on the right side of (8) is absolutely convergent for <(s) <−σ .)

Equivalently the functions H(q; c, χ∗, s) and G(q; c, χ∗, s) as defined by the
formulas (9) and (10) have analytic continuations to all s and equal each other as
in (11).

Remark 1.4 (the structure of this article). Theorem 1.3 is our main result. For
the most part our focus is on the case N ≥ 3, and we deal with the case N = 2 in
Remark 3.2. The Voronoi formula (8) is proved to be equivalent to a formula (11)
involving Gauss sums. The equivalence is shown in Proposition 3.5. A convolved
version of (11) is obtained in Theorem 3.1 by comparing Dirichlet coefficients of two
different expressions of a double Dirichlet series. We later show in Proposition 3.3
that this convolved version yields (11).

Remark 1.5. If we start with an L-series L(s, F) with an Euler product

L(s, F)=
∞∑

n=1

A(1, . . . , 1, n)
ns =

∏
p

N∏
i=1

(
1−

αi (p)
ps

)−1

and with
∏

i αi (p) = 1 for any p, then we can define A(pk1, . . . , pkN−1) by the
Casselman–Shalika formula [Zhou 2014, Proposition 5.1] and they are compati-
ble with the Hecke relations. More explicitly, for a prime number p, we define
A(pk1, . . . , pkN−1)= Sk1,...,kN−1(α1(p), . . . , αN (p)) by the work of Shintani, where
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Sk1,...,kN−1(x1, . . . , xN ) is the Schur polynomial, which can be found in [Goldfeld
2006, p. 233].

We extend the definition to all A(∗, . . . , ∗)multiplicatively by (2). One can prove
that A(∗, . . . , ∗) satisfies the Hecke relations (2)–(4). In summary, the “coefficients”
A(∗, . . . , ∗) along with the Hecke relations can be generated by an L-function with
an Euler product.

The following examples satisfy the conditions in Theorem 1.3, and hence we
have a Voronoi formula for each of them.

Example 1.6 (automorphic form for SL(N ,Z)). Any cuspidal automorphic form
for SL(N ,Z) satisfies the conditions in Theorem 1.3. It can have an unramified or
ramified component at the archimedean place, because only the exact form of the
G± function would change; see [Godement and Jacquet 1972]. The Hecke–Maass
cusp forms considered in Theorem 1.1 are included in this category, and therefore,
we prove Theorem 1.3 instead of Theorem 1.1.

Example 1.7 (Rankin–Selberg convolution). Let F1 and F2 be even Hecke–Maass
cusp forms for SL(N1,Z) and SL(N2,Z) with the spectral parameters

(λ1, . . . , λN1) ∈ CN1 and (µ1, . . . , µN2) ∈ CN2,

respectively. Assume F1 6= F̃2 if N1 = N2. The automorphic forms F1 and F2 have
the standard L-functions

L(s, F1)=
∏

p

N1∏
i=1

(
1−

αi (p)
ps

)−1

and L(s, F2)=
∏

p

N2∏
i=1

(
1−

βi (p)
ps

)−1

.

Let L(s, F1× F2) be the Rankin–Selberg L-function of F1 and F2 defined by

L(s, F1× F2)=
∏

p

N1∏
i1=1

N2∏
i2=1

(
1−

αi1(p)βi2(p)
ps

)−1

.

The L-function is of degree N := N1 N2. The work of Jacquet, Piatetskii-Shapiro,
and Shalika [Jacquet et al. 1983] shows that L(s, F ×χ∗)= L(s, (F1×χ

∗)× F2)

is holomorphic and satisfies the functional equation (15) for F := F1× F2.
Define A(pk1, . . . , pkN−1) by the Schur polynomials as in Remark 1.5:

A(pk1, . . . , pkN−1) :=

Sk1,...,kN−1

(
α1(p)β1(p), . . . , αi1(p)βi2(p), . . . , αN1(p)βN2(p)

)
.
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Extend the definition to all A(∗, . . . , ∗) multiplicatively by (2). Define

G±(s) :=

i−Nδπ−N (1/2−s)
N1∏

i1=1

N2∏
i2=1

0

(
δ+ 1− s− λi1 −µi2

2

)
0

(
δ+ s− λi1 −µi2

2

)−1

,

where one takes δ = 0 and δ = 1 for G+ and G−, respectively. Theorem 1.3 gives
us a Voronoi formula for the Rankin–Selberg convolution F = F1× F2 with the
A(∗, . . . , ∗) and G± defined above.

Example 1.8 (isobaric sum, Eisenstein series). For i = 1, . . . , k, let Fi be a Hecke–
Maass cusp form for SL(Ni ,Z). Let si be complex numbers with

∑
i Ni si = 0.

Define the isobaric sum F =
(
F1×| · |

s1
A

)
�
(
F2×| · |

s2
A

)
� · · ·�

(
Fk×| · |

sk
A

)
, whose

L-function is L(s, F)=
∏

i L(s+ si , Fi ). This isobaric sum F is associated with a
noncuspidal automorphic form on GL(N ), an Eisenstein series twisted by Maass
forms, where N =

∑
i Ni ; see [Goldfeld 2006, Section 10.5]. The L-function

twisted by a character is simply given by L(s, F × χ∗) =
∏

i L(s + si , Fi × χ
∗),

which satisfies the conditions of Theorem 1.3.

Example 1.9 (symmetric powers on GL(2)). Let f be a modular form of weight
k for SL(2,Z), and define F := Sym2 f . The symmetric square F satisfies the
conditions in Theorem 1.3 by the work of Shimura [1975]. Here we do not need to
involve automorphy using Gelbart–Jacquet lifting. One may have similar results for
higher symmetric powers depending on the recent progress in the theory of Galois
representations.

As a last remark, let us explain the construction of the double Dirichlet series
Z(s, w) given by (12). This construction originates from the Rankin–Selberg
convolution of a cusp form F and an Eisenstein series on GL(2). The Fourier
coefficients of the Eisenstein series E(z, s, χ∗) can be written in terms of the
divisor function σ2s−1(n, χ∗) defined in Definition 2.1:

1
n2s−1

σ2s−1(n, χ∗)
L(2s, χ∗)

or
∞∑
`=1

g(χ∗, `c∗, n)
(`c∗)2s .

Therefore, in the case of F on GL(2), the Rankin–Selberg integral of F and
E
(
∗, w− s+ 1

2 , χ
∗
)

produces the double Dirichlet series

∞∑
n=1

∞∑
`=1

A(n)g(χ∗, `c∗, n)
ns(`c∗)2w+1−2s .

A similar expression appears on the left-hand side of the Voronoi formula with
Gauss sums (9). The Rankin–Selberg convolution of the cusp form F and an
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Eisenstein series can be written as a product of two copies of a standard L-function
of F , namely L(2w− s, F)L(s, F ×χ∗)

L(2w− 2s+ 1, χ∗)
.

Applying the functional equation to only L(s, F ×χ∗) gives us another expression,
which is similar to the right-hand side (10) of the Voronoi formula with Gauss sums.
Since L(2w− s, F) was not used in this process, we have the freedom to replace
L(2w − s, F) by Lq(2w − s, F) in the case of GL(N ), and it gives us enough
generality to prove the Voronoi formula (11) with Gauss sums. In the case of GL(3),
this construction is similar to Bump’s double Dirichlet series; see [Goldfeld 2006,
Chapter 6.6] or [Bump 1984, Chapter X].

2. Background on Gauss sums

Here we collect information about the Gauss sums of Dirichlet characters which
are not necessarily primitive.

Definition 2.1. Let χ be a Dirichlet character modulo c induced from a primitive
Dirichlet character χ∗ modulo c∗. Define the divisor function

σs(m, χ)=
∑
d|m

χ(d)ds.

Define the Gauss sum of χ to be

g(χ∗, c,m) =
∑

(u,c)=1
u mod c

χ(u)e
(mu

c

)
.

The standard Gauss sum for χ∗ is given as τ(χ∗)= g(χ∗, c∗, 1).
The Gauss sum g(χ∗, c,m) is the same as the Gauss sum τm(χ) in other literature.

However we prefer our notation because we come upon numerous Gauss sums of
characters χ induced from a single primitive character χ∗.

Lemma 2.2 (Gauss sum of nonprimitive characters [Miyake 1989, Lemma 3.1.3(2)]).
Let χ be a character modulo c induced from a primitive character χ∗ modulo c∗.
Then the Gauss sum of χ is given by

g(χ∗, c, a)= τ(χ∗)
∑

d|(a,c/c∗)

dχ∗
( c

c∗d

)
χ∗
(a

d

)
µ
( c

c∗d

)
.

Lemma 2.3 [Montgomery and Vaughan 2007, Theorem 9.12]. Let χ∗ be a primitive
character modulo c∗ and assume c∗ | c. Then we have

g(χ∗, c, a)= τ(χ∗)
φ(c)

φ(c/(c, a))
µ
( c

c∗(c, a)

)
χ∗
( c

c∗(c, a)

)
χ∗
( a
(c, a)

)
if c∗ | c/(a, c). Otherwise, g(χ∗, c, a) is zero.
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The next lemma is a generalization of a famous formula of Ramanujan:

σs−1(n)
ns−1 = ζ(s)

∞∑
`=1

c`(n)
`s ,

where c`(n) is the Ramanujan sum.

Lemma 2.4. Let <(s) > 1. Define a Dirichlet series

I (s, χ∗, c∗,m)=
∞∑
`=1

g(χ∗, `c∗,m)
`s

as a generating function for the nonprimitive Gauss sums induced from χ∗. It
satisfies the identity

τ(χ∗)σs−1(m, χ∗)= ms−1 I (s, χ∗, c∗,m)L(s, χ∗).

Proof. We prove the equivalent formula

τ(χ∗)m1−sσs−1(m, χ∗)L(s, χ∗)−1
= I (s, χ∗, c∗,m).

For <(s) > 1, the function τ(χ∗)m1−sσs−1(m, χ∗)L(s, χ∗)−1 can be written as a
Dirichlet series

τ(χ∗)
∑
d|m

dχ∗(m/d)
ds

∞∑
n=1

χ∗(n)µ(n)
ns

= τ(χ∗)

∞∑
`=1

∑
d|(m,`) dχ∗(m/d)µ(`/d)χ∗(`/d)

`s ,

and this equals I (s, χ∗, c∗,m) by Lemma 2.2. �

Lemma 2.5. For any two positive integers n and m, and a primitive Dirichlet
character χ∗ modulo c∗, we have∑

`d=n

χ∗(d)g(χ∗, `c∗,m)=
{
τ(χ∗)χ∗(m/n)n if n | m,

0 otherwise.

Proof. We start with the formula,

τ(χ∗)σs−1(m, χ∗)
ms−1 = I (s, χ∗, c∗,m)L(s, χ∗).

Both sides are Dirichlet series and we equate coefficients. The left-hand side is
given as

τ(χ∗)
∑
e|m

χ∗(m/e)e
es ,
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whereas the right-hand side is
∞∑
`=1

g(χ∗, `c∗,m)
`s

∞∑
d=1

χ∗(d)
ds =

∞∑
n=1

∑
d`=n χ

∗(d)g(χ∗, `c∗,m)
ns . �

3. The Voronoi formula

3A. Double Dirichlet series. We begin by proving a convolved version of (11).

Theorem 3.1. For N ≥ 3, q = (q1, . . . , qN−2) ∈ NN−2, and n ∈ N, define

H(q; n, s) :=
∑

d1|q1,...,dN−2|qN−2

χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

∑
d`=n

χ∗(d)H(q ′; `c∗, χ∗, s)

for <(s)� 1, and

G(q; n, s) :=
∑

d1|q1,...,dN−2|qN−2

χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

∑
d`=n

χ∗(d)G(q ′; `c∗, χ∗, s)

for <(1− s)� 1, where we abbreviate

q ′ =
(q1d

d1
,

q2d1
d2

, . . . ,
qN−2dN−3

dN−2

)
. (16)

The functions H(q; n, s) and G(q; n, s) have analytic continuation to all s ∈ C and
these analytic continuations satisfy

H(q; n, s)= G(q; n, s). (17)

Proof. The region of absolute convergence for H(q; n, s) is a right half plane
<(s)� 1, and the region of absolute convergence of G(q; n; s) is a left half plane
<(1− s)� 1. Let Z(s, w) be defined as in (12). For any s ∈ C and w with <(w)
large enough so that <(2w− s)� 1 and <(w− s) > 0, writing Lq(2w− s, F) and
L(2w− 2s+ 1, χ∗)−1 as Dirichlet series, we derive

Z(s,w)= L(s,F×χ∗)
∞∑

n=1

∑
d|n A(qN−2, . . . , q1, d)dsχ∗(n/d)µ(n/d)(n/d)2s−1

n2w .

Hence, we have

Z(s, w)=
∞∑

n=1

an(s)
n2w ,

where

an(s)= L(s, F ×χ∗)
∑
d|n

A(qN−2, . . . , q1, d)dsχ∗(n/d)µ(n/d)(n/d)2s−1.

Here an(s) is an analytic function of s ∈ C, because L(s, F × χ∗) is entire. The
computation below shows that an(s) equals either side of (17) in their respective
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regions of absolute convergence, up to scaling by a constant τ(χ∗). This proves
the analytic continuation of H and G as well as their equality.

For <(s)� 1, <(w− s) > 0, we expand the two L-functions in the numerator
of Z(s, w) as Dirichlet series, obtaining

Z(s, w)=
1

L(2w− 2s+ 1, χ∗)

∞∑
n,m=1

A(qN−2, . . . , q1, n)A(1, . . . , 1,m)χ∗(m)
n2w−sms

=
1

L(2w− 2s+ 1, χ∗)

∞∑
n,m=1

(
χ∗(m)

n2w−sms

×

∑
d0d1···dN−1=m

d0|n,d1|q1,...,dN−2|qN−2

A
(qN−2dN−3

dN−2
, . . . ,

q1d0
d1

,
ndN−1

d0

))
,

where we have used the Hecke relation (3). We change the variable n/d0→ n and
combine h = ndN−1, giving

Z(s, w)=
1

L(2w− 2s+ 1, χ∗)

∞∑
n,d0,dN−1=1

∑
di |qi

i=1,...,N−2

χ∗(d0 · · · dN−1)

n2w−sd2w−s
0 (d0 · · · dN−1)s

× A
(qN−2dN−3

dN−2
, . . . ,

q1d0
d1

, ndN−1

)
=

1
L(2w− 2s+ 1, χ∗)

∞∑
d0,h=1

∑
di |qi

i=1,...,N−2

χ∗(d0 · · · dN−2)

d2w−s
0 (d0 · · · dN−2)s

× A
(qN−2dN−3

dN−2
, . . . ,

q1d0
d1

, h
)σ2w−2s(h, χ∗)

h2w−s .

Applying Lemma 2.4, we get

Z(s, w)= τ(χ∗)−1
∞∑

d0=1

∑
di |qi

i=1,...,N−2

(
χ∗(d0 · · · dN−2)

d2w
0 (d1 · · · dN−2)s

×

∞∑
h=1

1
hs A

(qN−2dN−3
dN−2

, . . . ,
q1d0
d1

, h
) ∞∑
`=1

g(χ∗, `c∗, h)
`2w−2s+1

)
.

Therefore, defining q ′ as in (16), we reach

Z(s, w)= τ(χ∗)−1
∞∑

n=1

1
n2w

∑
d1|q1,...,dN−2|qN−2

(
χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

×

∑
d`=n

χ∗(d)H(q ′; `c∗, χ∗, s)
)
. (18)
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On the other hand, let us apply the functional (15) to L(s, F ×χ∗) in Z(s, w),
giving

Z(s, w)=
G(s)τ (χ∗)N

c∗Ns

Lq(2w− s, F)L(1− s, F̃ ×χ∗)
L(2w− 2s+ 1, χ∗)

.

Given <(1− s)� 1 and <(2w− s)� 1, we open the expression as a Dirichlet
series:

Z(s, w)

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

∞∑
n,m=1

A(qN−2, . . . , q1, n)A(m, 1, . . . , 1)χ∗(m)
n2w−sm1−s

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

×

∞∑
n,m=1

χ∗(m)
n2w−sm1−s

∑
d0d1···dN−1=m

d0|n,d1|q1,...,dN−2|qN−2

A
(qN−2dN−1

dN−2
, . . . ,

q1d2
d1

,
nd1
d0

)

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

×

∞∑
n,m=1

∑
d0d1···dN−1=m

d0|n,d1|q1,...,dN−2|qN−2

χ∗(d0d1 · · · dN−1)A
(qN−2dN−1

dN−2
, . . . ,

q1d2
d1

,
nd1
d0

)
(n/d0)2w−sd1+2w−2s

0 (d1 · · · dN−1)1−s
,

where we have combined the Fourier coefficients by the Hecke relation (4). We
change the variable n/d0→n. Then the sum over d0 cancels with L(2w−2s+1, χ∗)
in the denominator, giving

Z(s, w)

=
G(s)τ (χ∗)N c∗−Ns

L(2w− 2s+ 1, χ∗)

∞∑
n,d0,dN−1=1

∑
di |qi

i=1,...,N−2

A
(qN−2dN−1

dN−2
, . . . ,

q1d2
d1

, d1n
)

×
χ∗(d0d1 · · · dN−1)

n2w−sd1+2w−2s
0 (d1 · · · dN−1)1−s

=
G(s)τ (χ∗)N

c∗Ns

∞∑
n,dN−1=1

∑
di |qi

i=1,...,N−2

χ∗(d1 · · · dN−1)

n2w−s(d1 · · · dN−1)1−s . (19)

If we denote the right-hand side of (17) by τ(χ∗)bn(s), our goal is to transform
(19) into R :=

∑
∞

n=1 bn(s)n−2w. But at this point it is easier to start from R. More
explicitly, we have
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R = τ(χ∗)−1
∞∑

h=1

1
h2w

∑
d1|q1,...,dN−2|qN−2

(
χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

×

∑
d`=h

χ∗(d)G(q ′; `c∗, χ∗, s)
)
. (20)

Here q ′ has been defined in (16). We plug in the definition of G(q ′; `c∗, χ∗, s)
from (10) for q ′, giving

G(q ′; `c∗, χ∗, s)

=
G(s)χ∗(−1)

c∗Ns−1`(N−2)s

∑
f1|

q1d`
d1

∑
f2|

q1q2d`
f1d2

· · ·

∑
fN−2|

q1···qN−2d`
f1··· fN−3dN−2

∞∑
n=1

A(n, fN−2, . . . , f1)

n1−s f1 f2 · · · fN−2

f (N−1)s
1 f (N−2)s

2 · · · f 2s
N−2

q(N−2)s
1 q(N−3)s

2 · · · qs
N−2

(d1 · · · dN−2)
s

d(N−2)s

× g(χ∗, `c∗, f1)g
(
χ∗,

q1d`c∗

f1d1
, f2

)
· · · × g

(
χ∗,

q1 · · · qN−3d`c∗

f1 · · · fN−3dN−3
, fN−2

)
g
(
χ∗,

q1 · · · qN−2d`c∗

f1 · · · fN−2dN−2
, n
)
.

We substitute G(q ′; `c∗, χ∗, s) with this expression in (20) and change the orders
of summation between fi and di . The summations over d and di collapse with the
repeated use of Lemma 2.5, giving

R= τ(χ∗)−1 G(s)χ∗(−1)
c∗Ns−1

∞∑
h=1

∞∑
n=1

∑
h| f1

f1|q1h

∑
q1h
f1
| f2

f2|
q1q2h

f1

· · ·

∑
q1···qN−3h
f1··· fN−3

| fN−2

fN−2|
q1···qN−2h
f1··· fN−3

∑
q1···qN−2h
f1··· fN−2

|n

τ(χ∗)N−1

h2w

×χ∗
( f1

h

)
χ∗
( f1 f2

hq1

)
· · ·χ∗

( f1 f2 · · · fN−2
hq1 · · · qN−3

)
χ∗
( f1 f2 · · · fN−2n

hq1 · · · qN−2

)
×

(q1
f1

)N−2(q2

f2

)N−3
· · ·

(qN−2
fN−2

)
hN−1−Ns+2s

×
A(n, fN−2, . . . , f1)

n1−s f1 · · · fN−2

f (N−1)s
1 · · · f 2s

N−2

q(N−2)s
1 · · · qs

N−2

.

Define e1 = f1/h and ei = ( f1 · · · fi )/(q1 · · · qi−1h) for i = 2, . . . , N − 2, so
that the double conditions under the sums simplify to ei |qi . Extend this to all
positive integers by setting eN−1 = ( f1 · · · fN−2n)/(hq1 · · · qN−2). Finally, noting
τ(χ∗)−1

= χ∗(−1)τ (χ∗)/c∗, we get
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R =
G(s)τ (χ∗)N

c∗Ns

∞∑
h,eN−1=1

1
h2w−s

∑
ei |qi

i=1,...,N−2

χ∗(e1 · · · eN−2eN−1)

(e1 · · · eN−1)1−s

× A
(

eN−1qN−2

eN−2
, . . . ,

e2q1

e1
, e1h

)
,

which in turn, by (19), equals Z(s, w) as well as (18). We complete the proof by
applying the uniqueness theorem for Dirichlet series [Apostol 1976, Theorem 11.3]
to the equality between (18) and (20). �

Remark 3.2. The above proof works for N ≥ 3 but not for N = 2. We can prove
the Voronoi formula for SL(2,Z) similarly and easily by considering

Z(s, w)=
L(2w− s, F)L(s, F ×χ∗)

L(2w− 2s+ 1, χ∗)L(2w,χ∗)
.

We have, from the Hecke relations on GL(2),

Z(s, w)= τ(χ∗)−1
∞∑
`=1

∞∑
n=1

A(n)
ns

g(χ∗, `c∗, n)
`1+2w−2s ,

and applying the functional equation for L(s, F ×χ∗) we have

Z(s, w)= τ(χ∗)c∗−2s G(s)
∞∑
`=1

∞∑
n=1

A(n)
n1−s

g(χ∗, `c∗, n)
`2w .

Applying the uniqueness theorem for Dirichlet series to the variable w, we get the
Voronoi formula with Gauss sums on GL(2).

Proposition 3.3. Equation (11) is equivalent to Theorem 3.1.

Proof. Construct the following summation:

T :=
∑
e0|n

∑
e1|q1e0

· · ·

∑
eN−2|qN−2eN−3

µ(e0 · · · eN−2)χ
∗(e0 · · · eN−2)

(e1 · · · eN−2)s

×H

(
q1e0

e1
, . . . ,

qN−2eN−3

eN−2
;

n
e0
, s
)

=

∑
e0|n

∑
e1|q1e0

· · ·

∑
eN−2|qN−2eN−3

(
µ(e0 · · · eN−2)χ

∗(e0 · · · eN−2)

(e1 · · · eN−2)s

×

∑
di |qi ei−1/ei
i=1,...,N−2

χ∗(d1 · · · dN−2)

(d1 · · · dN−2)s

∑
d0|n/e0

χ∗(d0)

× H
(

q1e0d0

e1d1
, . . . ,

qN−2eN−3dN−3

eN−2dN−2
;

n
e0d0

c∗, χ∗, s
))
.
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Change variables ei di → ai for i = 0, . . . , N −2, and change orders of summation,
getting

T =
∑
a0|n

∑
e0|a0

∑
a1|q1e0

∑
e1|a1

· · ·

∑
aN−2|qN−2eN−3

∑
eN−2|aN−2

χ∗(a0 · · · aN−2)

(a1 · · · aN−2)s

× H
(

q1a0

a1
,

q2a1

a2
, . . . ,

qN−2aN−3

aN−2
;

nc∗

a0
, χ∗, s

)
µ(e0) · · ·µ(eN−2).

One by one, the Möbius summation over ei forces ai = 1, and thus we obtain
T = H(q; nc∗, χ∗, s). By Theorem 3.1, we have H= G, and the same calculations
yield T = G(q; nc∗, χ∗, s). This proves the theorem. �

3B. Equivalence between equations (8) and (11). First we prove a lemma show-
ing that the hyper-Kloosterman sum on the right-hand side of (8) becomes a product
of (N − 2) Gauss sums after averaging against a Dirichlet character.

Lemma 3.4. Let χ be a Dirichlet character modulo c which is induced from the
primitive character χ∗ modulo c∗. Let q = (q1, . . . , qN−2) and d = (d1, . . . , dN−2)

be two tuples of positive integers, and assume that all the divisibility conditions in
(1) are met. Consider the summation

S :=
∑

a mod c
(a,c)=1

χ(a)Kl(a, n, c; q, d).

The quantity S is zero unless the divisibility conditions

d1c∗|q1c, d2c∗
∣∣∣ q1q2c

d1
, d3c∗

∣∣∣ q1q2q3c
d1d2

, . . . , dN−2c∗
∣∣∣ q1 · · · qN−2c

d1 · · · dN−3
(21)

are satisfied. Under such divisibility conditions, setting ξi := (q1 · · · qi c)/(d1 · · · di ),
S can be written as a product of Gauss sums:

S = g(χ∗, c, d1)g(χ∗, ξ1, d2) · · · g(χ∗, ξN−3, dN−2)g(χ∗, ξN−2, n).

Proof. The divisibility conditions (1) imply

d1 | q1(c, d1), d2 | q2(ξ1, d2), . . . , dN−2 | qN−2(ξN−3, dN−2). (22)

We open up the hyper-Kloosterman sum in S. The forthcoming computation is
an iterative process. The summation over a yields a Gauss sum, which in turn
produces the term χ∗(x1). Then the summation over x1 yields another Gauss sum,
which produces the term χ∗(x2), and so on.
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First, we sum over a modulo c:

S =
∑

a mod c

χ(a)
∑∗

x1 mod ξ1

e
(d1x1a

c

)( ∑∗

x2 mod ξ2

e
(d2x2x1

ξ1

)
· · ·

)

=

∑∗

x1 mod ξ1

g(χ∗, c, x1d1)

( ∑∗

x2 mod ξ2

e
(d2x2x1

ξ1

)
· · ·

)
.

Now, because (c, x1d1)= ((c, q1c), x1d1)= (c, (q1c, x1d1))= (c, d1), we deduce
from Lemma 2.3 that

g(χ∗, c, x1d1)= χ∗(x1)g(χ∗, c, d1).

By Lemma 2.3, this Gauss sum is zero unless c∗ | c/(c, d1), which implies the first
divisibility condition of (21) because, by (22),

c∗
∣∣ c
(c, d1)

=
d1

(c, d1)

c
d1

∣∣ q1c
d1
.

Next we sum over x1. Notice that x1 is its multiplicative inverse modulo q1c/d1,
and hence modulo c∗. This means that χ∗(x1)= χ∗(x1). We change variables in
the x1 summation x1→ x1, and change orders of summation to obtain

S = g(χ∗, c, d1)
∑∗

x1 mod ξ1

χ∗(x1)

( ∑∗

x2 mod ξ2

e
(d2x2x1

ξ1

)
· · ·

)

= g(χ∗, c, d1)
∑∗

x2 mod ξ2

∑∗

x1 mod ξ1

χ∗(x1)e
(d2x2x1

ξ1

)( ∑∗

x3 mod ξ3

e
(d3x3x2

ξ2

)
· · ·

)

= g(χ∗, c, d1)
∑∗

x2 mod ξ2

g(χ∗, ξ1, d2x2)

( ∑∗

x3 mod ξ3

e
(d3x3x2

ξ2

)
· · ·

)
.

Once again, the equalities (ξ1, d2x2) = ((ξ1, d2ξ2), d2x2) = (ξ1, (d2ξ2, d2x2)) =

(ξ1, d2) imply that we can pull out χ∗(x2) from the Gauss sum. Then we have

S = g(χ∗, c, d1)g(χ∗, ξ1, d2)
∑∗

x2 mod ξ2

χ∗(x2)

( ∑∗

x3 mod ξ3

e
(d3x3x2

ξ2

)
· · ·

)
.

The second Gauss sum g(χ∗, ξ1, d2) vanishes unless c∗ | ξ1/(ξ1, d2) by Lemma 2.3.
This in turn implies c∗ | ξ1/(ξ1, d2) | ξ2 by (22), which is the second divisibility
condition of (21). We complete the proof after repeating this process (N − 2)
times. �

Proposition 3.5. The equations (8) and (11) are equivalent.

Proof. Let χ be a Dirichlet character modulo c induced from the primitive Dirichlet
character χ∗ modulo c∗. Multiply both sides of (8) by χ(a) and sum over reduced
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residue classes modulo c. On the left-hand side of (8), one gets∑
a mod c
(a,c)=1

χ(a)Lq(s, F, a/c)= (c/c∗)1−2s H(q; c, χ∗, s),

whereas on the right-hand side of (8), one obtains (c/c∗)1−2s G(q; c, χ∗, s) by
making use of Lemma 3.4 and the fact that

g(χ∗, ξN−2,−n)=±g(χ∗, ξN−2, n),

depending on whether χ(−1) is 1 or −1. This shows that (8) implies (11).
Conversely, if we multiply both sides of (11) by χ(a)/φ(c) and sum over all

Dirichlet characters (both primitive and nonprimitive) modulo c, we obtain (8) by
using the orthogonality relation for Dirichlet characters. Since both of the afore-
mentioned summations that shuttle between (8) and (11) are finite, the properties
of absolute convergence and analytic continuation are preserved. �
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