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Let ϕ be a Drinfeld A-module of characteristic p0 over a finitely generated
field K . Previous articles determined the image of the absolute Galois group of
K up to commensurability in its action on all prime-to-p0 torsion points of ϕ,
or equivalently, on the prime-to-p0 adelic Tate module of ϕ. In this article we
consider in addition a finitely generated torsion free A-submodule M of K for
the action of A through ϕ. We determine the image of the absolute Galois group
of K up to commensurability in its action on the prime-to-p0 division hull of M ,
or equivalently, on the extended prime-to-p0 adelic Tate module associated to ϕ
and M .
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1. Introduction

Let F be a finitely generated field of transcendence degree 1 over the prime field Fp

of characteristic p> 0. Let A be the ring of elements of F which are regular outside
a fixed place∞ of F . Let K be another field that is finitely generated over Fp, and
let K sep be a separable closure of K . Write End(Ga,K )= K [τ ] with τ(x)= x p. Let
ϕ : A→ K [τ ], a 7→ ϕa be a Drinfeld A-module of rank r > 1 and characteristic p0.
Then either p0 is the zero ideal of A and ϕ is said to have generic characteristic; or
p0 is a maximal ideal of A and ϕ is said to have special characteristic.

For brevity we call any maximal ideal of A a prime of A. For any prime p 6= p0 of
A the p-adic Tate module Tp(ϕ) is a free module of rank r over the completion Ap,
endowed with a continuous action of the Galois group Gal(K sep/K ). The prime-to-
p0 adelic Tate module Tad(ϕ)=

∏
p6=p0

Tp(ϕ) is then a free module of rank r over
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Aad =
∏

p6=p0
Ap carrying a natural action of Galois. This action corresponds to a

continuous homomorphism

Gal(K sep/K )→ AutAad(Tad(ϕ))∼= GLr (Aad). (1.1)

Its image 0ad was determined up to commensurability in [Pink and Rütsche 2009]
and [Devic and Pink 2012]; for special cases see Theorems 1.6 and 4.4 below.

Let M ⊂ K be a finitely generated torsion free A-submodule of rank d for
the action of A through ϕ. Then there is an associated prime-to-p0 adelic Tate
module Tad(ϕ,M), which is a free module of rank r+d over Aad carrying a natural
continuous action of Gal(K sep/K ). This module lies in a natural Galois equivariant
short exact sequence

0 // Tad(ϕ) // Tad(ϕ,M) // M ⊗A Aad // 0. (1.2)

Define 0ad,M as the image of the associated continuous homomorphism

Gal(K sep/K )→ AutAad(Tad(ϕ,M))∼= GLr+d(Aad). (1.3)

Then the restriction to Tad(ϕ) induces a surjective homomorphism 0ad,M � 0ad,
whose kernel we denote by 1ad,M . Since the action on M⊗A Aad is trivial, there is
a natural inclusion

1ad,M ↪→ HomA(M, Tad(ϕ)). (1.4)

Any splitting of the sequence (1.2) induces an inclusion into the semidirect product

0ad,M ↪→ 0ad nHomA(M, Tad(ϕ)). (1.5)

The aim of this article is to describe these subgroups up to commensurability.
In general the shape of these Galois groups is affected by the endomorphisms of ϕ

over K sep, and in special characteristic also by the endomorphisms of the restrictions
of ϕ to all subrings of A. Any general results therefore involve further definitions
and notation. In this introduction we avoid these and mention only a special case;
the general case is addressed by Theorems 5.1, 6.6 and 6.7. Parts (a) and (b) of
the following result can be found as [Pink and Rütsche 2009, Theorem 0.1] and
[Devic and Pink 2012, Theorem 1.1], respectively, and part (c) is a special case of
Theorem 5.1 below:

Theorem 1.6. Assume that EndK sep(ϕ)= A, and in special characteristic also that
EndK sep(ϕ|B)= A for every integrally closed infinite subring B ⊂ A.

(a) If ϕ has generic characteristic, then 0ad is open in GLr (Aad).

(b) If ϕ has special characteristic, then 0ad is commensurable with 〈a0〉 ·SLr (Aad)

for some central element a0 ∈ A that generates a positive power of p0.

(c) The inclusions (1.4) and (1.5) are both open.
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The method used to prove Theorem 1.6(c) and its generalizations is an adaptation
of the Kummer theory for semiabelian varieties from Ribet [1979] and predecessors.
The main ingredients are the above mentioned descriptions of 0ad and Poonen’s
tameness result [1995] concerning the structure of K as an A-module via ϕ. A
standard procedure would be to first prove corresponding results for p-division
points for almost all primes p 6= p0 of A, and for p-power division points for all
p 6= p0, and then to combine these individual results by taking products, as in [Ribet
1979; Chi and Li 2001; Li 2001; Pink and Rütsche 2009; Devic and Pink 2012;
Häberli 2011]. Instead, we have found a shorter way by doing everything adelically
from the start. The core of the argument is the proof of Lemma 5.3. Therein we
avoid the explicit use of group cohomology by trivializing an implicit 1-cocycle
with the help of a suitable central element of 0ad. On first reading the readers
may want to restrict their attention to the case of Theorem 1.6, which requires
only Section 2, a little from Section 4, and Section 5 with simplifications, avoiding
Sections 3 and 6 entirely. Some of this was worked out in [Häberli 2011]. Our
results generalize those of [Chi and Li 2001] and [Li 2001].

The notation and the assumptions of this introduction remain in force throughout
the article. For the general theory of Drinfeld modules see [Drinfeld 1974; Deligne
and Husemöller 1987; Hayes 1979; Goss 1996].

2. Extended Tate modules

Following the usual convention in commutative algebra we let A(p0) ⊂ F denote the
localization of A at p0; this is equal to F if and only if ϕ has generic characteristic.
Observe that there is a natural isomorphism of A-modules

A(p0)/A ∼=
⊕
p6=p0

Fp/Ap, (2.1)

where the product is extended over all maximal ideals p 6= p0 of A and where Fp

and Ap denote the corresponding completions of F and A. This induces a natural
isomorphism for the prime-to-p0 adelic completion of A:

Aad := EndA(A(p0)/A)∼=
∏
p6=p0

Ap. (2.2)

As a consequence, for any torsion A-module X that is isomorphic to (A(p0)/A)⊕n

for some integer n, the construction

T (X) := HomA(A(p0)/A, X) (2.3)

yields a free Aad-module of rank n. Reciprocally T (X) determines X completely
up to a natural isomorphism X ∼= T (X)⊗Aad (A(p0)/A). Thus any A-linear group
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action on X determines and is determined by the corresponding Aad-linear group
action on T (X). Moreover, with

Tp(X) := HomA(Fp/Ap, X) (2.4)

the decompositions (2.1) and (2.2) induce a decomposition

T (X)∼=
∏
p6=p0

Tp(X). (2.5)

This will give a concise way of defining the p-adic and adelic Tate modules associ-
ated to the given Drinfeld module ϕ.

We view K sep as an A-module with respect to the action A × K sep
→ K sep,

(a, x) 7→ ϕa(x) and are interested in certain submodules. One particular submodule
is K . Let M be a finitely generated torsion free A-submodule of rank d>0 contained
in K . Then the prime-to-p0 division hull of M in K sep is the A-submodule

Div(p0)
K sep(M) := {x ∈ K sep

| ∃a ∈ Ar p0 : ϕa(x) ∈ M}. (2.6)

Let Div(p0)
K (M) denote the intersection of Div(p0)

K sep(M) with K . For later use we
recall the following result proved in [Poonen 1995, Lemma 5] when K is a global
field and ϕ has generic characteristic, and in [Wang 2001] in general:

Theorem 2.7. [Div(p0)
K (M) : M] is finite.

As a special case of the above, the prime-to-p0 division hull of the zero module
Div(p0)

K sep({0}) is the module of all prime-to-p0 torsion points of ϕ in K sep. By direct
calculation, which we leave to the reader, one proves:

Proposition 2.8. There is a natural short exact sequence of A-modules

0 // Div(p0)
K sep({0}) // Div(p0)

K sep(M) // M ⊗A A(p0)
// 1,

where the map on the right hand side is described by x 7→ ϕa(x) ⊗ 1
a for any

a ∈ Ar p0 satisfying ϕa(x) ∈ M.

Dividing by M , the exact sequence from Proposition 2.8 yields a natural short
exact sequence of A-modules

0 // Div(p0)
K sep({0}) // Div(p0)

K sep(M)/M // M⊗A(A(p0)/A) // 0. (2.9)

By the general theory of Drinfeld modules (see [Drinfeld 1974, Proposition 2.2])
the module on the left is isomorphic to (A(p0)/A)⊕r , where r is the rank of ϕ. Using
the functor T from (2.3), the prime-to-p0 adelic Tate module of ϕ can be described
canonically as

Tad(ϕ) := T (Div(p0)
K sep({0})) (2.10)
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and is a free Aad-module of rank r . Since M is a projective A-module of rank d , the
module on the right of (2.9) is isomorphic to (A(p0)/A)⊕d , and together it follows
that the module in the middle is isomorphic to (A(p0)/A)⊕(r+d). The extended
prime-to-p0 adelic Tate module of ϕ and M

Tad(ϕ,M) := T (Div(p0)
K sep(M)/M) (2.11)

is therefore a free Aad-module of rank r + d. Moreover, the exact sequence (2.9)
yields a natural short exact sequence of Aad-modules

0 // Tad(ϕ) // Tad(ϕ,M) // M ⊗A Aad // 0. (2.12)

All this decomposes uniquely as Tad(ϕ)=
∏

p6=p0
Tp(ϕ) etc. as in (2.5).

By construction there is a natural continuous action of the Galois group

Gal(K sep/K )

on all modules and arrows in Proposition 2.8 and in (2.9). This induces a continuous
action on the short exact sequence (2.12), which in turn determines the former two
by the following fact:

Proposition 2.13. The action of Gal(K sep/K ) on Div(p0)
K sep(M) is completely deter-

mined by the action on Tad(ϕ,M).

Proof. For any σ ∈ Gal(K sep/K ) the endomorphism x 7→ σ(x)− x of Div(p0)
K sep(M)

is trivial on M , because that module is contained in K . Also, the image of this
endomorphism is contained in Div(p0)

K sep({0}), because for any a ∈ A r p0 with
ϕa(x) ∈ M we have

ϕa(σ (x)− x)= σ(ϕa(x))−ϕa(x)= 0.

Thus the endomorphism factors through a homomorphism

Div(p0)
K sep(M)/M −→ Div(p0)

K sep({0}).

But by (2.9) the latter homomorphism is determined completely by the action of σ
on Div(p0)

K sep(M)/M , and thus by the action of σ on Tad(ϕ,M), as desired. �

Let 0ad and 0ad,M denote the images of Gal(K sep/K ) acting on Tad(ϕ) and
Tad(ϕ,M), as in (1.1) and (1.3). Restricting to Tad(ϕ) induces a surjective homo-
morphism 0ad,M � 0ad, and we define 1ad,M by the short exact sequence

1 // 1ad,M // 0ad,M // 0ad // 1. (2.14)

For any m ∈ M take an element t ∈ Tad(ϕ,M) with image m ⊗ 1 in M ⊗A Aad.
Since any δ ∈1ad,M acts trivially on Tad(ϕ), the difference δ(t)− t depends only
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on δ and m. Since δ also acts trivially on M ⊗A Aad, the difference lies in Tad(ϕ)

and therefore defines a map

1ad,M ×M −→ Tad(ϕ), (δ,m) 7→ 〈δ,m〉 := δ(t)− t. (2.15)

By direct calculation this map is additive in δ and A-linear in m. By the construction
of 1ad,M the adjoint of the pairing (2.15) is therefore a natural inclusion, already
mentioned in (1.4):

1ad,M ↪→ HomA(M, Tad(ϕ)). (2.16)

Let R :=EndK (ϕ) denote the endomorphism ring of ϕ over K . This is an A-order
in a finite dimensional division algebra over F (see [Drinfeld 1974, Corollary to
Proposition 2.4]). It acts naturally on K and K sep and therefore on Div(p0)

K sep({0}) and
Tad(ϕ), turning the latter two into modules over Rad := R⊗A Aad. As this action
commutes with the action of 0ad, it leads to an inclusion

0ad ⊂ AutRad(Tad(ϕ)). (2.17)

The decomposition (2.2) induces a decomposition

Rad =
∏

p6=p0
Rp,

where Rp := R⊗A Ap acts naturally on Tp(ϕ).
If M is an R-submodule of K , then R and hence Rad also act on Div(p0)

K sep(M)
and Tad(ϕ,M), and these actions commute with the action of 0ad,M . The inclusion
(2.16) then factors through an inclusion

1ad,M ↪→ HomR(M, Tad(ϕ)). (2.18)

Moreover, any R-equivariant splitting of the sequence (2.12) then induces an
embedding into the semidirect product

0ad,M ↪→ 0ad nHomR(M, Tad(ϕ)). (2.19)

3. Reduction steps

For use in Section 6 we now discuss the behavior of extended Tate modules and their
associated Galois groups under isogenies and under restriction of ϕ to subrings.

First consider another Drinfeld A-module ϕ′ and an isogeny f : ϕ→ ϕ′ defined
over K . Recall that there exists an isogeny g : ϕ′→ ϕ such that g◦ f = ϕa for some
nonzero a ∈ A (see [Drinfeld 1974, Corollary to Proposition 2.3]). From this it
follows that M ′ := f (M) is a torsion free finitely generated A-submodule of K for
the action of A through ϕ′. Thus f induces Aad-linear maps from the modules in
(2.12) to those associated to ϕ′ and M ′. The existence of g implies that these maps
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are inclusions of finite index. Together these maps yield a commutative diagram of
Aad-modules with exact rows

0 // Tad(ϕ) //
� _

��

Tad(ϕ,M) //
� _

��

M ⊗A Aad //

o

��

0

0 // Tad(ϕ
′) // Tad(ϕ

′,M ′) // M ′⊗A Aad // 0.

(3.1)

By construction all these maps are equivariant under Gal(K sep/K ); hence the
images of Galois in each column are canonically isomorphic. If we denote the
analogues of the groups 1ad,M ⊂ 0ad,M � 0ad associated to ϕ′ and M ′ by

1
ϕ′

ad,M ′ ⊂ 0
ϕ′

ad,M ′ � 0
ϕ′

ad,

this means that we have a natural commutative diagram

0ad 0ad,Moooo 1ad,M⊃
� � // HomA(M, Tad(ϕ))� _

��

0
ϕ′

ad

o

0
ϕ′

ad,M ′
oooo

o

1
ϕ′

ad,M ′⊃

o

� � // HomA(M ′, Tad(ϕ
′)),

(3.2)

where the vertical arrow on the right hand side is an inclusion of finite index.
Next let B be any integrally closed infinite subring of A. Then A is a finitely

generated projective B-module of some rank s > 1. The restriction ψ := ϕ|B is
therefore a Drinfeld B-module of rank rs over K , and the given A-module M of
rank d becomes a B-module of rank ds. Moreover, since the characteristic of ϕ is
by definition the kernel of the derivative map a 7→ dϕa , the characteristic of ψ is
simply q0 := p0 ∩ B. In analogy to (2.2) we have

Bad := EndB(B(q0)/B)∼=
∏
q 6=q0

Bq, (3.3)

where the product is extended over all maximal ideals q 6= q0 of B. Thus

A⊗B Bad ∼=
∏
p - q0

Ap (3.4)

is in a natural way a factor ring of Aad. More precisely, it is isomorphic to Aad

if the characteristic p0 and hence q0 is zero; otherwise it is obtained from Aad by
removing the finitely many factors Ap for all maximal ideals p 6= p0 of A above q0.
In particular we have a natural isomorphism A⊗B Bad ∼= Aad if and only if p0 is
the unique prime ideal of A above q0.

Proposition 3.5. The exact sequence (2.12) for ψ and M is naturally isomorphic
to that obtained from the exact sequence (2.12) for ϕ and M by tensoring with
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A⊗B Bad over Aad. In particular we have a commutative diagram with surjective
vertical arrows

0 // Tad(ϕ) //

����

Tad(ϕ,M) //

����

M ⊗A Aad //

����

0

0 // Tad(ψ) // Tad(ψ,M) // M ⊗B Bad // 0.

If p0 is the only prime ideal of A above q0, the vertical arrows are isomorphisms.

Proof. According to (2.6) the prime-to-p0 division hull of M with respect to ϕ and
the prime-to-q0 division hull of M with respect to ψ are

Div(p0)
K sep(M) := {x ∈ K sep

| ∃a ∈ Ar p0 : ϕa(x) ∈ M},

Div(q0)
K sep(M) := {x ∈ K sep

| ∃b ∈ B r q0 : ψb(x) ∈ M}.

Here the latter is automatically contained in the former, because any b ∈ B r q0

with ψb(x) ∈ M is by definition an element a := b ∈ A r p0 with ϕa(x) ∈ M .
Thus Div(q0)

K sep(M)/M is the subgroup of all elements of Div(p0)
K sep(M)/M that are

annihilated by some element of B r q0. In other words, it is the subgroup of all
prime-to-q0 torsion with respect to B, or again, it is obtained from Div(p0)

K sep(M)/M
by removing the p-torsion for all maximal ideals p 6= p0 of A above q0. In the
same way A⊗B (B(q0)/B) is isomorphic to the submodule of A(p0)/A obtained by
removing the p-torsion for all p|q0. The same process applied to the exact sequence
(2.9) therefore yields the analogue for ψ and M . By definition the exact sequence
(2.12) for ψ and M is obtained from this by applying the functor

X 7→ HomB(B(q0)/B, X)∼= HomA(A⊗B (B(q0)/B), X)

analogous to (2.3). The total effect of this is simply to remove the p-primary factors
for all p|q0 from the exact sequence (2.12) for ϕ and M , from which everything
follows. �

By construction the diagram in Proposition 3.5 is equivariant under Gal(K sep/K ).
It therefore induces a natural commutative diagram of Galois groups

AutAad(Tad(ϕ)) 0ad⊃

����

0ad,Moooo

����

1ad,M⊃
� � //

��

HomA(M, Tad(ϕ))

��

AutBad(Tad(ψ)) 0
ψ

ad⊃ 0
ψ

ad,M
oooo 1

ψ

ad,M⊃
� � // HomB(M, Tad(ψ)),

(3.6)

where the subgroups in the lower row are the analogues for ψ and M of those
in the upper row. By construction the left two vertical arrows are surjective, and
they are isomorphisms if p0 is the only prime ideal of A above q0. In that case the
rightmost vertical arrow is injective and it follows that the map 1ad,M →1

ψ

ad,M is
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an isomorphism as well. In general one can only conclude that 1ψad,M contains the
image of 1ad,M . In any case the diagram (3.6) gives a precise way of determining
0
ψ

ad,M from 0ad,M .

4. Previous results on Galois groups

In this section we recall some previous results on the Galois group 0ad. Its pre-
cise description up to commensurability depends on certain endomorphism rings.
The endomorphism ring of a Drinfeld module of generic characteristic is always
commutative, but in special characteristic it can be noncommutative. In the latter
case it can grow on restricting ϕ to a subring B of A, and this effect can impose
additional conditions on 0ad. The question of whether the endomorphism ring
becomes stationary or grows indefinitely with B depends on the following property:

Definition 4.1. We call a Drinfeld A-module of special characteristic over K
isotrivial if over K sep it is isomorphic to a Drinfeld A-module defined over a finite
field.

The next definition is slightly ad hoc, but it describes particular kinds of Drinfeld
modules to which we can reduce ourselves in all cases, allowing a unified treatment
of Kummer theory later on.

Definition 4.2. We call the triple (A, K , ϕ) primitive if the following conditions
hold:

(a) R := EndK (ϕ) is equal to EndK sep(ϕ).

(b) The center of R is A.

(c) R is a maximal A-order in R⊗A F .

(d) If ϕ is nonisotrivial of special characteristic, then for every integrally closed
infinite subring B ⊂ A we have EndK sep(ϕ|B)= R.

(e) If ϕ is isotrivial of special characteristic, then A = Fp[a0] with ϕa0 = τ
[k/Fp],

where k denotes the finite field of constants of K .

Proposition 4.3. Let A′ denote the normalization of the center of EndK sep(ϕ).

(a) There exist a Drinfeld A′-module ϕ′ : A′→ K sep
[τ ] and an isogeny

f : ϕ→ ϕ′|A

over K sep such that A′ is the center of EndK sep(ϕ′).

(b) The characteristic p′0 of any ϕ′ as in (a) is a prime ideal of A′ above the
characteristic p0 of ϕ.
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(c) There exist a finite extension K ′ ⊂ K sep of K , a Drinfeld A′-module

ϕ′ : A′→ K ′[τ ],

an isogeny f : ϕ → ϕ′|A over K ′, and an integrally closed infinite subring
B ⊂ A′ such that A′ is the center of EndK sep(ϕ′) and (B, K ′, ϕ′|B) is primitive.

(d) The subring B in (c) is unique unless ϕ is isotrivial of special characteristic,
in which case it is never unique.

(e) For any data as in (c) the characteristic p′0 of ϕ′ is the unique prime ideal of
A′ above the characteristic q0 of ϕ′|B.

Proof. Applying [Devic and Pink 2012, Proposition 4.3] to ϕ and the center of
EndK sep(ϕ) yields a Drinfeld A-module ϕ̃ : A→ K sep

[τ ] and an isogeny f : ϕ→ ϕ̃

over K sep such that A′ is mapped into EndK sep(ϕ̃) under the isomorphism

EndK sep(ϕ)⊗A F ∼= EndK sep(ϕ̃)⊗A F

induced by f . Then A′ ⊗A F is the center of EndK sep(ϕ̃)⊗A F , and since A′ is
integrally closed, it follows that A′ is the center of EndK sep(ϕ̃). The tautological ho-
momorphism A′ ↪→EndK sep(ϕ̃) ↪→K sep

[τ ] thus constitutes a Drinfeld A′-module ϕ′

with ϕ′|A∼= ϕ̃ and EndK sep(ϕ′)=EndK sep(ϕ̃). In particular the center of EndK sep(ϕ′)

is equal to A′, proving (a).
For (b) recall that the characteristic of ϕ′ is the kernel of the derivative map

a′ 7→ dϕ′a′ . Calling it p′0, the characteristic of ϕ′|A is then p′0 ∩ A. As the charac-
teristic of a Drinfeld module is invariant under isogenies, it follows that p′0 lies
above p0, proving (b).

For the remainder of the proof we take any pair ϕ′ and f as in (a). We also
choose a finite extension K ′ ⊂ K sep of K such that ϕ′ and f are defined over K ′

and that EndK ′(ϕ
′)= EndK sep(ϕ′).

Suppose first that ϕ′ has generic characteristic. Then EndK ′(ϕ
′) is commutative

(see [Drinfeld 1974, Corollary to Proposition 2.4]) and hence equal to A′, and so
the triple (A′, K ′, ϕ′) is already primitive. This proves (c) with B = A′. Also, for
any integrally closed infinite subring B ⊂ A′ the ring EndK sep(ϕ′|B) is commutative
and hence again equal to EndK sep(ϕ′) = A′. Thus (B, K ′, ϕ′|B) being primitive
requires that B = A′, proving (d). Since B = A′, the assertion of (e) is then trivially
true.

Suppose next that ϕ′ is nonisotrivial of special characteristic. Then by [Pink 2006,
Theorem 6.2] there exists a unique integrally closed infinite subring B⊂ A′ such that
B is the center of EndK sep(ϕ′|B) and that EndK sep(ϕ′|B ′)⊂ EndK sep(ϕ′|B) for every
integrally closed infinite subring B ′⊂ A′. For use below we note that both properties
are invariant under isogenies of ϕ′, because isogenies induce isomorphisms on the
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rings EndK sep(ϕ′|B ′)⊗B ′Quot(B ′). By uniqueness it follows that B, too, is invariant
under isogenies of ϕ′.

After replacing K ′ by a finite extension we may assume that EndK ′(ϕ
′
|B) =

EndK sep(ϕ′|B). Then the triple (B,K ′, ϕ′|B) satisfies the conditions in Definition 4.2
except that EndK ′(ϕ

′
|B) may not be a maximal order in EndK ′(ψ

′)⊗B Quot(B).
But applying [Devic and Pink 2012, Proposition 4.3] to ϕ′|B and EndK ′(ϕ

′
|B)

yields a Drinfeld B-module ψ ′ : B→ K ′[τ ] and an isogeny g : ϕ′|B→ψ ′ over K ′

such that EndK ′(ψ
′) is a maximal order in EndK ′(ψ

′)⊗B Quot(B) which contains
EndK ′(ϕ

′
|B). By the preceding remarks we now find that (B, K ′, ψ ′) is primitive.

Moreover, the composite homomorphism

A′ ↪→ EndK ′(ϕ
′) ↪→ EndK ′(ϕ

′
|B) ↪→ EndK ′(ψ

′) ↪→ K ′[τ ]

constitutes a Drinfeld A′-module ϕ′′ with ϕ′′|B ∼= ψ ′. After replacing (ϕ′, f )
by (ϕ′′, g ◦ f ) the data then satisfies all the requirements of (c). Assertion (d)
follows from the above stated uniqueness of B, and (e) follows from [Pink 2006,
Proposition 3.5].

It remains to consider the case where ϕ′ is isotrivial of special characteristic.
In this case we may assume that ϕ′ is defined over the constant field k ′ of K ′.
Any endomorphism of ϕ′ over K sep is then defined over a finite extension of k ′,
but by assumption also over K ′; hence it is defined over k ′. In other words we
have EndK sep(ϕ′) ⊂ k ′[τ ]. Since τ [k

′/Fp] lies in the center of the k ′[τ ], it thus
corresponds to an element of the center of EndK sep(ϕ′). As this center is equal to
A′ by assumption, there is therefore an element a0 ∈ A′ with ϕ′a0

= τ [k
′/Fp]. Set

B := Fp[a0] ⊂ A′ which, being isomorphic to a polynomial ring, is an integrally
closed infinite subring of A′. Then EndK sep(ϕ′|B) is the commutant of τ [k

′/Fp] in
K sep
[τ ] and hence just k ′[τ ]. By a standard construction this is a maximal B-order

in a (cyclic) central division algebra over Quot(B); hence (B, K ′, ϕ′|B) is primitive,
proving (c). For (d) observe that replacing K ′ and k ′ by finite extensions amounts
to replacing a0 by an arbitrary positive power ai

0. Thus the ring B is really not
unique in this case, proving (d). Finally, assertion (e) follows from [Devic and Pink
2012, Proposition 6.4(a)]. This finishes the proof of Proposition 4.3. �

Assume now that (A, K , ϕ) is primitive and that ϕ has rank r . Then R⊗A F is
a central division algebra of dimension m2 over F for some factorization r = mn.
Thus for all primes p 6= p0 of A, the ring Rp := R ⊗A Ap is an Ap-order in the
central simple algebra R⊗A Fp of dimension m2 over Fp and is isomorphic to the
matrix ring Matm×m(Ap) for almost all p. Let Dp denote the commutant of Rp in
EndAp(Tp(ϕ)). This is an Ap-order in a central simple algebra of dimension n2

over Fp and is isomorphic to the matrix ring Matn×n(Ap) for almost all p. Let D1
p
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denote the multiplicative group of elements of Dp of reduced norm 1. Set

Dad :=
∏
p6=p0

Dp ⊂ EndAad(Tad(ϕ))

and
D1

ad :=
∏
p6=p0

D1
p ⊂ D×ad ⊂ AutAad(Tad(ϕ)).

If ϕ has generic characteristic, we have m = 1 and therefore

Dp = EndAp(Tp(ϕ))∼=Matr×r (Ap)

for all p.
If ϕ is nonisotrivial of special characteristic p0, let a0 be any element of A

that generates a positive power of p0. If ϕ is isotrivial, the element a0 from
Definition 4.2(d) already has the same property. In both cases we view a0 as a
scalar element of D×ad via the diagonal embedding A ⊂ Aad ⊂ Dad, and let 〈a0〉

denote the procyclic subgroup that is topologically generated by it.
In general the group0ad was described up to commensurability in our earlier work.

In the primitive case, Theorem 0.1 of [Pink and Rütsche 2009] and Theorem 1.1
and Proposition 6.3 of [Devic and Pink 2012] imply:

Theorem 4.4. Assume that (A, K , ϕ) is primitive.

(a) If ϕ has generic characteristic, then 0ad is open in D×ad.

(b) If ϕ is nonisotrivial of special characteristic, then n > 2 and 0ad is commensu-
rable with 〈a0〉 · D1

ad.

(c) If ϕ is isotrivial of special characteristic, then n = 1 and 0ad = 〈a0〉 with a0

from 4.2(c).

Corollary 4.5. Assume that (A, K , ϕ) is primitive.

(a) Let2ad denote the closure of the Fp-subalgebra of Dad generated by 0ad. Then
there exists a nonzero ideal a of A with a 6⊂ p0 such that aDad ⊂2ad.

(b) There exist a scalar element γ ∈ 0ad and a nonzero ideal b of A with b 6⊂ p0

such that γ ≡ 1 modulo bAad but not modulo pbAad for any prime p 6= p0 of A.

Proof. Any open subgroup of D×ad, and for n>2 any open subgroup of D1
ad, generates

an open subring of Dad. Thus the assertion (a) follows from Theorem 4.4 unless ϕ is
isotrivial of special characteristic. But in that case we have2ad=Fp[a0]= Aad=Dad

and (a) follows as well.
In generic characteristic the assertion (b) follows directly from the openness

of 0ad. In special characteristic some positive power ai
0 lies in 0ad, and so (b) holds

with γ = ai
0 and the ideal b= (ai

0− 1). �
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5. The primitive case

Now we prove the following result, of which Theorem 1.6(c) is a special case:

Theorem 5.1. Assume that (A, K , ϕ) is primitive. Set R := EndK (ϕ) and let
M be a finitely generated torsion free R-submodule of K . Then the inclusions
1ad,M ⊂ HomR(M, Tad(ϕ)) and 0ad,M ⊂ 0ad nHomR(M, Tad(ϕ)) are both open.

So assume that (A, K , ϕ) is primitive. Let the subring 2ad ⊂ Dad, the element
γ ∈ 0ad, and the ideals a, b⊂ A be as in Corollary 4.5. Since M ⊂Div(p0)

K (M) has
finite index by Theorem 2.7, we can also choose a nonzero ideal c of A with c 6⊂ p0

such that c ·Div(p0)
K (M)⊂ M . With this data we prove the following more precise

version of Theorem 5.1:

Theorem 5.2. In the above situation we have abc ·HomR(M, Tad(ϕ))⊂1ad,M .

In the rest of this section we abbreviate Tad := Tad(ϕ) and M∗ad :=HomR(M, Tad).
Recall that the embedding 1ad,M ⊂ M∗ad is adjoint to the pairing 〈 , 〉 from (2.15).
The arithmetic part of the proof is a calculation in Div(p0)

K sep(M) with the following
result:

Lemma 5.3. For any prime p 6= p0 of A and any element m ∈ M satisfying
〈1ad,M ,m〉 ⊂ pbcTad we have m ∈ pM.

Proof. The assumption on γ , viewed as an element of Aad, means that

γ − 1 ∈ bAad r pbAad.

By the Chinese remainder theorem we can find an element b ∈ Ar p0 satisfying
b ≡ γ − 1 modulo pbcAad. Then by construction we have b ∈ br pb, and γ acts
on all pbc-torsion points of ϕ through the action of 1+ b ∈ A. By the Chinese
remainder theorem we can also find elements a, c ∈ A r p0 with a ∈ pr p2 and
c ∈ cr pc. Then the product abc lies in pbcr (p2bc∪ p0). In particular the order
of abc at p is equal to that of pbc, and so we can also choose an element d ∈ Ar p

such that dpbc⊂ (abc).
For better readability we abbreviate the action of any element e ∈ A on an

element x ∈ K sep by ex := ϕe(x). Since abc ∈ A r p0, we can select an element˜̃m ∈ Div(p0)
K sep(M) with abc˜̃m = m. Then m̃ := d ˜̃m is an element of Div(p0)

K sep(M)
which satisfies abcm̃ = dm. By construction m̃ lies in K sep, but we shall see that it
actually lies in a specific subfield.

Choosing a compatible system of division points of m̃ we can find an A-linear
map t̃ : A(p0)→ Div(p0)

K sep(M) satisfying t̃
( 1

abc

)
= m̃. Then t̃(1)= abcm̃ = dm lies

in M ; hence t̃ induces an A-linear map t : A(p0)/A → Div(p0)
K sep(M)/M . By the

construction (2.11) this map is an element of Tad(ϕ,M) whose image in M ⊗A Aad
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is dm ⊗ 1. For any δ ∈ 1ad,M the definition (2.15) of the pairing now says that
〈δ, dm〉 = δ(t)− t . But the assumption 〈1ad,M ,m〉 ⊂ pbcTad implies that

〈1ad,M , dm〉 ⊂ dpbcTad ⊂ abcTad

and therefore δ(t)− t ∈ abcTad. Thus δ(t)− t is the multiple by abc of an A-
linear map A(p0)/A→ Div(p0)

K sep({0}); hence it is zero on the residue class of 1
abc .

By the construction of t this means that δ(m̃)− m̃ = 0. Varying δ we conclude
that m̃ is fixed by 1ad,M ; in other words, it lies in the subfield Kad ⊂ K sep with
Gal(Kad/K )= 0ad.

Now consider any element σ ∈ Gal(K sep/K ). The fact that m lies in K implies
that

abc(σ − 1)(˜̃m)= (σ − 1)(abc˜̃m)= (σ − 1)(m)= 0.

Thus (σ − 1)(˜̃m) is annihilated by abc and hence by the ideal dpbc⊂ (abc). The
element (σ − 1)(m̃)= d(σ − 1)(˜̃m) is therefore annihilated by the ideal pbc. Since
γ acts on all pbc-torsion points through the action of 1+ b ∈ A, it follows that

(1+ b− γ )((σ − 1)(m̃))= 0.

On the other hand we have m̃ ∈ Kad, and since γ lies in the center of 0ad, its action
on Kad commutes with the action of σ on Kad. Thus the last equation is equivalent
to

(σ − 1)((1+ b− γ )(m̃))= 0.

As σ ∈ Gal(K sep/K ) was arbitrary, it follows that (1+ b− γ )(m̃) ∈ K .
Since m̃ lies in Div(p0)

K sep(M), we can now deduce that (1+b−γ )(m̃)∈Div(p0)
K (M).

By the choice of c and c it follows that c(1+b−γ )(m̃)∈M . The fact that dm=abcm̃
thus implies that

(1+ b− γ )(dm)= (1+ b− γ )(abcm̃)= abc(1+ b− γ )(m̃) ∈ abM.

But dm is an element of K and therefore satisfies (1− γ )(dm)= 0. Thus the last
relation shows that actually bdm ∈ abM and so dm ∈ aM . Since a ∈ p and d 6∈ p,
this implies that m ∈ pM , as desired. �

The rest of the proof of Theorem 5.2 is a technical argument involving rings and
modules. It is easier to understand if R = A, in which case Dp

∼=Matr×r (Ap) for
all p, so the readers may want to restrict themselves to that case on first reading.
For general facts on maximal orders in semisimple algebras, see [Reiner 2003].

Using Corollary 11.6 of that reference, the assumptions in Definition 4.2 imply
that for any prime p 6= p0 of A the ring Rp := R⊗A Ap is a maximal order in a finite
dimensional central simple algebra over Fp. By [Reiner 2003, Theorem 17.3] we
can therefore identify it with the matrix ring Matnp×np(Sp), where Sp is the maximal
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order in a finite dimensional central division algebra over Fp. Here np> 1 may vary
with p. Let Lp := S⊕np

p denote the tautological left Rp-module. Since Tp := Tp(ϕ)
is a nontrivial finitely generated torsion free left Rp-module, it is isomorphic to
L⊕mp
p for some mp > 1 by [ibid., Theorem 18.10]. Thus

Dp := EndRp(Tp)

is isomorphic to the matrix ring Matmp×mp(S
opp
p ) over the opposite algebra Sopp

p .
Let Np := (S

opp
p )⊕mp denote the tautological left Dp-module; then as a Dp-module

Tp is isomorphic to N⊕np
p . Moreover, by biduality, using Morita equivalence [ibid.,

Theorem 16.14] or direct computation, we have

Rp
∼= EndDp(Tp). (5.4)

Next, since R is a maximal order in a division algebra over the Dedekind ring A,
and M is a finitely generated torsion free R-module, M is a projective R-module
by [ibid., Corollary 21.5], say of rank ` > 0. For each p 6= p0 we therefore have
Mp :=M⊗A Ap

∼= R⊕`p as an Rp-module. Consequently M∗p :=HomR(M, Tp)∼=T⊕`p

as a Dp-module via the action of Dp on Tp. Using the biduality (5.4) we obtain a
natural isomorphism

Mp
∼= HomDp(M

∗

p , Tp). (5.5)

Taking the product over all p 6= p0 yields adelic versions of all this with Tad =
∏

Tp
and Rad =

∏
Rp and Dad =

∏
Dp and M∗ad =

∏
M∗p .

Recall that 1ad,M is a closed additive subgroup of M∗ad =
∏

M∗p . Let 1p denote
its image under the projection to M∗p .

Lemma 5.6. For any p 6= p0 and any Dp-linear map f : M∗p → Np satisfying
f (1p)⊂ pbcNp, we have f (M∗p )⊂ pNp.

Proof. Since Np is a Dp-module isomorphic to a direct summand of Tp, it is
equivalent to show that for every Dp-linear map g : M∗p → Tp with g(1p)⊂ pbcTp
we have g(M∗p ) ⊂ pTp. Let 〈 , 〉 : M∗p × Mp→ Tp denote the natural Ap-bilinear
map. Then the biduality (5.5) says that g = 〈 ,mp〉 for an element mp ∈ Mp. Write
pbc = pid for an integer i > 1 and an ideal d of A that is prime to p. Choose
any element m ∈ M which is congruent to mp modulo pi Mp and congruent to
0 modulo dM . Then the assumption 〈1p,mp〉 = g(1p) ⊂ pbcTp implies that
〈1ad,M ,m〉 ⊂ pbcTad. By Lemma 5.3 it follows that m ∈ pM . Consequently
mp ∈ pMp and therefore g(M∗p )= 〈1p,mp〉 ⊂ pTp, as desired. �

Now observe that 1ad,M ⊂ M∗ad is a closed additive subgroup that is invariant
under the action of 0ad. It is therefore a submodule with respect to the subring
2ad := Fp[0ad] of Dad from Corollary 4.5(a). By Corollary 4.5(a) we therefore
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have
1′ad := aDad1ad,M ⊂1ad,M . (5.7)

By construction 1′ad is a submodule over Dad=
∏

Dp and therefore itself a product
1′ad =

∏
1′p for Dp-submodules 1′p ⊂ M∗p .

Lemma 5.8. For any p 6= p0 and any Dp-linear map f : M∗p → Np satisfying
f (1′p)⊂ pabcNp, we have f (M∗p )⊂ pNp.

Proof. The definition of 1′p implies that aDp1p ⊂ 1
′
p. Thus by assumption we

have a f (1p)⊂ f (aDp1p)⊂ f (1′p)⊂ pabcNp and therefore f (1p)⊂ pbcNp. By
Lemma 5.6 this implies that f (M∗p )⊂ pNp. �

Lemma 5.9. For any p 6= p0 we have abcM∗p ⊂1
′
p.

Proof. Let mp denote the maximal ideal of Sopp
p . Then by [Reiner 2003, Theo-

rem 13.2] we have pSopp
p =me

p for some integer e > 1. The general theory says the
following about the structure of the module M∗p/1

′
p over the maximal order Dp.

On the one hand, by [Knebusch 1967, Satz 7] the torsion submodule of M∗p/1
′
p is a

finite direct sum of indecomposable modules isomorphic to Np/m
jν
p Np for certain

integers jν > 1. On the other hand, the factor module of M∗p/1
′
p by its torsion

submodule is projective by [Reiner 2003, Corollary 21.5] and hence isomorphic
to a direct sum of copies of Np. That the factor module is projective also implies
that M∗p/1

′
p is isomorphic to the direct sum of its torsion submodule with the

factor module. Together it follows that M∗p/1
′
p is a finite direct sum of modules

isomorphic to Np or to Np/m
jν
p Np for certain integers jν > 1.

To use this fact, let pi denote the highest power of p dividing abc. If no summand
isomorphic to Np occurs in M∗p/1

′
p and all exponents jν are 6 ei , then M∗p/1

′
p is

annihilated by pi Sopp
p =mei

p . In this case it follows that abcM∗p = pi M∗p ⊂1
′
p, as

desired.
Otherwise there exists a surjective Dp-linear map M∗p/1

′
p� Np/m

ei+1
p Np. Com-

posed with the isomorphism

Np/m
ei+1
p Np

∼=me−1
p Np/p

i+1 Np =me−1
p Np/pabcNp,

this yields a Dp-linear map M∗p/1
′
p→ Np/pabcNp whose image is not contained

in pNp/pabcNp =me
pNp/pabcNp. As M∗p is a projective Dp-module, the latter map

can be lifted to a Dp-linear map f : M∗p → Np. By construction this map then
satisfies f (1′p) ⊂ pabcNp and f (M∗p ) 6⊂ pNp. But that contradicts Lemma 5.8;
hence this case is not possible and the lemma is proved. �

Taking the product over all p, Lemma 5.9 and the inclusion (5.7) imply that
abcM∗ad ⊂ 1

′

ad ⊂ 1ad,M . This finishes the proof of Theorem 5.2. In particular it
proves the first assertion of Theorem 5.1, from which the second assertion directly
follows.
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6. The general case

First we note the following general fact on homomorphisms of modules:

Proposition 6.1. Let S be a unitary ring, not necessarily commutative, and let
M and N be left S-modules. Let X be a subset of M and SX the S-submodule
generated by it. Let Hom(S)(X, N ) denote the set of maps ` : X → N such that
for any finite collection of si ∈ S and xi ∈ X with

∑
i si xi = 0 in M we have∑

i si`(xi )= 0 in N.

(a) The restriction of maps induces a bijection HomS(SX, N )
∼
→ Hom(S)(X, N ).

(b) If R is a unitary subring of S such that X is an R-submodule and the natural
map S⊗R X→ M ,

∑
i si ⊗ xi 7→

∑
i si xi is injective, then Hom(S)(X, N )=

HomR(X, N ).

(c) If X is an S-submodule of M , then Hom(S)(X, N )= HomS(X, N ).

Proof. Let F :=
⊕

x∈X S · [x] be the free left S-module over the set X and consider
the natural S-linear map F → M ,

∑
i si [xi ] 7→

∑
i si xi . Since S is unitary, the

image of this map is SX . Let T denote its kernel. Then giving an S-linear map
SX → N is equivalent to giving an S-linear map F → N which vanishes on T .
Using the universal property of F we find that the latter is equivalent to giving
an element of Hom(S)(X, N ). The total correspondence is given by restriction of
maps, proving (a).

In (b) we have S ⊗R X
∼
→ SX ; hence the adjunction between tensor product

and Hom yields bijections HomS(SX, N )
∼
→ HomS(S⊗R X, N )

∼
→ HomR(X, N ).

Their composite is again just restriction of maps; so by (a) the restriction map
Hom(S)(X, N )→ HomR(X, N ) is also bijective, proving (b).

Finally, (c) is a special case of (a) or (b), according to taste. �

Now we return to the situation of Section 4. We choose data (A′, K ′, ϕ′, f, B)
as in Proposition 4.3(c), that is: We let A′ denote the normalization of the center
of EndK sep(ϕ), take a finite extension K ′ ⊂ K sep of K , a Drinfeld A′-module
ϕ′ : A′→ K ′[τ ], an isogeny f : ϕ→ ϕ′|A over K ′, and an integrally closed infinite
subring B ⊂ A′ such that A′ is the center of EndK sep(ϕ′) and (B, K ′, ϕ′|B) is
primitive. By Proposition 4.3(e) the characteristic p′0 of ϕ′ is then the only prime
ideal of A′ above the characteristic q0 of ϕ′|B. We will apply the reduction steps
from Section 3 to the isogeny f and to each of the inclusions A ⊂ A′ ⊃ B.

Specifically, let us set ψ ′ := ϕ′|B and S′ := EndK sep(ψ ′). Then M ′ := A′ f (M)
is a finitely generated A′-submodule of K ′ for the action of A′ through ϕ′, and so
N ′ := S′M ′ is a finitely generated B-submodule for the action of B through ψ ′.
The modules M ′ and N ′ may have torsion, but since they are finitely generated,
their torsion is annihilated by some nonzero element a′ ∈ A′. Replacing the isogeny
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f by ϕ′a′ ◦ f replaces M ′ by a′M ′ and N ′ by a′N ′; hence we may without loss of
generality assume that M ′ and N ′ are torsion free.

Let 1ϕ
′

ad,M ′ ⊂ 0
ϕ′

ad,M ′ � 0
ϕ′

ad denote the Galois groups as in (2.14) associated to
(K ′, ϕ′,M ′) in place of (K , ϕ,M), and similarly for (K ′, ϕ′, N ′), respectively for
(K ′, ψ ′, N ′), and so on. Then Proposition 3.5 for the inclusion A′ ⊃ B yields a
natural commutative diagram with exact rows

0 // Tad(ϕ
′) //

o

Tad(ϕ
′, N ′) //

o

N ′⊗A′ A′ad
//

o

0

0 // Tad(ψ
′) // Tad(ψ

′, N ′) // N ′⊗B Bad // 0.

(6.2)

The action of S′ on the lower row thus yields a natural action on the upper row.
Recall from (2.19) that any S′-equivariant splitting induces an embedding

0
ψ ′

ad,N ′ ↪→ 0
ψ ′

ad nHomS′(N ′, Tad(ψ
′)). (6.3)

Since (B, K ′, ψ ′) is primitive, this embedding is open by Theorem 5.1. The
isomorphisms from (3.6) thus yield an open embedding

0
ϕ′

ad,N ′ ↪→ 0
ϕ′

ad nHomS′(N ′, Tad(ϕ
′)). (6.4)

Since N ′ = S′M ′, the Galois action on Tad(ϕ
′, N ′) is completely determined by the

action on Tad(ϕ
′,M ′); in other words the restriction induces a natural isomorphism

0
ϕ′

ad,N ′
∼= 0

ϕ′

ad,M ′ . This together with Proposition 6.1(a) yields an open embedding

0
ϕ′

ad,M ′ ↪→ 0
ϕ′

ad nHom(S′)(M ′, Tad(ϕ
′)). (6.5)

The next natural step would be the passage from (K ′, ϕ′,M ′) to (K ′, ϕ′|A,M ′).
However, this runs into the problem that S′ does not necessarily act on Tad(ϕ

′
|A),

because Tad(ϕ
′
|A) is obtained from Tad(ϕ

′)∼=
∏

p′ 6=p′0
Tp′(ϕ′) by removing all factors

with p′|p′0, which are not necessarily preserved by the noncommutative ring S′.
Thus if p′0 is not the only prime above p0, it would be ugly to precisely describe
the image of Hom(S′)(M ′, Tad(ϕ

′)) in HomA(M ′, Tad(ϕ
′
|A)) in general, though of

course it can be done. We therefore restrict ourselves to two special cases, with the
following results:

Theorem 6.6. Assume that A is the center of EndK sep(ϕ). With A′ := A let
(K ′, ϕ′, f, B) be as in Proposition 4.3(c), and set S := EndK sep(ϕ|B). Let M
be a finitely generated torsion free A-submodule of K . Then 1ad,M is commen-
surable with the subgroup Hom(S)(M, Tad(ϕ)) of HomA(M, Tad(ϕ)), and 0ad,M is
commensurable with 0ad nHom(S)(M, Tad(ϕ)).

Proof. With the above notation f induces an isomorphism M
∼
→ M ′ and an

embedding of finite index Tad(ϕ) ↪→ Tad(ϕ
′). It also induces an isomorphism
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S⊗B Quot(B)∼= S′⊗B Quot(B) under which the intersection of S and S′ has finite
index in both. Since Tad(ϕ) and Tad(ϕ

′) are torsion free Aad-modules, this implies
the equalities and an inclusion of finite index in the diagram

Hom(S)(M, Tad(ϕ)) Hom(S∩S′)(M, Tad(ϕ))
� _

f ◦( )◦ f −1

��

Hom(S′)(M ′, Tad(ϕ
′)) Hom(S∩S′)(M ′, Tad(ϕ

′)).

With (3.2) and the open embedding (6.5) this shows that the image of Gal(K sep/K ′)
associated to (K ′, ϕ,M) is an open subgroup of 0ad nHom(S)(M, Tad(ϕ)). This
implies the assertion about 0ad,M , from which the assertion about 1ad,M directly
follows. �

In the other special case we drop all assumptions on endomorphisms, but instead
assume something about M :

Theorem 6.7. Let (A′, K ′, ϕ′, f, B) be as in Proposition 4.3(c), and set

S′ := EndK sep(ϕ′|B).

Let M be a finitely generated torsion free A-submodule of K such that the natural
map

S′⊗A M→ K sep,
∑

i si ⊗mi 7→
∑

i si f (mi )

is injective. Then1ad,M is an open subgroup of HomA(M, Tad(ϕ)), and 0ad,M is an
open subgroup of 0ad nHomA(M, Tad(ϕ)).

Proof. With the above notation the assumption implies that the natural map

S′⊗A f (M)→ S′ f (M)= N ′,
∑

i s ′i ⊗m′i 7→
∑

i s ′i m
′

i

is injective and therefore an isomorphism. Thus by Proposition 6.1 the restriction
induces a natural isomorphism

HomS′(N ′, Tad(ϕ
′))
∼
→ HomA( f (M), Tad(ϕ

′)).

The openness of the embedding (6.4), together with the surjectivity in (3.6) for the
inclusion A ⊂ A′, thus implies the openness of the embedding

0
ϕ′|A
ad, f (M) ↪→ 0

ϕ′|A
ad nHomA( f (M), Tad(ϕ

′
|A)).

With (3.2) it follows that

0ad,M ↪→ 0ad nHomA(M, Tad(ϕ))

is an open embedding. This proves the assertion about 0ad,M , from which the
assertion about 1ad,M directly follows. �
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