
Algebra &
Number
Theory

msp

Volume 10

2016
No. 2

Generalized Heegner cycles
at Eisenstein primes and

the Katz p-adic L-function
Daniel Kriz



msp
ALGEBRA AND NUMBER THEORY 10:2 (2016)

dx.doi.org/10.2140/ant.2016.10.309

Generalized Heegner cycles
at Eisenstein primes and

the Katz p-adic L-function
Daniel Kriz

We consider normalized newforms f ∈ Sk(00(N ), εf ) whose nonconstant term
Fourier coefficients are congruent to those of an Eisenstein series modulo some
prime ideal above a rational prime p. In this situation, we establish a congruence
between the anticyclotomic p-adic L-function of Bertolini, Darmon, and Prasanna
and the Katz two-variable p-adic L-function. From this we derive congruences
between images under the p-adic Abel–Jacobi map of certain generalized Heegner
cycles attached to f and special values of the Katz p-adic L-function.

Our results apply to newforms associated with elliptic curves E/Q whose
mod-p Galois representations E[p] are reducible at a good prime p. As a conse-
quence, we show the following: if K is an imaginary quadratic field satisfying
the Heegner hypothesis with respect to E and in which p splits, and if the bad
primes of E satisfy certain congruence conditions mod p and p does not divide
certain Bernoulli numbers, then the Heegner point PE (K ) is nontorsion, implying,
in particular, that rankZ E(K ) = 1. From this we show that if E is semistable
with reducible mod-3 Galois representation, then a positive proportion of real
quadratic twists of E have rank 1 and a positive proportion of imaginary quadratic
twists of E have rank 0.
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1. Notation and conventions

Throughout the paper, let us fix the following notational conventions.
For m, n ∈ Z, let (m, n) denote the greatest common divisor of m and n, and let

lcm(m, n) denote the least common multiple. We let ` ‖ N indicate that ` strictly
divides N . We let 8 : Z→ Z denote the Euler totient function. Given an extension
of number fields L/K and an integral ideal a of OL , let NmL/K a denote the relative
ideal norm of a and let |a| denote the smallest positive rational integer in a. For
ideals a, b, we let (a, b) denote the greatest common ideal divisor and lcm(a, b)
the least common ideal multiple. For a place v of a number field, let Frobv denote
the arithmetic Frobenius attached to v, i.e., the Frobenius element which is sent
to v under the (inverse of the) Artin reciprocity map.

Throughout, we will fix an algebraic closure Q of Q. All number fields in our
discussion will be viewed as being embedded in Q. For each rational prime p,
we will fix an algebraic closure Qp of Qp and let Cp denote the topological
closure of Qp. We fix an embedding i∞ : Q ↪→ C as well as an embedding
ip :Q ↪→ Cp for each p. We also fix field identifications i : C −→∼ Cp for each p.
(We will use the same symbol i for all p, as the underlying p will be clear from
context.)

Let K denote a general number field. Let AK and A×K denote the adèles and
idèles over K , respectively, and let AK , f and A×K , f denote the finite adèles and
idèles, respectively. For a Hecke character χ : A×K → C×, let f(χ)⊂OK denote the
conductor of χ . As usual, if a ⊂ OK is an integral ideal with (a, f(χ)) 6= 1, then
we set χ(a)= 0.

Given a Dirichlet (i.e., finite order) character ψ over a number field K of con-
ductor f⊂OK , we will identify ψ with its associated finite order Hecke character
on idèles, taking the following convention: for x ∈ (O/f)×,

ψ(x mod f)=
∏
v - f

ψv(x)=
∏
v | f

ψ−1
v (x),

where, in the first product, v runs over all places of E which do not divide f. When
K =Q, we define the Gauss sum of ψ by

g(ψ) :=
∑

a∈(Z/fZ)×
ψ(a)e2π i(a/|f|).

For a finite prime `, we define the Gauss sum of the local character ψ` :Q×` → C×

similarly: letting |f| =
∏
``

e` , we set

g`(ψ) := ψ`(`
e`)

∑
a∈(Z`/`e`Z`)×

ψ−1
` (a)e2π i{a/`e` }`,
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where {x}` denotes the `-fractional part of x ∈ Z`. Thus∏
` | f

g`(ψ)= g(ψ)
∏
` | f

ψ`(|f|)= g(ψ)
∏
` - f

ψ−1
` (|f|)= g(ψ).

Let NQ : AQ → C denote the adèlic norm, normalized so that NQ,∞ equals
| · |∞ (the usual archimedean absolute value). Then, for any number field K , let
NmK/Q : AK → AQ denote the norm homomorphism (which induces the ideal
norm recalled above), and set NK :=NQ ◦NmK/Q. Note that when K is imaginary
quadratic, NK :A

×

K →C× is an algebraic Hecke character of infinity type (−1,−1).
For any Hecke character χ : A×K → C×, let

χ j := χN
− j
K .

Using the fixed isomorphism i : C−→∼ Cp and the Artin isomorphism, we can
view N−1

K as a character N−1
K :Gal(K/K )→ Z×p . Then any x ∈ Z×p can be uniquely

written as ω(x) · 〈x〉, where ω(x) ∈ µ2(p−1) and 〈x〉 ∈ 1+ 2pZp. We then define
the Teichmüller character ω : Gal(K/K )→ µ2(p−1) by ωK (a) := ω(N−1

K (a)). For
simplicity, we will let ωQ = ω. Given an extension of number fields K/L and a
Hecke character φ over L , we will let φ/K := φ ◦NmK/L ; note that, viewing φ
as a character Gal(L/L)→ C×, this corresponds to restriction to the subgroup
Gal(K/K ).

For a quadratic field K/Q with K =Q(
√

D), where D is a squarefree integer,
we recall that the fundamental discriminant of K is given by

DK =

{
D if D ≡ 1 (mod 4),
4D if D ≡ 2, 3 (mod 4).

For quadratic K , let εK be the associated Dirichlet character of conductor DK ;
conversely, for a quadratic Dirichlet character χ , let Kχ be the associated imagi-
nary quadratic field. Given two quadratic fields L = Q(

√
D) and K = Q(

√
D′),

we will let L ·K denote the quadratic field Q(
√

DD′). Unless otherwise noted, all
Dirichlet characters over Q are taken to be primitive, and so are uniquely identified
with finite order Hecke characters over Q under the arithmetic normalization de-
scribed above. Given Dirichlet characters ψ1, ψ2 over Q, we define ψ1ψ2 to be the
primitive Dirichlet character equal to ψ1(a)ψ2(a) for a ∈

(
Z/ lcm(f(ψ1), f(ψ2))

)×
(and indeed this equality holds for the associated Hecke characters). In particular,
for quadratic L and K as above, we have εL·K = εLεK .

Given a normalized newform f ∈ Sk(01(N )), let an( f ) denote the n-th Fourier
coefficient of f (i.e., the n-th coefficient of the q-expansion at ∞); when f is
obvious from context, we will often abbreviate an( f ) to an . Moreover, when f is
defined over Q and thus associated with an elliptic curve E/Q, we will sometimes
write an(E) = an( f ). Let E f denote the finite extension of Q generated by the
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Fourier coefficients an( f ). Given a Hecke character χ , let Eχ denote the finite
extension of Q generated by its values. Set E f,χ = E f Eχ .

For s ∈C, let <(s) and =(s) denote the real and imaginary parts of s, respectively.
We let H+ := {s ∈ C : =(s) > 0}.

2. Introduction

The study of Heegner points has provided some of the greatest insights into the
Birch and Swinnerton-Dyer conjecture. In particular, given an elliptic curve E/Q
and an imaginary quadratic field K satisfying a suitable Heegner hypothesis with
respect to E , the nontriviality of the Heegner point PE(K ) ∈ E(K )⊗Q intro-
duced in Section 3.4 implies, via the descent argument of [Kolyvagin 1990], that
rankZ E(K ) = 1. Our main result establishes, for elliptic curves E with E[p] a
reducible Galois representation at a good prime p, a congruence mod p between
the formal logarithm of the Heegner point and a special value of the Katz p-adic
L-function with certain Euler factors removed. Using Gross’s factorization [1980]
of the Katz p-adic L-function on the cyclotomic line, we can then find an explicit
congruence between the formal logarithm of the Heegner point and a quantity
involving certain Bernoulli numbers and (inverses of) Euler factors at primes of
bad reduction. Thus we derive an explicit criterion (involving Bernoulli numbers)
for the nontriviality of PE(K ) ∈ E(K )⊗Q in certain families of E .

Our results also have higher-dimensional applications, namely in computing
with algebraic cycle classes in Chow groups of motives attached to newforms.
Suppose N is a positive integer and K is an imaginary quadratic field satisfying the
Heegner hypothesis with respect to N , suppose f =

∑
n≥1anqn is a weight-k ≥ 2

level-N normalized newform whose Fourier coefficients are congruent to those of an
Eisenstein series outside the constant term modulo some prime ideal above p, and
suppose χ is an algebraic Hecke character over K central critical with respect to f .
We consider the Rankin–Selberg motive Mf,χ−1 := Mf/K ⊗Mχ−1 , defined over K ,
associated with ( f, χ), where Mf is the motive associated with f (see [Scholl 1990]),
Mf/K is its base change to K , and Mχ is the motive associated with χ (see [Deninger
1990]). For convenience of notation, we will formulate our discussion with respect to

M( f,χ−1)/F = Mf/F ⊗M(χ−1)/F ,

where F/K is some large enough abelian extension in “situation (S)” as described
on page 314, and f/F and χ/F are the corresponding base extensions to F . In fact,
one may recover Mχ−1 as a direct factor of the Grothendieck restriction of M(χ−1)/F ;
see [Deninger 1990] or [Geisser 1997]. Indeed, we have a factorization

M( f,χ−1)/F =

⊕
χ0:Gal(F/K )→C×

Mf,χ−1χ0 .



Generalized Heegner cycles at Eisenstein primes and Katz p-adic L-function 313

Under certain conditions guaranteeing that the value of L(πf × πχ−1, s) =
L(Mf,χ−1, s) (and thus also that of L((πf × πχ−1)/F , s) = L(M( f,χ−1)/F , s)) will
vanish at the central point of the functional equation, we seek to construct algebraic
cycle classes in the Chow group associated with M( f,χ−1)/F , thus providing evidence
for the Beilinson–Bloch conjecture for Chow motives associated with ( f, χ)/F .
Natural candidates for representatives of such classes are generalized Heegner
cycles (in the sense of [Bertolini et al. 2013]), generated by algebraic cycles on
a suitable generalized Kuga–Sato variety which arise from graphs of isogenies
between products of CM curves. Under the above hypotheses, our main theorem
provides a criterion for a generalized Heegner cycle class associated with ( f, χ),
with χ in a certain infinity type range, to be nontrivial, namely that an associated
special value of the Katz p-adic L-function (with certain Euler factors removed)
is not (too) divisible by p. One may thus use special value formulas of p-adic
L-functions in order to get explicit p-nondivisibility criteria for the nontriviality of
Heegner cycle classes. In our main corollary, we explicitly address the case when
Gross’s factorization theorem can be applied, which corresponds precisely with the
case when the relevant generalized Heegner cycle arises from a classical Heegner
cycle (see Remark 8).

2.1. Chow motives. To make our discussion more precise, let us briefly recall
some definitions pertaining to Chow motives. Let X be a nonsingular variety
over a number field F . An algebraic cycle of X is a formal sum of subvarieties
of X . We let CH j (X) denote the group generated by algebraic cycles of X of
codimension j modulo rational equivalence. Call CH j (X) the j-th Chow group
of X , and call CH(X) :=

⊕
0≤ j≤dim X CH j (X) the Chow group of X . For varieties

X , Y over F , call Corrd(X, Y ) := CHdim Y+d(X ×F Y ) the group of (degree-d) cor-
respondences from X to Y . The group Corr(X, X) :=

⊕
0≤d≤dim X Corrd(X, X) has

a ring structure defined by composition of correspondences: given g ∈Corrd1(X, Y )
and h ∈ Corrd2(Y, Z), we define

h ◦ g := π13,∗(π
∗

12(g).π
∗

23(h)) ∈ Corrd1+d2(X, Z),

where π12, π13, π23 : X ×F Y ×F Z→ X ×F Y, X ×F Z , Y ×F Z are the canonical
projections, and “.” denotes the Chow intersection pairing. We call Corr(X, X)
the ring of correspondences on X . For any number field E , let Corrd(X, Y )E :=
Corrd(X, Y )⊗Z E . A Chow motive over F with coefficients in E is a triple (X, e,m)
consisting of a nonsingular variety X over F , an idempotent e ∈Corr0(X, X)E , and
an integer m. Define the category of Chow motives MF,E whose objects consist of
Chow motives over F with coefficients in E , and with morphisms given by

HomMF,E ((X, e,m), (Y, f, n)) := f ◦Corrn−m(X, Y )Q ◦ e.
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Define the category of Grothendieck motives Mhom
F,E with objects being cycles of X

modulo (motivic) homological equivalence, and with morphisms defined in the same
way as above. Note that since rational equivalence is stronger than homological
equivalence, there is a natural functor

MF,E →Mhom
F,E .

Let CH j (X)0 denote the subgroup of CH j (X) consisting of null-homologous cycles.

2.2. The Beilinson–Bloch conjecture for Rankin–Selberg motives. Now let K
be an imaginary quadratic field, and let H denote the Hilbert class field over K .
Fix f ∈ Sk(00(N ), εf ), where k ≥ 2, and let r := k−2. Let χ be a Hecke character
over K of infinity type (r − j, j) which is central critical with respect to f , and
where 0≤ j ≤ r . Suppose also that every prime ` | N splits in K , i.e., K satisfies
the Heegner hypothesis with respect to N . Then we can choose an ideal N of OK

with OK /N= Z/N . Assume also that f(χ) |N.
The ambient motive in our setup will be M := (Xr , εX , 0) ∈MF,E f,χ , where F ,

to be fixed later, is some large enough abelian extension of K containing H , and
εX is some projector in the ring of correspondences on X which has induced actions
on the various cohomological realizations of M via the corresponding cycle class
maps. (The projector εX essentially picks out the part of the cohomology of Xr

which comes from the Galois representations attached to pairs ( f, χ)/F .) Here the
underlying ((2r + 1)-dimensional) variety is the generalized Kuga–Sato variety
Xr :=Wr × Ar , defined over H , where A is a fixed CM elliptic curve of OK -type
(i.e., with EndH (A)=OK ) and Wr := Er (the classical Kuga–Sato variety) is the
(canonical desingularization of the) r -fold fiber product of copies of the universal
elliptic curve E with 01(N )-level structure over the (compactified) modular curve
X1(N ) :=Y1(N ) (and thus is defined over Q). This is well-defined in the case where
the cusps of Y1(N ) are regular in the sense of [Diamond and Shurman 2005, Section
3.2], which holds in particular when N > 4. The fibers of Xr → X1(N ), outside of
the cusps of X1(N ), are of the form Er

× Ar where E varies over elliptic curves.
The motive Mf is given by the triple (Wr , εf , 0) for some projector in the

ring of correspondences on Wr which picks out the f-isotypic component of the
cohomology of Wr under the Hecke action; in particular, this Chow motive is
defined over Q, with coefficients in E f . For an extension F/Q, we let Mf/F

denote the base change to F . The definition of the motive M(χ−1)/F is slightly
more subtle. Let F/K be an abelian extension such that χr− j

A χ̄
j
A = χ/F , where

χA : A
×

F → K× is the Hecke character associated with the CM elliptic curve A
having infinity type (1, . . . , 1, 0, . . . , 0) (with the first [F : K ] places corresponding
to the embeddings F ↪→Q preserving our fixed embedding K ↪→Q, and the next
[F : K ] places to their complex conjugates). We then say F is in “situation (S)”.
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(Such an F always exists; see [Deninger 1990, Proposition 1.3.1].) We have a motive
M(χ−1)/F := (A

r , εχ/F , 0) ∈MF,Eχ for some suitable projector εχ/F picking out the
χ/F =χ

r− j
A χ̄

j
A-isotypic component of the cohomology of Ar under the Galois action.

Let HN be the field over which the individual points of A[N] are defined. We
will henceforth take and fix an abelian extension F/K large enough so that it
contains HN and is in situation (S). (Note that this is possible since HN is an
abelian extension of K .) The Rankin–Selberg motive

M( f,χ−1)/F := Mf/F ⊗M(χ−1)/F = (Wr , ε f/F , 0)⊗ (Ar , εχ/F , 0)= (Xr , ε( f,χ)/F , 0)

is a submotive of M (in fact, it is the ( f, χ)/F -isotypic component ε( f,χ)/F M), and
the Beilinson–Bloch conjecture predicts that

dimE f,χ ε( f,χ)/F CHr+1(Xr )0,E f,χ (F)= ords=r+1 L(H 2r+1
ét (M( f,χ−1)/F ), s)

= ords=r+1 L(ε( f,χ)/F H 2r+1
ét (M), s)

= ords=r+1 L((Vf/K ⊗χ
−1)/F (r + 1), s)

= ords=0 L((Vf/K ⊗χ
−1)/F , s)

= ords=0 L(Vf/K ⊗χ
−1
⊗ IndK

F 1, s)

= ords=0
∏
χ0:

Gal(F/K )→C×

L(Vf/K ⊗ (χ
−1χ0), s)

= ords= 1
2

∏
χ0:

Gal(F/K )→C×

L(πf ×πχ−1χ0, s).

Here ε( f,χ)/F is the projector corresponding to the ( f, χ)/F -isotypic component of
the cohomology of Xr under the Hecke and Galois actions, Vf is the 2-dimensional
(unique semisimple) Gal(Q/Q)-representation associated with f , Vf/K is its re-
striction to Gal(K/K ), and πf , πχ−1 are the automorphic representations (over K )
associated with f and θχ−1 under the unitary normalizations.

Under the Heegner hypothesis, we have L
(
πf×πχ−1, 1

2

)
=0, and so the Beilinson–

Bloch conjecture predicts that

dimE f,χ ε( f,χ)/F CHr+1(Xr )0,E f,χ (F)≥ 1.

Thus we should be able to find a null-homologous cycle class with nonvanishing
ε( f,χ)/F -isotypic component in the above Chow group. To this end, we can use
the p-adic Waldspurger formula of Bertolini, Darmon, and Prasanna [Bertolini
et al. 2013] to consider images under the p-adic Abel–Jacobi map of generalized
Heegner cycles. Generalized Heegner cycles are, essentially, generated by graphs 0ϕ
of isogenies ϕ : A→ A′ between CM elliptic curves with 01(N )-level structure
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(i.e., such that ker(ϕ)∩ A[N] = 0). We can then view the graph 0ϕ inside Xr :

0ϕ ⊂ Ar
× (A′)r ⊂ Ar

×Wr = Xr .

We define the associated generalized Heegner cycle associated with (ϕ, A) as

1ϕ := εX0ϕ ∈ CHr+1(Xr )0,E f,χ (F).

(See Section 3.3 for a precise definition.) It is also a fact that εX H 2r+2(Xr ,Q)= 0,
and so 1ϕ is indeed null-homologous. Generalized Heegner cycles are those cycles
in CHr+1(Xr )0,E f,χ (F) generated by formal E f,χ -linear combinations of 1ϕ for
varying ϕ. The space CH(Xr )0,E f,χ (F) has an isotypic decomposition with respect
to the action of the Hecke algebra (which is indexed by cuspidal eigenforms) and
that of Gal(F/F) (which is indexed by Hecke characters).

Let Fp denote the p-adic completion of F determined by our fixed embedding
ip :Q ↪→Cp. We can now apply the p-adic Abel–Jacobi map over Fp to 1ϕ , which
is a map

AJFp : CHr+1(Xr )0,Q(Fp)→ (Filr+1 εX H 2r+1
dR (Xr/Fp))

∨

∼= (Sk(01(N ), Fp)⊗Symr H 1
dR(A/Fp))

∨,

where the superscript ∨ denotes the Fp-linear dual, and Fil j denotes the j-th step
of the Hodge filtration. A basis of εX H 2r+1

dR (Xr/F) is given by elements of the
form ω f ∧ω

j
Aη

r− j
A for 0≤ j ≤ r , where

ω f ∈ Filr+1 εX H r+1
dR (Wr/F)∼= Sk(01(N ), F)

is associated with f ∈ Sk(01(N ), F), and the ω j
Aη

r− j
A form a basis of

Filr+1 εX H r
dR(A

r/F)∼= Symr H 1
dR(A/F).

(Here ωA ∈�
1(A/F)= H 1,0

dR (A/F) is a nowhere vanishing differential on A, and
ηA ∈H 0,1

dR (A/F) is such that 〈ωA, ηA〉=1 under the cup product pairing on de Rham
cohomology.)

Bertolini, Darmon, and Prasanna’s p-adic Waldspurger formula relates a special
value of an anticyclotomic p-adic L-function Lp( f, χ) to the Abel–Jacobi image of
a certain generalized Heegner cycle 1, evaluated at the basis element ω f ∧ω

j
Aη

r− j
A .

The dual basis element of this latter element is in the ( f, χ)/F -isotypic component of
(Filr+1 εX H 2r+1

dR (Xr/F))∨, and the idempotent ε( f,χ)/F induces the projection onto
this ( f, χ)/F -isotypic component. By functoriality of projectors, the nonvanishing of
AJFp(1) at ω f ∧ ω

j
Aη

r− j
A shows the nontriviality of ε( f,χ)/F1. Hence, showing

the nonvanishing of a special value of Bertolini, Darmon, and Prasanna’s p-adic
L-function verifies one consequence of the Beilinson–Bloch conjecture for the
motive M( f,χ−1)/F = (Xr , ε( f,χ)/F , 0).
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More precisely, nonvanishing of the anticyclotomic p-adic L function Lp( f, χ)
and functoriality of the action of correspondences on Xr imply

0 6= AJFp(1)(ω f ∧ω
j
Aη

r− j
A )

= AJFp(1)(ε( f,χ)/F (ω f ∧ω
j
Aη

r− j
A ))

= AJFp(ε( f,χ)/F1)(ω f ∧ω
j
Aη

r− j
A )

and thus 0 6= ε( f,χ)/F1 ∈ ε( f,χ)/F CHr+1(Xr )0,E f,χ (F).
The classical situation r = 0 (i.e., k = 2) is perhaps instructive. In this case,

the underlying generalized Kuga–Sato variety is simply X0 = X1(N ). Moreover,
χ : Gal(F/K ) → C× is of finite order, so that χ/F = 1. Therefore, we have
CH1(X1(N ))0,E f,χ (F)= J1(N )E f,χ (F). The p-adic Abel–Jacobi map

AJFp : J1(N )E f,χ (Fp)→ Sk(01(N ), Fp)
∨

E f,χ

is given by P 7→ ( f 7→ logω f
P), where logω f

is the formal logarithm at p associated
with the nonvanishing differential ω f . Note that Gal(Q/Q) acts on modular forms
(as one may see by letting Gal(Q/Q) act on the coefficients of q-expansions), and
that this action also preserves eigenspaces of Hecke operators. For a modular
form f , let [ f ] denote its Gal(Q/Q)-orbit, and let Snew

k (01(N )) denote the space
of 01(N )-cuspidal newforms of weight k. Given a normalized newform f , Eichler–
Shimura theory attaches to f an abelian variety Af which arises as a quotient
of J1(N ). Let Af,E := Af ⊗E f E for any ring E containing E f . We have an isotypic
decomposition of the component of J1(N ) under the Hecke algebra action in the
isogeny category,

J1(N )new
∼

⊕
{[ f ], f ∈Snew

k (01(N ))}

Af ,

which implies

J1(N )new
E f,χ
=

⊕
{[ f ], f ∈Snew

k (01(N ))}

Af,E f,χ .

We thus have natural surjections 8f : J1(N )� Af (called modular parametriza-
tions) and hence maps 8f : J1(N )E f,χ (F)� Af,E f,χ (F). Let χ0 :Gal(F/K )→C×.
Denote by 8χ0 : Af,E f,χ (F)� Af,E f,χ (F)

χ0 the projection onto the χ0-isotypic com-
ponent under the action of Gal(F/K ), and set 8f,χ0 =8χ0 ◦8f : J1(N )E f,χ (F)�
Af,E f,χ (F)

χ0 . Let ωAf be the unique invariant differential on the abelian variety
Af /F satisfying 8∗f ωAf = ω f . Generalized Heegner cycles are simply classi-
cal Heegner points, i.e., degree-0 divisors P(χ0) ∈ J1(N )E f,χ (F) arising from
χ0-twisted Gal(F/K )-traces of CM points on X1(N )(F). Therefore, Pf (χ0) :=

8f,χ0(P(χ0)) ∈ Af,E f,χ (F)
χ0 . Note that, when χ0 = 1, we have Pf (1) ∈ Af,E f,χ (K ).
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The nonvanishing of the p-adic Abel–Jacobi map implies

0 6= logω f
P(χ0)= log8∗f,χ0

ωAf
P(χ0)= logωAf

8f,χ0(P(χ0))= logωAf
Pf (χ0),

and so Pf (χ0) ∈ Af,E f,χ (F)
χ0 is nontrivial. Suppose χ0 = 1. If E f = Q, then Af

is an elliptic curve, and Pf (1) ∈ Af,Q(K ) is nontrivial. By Kolyvagin’s theorem
[1990], we have rankZ Af (K )= 1.

2.3. Main results. In the case where f ∈ Sk(00(N ), εf ) is a normalized newform
with partial Eisenstein descent (see Definition 31), i.e., a newform whose Fourier
coefficients are congruent to those of an Eisenstein series except possibly at the
constant term, we will establish a congruence between Bertolini, Darmon, and
Prasanna’s anticyclotomic p-adic L-function and the Katz two-variable p-adic
L-function which holds wherever the former 1-variable p-adic L-function is defined.
A more precise statement is given in our main theorem below. Fix the following
assumptions.

Assumptions 1. (1) Let f ∈ Sk(00(N ), εf ) be a normalized newform of weight
k ≥ 2 and level N > 4.

(2) Let p - N be a rational prime.

(3) Let K/Q be an imaginary quadratic extension with odd fundamental discrimi-
nant DK <−4 and p split in K .

(4) (Heegner hypothesis) For any prime ` | N , ` is split in K/Q.

Note that assumption (4) guarantees the existence of an integral ideal N | N
of OK with

OK /N= Z/N .

Fix such an N and write N=
∏
` | N v as a product of primes v of OK with v | ` for

rational primes ` | N .

Remark 2. The assumption that DK <−4 is odd is made for calculational conve-
nience in [Bertolini et al. 2013, Remark 4.7] and can most likely be removed. See
Liu, Zhang, and Zhang’s recent generalization of Bertolini, Darmon, and Prasanna’s
L-function and their p-adic Waldspurger formula [Liu et al. 2014].

Note that our fixed embedding ip :Q ↪→ Cp determines a prime ideal p of OK

above p. Let Lp( f, χ) denote Bertolini, Darmon, and Prasanna’s anticyclotomic
p-adic L-function described in Section 3.4, and let Lp(χ, 0) denote the Katz
p-adic L-function described in Section 3.5. Let F ′ and HN be the fields defined in
Section 3.4, and let p′ be the prime ideal of OF ′ above p determined by ip.

Theorem 3 (main theorem). Let ( f, p, K ) be as in Assumptions 1. Suppose f
has Eisenstein descent of type (ψ1, ψ2, N+, N−, N0) mod m (see Definition 31) for
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some integral ideal m of the ring of integers of a p-adic local field M containing E f ,
and suppose ψ1 and ψ2 are Dirichlet characters over Q with ψ1ψ2 = εf . Let t be
an integral ideal of OK with OK /t = Z/f(ψ2) and t |N. For all χ ∈ 6̂cc(N) (see
Section 3.4 for a precise definition), we have the congruence

Lp( f, χ)≡ ψ−1
1 (DK )

(
|f(ψ2)|

kχ−1( t̄)

4g(ψ−1
2 )(2π i)k+2 j

·4 · Lp(ψ1/Kχ
−1, 0)

)2

(mod mOF ′
p′

M),

where k+2 j ∈Z/(p−1)×Zp is the signature of χ ∈ 6̂cc(N) (see Definition 23) and

4=
∏
` | N+

(1− (ψ2/Kχ
−1)(v̄)`k−1)

∏
` | N−

(1− (ψ1/Kχ
−1)(v̄))

×

∏
` | N0

(1− (ψ2/Kχ
−1)(v̄)`k−1)(1− (ψ1/Kχ

−1)(v̄)).

Invoking Bertolini, Darmon, and Prasanna’s p-adic Waldspurger formula, given
as Theorem 25, we can identify the left-hand side of Theorem 3 with a p-adic
Abel–Jacobi image of a generalized Heegner cycle, and thus derive the following
congruence.

Corollary 4. Suppose χ ∈6(1)cc (N) (see Section 3.4 for a precise definition) with
infinity type (k − 1− j, 1+ j), where 0 ≤ j ≤ k − 2. In the setting of Theorem 3,
we have, for 0≤ j ≤ k− 2,

�2(k−2−2 j)
p

(
1−χ−1(p̄)ap( f )+χ−2(p̄)εf (p)pk−1

0( j + 1)

)2(
AJF ′

p′
(1(χNK))(ω f∧ω

j
Aη

k−2− j
A )

)2

≡ ψ−1
1 (DK )

(
|f(ψ2)|

kχ−1( t̄)

4g(ψ−1
2 )(2π i)k−2−2 j

·4 · Lp(ψ1/Kχ
−1, 0)

)2

(mod mOF ′
p′

M).

Here �p is the p-adic period defined in Section 3.4, and

1(χNK) :=
∑

[a]∈Cl(OK )

(χNK)
−1(a) ·1ϕaϕ0 ∈ CHk−1(Xk−2)0,Eχ (HN),

where 1ϕaϕ0 is defined as in Section 3.4.

Remark 5. Corollary 4 can be viewed as providing a new method for verifying
a consequence of the Beilinson–Bloch conjecture. In light of the discussion in
Section 2.2, we note that for χ ∈ 6(1)cc (N) we have L

(
πf × πχ−1, 1

2

)
= 0, which

implies L
(
πf×π(χ−1)/F ,

1
2

)
=0 for any F/HN in situation (S). Hence, the Beilinson–

Bloch conjecture predicts that dimE f,χ ε( f,χ)/F CHk−1(Xk−2)(F) ≥ 1. Corollary 4
shows that, in the setting where f has Eisenstein descent mod m, if

4 · Lp(ψ1/Kχ
−1, 0) 6≡ 0 (mod mOF ′

p′
),
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then the generalized Heegner cycle 1(χNK) induces the ostensibly nontrivial
algebraic cycle class. We are thus reduced to verifying the p-nondivisibility of the
above special values of the Katz p-adic L-function. In Theorem 7 we explicitly
evaluate Katz L-values corresponding to classical Heegner cycles (see Remark 8)
using a theorem of Gross in order to find explicit non-p-divisibility criteria. One
might expect to be able to carry out studies of p-nondivisibility for more general
Katz L-values in order to establish similar explicit nontriviality criteria for more
general Heegner cycles, but we do not do this here.

Suppose that εf = 1 and that k is even. Note that the anticyclotomic line intersects
with the cyclotomic line when j = k/2− 1, in the notation of Corollary 4. For
this j , we can take the particular character χ =N

−k/2
K ∈6

(1)
cc (N). Applying Gross’s

factorization (Theorem 28) of the Katz L-function on the cyclotomic line to the right-
hand side of Theorem 3, we get the following explicit congruences between special
values of p-adic L-functions. First, fix the following notation for convenience.

Definition 6. Suppose we are given an imaginary quadratic field K . For any
Dirichlet character ψ over Q, let

ψ0 :=

{
ψ if ψ even,
ψεK if ψ odd.

Theorem 7. In the setting of Theorem 3, specializing to εf = 1, k even, and
ψ1 = ψ

−1
2 = ψ ,(

pk/2
− ap( f )+ pk/2−1

pk/20
( k

2

) )2

AJF ′
p′

(
1(N

1−k/2
K )

)2(
ω f ∧ω

k/2−1
A η

k/2−1
A

)
is congruent to

42

4

(
1
k
(1−ψ−1(p)pk/2−1)Bk

2 ,ψ
−1
0 ε

k/2
K
· Lp

(
ψ0(εKω)

1−k/2,
k
2

))2

(mod mOF ′
p′

M)

if ψ0(εKω)
1−k/2

6= 1 or k > 2, and

42

4

(
p− 1

p
logp ᾱ

)2

(mod mOF ′
p′

M)

otherwise.
If m= λ, where λ is some prime ideal of OM above p, then more explicitly(

pk/2
− ap( f )+ pk/2−1

pk/20
( k

2

) )2

AJF ′
p′

(
1f (N

1−k/2
K )

)2(
ω f ∧ω

k/2−1
A η

k/2−1
A

)
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is congruent to

42

4

(
1
k
(1−ψ−1(p)pk/2−1)(1−(ψω−k/2)(p))Bk

2 ,ψ
−1
0 ε

k/2
K

B1,ψ0εK (εKω)−k/2

)2

(mod λOF ′
p′

M)

if ψ0(εKω)
1−k/2

6= 1,

42

4

(
1
k
(1−ψ−1(p)pk/2−1)Bk

2 ,ψ
−1
0 ε

k/2
K
· Lp

(
1,

k
2

))2

(mod λOF ′
p′

M)

if ψ0(εKω)
1−k/2

= 1, k > 2, and

42

4

(
p− 1

p
logp ᾱ

)2

(mod λOF ′
p′

M)

otherwise.
Here

1(N
1−k/2
K ) :=

∑
[a]∈Cl(OK )

N
k/2−1
K (a) ·1ϕaϕ0 ∈ CHk−1(Xk−2)0,Q(HN),

where 1ϕaϕ0 is defined as in Section 3.4,

4=
∏
` | N+

(
1−

ψ−1(`)

`1−k/2

) ∏
` | N−

(
1−

ψ(`)

`k/2

) ∏
` | N0

(
1−

ψ−1(`)

`1−k/2

)(
1−

ψ(`)

`k/2

)
,

logp is the Iwasawa p-adic logarithm (i.e., with branch logp p = 0), and ᾱ ∈ OK

such that (ᾱ)= p̄hK .

Remark 8. In the setting of Theorem 7, the generalized Heegner cycle 1(N1−k/2
K )

can be mapped via a correspondence to a classical Heegner cycle arising on the
classical Kuga–Sato variety Wk−2 defined in Section 2.2; see, for example, [Bertolini
et al. 2015, Proposition 4.1.1, Theorem 4.1.3]. Therefore, in view of Remark 5,
Theorem 7 gives an explicit congruence criterion for showing the nontriviality of a
classical Heegner cycle class and thus verifying the aforementioned consequence
of the Beilinson–Bloch conjecture.

Remark 9. For any x ∈ p̄, we have ordp(x)= 0, so we can write x = a+ 2π for
π ∈ pOKp and a ∈O×Kp

. Then xhK = ahK + hK ahK−12π + · · · , so

ordp

(
p− 1

p
logp ᾱ

)
= ordp(2hK).

Remark 10. In certain situations, one can use explicit special value formulas to
further evaluate the right-hand side of the congruences in Theorem 7. For example,
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when k = 2 and ψ0 6= 1, by Leopoldt’s formula and the fact that εK (p)= 1 since p
is split in K , we have

Lp(ψ0, 1)=
(

1−
ψ(p)

p

)
g(ψ0)

|f(ψ0)|

|f(ψ0)|∑
a=1

ψ−1
0 (a) logp

(
1− exp

(
2π ia
|f(ψ0)|

))
.

Furthermore, Diamond computes explicit formulas for the values of Lp(χ, n) when
n is a positive integer; see [Diamond 1979].

Definition 11. Attached to any normalized newform f ∈ Sk(00(N ), εf ) and prime λ
above p of a number field M containing E f is a unique semisimple λ-adic Ga-
lois representation ρ f : Gal(Q/Q) → GL2(Mλ) (see Section 3.6). Choosing a
Gal(Q/Q)-invariant lattice in M2

λ , one obtains an associated semisimple mod-λ
Galois representation ρ̄ f (which turns out to be independent of the choice of lattice).
If p - N and if ρ̄ f is reducible, we will see (in Theorem 34) that N =N+N−N0, where
N+N− is squarefree and N0 is squarefull, such that there are Dirichlet characters
ψ1 and ψ2 over Q with ψ1ψ2 = εf , and where ` | N+ implies a` ≡ ψ1(`) (mod λ),
` | N− implies a` ≡ ψ2(`)`

k−1 (mod λ), and ` | N0 implies a` ≡ 0 (mod λ). We
then say that ρ̄ f is reducible of type (ψ1, ψ2, N+, N−, N0).

By Theorem 34, we immediately get the following corollary.

Corollary 12. Let ( f, p, K ) be as in Assumptions 1, and suppose ρ̄ f is reducible
of type (ψ1, ψ2, N+, N−, N0), where ρ̄ f is the semisimple mod-λ residual represen-
tation of ρ f for some prime ideal λ of the ring of integers of a p-adic local field M
containing E f . Then the conclusions of Theorems 3 and 7 hold with m= λ.

Applying Theorem 7 to the case when k is 2 and f is defined over Q, and is thus
associated with an elliptic curve E/Q of conductor N , we can show the Heegner
point PE(K ) is nontorsion when the primes dividing pN satisfy certain congruence
conditions and p does not divide certain Bernoulli numbers. First, decompose the
conductor N = Nsplit Nnonsplit Nadd into factors such that ` | Nsplit implies ` is of split
multiplicative reduction, ` | Nnonsplit implies ` is of nonsplit multiplicative reduction,
and ` | Nadd implies ` is of additive reduction.

Theorem 13. Suppose E/Q is any elliptic curve of conductor N with reducible
mod-p Galois representation E[p], or equivalently, E[p]ss ∼= Fp(ψ)⊕ Fp(ψ

−1ω),
where p > 2 is a prime of good reduction for E and ψ is some Dirichlet character
with f(ψ)2 | Nadd. Suppose further that

(1) ψ(p) 6= 1,

(2) Nsplit = 1 (i.e., E has no primes of split multiplicative reduction),

(3) ` | Nadd implies either ψ(`) 6= 1 and ` 6≡ −1 (mod p), or ψ(`)= 0.
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Then, for any imaginary quadratic field K in which p splits, such that K satisfies
the Heegner hypothesis with respect to E , and p - B1,ψ−1

0 εK
B1,ψ0ω−1 , the associated

Heegner point PE(K ) ∈ E(K ) (see Section 3.4) is nontorsion. In particular,
rankZ E(K )= 1.

Remark 14. When ψ is quadratic, the condition p - B1,ψ0εK of Theorem 13 is
equivalent to p - hKψ0 ·K . (This follows because B1,ψ−1

0 εK
=−2hKψ0 ·K /|O

×

Kψ0 ·K
| by

the functional equation and analytic class number formula.)

Remark 15. In light of Theorems 34 and 35, which imply that a`(E)≡ ψ(`) or
ψ−1(`)` (mod p) for `‖N (i.e., ` |Nsplit Nnonsplit) when E[p]ss∼=Fp(ψ)⊕Fp(ψ

−1ω),
condition (2) can be phrased as

(2)′ for every ` ‖ N , ψ(`)≡−1 or −` (mod p).

In terms of local root numbers w`(E), since w`(E)=−a`(E) for ` ‖ N , conditions
(2) and (2)′ can also be viewed as requiring the corresponding local root numbers
to all be +1.

Remark 16. Theorem 13 (at least partially) recovers a much earlier result of Mazur
[1979, Theorem, p. 231], which considers the case N = prime 6= p. In Mazur’s
setting, we suppose that E[p]ss ∼= Fp ⊕ Fp(ω), where N = ` 6= p, let ψ be an
even quadratic character and choose an imaginary quadratic field K . (In Mazur’s
notation, we are taking χ = ψεK and Kχ = Kψ ·K = KψεK .) The case of Mazur’s
theorem we recover is as follows.

Suppose (E, p, ψ, K ) as above are such that

(1) K satisfies the Heegner hypothesis with respect to E ⊗ψ ,

(2) p splits in K and DK <−4,

(3) ψ(p)=−1,

(4) p - B1,ψω−1 ,

(5) lcm(`, |f(ψ)|2) > 4, ψ(`) 6= 1 and p - hKψ ·K .

Then rankZ(E ⊗ψεK )(Q)= 0.
This follows from Theorem 13 since the latter implies rankZ(E ⊗ψ)(K ) = 1,

and then rankZ(E ⊗ψεK )(Q)= 0 follows from root number considerations (see
Proposition 50).

Assumptions (1)–(4) above are extraneous in the full generality of Mazur’s theo-
rem, with (5) being the pertinent hypothesis. These assumptions have the following
effects: (1) is part (4) of Assumptions 1 and guarantees that L((E⊗ψ)/K , 1)= 0;
(2) is part (3) of Assumptions 1; (3) excludes the possibility of a “trivial zero”
from the Kubota–Leopoldt factor Lp(ψεKω, 0), which shows up in the congruence
of Theorem 7; (4) essentially controls the Selmer group Selp((E ⊗ψ)/Q) (see
Remark 45) so that rankZ(E ⊗ψ)(Q)≤ 1. Mazur’s original statement also allows
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for p | f(ψ), which is ruled out by part (2) of Assumptions 1. We should note,
however, that Mazur requires the additional assumptions

(6) `≥ 11,

(7) p divides the numerator of
(
`−1
12

)
,

(8) (p, |f(ψεK )|) 6= (3, 3).

Assumption (6) is a technical assumption and is stronger than our assumption
lcm(`, |f(ψ)|2) > 4 on the level of E⊗ψ , which in turn originates from part (1) of
Assumptions 1; (7) means that the newform fE ∈ S2(00(`)) of E has full Eisenstein
descent (see Definition 31), and is automatically satisfied when E[p] is reducible
and p > 3 (see Remark 33); (8) is taken care of by our assumption DK <−4 from
part (3) of Assumptions 1.

Perhaps more interesting is the connection between Theorem 13 and the “sup-
plement” to Mazur’s theorem, which states that a Heegner point is nontorsion
when “ψ(`) 6= 1” in Assumption (5) above is replaced with “ψ(`) = 1” (see
[Mazur 1979, Theorem, p. 237]). In particular, E satisfies the Heegner hypoth-
esis with respect to both K and Kψ ·K , and E ⊗ ψεK has root number −1 so
that PE⊗ψ(K ) ∈ (E ⊗ψεK )(Q). As is pointed out in [Mazur 1979], under this
assumption, the Kubota–Leopoldt factor Lp(ψ

−1εKω, 0) from Theorem 7 can be
related mod p to (1/p) d

ds L(E, ψεK , s)|s=1, itself being related to the p-adic height
mod p of

PE(Kψ ·K )− := PE(Kψ ·K )− PE(Kψ ·K ) ∈ (E ⊗ψεK )(Q).

Note that ψ(`)= 1 places E⊗ψ outside the scope of Theorem 13, but perhaps this
descent result in tandem with Mazur’s observation and the mod-p factorization of
Theorem 7 suggests an identity (in certain cases) relating the formal logarithm of
PE⊗ψ(K )∈ (E⊗ψεK )(Q) with the p-adic height of PE(Kψ ·K )− ∈ (E⊗ψεK )(Q)

times another quantity, perhaps related to the order of X(E⊗ψ/Q)[p∞]. A deeper
comparison between the results of this paper and Mazur’s would be an interesting
direction for further investigation.

Remark 17. One of the referees has also pointed out an analogy between Mazur’s
result and Theorem 13 and the two “reciprocity laws” which Bertolini and Darmon
[2005] established in their work on the anticyclotomic Iwasawa main conjecture for
elliptic curves. Let E/Q be an elliptic curve with newform fE . Mazur’s descent
result assumes E ⊗ εK has root number −1 over Q and computes the image of
PE(K )− inside the p-primary part of the component group of the special fiber of a
Néron model of E over ZN . Using an Eisenstein congruence at p, Mazur shows
that nonvanishing of this image is equivalent to p - hK , i.e., the p-nondivisibility
of a special value of a certain Kubota–Leopoldt p-adic L-function. Bertolini and
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Darmon’s first reciprocity law also assumes E has root number −1 over K and
computes the image inside the p-primary part of the component group of the special
fiber of a Néron model over Z`2 of some abelian variety (arising as a quotient of
J1(N`) for some prime ` - N which is inert in K ). (Here Z`2 is the unramified
quadratic extension of Z`.) Using a level-raising congruence modulo some power
of p of fE with an eigenform g of level N` (so that g has root number +1 over K ),
Bertolini and Darmon equate this image (using a Waldspurger-type formula) with a
special value of an anticyclotomic p-adic L-function attached to g.

In Theorem 7 applied to E , we assume that E has root number −1 over K and
computes the p-adic formal logarithm of PE(K ) modulo some power of p. We
then use an Eisenstein congruence at p to equate this with a special value of a
Katz p-adic L-function. Bertolini and Darmon’s second reciprocity law similarly
assumes E has root number −1 over K and computes the image of PE(K ) inside
the finite part of some power-of-p-(Bloch–Kato) Selmer group of E . The formal
logarithm at p modulo this same power of p in particular maps into this Selmer
group. Using another level-raising congruence to an eigenform g of level N`1`2

for distinct “admissible” primes `1, `2 - N , Bertolini and Darmon again equate this
image with a special value of an anticyclotomic p-adic L-function of g. It should
be noted that the p-adic Waldspurger formula of Bertolini, Darmon, and Prasanna
(Theorem 25) is itself established through exploiting yet another “sign change”
congruence, namely by considering congruences with a newform f and its various
anticyclotomic twists, considering these twists in a p-adic family, varying the twists
through the interpolation region where the global root number is +1, and taking a
p-adic limit into a region where the root number is −1.

Let us return to the setting of Theorem 13. Considering quadratic twists of E
when E[p]ss ∼= Fp(ψ)⊕Fp(ψ

−1ω) (which amounts to varying ψ through quadratic
characters), we obtain congruence criteria for the f(ψ) which, when satisfied, imply
rankZ(E ⊗ψ)(K )= 1. In Section 5.5, we consider p = 3 and use quadratic class
number 3-divisibility results to show the following.

Corollary 18. Suppose E/Q has reducible mod-3 Galois representation E[3].
Then we have:

(1) If E is reducible of type (ψ,ψ−1, N+, N−, N0) for some quadratic characterψ ,
then a positive proportion of quadratic twists of E , ordered by absolute value
of discriminant, have rank 0 or 1.

(2) If E is semistable, then a positive proportion of real quadratic twists of E , or-
dered by absolute value of discriminant, have rank 1 and a positive proportion
of imaginary quadratic twists of E , likewise ordered, have rank 0.

Remark 19. For E as in the statement of Corollary 18, explicit lower bounds for
these proportions are given in the statement of Theorems 53 and 54, respectively.
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One can also use congruence criteria provided by Theorem 13 to find explicit
examples of quadratic twists E ⊗ψ with rankZ(E ⊗ψ)(K )= 1.

Remark 20. Recent work of Harron and Snowden [2015] in particular shows that

lim
X→∞

NZ/3(X)
X1/3 ≈ 1.5221,

where NG(X) denotes the number of (isomorphism classes of) elliptic curves E
over Q up to (naive) height X with E(Q)tor ∼= G. Corollary 18 applies to all curves
with nontrivial rational 3-torsion, and so applies to at least a number of curves on
the order of X1/3 up to height X .

The organization of this paper is as follows. In Section 3, we review some
preliminaries, including definitions pertinent to our discussion and a review of
algebraic and p-adic modular forms. In Section 3.4, we recall Bertolini, Darmon,
and Prasanna’s anticyclotomic p-adic L-function as well as their p-adic Waldspurger
formula, which gives the value of the image of a certain generalized Heegner cycle
under the p-adic Abel–Jacobi in terms of a special value of their p-adic L-function.
In Section 3.5, we recall Katz’s p-adic L-function attached to Hecke characters
over imaginary quadratic fields K as well as recall Gross’s factorization of the
L-function on the cyclotomic line. In Section 3.6, we define the notion of a
normalized newform f having Eisenstein descent, and relate it to the reducibility
of the residual p-adic Galois representation of f .

In Section 4, we prove our main congruence by showing that certain twisted traces
over CM points of Maass–Shimura derivatives ∂ j of Eisenstein series represent
special values of complex L-functions of Hecke characters. The twisted traces
considered in [Bertolini et al. 2013] are exactly of the same kind, with the sole
difference being that the Eisenstein series is replaced by a cusp form. Interpolating
these twisted traces yields the Katz p-adic L-function and Bertolini, Darmon, and
Prasanna’s anticyclotomic p-adic L-functions, respectively. When f has partial
Eisenstein descent with associated Eisenstein series G, we use the corresponding
congruence between the twisted traces of ∂ j f and ∂ j G to derive the congruence
between p-adic L-functions.

In Section 5, we apply our congruence formula to the problem of finding nontrivial
algebraic cycles whose existence is predicted by the Beilinson–Bloch conjecture.
We also give examples of Eisenstein descent, including ways to construct such
newforms (see Constructions 38 and 40), and applications of our main theorem
to showing nontriviality of algebraic cycle classes. In Section 5.4, we address the
particular case of showing nontriviality of generalized Heegner cycles attached to
quadratic twists of the Ramanujan ∆ function. In Section 5.5, we examine the
case of elliptic curves and derive an explicit criterion to show rankZ(E(K ))= 1 for
elliptic curves E/Q with reducible mod-p Galois representation.
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In Section 5.6, we show that when E has reducible mod-3 Galois representation,
a positive proportion of quadratic twists of E have rank 0 or 1. These results in
certain cases extend those of [Vatsal 1999], who exhibited an infinite family of
elliptic curves (namely, those which are semistable with rational 3-torsion), for
each member of which a positive proportion of its imaginary quadratic twists have
rank 0. Our result gives a larger infinite family of elliptic curves (namely, those
which are semistable with reducible mod-3 Galois representation), for each member
of which a positive proportion of its imaginary quadratic twists have rank 0 and a
positive proportion of its real quadratic twists have rank 1.

3. Preliminaries

In this section, we review some preliminaries relating to Bertolini, Darmon, and
Prasanna’s and Katz’s p-adic L-functions. Our discussion follows [Bertolini et al.
2013].

3.1. Algebraic modular forms. Recall

01(N ) :=
{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N )

}
,

00(N ) :=
{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗

0 ∗

)
(mod N )

}
,

and note that 01(N )⊂00(N ). From now on, let 0 be 01(N ) or 00(N ). For i = 0, 1,
let Yi (N ) be the associated modular curve whose complex points are in bijection
with the Riemann surface 0i (N )\H+, and which classifies pairs (E, t) consisting of
an elliptic curve E and a 0i (N )-level structure t on E (so Z/N ∼= t ⊂ E[N ] for i = 0,
and t ∈ E[N ] of exact order N for i = 1). Let X i (N ) denote the compactification
of Yi (N ). Let π : E→ Y1(N ) denote the universal elliptic curve with 01(N )-level
structure. Throughout the paper, we shall use the interpretation of algebraic modular
forms as global sections of powers ω̄k of the Hodge bundle ω̄ := π∗�1

E/Y1(N ) of
relative differentials E/Y1(N ) (which we may extend to X1(N ) when N > 4), so
that an algebraic modular form can be thought of as a function on isomorphism
classes of triples [(E, t, ω)] satisfying base-change compatibility and homogeneity
conditions; here E is an elliptic curve, t a 0-level structure, and ω an invariant
differential on E . For details, see [Bertolini et al. 2013, Section 1.1]. Denote by

Sk(0, R)⊂ Mk(0, R)⊂ M∗k (0, R)

the space of weight-k algebraic 0-cuspforms over a ring R, the space of weight-k al-
gebraic 0-modular forms, and the space of weight-k weakly holomorphic 0-modular
forms, respectively. (See Section 1.1 of loc. cit. for precise definitions.) We have
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similar inclusions for the corresponding spaces considered with nebentypus ε. We
will suppress the base ring “R” when it is obvious from context.

Suppose F ⊂ C is a field containing the values of a Dirichlet character ε, and
suppose f ∈ M∗k (00(N ), F, ε). Then we have an associated holomorphic function
on H+ given by

f (τ ) := f
(

C/(Z+Zτ),
1
N
, 2π idz

)
,

where dz is the standard differential on C/3 with period lattice equal to 3. Note
that f (τ ) satisfies the usual weight-k, ε-twisted modularity condition for 00(N ),

f (γ · τ)= ε(d)(cτ + d)k f (τ )

for γ =
(a

c
b
d

)
∈00(N ). The function f (τ ) in fact completely determines the weakly

holomorphic modular form f ∈ M∗k (00(N ), F, ε).
Denote the space of weight-k nearly holomorphic 0-modular forms over F and

nebentypus ε by Nk(0, F, ε). (See Section 1.2 of loc. cit. for precise definitions.)
We have the classical Maass–Shimura operator ∂k : Nk(0, F, ε)→ Nk+2(0, F, ε)
acting on nearly holomorphic 0-modular forms by the formula

∂k f (τ ) :=
1

2π i

(
d

dτ
+

k
τ − τ̄

)
f (τ ).

Note that ∂k does not preserve holomorphy, but preserves near-holomorphy. We
let ∂ j

k := ∂k+2( j−1) ◦ · · · ◦ ∂k : Nk(0, F, ε)→ Nk+2 j (0, F, ε), and omit k when it is
obvious from context.

3.2. p-adic modular forms. Fix a rational prime p. We will interpret p-adic
modular forms analogously to the previous definition of algebraic modular forms,
i.e., as global sections of a rigid analytic line bundle over the ordinary locus of
X i (N )/Cp, or equivalently as functions on isomorphism classes of triples [(E, t, ω)]
defined over p-adic rings satisfying certain homogeneity and base-change properties.
(For details, see [Bertolini et al. 2013, Section 1.3].)

We have the classical Atkin–Serre operator θ : M (p)
k (0, F, ε)→ M (p)

k+2(0, F, ε)
acting on p-adic modular forms, whose effect on q-expansions is given by

θ

( ∞∑
n=0

anqn
)
= q

d
dq

∞∑
n=0

anqn
=

∞∑
n=1

nanqn.

Now recall our complex and p-adic embeddings i∞ : F ↪→ C and ip : F ↪→ Cp,
as well as our field isomorphism i : C −→∼ Cp such that ip = i ◦ i∞. Let K be an
imaginary quadratic field and let H be the Hilbert class field over K . Suppose E/F
is a curve with complex multiplication (i.e., such that EndH (E) is isomorphic to
an order of OK ), and let (E, t, ω) be a triple defined over F . Using i∞ and ip, we
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can view (E, t, ω) as a triple over C and Cp, respectively. Using i , we can view
f ∈ M∗k (0, F, ε) as an element of M (p)

k (0, F, ε) (after possibly rescaling). The
following theorem, due to Shimura and Katz, states that the values of ∂ j f and θ j f
coincide on ordinary CM triples.

Theorem 21 (see [Bertolini et al. 2013, Proposition 1.12]). Suppose (E, t, ω) is
a triple defined over F , where E has complex multiplication by an order of OK ,
and assume that E , viewed as an elliptic curve over OCp , is ordinary. Suppose
f ∈ M∗k (0, F, ε). Then, for j ≥ 0, we have:

(1) ∂ j f (E, t, ω) ∈ i∞(F).

(2) θ j f (E, t, ω) ∈ ip(F).

(3) Viewing these quantities as elements of F (i.e., identifying i∞(F)
ip◦i−1
∞

−−−→ip(F)),
we have

∂ j f (E, t, ω)= θ j f (E, t, ω).

Denote by [ the “p-depletion” operator on M (p)
k (0, F, ε) (see [Bertolini et al.

2013, Section 3.8]), whose action on q-expansions f (q)=
∑
∞

n=0 an( f )qn is given by

f [(q)= f (q)− ap( f ) f (q p)+ ε(p)pk−1 f (q p2
),

so that an( f [)= 0 for all n > 0 with (n, p) 6= 1.

3.3. Isogenies and generalized Heegner cycles. Recall our assumption that the
imaginary quadratic field K satisfies the Heegner hypothesis with respect to N :

for all primes ` | N , ` is split in K/Q.

This condition implies that there exists an integral ideal N of OK such that OK /N=

Z/N . Fix such an N and fix a CM elliptic curve A with EndH (A) = OK . Let
HN/H denote the extension over which the individual N-torsion points of A are
defined, which is an abelian extension of K . A choice of tA ∈ A[N] of order N
determines a 01(N )-level structure on A defined over any F/HN. Fix a choice of tA

once and for all.
Now consider the set

Isog(A) := {(ϕ, A′)}/Isomorphism,

where A′ is an elliptic curve and ϕ : A→ A′ is an isogeny defined over K , and two
pairs (ϕ1, A′1) and (ϕ2, A′2) are isomorphic if there is an isomorphism ι : A′1→ A′2
over K such that ιϕ1 = ϕ2. Let IsogN(A) ⊂ Isog(A) be the subset consisting of
isomorphism classes of (ϕ, A′) such that ker(ϕ)∩A[N]={0}. Note that the group IN

of OK -ideals relatively prime to N act on IsogN(A) via a?(ϕ, A′)= (ϕaϕ, A′/A′[a]),
where

ϕa : A′→ A′/A′[a]
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is the natural surjection. Given triples (A1, t1, ω1) and (A2, t2, ω2), we define an
isogeny from (A1, t1, ω1) to (A2, t2, ω2) to be an isogeny

ϕ : A1→ A2 such that ϕ(t1)= t2 and ϕ∗(ω2)= ω1.

We have an action of IN on (isomorphism classes of) triples (A′, t ′, ω′) with
End(A′)=OK and t ′ ∈ A′[N] given by

a ? (A′, t ′, ω′)= (A′/A′[a], ϕa(t ′), ω′a), where ϕ∗a (ω
′

a)= ω
′.

Definition 22. Note that a pair (ϕ, A′)∈ IsogN(A) determines a point (A′, ϕ(tA))∈

Y1(N )(HN) ⊂ Y1(N )(F) and, for any integer r ≥ 0, an embedding (A′)r ↪→ Wr .
(For the definition of Wr , see Section 2.2.) Using this we view the graph as being
embedded in Xr :=Wr × Ar :

0ϕ ⊂ Ar
× (A′)r ⊂ Ar

×Wr ∼= Xr .

We define the generalized Heegner cycle associated with (ϕ, A) as 1ϕ := εX0ϕ ,
where εX is the projector defined in [Bertolini et al. 2013, Section 2.2]. Note that 0ϕ
is defined over HN, and thus determines a class in the Chow group CHr+1

0 (Xr )(HN),
as defined in Section 2.2.

3.4. Bertolini, Darmon, and Prasanna’s p-adic L-function and p-adic Wald-
spurger formula. Fix a normalized newform f ∈ Sk(00(N ), εf ). Given a Hecke
character χ of infinity type ( j1, j2), recall that the central character εχ of χ is the
finite order character defined by

εχ = χ|A×
Q

N
j1+ j2
Q

.

We define

L( f, χ−1, 0) := L
(
πf ×πχ−1, s− 1

2(k− 1− j1− j2)
)
,

where πf and πχ−1 are the (unitarily normalized) automorphic representations
associated with f and χ , respectively. The Hecke character χ is said to be central
critical with respect to f if j1+ j2 = k and either

(1) 1≤ j1, j2 ≤ k− 1, or

(2) j1 ≥ k and j2 ≤ 0,

and if the following condition on the central character of χ is satisfied:

εχ = εf .

(Note, since we assume the Heegner hypothesis, this implies that χ is unramified
outside of f(εf ).) Central criticality of χ is equivalent to requiring that πf ×πχ−1 is
self-dual and that the point of symmetry for the functional equation of L( f, χ−1, s)
is s = 0.
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For central critical χ with infinity type in range (1) (resp. range (2)) above, the
root number satisfies ε∞( f, χ−1)=−1 (resp. ε∞( f, χ−1)=+1). We henceforth
make the auxiliary assumption that

the local root numbers of L( f, χ−1, s)
satisfy ε`( f, χ−1)=+1 at all finite primes `.

This assumption is automatic for `∈ S f ={` : ` | (N , DK ), ` - f(εf )} since we assume
the Heegner hypothesis, and thus is automatically satisfied when (N , DK )= 1, as
we assume in Assumptions 1. These conditions on the local root numbers of
L( f, χ−1, s) imply that the global root number is ε( f, χ−1)=−1 for χ in infinity
type range (1) above, and ε( f, χ−1)=+1 for χ in range (2) above. Thus we have
L( f, χ−1, 0)=0 in range (1) and expect L( f, χ−1, 0) 6=0 (generically) in range (2).

For any Hecke character ε over Q of conductor Nε | N , define Nε to be the unique
ideal in OK that divides N and has norm equal to Nε. For a Hecke character χ
over K , we say that χ is of finite type (N, ε) if

χ
|Ô×K
= ψε,

where ψε is the composite map

Ô×K →
∏
v |Nε

(OK ,v/NεOK ,v)
× ∼=

∏
` | Nε

(Z`/NεZ`)×
∏
` | Nε ε`−−−−→C×,

or equivalently,

Ô×K → (ÔK /NεÔK )
× ∼= (OK /NεK OK )

× ∼= (Z/NεZ)× ε−1
−→C×.

Let 6cc(N) denote the set of central critical characters of finite type (N, ε)
satisfying the above auxiliary condition on local root numbers, with f(χ) |N, and
let 6(1)cc (N) and 6(2)cc (N) denote the subsets of such characters with infinity type
(k + j,− j), where 1 − k ≤ j ≤ −1 and j ≥ 0, respectively, so that we have
6cc(N)=6

(1)
cc (N)t6

(2)
cc (N).

We now define a field F ′ as follows. Note that Gal(HN/H) ∼= (Z/N )×, and
let H ′N ⊂ HN be the subfield fixed by ker(εf ). The values χ(a) generate a finite
extension as χ ranges over 6(2)cc (N) and a ranges over A×K , f . Let F ′ be the field
which is the compositum of this latter extension with E f and H ′N, and let p′ be the
prime ideal of OF ′ above p determined by our embedding ip. The set 6(2)cc (N) has
a natural topology, namely, the topology of uniform convergence induced by the
p-adic metric on the completion of F ′ in Qp, when 6(2)cc (N) is viewed as a space
of functions on finite idèles prime to p. (See [Bertolini et al. 2013, Section 5.2]
for details.) Let 6̂cc(N) denote the completion of 6(2)cc (N) in this topology. As
explained in Section 5.3 of loc. cit., we may view 6

(1)
cc (N) as subset of 6̂cc(N).
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Definition 23. For a Hecke character over K of infinity type (a, b), we define the
signature of χ as a− b ∈ Z. For χ ∈6(2)cc (N) of infinity type (k+ j,− j), this is
k + 2 j . Given χ ∈ 6̂cc(N), we choose a Cauchy sequence {χi }

∞

i=1 ⊂ 6
(2)
cc (N)

converging to χ , where χi has infinity type (k+ ji ,− ji ). Given M ∈Z, there exists
an i(M) such that, for all i1, i2 ≥ i(M), we have χi1(x) ≡ χi2(x) (mod (p′)M)

for all x ∈ A
×,p
K , f . Evaluating on x ∈ A

×,p
K , f congruent to 1 (mod N), we see that

ji1 ≡ ji2 (mod (p−1)pM−1). Hence, the Cauchy sequence { ji }∞i=1⊂Z converges to
an element j ∈Z/(p−1)×Zp. Then the signature of χ is k+2 j ∈Z/(p−1)×Zp.

The elliptic curve A0 = C/OK over C has complex multiplication by OK , and
hence is defined over H . A choice of invariant differential ω0 ∈�

1
A0/H determines

a complex period �∞ ∈ C× via

ω0 =�∞ · 2π idz,

where z is the standard coordinate on C. We now make the assumption that

p is split in K/Q,

so that in particular ip(K )⊂Qp. Let p be a prime of K above p. Let A0 be a good
integral model over A0. The completion of A0 along its identity section Â0 is (non-
canonically) isomorphic to Ĝm over OCp . Fix an isomorphism ι :Â0−→

∼ Ĝm (which is
equivalent to fixing an isomorphism A0[p

∞
] := lim n

−→
A0[p

n
]−→∼ lim n

−→
µpn =:µp∞ ,

which is determined up to multiplication by a scalar in Z×p ). Let ωcan := ι
∗ du

u . Now
we define a p-adic period �p ∈ C×p via

ω0 =�p ·ωcan.

Bertolini, Darmon, and Prasanna [Bertolini et al. 2013] define an anticyclotomic
p-adic L-function associated with f and χ , interpolating a twisted trace over CM
triples attached to ( f, χ) for χ ∈ 6(2)cc (N). Recall our fixed triple (A, tA, ωcan).
Then there is an isogeny ϕ0 : A→ A0, and we let (A0, t0, ω0) denote the unique
triple fitting into an induced isogeny of triples ϕ0 : (A, tA, ωcan)→ (A0, t0, ω0)

in the sense of Section 3.3. Henceforth, fix a complex period �∞ and a p-adic
period �p associated with ω0. For a ∈ IN, let ϕa : A0 → a ? A0 be the natural
isogeny, so that (ϕaϕ0, A) ∈ IsogN(A).

Theorem 24 [Bertolini et al. 2013, Theorem 5.9]. Fix a normalized newform f in
Sk(00(N ), εf ). Suppose p is a prime split in K/Q. Let {a} be a set of representatives
of Cl(OK ) which are prime to N. Then there exists a unique continuous function
6̂cc(N)→ Cp : χ 7→ Lp( f, χ) satisfying

Lp( f, χ)=
( ∑
[a]∈Cl(OK )

(χ j )
−1(a) · (θ j f )[(a ? (A0, t0, ωcan))

)2
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for all χ ∈6(2)cc (N) of infinity type (k+ j,− j) with j ≥ 0.

Bertolini, Darmon, and Prasanna’s p-adic Waldspurger formula, which relates
the special value of Lp( f, χ) at some χ ∈6(1)cc (N)⊂ 6̂cc(N) to the p-adic Abel–
Jacobi image of a certain generalized Heegner cycle, is the main result of [Bertolini
et al. 2013].

Theorem 25 [Bertolini et al. 2013, Theorem 5.13]. Suppose χ ∈ 6(1)cc (N) has
infinity type (k− 1− j, 1+ j), where 0≤ j ≤ r = k− 2. Then

Lp( f, χ)

�
2(r−2 j)
p

= (1−χ−1(p̄)ap( f )+χ−2(p̄)εf (p)pk−1)2

×

(
1

0( j + 1)

∑
[a]∈Cl(OK )

(χNK)
−1(a) ·AJF ′

p′
(1ϕaϕ0)(ω f ∧ω

j
Aη

r− j
A )

)2

.

Here AJF ′
p′

is the p-adic Abel–Jacobi map defined in [Bertolini et al. 2013, Section
3.4], and 1ϕaϕ0 is the generalized Heegner cycle attached to (ϕaϕ0, A) ∈ IsogN(A)
as defined in Definition 22.

Suppose χ is a finite order Hecke character on K . We define the Heegner point
attached to χ as

P(χ) :=
∑

σ∈Gal(HN/K )

χ−1(σ ) ·1σ ∈ J1(N )(HN)⊗OEf
E f,χ ,

where 1 equals [(A0, t, ω0)] − (∞) ∈ J1(N )(HN) and the isomorphism class
[(A0, t, ω0)] is viewed as a point in X1(N )(HN). The embedding ip : Q ↪→ Cp

allows us to define the formal group logarithm on the formal group by

logω f
: Ĵ1(N )(p′OF ′

p′
)→ Cp,

which we extend to a map

logω f
: J1(N )(F ′p′)⊗OEf

E f,χ → Cp

by linearity.
For k = 2, we have AJF ′

p′
(P(χ))(ω f )= logω f

P(χ). Thus Theorem 25 becomes:

Theorem 26. Suppose χ is a finite order Hecke character on K with χNK ∈6
(1)
cc (N).

Then

Lp( f, χNK)= (1−χ−1(p̄)p−1ap( f )+χ−2(p̄)εf (p)p−1)2 log2
ω f

P(χ).

3.5. Katz’s p-adic L-function and Gross’s factorization on the cyclotomic line.
We can view any p-adic Hecke character χ : K×\A×K → C×p as a Galois character
χ : Gal(K/K )→O×

Cp
via the Artin isomorphism of class field theory. Let C be an

integral ideal of OK which is prime to p. Let K (Cpr ) denote the ray class field
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of K of conductor Cpr and let K (Cp∞)=
⋃

r K (Cpr ). Given a p-adic character χ
arising from a type A0 algebraic Hecke character, denote its complex counterpart
by (χ)∞. (Throughout this section only, we will make this distinction between
complex and p-adic avatars.)

We recall Katz’s p-adic L-function for CM fields (applied to our fixed imaginary
quadratic field K ), as well as Hida and Tilouine’s extension [1993] to the case of
general auxiliary conductor. Here we use the normalization found in [Gross 1980]
(with δ =

√
DK /2 and so c= 1, in the notation of [Katz 1978, Theorem 5.3.0]). Fix

a decomposition C= FFcI, where FFc consists of split primes in K , F is a subset
of Fc, and I consists of inert or ramified primes in K . Recall our fixed identification
i : C −→∼ Cp, the prime p | p determining K ↪→ Qp, and the periods �p and �∞
defined in Section 3.4.

Theorem 27 ([Katz 1978]; see also [Hida and Tilouine 1993]). There exists a
unique p-adic analytic function χ 7→ Lp(χ, 0) for χ : Gal(K (Cp∞)/K )→ C×p
which satisfies (under our fixed identification i : C−→∼ Cp)

Lp(χ, 0)= 4 Localp(χ)(−1)k1+k2

(
�p

�∞

)k1−k2
(

2π i
√

DK

)−k2

× (k1− 1)!(1−χ(p̄))(1− χ̌(p̄))L(χ, 0)
∏
v |C

(1−χ(v))

for characters χ with infinity type (−k1,−k2), where k1 ≥ 1 and k2 ≤ 0, and such
that f(χ) is divisible by all the prime factors of F. Here Localp(χ) is a complex
scalar associated with our fixed embedding K ↪→Qp, as in [Katz 1978]. (We have
in fact that Localp(χ)= 1 if χ is unramified at p.)

Recall the dual character χ̌ defined by χ̌(a) = χ−1(ā)NK (a). The function
Lp(χ, 0) satisfies the functional equation

W ((χ)∞,
√

DK )Lp(χ̌ , 0)= Lp(χ, 0),

where W ((χ)∞, δ) is given by

W ((χ)∞, δ)=
∏
v |F

G((χ)−1
∞,v, δ̄)

∏
v |Fc

G((χ)−1
∞,v̄, δ)

∏
v | I

G((χ)−1
∞,v, δ),

G((χ)∞,v, δ)= (χ)∞,v(π−e
v )

∑
u∈(OK ,v/π e

vOK ,v)×

(χ)∞,v(u)9K ,v(−uπ−e
v δ−1),

e is the exponent of v in f(χ), πv is a local uniformizer of Kv , and9K :AK→C is the
standard additive character normalized so that 9K ,∞(x∞)= exp(2π i TrC/R(x∞)).

Henceforth, set
G((χ)∞, δ)=

∏
v |F

G((χ)∞,v, δ).
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Now define the p-adic L-function

Lp(χ, s) := Lp(χ〈NK 〉
s, 0).

Gross gives the following factorization of Lp along the cyclotomic line.

Theorem 28 [Gross 1980]. In the situation of Theorem 27, suppose that Fc = F,
I= 1 and C= f OK =FF, where f ∈Z>0. Suppose χ :Gal(K (µf p∞)/Q)→C×p is
a continuous p-adic Galois character which is trivial on complex conjugation (and
so corresponds to an even p-adic Hecke character), and let χ/K be the restriction
of χ to Gal(K (µf p∞)/K ). Then

〈 f 〉s∏
` | f χ

−1
` (−

√
DK )g`(χ)

Lp(χ/K , s)= Lp(χεKω, s)Lp(χ
−1, 1− s)

for s ∈Zp, where f ∈Z>0 is viewed as f =ω( f )〈 f 〉 ∈µ2(p−1)×(1+2pZp)=Z×p ,
and on the right are Kubota–Leopoldt p-adic L-functions for p-adic Hecke charac-
ters over Q.

Remark 29. Gross [1980] originally proves Theorem 28 for auxiliary conductor
f = 1, even though his proof translates mutatis mutandis to the case of arbitrary f .

The general auxiliary conductor version of the theorem seems to be widely present
in the literature, although the author has not been able to locate a complete proof.
Thus, for the sake of completeness, we give a proof of Theorem 28, following
Gross’s method. We will first need a lemma.

Lemma 30. In the situation of Theorem 27, suppose that Fc = F, I = 1 and
C= f OK = FF. Suppose χ = χ̃ ◦NK for some Hecke character χ̃ over Q. Then

W ((χ)∞, δ)=
G((χ)−1

∞
, δ̄)

G((χ̌)−1
∞ ,−δ̄)

.

Proof. Since χ = χ̃ ◦NK , we have χv(x)= χv̄(x̄) for any place v of K . For each
v |FF, since Kv =Q` (where ` is the rational prime below v), we can choose rep-
resentatives {u} of (OK /π

e
vOK )

×
= (Z/`eZ)× such that ū = u and local uniformiz-

ers πv such that πv=πv . (This is accomplished by replacing πv with πvπv if needed.)
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Thus, we have, for any v |F,

G((χ̌)−1
∞,v, δ)

= (χ̌)−1
∞,v(π

−e
v )

∑
u∈(OK ,v/π e

vOK ,v)×

(χ̌)−1
∞,v(u)9K ,v(−uπ−e

v δ−1)

= (NK)
−1
∞,v(π

−e
v )(χ)∞,v̄(π

−e
v )

∑
u∈(OK ,v/π e

vOK ,v)×

(NK)
−1
∞,v(u)(χ)∞,v̄(ū)9K ,v(uπ−e

v δ−1)

= (NK)
−1
∞,v(π

−e
v )(χ)∞,v(π

−e
v )

∑
u∈(OK ,v/π e

vOK ,v)×

(χ)−1
∞,v(u)9K ,v(uπ−e

v δ−1)

= (χ)∞,v(π
−e
v )

( ∑
u∈(OK ,v/π e

vOK ,v)×

(χ)−1
∞,v(u)9K ,v(uπ−e

v δ−1)

)−1

=
(
G((χ)−1

∞,v,−δ̄)
)−1
,

where in the penultimate equality, we have used the fact that∣∣∣∣ ∑
u∈(OK ,v/π e

vOK ,v)×

(χ)−1
∞,v(u)9K ,v(−uπ−e

v δ−1)

∣∣∣∣2 = (NK)∞,v(π
−e
v ).

Now simply note that, by definition of W ((χ)∞, δ) and the above computation,

W ((χ)∞, δ)=
∏
v |F

G((χ)−1
∞,v, δ̄)

∏
v |F

G((χ)−1
∞,v, δ)=

G((χ)−1
∞
, δ̄)

G((χ̌)−1
∞ ,−δ̄)

. �

Proof of Theorem 28. Interpreting the statement as an assertion about p-adic
measures, and proceeding as in [Gross 1980] using Lemma 1.1 of loc. cit., it
suffices to prove the theorem at s = 0 and when χ is of finite order.

Let χ be unramified at each place dividing DK . Then χ :Gal(K (µf pr )/Q)→C×p
is an even Dirichlet character, where f prOK = f(χ/K ), ( f, p) = 1 and f pr > 1.
Let wf pr denote the number of roots of unity in K× congruent to 1 (mod f pr ),
and let Cl( f pr ) denote the ray class group of OK of modulus f prOK . Recall our
fixed embeddings i∞ :Q ↪→ C and ip :Q ↪→ Cp compatible with the identification
i : C−→∼ Cp. For a ∈ (Z/ f pr )×, let

C f pr (a)∞= 1−e
−2π ia

f pr , C f pr (a)= i−1
∞
(C f pr (a)∞), C f pr (a)p = i−1(C f pr (a)∞).

Further, let E f pr (c)∞ ∈Q× ⊂ C× be the “elliptic units” of [Robert 1973], and let

E f pr (c)= i−1
∞
(E f pr (c)∞), E f pr (c)p = i(E f pr (c)∞).
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Now, for a ∈ (Z/ f pr )×, choose c ∈ Cl( f pr ) so that NmK/Q(c) ≡ a (mod f pr ),
and let

Ff pr (a)= NmK ( f pr )/K (µf pr )(E f pr (c)).

Finally, for a ∈ A = (Z/ f pr )×/{±1}, let

F+(a)= Ff pr (a)Ff pr (−a), C+(a)= C f pr (a)C f pr (−a).

Note that in our situation, for any s ∈ Zp,

G((χ/K 〈NK 〉
s)−1
∞
,−
√

DK )=
∏
v |F

G((χ/K 〈NK 〉
s)−1
∞,v,−

√
DK )

= 〈 f 〉−s
∏
` | f

g`(χ)χ
−1
` (
√

DK ),

where f is viewed as in Z×p . Hence, using the special value formulas from [Katz
1976, Formulas 10.4.9–10.4.12] (suitably modified with respect to the normalization
of the p-adic L-function in [Gross 1980]) we have

1∏
` | f χ

−1
` (−

√
DK )g`(χ)

Lp(χ/K , 0)

=

∏
` | f χ`(−1)

G((χ/K )
−1
∞ ,−

√
DK )

Lp(χ/K , 0)

=−
1

3 f prwf pr
(1−χ/K (p̄))

(
1−

χ−1
/K (p)

p

)
g(χ−1)

f pr

∑
a∈A

χ(a) logp F+(a)p,

and
Lp(χεKω, 0)=−(1−χεK (p))B1,χεK ,

Lp(χ
−1, 1)=−

(
1−

χ−1(p)
p

)
g(χ−1)

f pr

∑
a∈A

χ(a) logp C+(a)p.

On the complex side, we have (by Kronecker’s second limit formula; see [Stark
1977])

L ′((χ/K )∞, 0)=−
1

6 f prwf pr

∑
a∈A

(χ)∞(a) log F+(a)∞,

L((χ)∞εK , 0)=−B1,(χ)∞εK ,

L((χ)−1
∞
, 1)=−

g((χ)−1
∞
)

f pr

∑
a∈A

(χ)∞(a) log C+(a)∞,
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and thus, by the functional equation, we have

L ′((χ)∞, 0)=−1
2

∑
a∈A

(χ)∞(a) log C+(a)∞,

where log : R×→ R is the map x 7→ log |x |. Now we claim that

1∏
` | f χ

−1
` (−

√
DK )g`(χ)

Lp(χ/K , 0)= Lp(χεKω, 0)Lp(χ
−1, 1).

Note that

(1−χ/K (p̄))

(
1−

χ−1
/K (p)

p

)
= (1−χεK (p))

(
1−

χ−1(p)
p

)
since εK (p)= 1. If this quantity is 0 then the above identity of special values of
p-adic L-functions is trivial, so assume this is not the case. By the above formulas,
this identity is equivalent to

−3 f prwf pr B1,χεK

∑
a∈A

χ(a) logp C+(a)p =
∑
a∈A

χ(a) logp F+(a)p.

From the complex factorization

L((χ/K )∞, s)= L((χ)∞εK , s)L((χ)∞, s),

we get, by taking the derivative at s = 0,

L ′((χ/K )∞, 0)= L((χ)∞εK , s)L ′((χ)∞, 0),

which is equivalent, by the above formulas, to

−3 f prwf pr B1,(χ)∞εK

∑
a∈A

(χ)∞(a) log C+(a)∞ =
∑
a∈A

(χ)∞(a) log F+(a)∞.

Now C+(a)∞ and F+(a)∞ are p-units in the field M∞=Q
(
cos 2π i

f pr

)
. Let E(M∞)

denote the group of all p-units viewed as a finitely generated subgroup of R×. Then
we claim that the identity

−3 f prwf pr B1,(χ)∞εK

∑
a∈A

(χ)∞(a)⊗C+(a)∞ =
∑
a∈A

(χ)∞(a)⊗ F+(a)∞

holds in C⊗Z E(M∞). The representation of A = Gal(M∞/Q) on this complex
vector space is isomorphic to the regular representation, and the elements∑

a∈A

(χ)∞(a)C+(a)∞,
∑
a∈A

(χ)∞(a)F+(a)∞
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are both in the (χ)−1
∞

-eigenspace. Because this eigenspace is one-dimensional, the
elements above differ by a complex scalar. Applying the C-linear map

C⊗Z E(M∞)
1⊗log
−−−→R⊗C

mult
−−→C

and considering the identity above concerning special values of complex L-functions,
we identify this scalar as −3 f prwf pr B1,(χ)∞εK . Thus our identity in C⊗Z E(M∞)
holds. Now applying our identification i : C−→∼ Cp, we obtain the identity

−3 f prwf pr B1,χεK

∑
a∈A

χ(a)⊗C+(a)∞ =
∑
a∈A

χ(a)⊗ F+(a)∞

in Cp⊗ E(Mp), where Mp = i(M∞). Finally, applying the homomorphism

Cp⊗Cp
1⊗logp
−−−→Cp⊗Cp

mult
−−→Cp,

we obtain our identity of special values of p-adic L-functions. Now, to extend
to general χ (including when χ is ramified at places dividing DK ), we use the
functional equation of Theorem 27 and Lemma 30:

〈 f 〉s∏
` | f χ

−1
` (−

√
DK )g`(χ)

Lp(χ/K , s)

=
1

G((χ/K 〈NK 〉
s)−1
∞ ,−

√
DK )

Lp(χ/K , s)

=
W ((χ/K 〈NK 〉

s)∞,
√

DK )

G((χ/K 〈NK 〉
s)−1
∞ ,−

√
DK )

Lp(χ
−1
/K ω

−1
K , 1− s)

=
1

G((χ̌/K 〈NK 〉
−s)−1
∞ ,
√

DK )
Lp((χωεK )

−1
/K , 1− s)

=
〈 f 〉1−s∏

` | f (χωεK )`(−
√

DK )g`((χωεK )−1)
Lp((χωεK )

−1
/K , 1− s).

Here χ̌/K denotes the dual of χ/K and we have used the fact that, for ` | f , the
characters ω and εK are unramified at `, as well as the equalities εK ,`(`)= 1, since
` is split in K , and (εK )/K = 1. �

3.6. Eisenstein descent. We now define the notion of cuspforms which have Eisen-
stein descent. In this setting, we prove a congruence between the BDP p-adic
L-function and the Katz p-adic L-function on the anticyclotomic line.

Definition 31. Fix a global or local field M containing E f and fix an integral ideal m
of OM . Suppose (N+, N−, N0) is a triple of pairwise coprime positive integers,
where N = N+N−N0, N+N− is squarefree, N0 is squarefull, and ψ1 and ψ2 are
Dirichlet characters over Q. We say that a normalized newform f =

∑
∞

n=1 anqn
∈
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Sk(00(N ), εf ), where k is a positive integer, has partial Eisenstein descent of type
(ψ1, ψ2, N+, N−, N0) (over M) mod m if ψ1ψ2 = εf and if we have

(1) a` ≡ ψ1(`)+ψ2(`)`
k−1 (mod m) for ` - N ,

(2) a` ≡ ψ1(`) (mod m) for ` | N+,

(3) a` ≡ ψ2(`)`
k−1 (mod m) for ` | N−,

(4) a` ≡ 0 (mod m) for ` | N0.

If, further, f satisfies

(5) δψ1=1
B1,ψ2 Bk,ψ1

k

∏
` | N+

(1−ψ1(`)`
k−1)

∏
` | N−

(1−ψ2(`))

×

∏
` | N0

(1−ψ1(`)`
k−1)(1−ψ2(`))≡ 0 (mod m),

where

δψ=1 :=

{
1 if ψ = 1,
0 otherwise,

then we say f has (full) Eisenstein descent of type (ψ1, ψ2, N+, N−, N0) mod m.

Remark 32. Recall, for k ≥ 2, that the Eisenstein series Eψ1,ψ2,(N )
k is an element of

Nk(00(N ), ψ1ψ2). (When either k > 2 or ψ1 6= 1 or ψ2 6= 1, then in fact Eψ1,ψ2,(N )
k

is an element of Mk(00(N ), ψ1ψ2).) It has q-expansion

Eψ1,ψ2,(N )
k (q)

:= −δψ1=1L(N−N0)(ψ2, 0)L(N+N0)(ψ1, 1−k)+
∞∑

n=1

σ
ψ1,ψ2,(N )
k−1 (n)qn

=−δψ1=1
Bk,ψ1

2k

∏
` | N+

(1−ψ1(`)`
k−1)

∏
` | N−

(1−ψ2(`))
∏
` | N0

(1−ψ1(`)`
k−1)(1−ψ2(`))

+

∞∑
n=1

σ
ψ1,ψ2,(N )
k−1 (n)qn,

where L(N )(ψ, s) denotes the L-function of a Dirichlet character ψ with Euler
factors at primes ` | N removed, and where

σ
ψ1,ψ2,(N )
k−1 (n) :=

∑
0<d | n
(d,N+)=1
(n/d,N−)=1
(n,N0)=1

ψ1(n/d)ψ2(d)dk−1.

Here, in keeping with our conventions, ψ(m) = 0 if (m, f(ψ)) 6= 1. Then for
f ∈ Sk(00(N ), εf ) to have partial Eisenstein descent of type (ψ1, ψ2, N+, N−, N0)
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at λ | p is equivalent to having

θ j f (q)≡ θ jEψ1,ψ2,(N )
k (q) (mod m)

for all j ≥ 1. When f has full Eisenstein descent, this congruence holds for j ≥ 0.

Remark 33. Suppose we are given f ∈ Sk(00(N ), εf ) with partial Eisenstein
descent of type (ψ1, ψ2, N+, N−, N0) over M mod m, in the sense of Definition 31.
In many situations, (5) is forced to hold a priori so that f automatically has full
Eisenstein descent. Suppose m 6=OM (for otherwise, the conditions of Definition 31
are vacuous).

If ψ1 is nontrivial, then δψ=1 = 0 and (5) holds. Now suppose that ψ1 = 1. If
k is odd, then Bk,ψ1 = Bk = 0, again forcing (5) to hold. Suppose k is even. Let
λ |m be a prime ideal of residual characteristic not equal to 2. By parts (3) and (1)
of Theorem 34, we have ψ1ψ2 = εf ; in particular, we have ψ2(−1) = εf (−1) =
(−1)k = 1. Hence ψ2 is even, and so B1,ψ2 = 0 unless ψ2= 1. Now further suppose
that ψ2 = 1. Then (5) is still forced to hold unless N−N0 = 1. Now suppose
N−N0 = 1. Let λ |m be a prime ideal of residual characteristic p. Then conditions
(1)–(4) still imply

θ f (q)≡ θEψ1,ψ2,(N )
k (q) (mod λ).

Suppose p > k+ 1, so that, by [Serre 1973, Corollary 3, p. 326], θ is injective on
mod-λ modular forms. Then the above congruence implies

f (q)≡ Eψ1,ψ2,(N )
k (q) (mod λ).

Hence, if m has order 0 or 1 at every prime of OM and if the residual characteristic p
of every prime λ |m satisfies p > k+ 1, then (5) is forced to hold. (See [Billerey
and Menares 2013, Theorem 4.1] where a similar argument is given.) In particular,

Bk

2k

∏
` | N+

(1− `k−1)≡ 0 (mod m).

When k = 2, we have

1
24

∏
` | N+

(1− `)≡ 0 (mod m),

and therefore there exists at least one ` | N+ = N such that ` ≡ 1 (mod m), i.e.,
`≡ 1 (mod m∩Z).

Suppose we have a normalized eigenform f (q)=
∑
∞

n=0 anqn
∈ Mk(00(N ), εf ).

Again let M be a number field containing E f . Let kλ denote the residue field
of OM at a prime λ | p. By a construction of Deligne [1971] we can attach a unique
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semisimple p-adic Galois representation ρ f : Gal(Q/Q)→ GL2(Mλ) unramified
outside pN and such that ρ f (Frob`) has characteristic polynomial

T 2
− a`T + εf (`)`

k−1

for all ` - pN . Taking a Gal(Q/Q)-stable lattice and the reduction mod λ, we get a
representation ρ̄ :Gal(Q/Q)→GL2(kλ) (whose semisimplification is independent
of the choice of lattice). By Theorem 3 of [Atkin and Lehner 1970], we have
a` =±`k/2−1 for ` ‖ N , and a` = 0 for `2

| N .
We have the following characterization of partial Eisenstein descent mod λ. See

[Billerey and Menares 2013, Theorem 4.1] for a similar result to part (2) below.
The elliptic curves case of part (1) was essentially done in [Serre 1972].

Theorem 34. Suppose f ∈ Sk(00(N ), εf ) is a normalized newform, and define
ρ̄ f :Gal(Q/Q)→GL2(kλ) to be (the semisimplification of ) the mod-λ reduction of
the associated semisimple Galois representation ρ f . Then the following hold:

(1) Suppose ρ̄ f is reducible. Then ρ̄ f ∼= kλ(ψ̃1)⊕ kλ(ψ̃2ω
k−1), where we have

ψ̃i = ψi (mod λ), i = 1, 2, for some Dirichlet characters ψ1 and ψ2 over Q

with ψ1ψ2 = εf .

(2) Suppose ρ̄ f is reducible. Then, for all ` ‖ N , either a` ≡ ψ1(`) (mod λ) and
a` ≡ ψ−1

1 (`)`k−2 (mod λ) and `k−2
≡ ψ2

1 (`) (mod λ), or a` ≡ ψ2(`)`
k−1

(mod λ) and a` ≡ ψ−1
2 (`)`−1 (mod λ) and `k

≡ ψ−2
2 (`) (mod λ).

(3) Let N+ denote any product of all primes ` ‖ N satisfying a` ≡ ψ1(`) (mod λ)
and N− any product of ` ‖ N satisfying a` ≡ ψ2(`)`

k−1 (mod λ), such that
N+N− is the squarefree part of N (so that, in particular, (N+, N−)= 1). Let
N0 be the squarefull part of N . Then ρ̄ f is reducible if and only if f has partial
Eisenstein descent of type (ψ1, ψ2, N+, N−, N0) over Mλ mod λ.

Proof. (1) Since ρ̄ f is reducible and semisimple, we can write ρ̄ f = kλ(χ1)⊕kλ(χ2),
where χ1, χ2 : Gal(Q/Q)→ k×λ . Hence χ1χ2 = det(ρ̄ f )= εf ω

k−1, and so for our
statement it suffices to show that one of χ1, χ2 is unramified outside the squarefull
part of N (since f(εf ) divides the squarefull part of N ). Since ρ̄ f is unramified
outside pN , clearly both χ1, χ2 are unramified outside pN . For ` ‖ N , the local rep-
resentation ρ̄ f,` (i.e., the restriction of ρ̄ f,` to the decomposition group Gal(Q`/Q`))
has conductor `. Thus the corresponding automorphic representation π` of ρ` has
conductor `, and so, by the classification of admissible representations of GL2 over
local fields (see [Gelbart 1975, p. 73]), at most one of χ1 and χ2 is ramified at `.
Thus χ1, χ2 are unramified inside the squarefree part of N . Finally, since ρ̄ f,p

is reducible, by a theorem of Deligne (see [Gross 1990, Introduction]), ap is not
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congruent to 0 mod λ and ρ̄ f,p is of the form(
ωk−1µp(εf (p)/ap) ∗

0 µp(ap)

)
,

where µp(α) is the unramified character of Gal(Qp/Qp) taking Frobp to α. Hence
exactly one of χ1, χ2 is ramified at p.

Putting this all together, we see that {χ1, χ2} = {ψ1 mod λ,ψ2ω
k−1 mod λ} for

some Dirichlet characters ψ1 and ψ2 with ψ1ψ2 = εf , and so we are done.

(2) It is a theorem of Langlands (see [Loeffler and Weinstein 2012, Proposition 2.8])
that, for ` ‖ N , ρ̄ f,` is of the form(

ω
k/2
` µ`(εf (`)`

k/2−1/a`) ∗

0 ω
k/2−1
` µ`(a`/`k/2−1)

)
,

where ω` is the localization of ω to `. Thus by (1), we have

{ψ1,` mod λ,ψ2,`ω
k−1
` mod λ} = {ωk/2

` µ`(εf (`)`
k/2−1/a`), ω

k/2
` µ`(a`/`k/2−1)}.

Note that µ`(`k/2−1/a`) is a quadratic character.
Suppose first that ψ1,` ≡ ω

k/2
` µ`(εf (`)`

k/2−1/a`) (mod λ), and that ψ2,`ω
k−1
` ≡

ω
k/2−1
` µ`(`

k/2−1/a`) (mod λ). Plugging in Frob` to both congruences, the first con-
gruence implies a`≡ψ2,`(`)`

k−1
=ψ2(`)`

k−1 (mod λ), and the second congruence
implies a` ≡ ψ−1

2,` (`)`
−1
= ψ−1

2 (`)`−1 (mod λ).
Suppose next that ψ1,` ≡ ω

k/2−1
` µ`(a`/`k/2−1) (mod λ), and that ψ2,`ω

k−1
` ≡

ω
k/2
` µ`(εf (`)`

k/2−1/a`) (mod λ). Plugging in Frob` to both congruences, the first
congruence implies both a` ≡ ψ1,`(`) = ψ1(`) (mod λ) and a` ≡ ψ−1

1,` (`)`
k−2
=

ψ−1
1 (`)`k−2 (mod λ) (we get both since we have µ`(a`/`k/2−1)=µ−1

` (a`/`
k/2−1)),

and the second congruence gives no new congruences.

(3) For ` - pN we have a` = trace(ρ̄ f )(Frob`) ≡ ψ1(`) + ψ2(`)`
k−1 (mod λ).

For ` | N+ we have a` ≡ ψ1(`) (mod λ), for ` | N− we have a` ≡ ψ2(`)`
k−1

(mod λ), and for ` | N0 we have a` ≡ 0 (mod λ). Finally, by the Cebotarev
density theorem and continuity of trace(ρ̄ f ), we have ap = trace(ρ̄ f (Frobp)) ≡

ψ1(p)+ψ2(p)pk−1
≡ ψ1(p) (mod λ). Hence f has partial Eisenstein descent of

type (ψ1, ψ2, N+, N−, N0) at λ | p.
If f has partial Eisenstein descent of type (ψ1, ψ2, N+, N−, N0) at λ | p, then

for ` - N we have trace(ρ̄ f )(Frob`) ≡ ψ1(`)+ψ2(`)`
k−1 (mod λ). Hence if ρ̄ :=

kλ(ψ1)⊕ kλ(ψ2ω
k−1), then trace(ρ̄ f )(Frob`)≡ trace(ρ̄)(Frob`) for all ` - N . Thus

by the Cebotarev density theorem and continuity of trace, trace(ρ̄ f )(g)≡ trace(ρ̄)(g)
for all g ∈ Gal(Q/Q). Hence, by the Brauer–Nesbitt theorem, ρ̄ f ∼= ρ̄. �

For k = 2 and M = E f =Q, we note the following corollary.
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Theorem 35. Suppose E/Q is an elliptic curve and p is a prime such that E[p] is
a reducible mod-p Galois representation. Then the associated normalized newform
fE ∈ S2(00(N )) has partial Eisenstein descent over Qp mod pZp.

4. Proof of the main theorem

First, we examine complex L-values arising from twisted traces of Eisenstein series
evaluated at CM points, analogous to such traces for normalized newforms interpo-
lated by Bertolini, Darmon, and Prasanna’s p-adic L-function (see Theorem 24).
Parts of the calculation in Section 4.1 are implicit in [Hida and Tilouine 1993], but
for our purposes which require explicit identities, and for the sake of completeness,
we include the full calculation here.

4.1. Twisted traces of Eisenstein series over CM points. Let k ≥ 2 be an integer,
and let ψ1, ψ2 be two Dirichlet characters over Q with conductors u and t , respec-
tively. (Here and throughout this section, for simplicity, we identify these ideals
in Z with their unique positive rational integer generators.) We also assume that
ut = N ′ (where u and t are not necessarily coprime), and that (ψ1ψ2)(−1)= (−1)k .
Recall our Eisenstein series (see Remark 32)

Eψ1,ψ2
k (τ ) := δψ1=1

1
2 L(ψ1, 1− k)+

∞∑
n=1

σ
ψ1,ψ2
k−1 (n)qn,

where q = e2π iτ and

σ
ψ1,ψ2
k−1 (n)=

∑
0<d | n

ψ1(n/d)ψ2(d)dk−1.

Note that the nebentypus of Eψ1,ψ2
k is εEψ1,ψ2

k
= ψ1ψ2.

Recalling the Maass–Shimura derivative ∂ defined in Section 3.1, one checks by
direct computation that

∂ jEψ1,ψ2
k (τ )=

tk0(k+ j)

2(2π i)k+ jg(ψ−1
2 )

u−1∑
c=0

t−1∑
d=0

u−1∑
e=0

∑
(m,n)≡

(ct,d+et)(N ′)

ψ1(c)ψ−1
2 (d)

(mτ + n)k+2 j

(
|mτ + n|2

τ − τ̄

)j

,

with the last sum over (m, n) ∈ Z2
\ {0} satisfying (m, n)≡ (ct, d + et) (mod N ′).

Recall that under our Assumptions 1, DK is taken to be odd. (The calculations
for the even case are entirely analogous to those of the odd case, but we do not
explicitly write them out here.) Given an integral primitive (i.e., having no rational
integral divisors other than ±1) ideal a of OK , we can write

a= Z
b+
√

DK

2
+Za,
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where a = |NmK/Q(a)| and b2
− 4ac = DK ; the triple (a,−b, c) determines the

primitive positive definite binary quadratic form associated with the ideal class of a.
We set

τa :=
b+
√

DK

2a

so that τa ∈H+ is the root of the dehomogenized quadratic form aτ 2
− bτ + c = 0

with positive imaginary part. We call τa a CM point. Note that 〈τa, 1〉 generates ā−1.
(Here, for τ ∈H+, we have 〈τ, 1〉 = Zτ +Z.)

Suppose that K satisfies the Heegner hypothesis with respect to N ′. Fix an
ideal N′ such that OK /N

′
= Z/N ′, and write

N′ = Z
bN ′ +

√
DK

2
+ZN ′, aN′ = Z

baN ′ +
√

DK

2
+ZaN ′,

where b2
aN ′ −4aN ′c= DK for some c ∈ Z. Write N′ = ut, where OK /u= Z/u and

OK /t= Z/t .
Suppose we have a Dirichlet character φ : (Z/N ′)×→ C×. By the identification

OK /N
′
=Z/N ′, we can view φ as a character φ :A×,N

′

K �
∏
v |N′(OK ,v/N

′OK ,v)
×∼=

(OK /N
′)×→ C×, where A

×,N′

K denotes the idèles prime to N′; when we view φ

in this way, we will write φ(x mod N′) for its value at x ∈ A
×,N′

K . Given a Hecke
character χ over K of finite type (N′, φ) and infinity type ( j1, j2), recall that the
associated Grossencharacter on ideals a prime to N′ is given by

χ(a)= χ(x)φ(x mod N′)x j1
∞

x̄ j2
∞
,

where x ∈ A
×,N′

K is such that ordv(x)= ordv(a) for all finite places v. We consider
the twisted trace ∑

[a]∈Cl(OK )

(χ j )
−1(aN′)∂ jEψ1,ψ2

k (τaN′),

where a ranges over a set of primitive integral ideal representatives of Cl(OK )

chosen to be prime to N ′, and where χ is of infinity type (k+ j,− j) and of finite
type (N′, ψ1ψ2) (so that the above summands depend only on the ideal classes of
the aN′).

Suppose α = m (baN ′ +
√

DK )/(2aut)+ n ∈ (au)−1 with (m, n) ≡ (ct, d + et)
(mod N ′). Then auα = m (baN ′ +

√
DK )/(2t) + aun ∈ au ⊂ OK is mapped

to baN ′c ∈ Z/u under the identification OK /ū = Z/u. We see this by writing
m = ct + qN ′ for some q ∈ Z and

auα =
mbaN ′

t
−m

baN ′ −
√

DK

2
+ aun

= baN ′c−m
baN ′ −

√
DK

2
+ qu ≡ baN ′c (mod ū).
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We thus haveψ1((auα) mod ū)=ψ1(baN ′c). Since baN ′+
√

DK ∈aN
′, in particular

we have baN ′ ≡−
√

DK (mod u), meaning ψ1(baN ′)= ψ1(−
√

DK mod u); hence-
forth we will write ψ1(−

√
DK )= ψ1(−

√
DK mod u) for simplicity. On the other

hand, note that α is mapped to d ∈ Z/t under the isomorphism (au)−1/(au)−1t∼=
OK /t= Z/t . Thus, ψ2(au(α) mod t)= ψ2(d) (since au is prime to t). In all,

ψ1(c)ψ2(d)
(mτaN′ + n)k+2 j

(
|mτaN′ + n|2

τaN′ − τaN′

)j

=
ψ−1

1 (−
√

DK )ψ1((auα) mod ū)ψ−1
2 (au(α) mod t)

αk+2 j

(
NmK/Q(aN′(α))

√
DK

)j

.

Suppose k > 2. Then we can rewrite each summand in the twisted trace as

(χ j )
−1(aN′)∂ jEψ1,ψ2

k (τaN′)

=
tk0(k+ j)ψ−1

1 (−
√

DK )

2(2π i)k+ jg(ψ−1
2 )

(χ j )
−1(aN′)

×

∑
α∈(aN′)−1

(aN′(α),ūN′)=1

ψ1((auα) mod ū)ψ−1
2 (au(α) mod t)

αk+2 j

(
|NmK/Q(aN′(α))|

√
DK

)j

=
tk0(k+ j)ψ−1

1 (−
√

DK )

2(2π i)k+ jg(ψ−1
2 )
√

DK
j

χ−1( t̄)(χ−k/2)
−1(au)

|NmK/Q(au)|k/2

×

∑
α∈(au)−1

(au(α),ūN′)=1

(
ᾱ

α

)k/2+ j ψ1((auα) mod ū)ψ−1
2 (au(α) mod t)

|NmK/Q(α)|k/2

=
tk0(k+ j)ψ−1

1 (−
√

DK )χ
−1( t̄)

2(2π i)k+ jg(ψ−1
2 )
√

DK
j

×

∑
α∈(au)−1

(au(α),ūN′)=1

(χ−k/2)
−1(au(α))ψ1(au(α) mod u)ψ2(au(α) mod t)

×
ψ1((auα) mod ū)ψ−1

2 (au(α) mod t)

|NmK/Q(au(α))|k/2

=
tk0(k+ j)ψ−1

1 (−
√

DK )χ
−1( t̄)

(2π i)k+ jg(ψ−1
2 )
√

DK
j

×

∑
α∈(au)−1

(au(α),ūN′)=1

(χ−k/2)
−1(au(α))

ψ1((au NmK/Q(α)) mod u)

|NmK/Q(au(α))|k/2

=
|O×K |

2
tk0(k+ j)ψ−1

1 (−
√

DK )χ
−1( t̄)

(2π i)k+ jg(ψ−1
2 )
√

DK
j

∑
b⊂OK

[b]=[au]∈Cl(OK )
(b,ūN′)=1

(ψ1/K (χ−k/2)
−1)(b)

|NmK/Q(b)|k/2
.
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The penultimate equality is justified since ψ1((auα) mod ū)=ψ1(au(α) mod ū)=

ψ1(au(ᾱ) mod u) (the first equality here follows since au is prime to ū). The factor
of |O×K | appears because any integral ideal b ⊂ OK can be written as au(α) for
some ideal class representative a and some element α ∈ (au)−1 determined uniquely
up to an element of O×K = {±1}. Since (ψ1ψ2)(−1)= (−1)k = (−1)k+2 j , we see
that each summand of the second line has the same value for α or −α. Now since
|O×K | = 2, we finally have, after summing both sides of the above equality over all
our ideal class representatives a,∑
[a]∈Cl(OK )

(χ j )
−1(aN′)∂ jEψ1,ψ2

k (τaN′)

=
tk0(k+ j)ψ−1

1 (−
√

DK )χ
−1( t̄)

(2π i)k+ jg(ψ−1
2 )
√

DK
j L

(
ψ1/K (χ−k/2)

−1,
k
2

)
.

For k = 2 note that, by the same calculation as above, we have, for all s ∈C with
<(s) > 0,∑
[a]∈Cl(OK )

(χ j )
−1(aN′)

∑
α∈(au)−1

(au(α),ūN′)=1

ψ−1
1 (−
√

DK )ψ1(ā(auα)mod ū)ψ−1
2 (au(α)mod t)

α2+2 j

(
|NmK/Q(aN′(α))|

√
DK

)j−s

=
ψ−1

1 (−
√

DK )χ
−1( t̄)

√
DK

j−s t s
L(ψ1/K(χ−1)

−1, 1+ s).

Note that each summand of the inner sum can be written as the special value of a
real analytic Eisenstein series at a certain CM point:

u−1∑
c=0

t−1∑
d=0

u−1∑
e=0

∑
(m,n)∈Z2

\{0}
(m,n)≡

(ct,d+et)(N ′)

ψ1(c)ψ−1
2 (d)

(mτaN′ + n)2+2 j

(
|mτaN′ + n|2

τaN′ − τaN′

)j−s

.

Using standard analytic arguments, one can show that the above expression tends
to ∂ jEψ1,ψ2

2 (τaN′) as s→ 0. Hence, combining the above, we have∑
[a]∈Cl(OK )

(χ j )
−1(aN′)∂ jEψ1,ψ2

2 (τaN′)

= lim
s→0

t20(2+ j)ψ−1
1 (−

√
DK )χ

−1( t̄)

(2π i)2+ jg(ψ−1
2 )
√

DK
j−s t s

L(ψ1/K (χ−1)
−1, 1+s)

=
t20(2+ j)ψ−1

1 (−
√

DK )χ
−1( t̄)

(2π i)2+ jg(ψ−1
2 )
√

DK
j L(ψ1/K (χ−1)

−1, 1).
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Proposition 36. Let k ≥ 2 be an integer. Suppose χ is of infinity type (k+ j,− j)
and χ−k/2 has trivial central character and is of finite type (N′, ψ1ψ2). Suppose
also that ψ1 and ψ2 are Dirichlet characters over Q with conductors u and t ,
respectively, such that ut = N and (ψ1ψ2)(−1)= (−1)k . Then∑
[a]∈Cl(OK )

(χ j )
−1(a)∂ jEψ1,ψ2

k (τa)=
tk0(k+ j)ψ−1

1 (−
√

DK )χ
−1( t̄)

(2π i)k+ jg(ψ−1
2 )
√

DK
j L(ψ1/Kχ

−1, 0).

4.2. Stabilization operators. We have the following “stabilization operators” act-
ing on normalized 00(N ′)-eigenforms F with character εF . Given a rational prime
` - N ′, let a` denote the eigenvalue of F under the Hecke operator T`, let (α`, β`) de-
note (some henceforth fixed ordering of) the algebraic numbers such that α`+β`=a`,
α`β` = `

k−1εF (`), and ord`(α`)≤ ord`(β`). Now define

F(q) 7→ F (`
+)(q) := F(q)−β`F(q`) ∈ Mk(00(N ′`), εF ),

F(q) 7→ F (`
−)(q) := F(q)−α`F(q`) ∈ Mk(00(N ′`), εF ),

F(q) 7→ F (`
0)(q) := F(q)− a`F(q`)+ εF (`)`

k−1 F(q`
2
) ∈ Mk(00(N ′`2), εF ).

Note that, for `1 6= `2, the stabilization operators F 7→ F (`
ε1
1 ) and F 7→ F (`

ε2
2 )

commute for any ε1, ε2 ∈ {+,−, 0}. Then we define, for integers S =
∏

i `
ei
i ,

ε, ε1, ε2 ∈ {+,−, 0},

F (S
ε)
:= F

∏
i (`

ε
i ), F (S

ε1
1 S

ε2
2 ) := F (S

ε1
1 ),(S

ε2
2 ).

These operators clearly extend to p-adic modular forms. On the p-adic modular
forms θ jEψ1,ψ2

k from Section 4.1, we explicitly have

θ jEψ1,ψ2,(`
+)

k (q):=δψ1=1, j=0L(ψ1, 1−k)(1−ψ2(`)`
k−1)+2

∞∑
n=1

n jσ
ψ1,ψ2,(`

+)

k−1 (n)qn

= θ jEψ1,ψ2
k (q)−ψ2(`)`

k−1+ jθ jEψ1,ψ2
k (q`),

θ jEψ1,ψ2,(`
−)

k (q) := δψ1=1, j=0L(ψ1, 1− k)(1−ψ2(`))+ 2
∞∑

n=1

n jσ
ψ1,ψ2,(`

−)

k−1 (n)qn

= θ jEψ1,ψ2
k (q)−ψ1(`)`

jθ jEψ1,ψ2
k (q`),

θ jEψ1,ψ2,(`
0)

k (q) := δψ1=1, j=0L(ψ1, 1− k)(1−ψ1(`)−ψ2(`)`
k−1
+ψ2(`

2)`k−1)

+ 2
∞∑

n=1

n jσ
ψ1,ψ2,(`

0)

k−1 (n)qn

= θ jEψ1,ψ2
k (q)− ` j (ψ1(`)+ψ2(`)`

k−1)θ jEψ1,ψ2
k (q`)

+ (ψ1ψ2)(`)`
k−1+2 jθ jE(q`

2
),
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where δψ=1, j=0 equals 1 if ψ is trivial and j = 0, and 0 otherwise, and

σ
ψ1,ψ2,(`

+)

k−1 (n) :=
∑

0<d | n
(d,`)=1

ψ1(n/d)ψ2(d)dk−1,

σ
ψ1,ψ2,(`

−)

k−1 (n) :=
∑

0<d | n
(n/d,`)=1

ψ1(n/d)ψ2(d)dk−1,

σ
ψ1,ψ2,(`

0)

k−1 (n) :=
∑

0<d | n
(n,`)=1

ψ1(n/d)ψ2(d)dk−1.

Let N ′ be as in Section 4.1, let N ′′ = N ′′
+

N ′′
−

N ′′0 be prime to N ′, and suppose
additionally that K satisfies the Heegner hypothesis with respect to N ′′ so that
every prime dividing N := N ′′N ′ is split in K . Let N = N′′N′, where N′ is as
in Section 4.1 and N′′ is some choice of integral ideal such that OK /N

′′
= Z/N ′′.

Write N as a product of (distinct) primes
∏
` | N v, where v | `; in other words, for

each ` | N , we can write

v = Z
b`+
√

DK

2
+Z`

for some b` ∈ Z such that b2
` ≡ DK (mod 4`).

For any integral primitive ideal a of OK coprime to N, recall the associated point

τaN =
baN +

√
DK

2aN
∈H+

such that (aN)−1
= ZτaN+Z. Note that, for v |N′′, where v | `, we have

v̄(aN)−1
=

(
a
∏
v′ 6=v

v′
)−1

= Z`
baN +

√
DK

2aN
+Z,

and hence

v̄−1 ? (aN ?C/OK )= C/(v̄(aN)−1)= C/(Z`τaN+Z).

In terms of the action of IN on CM triples (A′, t ′, ω′), for any F ∈Mk(00(N ), εF ),
we have

F(`τaN)= F(v̄−1 ?(C/(ZτaN+Z), t,2π idz))= F(v̄−1aN ?(C/OK , t,2π idz)),

F(`2τaN)= F(v̄−2 ?(C/(ZτaN+Z), t,2π idz))= F(v̄−2aN ?(C/OK , t,2π idz)).

Thus, for any normalized eigenform F , viewed as a p-adic modular form, recalling
our notation A0 = C/OK , t0 ∈ A0[N] from Section 3.4, and with ωcan as our
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“canonical” differential on Â0 under our fixed isomorphism i : Â0 −→
∼ Ĝm (see

Section 3.4), we have for ` - N ′

θ jF (`
+)(aN ? (A0, t0, ωcan))

= θ jF(aN?(A0, t0, ωcan))−β``
jθ jF(v̄−1aN?(A0, t0, ωcan)),

θ jF (`
−)(aN ? (A0, t0, ωcan))

= θ jF(aN?(A0, t0, ωcan))−α``
jθ jF(v̄−1aN?(A0, t0, ωcan)),

θ jF (`
0)(aN ? (A0, t0, ωcan))

= θ jF(aN ? (A0, t0, ωcan))− `
j a`θ jF(v̄−1aN ? (A0, t0, ωcan))

+ εF (`)`
k−1+2 jθ jF(v̄−2aN ? (A0, t0, ωcan)).

Choosing some set of representatives a prime to N, we thus have∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF (`

+)(a ? (A0, t0, ωcan))

=

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF(a ? (A0, t0, ωcan))

−β``
j
∑

[a]∈Cl(OK )

(χ j )
−1(a)θ jF(v̄−1a ? (A0, t0, ωcan))

= (1−β`(χ j )
−1(v̄)` j )

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF(a ? (A0, t0, ωcan)),

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF (`

−)(a ? (A0, t0, ωcan))

=

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF(a ? (A0, t0, ωcan))

−α``
j
∑

[a]∈Cl(OK )

(χ j )
−1(a)θ jF(v̄−1a ? (A0, t0, ωcan))

= (1−α`(χ j )
−1(v̄)` j )

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF(a ? (A0, t0, ωcan)),

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF (`

+)(a ? (A0, t0, ωcan))

=

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF(a ? (A0, t0, ωcan))

− ` j a`
∑

[a]∈Cl(OK )

(χ j )
−1(a)θ jF(v̄−1a ? (A0, t0, ωcan))

+ εF (`)`
k−1+2 j

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF(v̄−2a ? (A0, t0, ωcan))
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= (1− a`(χ j )
−1(v̄)` j

+ εF (`)(χ j )
−2(v̄)`k−1+2 j )

∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jF(a ? (A0, t0, ωcan)).

Thus, rewriting the definitions of E
ψ1,ψ2,((N ′′+)

+(N ′′−)
−(N ′′0 )

0)

k in terms of triples, and
using the above general identities for p-adic modular forms and induction, we have∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jE

ψ1,ψ2,((N ′′+)
+(N ′′−)

−(N ′′0 )
0)

k (a ? (A0, t0, ωcan))

=4χ (ψ1, ψ2, N+, N−, N0)
∑

[a]∈Cl(OK )

(χ j )
−1(a)θ jEψ1,ψ2

k (a ? (A0, t0, ωcan)),

where N+ = N ′′
+
· t/(u, t), N− = N ′′

−
· u/(u, t), N0 = N ′′0 · (u, t)2, and

4χ (ψ1, ψ2, N+, N−, N0)

=

∏
` | N+

(1− (ψ2/Kχ
−1)(v̄)`k−1)

∏
` | N−

(1− (ψ1/Kχ
−1)(v̄))

×

∏
` | N0

(1− (ψ2/Kχ
−1)(v̄)`k−1)(1− (ψ1/Kχ

−1)(v̄)).

Henceforth, let E (ψ1,ψ2,N+,N−,N0)

k := E
ψ1,ψ2,((N ′′+)

+(N ′′−)
−(N ′′0 )

0)

k . Now, using the above
calculation, Proposition 36, the fact that

ωcan =
�∞

�p
· 2π idz

(where �∞ and �p are the complex and p-adic periods defined in Section 3.4) and
part (3) of Theorem 21, we have:

Proposition 37. Let k ≥ 2 be an integer. Suppose χ is of infinity type (k+ j,− j)
and χ−k/2 has trivial central character and is of finite type (N, ψ1ψ2). Suppose
also that ψ1 and ψ2 are Dirichlet characters over Q with conductors u and t ,
respectively, such that ut = N and (ψ1ψ2)(−1)= (−1)k . Then∑
[a]∈Cl(OK )

(χ j )
−1(a)θ jE (ψ1,ψ2,N+,N−,N0)

k (a ? (A0, t0, ωcan))

=

(
�p

�∞

)k+2 j tk0(k+ j)ψ−1
1 (−

√
DK )χ

−1( t̄)

(2π i)k+ jg(ψ−1
2 )
√

DK
j

×4χ (ψ1, ψ2, N+, N−, N0)L(ψ1/Kχ
−1, 0),
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where

4χ (ψ1, ψ2, N+, N−, N0)

=

∏
` | N+

(1− (ψ2/Kχ
−1)(v̄)`k−1)

∏
` | N−

(1− (ψ1/Kχ
−1)(v̄))

∏
` | N0

(1− (ψ2/Kχ
−1)(v̄)`k−1)(1− (ψ1/Kχ

−1)(v̄)).

Finally, since p - N , note that the “p-depletion” operator [ of Section 3.2 coincides
with the ((p2)0)-stabilization operator on our family of Eisenstein series, i.e.,

(θ jE (ψ1,ψ2,N+,N−,N0)

k )[ = θ jE (ψ1,ψ2,N+,N−,p2N0)

k .

(Note that all the above stabilization operators on p-adic modular forms commute
with θ , so the above notation is unambiguous.)

4.3. Proof of main theorem.

Proof of Theorem 3. Suppose, as in our assumptions, that f ∈ Sk(00(N ), εf ) has
partial Eisenstein descent of type (ψ1, ψ2, N+, N−, N0) over M mod m, where M
is a p-adic field containing E f . Recall the field F ′ defined in Section 3.4, with p′

being the prime ideal of OF ′ above p determined by our embedding ip :Q ↪→Qp.
Thus,

θ j f (q)≡ θ jE (ψ1,ψ2,N+,N−,N0)

k (q) (mod mOF ′
p′

M),

viewed as p-adic modular forms for all j ≥ 1. Moreover,

θ j f [(q)≡ θ jE (ψ1,ψ2,N+,N−,p2N0)

k (q) (mod mOF ′
p′

M).

Henceforth, let E (N )k,ψ1,ψ2
= E (ψ1,ψ2,N+,N−,N0)

k and E (pN )
k,ψ1,ψ2

= E (ψ1,ψ2,N+,N−,p2N0)

k , and
recall our notation A0 = C/OK , t0 ∈ A0[N] (see Section 3.4). Since p being split
in K implies that the curves ip(a ? A0) are ordinary (viewed as curves over Cp), by
the congruence above and the q-expansion principle [Gouvêa 1988, Sections I.3.2
and I.3.5] we have∑
a∈Cl(OK )

(χ j )
−1(a)(θ j f )[(a ? (A0, t0, ωcan))

≡

∑
a∈Cl(OK )

(χ j )
−1(a)(θ j E (pN )

k,ψ1,ψ2
)(a ? (A0, t0, ωcan)) (mod mOF ′

p′
M).
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By assumption, εf equals ψ1ψ2 and χ is of finite type (N, εf )= (N, ψ1ψ2). Now
by Proposition 37, we have∑
a∈Cl(OK )

(χ j )
−1(a)(θ j E (pN )

k,ψ1,ψ2
)(a ? (A0, t0, ωcan))

=

(
�p

�∞

)k+2 j tk0(k+ j)ψ−1
1 (−

√
DK )χ

−1( t̄)

(2π i)k+ jg(ψ−1
2 )
√

DK
j

×4χ (ψ1, ψ2, N+, N−, p2N0)L(ψ1/Kχ
−1, 0),

where 4χ (ψ1, ψ2, N+, N−, p2N0) is defined as in Proposition 37.
Since χ is of finite type (N, εf ), it is unramified at p. Moreover, since p - uOK ,

ψ1/K is unramified at p. Hence, by [Katz 1978, 5.2.27 Lemma, 5.2.28], we have
Localp(ψ1/Kχ

−1)= 1 and Localp(ψ1/Kχ
−1N1−k

K )= 1.
Now using Theorems 24 and 27 with C = f(ψ1/Kχ

−1) = lcm(uOK , t), where
F= lcm(u, t), Fc = ū and I= 1, we can write

Lp( f, χ)

=

( ∑
a∈Cl(OK )

(χ j )
−1(a)(θ j f )[(a ? (A0, t0, ωcan))

)2

≡

( ∑
a∈Cl(OK )

(χ j )
−1(a)(θ jE (pN )

k,ψ1,ψ2
)(a ? (A0, t0, ωcan))

)2

=

((
�p

�∞

)k+2 j tk0(k+ j)ψ−1
1 (−

√
DK )χ

−1( t̄)

(2π i)k+ jg(ψ−1
2 )
√

DK
j

×4χ (ψ1, ψ2, N+, N−, p2N0)L(ψ1/Kχ
−1, 0)

)2

= ψ−1
1 (DK )

(
tkχ−1( t̄)

4g(ψ−1
2 )(2π i)k+2 j

4χ (ψ1, ψ2, N+, N−, N0)Lp(ψ1/Kχ
−1, 0)

)2

(mod mOF ′
p′

M).

The above congruence now extends by p-adic continuity from6
(2)
cc (N) to 6̂cc(N)

(with respect to the topology described in Section 3.4). Thus the congruence holds
on 6̂cc(N), and the theorem follows after setting4 :=4χ (ψ1, ψ2, N+, N−, N0). �

Proof of Theorem 7. In this more specialized situation, we have ψ1 = ψ
−1
2 = ψ

and u = t = |f(ψ)|. Thus ψ1ψ2 equals 1 and χ is of finite type (N, 1). Recall from
Bertolini, Darmon, and Prasanna’s p-adic Waldspurger formula (Theorem 25) that

Lp( f,N
−k/2
K )=

(
pk/2
− ap( f )+ pk/2−1

pk/20
( k

2

) )2(
AJF ′

p′
(1f (K ))(ω f ∧ω

k/2−1
A η

k/2−1
A )

)2
.
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The proof proceeds essentially by plugging χ =N
−k/2
K into Theorem 3. We have, by

Gross’s factorization formula (Theorem 28) applied to (ψω−k/2)0 (see Definition 6),

|f(ψ)|k/2

ψ(−
√

DK )g(ψ)
Lp(ψ/K N

k/2
K , 0)

=
〈|f(ψ)|〉k/2∏

` | f(ψ)(ψ
−1ωk/2)0,`(−

√
DK )ω

−k/2
` (`ord`(f(ψ)))g`(ψ)

Lp

(
(ψω−k/2)0/K ,

k
2

)

=
〈|f(ψ)|〉k/2∏

` | f(ψ)(ψ
−1ωk/2)0,`(−

√
DK )g`((ψω−k/2)0)

Lp

(
(ψω−k/2)0/K ,

k
2

)
= Lp

(
ψ0(εKω)

1−k/2,
k
2

)
Lp

(
ψ−1

0 (εKω)
k/2, 1−

k
2

)
.

Using the interpolation property of the Kubota–Leopoldt p-adic L-function, we have

Lp

(
ψ−1

0 (εKω)
k/2, 1−

k
2

)
=−(1− (ψ−1

0 ε
k/2
K )(p)pk/2−1)

2
k

Bk
2 ,ψ

−1
0 ε

k/2
K

=−(1−ψ−1
0 (p)pk/2−1)

2
k

Bk
2 ,ψ

−1
0 ε

k/2
K
,

where the last equality follows since p is split in K and so εK (p)= 1.
Suppose ψ0(εKω)

1−k/2
6= 1. In this case, since p2 - f(ψ0(εKω)

1−k/2) | p f , we
have by Corollary 5.13 of [Washington 1997] that

Lp

(
ψ0(εKω)

1−k/2,
k
2

)
≡ Lp(ψ0(εKω)

1−k/2, 0)

=−(1− (ψ0εK (εKω)
−k/2)(p))B1,ψ0εK (εKω)−k/2

=−B1,ψ0εK (εKω)−k/2 (mod p),

where the last equality holds since p | f(ψ0εK (εKω)
1−k/2). Note that this congruence

also holds mod λ for any prime λ | p.
Now suppose ψ0(εKω)

1−k/2
= 1 and k = 2, i.e., ψ0 = 1. From [Gross 1980,

p. 90], the Katz p-adic L-function at ψ0/K = 1/K has the special value

Lp(1/K , 0)=
4
|O×K |

p− 1
p

logp ᾱ = 2
p− 1

p
logp ᾱ,

where ᾱ ∈ OK such that (ᾱ) = p̄hK . (Recall that |O×K | = 2 since we assume that
DK <−4.) The statement now follows directly from Theorem 3. �

5. Concrete applications of the main theorem

In this section, we apply Theorem 7 to computations with algebraic cycles, in certain
instances verifying a weak form of the Beilinson–Bloch conjecture (as described
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in Section 2.2). In Section 5.5, we apply our results to the case of elliptic curves
with reducible mod-p Galois representation, in particular deriving criteria to show
that Heegner points on certain quadratic twists are nontorsion. In Section 5.6, we
use this criterion to show that for semistable curves with reducible mod-3 Galois
representation, a positive proportion of real quadratic twists have rank 1 and a
positive proportion of imaginary quadratic twists have rank 0.

5.1. Construction of newforms with Eisenstein descent of type (1, 1, 1, 1, 1).
We now give a procedure for constructing newforms f ∈ Sk(SL2(Z)) which have
Eisenstein descent of type (1, 1, 1, 1, 1).

Construction 38 (Eisenstein descent of type (1, 1, 1, 1, 1)). Fix an even integer
k ≥ 4 and a prime p | Bk . Recall the classical holomorphic Eisenstein series of
weight k:

Ek(q)=
ζ(1− k)

2
+

∞∑
n=1

σk−1(n)qn
=−

Bk

2k
+

∞∑
n=1

σk−1(n)qn.

(See Remark 32.) The Eisenstein series E4 and E6 generate Mk(SL2(Z))/Sk(SL2(Z))

as an algebra, and therefore if we normalize E4 and E6 to G4 = 240E4 and
G6 =−504E6 to have constant term 1, then we have a cuspform

fk := Ek +
Bk

2k
Ga

4 Gb
6 ∈ Sk(SL2(Z),Q)

for some a, b ∈ Z≥0 with k = 4a+ 6b.
Under our assumption p | Bk , we see immediately that fk ≡ Ek (mod p). How-

ever, there is no guarantee that fk is a newform, a problem we can remedy as follows.
Consider the Hecke algebra T⊂ EndZp(Sk(SL2(Z),Zp)) generated by the classical
Hecke operators T` at primes `. Since T is a finite torsion-free Zp-algebra, it is flat.
Minimal primes p of T correspond to Gal(Qp/Qp)-conjugacy classes of weight-k
eigenforms in Sk(SL2(Z)), which also correspond to Zp-algebra homomorphisms
φ : T→ Qp (with ker(φ) = p), which in turn correspond to eigenforms fφ such
that T` fφ = φ(T`) fφ .

Now write fk(q) =
∑
∞

n=1 anqn so that an ≡ σk−1(n) (mod p), and define a
homomorphism ϕ : T→ Fp given by ϕ(T`)= a` ≡ 1+ `k−1 (mod p). Since Fp is
a field, m := ker(ϕ) is maximal, and there exists a minimal prime p⊂m above p
since T is flat over Zp. Then the minimal prime p corresponds to a map φ :T→Qp

with ker(φ)= p that satisfies φ ≡ ϕ (mod p). Let F = Frac(φ(T)) denote the field
of fractions of φ(T), and note that φ(T)⊂OF ; since T is finite over Zp, F is finite
over Qp. Now let λ denote the maximal ideal of OF . Since T` ≡ 1+`k−1 (mod m)

(because ϕ : T/m −→∼ Fp), we have φ(T`) ≡ 1+ `k−1 (mod φ(m)). Hence since
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λ |φ(m), the modular form fφ corresponding to φ satisfies

fφ(q)≡
∞∑

n=1

σk−1(n)qn (mod λ)

and is our desired newform.

Remark 39. The last paragraph of Construction 38 is commonly known as the
“Deligne–Serre lifting lemma” (see [Deligne and Serre 1974, Lemme 6.11]).

5.2. Construction of newforms with Eisenstein descent of type (1,1,N+,N−,N0).

Construction 40 (Eisenstein descent of type (1, 1, N+, N−, N0)). We can easily use
the normalized newform with Eisenstein descent of type (1, 1, 1, 1, 1) obtained from
Construction 38 to produce a newform of descent of type (1, 1, N+, N−, N0). We ap-
ply certain stabilization operators, as in Section 4.2. Suppose we are given a normal-
ized newform f ∈ Sk(01(N ′)) with Eisenstein descent of type (1, 1, N ′

+
, N ′
−
, N ′0)

mod λ. Applying the (N++ N−− N 0
0 )-stabilization operator, the resulting newform

f (N
+

+ N−− N 0
0 ) ∈ Sk(01(N ′)∩00(N )) is a normalized newform which has Eisenstein

descent of type (1, 1, N ′
+

N+, N ′
−

N−, N ′0 N0) mod λ.
Applying the above (N++ N−− N 0

0 )-stabilization operator to fφ ∈ Sk(SL2(Z)) from
Construction 38, we have

f
(N++ N−− N 0

0 )

φ (q)≡
∞∑

n=1

σ
(N )
k−1(n)q

n (mod λ),

where σ (N )k−1 is defined as in Remark 32. In other words, f
(N++ N−− N 0

0 )

φ has Eisenstein
descent of type (1, 1, N+, N−, N0) mod λ.

Remark 41. We could similarly produce examples of newforms with Eisenstein
descent of type (ψ1, ψ2, N+, N−, N0) by starting out with the Eisenstein series
Eψ1,ψ2

k in Construction 38 and applying appropriate stabilization operators as in
Construction 40.

5.3. Application to algebraic cycles. We now calculate an explicit example to
demonstrate the main theorem. We first use Construction 38 to construct an ap-
propriate newform with Eisenstein descent of type (1, 1, 1, 1, 1). We thus look for
a positive integer k, a rational prime p, a real quadratic extension L/Q, and an
imaginary quadratic extension K/Q such that p splits in K and such that p | Bk ,
p - Bk

2 ,εLεK
and p - B1,εLω−k/2 . To this end, consider k = 18, p = 43867, L =Q and

K =Q(
√
−5). Then 43867 splits in K , and p| 43867

798 = B18 = Bk . Furthermore,

B9,εK =−5444415378≡ 5726 (mod 43867),

and so p - Bk
2 ,εL·K

= Bk
2 ,εK

.
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Remark 42. For certain values of k, we can simplify the above formula even
further. Let [m] denote the smallest nonnegative representative of the residue class
mod (p− 1) of an integer m. In the case that 2 ≤ [−k/2] ≤ p− 4, by standard
congruence theorems (see [Washington 1997, Chapter 5.3], for example), we have

B1,ω[−k/2] ≡
B[−k/2]+1

[−k/2] + 1
(mod p)

(and hence this congruence also holds mod λ|p).

Hence, by Remark 42, we have

B1,ω−9 ≡
B43858

43858
≡ 11867 (mod 43867),

and so p - B1,εLω−k/2 = B1,ω−9 . Hence, applying Construction 38, we get a newform
f18 ∈ S18(SL2(Z)) such that

f18(q)≡
∞∑

n=1

σ17(n)qn (mod λ)

for some prime ideal λ | p of a finite extension over Qp. Note that we can apply
the (N++ N−− N 0

0 )-stabilization operator of Construction 40 to obtain a newform
f (N )18 of weight 18 which has Eisenstein descent of type (1, 1, N+, N−, N0) mod λ.
Choose (N+, N−, N0)= (7, 1, 1). Then 7 splits in K =Q(

√
−5). Furthermore,

4(1, 1, 7, 1, 1)= 1− 78
≡ 25644 (mod 43867),

and thus 4(1, 1, 7, 1, 1) ∈Q is not congruent to 0 (mod λ).
Let F/HN/K be in situation (S) as defined in Section 2.2. Applying Theorem 7,

we determine the nontriviality of the associated generalized Heegner cycle

ε( f18,N
−8
K )/F

1(N−8
K ) ∈ ε( f18,N

−8
K )/F

CH17(X16)0,E f18
(F).

Thus we have constructed an algebraic cycle with nontrivial ( f18,N−8
K )-isotypic

component, whose existence is predicted by the Beilinson–Bloch conjecture since
by the Heegner hypothesis we have L( f18,N8

K , 0)= 0. (See Sections 2.2 and 3.4
for further details.)

5.4. Application to the Ramanujan∆ function. Recall the Ramanujan∆ function,
which is a weight-12 normalized newform of level 1 with q-expansion at∞ given by

∆(q)=
∑
n≥1

τ(n)qn.
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It is well-known that τ satisfies the congruence τ(n)≡ σ11(n) (mod 691), and so,
for any j ≥ 1 and any quadratic Dirichlet character ψ , we have

(θ j∆⊗ψ)(q)≡ (θ jE12⊗ψ)(q) (mod 691),

i.e., ∆⊗ψ has partial Eisenstein descent over Qp of type (ψ,ψ, 1, 1, 1) at 691.
Choosing an auxiliary imaginary quadratic field K satisfying Assumptions 1 with
respect to (681,∆⊗ψ) and applying Theorem 7, we get:

Theorem 43.(
6916
−ψ(691)τ (691)+ 6915

6916 · 5!

)2(
AJF ′

p′
(1∆⊗ψ(N

−5
K ))(ω∆ ∧ω

5
Aη

5
A)
)2

≡
(B6,ψ0 B1,ψ0εKω−6)2

576
(mod 691OF ′),

where ψ0 is defined as in Definition 6.

Corollary 44. Let F/HN/K be in situation (S) as defined in Section 2.2. Sup-
pose ψ is a quadratic character and K is an imaginary quadratic field with odd
discriminant DK <−4 such that

(1) 691 - f(ψ),
(2) each prime factor of 691 · f(ψ) splits in K ,

(3) 691 - B6,ψ0 B1,ψ0εKω−6 .

Then
ε(∆⊗ψ,N−5

K )/F
1∆⊗ψ(N

−5
K ) ∈ ε(∆⊗ψ,N−5

K )/F
CH11(X10)0,Q(F)

is nontrivial.

To elucidate this result, we include the following table exhibiting a few values
of quadratic characters ψ over Q and imaginary quadratic fields K for which
Theorem 43 implies the conclusion of Corollary 44:

Kψ f(ψ) K B6,ψ0 B1,ψ0εKω−6 (mod 691)

Q(
√

3) 12 Q(
√
−23) 583

Q(
√

3) 12 Q(
√
−95) 126

Q(
√

13) 13 Q(
√
−10) 583

Q(
√
−7) −7 Q(

√
−10) 176

5.5. Application to elliptic curves. We now focus on the case where fE ∈ S2(00(N ))
is the weight-2 normalized newform associated with an elliptic curve E/Q. If E[p]
is reducible, by Theorem 35, fE has Eisenstein descent over Qp mod p. We now
prove our main application to elliptic curves, which is Theorem 13.
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Proof of Theorem 13. Recall that fE determines an invariant differential ω fE =

2π i fE(z)dz ∈�1
X1(N )/Q. Let 8E : X1(N )� E be a modular parametrization (i.e.,

the Eichler–Shimura abelian variety quotient 8fE : X1(N )� AfE , postcomposed
with an appropriate isogeny) and let ωE ∈�

1
E/Q be an invariant differential chosen

so that 8∗EωE = ω fE .
By Theorems 35 and 7 with k = 2,(

1− ap + p
p

)2

log2
ωE

PE(K )=
(

1− ap + p
p

)2

log2
ω fE

P(K )

is congruent to

42

4

(
1
2
(1−ψ−1(p))B1,ψ−1

0 εK
B1,ψ0ω−1

)2

(mod pOKp)

if ψ 6= 1 and
42

4

(
p− 1

p
logp ᾱ

)2

(mod pOKp)

if ψ = 1, where ψ0 is defined as in Definition 6 and where

4=
∏
` | N+

(1−ψ−1(`))
∏
` | N−

(
1−

ψ(`)

`

) ∏
` | N0

(1−ψ−1(`))

(
1−

ψ(`)

`

)
.

(Note that our congruence holds mod pOKp because both sides of the congruence
are defined over Kp in this situation.)

Our hypotheses on (E, p, K ) and part (2) of Theorem 34 (with k= 2) ensure that
none of the terms on the right-hand side of the above congruences vanish mod p,
and hence logωE

PE(K ) 6= 0, i.e., PE(K ) is nontorsion. �

Remark 45. Suppose (E, p) is as in the statement of Theorem 13, and for simplicity
suppose ψ is even and nontrivial. Thus, in particular E[p](Q)= 0. We will show
(Theorem 54) that there always exists an imaginary quadratic K satisfying the
appropriate congruence conditions, so that the theorem gives rankZ E(K )= 1. In
particular, this implies that we should be able to see that rankZ E(Q)≤ 1 a priori
from the congruence conditions on (E, p).

Indeed, one can show that rankZ/p Selp(E/Q)≤1 (which implies rankZ E(Q)≤1)
through purely algebraic methods. Using standard techniques, one can show that the
congruence conditions on (N+, N−, N0) imply Selp(E/Q) ⊂ H 1(Q, E[p]; {p}).
(Here, for Gal(Q/Q)-module M and a finite set 6 of places of Q, H 1(Q,M;6)
denotes the subgroup of H 1(Q,M) consisting of classes unramified outside6.) See,
for example, [Li 2014, Section 2.2] for the case p= 3 and E semistable; the case for
general p > 2 and general E is completely analogous. The hypothesis p - B1,ψω−1

(which is equivalent to p - Lp(ψ, 1) since ψ 6= 1 and p - f(ψ)) implies, via the main
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theorem of Iwasawa theory over Q and standard Selmer group control theorems, that
H 1(Q, Fp(ψ); {p}) = 0. Since H 1(Q, Fp(ψ);∅) ⊂ H 1(Q, Fp(ψ); {p}), we have
H 1(Q, Fp(ψ);∅) = 0, which in turn implies that H 1(Q, Fp(ψ

−1ω); {p}) = Z/p
(see, for example, loc. cit. Proposition 2.13). Now if Fp(ψ) ⊂ E[p], from the
standard long exact sequence of cohomology (see Section 2.3 of loc. cit., for
example), one obtains a map φ : Selp(E/Q) → H 1(Q, Fp(ψ

−1ω)) such that
ker(φ) ⊂ H 1(Q, Fp(ψ); {p}) = 0 and im(φ) ⊂ H 1(Q, Fp(ψ

−1ω); {p}) = Z/p.
Thus we get Selp(E/Q) ⊂ im(φ) ⊂ H 1(Q, Fp(ψ

−1ω); {p}) = Z/p. If, on the
other hand, Fp(ψ

−1ω)⊂ E[p], one obtains φ : Selp(E/Q)→ H 1(Q, Fp(ψ)) with
ker(φ)⊂H 1(Q, Fp(ψ

−1ω); {p})=Z/p and im(φ)⊂H 1(Q, Fp(ψ); {p})=0. Thus
we get Selp(E/Q)⊂ ker(φ)⊂ H 1(Q, Fp(ψ

−1ω); {p})= Z/p.

Remark 46. Since the congruence in the proof of Theorem 13 comes from p-adic
interpolation of p-adically integral period sums, we should be able to see a priori
that both sides of the congruence are p-adically integral. This is self-evident for the
right-hand side, and also a priori true for the left-hand side as follows. Note that
since p - N , we have p+ 1− ap = |Ẽ(Fp)| by the Eichler–Shimura relation. Let
Ê denote the formal group of E , so that Ê(pOKp) has index |Ẽ(Fp)| in E(Kp).
(Recall that p is the previously fixed prime above p determined by our embedding
K ↪→Qp.) Then [1− ap + p]PE(K )= [|Ẽ(Fp)|]PE(K ) ∈ Ê(pOKp).

Suppose for the moment that X1(N ) � E is optimal (i.e., E is the strong
Weil curve in its isogeny class). Well-known results due to Mazur [1978] on
the Manin constant c(E) imply that if ` | c(E), then `2

| 4N . Thus for p odd
of good reduction, we have p - c(E). Thus letting logE denote the canonical
formal logarithm on E (i.e., the formal logarithm arising from the unique nor-
malized invariant differential on E), we have logωE

T = c(E)−1 logE T , meaning
our normalization of the formal logarithm does not change the p-divisibility on
the formal group. That is, logωE

Ê(pOKp)⊂ pOKp . Thus by the previous paragraph,
((1− ap + p)/p) logωE

PE(K ) is p-adically integral.
For E nonoptimal, the choice of modular parametrization might change the nor-

malization of the formal logarithm, since we are postcomposing the Eichler–Shimura
projection with a Q-isogeny which does not necessarily preserve normalizations
of the formal logarithm. This can still be shown to not affect p-adic integrality of
logωE

on Ê(pOKp).

Remark 47. Suppose that (E, p, K ) is as in the hypotheses of Theorem 13. One
can show that logωE

PE(K )≡ 0 (mod p) as follows. Let F = K (µp), and choose
a prime π | p of F ; note that p is totally ramified in K (µp), so that OFπ /π

∼= Fp

and ordπ (p)= p− 1. If PK (E) is torsion, then logωE
PE(K )= 0 by properties of

the formal logarithm (see [Silverman 2009, Chapter 4]), so assume that PE(K ) is
nontorsion. Supposeψ 6=1. Then |Ẽ(Fp)|−(1+ p)=−ap≡−ψ(p) 6=−1 (mod p)
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implies |Ẽ(Fp)| 6≡ 0 (mod p). Therefore, Ê(πOFπ ) has index prime to p in E(Fπ ),
and so logωE

E(Fπ )⊂ πOFπ , and logωE
PE(K ) ∈ pOKp .

Now suppose ψ = 1, so that |Ẽ(Fp)|− (1+ p)=−ap ≡−ψ(p)=−1 (mod p),
and so |Ẽ(Fp)| ≡ 0 (mod p). Moreover, p is ordinary good reduction and so
|Ẽ(F)[p]| = |Ẽ(Fp)| = p implies p | |Ẽ(Fp)|. Then, by Theorem 35, we have
E[p] = E(F)[p], and so the exact sequence

0→ Ê(πOFπ )→ E(Fπ )→ Ẽ(Fp)→ 0

splits, i.e., E(Fπ ) = Ê(πOFπ )⊕ Ẽ(Fp), and moreover Ẽ(Fp) ⊂ E(Fπ )tor. (The
torsion of E(Fπ ) that is outside of p injects into Ẽ(Fp), and Ẽ(Fp)[p]⊂ E(Fπ )[p]).)
Thus since logωE

Ê(πOFπ)⊂πOFπ and logωE
Ẽ(Fp)=0, we have logωE

PE(K)∈πOFπ .
Now since PE(K ) ∈ E(K )⊂ E(Kp), we have logωE

PE(K ) ∈ Kp ∩πOFπ = pOKp .

Remark 48. While the proof of Theorem 13 accounts for the case ψ = 1, it gives
no new information since the left side of the relevant special value congruence
is always 0 (mod p): Remark 47 shows that logωE

PE(K )≡ 0 (mod p), and ap ≡

ψ(p) = 1 (mod p) implies that (1− ap + p)/p is a unit in OCp . Note that this
forces 4(1, Nsplit, Nnonsplit, Nadd)≡ 0 (mod p).

In fact, if ψ = 1, one can show that, for any elliptic curve, Nsplit Nadd 6= 1 in the
following way: assume Nadd = 1, so that N is squarefree. A theorem of Ribet then
shows that Nsplit 6= 1 (see the Ph.D. thesis of Hwajong Yoo [2015, Theorem 2.2] and
the ensuing remark therein). Thus if ψ = 1, we have4(1, Nsplit, Nnonsplit, Nadd)= 0.

Whenψ 6=1, we have ap≡ψ(p) 6=1 (mod p), and so the factor of (1−ap+p)/p
is congruent to (unit)/p (mod p), thus canceling out a p-divisibility of logωE

PE(K )
in the special value congruence.

Remark 49. Suppose we are in the situation of Theorem 13, so in particular p - N
is a good prime which is split in K . Let $ be a local uniformizer at p. (Recall
that p is the prime above p determining the embedding K ↪→ Qp.) Then as
1− ap+ p = |Ẽ(Fp)|, we have that P := [1− ap+ p]PE(K ) belongs to the formal
group Ê(pOKp). One can show that logE P ∈$O×Kp

= pO×Kp
if and only if the image

of P in E(Kp)/pE(Kp) is not in the image of E(Kp)[p] as follows. If P is not in
the image of E(Kp)[p] in E(Kp)/pE(Kp), then suppose logE P 6∈ $O×Kp

. Since
P ∈ Ê(pOKp), we know that P is either torsion (i.e., logE P = 0) or P ∈ p2OKp

(i.e., logE P ∈ p2OKp). However, in the first case this implies P ∈ E(Kp)[p] (since
Ê(pOKp) has no p-torsion) and in the second it implies P ∈ Ê(p2OKp); thus P
is p-divisible. Therefore, P ∈ Ê(pOKp)+ pE(Kp), a contradiction. Conversely,
if logE P ∈ $O×Kp

, then we have P 6∈ E(Kp)[p] + pE(Kp); otherwise, we have
P ∈ E(Kp)[p] + pÊ(pOKp) (since a priori P ∈ Ê(pOKp)); thus logE P ∈ p2OKp ,
a contradiction.
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Thus the nonvanishing results of logE P mod p provided by Theorem 13 give
information on local p-divisibility of P (and thus also of PE(K )). Note that if
p≥ 3, then Ê(pOKp)[p] = 0, and so E(Kp)[p] ↪→ Ẽ(Fp)[p]. In particular, if p is of
supersingular reduction, then Ẽ(Fp)[p] = 0, so E(Kp)[p] = 0 and the nonvanishing
of logE P mod p is equivalent to P having nontrivial image in E(Kp)/pE(Kp), i.e.,
the condition that P not be p-divisible in E(Kp).

For any elliptic curve E over Q, let w(E) denote the global root number, which
factors as a product of local root numbers

w(E)= w∞(E)
∏
`<∞

w`(E).

Proposition 50. Suppose that (E, p) is as in Theorem 13 and that ψ is a quadratic
character. If either

(1) p ≥ 5, or

(2) E = E ′⊗ψ for some semistable elliptic curve E ′ of conductor coprime to f(ψ),

then w(E) = −ψ(−1). Thus, rankZ E(Q) = 1
2(1+ψ(−1)), and rankZ EK (Q) =

1
2(1−ψ(−1)) for any imaginary quadratic K as in Theorem 13.

Proof. By our assumptions in the statement of Theorem 13, |f(ψ)|2 | Nadd and
Nsplit = 1. By standard properties of the root number (see [Dokchitser 2013,
Section 3.4]), we have

(1) if ` ‖ N (i.e., ` | Nnonsplit), then w`(E)= 1,

(2) w∞(E)=−1.

Hence,
w(E)=−

∏
` | Nadd

w`(E).

Suppose first that (1) in the statement of the proposition holds, i.e., p ≥ 5. By
Theorem 34, ρ̄ fE

∼= Fp⊕Fp(ω). Hence ρ̄ fE
∼= Fp(ψ)⊕Fp(ψ

−1ω) and thus E admits
a degree p isogeny φ : E→ E ′. Since p ≥ 5, by [Dokchitser 2013, Theorem 3.25],
for ` | Nadd we have

w`(E)= (−1, F/Q`),

where F :=Q` (coordinates of points in ker(φ)), and where ( · , F/Q`) is the norm
residue symbol. By our assumptions, we see that F = Q`(µ2p,

√
ψ(−1)|f(ψ)|),

which is ramified only if ` | pf(ψ). Thus Q`(µ2p)/Q` is an unramified extension.
Thus, by class field theory, (−1, F/Q`)= (−1,Q`(

√
ψ(−1)|f(ψ)|)/Q`)=ψ`(−1),

and so w`(E)= ψ`(−1). Hence, in all, we have

w(E)=−
∏
` | Nadd

w`(E)=−
∏
` | Nadd

ψ`(−1)=−ψ(−1),
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where the last equality follows since f(ψ) | Nadd.
Now suppose that (2) in the statement of the proposition holds. Let N ′ denote the

conductor of E ′. By the computations of [Balsam 2014, Proposition 1] describing
the changes of local root numbers under quadratic twists,

(1) if ` - N ′f(ψ) then w`(E)= 1,

(2) if ` | N ′ (so that ` - f(ψ)) then w`(E)= w`(E ′)ψ`(`)=−a`(E ′)ψ`(`),

(3) if ` | f(ψ) (so that ` - N ′) then w`(E)= w`(E ′)ψ`(−1)= ψ`(−1).

Hence by our assumptions in the statement of Theorem 13 and Remark 15, we
have w(E) = −ψ(−1)

∏
` | N ′(−a`(E ′)ψ`(`)) = −ψ(−1). Putting this together,

we compute w(E)=−ψ(−1).
Now, by Theorem 13 and parity considerations, we immediately get rankZ E(Q)=

1
2(1+ψ(−1)) and rankZ EK (Q)=

1
2(1−ψ(−1)) for any K as in Theorem 13. �

5.6. Calculating ranks in positive density subfamilies of quadratic twists. In the
case p = 3, the Teichmüller character ω is quadratic and is in fact the character
associated with the imaginary quadratic field Q(

√
−3). Thus we have (using

B1,ψω−1 =−L(ψω−1, 0), the functional equation, and the class number formula),

B1,ψω−1 = 2
hKψ ·Q(

√
−3)∣∣O×

Kψ ·Q(
√
−3)

∣∣ .
Hence our nondivisibility criterion involving Bernoulli numbers in Theorem 13
reduces to the non-3-divisibility of the class numbers of a pair of imaginary quadratic
fields, and is thus amenable to class number 3-divisibility results in the tradition of
[Davenport and Heilbronn 1971].

For the remainder of this section, suppose p = 3 and suppose we are given
E/Q of conductor N = Nsplit Nnonsplit Nadd such that E[3] is reducible of type
(1, 1, Nsplit, Nnonsplit, Nadd). Let L = Kψ , and furthermore suppose that L satisfies
the congruence conditions

(1) 3 is inert in L ,

(2) 3 - hL·Q(
√
−3),

(3) if ` | Nsplit, then ` is inert or ramified in L ,

(4) if ` | Nnonsplit, then ` is either split or ramified in L ,

(5) if ` | Nadd, then ` is either inert in L and ` 6≡ 2 (mod 3), or ` is ramified in L .

Then we can apply Theorem 13 and Proposition 50 to the curve E ⊗ψ (using the
fact that a`(E⊗ψ)=ψ(`)a`(E), so that, by conditions (2) and (3), a`(E⊗ψ)=−1
for ` | Nsplit Nnonsplit), thus obtaining rankZ(E ⊗ ψ)(Q) = 1

2(1+ ψ(−1)). Using
results of [Nakagawa and Horie 1988] and [Taya 2000] regarding 3-divisibilities
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of class numbers of quadratic fields, we can produce a positive proportion of real
quadratic L as above, thus showing that a positive proportion of quadratic twists
of E have rank 1

2(1+ψ(−1)) over Q.
Using these same class number divisibility results, we can also produce a positive

proportion of imaginary quadratic K such that

(1) 3 is split in K ,

(2) 3 - hL·K ,

(3) K satisfies the Heegner hypothesis with respect to E ,

and thus, using Theorem 13 and Proposition 50, we can show that a positive pro-
portion of imaginary quadratic twists EK of E have rankZ EK (Q)=

1
2(1−ψ(−1)).

To this end, let us recall the result of Horie and Nakagawa. For any x ≥ 0, let
K+(x) denote the set of real quadratic fields k with fundamental discriminant Dk< x
and K−(x) the set of imaginary quadratic fields k with fundamental discriminant
|Dk |< x . Set

K+(x,m,M) := {k ∈ K+(x) : Dk ≡ m (mod M)},

K−(x,m,M) := {k ∈ K−(x) : Dk ≡ m (mod M)}.

Moreover, for a quadratic field k, we denote by hk[3] the number of ideal classes
of k whose cubes are principal (i.e., the order of 3-torsion of the ideal class group).

Theorem 51 [Nakagawa and Horie 1988]. Suppose that m and M are positive
integers such that if ` is an odd prime number dividing (m,M), then `2 divides M
but not m. Further, if M is even, suppose that

(1) 4 |M and m ≡ 1 (mod 4), or

(2) 16 |M and m ≡ 8 or 12 (mod 16).

Then ∑
k∈K+(x,m,M)

hk[3] ∼ 4
3 |K

+(x,m,M)| (x→∞),

∑
k∈K−(x,m,M)

hk[3] ∼ 2|K−(x,m,M)| (x→∞).

Furthermore,

|K+(x,m,M)| ∼ |K−(x,m,M)| ∼
3x

π28(M)

∏
` |M

q
`+ 1

(x→∞).

Here f (x) ∼ g(x) (x →∞) means that limx→∞ f (x)/g(x) = 1, ` ranges over
primes dividing M , q = 4 if `= 2, and q = ` otherwise.
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Now set

K+
∗
(x,m,M) := {k ∈ K+(x,m,M) : hk[3] = 1},

K−
∗
(x,m,M) := {k ∈ K−(x,m,M) : hk[3] = 1}.

Taya’s argument [2000] for estimating |K±
∗
(x,m,M)| goes as follows. Since

hk[3] ≥ 3 if hk[3] 6= 1, we have the bound

|K±
∗
(x,m,M)| + 3(|K±(x,m,M)| − |K±

∗
(x,m,M)|)≤

∑
k∈K±(x,m,M)

hk[3].

Hence,
|K±
∗
(x,m,M)| ≥ 3

2
|K±(x,m,M)| − 1

2

∑
k∈K±(x,m,M)

hk[3].

Now, by Theorem 51, we have

3
2
|K+(x,m,M)| − 1

2

∑
k∈K+(x,m,M)

hk[3] ∼
5
6
|K+(x,m,M)| (x→∞),

3
2
|K−(x,m,M)| − 1

2

∑
k∈K−(x,m,M)

hk[3] ∼
1
2
|K−(x,m,M)| (x→∞),

and hence,

lim
x→∞

|K+
∗
(x,m,M)|

x
≥

5
2π28(M)

∏
` |M

q
`+ 1

,

lim
x→∞

|K−
∗
(x,m,M)|

x
≥

3
2π28(M)

∏
` |M

q
`+ 1

.

Thus, we have:

Proposition 52. Suppose m and M satisfy the conditions of Theorem 51. Then

lim
x→∞

|K+
∗
(x,m,M)|

|K+(x, 1, 1)|
≥

5
68(M)

∏
` |M

q
`+ 1

,

lim
x→∞

|K−
∗
(x,m,M)|

|K−(x, 1, 1)|
≥

1
28(M)

∏
` |M

q
`+ 1

,

where q = 4 if ` = 2 and q = ` otherwise. In particular, the set of real (resp.
imaginary) quadratic fields k such that Dk ≡ m (mod M) and 3 - hk has positive
density in the set of all real (resp. imaginary) quadratic fields.

Proof. This follows from the above asymptotic estimates and the fact that we have
|K±(x, 1, 1)| ∼ 3x/π2 by Theorem 51. �

We are now ready to prove our positive density results. For a quadratic field L ,
let EL denote the quadratic twist of E by L .
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Theorem 53. Suppose (Nsplit, Nnonsplit, Nadd) is a triple of pairwise coprime inte-
gers such that Nsplit Nnonsplit is squarefree, Nadd is squarefull and Nsplit Nnonsplit Nadd

equals N. If 2 - N let M ′ = N , if 2 ‖ N let M ′ = lcm(N , 8), and if 4 | N let
M ′ = lcm(N , 16). Then a proportion of at least

1
128(M ′)

∏
` | Nsplit Nnonsplit

` odd

1
2(`− 1)

∏
` | Nadd
` odd

`≡1 (mod 3)

1
2(`+ 2)(`− 1)

∏
` | Nadd
` odd

`≡2 (mod 3)

(`− 1)
∏

4 | Nadd

2
∏
` | 3M ′

q
`+ 1

real quadratic extensions L/Q satisfy

(1) 3 is inert in L ,

(2) 3 - hL·Q(
√
−3),

(3) ` | Nsplit implies ` is inert in L ,

(4) ` | Nnonsplit implies ` is split in L ,

(5) ` | Nadd implies ` is inert in L and ` 6≡ 2 (mod 3), or ` is ramified in L ,

(6) 4 | N implies DL ≡ 8 or 12 (mod 16).

Moreover, a proportion of at least

1
48(M ′)

∏
` | Nsplit Nnonsplit

` odd

1
2(`− 1)

∏
` | Nadd
` odd

`≡1 (mod 3)

1
2(`+ 2)(`− 1)

∏
` | Nadd
` odd

`≡2 (mod 3)

(`− 1)
∏

4 | Nadd

2
∏
` | 3M ′

q
`+ 1

imaginary quadratic extensions L/Q satisfy

(1) 3 is inert in L ,

(2) 3 - hL ,

(3) ` | Nsplit implies ` is inert in L ,

(4) ` | Nnonsplit implies ` is split in L ,

(5) ` | Nadd implies ` is inert in L and ` 6≡ 2 (mod 3), or ` is ramified in L ,

(6) 4 | N implies DL ≡ 8 or 12 (mod 16).

(Here, again, q = 4 for `= 2, and q = ` for odd primes `.)

Proof. We seek to apply Proposition 52. Let M = 9N if 2 - N , let M = 9 lcm(N , 8)
if 2 ‖ N , and let M = 9 lcm(N , 16) if 4 | N . Using the Chinese remainder theorem,
choose a positive integer m such that

(1) m ≡ 3 (mod 9),

(2) ` odd prime, ` | Nsplit =⇒ m ≡−3[quadratic nonresidue unit] (mod `),

(3) 2 | Nsplit =⇒ m ≡ 1 (mod 8),
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(4) ` odd prime, ` | Nnonsplit =⇒ m ≡−3[quadratic residue unit] (mod `),

(5) 2 | Nnonsplit =⇒ m ≡ 5 (mod 8),

(6) ` odd prime, ` | Nadd, `≡ 1 (mod 3)=⇒ m ≡−3[quadratic nonresidue unit]
(mod `) or m ≡ 0 (mod `) and m 6≡ 0 (mod `2),

(7) ` odd prime, ` | Nadd, `≡ 2 (mod 3)=⇒m ≡ 0 (mod `) and m 6≡ 0 (mod `2),

(8) 4 | Nadd =⇒ m ≡ 8 or 12 (mod 16).

Suppose L is any real quadratic field with fundamental discriminant DL and
−3DL ≡ m (mod M). Then the above congruence conditions on m along with our
assumptions imply

(1) 3 is inert in L ,

(2) ` prime, ` | Nsplit =⇒ ` is inert in L ,

(3) ` prime, ` | Nnonsplit =⇒ ` is split in L ,

(4) ` odd prime, ` | Nadd, `≡ 1 (mod 3)=⇒ ` is inert or ramified in L ,

(5) ` odd prime, ` | Nadd, `≡ 2 (mod 3)=⇒ ` is ramified in L ,

(6) 4 | Nadd =⇒ 2 is ramified in L ,

(7) if 2 ‖ N , then 4 |M and m ≡ 1 (mod 4),

(8) if 4 | N , then 16 |M and m ≡ 8 or 12 (mod 16).

Thus for real quadratic L such that DL·Q(
√
−3) =−3DL ≡ m (mod M), L satisfies

all the desired congruence conditions except for possibly 3 - hL·Q(
√
−3). Moreover,

the congruence conditions above imply that m and M are valid positive integers for
Theorem 51 (in particular implying that 4 | DL if 4 | N ). (Note that in congruence
conditions (2) and (3) above, we do not allow m ≡ 0 (mod `), i.e., ` ramified
in L , because the resulting pair m and M would violate the auxiliary hypothesis of
Theorem 51.) Thus, by Proposition 52,

lim
x→∞

|K−
∗
(x,m,M)|

|K−(x, 1, 1)|
≥

1
28(M)

∏
` |M

q
`+ 1

,

so a positive proportion of real quadratic L satisfy DL·Q(
√
−3)=−3DL≡m (mod M)

and 3 - hL·Q(
√
−3). Moreover, noticing that the congruence conditions (1)–(6) on m

above are independent (again by the Chinese remainder theorem), we have∏
` | Nsplit
` odd

1
2(`− 1)

∏
` | Nnonsplit
` odd

1
2(`− 1)

∏
` | Nadd
` odd

`≡1 (mod 3)

1
2(`+ 2)(`− 1)

∏
` | Nadd
` odd

`≡2 (mod 3)

(`− 1)
∏

4 | Nadd

2
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valid choices of residue classes for m mod M . Combining all the above and
summing over each valid residue class m mod M , we immediately obtain our lower
bound for the proportion of valid L (with M = 9M ′).

For the second case (concerning imaginary quadratic fields), the asserted state-
ment follows from taking M as above, then choosing a positive integer m such that

(1) m ≡−1 (mod 3),

(2) ` odd prime, ` | Nsplit =⇒ m ≡ [quadratic nonresidue unit] (mod `),

(3) 2 | Nsplit =⇒ m ≡ 5 (mod 8),

(4) ` odd prime, ` | Nnonsplit =⇒ m ≡ [quadratic residue unit] (mod `),

(5) 2 | Nnonsplit =⇒ m ≡ 1 (mod 8),

(6) ` odd prime, ` | Nadd, ` ≡ 1 (mod 3) =⇒ m ≡ [quadratic nonresidue unit]
(mod `) or m ≡ 0 (mod `) and m 6≡ 0 (mod `2),

(7) ` odd prime, ` | Nadd, `≡ 2 (mod 3)=⇒m ≡ 0 (mod `) and m 6≡ 0 (mod `2),

(8) 4 | Nadd =⇒ m ≡ 8 or 12 (mod 16),

and proceeding by the same argument as above. �

Theorem 54. Suppose E/Q is any elliptic curve whose mod-3 Galois representa-
tion E[3] is reducible of type (1, 1, Nsplit, Nnonsplit, Nadd), where 3 is a good prime
of E. Let L be any quadratic field such that

(1) 3 is inert in L ,

(2) 3 - hL·Q(
√
−3) if L is real, and 3 - hL if L is imaginary,

(3) ` | Nsplit implies ` is inert in L ,

(4) ` | Nnonsplit implies ` is split in L ,

(5) ` | Nadd implies ` is inert in L and ` 6≡ 2 (mod 3), or ` is ramified in L ,

(6) 4 | N implies DL ≡ 8 or 12 (mod 16).

Let M ′= lcm(N ,D2
L) if lcm(N ,D2

L) is odd, M ′= lcm(N ,D2
L , 8) if 2 ‖ lcm(N ,D2

L),
and M ′ = lcm(N , D2

L , 16) if 4 | lcm(N , D2
L). Then if L is real for a positive

proportion of at least

1
48(M ′)

∏
` | Nsplit Nnonsplit

` - DL
` odd

1
2(`− 1)

∏
` | Nadd
` - DL
` odd

1
2`(`− 1)

∏
` | DL
` odd

1
2(`− 1)

∏
` | 3M ′

q
`+ 1
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imaginary quadratic fields K , and if L is imaginary for a positive proportion of
at least

1
128(M ′)

∏
` | Nsplit Nnonsplit

` - DL
` odd

1
2(`− 1)

∏
` | Nadd
` - DL
` odd

1
2`(`− 1)

∏
` | DL
` odd

1
2(`− 1)

∏
` | 3M ′

q
`+ 1

imaginary quadratic fields K , then K satisfies the Heegner hypothesis with respect
to EL , we have (DK , DL)= 1, and the Heegner point PEL (K ) is nontorsion. (Here,
again, q = 4 for `= 2, and q = ` for odd primes `.)

Proof. Again we seek to apply Proposition 52, as well as Theorem 13. First suppose
that L is a real quadratic field. Let M = 3 lcm(N , D2

L) if lcm(N , D2
L) is odd,

M = 3 lcm(N , D2
L , 8) if 2 ‖ lcm(N , D2

L), and M = 3 lcm(N , D2
L , 16) otherwise.

Using the Chinese remainder theorem, choose a positive integer m such that

(1) m ≡ 2 (mod 3),

(2) ` odd prime, ` | Nsplit =⇒ m ≡ [quadratic nonresidue unit] (mod `),

(3) 2 | Nsplit =⇒ m ≡ 5 (mod 8),

(4) ` prime, ` | Nnonsplit =⇒ m ≡ [quadratic residue unit] (mod `),

(5) 2 | Nnonsplit =⇒ m ≡ 1 (mod 8),

(6) ` odd prime, ` | Nadd, ` - DL =⇒ m ≡ [quadratic nonresidue unit] (mod `),

(7) ` odd prime, ` | Nadd, ` | DL =⇒ m ≡ 0 (mod `), where m/DL ≡ [quadratic
residue unit] (mod `),

(8) 4 | N =⇒ m ≡ DL (mod 16).

Suppose K is any imaginary quadratic field with odd fundamental discriminant
DK such that (DL , DK )= 1 and DL DK ≡ m (mod M). Since DK is odd, we must
have DK ≡ 1 (mod 4), and this is compatible with condition (6) which forces
DK ≡ 1 (mod 8), which in turn forces 2 to split in K . Then the above congruence
conditions on m, along with the congruence conditions of our assumptions, imply

(1) 3 is inert in L , split in K , and inert in L ·K ,

(2) ` prime, ` | Nsplit, ` - DL =⇒ ` is inert in L , split in K , and inert in L ·K ,

(3) ` prime, ` | Nnonsplit, ` - DL =⇒ ` is split in L , split in K , and split in L ·K ,

(4) ` odd prime, ` | Nadd, ` - DL =⇒ ` is inert in L , split in K , and inert in L ·K ,

(5) ` odd prime, ` | DL =⇒ ` is ramified in L , split in K , and ramified in L ·K ,

(6) 4 | Nadd =⇒ 2 is ramified in L , split in K , and ramified in L ·K ,

(7) if 2 ‖ N , then 4 |M and m ≡ 1 (mod 4),

(8) if 4 | N , then 16 |M and m ≡ 8 or 12 (mod 16).
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Thus for imaginary quadratic K such that DL·K =DL DK ≡m (mod M), (E,3, L ,K)
satisfies all the congruence conditions of Theorem 13 except for possibly 3 - hL·K .
Moreover, the congruence conditions above imply that m and M are valid positive
integers for Theorem 51. Thus, by Proposition 52,

lim
x→∞

|K−
∗
(x,m,M)|

|K−(x, 1, 1)|
≥

1
28(M)

∏
` |M

q
`+ 1

,

so a positive proportion of imaginary quadratic K satisfy DL·K ≡ m (mod M) and
3 - hL·K . Thus, for these K , (E, 3, L , K ) satisfies all the congruence conditions of
Theorem 13, and so PEL (K ) is nontorsion. Moreover, noticing that the congruence
conditions (1)–(6) on m above are independent (again by the Chinese remainder
theorem), we have ∏

` | Nsplit Nnonsplit
` - DL
` odd

1
2(`− 1)

∏
` | Nadd
` - DL
` odd

1
2`(`− 1)

∏
` | DL
` odd

1
2(`− 1)

choices for residue classes of m mod M . Combining all the above and summing
over each valid residue class m mod M , we immediately obtain our lower bound
for the proportion of valid K (with M = 3M ′).

For the case when L is an imaginary quadratic field, let M be as above. Then
choose a positive integer m such that

(1) m ≡ 3 (mod 9),

(2) ` odd prime, ` | Nsplit =⇒ m ≡−3[quadratic nonresidue unit] (mod `),

(3) 2 | Nsplit =⇒ m ≡ 1 (mod 8),

(4) ` odd prime, ` | Nnonsplit =⇒ m ≡−3[quadratic residue unit] (mod `),

(5) 2 | Nnonsplit =⇒ m ≡ 5 (mod 8),

(6) ` odd prime, ` | Nadd, ` - DL =⇒ m ≡−3[quadratic nonresidue unit] (mod `),

(7) ` odd prime, ` | DL =⇒ m ≡ 0 (mod `), where m/DL ≡−3[quadratic residue
unit] (mod `),

(8) 4 | N =⇒ m ≡ DL (mod 16).

The argument then proceeds in the same way as above to establish 3 - hL·K ·Q(
√
−3)

and thus rankZ EL(K )= 1 by applying Theorem 13. �

Proof of Corollary 18. Since E[3] is a reducible mod-3 Galois representation,
E has Eisenstein descent of type (ψ,ψ−1, Nsplit, Nnonsplit, Nadd) mod 3, where ψ
is some quadratic Dirichlet character. We may assume without loss of generality
that ψ = 1 (after possibly replacing E by E ⊗ψ−1). From Theorem 53, a positive
proportion of quadratic twists EL satisfy the conditions of Theorem 54, and so
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by that theorem a positive proportion of imaginary quadratic K have that PEL (K )
is nontorsion. If E is semistable, then E necessarily has Eisenstein descent of
type (1, 1, Nsplit, Nnonsplit, Nadd) by part (3) of Theorem 34 and by Theorem 35.
Since Nadd = 1, Theorems 53 and 54 produce twists EL with (N , DL) = 1 and
rankZ E(K )=1. Then by part (2) of Proposition 50, each EL hasw(EL)=−εL(−1)
and so rankZ EL(Q) =

1
2(1+ εL(−1)) and rankZ EL·K (Q) =

1
2(1− εL(−1)). The

more precise lower bounds on these positive proportions follow immediately from
Theorems 53 and 54. �

Remark 55. There is no “double counting” resulting from using the lower bounds
of Theorems 53 and 54 in tandem. The real quadratic twists EL produced in
Theorem 53, which have discriminant DL prime to DK , are distinct from the real
twists EL ′·K produced in Theorem 54 (with L ′ imaginary), which have discriminant
DL ′DK . Similarly, the imaginary quadratic twists produced in Theorem 53 are
distinct from those produced in Theorem 54.

Example 56. Let E/Q be the elliptic curve 19a1 in Cremona’s labeling, which has
minimal Weierstrass model

y2
+ y = x3

+ x2
− 9x − 15.

Then E(Q)tor
= Z/3, and so taking p = 3, one sees that E[3] is a reducible mod-3

Galois representation. Furthermore, E has conductor N = 19, where 19 is of split
multiplicative reduction. Taking the real quadratic field L =Q(

√
41), one can check

that 3 and 19 are inert in L . Taking the imaginary quadratic field K =Q(
√
−2),

one sees that 3 splits in K and that K satisfies the Heegner hypothesis with respect
to the quadratic twist EL (and 3 and 19 split in K ). Furthermore, 3 does not divide
the class numbers hL·Q(

√
−3) = hQ(

√
−123) = 4 and hL·K = hQ(

√
−82) = 2. Our result

now gives rankZ EL(K ) = 1. By Proposition 50, one sees that rankZ EL(Q) = 1
and rankZ EL·K (Q)= 0. Taking the imaginary quadratic field L ′ =Q(

√
−7), one

can check that 3 and 19 are inert in L ′. Furthermore, 3 does not divide the class
numbers hL ′=1 and hL ′·K ·Q(

√
−3)=hQ(

√
−42)=4, so by Proposition 50 one sees that

rankZ EL ′(Q)= 0 and rankZ EL ′·K (Q)= 1. By Corollary 18 (and adding the explicit
lower bounds given in Theorems 53 and 54 applied to E , EL and EL ′), at least
19

640+
19

10240=
323

10240 real quadratic twists of E have rank 1 and at least 57
640+

19
17920=

323
3584

imaginary quadratic twists of E have rank 0.
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