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Equidistribution of values of linear forms
on a cubic hypersurface

Sam Chow

Let C be a cubic form with integer coefficients in n variables, and let h be the
h-invariant of C . Let L1, . . . , Lr be linear forms with real coefficients such that,
if α ∈ Rr

\ {0}, then α · L is not a rational form. Assume that h > 16+ 8r . Let
τ ∈ Rr , and let η be a positive real number. We prove an asymptotic formula for
the weighted number of integer solutions x ∈ [−P, P]n to the system C(x)= 0,
|L(x)− τ |< η. If the coefficients of the linear forms are algebraically indepen-
dent over the rationals, then we may replace the h-invariant condition with the
hypothesis n > 16+ 9r and show that the system has an integer solution. Finally,
we show that the values of L at integer zeros of C are equidistributed modulo 1
in Rr , requiring only that h > 16.

1. Introduction

Recently Sargent [2014] used ergodic methods to establish the equidistribution of
values of real linear forms on a rational quadric, subject to modest conditions. His
ideas stemmed from quantitative refinements [Dani and Margulis 1993; Eskin et al.
1998] of Margulis’ proof [1989] of the Oppenheim conjecture. Such techniques
do not readily apply to higher-degree hypersurfaces. Our purpose here is to use
analytic methods to obtain similar results on a cubic hypersurface.

Our first theorem is stated in terms of the h-invariant of a nontrivial rational cubic
form C in n variables, which is defined to be the least positive integer h such that

C(x)= A1(x)B1(x)+ · · ·+ Ah(x)Bh(x) (1-1)

identically, for some rational linear forms A1, . . . , Ah and some rational quadratic
forms B1, . . . , Bh . The h-invariant describes the geometry of the hypersurface
{C = 0}, and in fact n− h is the greatest affine dimension of any rational linear
space contained in this hypersurface (therefore 16 h 6 n).
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Theorem 1.1. Let C be a cubic form with integer coefficients in n variables, and
let h = h(C) be the h-invariant of C. Let L1, . . . , Lr be linear forms with real
coefficients in n variables such that, if α ∈Rr

\ {0}, then α · L is not a rational form.
Assume that

h > 16+ 8r. (1-2)

Let τ ∈ Rr and η > 0. Let

w(x)=
{

exp
(
−
∑

j6n 1/(1− x2
j )
)

if |x|< 1,
0 if |x|> 1,

(1-3)

and define the weighted counting function

Nw(P)=
∑

x∈Zn
:C(x)=0

and |L(x)−τ |<η

w(x/P).

Then
Nw(P)= (2η)rSχwPn−r−3

+ o(Pn−r−3) (1-4)
as P→∞, where

S=
∑
q∈N

q−n
∑

a mod q
(a,q)=1

∑
x mod q

eq(aC(x)) (1-5)

and
χw =

∫
Rr+1

∫
Rn
w(x)e(β0C(x)+α · L(x)) dx dβ0 dα. (1-6)

Further, we have Sχw > 0.

The condition that no form in the real pencil of the linear forms is rational cannot
be avoided, for if |L(x)− τ | < η, then |α · L(x)− α · τ | < η|α|, and the values
taken by a rational form at integer points are discrete. As a simple example, the
inequality ∣∣x1+ · · ·+ xn −

1
2

∣∣< 1
4

admits no integer solutions x.
We interpret Nw(P) as a weighted count for the number of integer solutions

x ∈ (−P, P)n to the system

C(x)= 0, |L(x)− τ |< η. (1-7)

The smooth weight function w(x) defined in (1-3) is taken from [Heath-Brown
1996]. Importantly, it has bounded support and bounded partial derivatives of all
orders. One advantage of the weighted approach is that it enables the use of Poisson
summation.

The singular series S may be interpreted as a product of p-adic densities of
points on the hypersurface {C = 0} [Birch 1962, §7]. Note that this captures the
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arithmetic of C but that no such arithmetic is present for the linear forms L1, . . . , Lr

since they are “irrational” in a precise sense.
The weighted singular integral χw arises naturally in our proof as the right-hand

side of (1-6). Using [Schmidt 1982b; 1985], we can interpret χw as the weighted real
density of points on the variety {C = L1 = · · · = Lr = 0}. For L > 0 and ξ ∈ R, let

ψL(ξ)= L ·max(0, 1− L|ξ |).
For ξ ∈ Rr+1, put

9L(ξ)=
∏
v6r+1

ψL(ξv).

With f = (C, L), set

IL( f )=
∫

Rn
w(x)9L( f (x)) dx,

and define
χw = lim

L→∞
IL( f ). (1-8)

We shall see that the limit (1-8) exists and that this definition is equivalent to the
analytic definition (1-6).

We may replace the condition on the h-invariant by a condition on the number
of variables, at the expense of assuming that the coefficients of the linear forms are
in “general position”.

Theorem 1.2. Let C be a cubic form with rational coefficients in n variables. Let
L1, . . . , Lr be linear forms in n variables with real coefficients that are algebraically
independent over Q. Assume that

n > 16+ 9r.

Let τ ∈ Rr and η > 0. Then there exists x ∈ Zn satisfying (1-7).

This algebraic independence condition is stronger than the real pencil condition
imposed on the linear forms in Theorem 1.1 — we show in Section 8 that the
algebraic independence condition in fact implies the real pencil condition. The
real pencil condition is probably sufficient, in truth; however, our proof relies on
algebraic independence.

The point of this work is to show that the zeros of a rational cubic form are, in
a strong sense, well distributed. Similar methods may be applied if C is replaced
by a higher-degree form; the simplest results would concern nonsingular forms of
odd degree. The unweighted analogue of the case r = 0 of Theorem 1.1 has been
solved, assuming only that h > 16; see remark (B) in the introduction of [Schmidt
1985]. For the case r = 0 of Theorem 1.2, we can choose x = 0 or note from
[Heath-Brown 2007] that fourteen variables suffice to ensure a nontrivial solution.
We shall assume throughout that r > 1.
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The fact that we have linear inequalities rather than equations does genuinely
increase the difficulty of the problem. For example, suppose we wished to nontriv-
ially solve the system of equations C = L1 = · · · = Lr = 0, where here the L i are
linear forms with rational coefficients; assume for simplicity that the L i are linearly
independent. Using the linear equations, we could determine r of the variables in
terms of the remaining n− r variables, and substituting into C(x)= 0 would yield
a homogeneous cubic equation in n− r variables. Thus, by [Heath-Brown 2007],
we could solve the system given n > 14+ r variables.

We use the work of Browning, Dietmann, and Heath-Brown [Browning et al.
2015] as a benchmark for comparison. Those authors investigate simultaneous
rational solutions to one cubic equation C = 0 and one quadratic equation Q = 0.
They establish the smooth Hasse principle under the assumption that

min(h(C), rank(Q))> 37.

We expect to do somewhat better when considering one cubic equation and one
linear inequality simultaneously, and we do. Substituting r = 1 into (1-2), we see
that we only require h(C) > 24.

To prove Theorem 1.1, we use the Hardy–Littlewood method [Vaughan 1997] in
unison with Freeman’s variant [2002] of the Davenport–Heilbronn method [1946].
The central objects to study are the weighted exponential sums

S(α0,α)=
∑
x∈Zn

w(x/P)e(α0C(x)+α · L(x)).

If |S(α0,α)| is substantially smaller than the trivial estimate O(Pn), then we may
adapt [Davenport and Lewis 1964, Lemma 4] to rationally approximate α0 (see
Section 2).

In Section 3, we use Poisson summation to approximately decompose our expo-
nential sum into archimedean and nonarchimedean components. In Section 4, we
use Heath-Brown’s first-derivative bound [1996, Lemma 10] and a classical pruning
argument [Davenport 2005, Lemma 15.1] to essentially obtain good simultaneous
rational approximations to α0 and α. In Section 5, we combine classical ideas with
Heath-Brown’s first-derivative bound to obtain a mean-value estimate of the correct
order of magnitude. In Section 6, we define our Davenport–Heilbronn arcs and in
particular use the methods of Bentkus, Götze, and Freeman [Bentkus and Götze
1999; Freeman 2002; Wooley 2003] to obtain nontrivial cancellation on the minor
arcs, thereby establishing the asymptotic formula (1-4). We complete the proof of
Theorem 1.1 in Section 7 by explaining why S and χw are positive. It is then that
we justify the interpretation of χw as a weighted real density.

We prove Theorem 1.2 in Section 8. By Theorem 1.1, it suffices to consider the
case where the h-invariant is not too large. With A1, . . . , Ah as in (1-1), we solve
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the system (1-7) by solving the linear system

A(x)= 0, |L(x)− τ |< η.

Since the h-invariant is not too large, this system has more variables than constraints
and can be solved using methods from linear algebra and diophantine approximation,
provided that the coefficients of L1, . . . , Lr are algebraically independent over Q.

In Section 9, we shall prove the following equidistribution result.

Theorem 1.3. Let C be a cubic form with rational coefficients in n variables,
let h = h(C) be the h-invariant of C , and assume that h > 16. Let r ∈ N, and
let L1, . . . , Lr be linear forms with real coefficients in n variables such that, if
α ∈ Rr

\ {0}, then α · L is not a rational form. Let

Z = {x ∈ Zn
: C(x)= 0},

and order this set by height |x|. Then the values of L(Z) are equidistributed
modulo 1 in Rr .

A little surprisingly, perhaps, we do not require h to grow with r . By a multi-
dimensional Weyl criterion [Cassels 1957, p. 66], it will suffice to investigate
Su(α0, k) for a fixed nonzero integer vector k, where

Su(α0,α)=
∑
|x|<P

e(α0C(x)+α · L(x))

is the unweighted analogue of S(α0,α). A simplification of the method employed
to prove Theorem 1.1 will complete the argument.

Rather than using the h-invariant, one could instead consider the dimension
of the singular locus of the affine variety {C = 0}, as in [Birch 1962]. Such an
analysis would imply results for arbitrary nonsingular cubic forms in sufficiently
many variables. These types of theorems are discussed in Section 10.

We adopt the convention that ε denotes an arbitrarily small positive number, so
its value may differ between instances. For x ∈ R and q ∈ N, we put e(x)= e2π i x

and eq(x) = e2π i x/q . Boldface will be used for vectors; for instance we shall
abbreviate (x1, . . . , xn) to x and define |x| = max(|x1|, . . . , |xn|). We will use
the unnormalized sinc function, given by sinc(x) = sin(x)/x for x ∈ R \ {0} and
sinc(0)= 1. For x ∈ R, we write ‖x‖ for the distance from x to the nearest integer.

We regard τ and η as constants. The word large shall mean in terms of C , L,
ε, and constants, together with any explicitly stated dependence. Similarly, the
implicit constants in Vinogradov’s and Landau’s notation may depend on C , L, ε,
and constants, and any other dependence will be made explicit. The pronumeral P
denotes a large positive real number. The word small will mean in terms of C ,
L, and constants. We sometimes use such language informally, for the sake of
motivation; we make this distinction using quotation marks.
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2. One rational approximation

First we use Freeman’s kernel functions [2002, §2.1] to relate Nw(P) to our expo-
nential sums S(α0,α). We shall define

T : [1,∞)→ [1,∞)

in due course. For now, it suffices to note that

T (P)6 P (2-1)

and that T (P)→∞ as P→∞. Put

L(P)=max(1, log T (P)), ρ = ηL(P)−1, (2-2)

and

K±(α)=
sin(παρ) sin(πα(2η± ρ))

π2α2ρ
. (2-3)

From [Freeman 2002, Lemma 1] and its proof, we have

K±(α)�min(1, L(P)|α|−2) (2-4)

and

06
∫

R

e(αt)K−(α) dα 6Uη(t)6
∫

R

e(αt)K+(α) dα 6 1, (2-5)

where

Uη(t)=
{

1 if |t |< η,
0 if |t |> η.

For α ∈ Rr , write
K±(α)=

∏
k6r

K±(αk). (2-6)

Let U be a unit interval, to be specified later. The inequalities (2-5) and the identity∫
U

e(αm) dα =
{

1 if m = 0,
0 if m ∈ Z \ {0}

(2-7)

now give
R−(P)6 Nw(P)6 R+(P),

where

R±(P)=
∫

Rr

∫
U

S(α0,α)e(−α · τ )K±(α) dα0 dα.

In order to prove (1-4), it therefore remains to show that

R±(P)= (2η)rSχwPn−r−3
+ o(Pn−r−3). (2-8)
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We shall in fact need to investigate the more general exponential sum

g(α0,λ)=
∑
x∈Zn

w(x/P)e(α0C(x)+λ · x).

We note at once that
S(α0,α)= g(α0,3α),

where
L i (x)= λi,1x1+ · · ·+ λi,nxn (16 i 6 r) (2-9)

and

3=

λ1,1 · · · λr,1
...

...

λ1,n · · · λr,n

 . (2-10)

Fix a large positive constant C1.

Lemma 2.1. If 0< θ < 1 and

|g(α0,λ)|> Pn−(h/4)θ+ε,

then there exist relatively prime integers q and a satisfying

16 q 6 C1 P2θ , |qα0− a|< P2θ−3. (2-11)

The same is true if we replace g(α0,λ) by

gu(α0,λ) :=
∑
|x|<P

e(α0C(x)+λ · x) (2-12)

or by ∑
16x1,...,xn6P

e(α0C(x)+λ · x).

Proof. Our existence statement is a weighted analogue of [Davenport and Lewis
1964, Lemma 4]. One can follow [loc. cit., §3], mutatis mutandis. The only change
required is in proving the analogue of [loc. cit., Lemma 1]. Weights are introduced
into the linear exponential sums that arise from Weyl differencing, but these weights
are easily handled using partial summation. Our final statement holds with the same
proof: one imitates [loc. cit., §3]. �

For θ ∈ (0, 1), q ∈ N, and a ∈ Z, let Nq,a(θ) be the set of (α0,α) ∈ U × Rr

satisfying (2-11), and let N(θ) be the union of the sets Nq,a(θ) over relatively
prime q and a. This union is disjoint if θ < 3

4 . Indeed, suppose we have (2-11)
for some relatively prime integers q and a and that we also have relatively prime
integers q ′ and a′ satisfying

16 q ′� P2θ , |q ′α0− a′|< P2θ−3.



428 Sam Chow

The triangle inequality then yields

|a/q − a′/q ′|< P2θ−3(1/q + 1/q ′) < 1/(qq ′)

as P is large. Hence, a/q = a′/q ′, so a′ = a and q ′ = q.
We prune our arcs using the well known procedure in [Davenport 2005, Lemma

15.1]. Fix a small positive real number δ. The following corollary shows that we
may restrict attention to N(1

2 − δ).

Corollary 2.2. We have∫
U×Rr\N(1/2−δ)

|S(α0,α)K±(α)| dα0 dα = o(Pn−r−3).

Proof. Choose real numbers ψ1, . . . , ψt−1 such that

1
2 − δ = ψ0 <ψ1 < · · ·<ψt−1 <ψt = 0.8.

Dirichlet’s approximation theorem [Vaughan 1997, Lemma 2.1] implies N(ψt)=

U ×Rr . Let U be an arbitrary unit hypercube in r dimensions, and put U =U ×U.
Since

meas(N(θ)∩U)� P4θ−3,

Lemma 2.1 gives∫
(N(ψg)\N(ψg−1))∩U

|S(α0,α)| dα0 dα� P4ψg−3+n−hψg−1/4+ε (16 g 6 t).

This is O(Pn−r−3−ε) if ψg−1/ψg ' 1 since ψg−1 >
1
2 − δ and h > 17+ 8r . Thus,

we can choose ψ1, . . . , ψt−1 with t � 1 satisfactorily to ensure that∫
U\N(1/2−δ)

|S(α0,α)| dα0 dα� Pn−r−3−ε.

The desired inequality now follows from (2-1), (2-2), (2-4), and (2-6). �

Thus, to prove (2-8) and hence (1-4), it remains to show that∫
N( 1

2−δ)

S(α0,α)e(−α ·τ )K±(α) dα0 dα= (2η)rSχwPn−r−3
+o(Pn−r−3). (2-13)

3. Poisson summation

Put
α0 =

a
q
+β0, λ= q−1a+β, (3-1)

where q > 1 and a are relatively prime integers and where a ∈ Zn . By periodicity,

g(α0,λ)=
∑

y mod q

eq(aC( y)+ a · y)I y(q, β0,β),
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where
I y(q, β0,β)=

∑
x≡ y mod q

w(x/P)e(β0C(x)+β · x).

Since

I y(q, β0,β)=
∑
z∈Zn

w
( y+ q z

P

)
e(β0C( y+ q z)+β · ( y+ q z)),

Poisson summation yields

I y(q, β0,β)=
∑
c∈Zn

∫
Rn
w
( y+ q z

P

)
e(β0C( y+ q z)+β · ( y+ q z)− c · z) dz.

Changing variables now gives

I y(q, β0,β)= (P/q)n
∑
c∈Zn

eq(c · y)I (P3β0, P(β − c/q)),

where

I (γ0, γ )=

∫
Rn
w(x)e(γ0C(x)+ γ · x) dx. (3-2)

Write
Sq,a,a =

∑
y mod q

eq(aC( y)+ a · y), (3-3)

and let
g0(α0,λ)= (P/q)n Sq,a,a I (P3β0, Pβ)

be the c= 0 contribution to g(α0,λ). Then

g(α0,λ)− g0(α0,λ)= (P/q)n
∑
c6=0

Sq,a,a+c I (P3β0, P(β − c/q)). (3-4)

We shall bound the right-hand side from above, in the case where we have (2-11) and
|β|6 1/(2q). For future reference, we note that specializing (q, a, a)= (1, 0, 0)
in (3-4) gives

g(α0,λ)− Pn I (P3α0, Pλ)= Pn
∑
c6=0

I (P3α0, Pλ− Pc). (3-5)

We bound Sq,a,a by imitating [Davenport 2005, Lemma 15.3].

Lemma 3.1. Let q > 1 and a be relatively prime integers, and let ψ > 0. Then

Sq,a,a�ψ qn−h/8+ψ . (3-6)

Proof. Suppose for a contradiction that q is large in terms of ψ and

|Sq,a,a|> qn−h/8+ψ .
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Recall that
Sq,a,a =

∑
16y1,...,yn6q

eq(aC( y)+ a · y).

We may assume without loss thatψ<1. By Lemma 2.1, with P=q and θ= 1
2−ψ/n,

there exist s, b ∈ Z such that

16 s < q, |sa/q − b|< q−1.

Now b/s = a/q , which is impossible because (a, q)= 1 and 16 s < q . �

Let c ∈ Zn
\ {0}, and suppose we have (2-11) for some θ ∈ (0, 1

2 − δ] and some
relatively prime q, a ∈Z. Define a j by rounding qλ j to the nearest integer, rounding
down if qλ j is half of an odd integer (16 j 6 n). Since |c|/q > 1/q > 2|β|,

|P(β − c/q)| � P|c|/q � P/q � P3+2δ
|β0|.

Now [Heath-Brown 1996, Lemma 10] gives

I (P3β0, P(β − c/q))� (P|c|/q)−n−ε. (3-7)

By (3-4), (3-6), and (3-7),

g(α0,λ)− g0(α0,λ)� P−εqn+2ε−h/8
� qn−h/8+ε. (3-8)

Let U be an arbitrary unit hypercube in r dimensions, and put U =U ×U. With
θ = 1

2 − δ, we now have∫
N(θ)∩U

|S(α0,α)− S0(α0,α)| dα0 dα�
∑

q6C1 P2θ

qn−h/8+εP2θ−3,

where for (α0,α) ∈Nq,a(θ) with (a, q)= 1 we have written

S0(α0,α)= g0(α0,3α).

Hence,∫
N(θ)∩U

|S(α0,α)− S0(α0,α)| dα0 dα� P4θ−3(P2θ )n−h/8+ε
� Pn−r−3−ε

since h > 17+ 8r . The bounds (2-1), (2-2), (2-4), and (2-6) now yield∫
N(θ)
|S(α0,α)− S0(α0,α)| · |K±(α)| dα0 dα = o(Pn−r−3).

Thus, to prove (2-13) and hence (1-4), it suffices to show that∫
N( 1

2−δ)

S0(α0,α)e(−α ·τ )K±(α) dα0 dα= (2η)rSχwPn−r−3
+o(Pn−r−3). (3-9)
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4. More rational approximations

For θ ∈ (0, 1
2 ] and integers q, a, a1, . . . , an , let Rq,a,a(θ) denote the set of (α0,α)∈

U ×Rr satisfying

|qα0− a|< P2θ−3, |q3α− a|< P (2+δ)θ−1, (4-1)

and let R(θ) be the union of the sets Rq,a,a(θ) over integers q, a, a1, . . . , an satis-
fying

16 q 6 C1 P2θ , (a, q)= 1. (4-2)

Note that this union is disjoint if θ < (2+δ)−1. Let U be an arbitrary unit hypercube
in r dimensions, and put U =U ×U. Then

meas(R(θ)∩U)� P4θ−3−r+(2+δ)θr

since our hypothesis on L implies that 3 has r linearly independent rows.
Fix a small positive real number θ0. The following lemma shows that we may

restrict attention to R(θ0).

Lemma 4.1. We have∫
N(1/2−δ)\R(θ0)

|S0(α0,α)K±(α)| dα0 dα = o(Pn−r−3).

Proof. Note that N( 1
2 − δ)⊆N( 1

2)=R( 1
2). Let

(α0,α) ∈N(
1
2 − δ)∩R(θg) \R(θg−1)

for some g ∈ {1, 2, . . . , t}, where

0< θ0 < θ1 < · · ·< θt =
1
2 .

First suppose that |S(α0,α)|> Pn−hθg−1/4+ε. By Lemma 2.1, there exist relatively
prime integers q and a satisfying

16 q 6 C1 P2θg−1, |qα0− a|< P2θg−1−3.

Let β0, a, and β be as in Section 3, with λ = 3α. Since (α0,α) /∈ R(θg−1), we
must have q|β|> P (2+δ)θg−1−1. Now

P|β| � q−1 P (2+δ)θg−1 � Pδθg−1 P3
|β0|,

so [Heath-Brown 1996, Lemma 10] yields

I (P3β0, Pβ)�N (q−1 P (2+δ)θg−1)−N
� P−Nδθg−1

for any N > 0. Choosing N large now gives S0(α0,α)� 1.
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Now suppose instead that |S(α0,α)|< Pn−hθg−1/4+ε. As (α0,α)∈N(
1
2−δ), there

exist relatively prime integers q and a such that (α0,α) ∈Nq,a(
1
2 − δ). From (3-8),

S(α0,α)− S0(α0,α)� qn−h/8+ε
� Pn−h/8,

and now the triangle inequality yields

S0(α0,α)�max(Pn−hθg−1/4+ε, Pn−h/8)= Pn−hθg−1/4+ε. (4-3)

The bound (4-3) is valid in both cases, so∫
|S0(α0,α)| dα0 dα� P4θg−3−r+(2+δ)θgr Pn−hθg−1/4+ε,

where the integral is over N( 1
2 − δ)∩ U ∩R(θg) \R(θg−1). The right-hand side

is O(Pn−r−3−ε) if θg/θg−1 ' 1 since h > 17 + 8r . We can therefore choose
θ1, . . . , θt−1 with t � 1 satisfactorily to ensure that∫

U∩N(1/2−δ)\R(θ0)

|S0(α0,α)| dα0 dα� Pn−r−3−ε.

The desired inequality now follows from (2-1), (2-2), (2-4), and (2-6). �

Thus, to prove (3-9) and hence (1-4), it suffices to show that∫
R

S0(α0,α)e(−α · τ )K±(α) dα0 dα = (2η)rSχwPn−r−3
+ o(Pn−r−3), (4-4)

where now and henceforth we write

R=RP =R(θ0), R(q, a, a)=Rq,a,a(θ0).

We now choose our unit interval

U = (P2θ0−3, 1+ P2θ0−3
]. (4-5)

This choice ensures that, if the conditions (4-1) and (4-2) hold with θ = θ0 for some
(α0,α) ∈ R×Rr , then α0 ∈U if and only if 16 a 6 q. In particular, the set R is
the disjoint union of the sets R(q, a, a) over integers q, a, a1, . . . , an satisfying

16 a 6 q 6 C1 P2θ0, (a, q)= 1. (4-6)

5. A mean-value estimate

We begin by bounding I (γ0, γ ). In light of (3-5), the first step is to bound g(α0,λ).

Lemma 5.1. Let ξ be a small positive real number. Let α0 ∈ R and λ ∈ Rn with
|α0|< P−3/2. Then

g(α0,λ)� Pn+ξ (P3
|α0|)

−h/8
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and

gu(α0,λ)� Pn+ξ (P3
|α0|)

−h/8,

where gu(α0,λ) is given by (2-12).

Proof. This follows from the argument of the corollary to [Birch 1962, Lemma 4.3],
using Lemma 2.1. �

Lemma 5.2. We have

I (γ0, γ )�
1

1+ (|γ0| + |γ |)h/8−ε
. (5-1)

Proof. As I (γ0, γ )� 1, we may assume that |γ0| + |γ | is large. From (3-5),

I (γ0, γ )= P−ng(γ0/P3, γ /P)−
∑
c6=0

I (γ0, γ − Pc).

Since I (γ0, γ ) is independent of P , we are free to choose P = (|γ0| + |γ |)
n . By

Lemma 5.1 and [Heath-Brown 1996, Lemma 10], we now have

I (γ0, γ )� Pε/n
|γ0|
−h/8
=
(|γ0| + |γ |)

ε

|γ0|h/8
. (5-2)

Let C2 be a large positive constant. If |γ | > C2|γ0|, then [Heath-Brown 1996,
Lemma 10] yields I (γ0, γ )�N |γ |

−N
�N (|γ0| + |γ |)

−N for any N > 0 while, if
|γ |< C2|γ0|, then (5-2) gives

I (γ0, γ )� (|γ0| + |γ |)
ε−h/8.

The latter bound is valid in either case. As |γ0|+|γ | is large, our proof is complete.
�

We now have all of the necessary ingredients to obtain a mean-value estimate of
the correct order of magnitude. Let U be an arbitrary unit hypercube in r dimensions,
and put U =U ×U. Let V ⊆ {1, 2, . . . , n} index r linearly independent rows of 3.
When (α0,α) ∈R(q, a, a) and (a, q)= 1, write

F(α0,α)= F(α0,α; P)=
∏
v6n

(q + P|qλv − av|)−1,

where λ=3α. As h/8> r + 2, Lemmas 3.1 and 5.2 imply that

S0(α0,α)F(α0,α)
−ε

� Pnq−r−2−ε(1+ P3
|α0− a/q|)−1−ε

∏
v∈V

(1+ P|λv − av/q|)−1−ε.
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For each q, we can choose from O(qr+1) values of a and av (v ∈ V ) for which
R(q, a, a)∩U is nonempty. Thus, an invertible change of variables gives∫
R∩U
|S0(α0,α)|F(α0,α)

−ε dα0 dα

� Pn
∑
q∈N

q−1−ε
∫

R

(1+ P3
|β0|)

−1−ε dβ0 ·

∫
Rr

∏
j6r

(1+ P|α′j |)
−1−ε dα′

� Pn−r−3. (5-3)

Positivity has permitted us to complete the summation and the integrals to infinity
for an upper bound.

6. The Davenport–Heilbronn method

In this section, we specify our Davenport–Heilbronn dissection and complete the
proof of (1-4). The bound (5-3) will suffice on the Davenport–Heilbronn major and
trivial arcs, but on the minor arcs, we shall need to bound F(α0,α) nontrivially.
Using the methods of Bentkus, Götze, and Freeman, as exposited in [Wooley 2003,
Lemmas 2.2 and 2.3], we will show that F(α0,α) = o(1) in the case that |α| is
of “intermediate” size. The success of our endeavor depends crucially on our
irrationality hypothesis for L.

In order for the argument to work, we need to essentially replace F with a
function F defined on Rr . For α ∈Rr , let F(α; P) be the supremum of the quantity∏

v6n

(q + P|qλv − av|)−1

over q ∈ N and a ∈ Zn , where λ=3α. Note that, if (α0,α) ∈RP , then

F(α0,α; P)6 F(α; P). (6-1)

Moreover, since 3 has full rank, we have

|α| � |3α| � |α|. (6-2)

Lemma 6.1. Let 0< V 6W . Then

sup
V6|3α|6W

F(α; P)→ 0 (P→∞). (6-3)

Proof. Suppose for a contradiction that (6-3) is false. Then there exist ψ > 0 and

(α(m), Pm, qm, a(m)) ∈ Rr
×[1,∞)×N×Zn (m ∈ N)

such that the sequence (Pm) increases monotonically to infinity and such that, if
m ∈ N, then
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(i) V 6 |λ(m)|6W ,

(ii)
∏
v6n

(qm + Pm |qmλ
(m)
v − a(m)v |) < ψ

−1, (6-4)

where λ(m) = 3α(m) (m ∈ N). Now qm < ψ
−1
� 1, so |a(m)| � 1. In particular,

there are only finitely many possible choices for (qm, a(m)), so this pair must take a
particular value infinitely often, say (q, a).

From (6-4), we see that qλ(m) converges to a on a subsequence. The sequence
(|α(m)|)m is bounded, so by compactness, we know that α(m) converges to some
vector α on a subsubsequence. Therefore, q3α = a and in particular 3α is a
rational vector, so α · L is a rational form. Note that α 6= 0 since |α(m)| � 1. This
contradicts our hypothesis on L, thereby establishing (6-3). �

Corollary 6.2. Let θ be a small positive real number. Then there exists a function
T : [1,∞)→[1,∞), increasing monotonically to infinity, such that T (P)6 Pθ and

sup
Pθ−16|3α|6T (P)

F(α; P)6 T (P)−1. (6-5)

Proof. Lemma 6.1 yields a sequence (Pm) of large positive real numbers such that

sup
1/m6|3α|6m

F(α; Pm)6 1/m.

We may assume that this sequence is increasing and that Pθm > m (m ∈N). Define
T (P) by T (P) = 1 (1 6 P 6 P1) and T (P) = m (Pm 6 P < Pm+1). Note that
T (P)6 Pθ and that T (P) increases monotonically to infinity. Now

sup
T (P)−16|3α|6T (P)

F(α; P)6 T (P)−1,

for if P > Pm , then F(α; P)6 F(α; Pm).
The inequality (6-5) plainly holds if P 6 P1. Thus, it remains to show that, if P

is large and
|3α|< T (P)−1 < F(α; P), (6-6)

then |3α|< Pθ−1. Suppose we have (6-6), with P large. Writing λ=3α, we have∏
v6n

(q + P|qλv − av|) < T (P)

for some q ∈ N and some a ∈ Zn . Now q < T (P)1/n and

|qλ− a|< T (P)/P,

so the triangle inequality and (6-6) give

|a|< T (P)/P + T (P)1/n−1 < 1.
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Therefore, a = 0, and so

|3α|6 |qλ|< T (P)/P 6 Pθ−1,

completing the proof. �

Let C3 be a large positive constant. Let T (P) be as in Corollary 6.2 with θ = δ2θ0.
We define our Davenport–Heilbronn major arc by

M= {(α0,α) ∈ R×Rr
: |α|< C3 Pδ

2θ0−1
},

our minor arcs by

m= {(α0,α) ∈ R×Rr
: C3 Pδ

2θ0−1 6 |α|6 C−1
3 T (P)},

and our trivial arcs by

t= {(α0,α) ∈ R×Rr
: |α|> C−1

3 T (P)}.

It follows from (6-1), (6-2), and (6-5) that

sup
R∩m

F(α0,α)6 T (P)−1. (6-7)

Let U be an arbitrary unit hypercube in r dimensions, and put U =U ×U. By
(5-3) and (6-7), ∫

R∩m∩U
|S0(α0,α)| dα0 dα� T (P)−εPn−r−3.

Now (2-2), (2-4), and (2-6) yield∫
R∩m
|S0(α0,α)K±(α)| dα0 dα = o(Pn−r−3). (6-8)

Note that
0< F(α0,α)6 1. (6-9)

Together with (2-2), (2-4), (2-6), and (5-3), this gives∫
R∩t
|S0(α0,α)K±(α)| dα0 dα� Pn−r−3L(P)r

∞∑
n=0

(C−1
3 T (P)+ n)−2

� Pn−r−3L(P)r T (P)−1
= o(Pn−r−3). (6-10)

Coupling (6-8) with (6-10) yields∫
R\M
|S0(α0,α)K±(α)| dα0 dα = o(Pn−r−3).

Recall that to show (1-4) it remains to establish (4-4). Defining

S1 =

∫
R∩M

S0(α0,α)e(−α · τ )K±(α) dα0 dα,
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it now suffices to prove that

S1 = (2η)rSχwPn−r−3
+ o(Pn−r−3).

By (2-3),
K±(α)= (2η± ρ) · sinc(παρ) · sinc(πα(2η± ρ)).

Now (2-1), (2-2), and the Taylor expansion of sinc( · ) yield

K±(α)= 2η+ O(L(P)−1) (|α|< P−1/2).

Substituting this into (2-6) shows that, if (α0,α) ∈M, then

K±(α)= (2η)r + O(L(P)−1). (6-11)

Moreover, it follows from (5-3) and (6-9) that∫
R∩M
|S0(α0,α)| dα0 dα� Pn−r−3. (6-12)

From (6-11) and (6-12), we infer that

S1 = (2η)r
∫
R∩M

S0(α0,α)e(−α · τ ) dα0 dα+ o(Pn−r−3).

Thus, to prove (1-4), it remains to show that

S2 =SχwPn−r−3
+ o(Pn−r−3), (6-13)

where

S2 =

∫
R∩M

S0(α0,α)e(−α · τ ) dα0 dα.

For q ∈N and a ∈ {1, 2, . . . , q}, let X (q, a) be the set of (α0,α)∈R×Rr satisfying

q 6 C1 P2θ0, |qα0− a|< P2θ0−3.

Lemma 6.3. Assume (4-6). Then R(q, a, 0)∩M= X (q, a)∩M.

Proof. As R(q, a, 0) ⊆ X (q, a), we have R(q, a, 0)∩M ⊆ X (q, a)∩M. Next,
suppose that (α0,α) ∈ X (q, a)∩M. Then |α|< C3 Pδ

2θ0−1, so

|3α| � Pδ
2θ0−1.

Now |q3α| � P (2+δ
2)θ0−1, and in particular, we have (4-1) with θ = θ0 and a = 0.

Thus, we have (α0,α) ∈R(q, a, 0), and plainly (α0,α) ∈M. �

Note also that, if (α0,α) ∈R∩M, then (α0,α) ∈R(q, a, 0) for some q, a ∈ Z

satisfying (4-6). Indeed, if (α0,α)∈R(q, a, a)∩M for some q , a, and a satisfying
(4-6), then the triangle inequality implies that a = 0. By Lemma 6.3, we conclude
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that R∩M is the disjoint union of the sets X (q, a)∩M over q, a∈Z satisfying (4-6).
Put

V (q)= [−q−1 P2θ0−3, q−1 P2θ0−3
] (q ∈ N)

and
W = [−C3 Pδ

2θ0−1,C3 Pδ
2θ0−1
]
r .

Now

S2 =
∑

q6C1 P2θ0

q∑
a=1

(a,q)=1

∫
V (q)×W

fq,a(β0,α)e(−α · τ ) dβ0 dα,

where
fq,a(β0,α)= (P/q)n Sq,a,0 I (P3β0, P3α). (6-14)

To prove (6-13), we complete the integrals and the outer sum to infinity. In light
of (1-2), it follows from Lemmas 3.1 and 5.2 that, if (a, q)= 1, then

fq,a(β0,α)� Pnq−3(1+ P3
|β0|)

−1−ε
∏
v∈V

(1+ P|λv|)−1−ε, (6-15)

where V is as in Section 5 and λ=3α. Let

S3 =
∑

q6C1 P2θ0

q∑
a=1

(a,q)=1

∫
R×W

fq,a(β0,α)e(−α · τ ) dβ0 dα.

By (6-15) and an invertible change of variables,

S2− S3� Pn
∑
q∈N

q−3
q∑

a=1
(a,q)=1

∫
∞

q−1 P2θ0−3
(P3β0)

−1−ε dβ0

∫
Rr

∏
v∈V

(1+ P|λv|)−1−ε dλV

= o(Pn−r−3), (6-16)

where λV = (λv)v∈V .
Let

S4 =
∑

q6C1 P2θ0

q∑
a=1

(a,q)=1

∫
Rr+1

fq,a(β0,α)e(−α · τ ) dβ0 dα.

By (6-15) and an invertible change of variables,

S3− S4� Pn
∑
q∈N

q−3
q∑

a=1
(a,q)=1

∫
R

(1+ P3
|β0|)

−1−ε dβ0

∫ ∏
j6r

(1+ P|α′j |)
−1−ε dα′.

Here the inner integral is over α′ ∈ Rr such that 3−1
V α′ /∈ W , where 3V is the
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submatrix of 3 determined by taking rows indexed by V . With c a small positive
constant, we now have

S3− S4� Pn−r−2
∫
∞

cPδ2θ0−1
(Pα)−1−ε dα = o(Pn−r−3). (6-17)

Let

S5 =
∑
q∈N

q∑
a=1

(a,q)=1

∫
Rr+1

fq,a(β0,α)e(−α · τ ) dβ0 dα.

By (6-15) and an invertible change of variables,

S4− S5� Pn
∑

q>C1 P2θ0

q−3
q∑

a=1
(a,q)=1

∫
R

(1+P3
|β0|)

−1−ε dβ0

∫
Rr

∏
j6r

(1+P|α′j |)
−1−ε dα′

� Pn−r−3
∑

q>C1 P2θ0

q−2
= o(Pn−r−3). (6-18)

In view of (1-5), (3-3), and (6-14),

S5 = PnS

∫
Rr+1

e(−α · τ )I (P3β0, P3α) dβ0 dα.

Changing variables yields

S5 = Pn−r−3S

∫
Rr+1

e(−P−1α · τ )I (β0,3α) dβ0 dα. (6-19)

By (1-6) and (3-2),

χw =

∫
Rr+1

I (β0,3α) dβ0 dα.

As h > 17+ 8r , the bounds (5-1) and

e(−P−1α · τ )− 1� P−1
|α|

imply that ∫
Rr+1

e(−P−1α · τ )I (β0,3α) dβ0 dα = χw + O(P−1).

Substituting this into (6-19) yields

S5 = Pn−r−3Sχw + o(Pn−r−3).

Combining this with (6-16), (6-17), and (6-18) yields (6-13), completing the proof
of (1-4).
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7. Positivity of the singular series and singular integral

In this section, we confirm that S> 0 and χw > 0, thereby completing the proof
of Theorem 1.1. Since S is the singular series associated to the cubic form C , its
positivity is already well understood. Davenport [1959, §7] showed the sufficiency
of a certain p-adic solubility property, invariant under equivalence (invertible change
of basis). He also showed that any cubic form that is nondegenerate in at least ten
variables has this property [Davenport 1959, Lemma 2.8]. If C is degenerate, then
it is equivalent to a cubic form C∗ in which n1 6 n− 1 variables appear explicitly
so that h(C∗)6 n1 and we may repeat the argument. Since h(C)> 25, and since
the h-invariant is invariant under equivalence, we conclude that S> 0.

For positivity of the singular integral, we begin by establishing the equivalence
of the definitions (1-6) and (1-8). Lemma 5.2 provides the appropriate analogy to
[Schmidt 1982b, Lemma 11]. Thus, following Chapter 11 therein shows that the
two definitions are equivalent.

We now work with the definition (1-8). We claim that IL( f )�1. Sincew(x)�1
for x ∈ B :=

{
x ∈ Rn

: |x|6 1
2

}
, it suffices to show that∫

B
9L( f (x)) dx� 1. (7-1)

Define a real manifold

M= {C = L1 = · · · = Lr = 0} ⊆ Rn.

All of our forms have odd degree, so M∩ A 6= {0} for every (r + 2)-dimensional
subspace A of Rn . Thus, by [Schmidt 1982a, Lemma 1], dim(M)> n−r−1. The
argument of [Schmidt 1982b, Lemma 2] now confirms (7-1), thereby establishing
the positivity of χw. This completes the proof of Theorem 1.1.

8. A more general result

In this section, we prove Theorem 1.2. We begin by establishing that, if α ∈Rr
\{0},

then α · L is not a rational form. Suppose that α · L is a rational form, for some
α ∈ Rr . Then 3α = q for some q ∈Qn , where 3 is given by (2-10). Note that 3
has full rank since its entries are algebraically independent over Q and its r × r
minors are nontrivial integer polynomials in these entries. It therefore follows from
3α= q that α1, . . . , αr are rational functions in the entries of 3V over Q, where V
is as in Section 5 and 3V is the submatrix of 3 determined by taking rows indexed
by V . Let i ∈ {1, 2, . . . , n} \ V , and consider the equation

α1λ1,i +αrλr,i = qi . (8-1)

Since α1, . . . , αr are rational functions in the entries of 3V over Q, (8-1) and the
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algebraic independence of the entries of 3 necessitate that α = 0. We conclude
that, if α ∈ Rr

\ {0}, then α · L is not a rational form.
By rescaling if necessary, we may assume that C has integer coefficients. By

Theorem 1.1, we may now assume that h 6 16+ 8r , and so n− h > r . Write

C = A1 B1+ · · ·+ Ah Bh,

where A1, . . . , Ah are rational linear forms and B1, . . . , Bh are rational quadratic
forms. The vector space defined by

A1 = · · · = Ah = 0

has a rational subspace of dimension n − h, by the rank-nullity theorem. Let
z1, . . . , zn−h be linearly independent integer points in this subspace. Define

L ′i ( y)= L i (y1z1+ · · ·+ yn−h zn−h) (16 i 6 r).

We seek to show that L′(Zn−h) is dense in Rr . Writing z j = (z j,1, . . . , z j,n)

(16 j 6 n− h) and recalling (2-9),

L ′i ( y)=
∑

j6n−h

λ′i, j y j ,

where
λ′i, j =

∑
k6n

λi,kz j,k (16 i 6 r, 16 j 6 n− h).

Lemma 8.1. The λ′i, j are algebraically independent over Q.

Proof. Extend z1, . . . , zn−h to a basis z1, . . . , zn for Qn , and define

λ′i, j =
∑
k6n

λi,kz j,k (16 i 6 r, n− h < j 6 n).

We now have an invertible rational matrix

Z =

z1,1 · · · z1,n
...

...

zn,1 · · · zn,n

 ,
where z j = (z j,1, . . . , z j,n) (16 j 6 n). Put

3′ =

λ
′

1,1 · · · λ
′

r,1
...

...

λ′1,n · · · λ
′
r,n

 ,
and note that 3′ = Z3.
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We shall prove, a fortiori, that the entries of 3′ are algebraically independent
over Q. Let P ′ be a rational polynomial in rn variables such that P ′(3′) = 0.
Define a rational polynomial P in rn variables by

P(4)= P ′(Z4), 4 ∈Matn×r .

Now
P(3)= P ′(Z3)= P ′(3′)= 0,

so the algebraic independence of the entries of3 forces P to be the zero polynomial.
Since

P ′(4)= P(Z−14)

identically, the polynomial P ′ must also be trivial. �

Thus, the entries of the matrix

A =

λ
′

1,1 · · · λ
′

1,n−h
...

...

λ′r,1 · · · λ
′

r,n−h


are algebraically independent over Q, and we seek to show that

{Ax : x ∈ Zn−h
}

is dense in Rr . We put A in the form (I |3′′), where I is the r × r identity matrix
and 3′′ is an r × (n− h− r) matrix, by the following operations.

(i) Divide the top row by A11 so that now A11 = 1.

(ii) Subtract multiples of the top row from other rows so that

A21 = · · · = Ar1 = 0.

(iii) Proceed similarly for columns 2, 3, . . . , r .

It suffices to show that the image of Zn−h under left multiplication by (I |3′′)
is dense in Rr .

Lemma 8.2. The entries of 3′′ are algebraically independent over Q.

Proof. After step (i), the entries of A other than the top-left entry are algebraically
independent. Indeed, suppose

P
(

A12

A11
, . . . ,

A1,n−h

A11
, (Ai j ) 26i6r

16 j6n−h

)
= 0

for some polynomial P with rational coefficients, where the Ai j are the entries
of A prior to step (i). For some t ∈N, we can multiply the left-hand side by At

11 to
obtain a polynomial P∗ in (Ai j ) 16i6r

16 j6n−h
with rational coefficients. The algebraic
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independence of the Ai j implies that P∗ is the zero polynomial, and so P must also
be the zero polynomial.

After step (ii), the entries of A excluding the first column are algebraically
independent. Indeed, suppose

P
(

A12, . . . , A1,n−h, (Ai j − Ai1 A1 j ) 26i6r
26 j6n−h

)
= 0

for some polynomial P with rational coefficients, where the Ai j are the entries of A
prior to step (ii). The left-hand side may be regarded as a polynomial P∗ in the Ai j

((i, j) 6= (1, 1)). The algebraic independence of the Ai j ((i, j) 6= (1, 1)) implies
that P∗ is the zero polynomial, and so P must also be the zero polynomial.

We may now ignore column 1 and deal with columns 2, 3, . . . , r similarly. �

Next, consider the forms L ′′1, . . . , L ′′r given by

L ′′i (x)= µi,1x1+ · · ·+µi,n−h−r xn−h−r (16 i 6 r),

where µi, j =3
′′

i j (16 i 6 r , 16 j 6 n−h−r ). It remains to show that L′′(Zn−h−r )

is dense modulo 1 in Rr . We shall in fact establish equidistribution modulo 1 of the
values of L′′(Nn−h−r ).

For this, we use a multidimensional Weyl criterion [Cassels 1957, p. 66]. With
m = n− h− r , we need to show that, if h ∈ Zr

\ {0}, then

P−m
∑

x1,...,xm6P

e(h · L′′(x))→ 0

as P→∞. The summation equals∏
j6m

∑
x j6P

e
(

x j

∑
i6r

hiµi, j

)
,

so it suffices to show that ∑
i6r

hiµi,1 /∈Q.

This follows from the algebraic independence of the µi, j , so we have completed
the proof of Theorem 1.2.

9. Equidistribution

In this section, we prove Theorem 1.3. Let k be a fixed nonzero integer vector in r
variables. By a multidimensional Weyl criterion [Cassels 1957, p. 66], we need to
show that

Nu(P)−1
∑
|x|<P

C(x)=0

e(k · L(x))→ 0
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as P→∞, where

Nu(P)= #{x ∈ Zn
: |x|< P, C(x)= 0}.

It is known that Pn−3
� Nu(P)� Pn−3; see remark (B) in the introduction of

[Schmidt 1985]. Thus, it remains to show that∑
|x|<P

C(x)=0

e(k · L(x))= o(Pn−3). (9-1)

Let θ0 be a small positive real number, and let U be as in (4-5). By rescaling if
necessary, we may assume that C has integer coefficients. By (2-7), the left-hand
side of (9-1) is equal to ∫

U
Su(α0, k) dα0,

where Su( · , · ) is as defined in the introduction. Recall (2-9) and (2-10). Note that

Su(α0, k)= gu(α0,λ
∗),

where gu( · , · ) is as defined in (2-12) and λ∗ =3k ∈ Rn is fixed.
For q ∈ N and a ∈ Z, let N′(q, a) be the set of α0 ∈U such that

|qα0− a|< P2θ0−3.

Recall that C1 is a large positive real number. For positive integers q 6 C1 P2θ0 , let
N′(q) be the disjoint union of the sets N′(q, a) over integers a that are relatively
prime to q . Let N′ be the disjoint union of the sets N′(q). By Lemma 2.1 and the
classical pruning argument in [Davenport 2005, Lemma 15.1], it now suffices to
prove that ∫

N′
Su(α0, k) dα0 = o(Pn−3).

Let α0 ∈N
′(q, a), with q 6 C1 P2θ0 and (a, q)= 1. Then

Su(α0, k)=
∑

y mod q

eq(aC( y))Sy(q, β0,λ
∗),

where β0 = α0− a/q and where in general we define

Sy(q, β0,λ)=
∑

z:| y+q z|<P

e(β0C( y+ q z)+λ · ( y+ q z)).

Note that |qβ0| < P2θ0−3. Let Q denote the set of positive integers q 6 C1 P2θ0

such that
‖qλ∗v‖< P7θ0−1 (16 v 6 n),
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and put
Q′ = {q ∈ N : q 6 C1 P2θ0} \Q.

Suppose q ∈Q′, and let j be such that ‖qλ∗j‖> P7θ0−1. To bound Sy(q, β0,λ
∗),

we reorder the summation, if necessary, so that the sum over z j is on the inside. We
bound this inner sum using the Kusmin–Landau inequality [Graham and Kolesnik
1991, Theorem 2.1] and then bound the remaining sums trivially. Note that, as a
function of z j , the phase

β0C( y+ q z)+λ∗ · ( y+ q z)
has derivative

β0
∂

∂z j
C( y+ q z)+ qλ∗j ,

which is monotonic in at most two stretches. As ‖qλ∗j‖> P7θ0−1 and

β0
∂

∂z j
C( y+ q z)� P2θ0−1

over the range of summation, the Kusmin–Landau inequality tells us that the sum
over z j is O(P1−7θ0). The remaining sums are over ranges of length O(P/q), so

Sy(q, β0,λ
∗)� (P/q)n−1 P1−7θ0 .

Therefore,
Su(α0, k)� q Pn−7θ0 .

Since meas(N′(q))� P2θ0−3, we now have∑
q∈Q′

∫
N′(q)

Su(α0, k) dα0�
∑

q6C1 P2θ0

P2θ0−3q Pn−7θ0 = o(Pn−3).

It therefore remains to show that∑
q∈Q

∫
N′(q)

Su(α0, k) dα0 = o(Pn−3).

We shall need to study the more general exponential sums gu(α0,λ). Let q ∈ N

with q 6 P , and let a, a1, . . . , an ∈ Z. Set α0 and λ as in (3-1), and write

g∗u(α0,λ)= (P/q)n Sq,a,a Iu(P3β0, Pβ),

where Sq,a,a is given by (3-3) and where

Iu(γ0, γ )=

∫
[−1,1]n

e(γ0C(x)+ γ · x) dx.
Lemma 9.1. We have

gu(α0,λ)− g∗u(α0,λ)� q Pn−1(1+ P3
|β0| + P|β|). (9-2)
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Proof. First observe that

gu(α0,λ)=
∑

y mod q

eq(aC( y)+ a · y)Sy(q, β0,β) (9-3)

and that
Sy(q, β0,β)=

∑
|x|<P

x≡ y mod q

e(β0C(x)+β · x).

By [Browning 2009, Lemma 8.1], we now have

Sy(q, β0,β)= q−n
∫
[−P,P]n

e(β0C(x)+β ·x) dx+O
(

Pn−1(1+P3
|β0|+P|β|)

qn−1

)
= (P/q)n Iu(P3β0, Pβ)+O

(
Pn−1(1+P3

|β0|+P|β|)
qn−1

)
.

Substituting this into (9-3) yields (9-2). �

Suppose α0 ∈N
′(q, a) with q ∈Q. With λ = λ∗ and av the nearest integer to

qλv (16 v 6 n), put (3-1) and S∗u (α0, k)= g∗u(α0,λ
∗). In light of the inequalities

16 q 6 C1 P2θ0, |qβ0|< P2θ0−3, |qβ|< P7θ0−1,

the error bound (9-2) implies that

Su(α0, k)− S∗u (α0, k)� Pn−1+7θ0 .

Since

meas
( ⋃

q∈Q

N′(q)
)
� P4θ0−3,

it now suffices to prove that∑
q∈Q

∫
N′(q)

S∗u (α0, k) dα0 = o(Pn−3). (9-4)

The final ingredient that we need for a satisfactory mean-value estimate is an
unweighted analogue of (5-1).

Lemma 9.2. We have

Iu(γ0, γ )�
1

1+ |γ0|h/8−ε + |γ |1/3
. (9-5)

Proof. Since Iu(γ0, γ )� 1, we may assume that |γ0| + |γ | is large. Specializing
(q, a, a)= (1, 0, 0) in (9-2), it follows that

Iu(γ0, γ )= P−ngu(γ0/P3, γ /P)+ O(P−1(|γ0| + |γ |)).
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Since Iu(γ0, γ ) is independent of P , we are free to choose P = (|γ0| + |γ |)
n . By

Lemma 5.1, with ξ = ε/n2, we now have

Iu(γ0, γ )� Pε/n2
|γ0|
−h/8
+
|γ0| + |γ |

P
� Pε/n2

|γ0|
−h/8,

so

Iu(γ0, γ )�
(|γ0| + |γ |)

ε/n

|γ0|h/8
. (9-6)

Let C4 be a large positive constant. As |γ0| + |γ | is large and h > 17, the
desired inequality follows from (9-6) if |γ |< C4|γ0|. Thus, we may assume that
|γ |> C4|γ0|. Choose j ∈ {1, 2, . . . , n} such that |γ | = |γ j |. Observe that

Iu(γ0, γ )� sup
−16xi61 (i 6= j)

∣∣∣∣∫ 1

−1
e(γ0C(x)+ γ j x j ) dx j

∣∣∣∣.
As |γ j |> C4|γ0|, the bound in [Vaughan 1997, Theorem 7.3] now implies that

Iu(γ0, γ )� |γ j |
−1/3
= |γ |−1/3.

Combining this with (9-6) gives

Iu(γ0, γ )�
(|γ0| + |γ |)

ε/n

|γ0|h/8+ |γ |1/3(|γ0| + |γ |)ε/n �
|γ |ε/n

|γ0|h/8+ |γ |1/3+ε/n .

Considering cases and recalling that h 6 n, we now have

Iu(γ0, γ )�
1

|γ0|h/8−ε + |γ |1/3
.

This delivers the sought estimate (9-5) since |γ0| + |γ | � 1. �

Let α0 ∈N
′(q, a), with q ∈Q and (a, q)= 1. The inequalities (3-6), (9-5), and

h > 17 give

S∗u (α0, k)� Pnq−2−ε(1+ P3
|α0− a/q|)−1−εF(k; q, P)ε,

where
F(k; q, P)=

∏
v6n

(q + P‖qλ∗v‖)
−1.

Therefore,∑
q∈Q

∫
N′(q)
|S∗u (α0, k)|F(k; q, P)−ε dα0� Pn

∑
q∈N

q−1−ε
∫

R

(1+ P3
|β0|)

−1−ε dβ0

� Pn−3. (9-7)

As k is a fixed nonzero vector, we have 1� |k| � 1. In particular, by (6-2), we
have 1� |3k| � 1. Thus, Corollary 6.2 gives

F(k; q, P)6 F(k; P)= o(1)
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as P → ∞. Coupling this with (9-7) yields (9-4), completing the proof of
Theorem 1.3.

10. The singular locus

The singular locus of C is the complex variety cut out by vanishing of ∇C . Let
S be the singular locus of C , and let σ be the affine dimension of S. Let h be the
h-invariant of C , and let A1, . . . , Ah, B1, . . . , Bh be as in (1-1). Then S contains
the variety {A1 = · · · = Ah = B1 = · · · = Bh = 0}, and so σ > n−2h. In particular,
the conclusions of Theorem 1.1 are valid if the hypothesis (1-2) is replaced by the
condition

n− σ > 32+ 16r.

Thus, these conclusions hold for any nonsingular cubic form in more than 32+16r
variables.

However, one could improve upon this using a direct approach. Note that h
could be replaced by n− σ in Lemma 2.1; the resulting lemma would be almost
identical to [Birch 1962, Lemma 4.3], and again the weights and lower-order terms
are of no significance. The remainder of the analysis would be identical and lead
us to conclude that Theorem 1.1 is valid with h replaced by n− σ . We could even
use the same argument for positivity of the singular series, for if r > 1, then

h >
n− σ

2
>

16+ 8r
2

> 12> 9.

In particular, the conclusions of Theorem 1.1 would hold for any nonsingular cubic
form in more than 16+8r variables. Similarly, Theorem 1.3 is valid with h replaced
by n−σ , and so its conclusion would hold for any nonsingular cubic form in more
than sixteen variables.

Finally, we challenge the reader to improve upon these statements using more
sophisticated technology, for instance to reduce the number of variables needed
to solve the system (1-7). It is likely that van der Corput differencing could be
profitably incorporated, similarly to [Heath-Brown 2007]. One might also hope to
do better by assuming that C is nonsingular, as in [Heath-Brown 1983].
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