Vol. 10, No. 2, 2016

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11
Issue 6, 1243–1488
Issue 5, 1009–1241
Issue 4, 767–1007
Issue 3, 505–765
Issue 2, 253–503
Issue 1, 1–252

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Author Index
To Appear
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Equidistribution of values of linear forms on a cubic hypersurface

Sam Chow

Vol. 10 (2016), No. 2, 421–450

Let C be a cubic form with integer coefficients in n variables, and let h be the h-invariant of C. Let L1,,Lr be linear forms with real coefficients such that, if α r {0}, then αL is not a rational form. Assume that h > 16 + 8r. Let τ r, and let η be a positive real number. We prove an asymptotic formula for the weighted number of integer solutions x [P,P]n to the system C(x) = 0, |L(x) τ| < η. If the coefficients of the linear forms are algebraically independent over the rationals, then we may replace the h-invariant condition with the hypothesis n > 16 + 9r and show that the system has an integer solution. Finally, we show that the values of L at integer zeros of C are equidistributed modulo 1 in r, requiring only that h > 16.

diophantine equations, diophantine inequalities, diophantine approximation, equidistribution
Mathematical Subject Classification 2010
Primary: 11D25
Secondary: 11D75, 11J13, 11J71, 11P55
Received: 29 April 2015
Revised: 9 November 2015
Accepted: 27 December 2015
Published: 16 March 2016
Sam Chow
School of Mathematics
University of Bristol
University Walk
United Kingdom