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Group schemes and local densities
of ramified hermitian lattices
in residue characteristic 2

Part I
Sungmun Cho

The obstruction to the local-global principle for a hermitian lattice (L , H) can
be quantified by computing the mass of (L , H). The mass formula expresses the
mass of (L , H) as a product of local factors, called the local densities of (L , H).
The local density formula is known except in the case of a ramified hermitian
lattice of residue characteristic 2.

Let F be a finite unramified field extension of Q2. Ramified quadratic exten-
sions E/F fall into two cases that we call Case 1 and Case 2. In this paper, we
obtain the local density formula for a ramified hermitian lattice in Case 1, by
constructing a smooth integral group scheme model for an appropriate unitary
group. Consequently, this paper, combined with the paper of W. T. Gan and J.-K.
Yu (Duke Math. J. 105 (2000), 497–524), allows the computation of the mass
formula for a hermitian lattice (L , H) in Case 1.
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1. Introduction

1A. Introduction. The subject of this paper is old and has intrigued many math-
ematicians. If (V, H) and (V ′, H ′) are two hermitian k ′-spaces (or quadratic
k-spaces), where k is a number field and k ′ is a quadratic field extension of k, then it
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is well known that they are isometric if and only if for all places v, the localizations
(Vv, Hv) and (V ′v, H ′v) are isometric. That is, the local-global principle holds for
hermitian spaces and quadratic spaces. It is natural to ask whether the local-global
principle holds for a hermitian R′-lattice or quadratic R-lattice (L , H), where R′

and R are the rings of integers of k ′ and k, respectively. In general, the answer to this
question is no. However, there is a way, namely, the mass of (L , H), to quantify the
obstruction to the local-global principle. An essential tool for computing the mass
of a quadratic or hermitian lattice is the mass formula. The mass formula expresses
the mass of (L , H) as a product of local factors, called the local densities of (L , H).

Therefore, it suffices to find the explicit local density formula in order to obtain
the mass formula and thus quantify the obstruction to the local-global principle.

For a quadratic lattice, the local density formula was first computed by G. Pall
[1965] (for p 6= 2) and G. L. Watson [1976] (for p = 2). For an expository sketch
of their approach, see [Kitaoka 1993]. There is another proof of Y. Hironaka and
F. Sato [2000] computing the local density when p 6= 2. They treat an arbitrary
pair of lattices, not just a single lattice, over Zp (for p 6= 2). J. H. Conway and
J. A. Sloane [1988] further developed the formula for any p and gave a heuristic
explanation for it. Later, W. T. Gan and J.-K. Yu [2000] (for p 6= 2) and S. Cho
[2015a] (for p= 2) provided a simple and conceptual proof of Conway and Sloane’s
formula by explicitly constructing a smooth affine group scheme G over Z2 with
generic fiber AutQ2(L , H), which satisfies G(Z2)= AutZ2(L , H).

There has not been as much work done in computing local density formulas for
hermitian lattices as in the case of quadratic lattices. Although the local density for-
mula for a quadratic lattice with p= 2 was first proved in the author’s paper [2015a],
the formula was proposed in Conway and Sloane’s paper [1988]. However, the local
density formula for a ramified hermitian lattice with p= 2 has not been proposed yet
and therefore, the mass formula, when the ideal (2) is ramified in k ′/k, is not known.

Hironaka [1998; 1999] obtained the local density formula for an unramified
hermitian lattice. In addition, M. Mischler [2000] computed the formula for a
ramified hermitian lattice (p 6= 2) under restricted conditions. Later, Gan and
Yu [2000] found a conceptual and elegant proof of the local density formula for
an unramified hermitian lattice without any restriction on p, and for a ramified
hermitian lattice with the restriction p 6= 2, by explicitly constructing certain smooth
affine group schemes (called smooth integral models) of a unitary group.

As discussed further on p. 456, we distinguish two cases for a ramified quadratic
extension E/F , where F is an unramified finite extension of Q2, depending on the
lower ramification groups Gi of the Galois group Gal(E/F). The division is as
follows: {

Case 1 : G−1 = G0 = G1, G2 = 0;
Case 2 : G−1 = G0 = G1 = G2, G3 = 0.
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These two cases should be handled independently because of technical difficulty
and complexity. The methodologies of the two cases are basically the same, but
Case 2 is much more difficult than Case 1.

The main contribution of this paper is to get an explicit formula for the local
density of a hermitian B-lattice (L , h) in Case 1, by explicitly constructing a certain
smooth group scheme associated to it that serves as an integral model for the unitary
group associated to (L ⊗A F, h⊗A F) and by investigating its special fiber, where
B is a ramified quadratic extension of A and A is an unramified finite extension of
Z2 with F as the quotient field of A. The local density formula in Case 2 is handled
in [Cho 2015b].

In conclusion, this paper, combined with [Gan and Yu 2000] and [Cho 2015a],
allows the computation of the mass formula for a hermitian R′-lattice (L , H) when
kv/Q2 is unramified, and k ′v′/kv satisfies Case 1 or is unramified. Here, k ′v′ (resp. kv)
is the completion of k ′ (resp. k) at the place v′ (resp. v), where v′ lies over v and v
lies over the ideal (2). As the simplest case, we can compute the mass formula for
an arbitrary hermitian lattice explicitly when k is Q and k ′ is any quadratic field
extension of Q such that the completion of k ′ at any place lying over the ideal (2)
satisfies Case 1 or is unramified over Q2.

Let us briefly comment on the proofs. A key input into the local density formula is

lim
N→∞

f −N dim G#G ′(A/π N A), (1-1)

where f is the cardinality of the residue field of A, π is a uniformizer in A, and G ′

is the naive integral model for the unitary group G associated to (L⊗A F, h⊗A F),
which represents the functor R 7→ AutB⊗AR(L ⊗A R, h⊗A R).

Now if we are lucky enough that G ′ is smooth, then the limit in (1-1) would
stabilize at N = 1, which would reduce us to simply finding G ′(κ), where κ denotes
the residue field of A. A key observation of Gan and Yu is that, even when G ′

is not smooth, one can employ a certain smooth group scheme G lurking in the
background, which is a smooth integral model of G that satisfies G(R)=G ′(R) for
every étale A-algebra R. The existence and uniqueness of such a G is guaranteed
by the general theory of group smoothening. Then the problem essentially reduces
to constructing G explicitly, so that one can compute the cardinality of the group
G(κ) of κ-points of its special fiber. This tells us what the analog of (1-1) for G is,
and further, it so turns out that one can deduce the expression (1-1) from its analog
for G. For a detailed explanation about this, see Section 3 of [Gan and Yu 2000].

Let us now describe, therefore, how we construct G and study its special fiber.
As G ′ fails to be smooth, one must impose more equations than merely the ones
related to the preservation of (L ⊗A R, h ⊗A R). Towards this, note that there
exist several sublattices L ′ of L such that any element of AutB(L , h) automati-
cally also preserves L ′ (and such that, for any étale A-algebra R, any element of
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AutB⊗AR(L⊗A R, h⊗A R) automatically also preserves L ′⊗A R). For instance, the
sublattice L ′ of elements x ∈ L such that h(x, L) belongs to a given ideal of B
necessarily satisfies this property. This gives us additional equations to impose —
these equations leave the group of R-points for any étale A-algebra R untouched,
while taking us closer to smoothness. It so happens that taking sufficiently many
sublattices L ′ into consideration, and imposing further restrictions arising from the
behavior of an element of AutB⊗AR(L ⊗A R, h⊗A R) on some of their quotients,
do leave us with enough equations to ensure that the group scheme G defined by
them is smooth. This step already turns out to be much harder for p = 2 than for
odd p, since in this case there are many more isomorphism classes of hermitian
lattices. Another source of complications is the fact that the equations involve
quadratic forms over the residue field κ of A that arise as quotients of some of the
lattices L ′ mentioned above (the theory of quadratic forms over finite fields is more
complicated in characteristic 2 than in other characteristics).

Now let us describe some of the ideas involved in the computation of the special
fiber G̃ of G. Since the quotients of some pairs of lattices of the form L ′ alluded to
in the previous paragraph naturally support symplectic or quadratic forms, it is not
hard to construct a map ϕ from G̃ to a suitable product of symplectic and orthogonal
groups. This step occurs in [Gan and Yu 2000], too. However, p being even for us
poses at least two new difficulties. Firstly, although this product of symplectic and
orthogonal groups contains the identity component of the maximal reductive quotient
of G̃, this fact seems to be difficult to prove directly. Rather, we prove this fact indi-
rectly, by explicitly computing the dimension of the kernel of ϕ. Secondly, ϕ does
not quite define the maximal reductive quotient of G̃: this maximal reductive quo-
tient is built up from ϕ together with a few additional homomorphisms G̃→Z/2Z.

Our construction of these homomorphisms G̃→Z/2Z is quite indirect. A typical
homomorphism is constructed in the following manner. We define a certain new
hermitian lattice, say (L ′′, h′′), starting from (L , h). This lattice naturally gives us a
homomorphism G̃→ G̃ ′′, where G̃ ′′ is the special fiber of the smooth integral model
obtained by applying our construction to (L ′′, h′′) in place of (L , h). The analog ϕ′′

of ϕ defines a map from G̃ ′′ to (a product of symplectic and orthogonal groups, and
in particular) an orthogonal group, and, by composing with the Dickson invariant,
one gets a homomorphism G̃ ′′→Z/2Z. Precomposing this with the homomorphism
G̃→ G̃ ′′ yields a homomorphism G̃→Z/2Z. All our homomorphisms G̃→Z/2Z

are constructed in this way.
To show that the candidate for the maximal reductive quotient of G̃ obtained

from ϕ and the morphisms G̃→ Z/2Z is indeed the maximal reductive quotient,
one shows that its kernel is isomorphic, as an affine variety, to an affine space over κ .
This implies by a theorem of Lazard that the kernel of our candidate for maximal
reductive quotient is indeed a connected unipotent group scheme, as desired.
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Our main results are Theorem 3.8, Theorem 4.12 and Theorem 5.2. Theorem 3.8
shows that the group scheme G we construct is indeed the sought after smooth
group scheme over A, Theorem 4.12 gives the maximal reductive quotient of G̃,
and Theorem 5.2 (supplemented by Remark 5.3) gives us the final local density
formulas as follows. The local density of (L , h) is

βL = f N
· f − dim G#G̃(κ).

Here, N is a certain integer which can be found in Theorem 5.2 and #G̃(κ) can be
computed explicitly based on Remark 5.3(1) and Theorem 4.12.

Appendix B is devoted to illustrating our method with a simple example: the
case where L = B · e is of rank one and h is defined by h(le, l ′e)= σ(l)l ′, σ being
the unique nontrivial element of Gal(E/F). Section B.1 describes how the usual
approach that works when p 6= 2 (and yields the obvious integral model for the
“norm one” torus associated to B/A) fails when p = 2, and how one may fix this
from “first principles”, without using any of our techniques. We hope this helps
clarify some of the issues involved. Section B.2 illustrates how our construction
specializes to this case; we hope that the simplicity of this case may better motivate
our general construction. Some readers may therefore prefer to look at Appendix B
before perusing the general constructions of Sections 3 and 4 and Appendix A.

This paper is organized as follows. We first state a structure theorem for integral
hermitian forms in Section 2. We then give an explicit construction of G (in
Section 3) and study its special fiber (in Section 4) in Case 1. Finally, we obtain an
explicit formula for the local density in Section 5 in Case 1. In Appendix B, we
provide an example to describe the smooth integral model and its special fiber and
to compute the local density for a unimodular lattice of rank 1.

The reader might want to skip to Appendix B and at least go to Section B.1 to
get a first glimpse into why the case of p = 2 is really different. Some of the ideas
behind our construction can be seen in the simple example illustrated in Section B.2.

The construction of smooth integral models and the investigation of their special
fibers in this paper basically follow the arguments in [Gan and Yu 2000] and [Cho
2015a]. As in [Gan and Yu 2000], the smooth group schemes constructed in this
paper should be of independent interest.

2. Structure theorem for hermitian lattices and notations

2A. Notation. Notation and definitions in this section are taken from [Cho 2015a;
Gan and Yu 2000; Jacobowitz 1962].

• Let F be an unramified finite extension of Q2 with A its ring of integers and κ
its residue field.

• Let E be a ramified quadratic field extension of F with B its ring of integers.
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• Let σ be the nontrivial element of the Galois group Gal(E/F).

• The lower ramification groups Gi of the Galois group Gal(E/F) satisfy one of
the following: {

Case 1 : G−1 = G0 = G1, G2 = 0;
Case 2 : G−1 = G0 = G1 = G2, G3 = 0.

We explain the above briefly. Based on Section 6 and Section 9 of [Jacobowitz
1962], we can select a suitable choice of a uniformizer π of B in the following
way. In Case 1, E = F(

√
1+ 2u) for some unit u of A and π = 1+

√
1+ 2u.

Then σ(π) = επ , where ε ≡ 1 mod π and ε−1
π

is a unit in B. So we have that
σ(π)+π, σ(π) ·π ∈ (2)\(4). In Case 2, E = F(π). Here, π =

√
2δ, where δ ∈ A

and δ ≡ 1 mod 2. Then σ(π)=−π .
From now on, a uniformizing element π of B, u, and δ are fixed as explained

above throughout this paper. The constructions of smooth integral models associated
to these two cases are different and we will treat them independently.

• We consider a B-lattice L with a hermitian form

h : L × L→ B,

where h(a · v, b ·w)= σ(a)b · h(v,w) and h(w, v)= σ(h(v,w)). Here, a, b ∈ B
and v,w ∈ L . We denote by a pair (L , h) a hermitian lattice. We assume that
V = L ⊗A F is nondegenerate with respect to h.

• We denote by (ε) the B-lattice of rank 1 equipped with the hermitian form having
Gram matrix (ε). We use the symbol A(a, b, c) to denote the B-lattice B ·e1+B ·e2

with the hermitian form having Gram matrix
( a
σ(c)

c
b

)
. For each integer i , the lattice

of rank 2 having Gram matrix
( 0
σ(π i )

π i

0

)
is called the π i -modular hyperbolic plane

and denoted by H(i).

• A hermitian lattice L is the orthogonal sum of sublattices L1 and L2, written
L = L1⊕ L2, if L1 ∩ L2 = 0, L1 is orthogonal to L2 with respect to the hermitian
form h, and L1 and L2 together span L .

• The ideal in B generated by h(x, x) as x runs through L will be called the norm
of L and written n(L).

• By the scale s(L) of L , we mean the ideal generated by the subset h(L , L) of B.

• We define the dual lattice of L , denoted by L⊥, as

L⊥ = {x ∈ L ⊗A F : h(x, L)⊂ B}.

Definition 2.1. Let L be a hermitian lattice. Then:

(a) For any nonzero scalar a, define aL = {ax | x ∈ L}. It is also a lattice in the
space L ⊗A F . Call a vector x of L maximal in L if x does not lie in πL .



Group schemes and densities of ramified hermitian lattices, I 457

(b) The lattice L will be called π i -modular if the ideal generated by the subset
h(x, L) of E is π i B for every maximal vector x in L . Note that L is π i -modular
if and only if L⊥ = π−i L . We can also see that H(i) is π i -modular.

(c) Assume that i is even. A π i -modular lattice L is of parity type I if n(L)= s(L),
and of parity type II otherwise. The zero lattice is considered to be of parity
type II . We caution that we do not assign a parity type to a π i -modular lattice
L with i odd.

2B. A structure theorem for integral hermitian forms. We state a structure theo-
rem for π i -modular lattices in this subsection. Note that if L is π2i -modular (resp.
π2i+1-modular), then π−i L ⊂ L ⊗A F is π0-modular (resp. π1-modular). We will
emphasize this in Remark 2.3(a) again. Thus it is enough to provide a structure
theorem for π0-modular or π1-modular lattices.

Theorem 2.2. Let i = 0 or 1.

(a) Let L be a π i -modular lattice of rank at least 3. Then L =
⊕

λ Hλ⊕ K , where
K is π i -modular of rank 1 or 2, and each Hλ = H(i).

(b) We denote by (1) or (2) the ideal of B generated by the element 1 or 2,
respectively. Assume that K is π i -modular of rank 1 or 2. Then, depending
on i , the rank of K , the case that E/F falls into, the parity type of L (when
applicable), and n(L) which is the norm of L , we may take K to be of the
following form:

Rank of K i E/F Parity type of L n(L) Form for K

1 0 Case 1 I * (1)* (a), a ∈ A, a ≡ 1 mod 2
1 0 Case 2 I * (1)* (a), a ∈ A, a ≡ 1 mod 2
2 0 Case 1 I (1)* A(1, 2b, 1), b ∈ A
2 0 Case 2 I (1)* A(1, 2b, 1), b ∈ A
2 0 Case 1 II (2)* H(0)
2 0 Case 2 II (2)* A(2δ, 2b′, 1), b′ ∈ A
2 1 Case 1 (2)* A(2, 2a, π), a ∈ A
2 1 Case 2 (2) A(4a, 2δ, π), a ∈ A
2 1 Case 2 (4) H(1)

Here, the superscript ∗ indicates the value in the table necessarily holds.

Proof. Part (a) is proved in Proposition 10.3 of [Jacobowitz 1962].
For part (b), when the rank of K is 1, it is clear that K ∼= (a′) for a certain unit

a′ ∈ A with a basis e. Since the residue field κ is perfect, there is a unit element a′′

in A such that a′ ≡ a′′2 mod 2. The reader can check that replacing e by (1/a′′)e
realizes K in the manner dictated by the theorem.

From now on, we assume that the rank of K is 2. Suppose that i = 0. Then
n(K ) = (1) or n(K ) = (2) since n(K ) ⊇ n(H(0)) = (2) (Proposition 9.1(a) and
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Equation 9.1 with k = 0 in [Jacobowitz 1962]). If n(K ) = (1), then we can use
Proposition 10.2 of [Jacobowitz 1962] to get K ∼= A(1, a, 1) with respect to a
basis (e1, e2). Furthermore, the determinant a− 1 is a unit in A. To show this, we
observe that K has an orthogonal basis, since n(K )= s(K )= (1) (Proposition 4.4
in [Jacobowitz 1962]), and so the determinant should be a unit in order for K to be
π0-modular. Since the residue field κ is perfect, there is a unit element β in A such
that a− 1≡ 1

β2 mod 2. We now choose another basis (e1, (1−β)e1+βe2). With
this basis, it is easy to see that K ∼= A(1, 2b, 1) for a certain b ∈ A.

Now assume that n(K ) = (2) so that we cannot use Proposition 10.2 of [Ja-
cobowitz 1962]. We choose a basis of K so that K ∼= A(x, y, 1) for some x, y ∈ A.
Since n(K ) = (2), both x and y should be contained in the ideal (2). Thus
K ∼= A(2a, 2b, 1) for some a, b ∈ A. Furthermore, in Case 1, if n(K ) = (2)
then K ∼= H(0) by parts (a) and (b) of Proposition 9.2 of [Jacobowitz 1962].

The remaining case we need to prove when i = 0 is then that

K = A(2δ, 2b′, 1)

for certain b′ ∈ A, in Case 2 if n(K )= (2). By Proposition 9.2(a) of [Jacobowitz
1962], if K is isotropic then K ∼= H(0) so that we can choose b′ = 0. Fur-
thermore, the lattice K with n(K ) = (2) is determined by its determinant up
to isomorphism (Proposition 10.4 in [Jacobowitz 1962]). Since the determinant
d(K ) of K is a unit and is well-defined modulo NB/A B×, there are at most two
cases of d(K ) because |A×/NB/A B×| = 2. Here, B× and A× are the unit groups
of B and A, respectively, and NB/A B× is the norm of B×. We observe that
d(A(2δ, 0, 1)) and d(A(2δ, 2d/δ, 1)), which are clearly π0-modular, give different
classes in A×/NB/A B×, where d is as defined in Lemma 2.4. Thus, a lattice K
with n(K ) = (2) in Case 2 should be isomorphic to one of these two. In other
words, such K is isomorphic to K = A(2δ, 2b′, 1) with b′ = 0 or b′ = d/δ.

We next suppose that i = 1. In Case 1, n(H(1))= (2) and so n(K )= (2) since
s(K ) ⊇ n(K ) ⊇ n(H(1)). Thus K is also determined by its determinant up to
isomorphism (Proposition 10.4 in [Jacobowitz 1962]). This fact implies that there
are at most two cases for K since the determinant of K divided by 2 is a unit
in A and the cardinality of A×/NB/A B× is 2. By Lemma 2.5, d(A(2, 0, π))
and d(A(2, 2ud, π)), which are clearly π1-modular, give different classes in
A×/NB/A B×, where u and d are as defined in Lemma 2.5. Thus, a lattice K
with n(K ) = (2) in Case 1 should be isomorphic to one of these two. In other
words, such K is isomorphic to d(A(2, 0, π)) or d(A(2, 2ud, π)).

In Case 2, n(H(1)) = (4) and so n(K ) = (2) or n(K ) = (4). If n(K ) = (2),
then we can use Proposition 10.2(b) of [Jacobowitz 1962] (take m = 1) to get
K ∼= A(2δ, 4a, π) with basis (e1, e2). If we use a basis (e2,−e1), then K ∼=
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A(4a, 2δ, π). If n(K ) = (4), then by Proposition 9.2(a–b) of [Jacobowitz 1962],
K ∼= H(1)∼= A(0, 4δ, π).

These complete the proof. �

Remark 2.3. (a) If L is π i -modular, then π j L is π i+2 j -modular for any integer j .
Thus, the above theorem implies its obvious generalization to the case where i is
allowed to be any element of Z.

(b) [Jacobowitz 1962, Section 4] For a general lattice L , we have a Jordan splitting,
namely L =

⊕
i L i such that L i is πn(i)-modular and such that the sequence {n(i)}i

increases. Two Jordan splittings L =
⊕

15i5t L i and K =
⊕

15i5T Ki will be
said to be of the same type if t = T and, for 15 i 5 T , the following conditions
are satisfied: s(L i )= s(Ki ), rank L i = rank Ki , and n(L i )= s(L i ) if and only if
n(Ki )= s(Ki ). Jordan splitting is not unique but partially canonical in the sense
that two Jordan splittings of isometric lattices are always of the same type.

(c) If we allow some of the L i ’s to be zero, then we may assume that n(i)= i for
all i . In other words, for all i ∈ N∪ {0} we have s(L i )= (π

i ), and, more precisely,
L i is π i -modular. Then we can rephrase part (b) above as follows. Let L =

⊕
i L i

be a Jordan splitting with s(L i ) = (π
i ) for all i ≥ 0. Then the scale, rank and

parity type of L i depend only on L . We will deal exclusively with a Jordan splitting
satisfying s(L i )= (π

i ) from now on.

Lemma 2.4. Assume that B/A satisfies Case 2. Then there is an element d ∈ A×

such that 1− 4d and 1 give different classes in A×/NB/A B×.

Proof. Using our knowledge of the lower ramification groups Gi for Gal(E/F),
we can compute the higher ramification groups Gi for the same extension:

G−1
= G0

= G1
= G2 and G3

= 0.

Let U i
= 1+ (2)i be the i-th higher unit group in F with i ≥ 1. Then by local class

field theory, the image of Gi under the isomorphism Gal(E/F) ∼= F∗/NE/F E∗

is U i/(U i
∩ NE/F E∗). We apply this when i is 2. Then we can easily verify the

existence of a d as stated in the lemma. �

Lemma 2.5. Assume that B/A satisfies Case 1. Then there is an element d ∈ A×

such that 1+ 2d and 1 give different classes in A×/NB/A B×.

Proof. The proof of this lemma is similar to that of the above lemma. In this case
the higher ramification groups are as follows:

G−1
= G0

= G1 and G2
= 0.

Again we use local class field theory as explained in the proof of the above lemma
but with i = 1. Then we can easily verify the existence of a d as stated in the
lemma. �
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2C. Lattices. In this subsection, we will define several lattices and associated
notation. Fix a hermitian lattice (L , h). We denote by (π l) the scale s(L) of L .

(1) Define Ai = {x ∈ L | h(x, L) ∈ π i B}.

(2) Define X (L) to be the sublattice of L such that X (L)/πL is the radical of the
symmetric bilinear form 1

π l h mod π on L/πL .

Let l = 2m or l = 2m− 1. We consider the function defined over L by

1
2m q : L→ A, x 7→ 1

2m h(x, x).

Then 1
2m q mod 2 defines a quadratic form L/πL → κ . It can be easily checked

that 1
2m q mod 2 on L/πL is an additive polynomial if l = 2m, or if l = 2m− 1 and

E/F satisfies Case 2. Otherwise, that is, if l = 2m−1 and E/F satisfies Case 1, it
is not additive. We define a lattice B(L) as follows.

(3) If 1
2m q mod 2 on L/πL is an additive polynomial, then B(L) is defined to be

the sublattice of L such that B(L)/πL is the kernel of the additive polynomial
1

2m q mod 2 on L/πL . If 1
2m q mod 2 on L/πL is not an additive polynomial,

then B(L)= L .

To define a few more lattices, we need some preparation as follows. For the
remainder of the paper, set

ξ := π · σ(π).

Assume B(L)  L and l is even. Then the bilinear form ξ−l/2 h mod π on the
κ-vector space L/X (L) is nonsingular symmetric and nonalternating. It is well
known that there is a unique vector e ∈ L/X (L) such that(

ξ−l/2 h(v, e)
)2
= ξ−l/2 h(v, v) mod π

for every vector v∈ L/X (L). Let 〈e〉 denote the 1-dimensional vector space spanned
by the vector e and denote by e⊥ the 1-codimensional subspace of L/X (L) which
is orthogonal to the vector e with respect to ξ−l/2 h mod π . Then

B(L)/X (L)= e⊥.

If B(L) = L , the bilinear form ξ−l/2 h mod π on the κ-vector space L/X (L) is
nonsingular symmetric and alternating. In this case, we put e = 0 ∈ L/X (L) and
note that it is characterized by the same identity.

The remaining lattices we need for our definition are:

(4) Define W (L) to be the sublattice of L such that{
W (L)/X (L)= 〈e〉 if l is even;
W (L)= X (L) if l is odd.
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(5) Define Y (L) to be the sublattice of L such that Y (L)/πL is the radical of{
the form 1

2m h mod π on B(L)/πL if l = 2m;
the form 1

π
·

1
2m−1 h mod π on B(L)/πL if l = 2m− 1 in Case 2.

Both forms are alternating and bilinear.

(6) Define Z(L) to be the sublattice of L such that Z(L)/πL in Case 1 or
Z(L)/πB(L) in Case 2 is the radical of{

the form 1
2m q mod 2 on L/πL if l = 2m− 1 in Case 1;

the form 1
2m+1 q mod 2 on B(L)/πB(L) if l = 2m in Case 2.

Both forms are quadratic.

See, e.g., page 813 of [Sah 1960] for the notion of the radical of a quadratic
form on a vector space over a field of characteristic 2.

Remark 2.6. (a) We can associate the 5 lattices (B(L),W (L), X (L),Y (L), Z(L))
above with (Ai , h) in place of L . Let Bi ,Wi , X i , Yi , Zi denote the resulting
lattices.

(b) As κ-vector spaces, the dimensions of Ai/Bi and Wi/X i are at most 1.

Let L =
⊕

i L i be a Jordan splitting. We assign a type to each L i as follows:

parity of i type of L i condition

even I L i is of parity type I
even I o L i is of parity type I and the rank of L i is odd
even I e L i is of parity type I and the rank of L i is even
even II L i is of parity type II
odd II E/F satisfies Case 1 or

E/F satisfies Case 2 with Ai = Bi

odd I E/F satisfies Case 2 and Ai ! Bi

In addition, we assign a subtype to L i in the following manner:

parity of i subtype of L i condition

even bound of type I L i is of type I and either L i−2 or L i+2 is of type I
even bound of type II L i is of type II and either L i−1 or L i+1 is of type I
odd bound either L i−1 or L i+1 is of type I

In all other cases, L i is called free.
Notice that the type of each L i is determined canonically regardless of the choice of a

Jordan splitting.

2D. Sharpened structure theorem for integral hermitian forms. While Theorem 2.2 lets
us work with a restricted set of candidates for each L i , further pruning is facilitated by the
type of each L i . For this, we need a series of lemmas.
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Lemma 2.7 [Jacobowitz 1962, Proposition 9.2]. Let L be a π i -modular lattice of rank 2
with n(L)= n(H(i)). Then L ∼= H(i) in Case 2 with i odd and in Case 1 with i even.

Lemma 2.8 [Jacobowitz 1962, Proposition 4.4]. A π i -modular lattice L has an orthogonal
basis if n(L)= s(L).

Lemma 2.9. Assume that E/F satisfies Case 2.

(1) Let L = A(4a, 2δ, π)⊕ (2c) with respect to a basis (e1, e2, e3), where c ≡ 1 mod 2.
Then L ∼= H(1)⊕ (2c′) where c′ ≡ 1 mod 2.

(2) Let L = A(4a, 2δ, π)⊕ (c) with respect to a basis (e1, e2, e3), where c ≡ 1 mod 2.
Then L ∼= H(1)⊕ (c′) where c′ ≡ 1 mod 2.

Proof. For (1), we work with the basis (e1− (2aπ/δ)e2, e2+ e3, (cπ/δ)e1+ e3) of L . With
respect to this basis, L ∼= A(−4a−16a2, 2(δ+c), π(1+4a))⊕(2c(1−4ac/δ)). Moreover,
n(A(−4a−16a2, 2(δ+c), π(1+4a)))= n(H(1))= (4). Combined with the lemma above,
this completes the proof.

For (2), we note that the sublattice of L spanned by (e1, e2, πe3) is isomorphic to
A(4a, 2δ, π)⊕ (2c′) where c′ ≡ 1 mod 2. If we apply (1) to this sublattice by choosing a
basis (e1− (2aπ/δ)e2, e2+πe3, (c′π/δ)e1+πe3), then A(4a, 2δ, π)⊕ (2c′) is isomorphic
to H(1)⊕ (2c′′) where c′′ ≡ 1 mod 2. Now the sublattice of L spanned by (e1− (2aπ/δ)e2,

e2+πe3,
1
π
((c′π/δ)e1+πe3)), which is the same as L , is isomorphic to H(1)⊕(−c′′/δ). �

The above lemmas will contribute to the proof of Theorem 2.10 below in the following
manner. For a given Jordan splitting L=

⊕
i L i in Case 2, assume that L1 is bound of type I .

Theorem 2.2 tells us that there are two different possibilities for L1 as a hermitian lattice
and if L1 =

⊕
H(1) then the conclusion of the as yet unstated Theorem 2.10, for i = 1,

will follow. If L1 =
⊕

H(1)⊕ A(4a, 2δ, π) and either L0 or L2 is of type I o, then by
Lemma 2.9 and the above paragraph, L0⊕L1⊕L2= L ′0⊕L ′1⊕L ′2 such that L ′1=

⊕
H(1)

and the types of L0 and L2 are the same as those of L ′0 and L ′2, respectively. In case
either L0 or L2 is of type I e, say L2 is of type I e, L2 = (

⊕
H(2))⊕ (2a)⊕ (2b) where

a, b ≡ 1 mod 2 by Lemma 2.8. Then we use Lemma 2.9 on L1⊕ (2b) to get L1⊕ (2b)=
(
⊕

H(1))⊕ (2b′) with b′ ≡ 1 mod 2. Thus L1⊕ L2 = L ′1⊕ L ′2 where L ′1 =
⊕

H(1) and
the type of L ′2 = (

⊕
H(2))⊕ (2a)⊕ (2b′) is the same as that of L2. We conclude that

L = L ′0⊕L ′1⊕L ′2⊕(
⊕

i L i ) is another Jordan splitting of L and in this case, L ′1=
⊕

H(1).
Therefore, if L1 is bound of type I in Case 2, then L1 can always be replaced by

⊕
H(1).

Combined with Theorem 2.2, this yields the following structure theorem:

Theorem 2.10. There exists a suitable choice of a Jordan splitting of the given lattice
L =

⊕
i L i such that L i =

⊕
λ Hλ⊕ K , where each Hλ = H(i) and K is π i -modular of

rank 1 or 2, with the following descriptions. Let i = 0 or i = 1. Then

(a) In Case 1,

K =


(a) where a ≡ 1 mod 2 if i = 0 and L0 is of type I o

;

A(1, 2b, 1) if i = 0 and L0 is of type I e
;

H(0) if i = 0 and L0 is of type II ;
A(2, 2b, π) if i = 1.
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(b) In Case 2,

K =



(a) where a ≡ 1 mod 2 if i = 0 and L0 is of type I o
;

A(1, 2b, 1) if i = 0 and L0 is of type I e
;

A(2δ, 2b, 1) if i = 0 and L0 is of type II ;
A(4a, 2δ, π) if i = 1 and L1 is free of type I;
H(1) if i = 1, and L1 is bound of type I or of type II .

Here, a, b ∈ A and δ, π are explained in Section 2A.

From now on, the pair (L , h) is fixed throughout this paper.

Remark 2.11. Working with a basis furnished by Theorem 2.10, we can describe our
lattices Ai through Z i more explicitly. We use the following conventions. Let Li denote⊕

j 6=i π
max{0,i− j}L j . Further, the

⊕
λ Hλ will be denoted by Hi . Theorem 2.10 involves a

basis for a lattice K , which we will write as {e(i)1 , e(i)2 } according to the ordering contained
therein. For all cases, we have Ai = Li ⊕ L i and X i = Li ⊕πL i .

In order to write Wi , we should first find the vector e ∈ Ai/X i explained in the paragraph
right after the definition of B(L) in Section 2C. In order to simplify notations, let us work
with one example. Assume that (e1, e2, e3, e4) is a B-basis of L with respect to which h is
represented by the matrix 

0 1 0 0
1 0 0 0
0 0 1 1
0 0 1 2

 .
So L (= L0= A0) is of type I e and our basis is as explained in Theorem 2.10. Now, in order
to find W0, we should find the vector e ∈ L/πL explained in Section 2C (after the definition
of B(L)). If v = (x, y, z, w) is a vector in L/πL , then h(v, v) mod π = z2. On the other
hand, if e = (0, 0, 0, 1) ∈ L/πL , then (h(v, e))2 mod π = z2. Therefore, by uniqueness of
the vector e, (0, 0, 0, 1) ∈ L/πL is the vector e we are looking for.

Since W0 is the sublattice of L such that W0/X0 = W0/πL is the subspace of L/πL
spanned by the vector e, W0 is spanned by (πe1, πe2, πe3, e4), and it is easy to see that B0

is spanned by (e1, e2, πe3, e4).
To describe all lattices, it is good to start with the matrix of our fixed hermitian form h

with respect to a basis furnished by Theorem 2.10.

Case 1, i even: For type I, e = (0, · · · , 0, 1) ∈ Ai/X i . The following table describes the
lattices:

Type Bi Wi Yi

I o Li ⊕Hi ⊕ (π)e
(i)
1 Li ⊕π ·Hi ⊕ Be(i)1 X i

I e Li ⊕Hi ⊕ (π)e
(i)
1 ⊕ Be(i)2 Li ⊕π ·Hi ⊕ (π)e

(i)
1 ⊕ Be(i)2 Wi

II Ai X i X i
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Case 1, i odd. We have Bi = Ai ,Wi = X i , and Yi is not defined. Also, Z i is a sublattice of
Ai and so we should have congruence conditions for L j . Namely,

Z i =
⊕

j /∈{i}∪E

πmax{0,i− j}L j ⊕πL i ⊕
⊕
j∈E

πmax{0,i− j}(H j ⊕ Be( j)
2

)
⊕

{∑
j∈E

πmax{0,i− j}
· a j e

( j)
1

∣∣ for each a j ∈ B,
∑
j∈E

a j ∈ (π)

}
.

Here, E = { j ∈ {i−1, i+1} | L j is of type I } and the e( j)
2 factor should be ignored for those

j ∈ E such that L j is of type I o.
The following example would be helpful to have a better understanding of the notions

of “bound” and “free” and of the notion of type when i is odd. Let L = L1 ⊕ L2 =

A(0, 0, π)⊕ (2), so that L1 is bound of type I (since A1 6= B1) and L2 is free of type I .

Case 2, i even. The Bi ,Wi , and Yi are exactly as in the table given for Case 1. The lattice
Z i is a little complicated. Note that when L i is of type I or bound of type II , the dimension
of Yi/Z i as a κ-vector space is 1. We describe it case by case below.

• Let E ′ = { j ∈ {i − 2, i + 2} | L j is of type I }. If L i is of type I so that L i−1 and L i+1

are bound,

Z i =
⊕

j /∈{i,i±2}

πmax{0,i− j}L j ⊕
⊕

j∈{i±2}

πmax{0,i− j}(H j ⊕ Be( j)
2

)
⊕πHi

⊕

{(∑
j∈E ′
πmax{0,i− j}

· a j e
( j)
1

)
+
(
π · ai e

(i)
1 + b · bi e

(i)
2

)∣∣
for each a j ∈ B,

(∑
j∈E ′

a j

)
+ ai + b · bi ∈ (π)

}
,

where the e( j)
2 (resp. e(i)2 ) factor should be ignored for those j ∈ {i ± 2} (resp. i) such

that L j (resp. L i ) is not of type I e, and b ∈ B is such that L i =π
i/2 (Hi ⊕ A(1, 2b, 1))

when L i is of type I e.

• If L i is free of type II (so that all of L i±2 and L i±1 are of type II ), then Z i = X i .

• If L i is bound of type II , then with E1 = { j ∈ {i − 1, i + 1} | L j is free of type I } and
E2 = { j ∈ {i − 2, i + 2} | L j is of type I }, we have

Z i =
⊕

j /∈{i,i±1,i±2}

πmax{0,i− j}L j ⊕πL i

⊕

⊕
j∈{i±1}

πmax{0,i− j}(H j ⊕ Be( j)
1

)
⊕

⊕
j∈{i±2}

πmax{0,i− j}(H j ⊕ Be( j)
2

)
⊕

{(∑
j∈E1

πmax{0,i− j}
· a j e

( j)
2

)
+

(∑
j∈E2

πmax{0,i− j}
· a j e

( j)
1

)∣∣
for each a j ∈ B,

( ∑
j∈E1∪E2

a j

)
∈ (π)

}
.

For example, if i + 1 ∈ E1, then i + 2 /∈ E2. And if i + 2 ∈ E2, then i + 1 /∈ E1.
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Case 2, i odd. In this case, Wi = X i and Z i is not defined.

Type Bi Yi

free of type I Li ⊕Hi ⊕ Be(i)1 ⊕ (π)e
(i)
2 Li ⊕πHi ⊕ Be(i)1 ⊕ (π)e

(i)
2

bound of type I see below see below
type II Ai X i

When L i is bound of type I , the dimension of Ai/Bi as κ-spaces is 1.

Bi =
⊕

j /∈{i}∪E

πmax{0,i− j}L j ⊕ L i ⊕
⊕
j∈E

πmax{0,i− j}(H j ⊕ Be( j)
2

)
⊕

{∑
j∈E

πmax{0,i− j}
· a j e

( j)
1

∣∣ for each a j ∈ B,
∑
j∈E

a j ∈ (π)

}
,

Yi =
⊕

j /∈{i}∪E

πmax{0,i− j}L j ⊕πL i ⊕
⊕
j∈E

πmax{0,i− j}(H j ⊕ Be( j)
2

)
⊕

{∑
j∈E

πmax{0,i− j}
· a j e

( j)
1

∣∣ for each a j ∈ B,
∑
j∈E

a j ∈ (π)

}
.

Here, E = { j ∈ {i − 1, i + 1} | L j is of type I }.

3. The construction of the smooth model

Let G ′ be the naive integral model of the unitary group U (V, h), where V = L ⊗A F , such
that for any commutative A-algebra R,

G ′(R)= AutB⊗AR(L ⊗A R, h⊗A R).

The scheme G ′ is then an (possibly nonsmooth) affine group scheme over A with smooth
generic fiber U (V, h). Then by Proposition 3.7 in [Gan and Yu 2000], there exists a unique
smooth integral model, denoted by G, with generic fiber U (V, h), characterized by

G(R)= G ′(R)

for any étale A-algebra R. Note that every étale A-algebra is a finite product of finite
unramified extensions of A. This section, Section 4 and Appendix A are devoted to gaining
an explicit knowledge of the smooth integral model G in Case 1, which will be used in
Section 5 to compute the local density of (L , h) (again, in Case 1). For a detailed exposition
of the relation between the local density of (L , h) and G, see [Gan and Yu 2000, Section 3].

In this section, we give an explicit construction of the smooth integral model G when
E/F satisfies Case 1. The construction of G is based on that of Section 5 in [Gan and
Yu 2000] and Section 3 in [Cho 2015a]. Since the functor R 7→ G(R) restricted to étale
A-algebras R determines G, we first list out some properties that are satisfied by each
element of G(R)= G ′(R).

We choose an element g ∈ G(R) for an étale A-algebra R. Then g is an element of
AutB⊗AR(L ⊗A R, h ⊗A R). Here we consider AutB⊗AR(L ⊗A R, h ⊗A R) as a subgroup
of ResE/F GLE (V )(F ⊗A R). To ease the notation, we say g ∈ AutB⊗AR(L ⊗A R, h⊗A R)
stabilizes a lattice M ⊆ V if g(M ⊗A R)= M ⊗A R.
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3A. Main construction. Let R be an étale A-algebra. In this subsection, as mentioned
above, we observe properties of elements of AutB⊗AR(L ⊗A R, h ⊗A R) and their matrix
interpretations. We choose a Jordan splitting L =

⊕
i L i and a basis of L as explained in

Theorem 2.10 and Remark 2.3(a). Let ni = rankB L i , and n = rankB L =
∑

ni . Assume that
ni = 0 unless 0 ≤ i < N . Let g be an element of AutB⊗AR(L ⊗A R, h⊗A R). We always
divide a matrix g of size n×n into N 2 blocks such that the block in position (i, j) is of size
ni × n j . For simplicity, the row and column numbering starts at 0 rather than 1.

(1) First of all, g stabilizes Ai for every integer i . In terms of matrices, this fact means
that the (i, j)-block has entries in πmax{0, j−i}B⊗A R. From now on, we write

g =
(
πmax{0, j−i}gi, j

)
.

(2) The element g stabilizes Ai , Bi ,Wi , X i and induces the identity on Ai/Bi and Wi/X i .
We also interpret these facts in terms of matrices as described below:
(a) If i is odd or L i is of type II , then Ai = Bi and Wi = X i and so there is no

contribution.
(b) If L i is of type I o, the diagonal (i, i)-block gi,i is of the form(

si πyi

πvi 1+π zi

)
∈ GLni (B⊗A R),

where si is an (ni − 1)× (ni − 1)-matrix, etc.
(c) If L i is of type I e, the diagonal (i, i)-block gi,i is of the form si ri π ti

πyi 1+πxi π zi

vi ui 1+πwi

 ∈ GLni (B⊗A R),

where si is an (ni − 2)× (ni − 2)-matrix, etc.

3B. Construction of M. We define a functor from the category of commutative flat A-
algebras to the category of monoids as follows. For any commutative flat A-algebra R, let

M(R)⊂ {m ∈ EndB⊗AR(L ⊗A R)}

to be the set of m ∈ EndB⊗AR(L ⊗A R) satisfying the following conditions:

(1) m stabilizes Ai ⊗A R, Bi ⊗A R,Wi ⊗A R, X i ⊗A R for all i .

(2) m induces the identity on Ai ⊗A R/Bi ⊗A R,Wi ⊗A R/X i ⊗A R for all i .

Remark 3.1. We give another description for the functor M and using this, we show
that it is represented by a polynomial ring. Let us define a functor from the category of
commutative flat A-algebras to the category of rings as follows:

For any commutative flat A-algebra R, define

M ′(R)⊂ {m ∈ EndB⊗AR(L ⊗A R)}

to be the set of m ∈ EndB⊗AR(L ⊗A R) satisfying the following conditions:

(1) m stabilizes Ai ⊗A R, Bi ⊗A R,Wi ⊗A R, X i ⊗A R for all i .

(2) m maps Ai ⊗A R,Wi ⊗A R into Bi ⊗A R, X i ⊗A R, respectively.
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Then, by Lemma 3.1 of [Cho 2015a], M ′ is represented by a unique flat A-algebra A(M ′)
which is a polynomial ring over A of 2n2 variables. Moreover, it is easy to see that M ′ has
the structure of a scheme of rings since M ′(R) is closed under addition and multiplication.

We consider a scheme ResB/A EndB(L) such that the associated set to a commutative
flat A-algebra R is EndB⊗AR(L ⊗A R). Indeed, ResB/A EndB(L) is a group scheme under
addition. But at this moment, we consider it as a scheme of sets so as to embed M
into this. Let us consider both M and M ′ as functors from the category of commutative
flat A-algebras to the category of sets. Then they are subfunctors of ResB/A EndB(L).
Furthermore, the functor M (viewed as valued in sets) is the same as the functor 1+M ′,
where (1+M ′)(R)= {1+m :m ∈ M ′(R)}. Here, the set EndB⊗AR(L⊗A R) has an obvious
additive structure and the addition in the description of (1+M ′)(R) comes from this.

Therefore, M and M ′ are equivalent, as subfunctors of ResB/A EndB(L). This fact
induces that the functor M is also represented by a unique flat A-algebra A[M] which is a
polynomial ring over A of 2n2 variables. Moreover, it is easy to see that M has the structure
of a scheme of monoids since M(R) is closed under multiplication.

We can therefore now talk of M(R) for any (not necessarily flat) A-algebra R. However,
for a general R, the above description for M(R) will no longer be true. For such R, we use
our chosen basis of L to write each element of M(R) formally. We describe each element of
M(R) as a formal matrix

(
πmax{0, j−i}mi, j

)
. Here, mi, j , when i 6= j , is an (ni × n j )-matrix

with entries in B⊗A R and

mi,i =



(
si πyi
πvi 1+π zi

)
if i is even and L i is of type I o

; si ri π ti
πyi 1+πxi π zi
vi ui 1+πwi

 if i is even and L i is of type I e
;

mi,i otherwise, i.e., if L i is of type II .
Here, si is an (ni−1×ni−1)-matrix (resp. (ni−2×ni−2)-matrix) with entries in B⊗A R
if L i of type I o (resp. of type I e) and yi , vi , zi , ri , ti , yi , xi , ui , wi are matrices of suitable
sizes with entries in B⊗A R. Similarly, if L i is of type II , then mi,i is an (ni × n j )-matrix
with entries in B⊗A R. To simplify notation, each element

((mi, j)i 6= j ,(mi,i)Li of type II,(si , yi , vi , zi )Li of type I o ,(si , vi , zi , ri , ti , yi , xi , ui , wi )Li of type I e).

of M(R) is denoted by (mi, j , si · · ·wi ).
In the next section, we need a description of an element of M(R) and its multiplication

for a κ-algebra R. In order to prepare for this, we describe the multiplication explicitly only
for a κ-algebra R. To multiply (mi, j , si · · ·wi ) and (m ′i, j , s ′i · · ·w

′

i ), we form the matrices
m =

(
πmax{0, j−i}mi, j

)
and m ′ =

(
πmax{0, j−i}m ′i, j

)
with si · · ·wi and s ′i · · ·w

′

i and write the
formal matrix product

(
πmax{0, j−i}mi, j

)
·
(
πmax{0, j−i}m ′i, j

)
=
(
πmax{0, j−i}m̃ ′′i, j

)
with

m̃ ′′i,i =



(
s̃ ′′i π ỹ′′i
πṽ′′i 1+π z̃′′i

)
if i is even and L i is of type I o

; s̃ ′′i r̃ ′′i π t̃ ′′i
π ỹ′′i 1+π x̃ ′′i π z̃′′i
ṽ′′i ũ′′i 1+πw̃′′i

 if i is even and L i is of type I e.
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Let (m ′′i, j , s ′′i · · ·w
′′

i ) be formed by letting π2 be zero in each entry of (m̃ ′′i, j , s̃ ′′i · · · w̃
′′

i ).
Then each matrix of (m ′′i, j , s ′′i · · ·w

′′

i ) has entries in B ⊗A R and so (m ′′i, j , s ′′i · · ·w
′′

i ) is an
element of M(R) and is the product of (mi, j , si · · ·wi ) and (m ′i, j , s ′i · · ·w

′

i ). More precisely,

(1) If i 6= j or if i = j and L i is of type II ,

m ′′i, j =

N∑
k=1

π (max{0,k−i}+max{0, j−k}−max{0, j−i})mi,km ′k, j ;

(2) For L i of type I o, we write mi,i−1m ′i−1,i +mi,i+1m ′i+1,i =
( a′′i

c′′i

b′′i
d ′′i

)
and mi,i−2m ′i−2,i +

mi,i+2m ′i+2,i =
( ã′′i

c̃′′i

b̃′′i
d̃ ′′i

)
where a′′i and ã′′i are (ni − 1)× (ni − 1)-matrices, etc. Then

s ′′i = si s ′i +πa′′i ;
y′′i = si y′i + yi + b′′i +π(yi z′i + b̃′′i );
v′′i = vi s ′i + v

′

i + c′′i +π(ziv
′

i + c̃′′i );
z′′i = zi + z′i + d ′′i +π(zi z′i + vi y′i + d̃ ′′i ).

(3) When L i is of type I e, we write

mi,i−1m ′i−1,i +mi,i+1m ′i+1,i =

a′′i b′′i c′′i
d ′′i e′′i f ′′i
g′′i h′′i k ′′i


and

mi,i−2m ′i−2,i +mi,i+2m ′i+2,i =

ã′′i b̃′′i c̃′′i
d̃ ′′i ẽ′′i f̃ ′′i
g̃′′i h̃′′i k̃ ′′i


where a′′i and ã′′i are (ni − 2)× (ni − 2)-matrices, etc. Then

s ′′i = si s ′i +π(ri y′i + tiv′i + a′′i );
r ′′i = sir ′i + ri +π(ri x ′i + ti u′i + b′′i );
t ′′i = si t ′i + ri z′i + ti + c′′i +π(tiw

′

i + c̃′′i );
y′′i = yi s ′i + y′i + ziv

′

i + d ′′i +π(xi y′i + d̃ ′′i );
x ′′i = xi + x ′i + zi u′i + yir ′i + e′′i +π(xi x ′i + ẽ′′i );
z′′i = zi + z′i + f ′′i +π(yi t ′i + xi z′i + ziw

′

i + f̃ ′′i );
v′′i = vi s ′i + v

′

i +π(ui y′i +wiv
′

i + g′′i );
u′′i = ui + u′i + vir ′i +π(ui x ′i +wi u′i + h′′i );
w′′i = wi +w

′

i + vi t ′i + ui z′i + k ′′i +π(wiw
′

i + k̃ ′′i ).

Remark 3.2. We let d be the determinant homomorphism on the algebraic monoid
ResB/A EndB(L). We consider the inclusion

ι : M −→ ResB/A EndB(L)

between functors of sets on the category of commutative flat A-algebras. Note that this
inclusion is a morphism of schemes by Yoneda’s lemma since M is flat over A. It is not
an immersion as schemes since the special fiber of M is no longer embedded into that



Group schemes and densities of ramified hermitian lattices, I 469

of ResB/A EndB(L). For a commutative flat A-algebra R, the multiplication on M(R) is
induced from that on ResB/A EndB(L)(R) under ι. Thus the morphism ι is a morphism of
monoid schemes.

We consider d as the restriction of the determinant homomorphism under ι. Then
Spec(A[M]d) is an open subscheme of M , where A[M]d is the localization of the ring A[M]
at d. Note that Spec(A[M]d)(R), the set of R-points of Spec(A[M]d) for a commutative
A-algebra R, is characterized by

{m ∈ M(R) : there exists m̃ ′ ∈ EndB⊗AR(L ⊗A R) such that ιR(m) · m̃ ′ = m̃ ′ · ιR(m)= 1}.

Here, ιR : M(R)→ ResB/A EndB(L)(R) is a morphism of monoids induced by ι. It is easy
to see that the above set Spec(A[M]d)(R) is a monoid, and hence Spec(A[M]d) is a scheme
of monoids.

We define a functor M∗ from the category of commutative A-algebras to the category
of groups as follows. For a commutative A-algebra R, set

M∗(R)= {m ∈ M(R) : there exists m ′ ∈ M(R) such that m ·m ′ = m ′ ·m = 1}.

We claim that M∗ is representable by Spec(A[M]d). For any commutative A-algebra R,
the inclusion M∗(R)⊆ Spec(A[M]d)(R) is obvious.

In order to show Spec(A[M]d)(R)⊆M∗(R), we first prove that m̃ ′ (∈EndB⊗AR(L⊗AR))
associated to m ∈ M(R) is an element of M(R) for every flat A-algebra R. To verify this
statement, it suffices to show that m̃ ′ satisfies conditions (1) and (2) defining M . This follows
from the following fact: if L ′ is a sublattice of L and m is an element of Spec(A[M]d)(R)
for a flat A-algebra R which stabilizes L ′⊗A R, then L ′⊗A R is stabilized by m̃ ′ as well.
This can be easily proved as in Lemma 3.2 of [Cho 2015a] and so we skip the proof.
Thus M∗(R) is the same as Spec(A[M]d)(R) for a flat A-algebra R. In order to show
M∗(R)= Spec(A[M]d)(R) for any commutative A-algebra R, we consider the following
well-defined map, for any flat A-algebra R:

Spec(A[M]d)(R)→ Spec(A[M]d)(R)×Spec(A[M]d)(R)

m 7→ (m, m̃ ′).

Since Spec(A[M]d) is flat, this map is represented by a morphism of schemes by Yoneda’s
lemma. On the other hand, since Spec(A[M]d) is a scheme of monoids, the map

Spec(A[M]d)(R)×Spec(A[M]d)(R)→ Spec(A[M]d)(R)

(m,m ′) 7→ mm ′

is represented by a morphism of schemes. We consider the composite of these two mor-
phisms. It is the constant map (at the identity) at least at the level of R-points, for a flat
A-algebra R. To show that the composite is the constant morphism of schemes (at the
identity), it suffices to show that it is uniquely determined at the level of R-points, for a flat
A-algebra R. Note that Spec(A[M]d) is an irreducible smooth affine scheme. We consider
the open subscheme of Spec(A[M]d) which is the complement of the closed subscheme
of Spec(A[M]d) determined by the prime ideal (2). This open subscheme of Spec(A[M]d)
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is then nonempty and dense since Spec(A[M]d) is reduced and irreducible. Furthermore,
all R-points of Spec(A[M]d), for a flat A-algebra R, factor through this open subscheme.
Since a morphism of schemes is continuous, the above composite is uniquely determined
at the level of R-points, for a flat A-algebra R.

Thus, the inverse of m ∈ Spec(A[M]d)(R), for any commutative A-algebra R, is also
contained in Spec(A[M]d)(R) ⊆ M(R). This fact implies M∗(R) ⊇ Spec(A[M]d)(R).
Consequently, for any commutative A-algebra R, we have

M∗(R)= Spec(A[M]d)(R).

Therefore, we conclude that M∗ is an open subscheme of M (since M∗ = Spec(A[M]d),
which is an open subscheme of M), with generic fiber M∗ = ResE/F GLE (V ), and that M∗

is smooth over A. Moreover, M∗ is a group scheme since M is a scheme in monoids.

3C. Construction of H. Recall that the pair (L , h) is fixed throughout this paper and the
lattices Ai , Bi , Wi , X i only depend on the hermitian pair (L , h). For any flat A-algebra R,
let H(R) be the set of hermitian forms f on L ⊗A R (with values in B⊗A R) such that f
satisfies the following conditions:

(a) f (L ⊗A R, Ai ⊗A R)⊂ π i B⊗A R for all i .

(b) ξ−m f (ai , ai ) mod 2= ξ−m h(ai , ai ) mod 2, where ai ∈ Ai ⊗A R, and i = 2m.

(c) 1
π i f (ai , wi )=

1
π i h(ai , wi ) mod π , where ai ∈ Ai⊗A R andwi ∈Wi⊗A R, and i = 2m.

We interpret the above conditions in terms of matrices. The matrix forms are taken
with respect to the basis of L fixed in Theorem 2.10 and Remark 2.3(a). A matrix form
of the given hermitian form h is described in Remark 3.3(1) below. We use σ to mean the
automorphism of B⊗A R given by b⊗ r 7→ σ(b)⊗ r . For a flat A-algebra R, H(R) is the
set of hermitian matrices (

πmax{i, j} fi, j
)

of size n× n satisfying the following:

(1) fi, j is an (ni × n j )-matrix with entries in B⊗A R.

(2) If i is even and L i is of type I o, then π i fi,i is of the form

ξ i/2
(

ai πbi

σ(π · tbi ) 1+ 2ci

)
.

Here, the diagonal entries of ai are divisible by 2, where ai is an (ni − 1)× (ni − 1)-
matrix with entries in B⊗A R, etc.

(3) If i is even and L i is of type I e, then π i fi,i is of the form

ξ i/2

 ai bi πei

σ(tbi ) 1+ 2 fi 1+πdi

σ(π · tei ) σ (1+πdi ) 2ci

 .
Here, the diagonal entries of ai are divisible by 2, where ai is an (ni − 2)× (ni − 2)-
matrix with entries in B⊗A R, etc.
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(4) Assume that L i is of type II . The diagonal entries of fi,i (resp. π fi,i ) are divisible by
2 if i is even (resp. odd).

(5) Since
(
πmax{i, j} fi, j

)
is a hermitian matrix, its diagonal entries are fixed by the nontrivial

Galois action over E/F and hence belong to R.

Let us consider the hermitian functor from the category of commutative flat A-algebras
to the category of sets such that the associated set to R is the set of hermitian forms f on
L ⊗A R (with values in B ⊗A R). Indeed, this functor is represented by a commutative
group scheme since it is closed under addition. Then H is a subfunctor of the hermitian
functor. We consider another functor H ′ such that H ′(R)= { f − h : f ∈ H(R)}. Note that
h is the fixed hermitian form and the notion of f − h follows from the additive structure of
the hermitian functor. For a matrix interpretation of h, we refer to Remark 3.3(1) below.

Then by Lemma 3.1 of [Cho 2015a], H ′ is represented by a flat A-scheme which is
isomorphic to an affine space. Since H and H ′ are equivalent as subfunctors of the hermitian
functor, the functor H is also represented by a flat A-scheme which is isomorphic to an
affine space.

To compute the dimension of H , we see that each entry of the upper triangular matrix of
an element of H(R), for a flat A-algebra R, gives two variables and each diagonal entry gives
one variable. Furthermore, each lower triangular entry of the matrix representing an element
of H(R) is completely determined by the corresponding upper triangular entry. Thus the
dimension of H is 2 ·n(n−1)/2+n = n2. This is also the same as 2n2

−dim U (V, h)= n2.
Now suppose that R is any (not necessarily flat) A-algebra. Recall that ε is a unit in B

such that σ(π)= επ and (ε− 1)/π is a unit in B. We also use ε to mean ε⊗ 1 in B⊗A R.
We again use σ to mean the automorphism of B ⊗A R given by b⊗ r 7→ σ(b)⊗ r . By
choosing a B-basis of L as explained in Theorem 2.10 and Remark 2.3(a), we describe each
element of H(R) formally as a matrix

(
πmax{i, j} fi, j

)
with the following:

(1) When i 6= j , fi, j is an (ni×n j )-matrix with entries in B⊗AR and εmax{i, j}σ(t fi, j )= f j,i .

(2) Assume that i = j is even. Then

π i fi,i =



ξ i/2

(
ai πbi

σ(π · tbi ) 1+ 2ci

)
if L i is of type I o

;

ξ i/2

 ai bi πei

σ(tbi ) 1+ 2 fi 1+πdi

σ(π · tei ) σ (1+πdi ) 2ci

 if L i is of type I e
;

ξ i/2 ai if L i is of type II .

Here, ai is a formal (ni−1×ni−1)-matrix (resp. (ni−2×ni−2)-matrix or (ni×ni )-
matrix) when L i is of type I o (resp. of type I e or of type II ). Nondiagonal entries of
ai are in B⊗A R and the j-th diagonal entry of ai is of the form 2x j

i with x j
i ∈ R. In

addition, for nondiagonal entries of ai , we have the relation σ(tai )= ai . And bi , di , ei

are matrices of suitable sizes with entries in B⊗A R and ci , fi are elements in R.

(3) Assume that i = j is odd. Then

π i fi,i = ξ
(i−1)/2πai ,
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where ai is a formal (ni × ni )-matrix. Here, nondiagonal entries of ai are in B⊗A R
and the j-th diagonal entry of ai is of the form επx j

i with x j
i ∈ R. In addition, for

nondiagonal entries of ai , we have the relation ε · σ(tai )= ai .

To simplify notation, each element

(( fi, j )i< j , (ai , x j
i )Li of type II , (ai , x j

i , bi , ci )Li of type I o , (ai , x j
i , bi , ci , di , ei , fi )Li of type I e )

of H(R) is denoted by ( fi, j , ai · · · fi ).

Remark 3.3. (1) Note that the given hermitian form h is an element of H(A). We represent
the given hermitian form h by a hermitian matrix

(
π i
· hi
)

whose (i, i)-block is π i
· hi for

all i , and all of whose remaining blocks are 0. Then:

(a) If i is even and L i is of type I o, then π i
· hi has the following form (with γi ∈ A):

ξ i/2



(
0 1
1 0

)
. . . (

0 1
1 0

)
1+ 2γi


.

(b) If i is even and L i is of type I e, then π i
· hi has the following form (with γi ∈ A):

ξ i/2



(
0 1
1 0

)
. . . (

0 1
1 0

)
(

1 1
1 2γi

)


.

(c) If i is even and L i is of type II , then π i
· hi has the following form:

ξ i/2



(
0 1
1 0

)
. . . (

0 1
1 0

)
 .

(d) If i is odd, then π i
· hi has the following form (with γi ∈ A):

ξ (i−1)/2



(
0 π

σ(π) 0

)
. . . (

0 π

σ(π) 0

)
(

2 π

σ(π) 2γi

)


.
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(2) Let R be a κ-algebra. We also denote by h the element of H(R) which is the image of
h ∈ H(A) under the natural map from H(A) to H(R). Recall that we denote each element
of H(R) by ( fi, j , ai · · · fi ). Then the tuple ( fi, j , ai · · · fi ) denoting h ∈ H(R) is defined
by the conditions:

(a) If i 6= j , then fi, j = 0.

(b) If i is even, then

ai =



(
0 1
1 0

)
. . . (

0 1
1 0

)
 , thus x j

i = 0,

bi = 0, di = 0, ei = 0, fi = 0, ci = γ̄i .

Here, γ̄i ∈ κ is the reduction of γi mod 2.

(c) If i is odd, then

ai =



(
0 1
ε̄ 0

)
. . . (

0 1
ε̄ 0

)
(
π · ε̄ζ̄ 1
ε̄ π · ε̄ζ̄ γ̄i

)


.

Here, ε̄ is the reduction of ε mod 2, not mod π , so that ε̄ is an element of B⊗A R. In
addition, ζ̄ ∈ κ is the reduction of ζ mod 2, where ζ ∈ A is the unit satisfying 2= ξ ·ζ .
Thus, x j

i = 0 for all 1≤ j ≤ ni − 2 and xni−1
i = ζ̄ and xni

i = ζ̄ γ̄i .

3D. The smooth affine group scheme G.

Theorem 3.4. For any flat A-algebra R, the group M∗(R) acts on H(R) on the right by
f ◦m = σ(tm) · f ·m. This action is represented by an action morphism

H ×M∗ −→ H .

Proof. We start with any m ∈ M∗(R) and f ∈ H(R). In order to show that M∗(R) acts
on the right of H(R) by f ◦ m = σ(tm) · f · m, it suffices to show that f ◦ m satisfies
conditions (a) to (c) given in Section 3C. Since elements of M(R) preserve L ⊗A R and
Ai ⊗A R, f ◦m satisfies condition (a). That f ◦m satisfies condition (b) follows from the
fact that m stabilizes Ai and Bi and induces the identity on Ai/Bi .

For condition (c), it suffices to show that 1
π i f (mai ,mwi ) ≡

1
π i f (ai , wi ) mod π . We

denote mai = ai+bi and mwi =wi+xi , where bi ∈ Bi⊗AR, xi ∈ X i⊗AR. Hence it suffices
to show 1

π i f (ai + bi , xi )+
1
π i f (bi , wi ) mod π ≡ 0. Firstly, 1

π i f (ai + bi , xi ) mod π ≡ 0
due to the definition of the lattice X i . Secondly, if Bi  Ai , then 1

π i f (bi , wi ) mod π ≡ 0
because 1

π i f (bi , wi )=
1
π i h(bi , wi ) mod π and (ξ−m h(bi , e))2≡ ξ−m h(bi , bi )≡ 0 mod π ,
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where e is the unique vector chosen earlier. If Bi = Ai , then Wi = X i and thus 1
π i f (bi , wi )

mod π ≡ 0.
We now show that this action of the group M∗(R) on the right of H(R) is represented by

an action morphism of schemes. We observe that the action map H(R)×M∗(R)−→ H(R),
( f,m) 7→σ(tm)· f ·m is given by polynomials over A. Thus it induces a ring homomorphism
over A from the coordinate ring of H to the coordinate ring of H ×M∗, which accordingly
induces a morphism from H×M∗ to H such that the action map induced by this morphism at
the level of R-points, for a flat A-algebra R, is the same as the action given in the theorem. �

Remark 3.5. Let R be a κ-algebra. We explain the above action morphism in terms of
R-points. Choose an element (mi, j , si · · ·wi ) in M∗(R) as explained in Section 3B and
express this element formally as a matrix m =

(
πmax{0, j−i}mi, j

)
. We also choose an element

( fi, j , ai · · · fi ) of H(R) and express this element formally as a matrix f =
(
πmax{i, j} fi, j

)
as explained in Section 3C.

We then compute the formal matrix product σ(tm) · f ·m and denote it by the formal
matrix

(
πmax{i, j} f̃ ′i, j

)
with ( f̃ ′i, j , ã′i · · · f̃ ′i ). Here, the description of the formal matrix(

πmax{i, j} f̃ ′i, j

)
with ( f̃ ′i, j , ã′i · · · f̃ ′i ) is as explained in Section 3C.

We now let π2 be zero in each entry of the formal matrices ( f̃ ′i, j )i< j , (b̃′i )Li of type I o ,
(b̃′i , d̃ ′i , ẽ′i )Li of type I e and in each nondiagonal entry of the formal matrix (ã′i ). Then these en-
tries are elements in B⊗AR. We also let π2 be zero in (x̃ j

i )
′, (c̃′i )Li of type I o , ( f̃ ′i , c̃′i )Li of type I e .

Note that (x̃ j
i )
′ is a diagonal entry of a formal matrix ã′i . Then these entries are elements in R.

Let ( f ′i, j , a′i · · · f ′i ) be the reduction of ( f̃ ′i, j , ã′i · · · f̃ ′i ) as explained above, i.e., by letting
π2 be zero in the entries of formal matrices as described above. Then ( f ′i, j , a′i · · · f ′i ) is an
element of H(R) and the composition ( fi, j , ai · · · fi ) ◦ (mi, j , si · · ·wi ) is ( f ′i, j , a′i · · · f ′i ).

We can also write ( f ′i, j , a′i · · · f ′i ) explicitly in terms of ( fi, j , ai · · · fi ) and (mi, j , si · · ·wi )

like the product of (mi, j , si · · ·wi ) and (m ′i, j , s ′i · · ·w
′

i ) explained in Section 3B. However,
this is complicated and we do not use it in this generality. On the other hand, we explicitly
calculate ( fi, j , ai · · · fi ) ◦ (mi, j , si · · ·wi ) when ( fi, j , ai · · · fi ) is the given hermitian form
h and (mi, j , si · · ·wi ) satisfies certain conditions on each block. This explicit calculation
will be done in Appendix A.

Theorem 3.6. Let ρ be the morphism M∗→H defined by ρ(m)=h◦m, which is induced by
the action morphism of Theorem 3.4. Then ρ is smooth of relative dimension dim U (V, h).

Proof. The theorem follows from Lemma 5.5.1 of [Gan and Yu 2000] and the following
lemma. �

Lemma 3.7. The morphism ρ ⊗ κ : M∗ ⊗ κ → H ⊗ κ is smooth of relative dimension
dim U (V, h).

Proof. The proof is based on Lemma 5.5.2 in [Gan and Yu 2000]. It is enough to check the
statement over the algebraic closure κ̄ of κ . By [Hartshorne 1977, Proposition III.10.4], it
suffices to show that, for any m ∈ M∗(κ̄), the induced map on the Zariski tangent space
ρ∗,m : Tm→ Tρ(m) is surjective.
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We define the two functors from the category of commutative flat A-algebras to the
category of abelian groups as follows:

T1(R)= {m− 1 : m ∈ M(R)},

T2(R)= { f − h : f ∈ H(R)}.

The functor T1 (resp. T2) is representable by a flat A-algebra which is a polynomial ring
over A of 2n2 (resp. n2) variables by Lemma 3.1 of [Cho 2015a]. Moreover, each of them
is represented by a commutative group scheme since they are closed under addition. In
fact, T1 is the same as the functor M ′ in Remark 3.1 and T2 is the same as the functor H ′ in
Section 3C.

We still need to introduce another functor on flat A-algebras. Define T3(R) to be the set
of all (n× n)-matrices y over B⊗A R satisfying the following conditions:

(a) The (i, j)-block of y has entries in πmax{i, j}B⊗A R so that

y =
(
πmax{i, j}yi, j

)
.

Here, the size of yi, j is ni × n j .

(b) If i is even and L i is of type I o, then yi,i is of the form(
si πyi

πvi π zi

)
∈ Mni (B⊗A R)

where si is an (ni − 1)× (ni − 1)-matrix, etc.

(c) If i is even and L i is of type I e, then yi,i is of the form si ri π ti
yi xi π zi

πvi πui πwi

 ∈ Mni (B⊗A R)

where si is an (ni − 2)× (ni − 2)-matrix, etc.

The functor T3 is represented by a flat A-scheme which is isomorphic to an affine space by
Lemma 3.1 of [Cho 2015a]. Moreover it is represented by a commutative group scheme
since it is closed under addition. So far, we have defined three functors T1, T2, T3 and these
are represented by schemes. Therefore, we can talk about their κ̄-points.

We now compute the map ρ∗,m explicitly. We first describe an element of the tangent
space Tm . Since M∗ is an open subscheme of M , the tangent space Tm may and shall be
identified with the set of elements of M(κ̄[ε]/(ε2)) whose reduction to M(κ̄) induced by
the obvious map κ̄[ε]/(ε2)→ κ̄ is m, by considering m as an element of M(κ̄). Recall
from Remark 3.1 that we defined the functor M ′ such that (1+ M ′)(R) = M(R) inside
EndB⊗AR(L ⊗A R) for a flat A-algebra R. Thus there is an isomorphism of schemes (as set
valued functors)

1+ : M ′ −→ M .

Let m ′ be an element of M ′(κ̄) which maps to m under the morphism 1+ at the level of
κ̄-points. Then each element of the tangent space of M ′ at m ′ is of the form m ′ + εX ∈
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M ′(κ̄[ε]/(ε2)) for X ∈ M ′(κ̄). We denote by m + εX the image of m ′ + εX under the
morphism 1+ at the level of κ̄[ε]/(ε2)-points. Thus we can express an element of Tm

formally as m + εX where X ∈ M ′(κ̄). Similarly, an element of Tρ(m) can be expressed
formally as ρ(m)+ εY where Y ∈ H ′(κ̄), by using an isomorphism of schemes (as set
valued functors)

h+ : H ′ −→ H .

Here, H ′ is defined in Section 3C.
Before observing the image of m+ εX under the morphism ρ at the level of κ̄[ε]/(ε2)-

points, we lift m + εX to an element of M(R[ε]/(ε2)) as follows, where R is a local A-
algebra whose residue field is κ̄ . Let m̃ ′ ∈ M ′(R) (resp. X̃ ∈ M ′(R)) be a lift of m ′ (resp. X )
so that m̃ ′+ ε X̃ ∈ M ′(R[ε]/(ε2)) is a lift of m ′+ εX ∈ M ′(κ̄[ε]/(ε2)). Let m̃ ∈ M(R) be
the image of m̃ ′ under the morphism 1+. Then m̃ + ε X̃ is an element of M(R[ε]/(ε2))

whose reduction to M(κ̄[ε]/(ε2)) induced by the map R[ε]/(ε2)→ κ̄[ε]/(ε2) is m+ εX .
Here, the addition in m̃+ ε X̃ is the addition inside EndB⊗AR[ε]/(ε2)(L ⊗A R[ε]/(ε2)) since
R[ε]/(ε2) is flat over A (cf. Remark 3.1). This is illustrated in the following commutative
diagrams:

M ′(R[ε]/(ε2))

��

1+
// M(R[ε]/(ε2))

��

M ′(κ̄[ε]/(ε2))
1+

// M(κ̄[ε]/(ε2))

m̃ ′+ ε X̃_

��

� // m̃+ ε X̃_

��

m ′+ εX � // m+ εX

Note that the proof of Theorem 3.4 also gives the existence of the morphism H×M→ H ,
defined by ( f,m) 7→ f ◦m = σ(tm) · f ·m, where f ∈ H(R) and m ∈ M(R) for a flat
A-algebra R. This morphism induces the morphism M → H with m 7→ h ◦ m whose
reduction to M∗ is the same as ρ. Thus the above morphism M→ H can also be denoted
by ρ. We can now talk about the image of m̃ + ε X̃ under the morphism ρ at the level of
R[ε]/(ε2)-points. Since R[ε]/(ε2) is a flat A-algebra, the image of m̃+ ε X̃ comes from a
usual matrix product

σ(m̃+ ε X̃)t · h · (m̃+ ε X̃)= σ(m̃)t · h · m̃+ ε(σ (m̃)t · h · X̃ + σ(X̃)t · h · m̃). (3-1)

Thus the image of m + εX under the morphism ρ at the level of κ̄[ε]/(ε2)-points is the
reduction of σ(m̃)t · h · m̃+ ε(σ (m̃)t · h · X̃ + σ(X̃)t · h · m̃) to H(κ̄[ε]/(ε2)). It is obvious
that ρ(m) (∈ H(κ̄)) is the reduction of σ(m̃)t · h · m̃ (∈ H(R)) since m̃ is a lift of m and
ρ is a morphism of schemes. To observe the reduction of σ(m̃)t · h · X̃ + σ(X̃)t · h · m̃
(∈ H ′(R)) to H ′(κ̄), we consider a morphism M × H ′ → H ′ such that (m̃, X̃) maps to
σ(m̃)t · h · X̃ + σ(X̃)t · h · m̃, where (m̃, X̃) ∈ M(R)× H ′(R) for a flat A-algebra R. To
show that this map is well-defined, we need to show that σ(m̃)t · h · X̃ + σ(X̃)t · h · m̃ is an
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element of H ′(R). This can be easily shown by considering the morphism of tangent spaces
induced from ρ at m̃ ∈ M(R) (cf. Equation (3-1)). Since this morphism is representable,
we can denote by σ(m)t · h · X + σ(X)t · h · m (∈ H ′(κ̄)) the reduction of σ(m̃)t · h ·
X̃ + σ(X̃)t · h · m̃ (∈ H ′(R)) to H ′(κ̄). Then the image of m + εX is a formal sum
ρ(m)+ ε(σ (m)t · h · X + σ(X)t · h ·m) (∈ H(κ̄[ε]/(ε2))).

Thus if we identify Tm with T1(κ̄) and Tρ(m) with T2(κ̄), then

ρ∗,m : Tm→ Tρ(m)

X 7→ σ(m)t · h · X + σ(X)t · h ·m.

We explain how to compute X 7→ σ(m)t · h · X + σ(X)t · h ·m explicitly. Recall that
for a κ-algebra R, we denote an element m of M(R) by (mi, j , si · · ·wi ) with a formal
matrix interpretation m = (πmax{0, j−i}mi, j ) (cf. Section 3B) and we denote an element
f of H(R) by ( fi, j , ai · · · fi ) with a formal matrix interpretation f = (πmax{i, j} fi, j ) (cf.
Section 3C). Similarly, we can also denote an element X of T1(κ̄) by (m ′i, j , s ′i · · ·w

′

i )

with a formal matrix interpretation X = (πmax{0, j−i}m ′i, j ) and an element Z of T2(κ̄) by
( f ′i, j , a′i · · · f ′i ) with a formal matrix interpretation Z = (πmax{i, j} f ′i, j ). Then we formally
compute X 7→ σ(m t ) · h · X + σ(X t ) · h · m and consider the reduction of the formal
matrix σ(m t ) · h · X +σ(X t ) · h ·m in a manner similar to that of the reduction explained in
Remark 3.5. We denote this reduction by ( f ′′i, j , a′′i · · · f ′′i )with a formal matrix interpretation
(πmax{i, j} f ′′i, j ). This ( f ′′i, j , a′′i · · · f ′′i ) may and shall be identified with an element of T2(κ̄)

in the manner just described. Then ρ∗,m(X) is the element Z = ( f ′′i, j , a′′i · · · f ′′i ) of T2(κ̄).
To prove the surjectivity of ρ∗,m : T1(κ̄)→ T2(κ̄), it suffices to show the following three

statements:

(1) X 7→ h · X defines a bijection T1(κ̄)→ T3(κ̄);

(2) for any m ∈ M∗(κ̄), Y 7→ σ(tm) · Y defines a bijection from T3(κ̄) to itself;

(3) Y 7→ σ(tY )+ Y defines a surjection T3(κ̄)→ T2(κ̄).

Here, all the above maps are interpreted as in Remark 3.5 (if they are well-defined). Then
ρ∗,m is the composite of these three. Condition (3) is direct from the construction of T3(κ̄).
Hence we provide the proof of (1) and (2).

For (1), suppose that the two functors T1(R)−→ T3(R), X 7→ h · X (∈ Mn×n(B⊗A R))
and T3(R) −→ T1(R), Y 7→ h−1

· Y (∈ Mn×n(B ⊗A R)) are well-defined for all flat A-
algebras R. In other words, suppose that h · X ∈ T3(R) and h−1

·Y ∈ T1(R). These functors
are then represented by morphisms of schemes by an argument similar to that used in
the proof of Theorem 3.4, so we skip it. Thus they give maps at the level of κ-algebra
points. Furthermore, the composition of these two maps at the level of κ-algebra points
is the identity. To show this, it suffices to prove that the composition of two morphisms
given by the actions of h and h−1 is uniquely determined at the level of R-points, for a flat
A-algebra R. This is proved in Remark 3.2.

We now show that these two functors are well-defined for a flat A-algebra R. We
represent h by a hermitian block matrix

(
π i
· hi
)

with a matrix
(
π i
· hi
)

for the (i, i)-block
and 0 for the remaining blocks as in Remark 3.3(1).
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For the first functor, it suffices to show that h · X satisfies the three conditions defining
the functor T3. Here, X ∈ T1(R) for a flat A-algebra R. We write

X =
(
πmax{0, j−i}xi, j

)
.

Then
h · X =

(
πmax(i, j)yi, j

)
.

Here, yi,i = hi · xi,i . Therefore, it suffices to show that yi,i = hi · xi,i satisfies conditions (b)
and (c) in the description of T3(R) when L i is of type I .

If L i is of type I o, then we express xi,i as a matrix
( si
πvi

πyi
π zi

)
. The matrix form of hi is

εi/2



(
0 1
1 0

)
. . . (

0 1
1 0

)
1+ 2γi


as in Remark 3.3(1). Here, ε is a unit in B such that σ(π)= επ , as explained in Section 2A.
To simplify our notation, write hi = ε

i/2
( Ii

0
0

1+2γi

)
. Then we can see that

hi · xi,i = ε
i/2
(

Ii 0
0 1+ 2γi

)
·

(
si πyi

πvi π zi

)
= εi/2

(
Ii si π Ii yi

π(1+ 2γi )vi π(1+ 2γi )zi

)
.

Thus, hi · xi,i satisfies the congruence condition given in (b) of the description of T3(R).
If L i is of type I e, then we express xi,i as a matrix si ri π ti

πyi πxi π zi

vi ui πwi

 .
The matrix form of hi is given as in Remark 3.3(1) and again, in order to simplify our
notation, write

hi = ε
i/2

Ii 0 0
0 1 1
0 1 2γi

 .
Then we can see that

hi · xi,i = ε
i/2

Ii 0 0
0 1 1
0 1 2γi

 ·
 si ri π ti
πyi πxi π zi

vi ui πwi


= εi/2

 Ii si Iiri π Ii ti
πyi + vi πxi + ui π(zi +wi )

πyi + 2γivi πxi + 2γi ui π zi + 2γiπwi

 .
Thus, hi · xi,i satisfies the congruence condition given in c) of the description of T3(R) and
our functor is well-defined.
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For the second functor, we write Y =
(
πmax(i, j)yi, j

)
and h−1

=
(
π−i
· h−1

i

)
. Then we

have the following:
h−1
· Y =

(
πmax{0, j−i}xi, j

)
.

Here, xi,i = h−1
i · yi,i .

Then it suffices to show that h−1
· Y =

(
πmax{0, j−i}xi, j

)
satisfies the conditions defining

T1(R) for a flat A-algebra R. Indeed, we do not describe the conditions defining T1(R)
explicitly in this paper. However, these conditions can be read off from the conditions
defining M(R) because of the definition of the functor T1. The matrix form of an element
of M(R) is described in Section 3B and based on this, it suffices to observe the diagonal
blocks xi,i = h−1

i · yi,i when L i is of type I .
If L i is of type I o, then we express yi,i as a matrix

( si
πvi

πyi
π zi

)
. The matrix form of h−1

i is
h−1

i = ε
−i/2

( Ii
0

0
1+2γ ′i

)
for a certain γ ′i ∈ A. Then we can see that

h−1
i · yi,i = ε

−i/2
(

Ii 0
0 1+ 2γ ′i

)
·

(
si πyi

πvi π zi

)
= εi/2

(
Ii si π Ii yi

π(1+ 2γ ′i )vi π(1+ 2γ ′i )zi

)
.

Thus, h−1
i · yi,i satisfies the relevant congruence condition in the definition of T1(R).

If L i is of type I e, then we express yi,i as a matrix si ri π ti
yi xi π zi

πvi πui πwi

 .
The matrix form of h−1

i is

h−1
i = ε

−i/2

Ii 0 0
0 2ε′γi −ε

′

0 −ε′ ε′

 .
Here, ε′ = (2γi − 1)−1 is a unit in A. Then we can see that h−1

i · yi,i is

ε−i/2

Ii 0 0
0 2ε′γi −ε

′

0 −ε′ ε′

 ·
 si ri π ti

yi xi π zi

πvi πui πwi


= ε−i/2

 Ii si Iiri π Ii ti
ε′(2γi yi −πvi ) ε

′(2γi xi −πui ) πε
′(2γi zi −wi )

ε′(−yi +πvi ) ε′(−xi +πui ) πε′(−zi +wi )

 .
Thus, h−1

i · yi,i satisfies the relevant congruence condition in the definition of T1(R) and our
functor is well-defined.

For (2), suppose that the functor

M∗(R)× T3(R)−→ T3(R), (m, Y ) 7→ σ(tm) · Y,

for a flat A-algebra R, is well-defined. In other words, we suppose that σ(tm) · Y ∈ T3(R).
This functor is then represented by a morphism of schemes, a fact whose proof is similar to
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the argument used in the proof of Theorem 3.4, so we skip it. Thus it gives the map at the
level of κ̄-points

M∗(κ̄)× T3(κ̄)−→ T3(κ̄), (m, Y ) 7→ σ(tm) · Y.

This map implies that our map in (2) is well-defined. On the other hand, the inverse of our
map in (2) is Y 7→ σ(tm)−1

· Y and this map is well-defined as well since m−1 is also an
element of M∗(κ̄). Therefore, the map in (2) is a bijection.

We now show that the above functor is well-defined. For a flat A-algebra, we choose
an element m ∈ M∗(R) and Y ∈ T3(R) and we again express m =

(
πmax{0, j−i}mi, j

)
and

Y =
(
πmax(i, j)yi, j

)
. Then σ(tm) · Y obviously satisfies condition (a) in the definition of

T3(R) and it suffices to show that σ(tmi,i ) · yi,i satisfies conditions (b) and (c) when L i is of
type I .

If L i is of type I o, then we express mi,i as a matrix
( si
πvi

πyi
1+π zi

)
and yi,i as a matrix( ai

πci

πbi
πdi

)
. Then

σ(tmi,i ) · yi,i =

(
σ(tsi ) σ (π · tvi )

σ (π · t yi ) 1+ σ(π zi )

)
·

(
ai πbi

πci πdi

)
.

Then we can easily see that this matrix satisfies congruence condition (b) in the definition
of T3(R).

If L i is of type I e, then we express mi,i and yi,i as matrices:

mi,i =

 si ri π ti
πyi 1+πxi π zi

vi ui 1+πwi

 and yi,i =

 ai bi πci

di ei π fi

πgi πhi πki

 .
Then

σ(tmi,i ) · yi,i =

 σ(tsi ) σ (π · t yi ) σ (tvi )

σ (tri ) 1+ σ(πxi ) σ (ui )

σ (π · tti ) σ (π zi ) 1+ σ(πwi )

 ·
 ai bi πci

di ei π fi

πgi πhi πki

 .
Then we can easily see that this matrix satisfies congruence condition (c) in the definition
of T3(R). �

Let G be the stabilizer of h in M∗. It is an affine group subscheme of M∗, defined over A.
Thus we have the following theorem.

Theorem 3.8. The group scheme G is smooth, and G(R)=AutB⊗AR(L⊗A R, h⊗A R) for
any étale A-algebra R.

Proof. Since G is the fiber of h along the smooth morphism ρ : M∗→ H , ρ(m)= h ◦m,
the scheme G is smooth. Here, we use the fact that smoothness is stable under base change.

For the identity, we recall that each element of AutB⊗AR(L⊗A R, h⊗A R), for an étale A-
algebra R, satisfies all congruence conditions defining M , which is explained in Section 3A.
Since G(R) is the group of R-points of M∗ stabilizing the given hermitian form h, we have
the identity G(R)= AutB⊗AR(L ⊗A R, h⊗A R) for any étale A-algebra R. �



Group schemes and densities of ramified hermitian lattices, I 481

Note that in the theorem, the equality holds only for an étale A-algebra R since we obtain
conditions defining M by observing properties of elements of AutB⊗AR(L ⊗A R, h⊗A R)
for an étale A-algebra R (cf. Section 3A). For example, let (L , h) be the hermitian lattice
of rank 1 as given in Appendix B. For simplicity, let π + σ(π) = π2

= 2. As a set,
AutB⊗AR(L ⊗A R, h⊗A R) is the same as {(a, b) : a, b ∈ R and a2

+ 2ab+ 2b2
= 1} for a

flat A-algebra R. Thus we cannot guarantee that a− 1 is contained in the ideal (2), which
should be necessary in order that (a, b) is an element of G(R).

4. The special fiber of the smooth integral model

In this section, we will determine the structure of the special fiber G̃ of G by determining
the maximal reductive quotient and the component group when E/F satisfies Case 1, by
adapting the approach of Section 4 of [Cho 2015a]. From this section to the end, the identity
matrix is denoted by id.

4A. The reductive quotient of the special fiber. Recall that Yi is the sublattice of Bi such
that Yi/π Ai is the radical of the alternating bilinear form ξ−i/2 h mod π on Bi/π Ai (when
i is even) and that Z i is the sublattice of Ai such that Z i/π Ai is the radical of the quadratic
form 1

2m q mod 2 on Ai/π Ai , where 1
2m q(x)= 1

2m h(x, x) (when i = 2m− 1 is odd).

Lemma 4.1. Let i be odd. Consider the lattice π Ai−1+Ai+1={x+y : x ∈π Ai−1, y∈ Ai+1}.
Then π Ai−1+ Ai+1 = X i .

Proof. Let L =
⊕

i L i be a Jordan splitting. We describe π Ai−1, Ai+1, X i below:

π Ai−1 = π
i L0⊕π

i−1L1⊕ · · ·⊕πL i−1⊕πL i ⊕πL i+1⊕ · · · ;

Ai+1 = π
i+1L0⊕π

i L1⊕ · · ·⊕π
2L i−1⊕πL i ⊕ L i+1⊕ · · · ;

X i = π
i L0⊕π

i−1L1⊕ · · ·⊕πL i−1⊕πL i ⊕ L i+1⊕ · · · .

Our claim follows directly from the above descriptions. �

Lemma 4.2. Each element of M(R), for a flat A-algebra R, preserves Yi ⊗A R (for i even)
and Z i ⊗A R (for i odd).

Proof. The claim for Yi follows from the fact that Yi = X i or Yi =Wi according to the type
of L i as described in Remark 2.11.

To prove the claim for Z i , use Lemma 4.1 to express a given arbitrary element of
Z i ⊗A R as x + y, where x ∈ π Ai−1 ⊗A R and y ∈ Ai+1 ⊗A R. Let g ∈ M(R). Then
g(x + y) = g(x)+ g(y) = (x + x ′)+ (y + y′), where x ′ ∈ πBi−1 ⊗A R, y′ ∈ Bi+1 ⊗A R
since g induces the identity on (Ai−1⊗A R)/(Bi−1⊗A R) and on (Ai+1⊗A R)/(Bi+1⊗A R).
Since π Ai−1 ⊗A R and Ai+1 ⊗A R are contained in Wi ⊗A R and hence πBi−1 ⊗A R and
Bi+1⊗A R are contained in Z i⊗A R, we have that g(x+ y)= (x+ y)+x ′+ y′ ∈ Z i⊗A R. �

Theorem 4.3. Assume that i is even. Let hi denote the nonsingular alternating bilinear
form ξ−i/2 h mod π on Bi/Yi . Then there exists a unique morphism of algebraic groups

ϕi : G̃ −→ Sp(Bi/Yi , hi )

defined over κ such that for all étale local A-algebras R with residue field κR and every
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m̃ ∈ G(R) with reduction m ∈ G̃(κR), ϕi (m) ∈ GL(Bi ⊗A R/Yi ⊗A R) is induced by the
action of m̃ on L ⊗A R (which preserves Bi ⊗A R and Yi ⊗A R by Lemma 4.2). Note that
the dimension of Bi/Yi , as a κ-vector space, is as follows:

ni if L i is of type II ;
ni − 1 if L i is of type I o

;

ni − 2 if L i is of type I e.

Proof. Let R be an étale local A-algebra with κR as its residue field. Note that such an
R is finite over A since any étale local algebra R over a henselian local ring is finite by
Proposition 4 of Section 2.3 in [Bosch et al. 1990] and since A is henselian. For such a
finite field extension κR of κ , R is uniquely determined up to isomorphism. Since G is
smooth over A, the map G(R)→ G̃(κR) is surjective by Hensel’s lemma.

Now, we choose an element m ∈ G̃(κR) and a lift m̃ ∈ G(R). Since the action of m̃ on
L⊗A R preserves Bi ⊗A R and Yi ⊗A R, m̃ determines an element of GL(Bi ⊗A R/Yi ⊗A R).
It is also easy to show that this element determined by m̃ fixes hi ⊗ κR on Bi/Yi ⊗κ κR

(= Bi ⊗A R/Yi ⊗A R). Thus m̃ determines an element of Sp(Bi/Yi , hi )(κR) and so we have
a map from G̃(κR) to Sp(Bi/Yi , hi )(κR). Indeed, this map is well-defined, i.e., independent
of a lift m̃ of m as will be explained later after describing a matrix interpretation of this map.
In order to show that this map is well-defined and representable, we interpret it in terms
of matrices. Recall that G is a closed subgroup scheme of M∗ and G̃ is a closed subgroup
scheme of M̃ , where M̃ is the special fiber of M∗. Thus we may consider an element of
G̃(κR) as an element of M̃(κR). Based on Section 3B, an element m of G̃(κR) may be
written as, say, (mi, j , si · · ·wi ) and it has the following formal matrix description:

m =
(
πmax{0, j−i}mi, j

)
.

Here, if i is even and L i is of type I o or of type I e, then

mi,i =

(
si πyi

πvi 1+π zi

)
or

 si ri π ti
πyi 1+πxi π zi

vi ui 1+πwi

 ,
respectively, where si ∈ M(ni−1)×(ni−1)(B ⊗A κR) (resp. si ∈ M(ni−2)×(ni−2)(B ⊗A κR)),
etc., and si is invertible. For the remaining mi, j ’s except for the cases explained above,
mi, j ∈Mni×n j (B⊗AκR) and mi,i is invertible. Note that the description of the multiplication
in M̃(κR) given in Section 3B forces si and mi,i to be invertible.

We can write mi,i =m1
i,i +π ·m

2
i,i when L i is of type II and for each block of mi,i when

L i is of type I , si = s1
i +π · s

2
i and so on. Here, m1

i,i ,m2
i,i ∈ Mni×ni (κR)⊂ Mni×ni (B⊗AκR)

when L i is of type II and so on, and π stands for π ⊗ 1 ∈ B⊗AκR . Then m maps to m1
i,i

if L i is of type II and s1
i if L i is of type I . Since this map is independent of the choice of

m2
i,i , s2

i and so on, it is independent of the choice of m̃, i.e., this map is well-defined.
We note that this map is given by polynomials over A of degree at most 1 as well as

a group homomorphism. Thus the above matrix interpretation induces a Hopf algebra
homomorphism over A from the coordinate ring of Sp(Bi/Yi , hi ) to the coordinate ring
of G̃, which accordingly induces an algebraic group homomorphism ϕi : G̃→Sp(Bi/Yi , hi )
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such that the group homomorphism induced by ϕi at the level of κR-points is the same as
the map explained above.

Since G̃ is smooth over κ and κ is perfect, the set of κR-points of G̃ for all finite field
extensions κR/κ is dense in G̃ by [Bosch et al. 1990, Corollary 13 of Section 2.2]. Therefore,
ϕi is uniquely determined by the map constructed above at the level of κR-points. �

Theorem 4.4. We next assume that i = 2m− 1 is odd. Let q̄i denote the nonsingular qua-
dratic form 1

2m q mod 2 on Ai/Z i . Then there exists a unique morphism of algebraic groups

ϕi : G̃ −→ O(Ai/Z i , q̄i )red

defined over κ , where O(Ai/Z i , q̄i )red is the reduced subgroup scheme of O(Ai/Z i , q̄i ),
such that for all étale local A-algebras R with residue field κR and every m̃ ∈ G(R) with
reduction m ∈ G̃(κR), ϕi (m) ∈ GL(Ai ⊗A R/Z i ⊗A R) is induced by the action of m̃ on
L ⊗A R (which preserves Ai ⊗A R and Z i ⊗A R by Lemma 4.2).

Proof. The proof of this theorem is similar to that of Theorem 4.3 which deals with the case
of even i . Thus we only provide the image of an element m of G̃(κR) in O(Ai/Z i , q̄i )red(κR),
where R is an étale local A-algebra with κR as its residue field. In this case, an element m
of G̃(κR) maps to m1

i,i (if L i is free) or to
(

m1
i,i

δi−1ei−1·m1
i−1,i+δi+1ei+1·m1

i+1,i

0
1

)
(if L i is bound).

Here, δ j = 1 if L j is of type I and δ j = 0 if L j is of type II . Also, e j = (0, · · · , 0, 1) (resp.
e j = (0, · · · , 0, 1, 0)) of size 1× n j if L j is of type I o (resp. of type I e). �

Notice that if the dimension of Ai/Z i is even and positive, then O(Ai/Z i , q̄i )red (=

O(Ai/Z i , q̄i )) is disconnected. If the dimension of Ai/Z i is odd, then O(Ai/Z i , q̄i )red (=

SO(Ai/Z i , q̄i )) is connected. The dimension of Ai/Z i , as a κ-vector space, is as follows:{
ni if L i is free;
ni + 1 if L i is bound.

Note that the integer ni , with i odd, is always even.

Theorem 4.5. The morphism ϕ defined by

ϕ =
∏

i

ϕi : G̃ −→
∏

i even

Sp(Bi/Yi , hi )×
∏
i odd

O(Ai/Z i , q̄i )red

is surjective.

Proof. Let us first prove the theorem under the assumption that

dim G̃ = dim Kerϕ+
∑
i even

(dim Sp(Bi/Yi , hi ))+
∑
i odd

(dim O(Ai/Z i , q̄i )red). (4-1)

This equation will be proved in Appendix A. Thus Imϕ contains the identity component
of
∏

i even Sp(Bi/Yi , hi )×
∏

i odd O(Ai/Z i , q̄i )red. Here Kerϕ denotes the kernel of ϕ and
Imϕ denotes the image of ϕ. Note that it is well known that the image of a homomorphism
of algebraic groups is a closed subgroup.

Recall from Section 3B that a matrix form of an element of G̃(R) for a κ-algebra R is
written (mi, j , si · · ·wi ) with the formal matrix interpretation

m =
(
πmax{0, j−i}mi, j

)
.
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We represent the given hermitian form h by a hermitian matrix
(
π i
· hi
)

with π i
· hi for the

(i, i)-block and 0 for the remaining blocks, as in Remark 3.3(1).
Let H be the set of odd integers i such that O(Ai/Z i , q̄i )red is disconnected. Notice that

O(Ai/Z i , q̄i )red is disconnected exactly when L i with i odd is free. We first prove that ϕi ,
for such an odd integer i , is surjective. We prove this by a series of reductions, after which
we will be able to assume that L is of rank two.

For such an odd integer i with a free lattice L i , we define the closed scheme Hi of G̃ by
the equations m j,k = 0 if j 6= k, and m j, j = id if j 6= i . An element of Hi (R) for a κ-algebra
R can be represented by a matrix of the form

id 0 . . . 0

0
. . .

id
... mi,i

...
id
. . . 0

0 . . . 0 id


.

Obviously, Hi has a group scheme structure. We claim that ϕi is surjective from Hi to
O(Ai/Z i , q̄i )red (recall that Z i = X i since L i is free). Note that equations defining Hi are
induced by the formal matrix equation

σ(tmi,i )(π
i
· hi )mi,i = π

i
· hi

which is interpreted as in Remark 3.5. We emphasize that, in this formal matrix equation, we
work with mi,i , not m, because of the description of Hi . Note that none of the congruence
conditions mentioned in Section 3A involve any entry from mi,i .

On the other hand, let us consider the hermitian lattice L i independently as a π i -modular
lattice. Since there is only one nontrivial Jordan component for this lattice and i is odd,
the smooth integral model associated to L i is determined by the following formal matrix
equation which is interpreted as in Remark 3.5:

σ(tm)(π i
· hi )m = π i

· hi ,

where m is an (ni × ni )-matrix and is not subject to any congruence condition.
We consider the map from Hi to the special fiber of the smooth integral model associated

to the hermitian lattice L i such that mi,i maps to m. Since mi,i and m are subject to the same
set of equations, this map is an isomorphism as algebraic groups. In addition, this map in-
duces compatibility between the morphism ϕi from Hi to O(Ai/Z i , q̄i )red and the morphism
from the special fiber of the smooth integral model associated to L i to O(Ai/Z i , q̄i )red. Thus,
in order to show that ϕi is surjective from Hi to O(Ai/Z i , q̄i )red, we may and do assume
that L = L i and in this case Z i = X i = πL i . For simplicity, we can also assume that i = 1.

Because of Equation (4-1) stated at the beginning of the proof, the dimension of the image
of ϕi , as a κ-algebraic group, is the same as that of O(Ai/Z i , q̄i )red (= O(L i/πL i , q̄i )).
Therefore, the image of ϕi contains the identity component of O(L i/πL i , q̄i ), namely
SO(L i/πL i , q̄i ). Since O(L i/πL i , q̄i ) has two connected components, we only need to
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show the surjectivity of ϕi at the level of κ-points and it suffices to show that the image of
ϕi (κ) contains at least one element which is not contained in SO(L i/πL i , q̄i )(κ), where
SO(L i/πL i , q̄i )(κ) is the group of κ-points of the algebraic group SO(L i/πL i , q̄i ).

Recall that L i =
⊕

λ Hλ⊕A(2, 2b, π) for a certain b∈ A, cf. Theorem 2.10. We consider
the orthogonal group associated to the quadratic κ-space A(2, 2b, π)/π A(2, 2b, π) of
dimension 2. Then this group is embedded into O(L i/πL i , q̄i )(κ) as a closed subgroup
and we denote the embedded group by O(A(2, 2b, π)/π A(2, 2b, π), q̄i )(κ).

We express an element mi,i ∈ Hi (R), for a κ-algebra R, as
( x

z
y
w

)
such that x = x1

+πx2

and so on, where x1, x2
∈ M(ni−2)×(ni−2)(R) ⊂ M(ni−2)×(ni−2)(R ⊗A B) and π stands for

1⊗π ∈ R⊗AB. Consider the closed subscheme of Hi defined by the equations x = id, y= 0,
and z= 0. An argument similar to one used above to reduce to the case where L = L i shows
that this subscheme is isomorphic to the special fiber of the smooth integral model associated
to the hermitian lattice A(2, 2b, π) of rank 2. Then under the map ϕi (κ), an element of this
subgroup maps to an element of O(A(2, 2b, π)/π A(2, 2b, π), q̄i )(κ) of the form

( id
0

0
w1

)
.

Note that O(A(2, 2b, π)/π A(2, 2b, π), q̄i )(κ) is not contained in SO(L i/πL i , q̄i )(κ).
Thus it suffices to show that the restriction of ϕi (κ) to the above subgroup of Hi (κ), which is
given by letting x = id, y= 0, z= 0, is surjective onto O(A(2, 2b, π)/π A(2, 2b, π), q̄i )(κ)

and we may and do assume that L = L i = A(2, 2b, π) is of rank 2.
Let mi,i =

( r
t

s
v

)
be an element of Hi (κ) such that r = r1 + πr2 and so on, where

r1, r2 ∈ R ⊂ R ⊗A B and π stands for 1⊗ π ∈ R ⊗A B. Recall that π = 1+
√

1+ 2u
for a certain unit u ∈ A so that π + σ(π) = 2, σ(π) = επ with ε ≡ 1 mod π , and
π2
≡ (σ (π))2 ≡ ξ− ≡ 2u mod 2π as mentioned in Section 2A. Let ū ∈ κ be the reduction

of u modulo π . Then the equations defining Hi (κ) are

r2
1 + r1t1+ bt2

1 = 1, r1v1+ t1s1 = 1,

r1s1+ bt1v1+ ū(r2v1+ r1v2+ t2s1+ t1s2)= 0, s2
1 + s1v1+ bv2

1 = b.

Under the map ϕi (κ), mi,i maps to
( r1

t1
s1
v1

)
. Note that the quadratic form q̄i restricted to

A(2, 2b, π)/π A(2, 2b, π) is given by the matrix
( 1

0
1
b

)
.

We now choose an element of Hi (κ) by setting

r1 = s1 = v1 = 1, t1 = 0, 1+ ū(r2+ v2+ t2)= 0.

Under the morphism ϕi (κ), this element maps to
( 1

0
1
1

)
∈O(A(2, 2b, π)/πA(2, 2b, π), q̄i )(κ).

The Dickson invariant of this element is nontrivial so that it is not contained in
SO(A(2, 2b, π)/π A(2, 2b, π), q̄i )(κ).

Therefore, ϕi (κ) induces a surjection from Hi (κ) to O(A(2, 2b, π)/π A(2, 2b, π), q̄i )(κ)

for i ∈H.
We now prove that ϕ =

∏
i ϕi is surjective. We consider the morphism∏

i∈H

Hi → G̃

(hi )i∈H 7→
∏
i∈H

hi .

By considering a formal matrix form of an element of Hi (R) for a κ-algebra R as given
above, it is easy to see the following two facts. Firstly, Hi and H j commute with each other in
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the sense that hi ·h j =h j ·hi for all i 6= j , where hi ∈Hi (R) and h j ∈H j (R) for a κ-algebra R.
Based on this, the above morphism becomes a group homomorphism. Secondly, Hi∩H j = 0
for all i 6= j . This fact implies that the morphism Hi × H j −→ G̃, (hi , h j ) 7→ hi · h j is
injective and so Hi ×H j is a closed subgroup scheme of G̃. A matrix form of an element of
Hi (R) also implies that (Hi × H j )∩ Hk = 0 for all pairwise different three integers i, j, k
and so the morphism (Hi × H j )× Hk −→ G̃, (hi , h j , hk) 7→ hi · h j · hk is injective. Thus
Hi ×H j ×Hk is a closed subgroup scheme of G̃. Therefore, by repeating this argument, the
product

∏
i∈H Hi is embedded into G̃ as a closed subgroup scheme. Since ϕi |H j is trivial

for i 6= j with i, j ∈H, the morphism∏
i∈H

ϕi :
∏
i∈H

Hi →
∏
i∈H

O(Ai/Z i , q̄i )red

is surjective. Therefore, ϕ is surjective. Now it suffices to prove Equation (4-1) made at
the beginning of the proof, which is the next lemma. �

Lemma 4.6. Kerϕ is smooth and unipotent of dimension l. In addition, the number of
connected components of Kerϕ is 2β . Here,

• l is such that

l +
∑
i even

(dim Sp(Bi/Yi , hi ))+
∑
i odd

(dim O(Ai/Z i , q̄i )red)= dim G̃.

• β is the number of even integers j such that L j is of type I and L j+2 is of type II .

Recall that the zero lattice is of type II . The proof is postponed to Appendix A.

Remark 4.7. We summarize the description of Im ϕi as follows.

type of lattice L i i Imϕi

II even Sp(ni , hi )

I o even Sp(ni − 1, hi )

I e even Sp(ni − 2, hi )

free odd O(ni , q̄i )

bound odd SO(ni + 1, q̄i )

Let i be odd and L i be free. Then Ai/Z i = L i/πL i is a κ-vector space with even dimension.
We now consider the question of whether the orthogonal group O(Ai/Z i , q̄i )= O(ni , q̄i )

is split or nonsplit.
By Theorem 2.10, we have that L i =

⊕
λ Hλ ⊕ A(2, 2bi , π) for certain bi ∈ A. Thus

the orthogonal group O(Ai/Z i , q̄i ) (= O(ni , q̄i )) is split if and only if the quadratic space
A(2, 2bi , π)/π A(2, 2bi , π) is isotropic. Recall that π + σ(π) = 2 and π = 1+

√
1+ 2u

for a certain unit u ∈ A. Using this, the quadratic form on A(2, 2bi , π)/π A(2, 2bi , π) is
q(x, y)= x2

+ xy+ b̄i y2, where b̄i is the reduction of bi in κ .
We consider the identity q(x, y) = x2

+ xy+ b̄i y2
= 0. If y = 0, then x = 0. Assume

that y 6= 0. Then we have that b̄i = (x/y)2+ x/y.
Thus we can see that there exists a solution of the equation z2

+ z = b̄i over κ if and only
if q(x, y) is isotropic if and only if O(Ai/Z i , q̄i ) (= O(ni , q̄i )) is split.
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4B. The construction of component groups. The purpose of this subsection is to define a
surjective morphism from G̃ to (Z/2Z)β , where β is the number of even integers j such
that L j is of type I and L j+2 is of type II as defined in Lemma 4.6.

Definition 4.8. We set L0
= L and inductively define, for positive integers i ,

L i
:= {x ∈ L i−1

| h(x, L i−1)⊂ (π i )}.

When i = 2m is even,

L2m
= πm(L0⊕ L1)⊕π

m−1(L2⊕ L3)⊕ · · ·⊕π(L2m−2⊕ L2m−1)⊕
⊕
i≥2m

L i .

We choose a Jordan splitting for the hermitian lattice (L2m, ξ−m h) as follows:

L2m
=

⊕
i≥0

Mi ,

where
M0 = π

m L0⊕π
m−1L2⊕ · · ·⊕πL2m−2⊕ L2m,

M1 = π
m L1⊕π

m−1L3⊕ · · ·⊕πL2m−1⊕ L2m+1,

Mk = L2m+k if k ≥ 2.

Here, Mi is π i -modular. We caution that the hermitian form we use on L2m is not h, but its
rescaled version ξ−m h. Thus Mi is π i -modular, not π2m+i -modular.

Definition 4.9. We define C(L) to be the sublattice of L such that

C(L)= {x ∈ L | h(x, y) ∈ (π) for all y ∈ B(L)}.

We choose any even integer j such that L j is of type I and L j+2 is of type II (possibly
zero, by our convention), and consider the Jordan splitting

⊕
i≥0 Mi of L j defined above.

We stress that M0 is nonzero and of type I , since it contains L j as a direct summand so
that n(M0) = s(M0) (cf. Definition 2.1(c)), and M2 = L j+2 is of type II . Choose a basis
(〈ei 〉, e) (resp. (〈ei 〉, a, e)) for M0 so that M0 =

⊕
λ Hλ⊕ K when the rank of M0 is odd

(resp. even). Here, we follow the notation from Theorem 2.10. Then B(L j ) is spanned by

(〈ei 〉, πe) (resp. (〈ei 〉, πa, e)) and M1⊕
⊕
i≥2

Mi

and C(L j ) is spanned by

(〈πei 〉, e) (resp. (〈πei 〉, πa, e)) and M1⊕
⊕
i≥2

Mi .

We now construct a morphism ψ j : G̃→ Z/2Z as follows. (There are 2 cases depending
on whether M0 is of type I e or of type I o.)

(1) Firstly, we assume that M0 is of type I e. We choose a Jordan splitting for the hermitian
lattice (C(L j ), ξ−m h) as follows:

C(L j )=
⊕
i≥1

M ′i ,
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where

M ′1 = (π)a⊕ Be⊕M1, M ′2 =
(⊕

i

(π)ei

)
⊕M2, and M ′k = Mk if k ≥ 3.

Here, M ′i is π i -modular and (π) is the ideal of B generated by a uniformizer π . Notice that
M ′2 is of type II , since both

⊕
i (π)ei and M2 are of type II , so that M ′1 is free.

If m is an element of the group of R-points of the naive integral model associated
to the hermitian lattice L , for a flat A-algebra R, then m stabilizes the hermitian lattice
(C(L j )⊗A R, ξ−m h⊗ 1) as well. If we use this fact in the case of an F-algebra R, where
F is the quotient field of A, then we obtain a morphism of algebraic groups from the
unitary group associated to the hermitian space L ⊗A F to the unitary group associated to
the hermitian space (C(L j )⊗A F, ξ−m h) by Yoneda’s lemma. Furthermore, if we use the
above fact in the case of an étale A-algebra R, then the morphism between unitary groups is
extended to give a map from the group of R-points of the naive integral model associated
to the hermitian lattice L to that of the hermitian lattice (C(L j ), ξ−m h). Note that the
naive integral model and the associated smooth integral model have the same generic fiber
and are the same at the level of étale A-points. Thus by Proposition 2.3 of [Yu 2002], the
morphism between unitary groups is uniquely extended to a morphism of group schemes
from the smooth integral model associated to L to the smooth integral model associated
to (C(L j ), ξ−m h) such that the map induced from it at the level of étale A-points is the
same as that described above. Let G j denote the special fiber of the latter smooth integral
model. We now have a morphism from G̃ to G j . Moreover, since M ′1 is free and nonzero,
we have a morphism from G j to the even orthogonal group associated to M ′1 as explained
in Section 4A. Thus, the Dickson invariant of this orthogonal group induces the morphism

ψ j : G̃ −→ Z/2Z.

(2) We next assume that M0 is of type I o. We choose a Jordan splitting for the hermitian
lattice (C(L j ), ξ−m h) as follows:

C(L j )=
⊕
i≥0

M ′i ,

where

M ′0 = Be, M ′1 = M1, M ′2 =
(⊕

i

(π)ei

)
⊕M2, and M ′k = Mk if k ≥ 3.

Here, M ′i is π i -modular and (π) is the ideal of B generated by a uniformizer π . Notice that
the rank of the π0-modular lattice M ′0 is 1 and the lattice M ′2 is of type II . If G j denotes the
special fiber of the smooth integral model associated to the hermitian lattice (C(L j ), ξ−m h),
then we have a morphism from G̃ to G j as in the above argument (1).

We now consider the new hermitian lattice M ′0 ⊕ C(L j ). Then for a flat A-algebra
R, there is a natural embedding from the group of R-points of the naive integral model
associated to the hermitian lattice (C(L j ), ξ−m h) to that of the hermitian lattice M ′0⊕C(L j )

such that m maps to
( 1

0
0
m

)
, where m is an element of the former group. As in the previous

argument (1), the above fact induces a closed immersion of algebraic groups from the
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unitary group associated to the hermitian space (C(L j )⊗A F, ξ−m h) to the unitary group
associated to the hermitian space (M ′0⊕C(L j ))⊗AF and its extension at the level of étale A-
algebra points between the associated naive integral models. Thus by Proposition 2.3 of [Yu
2002], the morphism between unitary groups is uniquely extended to a morphism of group
schemes from the smooth integral model associated to the hermitian lattice (C(L j ), ξ−m h)
to the smooth integral model associated to the hermitian lattice M ′0⊕C(L j ) such that the
map induced from it at the level of étale A-points is the same as that described above. In
Remark 4.10, we describe this morphism explicitly in terms of matrices.

Thus we have a morphism from the special fiber G j of the smooth integral model
associated to C(L j ) to the special fiber G ′j of the smooth integral model associated to
M ′0 ⊕ C(L j ). Note that (M ′0 ⊕ M ′0) ⊕

⊕
i≥1 M ′i is a Jordan splitting of the hermitian

lattice M ′0⊕C(L j ). Let G ′′j be the special fiber of the smooth integral model associated to
C
(
(M ′0⊕M ′0)⊕

⊕
i≥1 M ′i

)
. Since the π0-modular lattice M ′0⊕M ′0 is of type I e, we have

a morphism G ′j → Z/2Z obtained by factoring through G ′′j and the corresponding even
orthogonal group with the Dickson invariant as constructed in argument (1). ψ j is defined
to be the composite

ψ j : G̃→ G j → G ′j → Z/2Z.

Remark 4.10. In this remark, we describe the morphism from the smooth integral model
G j associated to the hermitian lattice (C(L j ), ξ−m h) to the smooth integral model G ′j
associated to the hermitian lattice M ′0⊕C(L j ) as given in argument (2) above, in terms
of matrices. Let R be a flat A-algebra. We choose an element in G j (R) and express it as
a matrix m =

(
πmax{0, j−i}mi, j

)
. Then m0,0 =

(
1+π z0

)
since M ′0 is of type I with rank 1

so that we may and do write m as m =
( 1+π z0

m2

m1
m3

)
. We consider a morphism from G j to

AutB(M ′0⊕C(L j )) such that m maps to

T =
(

1 0
0 m

)
=

1 0 0
0 1+π z0 m1

0 m2 m3

 ,
where the set of R-points of the group scheme AutB(M ′0 ⊕C(L j )) is the automorphism
group of (M ′0 ⊕ C(L j ))⊗A R by ignoring the hermitian form. Then the image of this
morphism is represented by an affine group scheme which is isomorphic to G j . Note that T
preserves the hermitian form attached to the lattice M ′0⊕C(L j ).

We claim that
( 1

0
0
m

)
is contained in G ′j (R). If this is true, then the above matrix descrip-

tion defines a morphism from G j to G ′j by Yoneda’s lemma since G j is flat. Furthermore,
this matrix description is the same as that of naive integral models explained in the above
argument (2) when R is an F-algebra or an étale A-algebra, since the naive integral model
and the associated smooth integral model have the same generic fiber and are the same at
the level of étale A-points. Since the desired morphism is completely determined at the
level of F-algebra points and étale A-algebra points by Proposition 2.3 of [Yu 2002], the
morphism from G j to G ′j obtained by the above matrix description is the morphism we
want to describe.
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We rewrite the hermitian lattice M ′0⊕C(L j ) as (M ′0⊕M ′0)⊕
(⊕

i≥1 M ′i
)
. Let (e1, e2)

be a basis for (M ′0⊕ M ′0) so that the corresponding Gram matrix of (M ′0⊕ M ′0) is
( a

0
0
a

)
,

where a ≡ 1 mod 2. Then the hermitian lattice (M ′0⊕ M ′0) has Gram matrix
( a

a
a
2a

)
with

respect to the basis (e1, e1+ e2). (M ′0⊕M ′0) is unimodular of type I e with rank 2. With this
basis, T becomes

T̃ =

1 −π z0 −m1

0 1+π z0 m1

0 m2 m3

 .
On the other hand, an element of G ′j (R), with respect to a basis for M ′0⊕C(L j ) obtained

by putting together the basis (e1, e1+ e2) for (M ′0⊕M ′0) and a basis for C(L j ), is given by
an expression 1+πx ′0 −π z′0 m ′1

u′0 1+πw′0 m ′′1
m ′2 m ′′2 m ′′3

 ,
cf. Section 3A. Then we can easily see that the congruence conditions on m1,m2,m3 are
the same as those of m ′′1,m ′′2,m ′′3 , respectively, and that the congruence conditions on m ′1 are
the same as those of m ′′1 . Thus T̃ is an element of M∗j (R), where M∗j is the group scheme in
Section 3B associated to M ′0⊕C(L j ) so that G ′j is defined as the closed subgroup scheme
of M∗j stabilizing the hermitian form on M ′0⊕C(L j ).

In conclusion, T̃ preserves the hermitian form on M ′0⊕C(L j ). Therefore, it is an element
of G ′j (R).

To summarize, if R is a nonflat A-algebra, then we can write an element of G j (R)
formally as m =

( 1+π z0
m2

m1
m3

)
. Then the image of m in G ′j (R) is T̃ with respect to a basis as

explained above.

(3) Combining all cases, the morphism

ψ =
∏

j

ψ j : G̃ −→ (Z/2Z)β,

where β is the number of even integers j such that L j is of type I and L j+2 is of type II
(possibly zero, by our convention).

Theorem 4.11. The morphism

ψ =
∏

j

ψ j : G̃ −→ (Z/2Z)β

is surjective. Moreover, the morphism

ϕ×ψ : G̃ −→
∏

i even

Sp(Bi/Yi , hi )×
∏
i odd

O(Ai/Z i , q̄i )red× (Z/2Z)β

is also surjective.

Proof. We first show that ψ j is surjective. Recall that for such an even integer j , L j is
of type I and L j+2 is of type II (possibly zero by our convention). We define the closed
subgroup scheme F j of G̃ defined by the following equations:

• mi,k = 0 if i 6= k;
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• mi,i = id if i 6= j ;

• and for m j, j ,{
s j = id, y j = 0, v j = 0 if L i is of type I o

;

s j = id, r j = t j = y j = v j = u j = w j = 0 if L i is of type I e.

A formal matrix form of an element of F j (R) for a κ-algebra R is then

id 0 . . . 0

0
. . .

id
... m j, j

...

id
. . . 0

0 . . . 0 id


such that

m j, j =



(
id 0

0 1+π z j

)
if L j is of type I o

;
id 0 0

0 1+πx j π z j

0 0 1

 if L j is of type I e.

In Lemma A.9, we will show that F j is isomorphic to A1
×Z/2Z as a κ-variety so that it

has exactly two connected components, by enumerating equations defining F j as a closed
subvariety of an affine space of dimension 2 (resp. 4) if L j is of type I o (resp. of type I e).
Here, A1 is an affine space of dimension 1. These equations are necessary in this theorem
and thus we state them in Equation (4-2) below. We refer to Lemma A.9 for the proof. Let
α be the unit in B such that ε = 1+απ as explained in Section 2A, and α be the image of
α in κ . We write x j = x1

j +πx2
j and z j = z1

j +π z2
j , where x1

j , x2
j , z1

j , z2
j ∈ R ⊂ R⊗A B and

π stands for 1⊗π ∈ R⊗A B. Then the equations defining F j as a closed subvariety of an
affine space of dimension 2 (resp. 4) are{

(z1
j/α)+ (z

1
j/α)

2
= 0 if L j is of type I o

;

x1
j = z1

j , (z
1
j/α)+ (z

1
j/α)

2
= 0, z2

j + x2
j + x1

j z1
j = 0 if L j is of type I e.

(4-2)

The proof of the surjectivity of ψ j is given below. The main idea is to show that
ψ j |F j is surjective. There are 4 cases according to the types of M0 and L j . Recall that⊕

i≥0 Mi is a Jordan splitting of a rescaled hermitian lattice (L j , 1
ξ j/2 h) and that M0 =

π j/2L0⊕π
j/2−1L2⊕ · · ·⊕πL j−2⊕ L j .

(1) Assume that both M0 and L j are of type I e. In this case and the next case, we will
describe ψ j |F j : F j → Z/2Z explicitly in terms of a formal matrix. To do that, we will first
describe a morphism from F j to the special fiber of the smooth integral model associated
to L j and then to G j . Recall that G j is the special fiber of the smooth integral model
associated to C(L j )=

⊕
i≥1 M ′i . Then we will describe a morphism from F j to the even
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orthogonal group associated to M ′1 and compute the Dickson invariant of the image of an
element of F j in this orthogonal group.

We write M0 = N0 ⊕ L j , where N0 is unimodular with even rank. Thus N0 is either
of type II or of type I e. First we assume that N0 is of type I e. Then we can write
N0=

(⊕
λ′ Hλ′

)
⊕ A(1, 2b, 1) and L j =

(⊕
λ′′ Hλ′′

)
⊕ A(1, 2b′, 1) by Theorem 2.10, where

Hλ′ = H(0)= Hλ′′ and b, b′ ∈ A. Thus we write M0=
(⊕

λ Hλ

)
⊕A(1, 2b, 1)⊕A(1, 2b′, 1),

where Hλ= H(0). For this choice of a basis of L j
=
⊕

i≥0 Mi , the image of a fixed element
of F j in the special fiber of the smooth integral model associated to L j is


id 0 0

0
(

1+πx j π z j
0 1

)
0

0 0 id

 .
Here, id in the (1, 1)-block corresponds to the direct summand

(⊕
λ Hλ

)
⊕ A(1, 2b, 1) of

M0 and the diagonal block
( 1+πx j

0
π z j

1

)
corresponds to the direct summand A(1, 2b′, 1)

of M0.
Let (e1, e2, e3, e4) be a basis for the direct summand A(1, 2b, 1)⊕ A(1, 2b′, 1) of M0.

Since this is unimodular of type I e, we can choose another basis based on Theorem 2.10.
With the basis (−2be1+ e2, (2b′− 1)e1+ e3− e4, e3, e2+ e4), A(1, 2b, 1)⊕ A(1, 2b′, 1)
becomes A(2b(2b − 1), 2b′(2b′ − 1),−(2b − 1)(2b′ − 1)) ⊕ A(1, 2(b + b′), 1). Since
A(2b(2b− 1), 2b′(2b′− 1),−(2b− 1)(2b′− 1)) is unimodular of type II , it is isomorphic
to H(0) by Theorem 2.10. Thus we can write M0 =

(⊕
λ Hλ

)
⊕ H(0)⊕ A(1, 2(b+ b′), 1).

For this basis, the image of a fixed element of F j in the special fiber of the smooth integral
model associated to L j is 

∗ ∗
′ 0

∗
′′

(
1+πx j π z j

0 1

)
0

0 0 id

 .

Here, the diagonal block
( 1+πx j

0
π z j

1

)
corresponds to A(1,2(b+b′),1)with basis (e3,e2+ e4)

and the diagonal block ∗ corresponds to the direct summand
(⊕

λ Hλ

)
⊕ H(0) of M0.

Then the direct summand M ′1 of C(L j ) =
⊕

i≥1 M ′i is (π)e3⊕ B(e2 + e4)⊕ M1. The
image of a fixed element of F j in the special fiber of the smooth integral model associated
to C(L j ) is then 

(
1+πx j z j

0 1

)
0 ∗

′

0 id ∗′′

∗
′′′

∗
′′′′
∗

 .

Here, the diagonal block
( 1+πx j

0
z j
1

)
corresponds to (π)e3⊕ B(e2 + e4) and the diagonal

block id corresponds to the direct summand M1 of M ′1.
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Now, the image of a fixed element of F j in the orthogonal group associated to M ′1/πM ′1 is

T1 =

(1 z1
j

0 1

)
0

0 id

 .
Note that z1

j is in R such that z j = z1
j + π z2

j as explained in the paragraph before
Equation (4-2). The Dickson invariant of T1 is the same as that of

( 1
0

z1
j

1

)
. Here we consider( 1

0
z1

j
1

)
as an element of the orthogonal group associated to ((π)e3⊕ B(e2+e4))/π((π)e3⊕

B(e2 + e4)). In order to compute the Dickson invariant, we use the scheme-theoretic
description of the Dickson invariant explained in Remark 4.4 of [Cho 2015a]. The Dickson
invariant of an orthogonal group of the quadratic space with dimension 2 is explicitly given
at the end of the proof of Lemma 4.5 in [Cho 2015a]. Based on this, the Dickson invariant
of
( 1

0
z1

j
1

)
is z1

j/α. Note that z1
j/α is indeed an element of Z/2Z by Equation (4-2).

In conclusion, z1
j/α is the image of a fixed element of F j under the map ψ j . Since z1

j/α

can be either 0 or 1, ψ j |F j is surjective onto Z/2Z and thus ψ j is surjective.

If N0 is of type II , then the proof of the surjectivity of ψ j is similar to that of the above
case and so we skip it.

(2) Assume that M0 is of type I e and L j is of type I o. We write M0= N0⊕L j , where N0 is
unimodular with odd rank so that it is of type I o. Then we can write N0 =

(⊕
λ′ Hλ′

)
⊕ (a)

and L j =
(⊕

λ′′ Hλ′′
)
⊕ (a′) by Theorem 2.10, where Hλ′ = H(0)= Hλ′′ and a, a′ ∈ A such

that a, a′ ≡ 1 mod 2. Thus we write M0 =
(⊕

λ Hλ

)
⊕ (a)⊕ (a′), where Hλ = H(0). For

this choice of a basis of L j
=
⊕

i≥0 Mi , the image of a fixed element of F j in the special
fiber of the smooth integral model associated to L j isid 0 0

0
(
1+π z j

)
0

0 0 id

 .
Here, id in the (1, 1)-block corresponds to the direct summand

(⊕
λ Hλ

)
⊕ (a) of M0 and

the diagonal block
(
1+π z j

)
corresponds to the direct summand (a′) of M0.

Let (e1, e2) be a basis for the direct summand (a)⊕ (a′) of M0. Since this is unimodular
of type I e, we can choose another basis (e1, e1+ e2) such that the associated Gram matrix
is A(a, a+ a′, a), where a+ a′ ∈ (2). For this basis, the image of a fixed element of F j in
the special fiber of the smooth integral model associated to L j is

id 0 0

0
(

1 −π z j

0 1+π z j

)
0

0 0 id

 .
Here, the diagonal block

( 1
0
−π z j
1+π z j

)
corresponds to A(a, a+ a′, a) with a basis (e1, e1+ e2)

and id in the (1, 1)-block corresponds to the direct summand
(⊕

λ Hλ

)
⊕ (a) of M0.

Then the direct summand M ′1 of C(L j ) =
⊕

i≥1 M ′i is (π)e1⊕ B(e1 + e2)⊕ M1. The
image of a fixed element of F j in the special fiber of the smooth integral model associated
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to C(L j ) is then 
(

1 −z j

0 1+π z j

)
0 0

0 id 0
0 0 id

 .
Here, the diagonal block

( 1
0
−z j

1+π z j

)
corresponds to (π)e1⊕ B(e1+ e2) and id in the (2× 2)-

block corresponds to the direct summand M1 of M ′1.
Now, the image of a fixed element of F j in the orthogonal group associated to M ′1/πM ′1 is

T1 =

(1 z1
j

0 1

)
0

0 id

 .
Note that z1

j∈R is such that z j=z1
j+π z2

j , as explained in the paragraph before Equation (4-2).
The Dickson invariant of T1 is the same as that of

( 1
0

z1
j

1

)
. Here, we consider

( 1
0

z1
j

1

)
as an

element of the orthogonal group associated to ((π)e1⊕ B(e1+ e2))/π((π)e1⊕ B(e1+ e2)).
Then as explained in the above case (1), the Dickson invariant of

( 1
0

z1
j

1

)
is z1

j/α. Note that
z1

j/α is indeed an element of Z/2Z by Equation (4-2).
In conclusion, z1

j/α is the image of a fixed element of F j under the map ψ j . Since z1
j/α

can be either 0 or 1, ψ j |F j is surjective onto Z/2Z and thus ψ j is surjective.

(3) Assume that both M0 and L j are of type I o. In this case, we will describe ψ j |F j :

F j → Z/2Z explicitly in terms of a formal matrix. To do that, we will first describe a
morphism from F j to the special fiber of the smooth integral model associated to L j and
then to G j . Recall that G j is the special fiber of the smooth integral model associated to
C(L j )=

⊕
i≥0 M ′i . Then we will describe a morphism from F j to the special fiber of the

smooth integral model associated to M ′0 ⊕ C(L j ) and to the special fiber of the smooth
integral model associated to C(M ′0⊕C(L j )). Finally, we will describe a morphism from F j

to a certain even orthogonal group associated to C(M ′0⊕C(L j )) and compute the Dickson
invariant of the image of an element of F j in this orthogonal group.

We write M0 = N0 ⊕ L j , where N0 is unimodular with even rank. Thus N0 is ei-
ther of type II or of type I e. First we assume that N0 is of type I e. Then we can
write N0 =

(⊕
λ′ Hλ′

)
⊕ A(1, 2b, 1) and L j =

(⊕
λ′′ Hλ′′

)
⊕ (a) by Theorem 2.10, where

Hλ′ = H(0)= Hλ′′ , b ∈ A, and a (∈ A) ≡ 1 mod 2. Thus we write M0 =
(⊕

λ Hλ

)
⊕

A(1, 2b, 1)⊕(a), where Hλ= H(0). For this choice of a basis of L j
=
⊕

i≥0 Mi , the image
of a fixed element of F j in the special fiber of the smooth integral model associated to L j isid 0 0

0
(
1+π z j

)
0

0 0 id

 .
Here, id in the (1, 1)-block corresponds to the direct summand

(⊕
λ Hλ

)
⊕ A(1, 2b, 1) of

M0 and the diagonal block
(
1+π z j

)
corresponds to the direct summand (a) of M0.

Let (e1, e2, e3) be a basis for the direct summand A(1, 2b, 1)⊕ (a) of M0. Since this is
unimodular of type I o, we can choose another basis based on Theorem 2.10. Namely, if we
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choose (−2be1+ e2,−ae1+ e3, e2+ e3) as another basis, then A(1, 2b, 1)⊕ (a) becomes
A(2b(2b− 1), a(a+ 1), a(2b− 1))⊕ (a+ 2b). Since A(2b(2b− 1), a(a+ 1), a(2b− 1))
is unimodular of type II , it is isomorphic to H(0) by Theorem 2.10. Thus we can write
M0 =

(⊕
λ Hλ

)
⊕H(0)⊕ (a+2b). For this basis, the image of a fixed element of F j in the

special fiber of the smooth integral model associated to L j is ∗ ∗
′ 0

∗
′′
(
1+ a

a+2bπ z j
)

0
0 0 id

 .
Here, the diagonal block

(
1+ a

a+2bπ z j
)

corresponds to (a+ 2b) with a basis e2+ e3 and
the diagonal block ∗ corresponds to the direct summand

(⊕
λ Hλ

)
⊕ H(0) of M0.

Then the direct summand M ′0 of C(L j )=
⊕

i≥0 M ′i is B(e2+ e3) of rank 1. The image
of a fixed element of F j in the special fiber of the smooth integral model associated to
C(L j ) is then 

(
1+ a

a+2bπ z j
)

0 ∗
′

0 id ∗′′

∗
′′′

∗
′′′′
∗

 .
Here, the diagonal block

(
1+ a

a+2bπ z j
)

corresponds to M ′0 = B(e2 + e3) with a Gram
matrix (a+ 2b) and the diagonal block id corresponds to M ′1 = M1.

We now describe the image of the above in the special fiber of the smooth integral model
associated to M ′0⊕C(L j )= (M ′0⊕M ′0)⊕

(⊕
i≥1 M ′i

)
. If (e′1, e′2) is a basis for (M ′0⊕M ′0),

then we choose another basis (e′1, e′1 + e′2) for (M ′0 ⊕ M ′0). For this basis, based on the
description of the morphism from the smooth integral model associated to C(L j ) to the
smooth integral model associated to M ′0 ⊕ C(L j ) explained in Remark 4.10, the image
of a fixed element of F j in the special fiber of the smooth integral model associated to
M ′0⊕C(L j ) is 

1 −
a

a+2bπ z j 0 ∗
′

0 1+ a
a+2bπ z j 0 ∗

′

0 0 id ∗′′

0 ∗
′′′

∗
′′′′
∗

 .
Here, the diagonal block

(
1
0
−

a
a+2b π z j

1+ a
a+2b π z j

)
corresponds to (M ′0⊕M ′0) with a basis (e′1, e′1+e′2)

and the diagonal block id corresponds to M ′1 = M1.
We now follow step (1) with M ′0⊕C(L j )= (M ′0⊕M ′0)⊕

(⊕
i≥1 M ′i

)
. Namely,

C(M ′0⊕C(L j ))= (π)e′1⊕ B(e′1+ e′2)⊕
(⊕

i≥1

M ′i

)

=
(
(π)e′1⊕ B(e′1+ e′2)⊕M ′1

)
⊕

(⊕
i≥2

M ′i

)
.

Here, ((π)e′1⊕ B(e′1+ e′2)⊕M ′1) is π1-modular and M ′i is π i -modular with i ≥ 2. Then the
image of a fixed element of F j in the special fiber of the smooth integral model associated
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to C(M ′0⊕C(L j )) is 
1 −

a
a+2b z j 0 ∗

′

0 1+ a
a+2bπ z j 0 ∗

′

0 0 id ∗′′

0 ∗
′′′

∗
′′′′
∗

 .
Here, the top left 3× 3-matrix corresponds to (πe′1⊕ B(e′1+ e′2)⊕M ′1).

Now, the image of a fixed element of F j in the orthogonal group associated to (πe1⊕

B(e1+ e2)⊕M ′1)/π(πe1⊕ B(e1+ e2)⊕M ′1) is

T1 =

(1 z1
j

0 1

)
0

0 id


since mod 2 reduction of a

a+2b is 1. Note that z1
j is in R such that z j = z1

j+π z2
j as explained

in the paragraph before Equation (4-2). Then, as explained in step (1), the Dickson invariant
of this is z1

j/α. Note that z1
j/α is indeed an element of Z/2Z by Equation (4-2).

In conclusion, z1
j/α is the image of a fixed element of F j under the map ψ j . Since z1

j/α

can be either 0 or 1, ψ j |F j is surjective onto Z/2Z and thus ψ j is surjective.

If N0 is of type II , then the proof of the surjectivity of ψ j is similar to that of the above
case and so we skip it.

(4) Assume that M0 is of type I o and L j is of type I e. We write M0= N0⊕L j , where N0 is
unimodular with odd rank so that it is of type I o. Then we can write N0 =

(⊕
λ′ Hλ′

)
⊕ (a)

and L j =
(⊕

λ′′ Hλ′′
)
⊕A(1, 2b, 1) by Theorem 2.10, where Hλ′ = H(0)= Hλ′′ and a, b∈ A

such that a ≡ 1 mod 2. We write M0 =
(⊕

λ Hλ

)
⊕ (a)⊕ A(1, 2b, 1), where Hλ = H(0).

For this choice of a basis of L j
=
⊕

i≥0 Mi , the image of a fixed element of F j in the special
fiber of the smooth integral model associated to L j is


id 0 0

0
(

1+πx j π z j

0 1

)
0

0 0 id

 .

Here, id in the (1, 1)-block corresponds to the direct summand
(⊕

λ Hλ

)
⊕ (a) of M0 and

the diagonal block
( 1+πx j

0
π z j

1

)
corresponds to the direct summand A(1, 2b, 1) of M0.

Let (e1, e2, e3) be a basis for the direct summand (a)⊕ A(1, 2b, 1) of M0. Since this is
unimodular of type I o, we can choose another basis based on Theorem 2.10. Namely, if
we choose (−2be2+ e3, e1−ae2, e1+ e3) as another basis, then (a)⊕ A(1, 2b, 1) becomes
A(2b(2b− 1), a(a+ 1), a(2b− 1))⊕ (a+ 2b). Since A(2b(2b− 1), a(a+ 1), a(2b− 1))
is unimodular of type II , it is isomorphic to H(0) by Theorem 2.10. Thus we can write
M0 =

(⊕
λ Hλ

)
⊕H(0)⊕ (a+2b). For this basis, the image of a fixed element of F j in the
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special fiber of the smooth integral model associated to L j is ∗ ∗
′ 0

∗
′′
(
1+ 1

a+2bπ z j
)

0
0 0 id

 .
Here, the diagonal block

(
1+ 1

a+2bπ z j
)

corresponds to (a+ 2b) with a basis (e1+ e3) and
the diagonal block ∗ corresponds to the direct summand

(⊕
λ Hλ

)
⊕ H(0) of M0.

Note that the reduction of 1
a+2b mod 2 is 1. The rest of the proof is similar to that of step

(3) and so we skip it.

So far, we have proved that ψ j is surjective. We now show that ψ =
∏

j ψ j is surjective.
The proof is similar to the proof showing that

∏
i∈H Hi → G̃ is a closed immersion in the

last paragraph of the proof of Theorem 4.5.
We consider the morphism

F =
∏

j

F j −→ G̃

( f j ) 7→
∏

j

f j .

By considering a matrix form of an element of F j (R) for a κ-algebra R as given at the
beginning of the proof, it is easy to see the following two facts. Firstly, F j and F j ′ commute
with each other in the sense that f j · f j ′ = f j ′ · f j for all even integers j 6= j ′, where
f j ∈ F j (R) and f j ′ ∈ F j ′(R) for a κ-algebra R. Note that L j and L j ′ (resp. L j+2 and
L j ′+2) are of type I (resp. of type II ). Based on this, the above morphism becomes a group
homomorphism. Secondly, F j ∩ F j ′ = 0 for all j 6= j ′. This fact implies that the morphism
F j × F j ′ → G̃ with ( f j , f j ′) 7→ f j · f j ′ is injective and so F j × F j ′ is a closed subgroup
scheme of G̃. A matrix form of an element of F j (R) also implies that (F j × F j ′)∩ F j ′′ = 0
for all pairwise different three integers j, j ′, j ′′ and so the morphism (F j × F j ′)× F j ′′→ G̃
with ( f j , f j ′ , f j ′′) 7→ f j · f j ′ · f j ′′ is injective. Thus F j × F j ′ × F j ′′ is a closed subgroup
scheme of G̃. Therefore, by repeating this argument, the product F =

∏
j F j is embedded

into G̃ as a closed subgroup scheme.
In addition, we claim that ψ j |F j ′

is trivial for all j < j ′. The proof of our claim relies on
the matrix interpretation of ψ j . We first notice that j ′− j ≥ 4 since L j is of type I and L j+2

is of type II . To obtain the morphism ψ j , we observe that the lattice C(L j ) =
⊕

i≥1 M ′i
(resp. C(L j ) =

⊕
i≥0 M ′i ) if M0 is of type I e (resp. of type I o). In either case, L j ′ is a

direct summand of M j ′− j and the morphism ψ j is attached to the Dickson invariant of the
orthogonal group associated to M ′1. We should mention that if M0 is of type I o then we
need a new hermitian lattice M ′0⊕C(L j ). In this case, the morphism ψ j is also attached
to the Dickson invariant of the orthogonal group associated to M ′1 as a direct summand of
M ′0⊕C(L j ). On the other hand, recall that G j is the special fiber of the smooth integral
model associated to C(L j ). Then as a formal matrix, F j ′ maps to the block of G j associated
to M j ′− j . Therefore, since j ′− j is at least 4, the image of F j ′ under ψ j is zero by observing
the description of the orthogonal group associated to M ′1 based on Section 4A.
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We finally claim that the morphism ψ induces a surjective morphism from F to (Z/2Z)β

defined over κ . To show this, we express F as F = F j1 × · · · × F jβ and (Z/2Z)β as
(Z/2Z)β = (Z/2Z) j1×· · ·× (Z/2Z) jβ , where ji < ji ′ if i < i ′. Choose an arbitrary element
(z j1 , · · · , z jβ ) of (Z/2Z) j1 × · · · × (Z/2Z) jβ where each z ji is an element of (Z/2Z) ji .
We first choose f j1 ∈ F j1 such that ψ j1( f j1) = z j1 . Then choose f j2 ∈ F j2 such that
ψ j2( f j1 · f j2)= z j2 . In this way, we choose f jt ∈ F jt such thatψ jt ( f j1 ·· · ·· f jt )= z jt . Note that
ψ jt ( f jt ′ )= 0 for all t < t ′. Therefore, ψ( f j1 · · · f jβ )=

∏
t ψ jt ( f j1 · · · f jβ )= (z j1 , · · · , z jβ )

and this shows the surjectivity of the morphism ψ .

For the surjectivity of ϕ×ψ , we recall the following criterion ([Knus et al. 1998, Proposition
22.3]): the surjectivity of ϕ×ψ as algebraic groups is equivalent to the surjectivity of ϕ×ψ
at the level of κ̄-points since

∏
i even Sp(Bi/Yi , hi )×

∏
i odd O(Ai/Z i , q̄i )red× (Z/2Z)β is

smooth.
Choose an element (x, y) in the group of κ̄-points of∏

i even

Sp(Bi/Yi , hi )×
∏
i odd

O(Ai/Z i , q̄i )red× (Z/2Z)β

such that x ∈
(∏

i even Sp(Bi/Yi , hi )×
∏

i odd O(Ai/Z i , q̄i )red
)
(κ̄) and y∈ (Z/2Z)β(κ̄). Then

there is an element a ∈ G̃(κ̄) such that ϕ(a)= x since ϕ is surjective by Theorem 4.5. We
choose an element b ∈ F(κ̄) such that ψ(ab) = y. On the other hand, ϕ vanishes on F
since the morphism ϕi vanishes on F j for all i, j . Thus ϕ(b)= 0 and (ϕ×ψ)(ab)= (x, y).
This completes the proof. �

4C. The maximal reductive quotient. We finally have the structure theorem for the alge-
braic group G̃.

Theorem 4.12. The morphism

ϕ×ψ : G̃ −→
∏

i even

Sp(Bi/Yi , hi )×
∏
i odd

O(Ai/Z i , q̄i )red× (Z/2Z)β

is surjective and the kernel is unipotent and connected. Consequently,∏
i even

Sp(Bi/Yi , hi )×
∏
i odd

O(Ai/Z i , q̄i )red× (Z/2Z)β

is the maximal reductive quotient. Here, Sp(Bi/Yi , hi ) and O(Ai/Z i , q̄i )red are explained
in Section 4A (especially Remark 4.7) and β is defined in Lemma 4.6.

Proof. We only need to prove that the kernel is unipotent and connected. The kernel of ϕ is a
closed subgroup scheme of the unipotent group M̃+ which is defined in Lemma A.2 and so
it suffices to show that the kernel of ϕ×ψ is connected. Equivalently, it suffices to show that
the kernel of the restricted morphism ψ |Kerϕ is connected. From Lemma 4.6, the number
of connected components of Kerϕ is 2β . Since ϕ|F = 0 so that F =

∏
j F j ⊂ Kerϕ, the

restricted morphism ψ |Kerϕ is surjective onto (Z/2Z)β . We complete the proof by counting
the number of connected components. �
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5. Comparison of volume forms and final formulas

This section is based on Section 7 of [Gan and Yu 2000] and Section 5 of [Cho 2015a]. Let
H be the F-vector space of hermitian forms on V = L ⊗A F . Let M ′ = EndB(L) and let
H ′ = { f : f is a hermitian form on L}. Regarding EndE V and H as varieties over F , let
ωM and ωH be nonzero, translation-invariant forms on EndE V and H , respectively, with
normalization ∫

M ′
|ωM | = 1 and

∫
H ′
|ωH | = 1.

Let M∗ = ResE/F GLE (V ). Define a map ρ : M∗→ H by ρ(m) = h ◦m. Here h ◦m is
the hermitian form (v,w) 7→ h(mv,mw). Then the inverse of h under ρ is G, which is the
unitary group associated to the hermitian space (V, h). It is also the generic fiber of G ′. Put
ωld
= ωM/ρ

∗ωH . For a detailed explanation of what ωM/ρ
∗ωH means, we refer to Section

3.2 of [Gan and Yu 2000].
We choose two forms ω′M and ω′H as generators for the spaces of the top degree forms

on M ′, which is identified with the Lie algebra of M∗, and H ′, which is identified with the
tangent space to H at h, respectively. Here M ′ is defined in Remark 3.1 and H ′ is defined in
the paragraph following the matrix description of an element of H(R) for a flat A-algebra R
in Section 3C. They are nonzero translation-invariant forms on EndE V and H , respectively,
with normalization ∫

M(A)
|ω′M | = 1 and

∫
H(A)
|ω′H | = 1.

By Theorem 3.6, we have an exact sequence of locally free sheaves on M∗:

0−→ ρ∗�H/A −→�M∗/A −→�M∗/H −→ 0.

Put ωcan
= ω′M/ρ

∗ω′H . For a detailed explanation of what ω′M/ρ
∗ω′H means, we refer to

Section 3.2 of [Gan and Yu 2000]. It follows that ωcan is a differential of top degree on G,
which is invariant under the generic fiber of G, and which has nonzero reduction on the
special fiber.

Lemma 5.1. We have:

|ωM | = |2|NM |ω′M |, NM =
∑
i even

Li of type I

(2ni − 1)+
∑
i< j

( j − i) · ni · n j ,

|ωH | = |2|NH |ω′H |, NH =
∑
i even

Li of type I

(ni − 1)+
∑
i< j

j · ni · n j +
∑
i even

i + 2
2
· ni

+

∑
i odd

i + 1
2
· ni +

∑
i

di ,

|ωld
| = |2|NM−NH |ωcan

|.

Here, di = i · ni · (ni − 1)/2.

Proof. Note that bothωM andω′M are volume forms on EndE V with different normalizations,
so that they differ by a scalar. The “difference” between the Haar measures associated to
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these volume forms can be detected at the level of F-points of EndE V , since EndE V is an
affine space.

Since M(A) = 1+ M ′(A), where M ′ is defined in Remark 3.1, we have the identity∫
M ′(A) |ω

′

M | = 1. Note that M ′(A) is a finitely generated free A-submodule of M ′ whose
rank is the same as that of M ′. Thus NM is the “difference” between these two modules M ′

and M ′(A). More precisely, NM is the length of the finitely generated torsion A-module
M ′/M ′(A). Note that 2 is a uniformizer of A.

Similarly, NH is the length of the finitely generated torsion A-module H ′/H ′(A). Here,
H ′ is defined in the paragraph following the matrix description of an element of H(R) for a
flat A-algebra R in Section 3C.

Then the above formula for NM (resp. NH ) can be read off from the matrix interpretation
for M(A) (resp. H(A)) given in Sections 3A and 3B (resp. Section 3C). �

Let f be the cardinality of κ . The local density is defined as

βL =
1

[G : G◦]
· lim

N→∞
f −N dim G#G ′(A/π N A).

Here, G ′ is the naive integral model described at the beginning of Section 3 and G is the
generic fiber of G ′ and G◦ is the identity component of G. In our case, G is the unitary
group U (V, h), where V = L ⊗A F . Since U (V, h) is connected, G◦ is the same as G so
that [G : G◦] = 1.

Then based on Lemma 3.4 and Section 3.9 of [Gan and Yu 2000], we finally have the
following local density formula.

Theorem 5.2. Let f be the cardinality of κ . The local density of (L , h) is

βL = f N
· f − dim U (V,h)#G̃(κ),

where

N = NH − NM =
∑
i< j

i · ni · n j +
∑
i even

i + 2
2
· ni +

∑
i odd

i + 1
2
· ni +

∑
i

di −
∑
i even

Li of type I

ni .

Here, #G̃(κ) can be computed explicitly based on Remark 5.3(1) below and Theorem 4.12.

For convenience, we repeat the following remark from Remark 5.3 in [Cho 2015a].

Remark 5.3 [Cho 2015a, Remark 5.3]. (1) In the above local density formula, #G̃(κ) is
computed as follows. We denote by RuG̃ the unipotent radical of G̃ so that the maximal
reductive quotient of G̃ is G̃/RuG̃. That is, there is the following exact sequence of group
schemes over κ:

1−→ RuG̃ −→ G̃ −→ G̃/RuG̃ −→ 1.

Furthermore, the following sequence of groups

1−→ RuG̃(κ)−→ G̃(κ)−→ (G̃/RuG̃)(κ)−→ 1

is also exact by Lemma A.1. Using Lemma A.1, one can see that #RuG̃(κ)= f m , where
m is the dimension of RuG̃. Notice that the dimension of RuG̃ can be computed explicitly
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based on Theorem 4.12, since the dimension of G̃ is n2 with n = rankB L . In addition, the
orders of orthogonal and symplectic groups defined over a finite field are well known. Thus,
one can compute #(G̃/RuG̃)(κ) explicitly based on Theorem 4.12. Finally, the order of the
group G̃(κ) is identified as follows:

#G̃(κ)= #RuG̃(κ) · #(G̃/RuG̃)(κ).

(2) As in Remark 7.4 of [Gan and Yu 2000], although we have assumed that ni = 0 for
i < 0, it is easy to check that the formula in the preceding theorem remains true without this
assumption.

Appendix A: The proof of Lemma 4.6

The proof of Lemma 4.6 is based on Proposition 6.3.1 in [Gan and Yu 2000]. We first state
a theorem of Lazard which is repeatedly used in this paper. Let U be a group scheme of
finite type over κ which is isomorphic to an affine space as an algebraic variety. Then U is
connected smooth unipotent group (cf. IV, § 4, Theorem 4.1 and IV, § 2, Corollary 3.9 in
[Demazure and Gabriel 1970]).

For preparation, we state several lemmas.

Lemma A.1 [Gan and Yu 2000, Lemma 6.3.3]. Let 1→ X → Y → Z → 1 be an exact
sequence of group schemes that are locally of finite type over κ , where κ is a perfect field.
Suppose that X is smooth, connected, and unipotent. Then 1→ X (R)→Y (R)→ Z(R)→1
is exact for any κ-algebra R.

Let M̃ be the special fiber of M∗ and let R be a κ-algebra. Recall that we have described
an element and the multiplication of elements of M(R) in Section 3B. Based on these, an
element of M̃(R) is

m =
(
πmax{0, j−i}mi, j

)
.

Here, if i is even and L i is of type I o (resp. of type I e), then

mi,i =

(
si πyi

πvi 1+π zi

)
(resp.

 si ri π ti
πyi 1+πxi π zi

vi ui 1+πwi

),
where si ∈M(ni−1)×(ni−1)(B⊗AR) (resp. si ∈M(ni−2)×(ni−2)(B⊗AR)), etc., and si mod π ⊗ 1
is invertible. For the remaining mi, j ’s except for the cases explained above, mi, j is contained
in Mni×n j (B⊗A R) and mi,i mod π ⊗ 1 is invertible.

Let

M̃i =

{
GLκ(Bi/Yi ) if i is even;
GLκ(Ai/X i ) if i is odd.

Let si = mi,i if L i is of type II in the above description of M̃(R). Then si mod π ⊗ 1 is an
element of M̃i (R). Therefore, we have a surjective morphism of algebraic groups

r : M̃ −→
∏

M̃i ,

defined over κ . We now have the following easy lemma:
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Lemma A.2. The kernel of r is the unipotent radical M̃+ of M̃ , and
∏

M̃i is the maximal
reductive quotient of M̃.

Proof. Since
∏

M̃i is a reductive group, we only have to show that the kernel of r is
a connected smooth unipotent group. Let R be a κ-algebra. By the description of the
morphism r in terms of matrices explained above, an element of the kernel of r is

m =
(
πmax{0, j−i}mi, j

)
satisfying the following. If i is even and L i is of type I o (resp. of type I e), then

mi,i =

(
id+πs ′i πyi

πvi 1+π zi

)
(resp.

id+πs ′i ri π ti
πyi 1+πxi π zi

vi ui 1+πwi

),
where id+π⊗1·s ′i ∈M(ni−1)×(ni−1)(B⊗AR) (resp. id+π⊗1·s ′i ∈M(ni−2)×(ni−2)(B⊗AR)),
etc., such that s ′i has entries in R ⊂ B⊗A R. For the remaining mi, j ’s except for the cases
explained above, mi, j ∈Mni×n j (B⊗AR) and mi,i = id+π⊗1·m ′i,i such that m ′i,i has entries
in R ⊂ B⊗A R. Note that there are no equations among the variables given above. Thus the
kernel of r is isomorphic to an affine space as an algebraic variety over κ . Therefore, it is a
connected smooth unipotent group by a theorem of Lazard which is stated at the beginning
of Appendix A. �

Recall that we have defined the morphism ϕ in Section 4A. The morphism ϕ extends to
an obvious morphism

ϕ̃ : M̃ −→
∏

i even

GLκ(Bi/Yi )×
∏
i odd

GLκ(Ai/Z i )

such that ϕ̃|G̃ = ϕ. Note that Yi ⊗A R and Z i ⊗A R are preserved by an element of M(R)
for a flat A-algebra R (cf. Lemma 4.2). By using this, the construction of ϕ̃ is similar to
Theorems 4.3 and 4.4 and thus we skip it. Let R be a κ-algebra. Based on the description of
the morphism ϕi explained in Section 4A, Ker ϕ̃(R) is the subgroup of M̃(R) defined by
the following conditions:

(a) If i is even and L i is of type I , si = id mod π ⊗ 1.

(b) If i is even and L i is of type II , mi,i = id mod π ⊗ 1.

(c) If i is odd, mi,i = id mod π⊗1 and δi−1ei−1 ·mi−1,i+δi+1ei+1 ·mi+1,i = 0 mod π⊗1.
Here, δ j = 1 if L j is of type I and δ j = 0 if L j is of type II , and e j = (0, · · · , 0, 1)
(resp. e j = (0, · · · , 0, 1, 0)) of size 1× n j if L j is of type I o (resp. of type I e).

It is obvious that Ker ϕ̃ is a closed subgroup scheme of M̃+ and is smooth and unipotent
since it is isomorphic to an affine space as an algebraic variety over κ .

Recall from Remark 3.1 that we defined the functor M ′ such that (1+M ′)(R)= M(R)
inside EndB⊗AR(L⊗A R) for a flat A-algebra R. Thus there is an isomorphism of set valued
functors

1+ : M ′→ M

m 7→ 1+m,
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where m ∈ M ′(R) for a flat A-algebra R. We define a new operation ? on M ′(R) such
that x?y = x + y + xy for a flat A-algebra R. Since M ′(R) is closed under addition and
multiplication, it is also closed under the new operation ?. Moreover, it has 0 as an identity
element with respect to ?. Thus M ′ may and shall be considered as a scheme of monoids
with ?. We claim that the above morphism 1+ is an isomorphism of monoid schemes.
Namely, we claim the following commutative diagram of schemes:

M ′×M ′

?
��

(1+)×(1+)
// M ×M

multiplication

��

M ′
1+

// M

Since all schemes are irreducible and smooth, it suffices to check the commutativity of
the diagram at the level of flat A-points as explained in the third paragraph from below in
Remark 3.2, and this is obvious.

Since M∗ is an open subscheme of M , (1+)−1(M∗) is an open subscheme of M ′. The
composite of the following three morphisms

(1+)−1(M∗)
(1+)

// M∗ inverse // M∗
(1+)−1

// (1+)−1(M∗)

defines the inverse morphism on the scheme of monoids (1+)−1(M∗) with respect to the
operation ?. Thus we can see that (1+)−1(M∗) is a group scheme with respect to ? and the
morphism 1+ is an isomorphism of group schemes between (1+)−1(M∗) and M∗.

Let R be a κ-algebra. Since the morphism 1+ is an isomorphism of monoid schemes
between M ′ and M , we can write each element of M(R) as 1+ x with x ∈ M ′(R). Here,
1+ x means the image of x under the morphism 1+ at the level of R-points. Note that
M ′(R) is a B⊗AR-algebra for any A-algebra R with respect to the original multiplication on
it, not the operation ?. In particular, M ′(R) is a (B/2B)⊗A R-algebra for any κ-algebra R.
Therefore, we consider the subfunctor πM ′ : R 7→ (π ⊗ 1)M ′(R) of M ′ ⊗ κ and the
subfunctor M̃1

: R 7→ 1+ πM ′(R) of Ker ϕ̃. Here, by 1+ πM ′(R), we mean the image
of πM ′(R) inside M(R) (= M̃(R)) under the morphism 1+ at the level of R-points. That
1+πM ′(R) is contained in Ker ϕ̃(R) can easily be checked by observing the construction
of ϕ̃. The multiplication on M̃1 is as follows: for two elements 1+ πx and 1+ πy in
M̃1(R), based on the above commutative diagram, the product of 1+πx and 1+πy is

(1+πx) · (1+πy)= 1+πx?πy = 1+ (π(x + y)+π2(xy))= 1+π(x + y).

Here, π stands for π ⊗ 1 ∈ B⊗A R. Then we have the following lemma.

Lemma A.3. (i) The functor M̃1 is representable by a smooth, connected, unipotent
group scheme over κ . Moreover, M̃1 is a closed normal subgroup of Ker ϕ̃.

(ii) The quotient group scheme Ker ϕ̃/M̃1 represents the functor

R 7→ Ker ϕ̃(R)/M̃1(R)

by Lemma A.1 and is smooth, connected, and unipotent.
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Proof. Let R be a κ-algebra. In the proof, π stands for π ⊗ 1 ∈ B ⊗A R. To show that
M̃1(R) is a subgroup of Ker ϕ̃(R), it suffices to show that the inverse 1+ x ′ of 1+πx in
Ker ϕ̃(R) is contained in M̃1(R). From the identity

(1+ x ′)(1+πx)= 1+ x ′?πx = 1+ (x ′+πx +πx ′x)= 1+ 0,

we see that x ′ is an element of πM ′(R) so that 1+ x ′ is an element of M̃1(R), since M ′(R)
is closed under multiplication and addition which implies x + x ′x ∈ M ′(R).

Then the first sentence of (i) follows by a theorem of Lazard which is stated at the
beginning of Appendix A since M̃1 is isomorphic to an affine space of dimension n2 as an
algebraic variety over κ .

To show that M̃1(R) is a normal subgroup of Ker ϕ̃(R), we choose an element 1+πx ∈
M̃1(R) and 1+m ∈ Ker ϕ̃(R) with m ∈ M ′(R). Let 1+m ′ be the inverse of 1+m so that
(1+m ′)(1+m)= 1. Then we have the following identity:

(1+m ′)(1+πx)(1+m)= 1+m ′?πx?m = 1+π(x +m ′x + xm+m ′xm).

Since M ′(R) is closed under multiplication and addition, x +m ′x + xm+m ′xm ∈ M ′(R)
so that (1+m ′)(1+πx)(1+m) ∈ M̃1(R).

For (ii), smoothness and connectedness are stable under quotienting by algebraic groups
(Proposition 22.4 in [Knus et al. 1998]) and a quotient of a unipotent group is also a
unipotent group by part (a) of the first corollary in Section 8.3 in [Waterhouse 1979]. �

This paragraph is a reproduction of [Gan and Yu 2000, 6.3.6]. Recall that there is a closed
immersion G̃→ M̃ . Notice that Kerϕ is the kernel of the composition G̃→ M̃→ M̃/Ker ϕ̃.
We define G̃1 as the kernel of the composition

G̃→ M̃→ M̃/M̃1.

Then G̃1 is the kernel of the morphism Kerϕ→ Ker ϕ̃/M̃1 and, hence, is a closed normal
subgroup of Kerϕ. The induced morphism Kerϕ/G̃1

→ Ker ϕ̃/M̃1 is a monomorphism,
and thus Kerϕ/G̃1 is a closed subgroup scheme of Ker ϕ̃/M̃1 by (Exposé VIB, Corollary
1.4.2 in [SGA 3 I 1970]).

Theorem A.4. G̃1 is connected, smooth, and unipotent. Furthermore, the underlying
algebraic variety of G̃1 over κ is an affine space of dimension∑

i< j

ni n j +
∑
i odd

n2
i + ni

2
+

∑
i even

n2
i − ni

2
+ #{i : i is even and L i is of type I }.

Proof. We prove this theorem by writing out a set of equations completely defining G̃1

(after all there are so many different sets of equations defining G̃1). Let R be a κ-algebra.
As explained in Remark 3.3(2), we consider the given hermitian form h as an element of
H(R) and write it as a formal matrix h =

(
π i
· hi
)

with (π i
· hi ) for the (i, i)-block and

0 for the remaining blocks. We also write h as ( fi, j , ai · · · fi ). Recall that the notation
( fi, j , ai · · · fi ) is defined and explained in Section 3C and explicit values of ( fi, j , ai · · · fi )

for the h are given in Remark 3.3(2).
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We choose an element m = (mi, j , si · · ·wi ) ∈ (Ker ϕ̃)(R) with a formal matrix in-
terpretation m =

(
πmax{0, j−i}mi, j

)
, where the notation (mi, j , si · · ·wi ) is explained in

Section 3B. Then h ◦m is an element of H(R) and (Kerϕ)(R) is the set of m such that
h ◦m = ( fi, j , ai · · · fi ). The action h ◦m is explicitly described in Remark 3.5. Based on
this, we need to write the matrix product h ◦m = σ(tm) · h ·m formally. To do that, we
write each block of σ(tm) · h ·m as follows:

The diagonal (i, i)-block of the formal matrix product σ(tm) · h ·m is the following:

π i(σ(tmi,i )hi mi,i + σ(π) · σ(
tmi−1,i )hi−1mi−1,i +π · σ(

tmi+1,i )hi+1mi+1,i
)

+π i ((σπ)2 · σ(tmi−2,i )hi−2mi−2,i +π
2
· σ(tmi+2,i )hi+2mi+2,i

)
, (A-1)

where 0≤ i < N .
The (i, j)-block of the formal matrix product σ(tm) ·h ·m, where i < j , is the following:

π j
( ∑

i≤k≤ j

σ(tmk,i )hkmk, j+σ(π)·σ(
tmi−1,i )hi−1mi−1, j+π ·σ(

tm j+1,i )h j+1m j+1, j

)
, (A-2)

where 0≤ i, j < N .
Before studying G̃1, we describe the conditions for an element m ∈ M̃(R) as above to

belong to the subgroup M̃1(R).

(1) mi, j = πm ′i, j if i 6= j ;

(2) mi,i = id+πm ′i,i if L i is of type II ;

(3) mi,i =

(
si πyi

πvi 1+π zi

)
=

(
id+πs ′i π2 y′i
π2v′i 1+π2z′i

)
if i is even and L i is of type I o;

(4) mi,i =

 si ri π ti
πyi 1+πxi π zi

vi ui 1+πwi

=
id+πs ′i πr ′i π2t ′i
π2 y′i 1+π2x ′i π2z′i
πv′i πu′i 1+π2w′i

 if i is even and

L i is of type I e.

Here, all matrices having ′ in the superscript are considered as matrices with entries in R.
When i is even and L i is of type I , we formally write mi,i = id+πm ′i,i . Then G̃1(R) is the
set of m ∈ M̃1(R) such that h ◦m = h = ( fi, j , ai · · · fi ). Since h ◦m is an element of H(R),
we can write h ◦ m as ( f ′i, j , a′i · · · f ′i ). In what follows, we will write ( f ′i, j , a′i · · · f ′i ) in
terms of h = ( fi, j , ai · · · fi ) and m, and will compare ( f ′i, j , a′i · · · f ′i ) with ( fi, j , ai · · · fi ),
in order to obtain a set of equations defining G̃1.

If we put all these (1)–(4) into (A-2), then we obtain

π j(σ(1+π · tm ′i,i )hiπm ′i, j + σ(π ·
tm ′j,i )h j (1+πm ′j, j )

)
.

Therefore,

f ′i, j =
(
σ(1+π · tm ′i,i )hiπm ′i, j + σ(π ·

tm ′j,i )h j (1+πm ′j, j )
)
,
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where this equation is considered in B⊗A R and π stands for π ⊗ 1 ∈ B⊗A R. Thus each
term having π2 as a factor is 0 and we have

f ′i, j = hiπm ′i, j + σ(π ·
tm ′j,i )h j , where i < j . (A-3)

This equation is of the form f ′i, j = X + πY since it is an equation in B ⊗A R. By letting
f ′i, j = fi, j = 0, we obtain

h̄i m ′i, j +
tm ′j,i h̄ j = 0, where i < j, (A-4)

where h̄i (resp. h̄ j ) is obtained by letting each term in hi (resp. h j ) having π as a factor be
zero so that this equation is considered in R. Note that h̄i and h̄ j are invertible as matrices
with entries in R by Remark 3.3. Thus m ′i, j = h̄−1

i ·
tm ′j,i · h̄ j . This induces that each entry

of m ′i, j is expressed as a linear combination of the entries of m ′j,i . Thus there are exactly
ni n j independent linear equations among the entries of m ′i, j ,m ′j,i .

Next, we put (1)–(4) into (A-1). Then we obtain

π i(σ(1+π · tm ′i,i )hi (1+πm ′i,i )
)
. (A-5)

We interpret this so as to obtain equations defining G̃1. There are 4 cases, indexed by (i),
(ii), (iii), (iv), according to types of L i .

(i) Assume that i is odd. Then π i hi = ξ
(i−1)/2πai as explained in Section 3C and thus we

have
a′i = σ(1+π ·

tm ′i,i )ai (1+πm ′i,i ).

Here, the nondiagonal entries of this equation are considered in B⊗A R and each diagonal
entry of a′i is of the form επxi with xi ∈ R.

Thus, we can cancel terms having π2 as a factor and the above equation equals

a′i = ai + σ(π) ·
tm ′i,i ai +π · ai m ′i,i .

By letting a′i = ai , we have the following equation

σ(π) · tm ′i,i ai +π · ai m ′i,i = 0.

Since this is an equation in B⊗A R, it is of the form X+πY = 0. Note that the reduction
of ε mod π is 1. We denote by āi the reduction of ai mod π . Thus we have

tm ′i,i āi + āi m ′i,i = 0.

This is a matrix equation over R, in a usual sense, and āi is symmetric and the diagonal
entries of āi are 0. More precisely,

āi =



(
0 1
1 0

)
. . . (

0 1
1 0

)
 .
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Then we can see that there is no contribution coming from the diagonal entries of tm ′i,i āi +

āi m ′i,i = 0 and that there are exactly (n2
i − ni )/2 independent linear equations. Thus

(n2
i + ni )/2 entries of m ′i,i determine all entries of m ′i,i . Note that the conditions on m ′i,i ,

viewed as a matrix with entries in κ , are tantamount to this matrix belonging to the Lie
algebra of a symplectic group associated to an obvious alternating form given by āi . Then
(n2

i + ni )/2 is the dimension of this symplectic group.
For example, let m ′i,i =

( x
z

y
w

)
and āi =

( 0
1

1
0

)
. Then

tm ′i,i āi + āi m ′i,i =
(

2z x +w
x +w 2y

)
=

(
0 x +w

x +w 0

)
.

Thus there is one linear equation x +w = 0 and x, y, z determine all entries of m ′i,i .

(ii) Assume that i is even and L i is of type II . This case is parallel to the previous case.
Then π i hi = ξ

i/2 ai as explained in Section 3C and we have

a′i = σ(1+π ·
tm ′i,i )ai (1+πm ′i,i ).

Here, the nondiagonal entries of this equation are considered in B⊗AR and each diagonal en-
try of a′i is of the form 2xi with xi ∈ R. Now, the nondiagonal entries of σ(π · tm ′i,i )ai (πm ′i,i )
are all 0 since they contain π2 as a factor. The diagonal entries of σ(π · tm ′i,i )ai (πm ′i,i ) are
also 0 since they contain π4 as a factor. Thus, the above equation equals

a′i = ai + σ(π) ·
tm ′i,i ai +π · ai m ′i,i .

By letting a′i = ai , we have the following equation

σ(π) · tm ′i,i ai +π · ai m ′i,i = 0.

Based on (2) of the description of H(R) for a κ-algebra R, which is explained in
Section 3C, in order to investigate this equation, we need to consider the nondiagonal
entries of σ(π) · tm ′i,i ai + π · ai m ′i,i as elements of B ⊗A R and the diagonal entries of
σ(π) · tm ′i,i ai +π · ai m ′i,i as of the form 2xi with xi ∈ R. Recall from Remark 3.3 that

ai =



(
0 1
1 0

)
. . . (

0 1
1 0

)
 .

Then we can see that each diagonal entry as well as each nondiagonal (upper triangular) entry
of σ(π) · tm ′i,i ai +π · ai m ′i,i produces a linear equation. Thus there are exactly (n2

i + ni )/2
independent linear equations and (n2

i − ni )/2 entries of m ′i,i determine all entries of m ′i,i .
For example, let m ′i,i =

( x
z

y
w

)
and āi =

( 0
1

1
0

)
. Then

σ(π) · tm ′i,i ai +π · ai m ′i,i = σ(π)
(

z x
w y

)
+π

(
z w

x y

)
=

(
(σ (π)+π)z σ(π)x +πw
σ(π)w+πx (σ (π)+π)y

)
.

Recall that σ(π)= επ with ε≡ 1 mod π and σ(π)+π = 2, as explained at the beginning of
Section 2A. Thus there are three linear equations z = 0, x +w = 0, y = 0 and x determines
every other entry of m ′i,i .
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(iii) Assume that i is even and L i is of type I o. Then π i hi = ξ
i/2
( ai
σ(π ·tbi )

πbi
1+2ci

)
as explained

in Section 3C and we have(
a′i πb′i

σ(π · tb′i ) 1+ 2c′i

)
= σ(1+π · tm ′i,i ) ·

(
ai πbi

σ(π · tbi ) 1+ 2ci

)
· (1+πm ′i,i ). (A-6)

Here, the nondiagonal entries of a′i as well as the entries of b′i are considered in B⊗A R, each
diagonal entry of a′i is of the form 2xi with xi ∈ R, and c′i is in R. In addition, bi = 0, ci = γ̄i

as explained in Remark 3.3(2) and ai is the diagonal matrix with
( 0

1
1
0

)
on the diagonal.

Note that in this case, m ′i,i =
( s′i
πv′i

πy′i
π z′i

)
. Compute σ(π · tm ′i,i )·

( ai
0

0
1+2ci

)
·(πm ′i,i ) formally

and this equals σ(π)π
( ts′i ai s′i+π

2 Xi
σ(π ·tYi )

πYi
π2 Zi

)
for certain matrices X i , Yi , Z i with suitable sizes.

Thus we can ignore the contribution from σ(π · tm ′i,i )
( ai

0
0

1+2ci

)
(πm ′i,i ) in Equation (A-6)

and so Equation (A-6) equals

(
a′i πb′i

σ(π · tb′i ) 1+ 2c′i

)
=

(
ai 0
0 1+ 2ci

)
+ σ(π)

( ts ′i σ(π) · tv′i
σ(π) · t y′i σ(π)z′i

)(
ai 0
0 1+ 2ci

)
+π

(
ai 0
0 1+ 2ci

)(
s ′i πy′i
πv′i π z′i

)
.

We interpret each block of the above equation below:

(a) Firstly, we consider the (1, 1)-block. The computation associated to this block is
similar to that for the above case (ii). Hence there are exactly ((ni − 1)2+ (ni − 1))/2
independent linear equations and ((ni − 1)2− (ni − 1))/2 entries of s ′i determine all
entries of s ′i .

(b) Secondly, we consider the (1, 2)-block. We can ignore the contribution from tv′i ci

since it contains π3 as a factor. Then the (1, 2)-block is

πb′i = σ(π)π · (ε ·
tv′i + 1/ε · ai y′i ). (A-7)

By letting b′i = bi = 0, we have

σ(π) · (ε · tv′i + 1/ε · ai y′i )= 0

as an equation in B⊗A R. Thus there are exactly (ni −1) independent linear equations
among the entries of v′i and y′i and the entries of v′i determine all entries of y′i .

(c) Finally, we consider the (2, 2)-block. This is

1+ 2c′i = 1+ 2ci + (π
2
+ (σ (π))2)z′i + 2(π2

+ (σ (π))2)ci z′i . (A-8)

Since π2
+ (σ (π))2 = (π + σ(π))2− 2σ(π)π , we see that π2

+ (σ (π))2 contains 4
as a factor. Thus by letting c′i = ci , this equation is trivial.

By combining the three cases (a)–(c), there are exactly ((ni−1)2+(ni−1))/2+(ni−1)=
(n2

i + ni )/2− 1 independent linear equations and (n2
i − ni )/2+ 1 entries of m ′i,i determine

all entries of m ′i,i .
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(iv) Assume that i is even and L i is of type I e. Then

π i hi = ξ
i/2

 ai bi πei

σ(tbi ) 1+ 2 fi 1+πdi

σ(π · tei ) σ (1+πdi ) 2ci


as explained in Section 3C and we have a′i b′i πe′i

σ(tb′i ) 1+ 2 f ′i 1+πd ′i
σ(π · te′i ) σ (1+πd ′i ) 2c′i


= σ(1+π · tm ′i,i ) ·

 ai bi πei

σ(tbi ) 1+ 2 fi 1+πdi

σ(π · tei ) σ (1+πdi ) 2ci

 · (1+πm ′i,i ). (A-9)

Here, the nondiagonal entries of a′i as well as the entries of b′i , e′i , d ′i are considered in
B ⊗A R, each diagonal entry of a′i is of the form 2xi with xi ∈ R, and c′i , f ′i are in R. In
addition, bi = 0, di = 0, ei = 0, fi = 0, ci = γ̄i as explained in Remark 3.3(2) and ai is the
diagonal matrix with

( 0
1

1
0

)
on the diagonal.

Notice that in this case,

m ′i,i =

 s ′i r ′i π t ′i
πy′i πx ′i π z′i
v′i u′i πw′i

 .
We compute

σ(π · tm ′i,i ) ·

ai 0 0
0 1 1
0 1 2ci

 · (πm ′i,i )

formally and this equals

σ(π)π

ts ′i ai s ′i +π
2 X i Yi π Z i

σ(tYi )
tr ′i air ′i +π

2 X ′i πY ′i
σ(π · t Z i ) σ (π · tY ′i ) π2 Z ′i


for certain matrices X i , Yi , Z i , X ′i , Y ′i , Z ′i with suitable sizes. Thus we can ignore the
contribution from this part in Equation (A-9) and so Equation (A-9) equals a′i b′i πe′i

σ(tb′i ) 1+2 f ′i 1+πd ′i
σ(π ·te′i ) σ (1+πd ′i ) 2c′i

=
ai 0 0

0 1 1
0 1 2ci


+σ(π)

 ts ′i σ(π)·t y′i
tv′i

tr ′i σ(π)x ′i u′i
σ(π)·tt ′i σ(π)z′i σ(π)w′i

ai 0 0
0 1 1
0 1 2ci


+π

ai 0 0
0 1 1
0 1 2ci

 s ′i r ′i π t ′i
πy′i πx ′i π z′i
v′i u′i πw′i

 .
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We interpret each block of the above equation as follows:

(a) Let us consider the (1, 1)-block. The computation associated to this block is similar
to that for the previous case (ii). Hence there are exactly ((ni − 2)2 + (ni − 2))/2
independent linear equations and ((ni − 2)2− (ni − 2))/2 entries of s ′i determine all
entries of s ′i .

(b) We consider the (1, 2)-block. This gives

b′i = π(ε
2π · t y′i + ε ·

tv′i + air ′i ). (A-10)

This is an equation in B ⊗A R. By letting b′i = bi = 0, there are exactly (ni − 2)
independent linear equations among the entries of v′i , r

′

i .

(c) The (1, 3)-block is

πe′i = π
2(ε2
·

t y′i + (2/π) · ε ·
tv′i ci + ai t ′i ).

By letting e′i = ei = 0, we have

e′i = π(ε
2
·

t y′i + (2/π) · ε ·
tv′i ci + ai t ′i )

= π(ε2
·

t y′i + ai t ′i )= π(
t y′i + ai t ′i )= 0.

(A-11)

This is an equation in B ⊗A R. Thus there are exactly (ni − 2) independent linear
equations among the entries of y′i , t ′i .

(d) The (2, 3)-block is

1+πd ′i = 1+ σ(π)(σ (π)x ′i + 2u′i ci )+π
2(z′i +w

′

i ).

By letting d ′i = di = 0, we have

d ′i = π(ε
2x ′i + z′i +w

′

i )= π(x
′

i + z′i +w
′

i )= 0. (A-12)

This is an equation in B⊗A R. Thus there is exactly one independent linear equation
among the entries of x ′i , z′i , w

′

i .

(e) The (2, 2)-block is

1+ 2 f ′i = 1+ σ(π)(σ (π)x ′i + u′i )+π(πx ′i + u′i )

= 1+ 2u′i + ((π + σ(π))
2
− 2πσ(π))x ′i .

By letting f ′i = fi = 0, we have

f ′i = u′i + ((π + σ(π))−πσ(π))x
′

i = u′i = 0.

This is an equation in R. Thus u′i = 0 is the only independent linear equation.

(f) The (3, 3)-block is

2c′i = 2ci + σ(π)(σ (π)z′i + 2σ(π)w′i ci )+π(π z′i + 2πw′i ci )

= 2ci + ((π + σ(π))
2
− 2πσ(π))(z′i + 2w′i ci ).

(A-13)

Since ((π + σ(π))2− 2πσ(π)) contains 4 as a factor, by letting c′i = ci , this equation
is trivial.

By combining the six cases (a)–(f), there are exactly ((ni−2)2+(ni−2))/2+2(ni−2)+2=
(n2

i + ni )/2− 1 independent linear equations and (n2
i − ni )/2+ 1 entries of m ′i,i determine

all entries of m ′i,i .
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We now combine all the work done in this proof. Namely, we collect the above (i), (ii), (iii),
(iv) which are the interpretations of Equation (A-5), together with Equation (A-4). Then
there are exactly∑

i< j

ni n j +
∑
i odd

n2
i − ni

2
+

∑
i even

n2
i + ni

2
− #{i : i is even and L i is of type I }

independent linear equations among the entries of m. Furthermore, all coefficients of these
equations are in κ . Therefore, we consider G̃1 as a subvariety of M̃1 determined by these
linear equations. Since M̃1 is an affine space of dimension n2, the underlying algebraic
variety of G̃1 over κ is an affine space of dimension∑

i< j

ni n j +
∑
i odd

n2
i + ni

2
+

∑
i even

n2
i − ni

2
+ #{i : i is even and L i is of type I }.

This completes the proof by using a theorem of Lazard which is stated at the beginning of
Appendix A. �

Let R be a κ-algebra. We describe the functor of points of the scheme Ker ϕ̃/M̃1 by using
points of the scheme (M ′⊗ κ)/πM ′, based on Lemma A.3. Recall from two paragraphs
before Lemma A.3 that (1+)−1(M∗), which is an open subscheme of M ′, is a group scheme
with the operation ?. Let M̃ ′ be the special fiber of (1+)−1(M∗). Since M̃1 is a closed
normal subgroup of M̃(= M∗⊗ κ) (cf. Lemma A.3(i)), πM ′, which is the inverse image
of M̃1 under the isomorphism 1+, is a closed normal subgroup of M̃ ′. Therefore, the
morphism 1+ induces the following isomorphism of group schemes, which is also denoted
by 1+,

1+ : M̃ ′/πM ′ −→ M̃/M̃1.

Note that M̃ ′/πM ′(R)= M̃ ′(R)/πM ′(R) by Lemma A.1. Each element of (Ker ϕ̃/M̃1)(R)
is therefore uniquely written as 1+ x̄ , where x̄ ∈ M̃ ′(R)/πM ′(R). Here, by 1+ x̄ , we mean
the image of x̄ under the morphism 1+ at the level of R-points.

We still need a better description of an element of (Ker ϕ̃/M̃1)(R) by using a point of
the scheme (M ′⊗ κ)/πM ′. Note that (M ′⊗ κ)/πM ′ is a quotient of group schemes with
respect to the addition, whereas M̃ ′/πM ′ is a quotient of group schemes with respect to the
operation ?.

We claim that the open immersion ι : M̃ ′→M ′⊗κ with x 7→ x induces a monomorphism
of schemes

ῑ : M̃ ′/πM ′→ (M ′⊗ κ)/πM ′.

Choose x ∈ M̃ ′(R) and πy ∈ πM ′(R) for a κ-algebra R. Since x?πy = x + π(y + xy),
both x and x?πy give the same element in ((M ′⊗ κ)/πM ′)(R). Thus the morphism ῑ is
well-defined.

In order to show that ῑ is a monomorphism, choose x, y ∈ M̃ ′(R) such that x = y+π z
with π z ∈ πM ′(R). Let y′ (∈ M̃ ′(R)) be the inverse of y so that y?y′ = y+ y′+ yy′ = 0.
Then π(z+ y′z) is an element of πM ′(R). We have the following identity:

x?π(z+ y′z)= (y+π z)?π(z+ y′z)= y+π(y+ y′+ yy′)z = y.
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Therefore, x and y give the same element in (M̃ ′/πM ′)(R), which shows the injectivity of
the above morphism.

Note that the operation ? is closed in M ′⊗κ as mentioned in the third paragraph following
Lemma A.2. We can also easily check that the operation ? is well-defined on (M ′⊗κ)/πM ′,
which turns to be a scheme of monoids with respect to ?, and that the morphism ῑ is a
monomorphism of monoid schemes.

To summarize, the morphism 1+ : M̃ ′/πM ′ −→ M̃/M̃1 is an isomorphism of group
schemes and the morphism ῑ : M̃ ′/πM ′→ (M ′⊗ κ)/πM ′ is a monomorphism preserving
the operation ?. Therefore, each element of (Ker ϕ̃/M̃1)(R) is uniquely written as 1+ x̄ ,
where x̄ ∈ (M ′⊗ κ)(R)/πM ′(R). Here, by 1+ x̄ , we mean (1+) ◦ ῑ−1(x̄). From now on to
the end of this paper, we keep the notation 1+ x̄ to express an element of (Ker ϕ̃/M̃1)(R)
such that x̄ is an element of (M ′⊗ κ)(R)/πM ′(R) which is a quotient of R-valued points
of group schemes with respect to addition. Then the product of two elements 1+ x̄ and
1+ ȳ is the same as 1+ x̄?ȳ (= 1+ (x̄ + ȳ+ x̄ ȳ)).

Remark A.5. By the above argument, we write an element of (Ker ϕ̃/M̃1)(R) formally as
m =

(
πmax{0, j−i}mi, j

)
with si , · · · , wi as in Section 3B such that each entry of each of the

matrices (mi, j )i 6= j , si , · · · , wi is in (B⊗A R)/(π ⊗ 1)(B⊗A R)∼= R. In particular, based
on the description of Ker ϕ̃(R) given at the paragraph following Lemma A.2, we have the
following conditions on m:

(1) Assume that i is even and L i is of type I . Then si = id.

(2) mi,i = id if L i is of type II .

(3) Assume that i is odd. Then δi−1ei−1 ·mi−1,i + δi+1ei+1 ·mi+1,i = 0. Here, δ j , e j are
as explained in the description of Ker ϕ̃(R).

Theorem A.6. Kerϕ/G̃1 is isomorphic to Al ′
× (Z/2Z)β as a κ-variety, where Al ′ is an

affine space of dimension l ′. Here,

• l ′ is such that l ′ + dim G̃1
= l. Notice that l is defined in Lemma 4.6 and that the

dimension of G̃1 is given in Theorem A.4.

• β is the number of even integers j such that L j is of type I and L j+2 is of type II .

Proof. Lemma A.1 and Theorem A.4 imply that Kerϕ/G̃1 represents the functor R 7→
Kerϕ(R)/G̃1(R). Recall that Kerϕ/G̃1 is a closed subgroup scheme of Ker ϕ̃/M̃1 as
explained at the paragraph just before Theorem A.4. Let m=

(
πmax{0, j−i}mi, j

)
be an element

of (Ker ϕ̃/M̃1)(R) such that m belongs to (Kerϕ/G̃1)(R). We want to find equations which
m satisfies. Note that the entries of m involve (B⊗A R)/(π ⊗ 1)(B⊗A R) as explained in
Remark A.5.

Recall that h is the fixed hermitian form and we consider it as an element in H(R) as
explained in Remark 3.3(2). We write it as a formal matrix h =

(
π i
· hi
)

with (π i
· hi ) for

the (i, i)-block and 0 for the remaining blocks. We choose a representative 1+x ∈Kerϕ(R)
of m so that h ◦ (1+ x) = h. Any other representative of m in Ker ϕ̃(R) is of the form
(1+ x)(1+πy) with y ∈ M ′(R) and we have h ◦ (1+ x)(1+πy)= h ◦ (1+πy). Notice
that h ◦ (1+ πy) is an element of H(R) so we express it as ( f ′i, j , a′i · · · f ′i ). We also let
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h = ( fi, j , ai · · · fi ). Here, we follow notation from Section 3C, the paragraph just before
Remark 3.3. Recall that h = ( fi, j , ai · · · fi ) is described explicitly in Remark 3.3(2). Now,
1+πy is an element of M̃1(R) and so we can use our result (Equations (A-3), (A-7), (A-8),
(A-10), (A-11), (A-12), (A-13)) stated in the proof of Theorem A.4 in order to compute
h ◦ (1+πy). Based on this, we enumerate equations which m satisfies as follows:

(1) Assume i < j . By Equation (A-3) which involves an element of M̃1(R), each entry of
f ′i, j has π as a factor so that f ′i, j ≡ fi, j (=0) mod (π⊗1)(B⊗AR). In other words, the (i, j)-
block of h◦(1+x)(1+πy) divided by πmax{i, j} is fi, j (= 0)modulo (π⊗1)(B⊗AR), which
is independent of the choice of 1+πy. Let m̃ ∈ Ker ϕ̃(R) be a lift of m. Therefore, if we
write the (i, j)-block of σ(tm̃) ·h · m̃ as πmax{i, j}Xi, j (m̃), where Xi, j (m̃) ∈ Mni×n j (B⊗A R),
then the image of Xi, j (m̃) in Mni×n j (B ⊗A R)/(π ⊗ 1)Mni×n j (B ⊗A R) ∼= Mni×n j (R)
is independent of the choice of the lift m̃ of m. Therefore, we may denote this image
by Xi, j (m). On the other hand, by Equation (A-2), we have the following identity:

Xi, j (m)=
∑

i≤k≤ j

σ(tmk,i )h̄kmk, j if i < j. (A-14)

We explain how to interpret the above equation. We know that Xi, j (m) and mk,k′ (with
k 6= k ′) are matrices with entries in (B⊗A R)/(π ⊗ 1)(B⊗A R), whereas mi,i and m j, j are
formal matrices as explained in Remark A.5. Thus we consider h̄k , mi,i , and m j, j as matrices
with entries in (B⊗A R)/(π ⊗ 1)(B⊗A R) by letting π be zero in each entry of the formal
matrices hk , mi,i , and m j, j . Here we keep using mi,i and m j, j for matrices with entries in
(B ⊗A R)/(π ⊗ 1)(B ⊗A R) in the above equation in order to simplify notation. Later in
Equation (A-23), they are denoted by m̄i,i and m̄ j, j . Then the right hand side is computed as
a sum of products of matrices (involving the usual matrix addition and multiplication) with
entries in (B⊗A R)/(π ⊗ 1)(B⊗A R). Thus, the assignment m 7→ Xi, j (m) is polynomial
in m. Furthermore, since m actually belongs to Kerϕ(R)/G̃1(R), we have the following
equation by the argument made at the beginning of this paragraph:

Xi, j (m)= fi, j mod (π ⊗ 1)(B⊗A R)= 0.

Thus we get an ni×n j matrix Xi, j of polynomials on Ker ϕ̃/M̃1 defined by Equation (A-14),
vanishing on the subscheme Kerϕ/G̃1.

Before moving to the following steps, we fix notation. Let m be an element in (Ker ϕ̃/M̃1)(R)
and m̃ ∈Ker ϕ̃(R) be its lift. For any block xi of m, x̃i is denoted by the corresponding block
of m̃ whose reduction is xi . Since xi is a block of an element of (Ker ϕ̃/M̃1)(R), it involves
(B⊗A R)/(π ⊗ 1)(B⊗A R) as explained in Remark A.5, whereas x̃i involves B⊗A R. In
addition, for a block ai of h, āi is denoted by the image of ai in (B⊗A R)/(π⊗1)(B⊗A R).

(2) Assume that i is even and L i is of type I o. By Equation (A-7) which involves an element
of M̃1(R), each entry of b′i has π as a factor so that b′i ≡ bi = 0 mod (π ⊗ 1)(B⊗A R). Let
m̃ ∈ Ker ϕ̃(R) be a lift of m. By using an argument similar to the paragraph just before
Equation (A-14) of step (1), if we write the (1, 2)-block of the (i, i)-block of the formal
matrix product σ(tm̃) ·h ·m̃ as ξ i/2

·πXi,1,2(m̃), where Xi,1,2(m̃)∈M(ni−1)×1(B⊗A R), then
the image of Xi,1,2(m̃) in M(ni−1)×1(B ⊗A R)/(π ⊗ 1)M(ni−1)×1(B ⊗A R) is independent
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of the choice of the lift m̃ of m. Therefore, we may denote this image by Xi,1,2(m).
As for Equation (A-14) of step (1), we need to express Xi,1,2(m) as matrices. Recall that
π i hi = ξ

i/2
( ai

0
0

1+2ci

)
=π i
·εi/2

( ai
0

0
1+2ci

)
and ε≡1 mod π⊗1. We write mi,i as

( id
πvi

πyi
1+π zi

)
and m̃i,i as

( s̃i
πṽi

π ỹi
1+π z̃i

)
such that s̃i = id mod π ⊗ 1. Then

σ(tm̃i,i )hi m̃i,i = ε
i/2
(
σ(ts̃i ) σ (π · tṽi )

σ (π · t ỹi ) 1+ σ(π z̃i )

)(
ai 0
0 1+ 2ci

)(
s̃i π ỹi

πṽi 1+π z̃i

)
. (A-15)

Then the (1, 2)-block of σ(tm̃i,i )hi m̃i,i is εi/2π(ai ỹi + εσ (
tṽi ))+π

2(∗) for a certain poly-
nomial (∗). Therefore, by observing the (1, 2)-block of Equation (A-1), we have

Xi,1,2(m)= āi yi +
tvi +P i

1,2.

Here, P i
1,2 is a polynomial with variables in the entries of mi−1,i ,mi+1,i . Note that this is

an equation in (B⊗A R)/(π ⊗ 1)(B⊗A R). Thus ε, which is appeared in the (1, 2)-block
of σ(tm̃i,i )hi m̃i,i , has been ignored since ε ≡ 1 mod π ⊗ 1. Furthermore, since m actually
belongs to Kerϕ(R)/G̃1(R), we have the following equation by the argument made at the
beginning of this paragraph:

Xi,1,2(m)= āi yi +
tvi +P i

1,2 = b̄i = 0. (A-16)

Thus we get polynomials Xi,1,2 on Ker ϕ̃/M̃1, vanishing on the subscheme Kerϕ/G̃1.

(3) Assume that i is even and L i is of type I e. The argument used in this step is similar
to that of step (2) above. By Equations (A-10), (A-11) and (A-12), which involve an
element of M̃1(R), each entry of b′i , e′i , d ′i has π as a factor so that b′i ≡ bi = 0, e′i ≡ ei = 0,
d ′i ≡ di = 0 mod (π ⊗ 1)(B ⊗A R). Let m̃ ∈ Ker ϕ̃(R) be a lift of m. By using an
argument similar to the paragraph just before Equation (A-14) of step (1), if we write the
(1, 2), (1, 3), (2, 3)-blocks of the (i, i)-block of the formal matrix product σ(tm̃) · h · m̃
as ξ i/2

· πXi,1,2(m̃), ξ i/2
· πXi,1,3(m̃), ξ i/2

· πXi,2,3(m̃), respectively, where Xi,1,2(m̃) and
Xi,1,3(m̃) ∈ M(ni−2)×1(B⊗A R) and Xi,2,3(m̃) ∈ B⊗A R, then the images of Xi,1,2(m̃) and
Xi,1,3(m̃) in M(ni−2)×1(B⊗A R)/(π ⊗ 1)M(ni−2)×1(B⊗A R) and the image of Xi,2,3(m̃) in
(B ⊗A R)/(π ⊗ 1)(B ⊗A R) are independent of the choice of the lift m̃ of m. Therefore,
we may denote these images by Xi,1,2(m), Xi,1,3(m), and Xi,2,3(m), respectively. As for
Equation (A-14) of step (1), we need to express Xi,1,2(m), Xi,1,3(m), and Xi,2,3(m) as
matrices. Recall that

π i hi = ξ
i/2

ai 0 0
0 1 1
0 1 2ci

= π i
· εi/2

ai 0 0
0 1 1
0 1 2ci


and ε ≡ 1 mod π ⊗ 1. We write

mi,i =

 id ri π ti
πyi 1+πxi π zi

vi ui 1+πwi

 and m̃i,i =

 s̃i r̃i π t̃i
π ỹi 1+π x̃i π z̃i

ṽi ũi 1+πw̃i
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such that s̃i = id mod π ⊗ 1. Then

σ(tm̃i,i )hi m̃i,i = ε
i/2

 σ(ts̃i ) σ (π · t ỹi ) σ (tṽi )

σ (tr̃i ) 1+ σ(π x̃i ) σ (ũi )

σ (π · t t̃i ) σ (π · t z̃i ) 1+ σ(πw̃i )


ai 0 0

0 1 1
0 1 2ci

 s̃i r̃i π t̃i
π ỹi 1+π x̃i π z̃i

ṽi ũi 1+πw̃i

 . (A-17)

Then the (1, 2)-block of σ(tm̃i,i )hi m̃i,i is εi/2(ai r̃i + σ(
tṽi ))+ π(∗), the (1, 3)-block is

εi/2π(ai t̃i + εσ (t ỹi )+ σ(
tṽi )z̃i )+ π

2(∗∗), and the (2, 3)-block is εi/2(1+ π(σ(tr̃i )ai t̃i +
εσ (x̃i )+ z̃i+w̃i+σ(ũi )z̃i )+π

2(∗∗∗)) for certain polynomials (∗), (∗∗), (∗∗∗). Therefore,
by considering the (1, 2), (1, 3), (2, 3)-blocks of Equation (A-1) again, we have

Xi,1,2(m)= āiri +
tvi ;

Xi,1,3(m)= āi ti + t yi +
tvi zi +P i

1,3;

Xi,2,3(m)= tri āi ti + xi + zi +wi + ui zi +P i
2,3.

Here, P i
1,3,P

i
2,3 are suitable polynomials with variables in the entries of mi−1,i ,mi+1,i .

These equations are considered in (B⊗A R)/(π ⊗ 1)(B⊗A R). Since m actually belongs to
Kerϕ(R)/G̃1(R), we have the following equation by the argument made at the beginning
of this paragraph:

Xi,1,2(m)= āiri +
tvi = b̄i = 0;

Xi,1,3(m)= āi ti + t yi +
tvi zi +P i

1,3 = ēi = 0;
Xi,2,3(m)= tri āi ti + xi + zi +wi + ui zi +P i

2,3 = d̄i = 0.
(A-18)

Thus we get polynomials Xi,1,2,Xi,1,3,Xi,2,3 on Ker ϕ̃/M̃1, vanishing on the subscheme
Kerϕ/G̃1.

(4) Assume that i is even and L i is of type I . By Equations (A-8) and (A-13) which involve
an element of M̃1(R), c′i ≡ ci = 0 mod (π ⊗ 1)(B⊗A R). Let m̃ ∈ Ker ϕ̃(R) be a lift of m.
By using an argument similar to the paragraph just before Equation (A-14) of step (1), if
we write the (2, 2)-block (when L i is of type I o) or the (3, 3)-block (when L i is of type
I e) of the (i, i)-block of h ◦ m̃ = σ(tm̃) · h · m̃ as ξ i/2

· (1+ 2Xi,i (m̃)) or ξ i/2
· (2Xi,i (m̃))

respectively, where Xi,i (m̃)∈ B⊗AR, then the image of Xi,i (m̃) in (B⊗AR)/(π⊗1)(B⊗AR)
is independent of the choice of the lift m̃ of m. Therefore, we may denote this image by
Xi,i (m). As in Equation (A-14) of step (1), we need to express Xi,i (m) as matrices. By
considering Equations (A-15) and (A-17), the (2, 2)-block (when L i is of type I o) or the
(3, 3)-block (when L i is of type I e) of the formal matrix product σ(tm̃i,i )hi m̃i,i is (εi/2 if
L i is of type I o) +εi/2(2ci + (π+σ(π))z̃i +πσ(π)z̃2

i )+4(∗) for a certain polynomial (∗).
Therefore, by considering the (2, 2)-block (when L i is of type I o) or the (3, 3)-block (when
L i is of type I e) of Equation (A-1) again, we have

Xi,i (m̃)=
1
π2

(
(π + σ(π))z̃i +πσ(π)z̃2

i + σ(
tm̃ ′i−1,i ) · σ(π)hi−1 · m̃ ′i−1,i

+ σ(tm̃ ′i+1,i ) ·πhi+1 · m̃ ′i+1,i + σ(
tm̃ ′i−2,i ) · σ(π)

2hi−2 · m̃ ′i−2,i

+ σ(tm̃ ′i+2,i ) ·π
2hi+2 · m̃ ′i+2,i

)
.
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Here, m̃ ′j,i is the last column vector of the matrix m̃ j,i . Note that the right hand side is a
formal polynomial with entries in m̃. This equation should be interpreted as follows. We
formally compute the right hand side and then it is of the form 1/π2(π2 X). The left hand
side Xi,i (m̃) is defined as the modified X by letting each term having π2 as a factor in X
be zero. It is a polynomial with entries in B ⊗A R. Furthermore, Xi,i (m) is the image of
Xi,i (m̃) in (B ⊗A R)/(π ⊗ 1)(B ⊗A R). Let α be the unit in B such that ε = 1+ απ , as
explained in Section 2A. Then (π + σ(π))zi +πσ(π)z2

i = (2+απ)π zi + (1+απ)π2z2
i

and so Xi,i (m̃) is written as follows:

Xi,i (m̃)=
1
π2

(
απ2 z̃i +π

2 z̃2
i + σ(

tm̃ ′i−1,i ) · σ(π)hi−1 · m̃ ′i−1,i + σ(
tm̃ ′i+1,i ) ·πhi+1 · m̃ ′i+1,i

+ σ(tm̃ ′i−2,i ) · σ(π)
2hi−2 · m̃ ′i−2,i + σ(

tm̃ ′i+2,i ) ·π
2hi+2 · m̃ ′i+2,i

)
.

We can then write Xi,i (m) by using m and m̃ as follows:

Xi,i (m)= (αzi + z2
i +

tm ′i−2,i · h̄i−2 ·m ′i−2,i +m ′i+2,i · h̄i+2 ·m ′i+2,i )

+
1
π2

(
σ(tm̃ ′i−1,i ) · σ(π)hi−1 · m̃ ′i−1,i + σ(

tm̃ ′i+1,i ) ·πhi+1 · m̃ ′i+1,i

)
. (A-19)

Here, α is the image of α in κ and m ′j,i is the last column vector of the matrix m j,i . Note that
the σ -action on (B⊗A R)/(π ⊗1)(B⊗A R) is trivial and so we remove σ in the first line of
the above equation. Here, the reason we do not express Xi,i (m) based only on the entries in
m as in steps (1)–(3) is that two terms involving hi−1 and hi+1 have only π as a factor which
makes the expression with m complicated notation wise. Thus, in the above expression of
Xi,i (m), the first line is just a polynomial in (B ⊗A R)/(π ⊗ 1)(B ⊗A R) and the second
line is interpreted as explained above as a formal expression. Note that the second line is
independent of the choice of lifts m̃ ′i−1,i and m̃ ′i+1,i of m ′i−1,i and m ′i+1,i , respectively, as
explained in the first paragraph of step (4). For example, let πhi+1 =

( 2
σ(π)

π

2b

)
with b ∈ A

and let m̃ ′i+1,i =
( x1+πx2

y1+πy2

)
such that m ′i+1,i =

( x1
y1

)
. By Section 2A, we may assume that

π +σ(π)= 2 and π ·σ(π)= επ2
= 2u with ε ≡ 1 mod π and a unit u ∈ A. Then as a part

of Xi,i (m), we can see that

1
π2
σ(tm̃ ′i+1,i ) ·πhi+1 · m̃ ′i+1,i =

1
u
(x2

1 + x1 y1+ by2
1).

Since m actually belongs to Kerϕ(R)/G̃1(R), we have the following equation by the
argument made at the beginning of this paragraph:

Fi : Xi,i (m)= (αzi + z2
i +

tm ′i−2,i · h̄i−2 ·m ′i−2,i +m ′i+2,i · h̄i+2 ·m ′i+2,i )

1
π2

(
σ(tm̃ ′i−1,i ) · σ(π)hi−1 · m̃ ′i−1,i + σ(

tm̃ ′i+1,i ) ·πhi+1 · m̃ ′i+1,i

)
= c̄i = 0. (A-20)

Thus we get polynomials Xi,i on Ker ϕ̃/M̃1, vanishing on the subscheme Kerϕ/G̃1.

(5) We now choose an even integer j such that L j is of type I and L j+2 is of type II
(possibly zero, by our convention). For each such j , there is a nonnegative integer m j such
that L j−2l is of type I for every l with 0 ≤ l ≤ m j and L j−2(m j+1) is of type II . Then we
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claim that the sum of equations
m j∑
l=0

1
α2 F j−2l

is the same as
m j∑
l=0

( z j−2l

α
+

( z j−2l

α

)2)
=

( m j∑
l=0

z j−2l

α

)( m j∑
l=0

(
z j−2l

α
)+ 1

)
= 0. (A-21)

Here, α is the image of α in κ and we consider this equation in (B⊗A R)/(π ⊗ 1)(B⊗A R).
We postpone the proof of this claim to Lemma A.7.

Let G‡ be the subfunctor of Ker ϕ̃/M̃1 consisting of those m satisfying Equations (A-14),
(A-16), (A-18) and (A-20). Note that such m also satisfy Equation (A-21). In Lemma A.8
below, we will prove that G‡ is represented by a smooth closed subscheme of Ker ϕ̃/M̃1

and is isomorphic to Al ′
× (Z/2Z)β as a κ-variety, where Al ′ is an affine space of dimension

l ′ =
∑
i< j

ni n j −
∑
i odd

Li bound

ni +
∑
i even

Li of type I o

(ni − 1)+
∑
i even

Li of type I e

(2ni − 2).

For ease of notation, let G†
= Kerϕ/G̃1. Since G† and G‡ are both closed subschemes

of Ker ϕ̃/M̃1 and G†(κ̄) ⊂ G‡(κ̄), (G†)red is a closed subscheme of (G‡)red = G‡. It is
easy to check that dim G†

= dim G‡ since dim G†
= dim Kerϕ−dim G̃1

= l−dim G̃1 and
dim G‡

= l ′ = l − dim G̃1. Here, dim Kerϕ = l is given in Lemma 4.6 and dim G̃1 is given
in Theorem A.4.

We claim that (G†)red contains at least one (closed) point of each connected component
of G‡. Choose an even integer j such that L j is of type I and L j+2 is of type II (possibly
zero, by our convention). Consider the closed subgroup scheme F j of G̃ defined by the
following equations:

• mi,k = 0 if i 6= k;
• mi,i = id if i 6= j ;
• and for m j, j ,{

s j = id, y j = 0, v j = 0 if L i is of type I o
;

s j = id, r j = t j = y j = v j = u j = w j = 0 if L i is of type I e.

We will prove in Lemma A.9 below that each element of F j (R) for a κ-algebra R satisfies
(z1

j/α)+ (z
1
j/α)

2
= 0, where z j = z1

j +π z2
j , and that F j is isomorphic to A1

×Z/2Z as a
κ-variety, where A1 is an affine space of dimension 1.

Notice that F j and F j ′ commute with each other for all even integers j 6= j ′, in the sense
that f j · f j ′ = f j ′ · f j , where f j ∈ F j and f j ′ ∈ F j ′ . Let F =

∏
j F j . Then F is smooth and is

a closed subgroup scheme of Kerϕ as mentioned in the proof of Theorem 4.11. If F† is the
image of F in G†, then it is smooth and thus a closed subscheme of (G†)red. By observing
Equation (A-21) and (z1

j/α)+ (z
1
j/α)

2
= 0 above, we can easily see that F† contains at

least one (closed) point of each connected component of G‡ and this proves our claim.
Combining this fact with dim G† = dim G‡, we conclude that (G†)red ' G‡, and hence,

G†
= G‡ because G† is a subfunctor of G‡. This completes the proof. �
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Lemma A.7. Choose an even integer j such that L j is of type I and L j+2 is of type II
(possibly zero, by our convention). For such j , there is a nonnegative integer m j such that
L j−2l is of type I for every l with 0≤ l ≤ m j and L j−2(m j+1) is of type II . Then the sum of
the equations

m j∑
l=0

1
α2 F j−2l

equals
m j∑
l=0

( z j−2l

α
+

( z j−2l

α

)2)
=

( m j∑
l=0

z j−2l

α

)( m j∑
l=0

(
z j−2l

α
)+ 1

)
= 0.

Proof. Our strategy to prove this lemma is the following. We will first prove that for each
odd integer i , the terms containing an hi add to zero in the sum

∑m j
l=0

1
α2 F j−2l . Then we

will show that for each even integer i , the terms containing an h̄i add to zero in the sum∑m j
l=0

1
α2 F j−2l , so that only the terms containing the zi remain.

We recall the notations used in the theorem. Let m be an element in (Ker ϕ̃/M̃1)(R)
and m̃ ∈ Ker ϕ̃(R) be its lift. For any block xi of m, x̃i denotes the corresponding block of
m̃ whose reduction is xi . Since xi is a block of an element of (Ker ϕ̃/M̃1)(R), its entries
are elements of (B ⊗A R)/(π ⊗ 1)(B ⊗A R) ∼= R as explained in Remark A.5, whereas
entries of x̃i are elements of B ⊗A R. In addition, for a block ai of h, where we consider
h as an element of H(R) as explained in Remark 3.3(2), āi denotes the image of ai in
(B⊗A R)/(π ⊗ 1)(B⊗A R), which is mentioned in step (i) of the proof of Theorem A.4. If
we write h as a formal matrix h =

(
π i
· hi
)

with (π i
· hi ) for the (i, i)-block and 0 for the

remaining blocks, then recall from the paragraph following Equation (A-14) that h̄k is the
matrix with entries in (B⊗A R)/(π ⊗1)(B⊗A R)∼= R by letting π be zero in each entry of
the formal matrix hk . To help our computation, we write h̄i . Note that ε (∈ B)≡ 1 mod π .

h̄i =





(
0 1
1 0

)
. . . (

0 1
1 0

)
1

 if i is even and L i is of type I o;



(
0 1
1 0

)
. . . (

0 1
1 0

)
(

1 1
1 0

)


if i is even and L i is of type I e;


(0 1

1 0

)
. . . (0 1

1 0

)
 if i is odd or if i is even and L i is of type II .

(A-22)
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We recall that mi,i is a formal matrix as described in Remark A.5, not a matrix in
Mni×ni ((B ⊗A R)/(π ⊗ 1)(B ⊗A R)), whereas mi, j for i 6= j is a matrix with entries in
(B ⊗A R)/(π ⊗ 1)(B ⊗A R). Thus we need to modify mi,i into a matrix with entries in
(B⊗A R)/(π ⊗ 1)(B⊗A R) in order to use Equation (A-14) as explained in the paragraph
following Equation (A-14). We define m̄i,i (∈ Mni×ni ((B⊗A R)/(π ⊗ 1)(B⊗A R))) to be
obtained from mi,i by letting π be zero in each entry of the formal matrix mi,i . The matrix
m̄i,i is described as follows.

m̄i,i =



(
id 0
0 1

)
if i is even and L i is of type I o

;id ri 0
0 1 0
vi ui 1

 if i is even and L i is of type I e
;

id if i is even and L i is of type II ;
id if i is odd.

(A-23)

In addition, if i is odd, then we have

δi−1ei−1 ·mi−1,i + δi+1ei+1 ·mi+1,i = 0. (A-24)

Here, δ j , e j are as explained in the description of Ker ϕ̃(R), the paragraph following
Lemma A.2.

We choose an even integer k (assuming m j > 0) such that j − 2(m j − 1) ≤ k ≤ j so
that both Lk and Lk−2 are of type I . We observe σ(tm̃ ′k−1,k) · σ(π)hk−1 · m̃ ′k−1,k in Fk and
σ(tm̃ ′k−1,k−2) · σ(π)hk−1 · m̃ ′k−1,k−2 in Fk−2 (cf. Equation (A-20)). We claim that

1
π2

(
σ(tm̃ ′k−1,k) · σ(π)hk−1 · m̃ ′k−1,k + σ(

tm̃ ′k−1,k−2) · σ(π)hk−1 · m̃ ′k−1,k−2

)
= 0. (A-25)

Note that this equation is interpreted as explained in the paragraph following Equation (A-19).
We use Equation (A-14) for i = k− 1 and j = k so that we have

tm̄k−1,k−1h̄k−1mk−1,k =
tmk,k−1h̄km̄k,k . (A-26)

Note that this equation is over (B ⊗A R)/(π ⊗ 1)(B ⊗A R). Indeed, there is a σ -action
in Equation (A-14) but it is trivial over (B ⊗A R)/(π ⊗ 1)(B ⊗A R). Recall that m ′k−1,k
is the last column vector of mk−1,k . Let ek−1 = (0, · · · , 0, 1) be of size 1 × nk . Then
m ′k−1,k = mk−1,k ·

tek−1. We multiply both sides of the above equation by tek−1 on the right.
Then the left hand side is tm̄k−1,k−1h̄k−1mk−1,k ·

tek−1 = h̄k−1m ′k−1,k since tm̄k−1,k−1 = id.
The right hand side is tmk,k−1h̄km̄k,k ·

tek−1. Since m̄k,k ·
tek−1 is the last column vector of

m̄k,k , m̄k,k ·
tek−1=

tek−1 by Equation (A-23) so that tmk,k−1h̄km̄k,k ·
tek−1=

tmk,k−1h̄k ·
tek−1.

Furthermore, h̄k is symmetric over (B⊗A R)/(π ⊗ 1)(B⊗A R) and so tmk,k−1h̄k ·
tek−1 =

t(ek−1 · h̄kmk,k−1). Then based on the matrix form of h̄k in Equation (A-22), we have that
ek−1 · h̄k is the same as ek , where ek is defined in the paragraph following Lemma A.2.
(There, e j is defined when j is even and L j is of type I .) In conclusion, Equation (A-26)
induces the equation

h̄k−1m ′k−1,k =
t(ek ·mk,k−1) (A-27)



520 Sungmun Cho

over (B⊗A R)/(π ⊗ 1)(B⊗A R).
We again use Equation (A-14) for i = k− 2 and j = k− 1 so that we have

tm̄k−2,k−2h̄k−2mk−2,k−1 =
tmk−1,k−2h̄k−1m̄k−1,k−1. (A-28)

Note that this equation is over (B⊗A R)/(π⊗1)(B⊗A R). Since k−1 is odd, m̄k−1,k−1= id
by Equation (A-23). Recall that m ′k−1,k−2 is the last column vector of mk−1,k−2. Let
e′k−1 = (0, · · · , 0, 1) of size 1 × nk−2. Then m ′k−1,k−2 = mk−1,k−2 ·

te′k−1. We multi-
ply both sides of the above equation by e′k−1 on the left. Then the right hand side
is e′k−1 ·

tmk−1,k−2h̄k−1m̄k−1,k−1 =
tm ′k−1,k−2h̄k−1. Note that m̄k−2,k−2 ·

te′k−1 =
te′k−1 by

Equation (A-23) since this is the last column vector of m̄k−2,k−2. Thus in the left hand side,
e′k−1 ·

tm̄k−2,k−2h̄k−2mk−2,k−1 = e′k−1 · h̄k−2mk−2,k−1. Based on the matrix form of h̄k for an
even integer k in Equation (A-22), e′k−1 · h̄k−2 is the same as ek−2, where ek is defined in the
paragraph following Lemma A.2. In conclusion, Equation (A-28) induces the equation

tm ′k−1,k−2h̄k−1 = ek−2 ·mk−2,k−1 (A-29)

over (B⊗A R)/(π ⊗ 1)(B⊗A R).
Now we use Equations (A-27) and (A-29). Based on the matrix form of h̄k−1 for an odd in-

teger k−1 in Equation (A-22), we have that h̄k−1 ·h̄k−1= id and h̄k−1 is symmetric. Thus, by
multiplying Equations (A-27) and (A-29) by h̄k−1, we obtain m ′k−1,k=

t(ek ·mk,k−1·h̄k−1) and
tm ′k−1,k−2= ek−2 ·mk−2,k−1 ·h̄k−1, respectively, as equations over (B⊗AR)/(π⊗1)(B⊗AR).

On the other hand, we observe that k − 1 is odd and both Lk−2 and Lk are of type I .
Thus ek−2 ·mk−2,k−1 = ek ·mk,k−1 by Equation (A-24). We multiply this equation by h̄k−1

and so obtain

ek−2 ·mk−2,k−1 · h̄k−1 = ek ·mk,k−1 · h̄k−1

as an equation over (B⊗A R)/(π ⊗ 1)(B⊗A R). Therefore, we have the equation

m ′k−1,k = m ′k−1,k−2.

As mentioned at the paragraph following Equation (A-19), Equation (A-25) is independent
of the choice of a lift of m ′k−1,k and m ′k−1,k−2. Therefore, two terms in Equation (A-25) are
same and this verifies our claim.

In the case of F j , following the proof of Equation (A-29), we have tm ′j+1, j · h̄ j+1 =

e j ·m j, j+1. Since L j+2 is of type II (possibly zero, by our convention), e j ·m j, j+1 = 0 by
Equation (A-24). Thus, the term involving h j+1 in F j is zero. In the case of j−2m j , where
m j ≥ 0, the term involving h j−2m j−1 in F j−2m j is zero in a manner similar to that of the
above case of F j .

To summarize, for each odd integer i , the terms containing an hi add to zero in∑m j
l=0

1
α2 F j−2l .

We now prove that for each even integer i , the terms containing an h̄i add to zero
in
∑m j

l=0
1
α2 F j−2l . We again choose an even integer k (assuming m j > 0) such that

j−2(m j−1)≤k≤ j so that both Lk and Lk−2 are of type I . We observe tm ′k−2,k ·h̄k−2·m ′k−2,k
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in Fk and tm ′k,k−2 · h̄k ·m ′k,k−2 in Fk−2, and we claim that

tm ′k−2,k · h̄k−2 ·m ′k−2,k +
tm ′k,k−2 · h̄k ·m ′k,k−2 = 0, (A-30)

as an equation over (B ⊗A R)/(π ⊗ 1)(B ⊗A R). Let m̂ ′k−2,k be the (nk−2 × nk)-th entry
(resp. ((nk−2− 1)× nk)-th entry) of mk−2,k when Lk−2 is of type I o (resp. I e). We can also
define m̂ ′k,k−2 as the (nk × nk−2)-th entry (resp. ((nk − 1)× nk−2)-th entry) of mk,k−2 when
Lk is of type I o (resp. I e). Then the above Equation (A-30) is the same as

(m̂ ′k−2,k)
2
+ (m̂ ′k,k−2)

2
= 0. (A-31)

We use Equation (A-14) for i = k− 2 and j = k so that we have

tm̄k−2,k−2h̄k−2mk−2,k +
tmk−1,k−2h̄k−1mk−1,k +

tmk,k−2h̄km̄k,k = 0. (A-32)

Let ẽk= (0, · · · , 0, 1) of size 1×nk and ẽk−2= (0, · · · , 0, 1) of size 1×nk−2. Then we have

ẽk−2 ·
tm̄k−2,k−2h̄k−2mk−2,k ·

t̃ek = m̂ ′k−2,k (A-33)

since mk−2,k ·
t̃ek = m ′k−2,k and m̄k−2,k−2 ·

t̃ek−2 =
t̃ek−2. We also have

ẽk−2 ·
tmk,k−2h̄km̄k,k ·

t̃ek = m̂ ′k,k−2 (A-34)

since m̄k,k ·
t̃ek =

t̃ek and mk,k−2 ·
t̃ek−2 = m ′k,k−2. Note that we use Equations (A-22) and

(A-23) for our matrix computation. On the other hand, due to the fact that h̄k−1 · h̄k−1 = id
and h̄k−1 is symmetric, we have

ẽk−2 ·
tmk−1,k−2h̄k−1mk−1,k ·

t̃ek = (̃ek−2 ·
tmk−1,k−2h̄k−1) · h̄k−1 · (h̄k−1mk−1,k ·

t̃ek). (A-35)

Now, ẽk−2 ·
tmk−1,k−2h̄k−1 =

tm ′k−1,k−2h̄k−1 = ek−2 · mk−2,k−1 by Equation (A-29) and
h̄k−1mk−1,k ·

t̃ek = h̄k−1m ′k−1,k =
t(ek ·mk,k−1) by Equation (A-27). Since ek−2 ·mk−2,k−1 =

ek ·mk,k−1 by Equation (A-24), Equation (A-35) equals

(̃ek−2·
tmk−1,k−2h̄k−1)·h̄k−1·(h̄k−1mk−1,k ·̃ek)= (ek ·mk,k−1)·h̄k−1·

t(ek ·mk,k−1)=0. (A-36)

We now combine Equations (A-33), (A-34), and (A-36). Namely, if we multiply ẽk−2

to the left of each side in Equation (A-32) and we multiply t̃ek to the right of each side in
Equation (A-32), then we have

m̂ ′k−2,k + 0+ m̂ ′k,k−2 = 0 (A-37)

and so Equations (A-31) and (A-30) are proved.
In the case of F j , the term tm ′j+2, j · h̄ j+2 ·m ′j+2, j = 0 since L j+2 is of type II (possibly

zero, by our convention). Similarly, the term tm ′j−2m j−2, j−2m j
· h̄ j−2m j−2 ·m ′j−2m j−2, j−2m j

of F j−2m j , where m j ≥ 0, is 0 since L j−2m j−2 is of type II . Here, we use Equation (A-22)
for our matrix multiplication.

To summarize, for each even integer i , the terms containing an hi add to zero in∑m j
l=0

1
α2 F j−2l .
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Therefore, the sum of equations
∑m j

l=0
1
α2 F j−2l equals

m j∑
l=0

1
α2 (αz̄ j−2l + z̄2

j−2l)= 0.

This is the same as

m j∑
l=0

( z̄ j−2l

α
+

( z̄ j−2l

α

)2)
=

( m j∑
l=0

z̄ j−2l

α

)( m j∑
l=0

( z̄ j−2l

α

)
+ 1

)
= 0. (A-38)

This completes the proof of the lemma. �

Lemma A.8. Let G‡ be the subfunctor of Ker ϕ̃/M̃1 consisting of those m satisfying Equa-
tions (A-14), (A-16), (A-18), and (A-20). Note that such m then satisfies Equation (A-21) as
well. Then G‡ is represented by a smooth closed subscheme of Ker ϕ̃/M̃1 and is isomorphic
to Al ′

× (Z/2Z)β as a κ-variety, where Al ′ is an affine space of dimension l ′. Here,

l ′ =
∑
i< j

ni n j −
∑
i odd

Li bound

ni +
∑
i even

Li of type I o

(ni − 1)+
∑
i even

Li of type I e

(2ni − 2).

Proof. Let J be the set of even integers j such that L j is of type I and L j+2 is of type II
(possibly empty, by our convention). Note that Equation (A-20) implies Equation (A-21) by
Lemma A.7. Equation (A-21) implies that G‡ is disconnected with at least 2β connected
components (Exercise 2.19 of [Hartshorne 1977]). Here, β = #J . Let J1 and J2 be a pair
of two (possibly empty) subsets of J such that J is the disjoint union of J1 and J2. Let
G̃‡

J1,J2
be the subfunctor of Ker ϕ̃/M̃1 consisting of those m satisfying Equations (A-14),

(A-16), (A-18), and (A-20), the equations
∑m j

l=0
z j−2l
α
= 0 for any j ∈ J1, and the equations∑m j

l=0
z j−2l
α
= 1 for any j ∈J2. Here m j is the integer associated to j defined in Lemma A.7.

We claim that G̃‡
J1,J2

is represented by a smooth closed subscheme of Ker ϕ̃/M̃1 and is
isomorphic to Al ′ . Since the scheme G‡ is a direct product of G̃‡

J1,J2
’s for any such pair of

J1,J2 by Exercise 2.19 of [Hartshorne 1977], the lemma follows from this claim.
It is obvious that G̃‡

J1,J2
is represented by a closed subscheme of Ker ϕ̃/M̃1 since the

equations defining G̃‡
J1,J2

as a subfunctor of Ker ϕ̃/M̃1 are all polynomials. Thus it suffices
to show that G̃‡

J1,J2
is isomorphic to an affine space Al ′ . Our strategy to show this is that

the coordinate ring of G̃‡
J1,J2

is isomorphic to a polynomial ring. To do that, we use the
following trick over and over. We consider the polynomial ring κ[x1, · · · , xn] and it quotient
ring κ[x1, · · · , xn]/(x1 + P(x2, · · · , xn)). Then the quotient ring κ[x1, · · · , xn]/(x1 +

P(x2, · · · , xn)) is isomorphic to κ[x2, · · · , xn] and in this case we say that x1 can be
eliminated by x2, · · · , xn .

By the description of an element of (Ker ϕ̃/M̃1)(R) in Remark A.5, we see that Ker ϕ̃/M̃1

is isomorphic to an affine space of dimension

2
∑
i< j

ni n j −
∑
i odd

Li bound

ni +
∑
i even

Li of type I o

(2ni − 1)+
∑
i even

Li of type I e

(4ni − 4)
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with variables

(mi, j )i 6= j , (yi , vi , zi ) i even
Li of type I o

, (ri , ti , yi , vi , xi , zi , ui , wi ) i even
Li of type I e

such that δi−1ei−1 ·mi−1,i + δi+1ei+1 ·mi+1,i = 0 with i odd. Here, δ j , e j are as explained
in the description of Ker ϕ̃(R), the paragraph right after Lemma A.2.

From now on, we eliminate suitable variables based on Equations (A-14), (A-16), (A-18),
and (A-20), the equations

∑m j
l=0

z j−2l
α
= 0 for all j ∈ J1, and the equations

∑m j
l=0

z j−2l
α
= 1

for all j ∈ J2.

(1) We first consider Equation (A-14). For two integers i, j with i < j , we have

tm j,i h̄ j m̄ j, j =
∑

i≤k≤ j−1

tmk,i h̄kmk, j over (B⊗A R)/(π ⊗ 1)(B⊗A R).

By Equation (A-23), m̄ j, j = id if L j is not of type I e. Thus the above equation equals
tm j,i h̄ j =

∑
i≤k≤ j−1

tmk,i h̄kmk, j over (B ⊗A R)/(π ⊗ 1)(B ⊗A R) if L j is not of type I e.
Since h̄ j is a nonsingular matrix by Equation (A-22), m j,i can be eliminated by the right
hand side. If L j is of type I e, we have

m̄ j, j =

id r j 0
0 1 0
v j u j 1

 and h̄ j =

a j 0 0
0 1 1
0 1 0


by Equations (A-23) and (A-22), respectively. Then

h̄ j m̄ j, j =

a j a jr j 0
v j 1+ u j 1
0 1 0

 .
To compute tm j,i h̄ j m̄ j, j , we write tm j,i =

(
A j B j C j

)
so that

tm j,i h̄ j m̄ j, j =
(

A j a j + B jv j A j a jr j + B j (1+ u j )+C j B j
)
.

By first considering the (1, 3)-block of the matrix tm j,i h̄ j m̄ j, j , B j can be eliminated by∑
i≤k≤ j−1

tmk,i h̄kmk, j . Then we consider the (1, 1)-block of tm j,i h̄ j m̄ j, j . Since a j is a non-
singular matrix, we see that A j can be eliminated by

∑
i≤k≤ j−1

tmk,i h̄kmk, j with B jv j . By
considering the (1, 2)-block of tm j,i h̄ j m̄ j, j , C j can be eliminated by

∑
i≤k≤ j−1

tmk,i h̄kmk, j

with A j a jr j + B j (1+ u j ). Therefore, all lower triangular blocks m j,i (with j > i) can be
eliminated by upper triangular blocks mi, j together with r j , v j , u j (resp. ri , vi , ui ) if L j

(resp. L i ) is of type I e. Here ri , vi , ui are nontrivial blocks of m̄i,i , if L i is of type I e, which
appeared in the right hand side of the above equation.

On the other hand, the equation δi−1ei−1 ·mi−1,i+δi+1ei+1 ·mi+1,i =0 for an odd integer i ,
which is one equation defining Ker ϕ̃/M̃1 (cf. Remark A.5(3)), should be rewritten in terms
of upper triangular blocks. To do that, we use Equation (A-27) with i = k− 1. Note that the
only assumption needed in Equation (A-27) is that Lk is of type I . Thus the above equation
is the same as

δi−1ei−1 ·mi−1,i + δi+1
t(h̄i m ′i,i+1)= 0.
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(2) We secondly consider Equation (A-16). If L i is of type I o, then vi can be eliminated by
yi and mi−1,i ,mi,i+1.

(3) Next, we consider Equation (A-18). By Xi,1,2, vi can be eliminated by ri . By Xi,1,3, yi

can be eliminated by ti , vi , zi and entries from mi−1,i ,mi,i+1. By Xi,2,3, xi can be eliminated
by ri , ti , zi , wi , ui and entries from mi−1,i ,mi,i+1.

(4) Finally, we consider 1
α2 Fi , instead of Fi (Equation (A-20)), together with equations∑m j

l=0
z j−2l
α
= 0 with j ∈ J1 and equations

∑m j
l=0

z j−2l
α
= 1 with j ∈ J2. Note that 1

α2 Fi is
equivalent to Fi since α is a unit in B. For each j ∈ J , there is a nonnegative integer m j

such that L j−2l is of type I for every l with 0 ≤ l ≤ m j and L j−2(m j+1) is of type II (cf.
Lemma A.7).

To analyze these equations, we investigate 1
α2 F j−2l for a fixed j ∈ J . First assume that

m j ≥ 1. Since we have eliminated all lower triangular blocks in step (1), we need to replace
lower triangular blocks appeared in 1

α2 F j−2l by suitable upper triangular blocks. If m j ≥ 2,
then we choose an integer l such that 0< l < m j . By definition, 1

α2 F j−2l is

1
α2 ·π2

(
σ(tm̃ ′j−2l−1, j−2l) · σ(π)h j−2l−1 · m̃ ′j−2l−1, j−2l

+ σ(tm̃ ′j−2l+1, j−2l) ·πh j−2l+1 · m̃ ′j−2l+1, j−2l

)
+

z j−2l

α
+

( z j−2l

α

)2
+

tm ′j−2l−2, j−2l · h̄ j−2l−2 ·m ′j−2l−2, j−2l

α2

+

tm ′j−2l+2, j−2l · h̄ j−2l+2 ·m ′j−2l+2, j−2l

α2

= 0.

The first two lines are interpreted as explained in the paragraph following Equation (A-19)
and the third and fourth line is a polynomial in (B⊗A R)/(π ⊗ 1)(B⊗A R). We claim that
the equation 1

α2 F j−2l is the same as the following:

1
α2 ·π2

(
σ(tm̃ ′j−2l−1, j−2l) · σ(π)h j−2l−1 · m̃ ′j−2l−1, j−2l

+ (e j−2l · σ(m̃ j−2l, j−2l+1)) ·πh3
j−2l+1 ·

t(e j−2l · m̃ j−2l, j−2l+1)
)

+
z j−2l

α
+

( z j−2l

α

)2
+

( m̂ ′j−2l−2, j−2l

α

)2
+

( m̂ ′j−2l, j−2l+2

α

)2

= 0. (A-39)

The third line easily follows from the definition of m̂ ′k−2,k and m̂ ′k,k−2 (given in the paragraph
following Equation (A-30)) combined with Equation (A-37). For the first two lines, we
consider Equation (A-29) with k − 2 = j − 2l which gives the identity m ′j−2l+1, j−2l =

h̄ j−2l+1·
t(e j−2l ·m j−2l, j−2l+1) over (B⊗AR)/(π⊗1)(B⊗AR). Note that the only assumption

needed in Equation (A-29) is that Lk−2 is of type I . Then h j−2l+1 ·
t(e j−2l · m̃ j−2l, j−2l+1) is

a lift of h̄ j−2l+1 ·
t(e j−2l ·m j−2l, j−2l+1). The first line is independent of the choice of a lift

m̃ ′j−2l+1, j−2l of m ′j−2l+1, j−2l as explained at the paragraph following Equation (A-19). This
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fact completes our claim. The above equation is equivalent to

1
α2 ·π2

(
σ(tm̃ ′j−2l−1, j−2l) · σ(π)h j−2l−1 · m̃ ′j−2l−1, j−2l

+ (e j−2l · σ(m̃ j−2l, j−2l+1)) ·πh3
j−2l+1 ·

t(e j−2l · m̃ j−2l, j−2l+1)
)

+

( z j−2l

α
+

m̂ ′j−2l−2, j−2l

α
+

m̂ ′j−2l, j−2l+2

α

)
+

( z j−2l

α
+

m̂ ′j−2l−2, j−2l

α
+

m̂ ′j−2l, j−2l+2

α

)2

=

( m̂ ′j−2l−2, j−2l

α
+

m̂ ′j−2l, j−2l+2

α

)
(A-40)

by adding
( m̂′j−2l−2, j−2l

α
+

m̂′j−2l, j−2l+2
α

)
to both sides.

For 1
α2 F j−2m j , we observe that L j−2m j−2 is of type II . By Equation (A-27) with k =

j − 2m j , we have tm ′j−2m j−1, j−2m j
= e j−2m j ·m j−2m j , j−2m j−1h̄ j−2m j−1. Here we use the

fact that h̄2
j−2m j−1 = id (cf. Equation (A-22)). Note that the only assumption needed in

Equation (A-27) is that Lk is of type I . On the other hand, the equation in Remark A.5(3),
when i = j − 2m j − 1, is e j−2m j ·m j−2m j , j−2m j−1 = 0 since L j−2m j−2 is of type II . Thus
tm ′j−2m j−1, j−2m j

= 0. Therefore, 1
α2 F j−2m j is

1
α2 ·π2

(
(e j−2m j · σ(m̃ j−2m j , j−2m j+1)) ·πh3

j−2m j+1 ·
t(e j−2m j · m̃ j−2m j , j−2m j+1)

)
+

z j−2m j

α
+

( z j−2m j

α

)2
+

( m̂ ′j−2m j , j−2m j+2

α

)2

= 0. (A-41)

This equation is equivalent to

1
α2 ·π2

(
(e j−2m j · σ(m̃ j−2m j , j−2m j+1)) ·πh3

j−2m j+1 ·
t(e j−2m j · m̃ j−2m j , j−2m j+1)

)
+

( z j−2m j

α
+

m̂ ′j−2m j , j−2m j+2

α

)
+

( z j−2m j

α
+

m̂ ′j−2m j , j−2m j+2

α

)2

=

m̂ ′j−2m j , j−2m j+2

α
(A-42)

by adding
m̂′j−2m j , j−2m j+2

α
to both sides.

We emphasize that it is unnecessary to investigate F j since the equation
∑m j

l=0
z j−2l
α
= 0

(resp.
∑m j

l=0
z j−2l
α
= 1) if j ∈ J1 (resp. if j ∈ J2) already implies Equation (A-21) so that∑m j

l=0
1
α2 F j−2l = 0.

We now observe Equations (A-40) and (A-42). We introduce a new variable

z′j−2l =


z j−2l

α
+

m̂ ′j−2l−2, j−2l

α
+

m̂ ′j−2l, j−2l+2

α
if 0< l < m j ;

z j−2m j

α
+

m̂ ′j−2m j , j−2m j+2

α
if l = m j .

Then z j−2l can be eliminated by z′j−2l ,
m̂′j−2l−2, j−2l

α
,

m̂′j−2l, j−2l+2
α

. In addition, by using

Equations (A-40) and (A-42), the term
m̂′j−2l−2, j−2l

α
+

m̂′j−2l, j−2l+2
α

can be eliminated by
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z′j−2l and m ′j−2l−1, j−2l ,m j−2l, j−2l+1. Furthermore, the equation
∑m j

l=0
z j−2l
α
= 0 (resp.∑m j

l=0
z j−2l
α
= 1) if j ∈ J1 (resp. if j ∈ J2) implies that z j can be eliminated by z′j−2l ,

m ′j−2l−1, j−2l , m j−2l, j−2l+1 with 0< l ≤ m j .
If m j = 0, then we can show that the equation 1

α2 F j is the same as

z j

α
+

( z j

α

)2
= 0

by using an argument similar to that used in the proof of Equation (A-41). Then the equation
z j
α
= 0 (resp. z j

α
= 1) if j ∈ J1 (resp. if j ∈ J2) implies that z j can be eliminated.

We now combine all cases (1)–(4) observed above.

(a) By (1), we eliminate
∑

i< j ni n j variables.

(b) By (2), we eliminate
∑

i even and L i of type I o(ni − 1) variables.

(c) By (3), we eliminate
∑

i even and L i of type I e (2(ni − 2)+ 1) variables.

(d) By (4), we eliminate #{i : i is even and L i is of type I } variables.

Recall from the third paragraph of the proof that Ker ϕ̃/M̃1 is isomorphic to an affine
space of dimension

2
∑
i< j

ni n j −
∑
i odd

Li bound

ni +
∑
i even

Li of type I o

(2ni − 1)+
∑
i even

Li of type I e

(4ni − 4).

Thus, G̃‡
J1,J2

is isomorphic to an affine space of dimension(
2
∑
i< j

ni n j −
∑
i odd

Li bound

ni +
∑
i even

Li of type I o

(2ni − 1)+
∑
i even

Li of type I e

(4ni − 4)
)

−

(∑
i< j

ni n j+
∑
ieven

Li of type I o

(ni−1)+
∑
ieven

Li of type I e

(2(ni−2)+1)+#{i :i is even and L i is of type I }
)
.

(A-43)

Therefore, the dimension of G̃‡
J1,J2

is∑
i< j

ni n j −
∑
i odd

Li bound

ni +
∑
i even

Li of type I o

(ni − 1)+
∑
i even

Li of type I o

(2ni − 2), (A-44)

which finishes the proof. �

Lemma A.9. Let F j be the closed subgroup scheme of G̃ defined by the following equations:

• mi,k = 0 if i 6= k;

• mi,i = id if i 6= j ;

• and for m j, j ,{
s j = id, y j = 0, v j = 0 if L i is of type I o

;

s j = id, r j = t j = y j = v j = u j = w j = 0 if L i is of type I e.

Then F j is isomorphic to A1
×Z/2Z as a κ-variety, where A1 is an affine space of dimen-

sion 1, and has exactly two connected components.
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Proof. A matrix form of an element m of F j (R) for a κ-algebra R is

id 0 . . . 0

0
. . .

id
... m j, j

...

id
. . . 0

0 . . . 0 id


such that

m j, j =



(
id 0
0 1+π z j

)
if L j is of type I o

;id 0 0
0 1+πx j π z j

0 0 1

 if L j is of type I e.

To prove the lemma, we consider the matrix equation σ(tm) · h ·m = h. Recall that h, as an
element of H(R), is as explained in Remark 3.3(2). Based on Equations (A-1) and (A-2),
the diagonal (i, i)-blocks of σ(tm) · h ·m = h with i 6= j are trivial and the nondiagonal
blocks of σ(tm) · h ·m = h are also trivial. The ( j, j)-block of σ(tm) · h ·m is
π j
·

(
a j 0
0 (1+ σ(π z j )) · (1+ 2γ̄ j ) · (1+π z j )

)
if L j is of type I o

;

π j
·

a j 0 0
0 (1+ σ(πx j ))(1+πx j ) (1+ σ(πx j ))(1+π z j )

0 (1+ σ(π z j ))(1+πx j ) (1+π z j )σ (π z j )+π z j + 2γ̄ j

 if L j is of type I e.

We write x j = x1
j +πx2

j and z j = z1
j+π z2

j , where x1
j , x2

j , z1
j , z2

j ∈ R⊂ R⊗A B and π stands
for 1⊗π ∈ R⊗A B. When L j is of type I o, by considering the (2, 2)-block of the matrix
above, we obtain the equation

α(z1
j )+ (z

1
j )

2
= 0.

Recall that α is the unit in B such that ε = 1+απ as explained in Section 2A, and α is the
image of α in κ .

Then this equation is equivalent to

(z1
j/α)+ (z

1
j/α)

2
= 0

by dividing by α2 in both sides. Therefore, in this case, F j is isomorphic to A1
×Z/2Z as a

κ-variety.
When L j is of type I e, by considering the (2, 2)-block of the matrix above, we obtain

the equation

α(x1
j )+ (x

1
j )

2
= 0.
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We also consider the (2, 3)-block of the matrix above, and we obtain two equations

x1
j + z1

j = 0, αx1
j + x2

j + z2
j +αx1

j z1
j = 0.

By considering the (3, 3)-block of the matrix above, we obtain the equation

α(z1
j )+ (z

1
j )

2
= 0.

By combining all these, we see that F j is isomorphic to A1
×Z/2Z as a κ-variety. �

We introduce the final lemma in order to prove Lemma 4.6 below. This lemma is about
the number of connected components in a short exact sequence of algebraic groups.

Lemma A.10. Assume that there is a short exact sequence

1−→ A −→ B −→ C −→ 1

of linear algebraic groups over κ . Let π0(B) be the component group of B which is defined
as the spectrum of the largest separable subalgebra π0(κ[B]) of κ[B], where κ[B] is the
coordinate ring of B. Let #(π0(B)) be the order of π0(B), which is defined as the dimension
of π0(κ[B]) as a κ-vector space. Note that B is connected if and only if π0(B) is trivial if
and only if #(π0(B))= 1. Thus #(π0(B)) is the number of connected components of B⊗κ κ̄ .
Then

#(π0(B))≤ #(π0(A)) · #(π0(C)).

Moreover, the equality holds if A is connected and in this case, π0(B)= π0(C).

Proof. By definition of a component group, there exists a surjective morphism π : B −→
π0(B) whose kernel is connected. Let A′ (⊆ π0(B)) be the image of A under the mor-
phism π . Notice that A′ is a normal subgroup of π0(B) and that #(A′)≤ #(π0(A)). Then
the morphism π induces a surjective morphism from C to π0(B)/A′ and so #(π0(B)/A′)≤
#(π0(C)). Therefore, #(π0(B))≤ #(π0(A)) · #(π0(C)).

It is clear that #(π0(C))≤ #(π0(B)). Thus, if A is connected, then #(π0(C))= #(π0(B)).
In this case, since there exists a surjective morphism from B to π0(C) (through C), there
exists a surjective morphism from π0(B) to π0(C). Since #(π0(C)) = #(π0(B)), we can
conclude that π0(B)= π0(C). �

We finally prove Lemma 4.6.

Proof. We start with the following short exact sequence

1−→ G̃1
−→ Kerϕ −→ Kerϕ/G̃1

−→ 1.

It is obvious that Kerϕ is smooth by Theorems A.4 and A.6. Kerϕ is also unipotent since
it is a subgroup of a unipotent group M̃+. Since G̃1 is connected by Theorem A.4, the
component group of Kerϕ is the same as that of Kerϕ/G̃1 by Lemma A.10. Moreover, the
dimension of Kerϕ is the sum of the dimension of G̃1 and the dimension of Kerϕ/G̃1. This
completes the proof. �
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Appendix B: Examples

In this appendix, we provide an example with a unimodular lattice (L , h) of rank 1. Let L
be Be, a rank 1 hermitian lattice with hermitian form h(le, l ′e)= σ(l)l ′. With this lattice,
we construct the smooth integral model and its special fiber and compute the local density.

B.1: Naive construction (without using our technique). We first construct the smooth
integral model and its special fiber, without using any techniques introduced in this paper.
If we write an element of L as x + πy where x, y ∈ A, then it is easy to see that a naive
integral model G ′ is Spec A[x, y]/(x2

+ (π + σ(π))xy+πσ(π)y2
− 1). As mentioned in

Section 2A, we may assume that π+σ(π)= 2 and πσ(π)= 2u for a unit u ∈ A. We remark
that G ′ is smooth if p 6= 2, and in this case its special fiber is Spec κ[x, y]/(x2

− 1) =
A1
×µ2 as a κ-variety. However, if p = 2, then its special fiber is no longer smooth since

κ[x, y]/(x2
−1)= κ[x, y]/(x−1)2 is nonreduced. Some of the difficulty in the case p= 2

arises from this. The associated smooth integral model is obtained by a finite sequence of
dilatations (at least once) of G ′ (cf. [Bosch et al. 1990]).

On the other hand, the difficulty can also be explained in terms of quadratic forms.
Namely, the smoothness of any scheme over A should be closely related to the smoothness
of its special fiber. If we define a function q : L −→ A by l 7→ h(l, l), then q mod 2 is
a quadratic form over κ . Therefore, the associated smooth integral model should contain
information about this quadratic form, which is more subtle than quadratic forms over a
field of characteristic not equal 2.

To construct the smooth integral model, we observe the characterization of G that
G(R)= G ′(R) for an étale A-algebra R. Thus any element of G(R) is of the form x +πy
such that x2

+ 2xy + 2uy2
= 1. Therefore, (x − 1)2 is contained in the ideal (2) of R so

that we can rewrite x = 1+ 2x ′ since R is étale over A. With this, any element of G(R)
is of the form 1+ 2x ′+πy such that y+ uy2

+ 2(x ′+ (x ′)2+ x ′y)= 0. We consider the
affine scheme Spec A[x, y]/(y+ uy2

+ 2(x + x2
+ xy)). Its special fiber is then reduced

and smooth. Thus, this affine scheme is the desired smooth integral model G. Furthermore,
its special fiber Spec κ[x, y]/(y+ uy2) is isomorphic to A1

×Z/2Z as a κ-variety so that
the number of rational points is 2 f , where f is the cardinality of κ .

B.2: Construction following our technique. Define the map q : L→ A via

l 7→ h(l, l).

If we write l = x + πy such that x, y ∈ A, then q(l) = h(x + πy, x + πy) = x2
+ (π +

σ(π))xy+π · σ(π)y2. Thus q mod 2 is an additive polynomial over κ . Let B(L) be the
sublattice of L such that B(L)/πL is the kernel of the additive polynomial q mod 2 on
L/πL . In this case, B(L)= πL .

For an étale A-algebra R with g ∈ AutB⊗AR(L ⊗A R, h ⊗A R), it is easy to see that g
induces the identity on L/B(L)= L/πL . Based on this, we construct the following functor
from the category of commutative flat A-algebras to the category of monoids as follows.
For any commutative flat A-algebra R, set

M(R)= {m ∈ EndB⊗AR(L ⊗A R)} | m induces the identity on L ⊗A R/B(L)⊗A R}.
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This functor M is then representable by a polynomial ring and has the structure of a scheme
of monoids. Let M∗(R) be the set of invertible elements in M(R) for any commutative
A-algebra R. Then M∗ is representable by a group scheme which is an open subscheme
of M (Section 3B). Thus M∗ is smooth. As a matrix, each element of M∗(R) for a flat
A-algebra R can be written as

(
1+π z

)
.

We define another functor from the category of commutative flat A-algebras to the
category of sets as follows. For any commutative flat A-algebra R, let H(R) be the set
of hermitian forms f on L ⊗A R (with values in B ⊗A R) such that f (a, a) mod 2 =
h(a, a) mod 2, where a ∈ L⊗A R. As a matrix, each element of M∗(R) for a flat A-algebra
R is

(
1+ 2c

)
.

Then for any flat A-algebra R, the group M∗(R) acts on the right of H(R) by f ◦m =
σ(tm) · f ·m and this action is represented by an action morphism (Theorem 3.4)

H ×M∗ −→ H .

Let ρ be the morphism M∗→ H defined by ρ(m) = h ◦m, which is obtained from the
above action morphism. As a matrix, for a flat A-algebra R,

ρ(m)= ρ
((

1+π z
))
=
(
1+π z+ σ(π z)+πσ(π) · zσ(z)

)
.

Then ρ is smooth of relative dimension 1 (Theorem 3.6). Let G be the stabilizer of h
in M∗. The group scheme G is smooth, and G(R) = AutB⊗AR(L ⊗A R, h ⊗A R) for any
étale A-algebra R (Theorem 3.8).

We now describe the structure of the special fiber G̃ of G. For a κ-algebra R, each
element of M(R) (resp. H(R)) can be written as a formal matrix m =

(
1+π z

)
(resp.

f =
(
1+ 2c

)
). Firstly, it is easy to see that B0 = Y0 = πL so that the morphism ϕ in

Section 4A is trivial.
For the component groups, as explained in Theorem 4.11, there is a surjective morphism

from G̃ to Z/2Z. Let us describe this morphism explicitly below. It is easy to see that
L0
=M0= L and C(L0)=M ′0= L . Here, we follow notation of Section 4B. Since M0= L

is of type I o, there exists a morphism from the special fiber G̃ (= G0) to the special fiber of
the smooth integral model associated to M ′0⊕C(L0)= L⊕ L of type I e as explained in the
argument 2 just before Remark 4.10. Remark 4.10 tells us how to describe this morphism
as formal matrices. Let (e1, e2) be a basis for L ⊕ L so that the associated Gram matrix of
the hermitian lattice L ⊕ L with respect to this basis is

( 1
0

0
1

)
. Then we consider the basis

(e1, e1+ e2), with respect to which the morphism described in Remark 4.10 is given as(
1+π z

)
7→

(
1 −π z
0 1+π z

)
.

We now construct a morphism from the special fiber of the smooth integral model associated
to M ′0⊕C(L0)= L ⊕ L to Z/2Z and describe the image of

( 1
0
−π z
1+π z

)
in Z/2Z.

Let R be a κ-algebra. The Gram matrix for the hermitian lattice L ⊕ L with respect
to the basis (e1, e1 + e2) is

( 1
1

1
2

)
. Since L ⊕ L is unimodular of type I e, an R-point

of the special fiber associated to L ⊕ L with respect to this basis is expressed as the
formal matrix

( 1+πx ′

u′
π z′

1+πw′
)
, as explained in Section 3B. Based on argument (1) following
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Definition 4.9, the morphism mapping to Z/2Z factors through the special fiber associated to
C(L⊕ L), composed with the Dickson invariant associated to the corresponding orthogonal
group. C(L ⊕ L) is then generated by (πe1, e1+ e2) and is π1-modular. Thus there is no
congruence condition on an element of the smooth integral model associated to C(L⊕L) as
explained in Section 3B. Write x ′= x ′1+πx ′2, y′= y′1+πy′2, and z′= z′1+π z′2. The image of(

1+πx ′ π z′
u′ 1+πw′

)
in the special fiber associated to C(L⊕L) is

(
1+πx ′1 z′1+π z′2
πu′1 1+πw′1

)
. Since C(L⊕L)

is π1-modular with rank 2, there is a morphism from the special fiber associated to C(L⊕L)
to the orthogonal group associated to C(L⊕L)/πC(L⊕L), as described in Theorem 4.4 or
Remark 4.7. Then the image of

(
1+πx ′1 z′1+π z′2
πu′1 1+πw′1

)
in this orthogonal group is

( 1
0

z′1
1

)
. The Dick-

son invariant of
( 1

0
z′1
1

)
is z′1/α as mentioned in step (1) of the proof of Theorem 4.11. Here, α

is the unit in B such that ε= 1+απ as explained in Section 2A, and α is the image of α in κ .
In conclusion, the image of

(
1+π z

)
, which is an element of G̃(R) for a κ-algebra R, in

Z/2Z is z1/α, where we write z = z1+π z2. On the other hand, the equation defining G̃ is
αz1+ z2

1 = 0 which is equivalent to z1
α
+ (

z1
α
)2 = 0. Thus, the morphism from G̃ to Z/2Z is

surjective. Therefore the maximal reductive quotient of G̃ is Z/2Z and using Remark 5.3,

#(G̃(κ))= #(Z/2Z) · #(A1)= 2 f,

where f is the cardinality of κ . Based on Theorem 5.2, the local density is

βL = f 0
· 2 f = 2 f.
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Presentation of affine Kac–Moody groups
over rings
Daniel Allcock

Tits has defined Steinberg groups and Kac–Moody groups for any root system
and any commutative ring R. We establish a Curtis–Tits-style presentation for
the Steinberg group St of any irreducible affine root system with rank ≥ 3, for
any R. Namely, St is the direct limit of the Steinberg groups coming from the
1- and 2-node subdiagrams of the Dynkin diagram. In fact, we give a completely
explicit presentation. Using this we show that St is finitely presented if the rank
is ≥ 4 and R is finitely generated as a ring, or if the rank is 3 and R is finitely
generated as a module over a subring generated by finitely many units. Similar
results hold for the corresponding Kac–Moody groups when R is a Dedekind
domain of arithmetic type.

1. Introduction

Suppose R is a commutative ring and A is one of the ABCDEFG Dynkin diagrams,
or equivalently its Cartan matrix. Steinberg [1968] defined what is now called the
Steinberg group StA(R), by generators and relations. It plays a central role in
K-theory and some aspects of Lie theory.

Kac–Moody algebras are infinite-dimensional generalizations of the semisimple
Lie algebras. When R = R and A is an affine Dynkin diagram, the corresponding
Kac–Moody group is a central extension of the loop group of a finite-dimensional
Lie group. For a general ring R and any generalized Cartan matrix A, the definition
of a Kac–Moody group is due to Tits [1987]. A difficulty in tracing the story is
that Tits began by defining a “Steinberg group” which unfortunately differs from
Steinberg’s original group when A has an A1 component. This was resolved by
Morita and Rehmann [1990] by adding extra relations to Tits’ definition. So there
are two definitions of the Steinberg group. Increasing the chance of confusion,
they agree for most A of interest, including the irreducible affine diagrams of rank
≥ 3. We follow Morita and Rehmann, so the Steinberg group StA(R) reduces to
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Steinberg’s original group when this is defined. See Section 3 for further background
on St.

Tits then defined another functor R 7→ G̃A(R) as a quotient of his version of
the Steinberg group. In this paper we will omit the tilde and refer to GA(R) as
the Kac–Moody group of type A over R. The relations added by Morita and
Rehmann to the definition of StA(R) are among the relations that Tits imposed in
his definition of GA(R). Therefore, we may regard GA(R) as a quotient of StA(R),
just as Tits did, even though our StA(R) is not quite the same as his. (Tits actually
defined G̃D(R) where D is a root datum; by GA(R) we refer to the root datum
whose generalized Cartan matrix is A and which is “simply connected in the strong
sense” [Tits 1987, p. 551]. The general case differs from this one by enlarging or
shrinking the center of G̃D(R).) See Section 3 for further background on G.

The meaning of “Kac–Moody group” is far from standardized. Tits [1987] wrote
down axioms (KMG1)–(KMG9) that one could demand of a functor from rings to
groups before calling it a Kac–Moody functor. He showed in [loc. cit., Theorem 1′]
that any such functor admits a natural homomorphism from GA, which is an isomor-
phism at every field. So Kac–Moody groups over fields are well-defined, and over
general rings GA approximates the yet unknown ultimate definition. This is why we
refer to GA as the Kac–Moody group. But GA does not quite satisfy Tits’ axioms,
so ultimately some other language may be better. See Section 6 for more on this.

The purpose of this paper is to simplify Tits’ presentations of StA(R) and GA(R)
when A is an affine Dynkin diagram of rank (number of nodes) ≥ 3. We will always
take affine diagrams to be irreducible. We will show that StA(R) and GA(R) are
finitely presented under quite weak hypotheses on R. This is surprising because
there is no obvious reason for an infinite-dimensional group over (say) Z to be
finitely presented, and Tits’ presentations are “very” infinite. His generators are
indexed by all pairs (root, ring element), and his relations specify the commutators
of many pairs of these generators. Subtle implicitly defined coefficients appear
throughout his relations.

The main step in proving our finite presentation results is to first establish smaller,
and more explicit, presentations for StA(R) and GA(R). These presentations are
not necessarily finite, but they do apply to all R. In [Allcock 2015] we wrote down a
presentation for a group functor we called the pre-Steinberg group PStA. We have
reproduced it in Section 2, for any generalized Cartan matrix A. The generators are
Si and Xi (t) with i varying over the nodes of the Dynkin diagram and t varying
over R. The relations are (2-1)–(2-28), but (2-27)–(2-28) may be omitted when A
is 2-spherical (it has no edges labeled “∞”) and has no A1 components. This case
includes all affine diagrams of rank ≥ 3. The only way the presentation fails to
be finite is that the Xi (t) are parameterized by elements of R, and each Chevalley
relation is parameterized by pairs of elements of R.
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The name “pre-Steinberg group” reflects the fact that there is a natural map from
PStA(R) to the Steinberg group StA(R). In Section 3 we will describe this in a con-
ceptual manner. But in terms of presentations it suffices to say that our Xi (t) and Si

map to the group elements xαi (t) and ŵαi (1) in Morita and Rehmann’s definition of
StA(R) [1990, §2]. Our general philosophy is that PStA(R) is interesting only as a
means of approaching StA(R), as in the following theorem, which is our main result.

Theorem 1.1 (presentation of affine Steinberg and Kac–Moody groups). Suppose
A is an affine Dynkin diagram of rank ≥ 3 and R is a commutative ring. Then the
natural map from the pre-Steinberg group PStA(R) to the Steinberg group StA(R)
is an isomorphism. In particular, StA(R) has a presentation with generators Si and
Xi (t), with i varying over the simple roots and t over R, and relations (2-1)–(2-26).

One obtains Tits’ Kac–Moody group GA(R) by adjoining the relations

h̃i (u)h̃i (v)= h̃i (uv) (1-1)

for all simple roots i and all units u, v of R, where

h̃i (u) := s̃i (u)s̃i (−1), s̃i (u) := Xi (u)Si Xi (1/u)S−1
i Xi (u).

We remark that if A is a spherical diagram (that is, its Weyl group is finite) then
it follows immediately from an alternate description of PStA that PStA→StA

is an isomorphism; see Section 3 or [Allcock 2015, §7]. So Theorem 1.1 extends
the isomorphism PStA

∼=StA from the spherical case to the affine case, except
for the two affine diagrams of rank 2. See [Allcock and Carbone 2016] for a
further extension, to the simply laced hyperbolic case, and [Allcock 2015] for
generalizations beyond the hyperbolic case.

For a moment we return to the case where A is an arbitrary generalized Cartan
matrix. If B1⊆ B2 are two subdiagrams of A then there is a natural homomorphism
PStB1

(R)→PStB2
(R). This is because the generators and relations of PStB1

(R)
are among those of PStB2

(R), by the fact that our presentations of these groups
are defined in terms of the nodes and edges of these subdiagrams of A. Using these
maps, we consider the directed system of groups PStB(R), where B varies over
the subdiagrams of A of rank ≤ 2. It is a formality that the direct limit is PStA(R);
this is just an abstract way of saying that each generator or relation of PStA(R)
already appears in the presentation of some PStB(R) with B of rank ≤ 2.

When A is affine of rank ≥ 3, PStA(R)→ StA(R) is an isomorphism by
Theorem 1.1. And PStB(R) → StB(R) is an isomorphism for every proper
subdiagram B of A, since such subdiagrams are spherical. It follows that we may
replace PSt by St throughout the preceding paragraph, proving the following
result. The point is that affine Steinberg groups of rank ≥ 3 are built up from the
classical Steinberg groups of types A1, A2

1, A2, B2 and G2.
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Corollary 1.2 (Curtis–Tits presentation). Suppose A is an affine Dynkin diagram
of rank ≥ 3 and R is a commutative ring. Then StA(R) is the direct limit of the
groups StB(R), where B varies over the subdiagrams of A of rank ≤ 2, and the
maps between these groups are as specified above. The same result also holds with
St replaced by G throughout. �

An informal way to restate Corollary 1.2 is that a presentation for StA(R) can
be got by amalgamating one’s favorite presentations for the StB(R). Splitthoff
[1986] discovered quite weak sufficient conditions for the latter groups to be finitely
presented. When these hold, one would therefore expect StA(R) also to be finitely
presented. The next theorem expresses this idea precisely. Claim (ii) is part of
[Allcock 2015, Theorem 1.4]. See Section 6 for the proof of claim (i).

Theorem 1.3 (finite presentability). Suppose A is an affine Dynkin diagram and R
is any commutative ring. Then the Steinberg group StA(R) is finitely presented as
a group if either

(i) rk A > 3 and R is finitely generated as a ring, or

(ii) rk A = 3 and R is finitely generated as a module over a subring generated by
finitely many units.

In either case, if the unit group of R is finitely generated as an abelian group, then
Tits’ Kac–Moody group GA(R) is finitely presented as a group.

One of the main motivations for Splitthoff’s work was to understand when the
Chevalley–Demazure groups, over Dedekind domains of interest in number theory,
are finitely presented. This was finally settled by Behr [1967; 1998], capping a long
series of works by many authors. The following analogue of these results follows
immediately from Theorem 1.3. How close the analogy is depends on how well GA

approximates whatever plays the role of the Chevalley–Demazure group scheme in
the setting of Kac–Moody theory.

Corollary 1.4 (finite presentation in arithmetic contexts). Suppose K is a global
field, meaning a finite extension of Q or Fq(t). Suppose S is a nonempty finite set
of places of K , including all infinite places in the number field case. Let R be the
ring of S-integers in K .

Suppose A is an affine Dynkin diagram. Then Tits’ Kac–Moody group GA(R) is
finitely presented if rk A≥ 3, unless K is a function field and |S| = 1, when rk A> 3
suffices. �

We remark that if R is a field then the GA case of Corollary 1.2 is due to
Abramenko and Mühlherr [1997] (see also [Devillers and Mühlherr 2007]). Namely,
suppose A is any generalized Cartan matrix which is 2-spherical, and that R is a
field (but not F2 if A has a double bond, and neither F2 nor F3 if A has a triple bond).
Then GA(R) is the direct limit of the groups GB(R). Abramenko and Mühlherr
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[1997, p. 702] state that if A is affine then one can remove the restrictions R 6=F2, F3.
One of our goals is to bring Kac–Moody groups into the world of geometric and

combinatorial group theory, which mostly addresses finitely presented groups. For
example, which Kac–Moody groups admit classifying spaces with finitely many
cells below some chosen dimension? What other finiteness properties do they
have? Do they have Kazhdan’s property T ? What isoperimetric inequalities do they
satisfy in various dimensions? Are there (nonsplit) Kac–Moody groups over local
fields whose uniform lattices (suitably defined) are word hyperbolic? Are some
Kac–Moody groups (or classes of them) quasi-isometrically rigid? We find the last
question very attractive, since the corresponding answer for lattices in Lie groups is
deep (see [Eskin and Farb 1997; Farb and Schwartz 1996; Kleiner and Leeb 1997;
Schwartz 1995]).

Regarding property T we would like to mention work of Hartnick and Köhl [2015]
who showed that many Kac–Moody groups over local fields have property T when
equipped with the Kac–Peterson topology. Also, Shalom [1999] and Neuhauser
[2003] respectively showed that the loop groups of (i.e., the spaces of continuous
maps from S1 to) SLn(C) and Sp2n(C) have property T .

2. Presentation of the pre-Steinberg group PStA(R)

Suppose R is any commutative ring and A is any generalized Cartan matrix. Write I
for the set of A’s nodes, and for i, j ∈ I write mi j for the order of the product of the
corresponding generators of the Weyl group. Following [Allcock 2015, §7], the pre-
Steinberg group PStA(R) is defined by the following presentation. The generators
are Si and Xi (t) with t ∈ R. The relations are (2-1)–(2-28) below, in which i , j vary
over I and t , u vary over R. We use the notation Y � Z to say that Y and Z commute.

If A has no A1 components and is 2-spherical (all mi j are finite), then the last two
relations (2-27)–(2-28) follow from the others and may be omitted [Allcock 2015,
Remark 7.13]. If A is affine of rank ≥ 3 then it satisfies this condition, and our
main result (Theorem 1.1) is that the presentation equally well defines the Steinberg
group StA(R).

For every i ∈ I we impose the relations

Xi (t)Xi (u)= Xi (t + u), (2-1)

Si = Xi (1)Si Xi (1)S−1
i Xi (1). (2-2)

For all i , j we impose the relations

S2
i Sj S−2

i = Sεj , (2-3)

S2
i Xj (t)S−2

i = Xj (εt), (2-4)

where ε = (−1)Ai j .
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Whenever mi j = 2 we impose the relations

Si Sj = Sj Si , (2-5)

Si � Xj (t), (2-6)

Xi (t)� Xj (u). (2-7)

Whenever mi j = 3 we impose the relations

Si Sj Si = Sj Si Sj , (2-8)

Sj Si Xj (t)= Xi (t)Sj Si , (2-9)

Xi (t)� Si Xj (u)S−1
i , (2-10)

[Xi (t), Xj (u)] = Si Xj (tu)S−1
i . (2-11)

Whenever mi j = 4 we impose the following relations; in (2-14)–(2-17), s (resp. l)
refers to whichever of i and j is the shorter (resp. longer) root:

Si Sj Si Sj = Sj Si Sj Si , (2-12)

Si Sj Si � Xj (t), (2-13)

Ss Xl(t)S−1
s � Sl Xs(u)S−1

l , (2-14)

Xl(t)� Ss Xl(u)S−1
s , (2-15)

[Xs(t), Sl Xs(u)S−1
l ] = Ss Xl(−2tu)S−1

s , (2-16)

[Xs(t), Xl(u)] = Sl Xs(−tu)S−1
l · Ss Xl(t2u)S−1

s . (2-17)

Whenever mi j = 6 we impose the following relations; s and l have the same
meaning they had in the previous paragraph:

Si Sj Si Sj Si Sj = Sj Si Sj Si Sj Si , (2-18)

Si Sj Si Sj Si � Xj (t), (2-19)

Xl(t)� Sl Ss Xl(u)S−1
s S−1

l , (2-20)

Ss Sl Xs(t)S−1
l S−1

s � Sl Ss Xl(u)S−1
s S−1

l , (2-21)

Ss Xl(t)S−1
s � Sl Xs(u)S−1

l , (2-22)

[Xl(t), Ss Xl(u)S−1
s ] = Sl Ss Xl(tu)S−1

s S−1
l , (2-23)

[Xs(t), Ss Sl Xs(u)S−1
l S−1

s ] = Ss Xl(3tu)S−1
s , (2-24)

[Xs(t), Sl Xs(u)S−1
l ] = Ss Sl Xs(−2tu)S−1

l S−1
s · Ss Xl(−3t2u)S−1

s

· Sl Ss Xl(−3tu2)S−1
s S−1

l , (2-25)

[Xs(t), Xl(u)] = Ss Sl Xs(t2u)S−1
l S−1

s · Sl Xs(−tu)S−1
l

· Ss Xl(t3u)S−1
s · Sl Ss Xl(−t3u2)S−1

s S−1
l . (2-26)
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This paper [Allcock 2015]

(2-1) (7.4)
(2-2) (7.26)
(2-3) (7.2)–(7.3)
(2-4) (7.5)
(2-5)∪ (2-8)∪ (2-12)∪ (2-18) (7.1)
(2-6) (7.6)
(2-7) (7.10), the A2

1 Chevalley relation
(2-9) (7.7)
(2-10)–(2-11) (7.11)–(7.12), the A2 Chevalley relations
(2-13) (7.8)
(2-14)–(2-17) (7.13)–(7.16), the B2 Chevalley relations
(2-19) (7.9)
(2-20)–(2-26) (7.17)–(7.23), the G2 Chevalley relations
(2-27) (7.24)
(2-28) (7.25)

Table 1. Correspondence between our relations and those of [Allcock 2015].

Officially, the next two relations are part of the presentation of PStA(R). But as
mentioned above, they may be omitted if A is 2-spherical without A1 components.
We let r vary over the units of R and impose the relations

h̃i (r)Xj (t)h̃i (r)−1
= Xj (r Ai j t), (2-27)

h̃i (r) Sj Xj (t)S−1
j h̃i (r)−1

= Sj Xj (r−Ai j t)S−1
j , (2-28)

where h̃i (r) is defined in Theorem 1.1.
Because we have organized the relations differently than we did in [Allcock

2015], we will state the correspondence explicitly. See Table 1.

3. Steinberg and pre-Steinberg groups

Our goal in this section is to describe the Steinberg group and to give a second
description of the pre-Steinberg group. This description makes visible the latter
group’s natural map to the Steinberg group, and is the form we will use for our
calculations in Section 5.

We work in the setting of [Tits 1987] and [Allcock 2015], so R is a commuta-
tive ring and A is a generalized Cartan matrix. This matrix determines a complex
Lie algebra g called the Kac–Moody algebra, and we write 8 for the set of real
roots of g. For each real root α, its root space gα comes with a distinguished pair
of (complex vector space) generators, each the negative of the other. We write gα,Z
for their integral span, and we define the root group Uα as gα,Z ⊗ R ∼= R. Tits’
definition of the Steinberg group begins with the free product ∗α∈8 Uα.
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We emphasize that there is no natural way to choose an isomorphism R→ Uα.
If ±e are the two distinguished generators for gα , then there are two natural choices
for the parameterization of Uα, namely t 7→ (±e)⊗ t . Often we will choose one
of these and call it Xα; we speak of this as a “sign choice”. Making such a choice
makes computations more concrete, but breaks the symmetry.

In Tits’ definition of StA(R), the relations have the following form. He calls a
pair α, β ∈8 prenilpotent if some element of the Weyl group W sends both α, β
to positive roots, and some other element of W sends both to negative roots. A
consequence of this condition is that every root in Nα+Nβ is real, which enables
Tits to write down Chevalley-style relators for α, β. That is, for every prenilpotent
pair α, β he imposes relations of the form

[element of Uα, element of Uβ] =
∏

γ∈θ(α,β)−{α,β}

(element of Uγ ), (3-1)

where θ(α, β) := (Nα+Nβ)∩8 and N = {0, 1, 2, . . .}. The exact relations are
given in a rather implicit form in [Tits 1987, §3.6]. Writing them down explicitly
requires choosing parameterizations of Uα, Uβ and each Uγ . We suppose this has
been done as above, with the parameterizations being Xα, Xβ and the various Xγ .
Then the relations take the form

[Xα(t), Xβ(u)] =
∏

roots γ=mα+nβ
with m,n≥1

Xγ
(
Nαβγ tmun), (3-2)

where the Nαβγ are integers determined by the structure constants of g, the sign
choices made in parameterizing the root groups, and the ordering of the terms on
the right side. See [Tits 1987, §§3.4–3.6] for details, or Section 5 for the cases
we will need. Morita [1987; 1988] showed that the right side has at most 1 term
except when (Qα⊕Qβ)∩8 has type B2 or G2, and found simple formulas for the
constants (up to sign).

For Tits, this is the end of the definition of the Steinberg group. We called this
group StTits

A (R) in [Allcock 2015] to avoid confusion with StA(R) itself, which
we take to also satisfy the Morita–Rehmann relations. These extra relations play
the role of making the “maximal torus” and “Weyl group” in StTits

A (R) act in the
expected way on root spaces. These relations follow from the Chevalley relations
when A is 2-spherical without A1 components, so the reader could skip down to
the definition of the Kac–Moody group GA(R).

Here is a terse description of the Morita–Rehmann relations; see [Morita and
Rehmann 1990, Relations (B′)] or [Allcock 2015, §6] for details. For each simple
root α ∈8 and each of the two choices e for a generator of gα,Z, we impose relations
as follows. By a standard construction, the choice of e distinguishes a generator f
for g−α,Z. Using e and f as above, we obtain parameterizations of Uα and U−α
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which we will call Xe and X f . For r ∈ R∗ we define s̃e(r)= Xe(r)X f (1/r)Xe(r) and
h̃e(r)= s̃e(r)s̃e(−1). Morita and Rehmann impose relations that describe the actions
of s̃e(1) and h̃e(r) on every Uβ , where β varies over 8. First, conjugation by s̃e(1)
sends Uβ to Usα(β) in the same way that s∗e := (exp ade)(exp adf )(exp ade) ∈ Aut g
does. (Here sα is the reflection in α, and for the relation to make sense one must
check that s∗e sends gβ,Z to gsα(β),Z.) Second, every h̃e(r) acts on Uβ ∼= R by scaling
by r 〈α

∨,β〉, where α∨ is the coroot associated to α.
The quotient of StTits

A (R) by all these relations is the definition of the Steinberg
group StA(R) and agrees with Steinberg’s original group when A is spherical. We
remark that we let e vary over both possible choices of generator for gα,Z just to
avoid choosing one. But one could choose one without harm, because it turns out
that the relations imposed for e are the same as those imposed for −e. Also, Morita
and Rehmann write ŵα rather than s̃e, and their definition of it uses X f (−1/r)
rather than X f (1/r). This sign just reflects the fact that they use a different sign
on f than Tits does, in the “standard” basis e, f , h for sl2.

The Kac–Moody group GA(R) is defined as the quotient of StA(R) by the
relations (1-1).

In Section 2 we defined the pre-Steinberg group PStA(R) in terms of generators
and relations. It also has an “intrinsic” definition: the same as StA(R), except that
Tits’ Chevalley relations are imposed only for classically nilpotent pairs α, β. This
means (Qα+Qβ)∩8 is finite and α+β is nonzero, which is equivalent to α, β satis-
fying α+β 6=0 and lying in some A1, A2

1, A2, B2 or G2 root system. As the name sug-
gests, such a pair is prenilpotent. So PStA(R) is defined the same way as StA(R),
just omitting the Chevalley relations for prenilpotent pairs that are not classically pre-
nilpotent. In particular, StA(R) is a quotient of PStA(R), hence the prefix “pre-”.

In [Allcock 2015] we defined PStA(R) this way and then showed that it has the
presentation in Section 2. In this paper, for ease of exposition we defined PStA(R)
by this presentation. But we will use the above “intrinsic” description in the proof
of Theorem 1.1. So equality between the two versions of PStA(R) is essential for
our work. We proved it in [loc. cit., Theorem 1.2] and restate it now:

Theorem 3.1 (the two models of PStA(R)). Let A be a generalized Cartan ma-
trix and R a commutative ring. For each simple root αi , choose one of the two
distinguished parameterizations Xei : R→ Uαi . Then the pre-Steinberg group as
defined in Section 2 is isomorphic to the pre-Steinberg group as defined above, by
Si 7→ s̃ei (1) and Xi (t) 7→ Xei (t). �

4. Nomenclature for affine root systems

Our proof of Theorem 1.1, appearing in the next section, refers to the root system as
a whole, with the simple roots playing no special role. It is natural in this setting to
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[Moody and
Pianzola 1995] [Kac 1990] condition

Ãn A(1)n A(1)n n ≥ 1
B̃n B(1)n B(1)n n ≥ 2
C̃n C (1)

n C (1)
n n ≥ 2

D̃n D(1)
n D(1)

n n ≥ 3
Ẽn E (1)

n E (1)
n n = 6, 7, 8

F̃4 F (1)
4 F (1)

4

G̃2 G(1)
2 G(1)

2

B̃ even
n B(2)n D(2)

n+1 n ≥ 2

C̃ even
n C (2)

n A(2)2n−1 n ≥ 2

B̃C odd
n BC (2)

n A(2)2n n ≥ 1

F̃ even
4 F (2)

4 E (2)
6

G̃ 0 mod 3
2 G(3)

2 D(3)
4

Table 2. Our and others’ names for affine root systems; see Section 4.

use nomenclature for the affine root systems that emphasizes this global perspective.
Our notation X̃ ···n in Table 2 is close to that in [Moody and Pianzola 1995, §3.5]. The
differences are that our superscripts describe the construction of the root systems,
and that we use a tilde to indicate affineness. For the affine root systems obtained
by “folding”, Kac’s nomenclature [1990, pp. 54–55] emphasizes not the affine root
system itself but rather the one being folded.

It is very easy to describe the set 8 of real roots in the root system X̃ ···n . Let 8
be a root system of type Xn , let 3 be its root lattice, and let 3 be 3⊕ Z. Then
8 ⊆ 3 is the set of pairs (root of Xn,m ∈ Z) satisfying the condition that if the
root is long then m has the property “· · ·” indicated in the superscript, if any.

A set of simple roots can be described as follows. We begin with a set of simple
roots for the root system 80 ⊆8 consisting of roots of the form (ᾱ, 0). This is an
Xn root system except for B̃C odd

n , when it has type Bn . The affinizing simple root
is (ᾱ, 1), where ᾱ is the lowest root of 80 in the absence of a superscript, or twice
the lowest short root for B̃C odd

n , or the lowest short root in all other cases. This can
be used to verify the correspondences between our nomenclature and those of [Kac
1990] and [Moody and Pianzola 1995].

The condition on n in Table 2 is the weakest condition for which the definition of
X̃ ···n makes sense. If one wishes to avoid duplication, so that each isomorphism class
of affine root system appears exactly once, then one should omit one of Ã3 ∼= D̃3,
one of B̃2 ∼= C̃2 and one of B̃ even

2
∼= C̃ even

2 . Both [Kac 1990] and [Moody and
Pianzola 1995] omit D̃3, B̃2 and C̃ even

2 . Also, [Moody and Pianzola 1995] gives
A(2)1 as an alternate name for BC (2)

1 .
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5. The isomorphism PStA(R) → StA(R)

This section is devoted to proving Theorem 1.1, whose hypotheses we assume
throughout. In light of Theorem 3.1, our goal is to show that the Chevalley relations
for the classically prenilpotent pairs imply those of the remaining prenilpotent pairs.
We will begin by saying which pairs of real roots are prenilpotent and which are
classically prenilpotent. Then we will analyze the pairs that are prenilpotent but
not classically prenilpotent.

We fix the affine Dynkin diagram A, write 8, 8, 3, 3 as in Section 4, and
use an overbar to indicate projections of roots from 8 to 8. It is easy to see that
α, β ∈8 are classically prenilpotent if and only if α = β or ᾱ, β̄ ∈8 are linearly
independent. The following lemma describes which pairs of roots are prenilpotent
but not classically prenilpotent, and what their Chevalley relations are (except for
one special case discussed later).

Lemma 5.1. The following are equivalent:

(i) α, β are prenilpotent but not classically prenilpotent.

(ii) α 6= β are not equal and ᾱ, β̄ differ by a positive scalar factor.

(iii) α 6=β, and either ᾱ= β̄ are equal or else one is twice the other and8= B̃C odd
n .

When these equivalent conditions hold, the Chevalley relations between Uα , Uβ are
[Uα,Uβ] = 1, unless 8 = B̃C odd

n , ᾱ and β̄ are the same short root of 8 = BCn ,
and α+β ∈8.

Proof. We think of the Weyl group W acting on affine space in the usual way, with
each root corresponding to an open halfspace. A root is positive if its halfspace
contains the fundamental chamber, or negative if not. Recall that two roots α, β ∈8
form a prenilpotent pair if some element w+ of W sends both to positive roots, and
some w− ∈W sends both to negative roots. The existence of both w± is equivalent
to saying that some chamber lies in the halfspaces of both α and β, and some other
chamber lies in neither of them. (Proof: applyw± to the fundamental chamber rather
than to {α, β}.) By Euclidean geometry, this happens only if either their bounding
hyperplanes are nonparallel or their bounding hyperplanes are parallel and one
halfspace contains the other. In the first case, ᾱ and β̄ are linearly independent, so α,
β are classically prenilpotent. In the second case, ᾱ and β̄ differ by a positive scalar.
If α and β are equal then they form a classically prenilpotent pair. Otherwise they do
not, because (Qα⊕Qβ)∩8 is infinite. This proves the equivalence of (i) and (ii).

To see the equivalence of (ii) and (iii) we refer to the fact that 8 is a reduced
root system (i.e, the only positive multiple of a root that can be a root is that root
itself) except in the case 8 = B̃C odd

n . In this last case, the only way one root of
8= BCn can be a positive multiple of a different root is that the long roots are got
by doubling the short roots.
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The proof of the final claim is similar. Except in the excluded case, we have
8∩(Nᾱ+Nβ̄)={ᾱ, β̄}. The corresponding claim for8 follows, so θ(α, β)−{α, β}
is empty and the right-hand side of (3-2) is the identity. That is, the Chevalley rela-
tions for α, β read [Uα,Uβ]=1. (In the excluded case,8∩(Nα+Nβ)={α, β, α+β}.
So the Chevalley relations set the commutators of elements of Uα with elements
of Uβ equal to certain elements of Uα+β . See Case 6 below.) �

Recall from Theorem 3.1 that StA(R) may be got from PStA(R) by adjoining
the Chevalley relations for every prenilpotent pair α, β that is not classically
prenilpotent. So to prove Theorem 1.1 it suffices to show that these relations
already hold in PSt :=PStA(R). In light of Lemma 5.1, the proof falls into seven
cases, according to 8 and the relative position of ᾱ and β̄. Conceptually, they are
organized as follows; see below for their exact hypotheses. Case 1 applies if ᾱ = β̄
is a long root of some A2 root system in 8. Case 2 (resp. 3) applies if ᾱ = β̄ is
a long (resp. short) root of some B2 root system in 8. Case 4 applies if ᾱ = β̄ is
a short root of 8 = G2. The rest of the cases are specific to 8 = B̃C odd

n . Case 5
applies if β̄ = 2ᾱ. Case 6 or 7 applies if ᾱ = β̄ is a short root of BCn . There are
two cases because α+β may or may not be a root.

In every case but one we must establish [Uα,Uβ] = 1. Each case begins by
choosing two roots in 8, of which β is a specified linear combination, and whose
projections to 8 are specified. Given the global description of 8 from Section 4,
this is always easy. Then we use the Chevalley relations for various classically
prenilpotent pairs to deduce the Chevalley relations for α, β.

Case 1 of Theorem 1.1. Assume ᾱ = β̄ is a root of 8= An≥2, 8= Dn or 8= En ,
or a long root of 8 = G2. Choose γ̄ , δ̄ ∈ 8 as shown, and choose lifts γ, δ ∈ 8
summing to β. (Choose any γ ∈8 lying over γ̄ , define δ=β−γ , and use the global
description of 8 to check that δ ∈8. This is trivial except in the case 8= G̃ 0 mod 3

2 ,
when it is easy.)

γ̄

ᾱ, β̄

δ̄

Because ᾱ + γ̄ , ᾱ + δ̄ /∈ 8, it follows that α + γ, α + δ /∈ 8. So the Chevalley
relations [Uα,Uγ ] = [Uα,Uδ] = 1 hold. The Chevalley relations for γ , δ imply
[Uγ ,Uδ] = Uγ+δ = Uβ . (These relations are (2-23) in the G2 case and (2-11) in
the others. One can write them as [Xγ (t), Xδ(u)] = Xγ+δ(tu) in the notation of the
next paragraph.) Since Uα commutes with Uγ and Uδ , it commutes with the group
they generate, hence Uβ . �

The other cases use the same strategy: express an element of Uβ in terms of
other root groups, and then evaluate its commutator with an element of Uα. But
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the calculations are more delicate. We will work with explicit elements Xγ (t) ∈ Uγ
for various roots γ ∈8. Here t varies over R, and the definition of Xγ (t) depends
on choosing a basis vector eγ for gγ,Z ⊆ g, as explained in Section 3. For each γ
there are two possibilities for eγ . The point of making these sign choices is to write
down the relations explicitly.

For example, if s, l ∈ I are the short and long roots of a B2 subdiagram of A,
then we copy their relations from (2-17): for all t, u ∈ R,

[Xs(t), Xl(u)] = Sl Xs(−tu)S−1
l · Ss Xl(t2u)S−1

s . (5-1)

The reason for writing the right side this way is to avoid making choices: to write
down the relation, one only needs to specify generators es and el for gs,Z and gl,Z,
not the other root spaces involved. But for explicit computation one must choose
generators for these other root spaces. Because Ss and Sl permute the root spaces
in the same way the reflections in s and l do, the terms on the right in (5-1) lie in
Ul+s and Ul+2s . Therefore, after choosing suitable generators el+s and el+2s for
gl+s,Z and gl+2s,Z, we may rewrite (5-1) as

[Xs(t), Xl(u)] = Xl+s(−tu) · Xl+2s(t2u). (5-2)

Now, if σ and λ are short and long simple roots for any copy of B2 in 8, then some
element w of the Weyl group sends some pair of simple roots to them. Taking
s and l to be this pair, and defining Xσ , Xλ, Xλ+σ and Xλ+2σ as the w-conjugates
of Xs , Xl , Xl+s and Xl+2s , we can write the Chevalley relation for σ and λ by
applying the substitution s 7→ σ and l 7→ λ to (5-2):

[Xσ (t), Xλ(u)] = Xλ+σ (−tu) · Xλ+2σ (t2u). (5-3)

In this way we can obtain the Chevalley relations we will need, for any classically
prenilpotent pair, from the ones listed explicitly in Section 2. One could also refer
to other standard references, for example, [Carter 1972, §5.2].

The root system B̃C odd
n≥2 appears as a possibility in several cases, including the next

one. We will use “short”, “middling” and “long” to refer to its three root lengths.

Case 2 of Theorem 1.1. Assume ᾱ = β̄ is a long root of 8 = Bn≥2, 8 = Cn≥2,
8= BCn≥2 or 8= F4. Our first step is to choose roots λ̄, σ̄ ∈8 as pictured:

λ̄ ᾱ, β̄

σ̄

This is easily done using any standard description of 8. (Note: although λ̄ stands
for “long” and σ̄ for “short”, σ̄ is actually a middling root in the case 8= BCn .)
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Our second step is to choose lifts λ, σ ∈8 with β = λ+2σ . If 8 equals B̃n , C̃n

or F̃4 then one chooses any lift σ of σ̄ and defines λ as β − 2σ . This works since
every element of 3 lying over a root of 8 is a root of 8. If 8 equals B̃ even

n , C̃ even
n ,

F̃ even
4 or B̃C odd

n then this argument might fail since 8 is “missing” some long roots.
Instead, one chooses any λ ∈ 8 lying over λ̄ and defines σ as (β − λ)/2. Now,
β−λ= (β̄− λ̄,m) with m being even by the meaning of the superscript “even” or
“odd”. Also, β̄− λ̄ is divisible by 2 in 3 by the figure above. It follows that σ ∈3.
Then, as an element of 3 lying over a short (or middling) root of 8, σ lies in 8.

Because σ , λ are simple roots for a B2 root system inside 8, their Chevalley
relation (5-3) holds in PSt. This shows that any element of Uβ = Uλ+2σ can be
written in the form

(some xλ+σ ∈ Uλ+σ ) ·
[
(some xσ ∈ Uσ ), (some xλ ∈ Uλ)

]
. (5-4)

Referring to the picture of 8 shows that α+ λ+ σ /∈8. Therefore, the Chevalley
relations in PSt include [Uα,Uλ+σ ] = 1. In particular, Uα commutes with the
first term of (5-4). The same argument shows that Uα also commutes with the
other terms, hence with any element of Uβ . This shows that the Chevalley relations
present in PSt imply [Uα,Uβ] = 1, as desired. �

Case 3 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8= Bn≥2, 8= Cn≥2 or
8= F4, or a middling root of 8= BCn≥2. We may choose λ, σ ∈8 with sum β

and the following projections to8 (by a simpler argument than in the previous case):

λ̄ ᾱ, β̄

σ̄

The Chevalley relations for σ , λ are (5-3), showing that any element of Uβ = Uσ+λ
can be written in the form[

(some xσ ∈ Uσ ), (some xλ ∈ Uλ)
]
· (some xλ+2σ ∈ Uλ+2σ ). (5-5)

As in the previous case, we will conjugate this by an arbitrary element of Uα . This re-
quires the following Chevalley relations. We have [Uα,Uλ]= 1 and [Uα,Uλ+2σ ]= 1
by the same argument as before. What is new is that the Chevalley relations for
α, σ depend on whether α+ σ is a root. If it is not, then Uα commutes with Uσ
and therefore with (5-5). That is, [Uα,Uβ] = 1 as desired. If α+ σ is a root then
[Uα,Uσ ] ⊆ Uα+σ . Then conjugating (5-5) by an element of Uα yields[

xσ · (some xα+σ ∈ Uα+σ ), xλ
]
· xλ+2σ ,

which we can simplify by further use of Chevalley relations. Namely, neither
λ+α+ σ nor α+ 2σ is a root, so Uα+σ centralizes Uλ and Uσ . Therefore, xα+σ
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centralizes the other terms in the commutator, and hence drops out, leaving (5-5).
This shows that conjugation by any element of Uα leaves invariant every element
of Uβ . That is, [Uα,Uβ] = 1. �

Case 4 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8 = G2. This is the
hardest case by far. Begin by choosing roots σ̄ , λ̄ ∈8 as shown, with lifts σ, λ ∈8
summing to β:

σ̄
ᾱ, β̄

λ̄

Many different root groups appear in the argument, so we choose a generator eγ of
γ ’s root space, for each γ ∈8 that is a nonnegative linear combination of α, σ , λ.

Next we write down the G2 Chevalley relations in PSt that we will need, derived
from (2-20)–(2-26). We will record them in the 8= G̃2 case and then comment on
the simplifications that occur if 8= G̃ 0 mod 3

2 . After negating some of the eγ , for γ
involving σ and λ but not α, we may suppose that the Chevalley relations (2-26)
for σ , λ read

[Xσ (t), Xλ(u)] = X2σ+λ(t2u)Xσ+λ(−tu)X3σ+λ(t3u)X3σ+2λ(−t3u2). (5-6)

Then we may negate eα+2σ+λ, if necessary, to suppose the Chevalley relations (2-24)
for α, 2σ + λ read

[Xα(t), X2σ+λ(u)] = Xα+2σ+λ(3tu). (5-7)

After negating some of the eγ , for γ involving α and σ but not λ, we may suppose
that the Chevalley relations (2-25) for σ and α read

[Xσ (t), Xα(u)] = Xα+σ (−2tu)Xα+2σ (−3t2u)X2α+σ (−3tu2). (5-8)

We know the Chevalley relations (2-24) for σ and α+ σ have the form

[Xσ (t), Xα+σ (u)] = Xα+2σ (3εtu), (5-9)

where ε =±1. We cannot choose the sign because we’ve already used our freedom
to negate eα+2σ in order to get (5-8). Similarly, we know that the Chevalley relations
(2-23) for λ and α+ 2σ are

[Xλ(t), Xα+2σ (u)] = Xα+2σ+λ(ε
′tu) (5-10)

for some ε′ =±1. (We will see at the very end that ε = ε′ = 1.)
We were able to write down these relations because we could work out the roots

in the positive span of any two given roots. This used the assumption 8= G̃2, but
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now suppose 8= G̃ 0 mod 3
2 . It may happen that some of the vectors appearing in

the previous paragraph, projecting to long roots of 8=G2, are not roots of 8. One
can check that if α−β is divisible by 3 in 3 then there is no change. On the other
hand, if α − β 6≡ 0 (mod 3) then α + 2σ + λ, α + 2σ and 2α + σ are not roots.
Because (Qα⊕Q(2σ + λ))∩8 now has type A2 rather than G2, (5-7) is replaced
by [Uα,U2σ+λ] = 1, from (2-10). And (Qα⊕Qσ)∩8 also has type A2 now, so
(5-8) is replaced by [Xσ (t), Xα(t)] = Xα+σ (tu), obtained from (2-11), and (5-9)
is replaced by [Uσ ,Uα+σ ] = 1, from (2-10). Finally, there is no relation (5-10)
because there is no longer a root group Uα+2σ . The calculations below use the
relations (5-6)–(5-10). To complete the proof, one must also carry out a similar
calculation using (5-6) and the altered versions of (5-7)–(5-9). This calculation is
so much easier that we omit it.

The long roots 3σ + 2λ, α+ 2σ + λ and 2α+ σ all lie over 3σ̄ + 2λ̄. These
root groups commute with all others that will appear, by the Chevalley relations in
PSt, and they commute with each other by Case 1 above. We will use this without
specific mention.

Since β = σ + λ, we may take (5-6) with t = 1 and rearrange, to express any
element of Uβ as

Xβ(u)= X3σ+λ(u)X3σ+2λ(−u2)
[
Xλ(u), Xσ (1)

]
X2σ+λ(u). (5-11)

We use this to express the commutators generating [Uα,Uβ]:

[Xα(t), Xβ(u)] = Xα(t)X3σ+λ(u)Xα(t)−1
· Xα(t)X3σ+2λ(−u2)Xα(t)−1

·
[
Xα(t)Xλ(u)Xα(t)−1, Xα(t)Xσ (1)Xα(t)−1]
· Xα(t)X2σ+λ(u)Xα(t)−1

· X2σ+λ(−u)
[
Xσ (1), Xλ(u)

]
X3σ+2λ(u2)X3σ+λ(−u). (5-12)

Because Uα centralizes U3σ+λ, U3σ+2λ and Uλ, we may cancel all the Xα(t) in
the first two terms, and in the first term of the first commutator. Because U3σ+2λ

centralizes all terms present, we may cancel the terms X3σ+2λ(±u2). The terms be-
tween the commutators assemble themselves into [Xα(t), X2σ+λ(u)], which equals
Xα+2σ+λ(3tu) by (5-7). Because Uα+2σ+λ centralizes all terms present, we may
move this term to the very beginning. Finally, from (5-8) one can rewrite the second
term of the first commutator as

Xα(t)Xσ (1)Xα(t)−1
= X2α+σ (3t2)Xα+2σ (3t)Xα+σ (2t)Xσ (1).

After all these simplifications, (5-12) reduces to

[Xα(t), Xβ(u)] = Xα+2σ+λ(3tu)X3σ+λ(u)

· [Xλ(u), X2α+σ (3t2)Xα+2σ (3t)Xα+σ (2t)Xσ (1)][Xσ (1), Xλ(u)]X3σ+λ(−u).

(5-13)
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Now we focus on the first commutator [ · · · , · · · ] on the right side. All its terms
commute with U2α+σ , so we may drop the X2α+σ (3t2) term. Writing out what
remains gives

[ · · · , · · · ] = Xλ(u)Xα+2σ (3t)Xα+σ (2t)Xσ (1)

· Xλ(−u)Xσ (−1)Xα+σ (−2t)Xα+2σ (−3t).

By repeatedly using (5-9)–(5-10) and the commutativity of various pairs of root
groups, we move all the Xλ and Xσ terms to the far right. A page-long computation
yields

[ · · · , · · · ] = Xα+2σ+λ(3ε′tu− 6εε′tu)
[
Xλ(u), Xσ (1)

]
.

Plugging this into (5-13), and canceling the commutators and the X3σ+λ(±u)
terms, yields

[Xα(t), Xβ(u)] = Xα+2σ+λ(3tu+ 3ε′tu− 6εε′tu)= Xα+2σ+λ(Ctu),

where C equals 0, ±6 or 12 depending on ε, ε′ ∈ {±1}.
If C = 0 (i.e., ε= ε′= 1) then we have established the desired Chevalley relation
[Uα,Uβ] = 1 and the proof is complete. Otherwise we pass to the quotient St

of PSt. Here Uα and Uβ commute, so we derive the relation Xα+2σ+λ(Ct) = 1
in St. Since this identity holds universally, it holds for R = C, so the image of
Uα+2σ+λ(C) in St(C) is the trivial group. This is a contradiction, since St(C) acts
on the Kac–Moody algebra g, with Xα+2σ+λ(t) acting (nontrivially for t 6= 0) by
exp ad(teα+2σ+λ). Since C 6= 0 leads to a contradiction, we must have C = 0 and
so the Chevalley relation [Uα,Uβ] = 1 holds in PSt. �

Case 5 of Theorem 1.1. Assume β̄ = 2ᾱ in8= BCn≥2. Choose µ̄, λ̄ ∈8 as shown,
and lift them to µ, λ ∈ 8 with 2µ+ λ = β. (Mnemonic: µ is middling and λ is
long.)

λ̄

ᾱ

β̄

µ̄

As in Case 2 (when ᾱ and β̄ were the same long root of 8= Bn), we can express
any element of Uβ in the form

(some xµ+λ ∈ Uµ+λ) ·
[
(some xλ ∈ Uλ), (some xµ ∈ Uµ)

]
.

The Chevalley relations in PSt include the commutativity of Uα with Uλ, Uµ and
Uµ+λ. So Uα also centralizes Uβ . �

Case 6 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8= BCn≥2 and α+β is
a root. This is the exceptional case of Lemma 5.1, and the Chevalley relation we
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must establish is not [Uα,Uβ] = 1. We will determine the correct relation during
the proof. We begin by choosing µ̄, σ̄ ∈8 as shown and lifting them to µ, σ ∈8
with µ+ σ = β, so that σ , µ generate a B2 root system:

σ̄ ᾱ, β̄

µ̄

We choose a generator eγ for the root space of each nonnegative linear combination
γ ∈8 of α, σ , µ. By changing the signs of eσ+µ and e2σ+µ if necessary, we may
suppose that the Chevalley relations (2-17) for σ , µ are

[Xσ (t), Xµ(u)] = Xσ+µ(−tu)X2σ+µ(t2u). (5-14)

Since σ +µ= β we may take t = 1 in (5-14) to express any element of Uβ :

Xβ(u)= X2σ+µ(u)[Xµ(u), Xσ (1)]. (5-15)

Using this one can express any generator for [Uα,Uβ]:

[Xα(t), Xβ(u)] = Xα(t)X2σ+µ(u)Xα(t)−1

· [Xα(t)Xµ(u)Xα(t)−1, Xα(t)Xσ (1)Xα(t)−1
]

· [Xσ (1), Xµ(u)] · X2σ+µ(−u). (5-16)

By the Chevalley relations [Uα,U2σ+µ] = [Uα,Uµ] = 1, the Xα(t)±1 cancel in the
first term on the right side and in the first term of the first commutator.

Now we consider the Chevalley relations of α and σ . Since ᾱ+ σ̄ is a middling
root of 8, and 8 contains every element of 3 lying over every such root, we see
that α + σ is a root of 8. In particular, (Qα⊕Qσ)∩8 is a B2 root system, in
which α and σ are orthogonal short roots. The Chevalley relations (2-16) for α, σ
are therefore

[Xα(t), Xσ (u)] = Xα+σ (−2tu), (5-17)

after changing the sign of eα+σ if necessary.
Next, µ+σ +α = α+β is a root by hypothesis. We choose eµ+σ+α so that the

Chevalley relations (2-16) for µ, α+ σ are

[Xµ(t), Xα+σ (u)] = Xµ+α+σ (−2tu). (5-18)

Now we rewrite (5-16), applying the cancellations mentioned above and rewriting
the second term in the first commutator using (5-17):

[Xα(t), Xβ(u)]

= X2σ+µ(u) ·
[
Xµ(u), Xα+σ (−2t)Xσ (1)

]
·
[
Xσ (1), Xµ(u)

]
· X2σ+µ(−u). (5-19)
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Now we restrict attention to the first commutator on the right side and use the
Chevalley relations [Uα+σ ,Uσ ] = 1 and (5-18) to obtain

[Xµ(u),Xα+σ(−2t)Xσ(1)] = Xµ(u)Xα+σ(−2t) · Xσ(1) · Xµ(−u)Xσ(−1)Xα+σ(2t)

= Xµ+α+σ(4tu)Xα+σ(−2t)Xµ(u) · Xσ(1)

· Xµ+α+σ(4tu)Xα+σ(2t)Xµ(−u)Xσ(−1).

The projections to 8 of any two roots occurring as subscripts are linearly indepen-
dent. Therefore, any two of them are classically prenilpotent, so their Chevalley
relations are present in PSt. In particular, Uµ+α+σ centralizes all the other terms;
we gather the Xµ+α+σ (4tu) terms at the beginning. Next, [Uσ ,Uα+σ ] = 1, so we
may move Xσ (1) to the right across Xα+σ (2t). Then we can use (5-18) again to
move Xµ(u) rightward across Xα+σ (2t). The result is

[Xµ(u), Xα+σ (−2t)Xσ (1)] = Xµ+α+σ (4tu)[Xµ(u), Xσ (1)].

Plugging this into (5-19) and canceling the commutators gives

[Xα(t), Xβ(u)] = X2σ+µ(u)Xµ+α+σ (4tu)X2σ+µ(−u)= Xα+β(4tu).

Tits’ Chevalley relation in his definition of St has the same form, with the factor
4 replaced by some integer C . (Although we don’t need it, we remark that C =±4
by the second displayed equation in [Tits 1987, §3.5], or from [Morita 1988,
Theorem 2(2)]. This is related to the fact that (Qα⊕Qβ)∩8 is a rank 1 affine root
system, of type B̃C odd

1 .) If C 6= 4 then in St we deduce Xα+β((C − 4)tu)= 1 for
all t, u ∈ R and all rings R, leading to the same contradiction we found in Case 4.
Therefore, C=4 and we have established that Tits’ relation already holds inPSt. �

Case 7 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8 = BCn≥2 and α+ β
is not a root. This is similar to the previous case but much easier. We choose
µ, σ and the eγ in the same way, except that µ+ σ +α is no longer a root, so the
Chevalley relation (5-18) is replaced by [Uµ,Uα+σ ] = 1. We expand Xβ(u) as in
(5-15) and obtain (5-19) as before. But this time the Xα+σ (−2t) term centralizes
both Uµ and Uσ , so it vanishes from the commutator. The right side of (5-19) then
collapses to 1 and we have proven [Uα,Uβ] = 1 in PSt. �

6. Finite presentations

In this section we prove Theorem 1.3, that various Steinberg and Kac–Moody
groups are finitely presented. At the end we make several remarks about possible
variations on the definition of Kac–Moody groups.
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Proof of Theorem 1.3. We must show that StA(R) is finitely presented under either
of the two stated hypotheses. By Theorem 1.1 it suffices to prove this with PSt in
place of St.

(ii) We are assuming that rk A = 3 and that R is finitely generated as a module
over a subring generated by finitely many units. Theorem 1.4(ii) of [Allcock 2015]
shows that if R satisfies this hypothesis and A is 2-spherical, then PStA(R) is
finitely presented. This proves (ii).

(i) Now we are assuming that rk A > 3 and that R is finitely generated as a
ring. Theorem 1.4(iii) of [Allcock 2015] gives the finite presentability of PStA(R)
if every pair of nodes of the Dynkin diagram lies in some irreducible spherical
diagram of rank ≥ 3. (This use of a covering of A by spherical diagrams was also
used by Capdeboscq [2013].) By inspecting the list of affine Dynkin diagrams of
rank > 3, one checks that this treats all cases of (i) except

A =
α β γ δ

(with some orientations of the double edges). In this case, no irreducible spherical
diagram contains α and δ. Note that β 6= γ since rk A > 3.

For this case we use a variation on the proof of Theorem 1.4(iii) of [Allcock
2015]. Consider the direct limit G of the groups StB(R) as B varies over all
irreducible spherical diagrams of rank ≥ 2. If rk B ≥ 3 then StB(R) is finitely
presented by Theorem I of [Splitthoff 1986]. If rk B = 2 then StB(R) is finitely
generated by [Allcock 2015, Lemma 12.2]. Since every irreducible rank 2 diagram
lies in one of rank > 2, it follows that G is finitely presented. Now, G satisfies all
the relations of StA(R) except for the commutativity of St{α} with St{δ}. Because
these groups may not be finitely generated, we might need infinitely many additional
relations to impose commutativity in the obvious way.

So we proceed indirectly. Let Yα be a finite subset of St{α} which together with
St{β} generates St{α,β}. This is possible since St{α,β} is finitely generated. We
define Yδ similarly, with γ in place of β. We define H as the quotient of G by the
finitely many relations [Yα, Yδ] = 1, and we claim that the images in H of St{α}
and St{δ} commute.

A computation in H establishes this: First, every element of Yδ centralizes St{β}
by the definition of G, and every element of Yα by that of H . Therefore, it centralizes
St{α,β}, hence St{α}. We’ve shown that St{α} centralizes Yδ , and it centralizes St{γ }
by the definition of G. Therefore, it centralizes St{γ,δ}, hence St{δ}.

H has the same generators as PStA(R), and its defining relations are among
those defining PStA(R). On the other hand, we have shown that the generators
of H satisfy all the relations in PStA(R). So H ∼= PStA(R). In particular,
PStA(R) is finitely presented.
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It remains to prove the finite presentability of GA(R) under the extra hypothesis
that the unit group of R is finitely generated as an abelian group. This follows from
[Allcock 2015, Lemma 12.4], which says that the quotient of PStA(R) by all the
relations (1-1) is equally well-defined by finitely many of them. Choosing finitely
many such relations, and imposing them on the quotient StA(R) of PStA(R),
gives all the relations (1-1). The quotient of StA(R) by these is the definition of
GA(R), proving its finite presentation. �

Remark 6.1 (completions). We have worked with the “minimal” or “algebraic”
forms of Kac–Moody groups. One can consider various completions, such as
those surveyed in [Tits 1985]. None of these completions can possibly be finitely
presented, so no analogue of Theorem 1.3 exists. But it is reasonable to hope for
an analogue of Corollary 1.2.

Remark 6.2 (Chevalley–Demazure group schemes). If A is spherical then we write
CDA for the simply connected version of the associated Chevalley–Demazure group
scheme. This is the unique most natural (in a certain technical sense) algebraic
group over Z of type A. If R is a Dedekind domain of arithmetic type, then the
question of whether CDA(R) is finitely presented was settled by Behr [1967; 1998].
We emphasize that our Theorem 1.3 does not give a new proof of his results, because
CDA(R) may be a proper quotient of GA(R). The kernel of StA(R)→ CDA(R) is
called K2(A; R) and contains the relators (1-1). It can be extremely complicated.

For a nonspherical Dynkin diagram A, the functor CDA is not defined. The
question of whether there is a good definition, and what it would be, seems to
be completely open. Only when R is a field is there known to be a unique “best”
definition of a Kac–Moody group [Tits 1987, Theorem 1′, p. 553]. The main
problem is what extra relations to impose on GA(R). The remarks below discuss
the possible forms of some additional relations.

Remark 6.3 (Kac–Moody groups over integral domains). If R is an integral
domain with fraction field k, then it is open whether GA(R)→ GA(k) is injec-
tive. If GA satisfies Tits’ axioms then this would follow from (KMG4), but Tits
does not assert that GA satisfies his axioms. If GA(R)→ GA(k) is not injective,
then the image seems a better candidate than GA(R) itself for the role of “the”
Kac–Moody group.

Remark 6.4 (Kac–Moody groups via representations). Fix a root datum D and a
commutative ring R. By using Kostant’s Z-form of the universal enveloping algebra
of g, one can construct a Z-form V λ

Z of any integrable highest-weight module V λ

of g. Then one defines V λ
R as V λ

Z ⊗ R. For each real root α, one can exponentiate
gα,Z ⊗ R ∼= R to get an action of Uα ∼= R on V λ

R . One can define the action of
the torus (R∗)n directly. Then one can take the group Gλ

D(R) generated by these
transformations and call it a Kac–Moody group. This approach is extremely natural
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and not yet fully worked out. The first such work for Kac–Moody groups over rings
is Garland’s landmark paper [1980] treating affine groups; see also Tits’ survey
[1985, §5], its references, and the recent articles [Bao and Carbone 2015] and
[Carbone and Garland 2012].

Tits [1987, p. 554] asserts that this construction allows one to build a Kac–Moody
functor satisfying all his axioms (KMG1)–(KMG9). We imagine that he reasoned
as follows. First, show that each Gλ

D is a Kac–Moody functor and therefore by Tits’
theorem admits a canonical functorial homomorphism from GA, where A is the
generalized Cartan matrix of D. One cannot directly apply Tits’ theorem, because
Gλ

D(R) only comes equipped with the homomorphisms SL2(R)→Gλ
D(R) required

by Tits when SL2(R) is generated by its subgroups
(1

0
∗

1

)
and

( 1
∗

0
1

)
. Presumably this

difficulty can be overcome. Second, define I as the intersection of the kernels of all
the homomorphisms GA→Gλ

D, and then define the desired Kac–Moody functor
as GA/I .

Remark 6.5 (Kac–Moody groups as amalgams of Chevalley–Demazure groups).
The difficulty in the previous remark, that SL2(R) is not always generated by
unipotent elements, might be resolved as follows. One can consider the spherical
subdiagrams B of A, construct the corresponding Chevalley–Demazure groups
CDB(R), and amalgamate these as in Corollary 1.2, rather than amalgamating
Steinberg groups. Our results here and in [Allcock 2015] show that this amalgam
satisfies the Chevalley relations of all of the prenilpotent pairs that are not classically
prenilpotent. (For nonaffine diagrams this requires A to be 3-spherical; 2-sphericity
will do if A is simply laced or R has no tiny quotients.) And it is the smallest
extension of Tits’ construction that recovers CDA(R) when A is spherical. We
propose this amalgam, possibly with extra relations, as a reasonable candidate for
the definition of Kac–Moody groups.

Remark 6.6 (loop groups). Suppose X is one of the ABCDEFG diagrams, X̃ is
its affine extension as in Section 4, and R is a commutative ring. The well-known
description of affine Kac–Moody algebras and loop groups makes it natural to
expect that GX̃ (R) is a central extension of GX (R[t±1

]) by R∗. The most general
results along these lines that I know of are Theorems 10.1 and B.1 in [Garland
1980], although they concern slightly different groups. Instead, one might simply
define the loop group GX̃ (R) as a central extension of CDX (R[t±1

]) by R∗, where
the 2-cocycle defining the extension would have to be made explicit. Then one
could try to show that GX̃ satisfies Tits’ axioms.

It is natural to ask whether such a group GX̃ (R) would be finitely presented if
R is finitely generated. If R∗ is finitely generated then this is equivalent to the
finite presentation of the quotient CDX

(
R[t±1

]
)
. If rk X ≥ 3 then StX

(
R[t±1

]
)

is
finitely presented by Theorem I of [Splitthoff 1986]. Then, as explained in Section 7
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of [loc. cit.], the finite presentability of CDX
(
R[t±1

]
)

boils down to properties of
K1
(
X, R[t±1

]
)

and K2
(
X, R[t±1

]
)
.
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Discriminant formulas and applications
Kenneth Chan, Alexander A. Young and James J. Zhang

The discriminant is a classical invariant associated to algebras which are finite over
their centers. It was shown recently by several authors that if the discriminant
of A is “sufficiently nontrivial” then it can be used to answer some difficult
questions about A. Two such questions are: What is the automorphism group
of A? Is A Zariski cancellative?

We use the discriminant to study these questions for a class of (generalized)
quantum Weyl algebras. Along the way, we give criteria for when such an algebra
is finite over its center and prove two conjectures of Ceken, Wang, Palmieri
and Zhang.

Introduction

In algebraic number theory, the discriminant takes on a familiar form: let L be a
Galois extension of the field Q and write OL = Z[α] ∼= Z[x]/( f ), where f is the
minimal polynomial (or the characteristic polynomial) of α. Then we have

1L/Q =
∏
i 6= j

(ri − rj ),

where r1, . . . , rn are the roots of f . In noncommutative algebra, the discriminant
has long been used to study orders and lattices in a central simple algebra [Reiner
1975]. Recently, it has been shown that the discriminant plays a remarkable role in
solving some classical and notoriously difficult questions:

(1) Automorphism problem: determining the full automorphism groups of non-
commutative Artin–Schelter regular algebras [CPWZ 2015a; 2016].

(2) Zariski cancellation problem: concerning the cancellative property of noncom-
mutative algebras such as skew polynomial rings [Bell and Zhang 2016].

(3) Isomorphism problem: finding a criterion for when two algebras are isomorphic,
within certain classes of noncommutative algebras [CPWZ 2015b].
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Despite the usefulness of the discriminant in algebraic number theory, algebraic
geometry and noncommutative algebra, it is extremely hard to compute, especially
in high dimensional and high rank cases. In [CPWZ 2015a; 2016], the authors made
two conjectures on discriminant formulas for some classes of noncommutative
algebras. Our main aim is to prove these two conjectures.

Let k be a base commutative domain and let k× be the set of invertible elements
in k. The discriminant of a noncommutative algebra A over a central subalgebra
Z ⊆ A, denoted by d(A/Z), will be reviewed in Section 1. Let q ∈ k× be an
invertible element in k and let Aq be the q-quantum Weyl algebra generated by
x and y and subject to the relation yx = qxy+ 1. Our first result is:

Theorem 0.1. Let q be a primitive n-th root of unity for some n ≥ 2. Then the
discriminant of Aq over its center Z(Aq) is

d(Aq/Z(Aq))= c(nm)n
2
((1− q)nxn yn

− 1)n(n−1),

where c is some element in k× and m =
∏n−1

i=2 (1+ q + · · ·+ q i−1). By convention,
m = 1 when n = 2.

Theorem 0.1 answers [CPWZ 2016, Conjecture 5.3] affirmatively.
For n ≥ 2, let Wn be the k-algebra generated by x1, . . . , xn and subject to the

relations xi xj + xj xi = 1 for all i 6= j [CPWZ 2015a, Introduction]. This algebra is
called a (−1)-quantum Weyl algebra [CPWZ 2015b, Introduction]. Let

M :=


2x2

1 1 · · · 1
1 2x2

2 · · · 1
...

...
. . .

...

1 1 · · · 2x2
n

 .
Let Z denote the central subalgebra k

[
x2

1 , . . . , x2
n
]
⊆Wn . Our second result is:

Theorem 0.2. Suppose 2 is invertible in k. Then the discriminant of Wn over the
subalgebra Z is

d(Wn/Z)= c(det M)2
n−1
,

where c is an element in k×.

Theorem 0.2 answers [CPWZ 2015a, Question 4.12(2)] affirmatively.
These results suggest that the discriminant has elegant expressions in some situa-

tions. Because of its usefulness, more discriminant formulas should be established;
see Lemma 6.4.

This paper contains other related results which we now describe. Let T be
a commutative algebra over k and let q := {qi j ∈ T× | 1 ≤ i < j ≤ n} and
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A := {ai j ∈ T | 1≤ i < j ≤ n} be sets of elements in T. The skew polynomial ring
Tq[x1, . . . , xn] is a T-algebra generated by x1, . . . , xn and subject to the relations

xj xi = qi j xi xj for all 1≤ i < j ≤ n. (E0.2.1)

A generalized quantum Weyl algebra associated to (q,A) is a T-central filtered
algebra of the form

Vn(q,A)=
T 〈x1, . . . , xn〉

(xj xi − qi j xi xj − ai j | i < j)
(E0.2.2)

such that the associated graded ring gr Vn(q,A) is naturally isomorphic to the skew
polynomial ring Tq[x1, . . . , xn]. Another way of constructing Vn(q,A) is to use an
iterated Ore extension starting with T. To calculate the discriminant of Vn(q,A)
over its center, one needs to determine the center of Vn(q,A). The discriminant
is defined whenever Vn(q,A) is a finite module over a central subring Z [CPWZ
2016], and it is most useful when Vn(q,A) is a free module over Z [CPWZ 2015a].
Since gr Vn(q,A) is isomorphic to Tq[x1, . . . , xn], it is a finite module over its
center if and only if each qi j is a root of unity. Using this, we can show that the
algebra Vn(q,A) is a finite module over its center if and only if the parameters qi j

are all nontrivial roots of unity. Also, when the center of Vn(q,A) is a polynomial
ring, Vn(q,A) is a finitely generated free module over its center. The following
useful result concerns the centers of Vn(q,A) and Tq[x1, . . . , xn].

To state it, we need some notation. When qi j is a root of unity, there are two
integers ki j and di j such that

qi j = exp
(
2π
√
−1ki j/di j

)
,

where di j := o(qi j ) <∞, |ki j |< di j and (ki j , di j )= 1. Further, we can choose ki j

so that ki j =−kj i , since qj i = q−1
i j . Let L i = lcm{di j | j = 1, . . . , n}. Let Y be the

n× n matrix (ki j L i/di j )n×n . For each prime p, define Yp = Y ⊗ Fp. Let m be any
natural number. Let Ip,m be the set containing i such that L i ∈ pmZ− pm+1Z.
Finally, let Yp,m be the submatrix of Yp taken from the rows and columns with
indices i ∈ Ip,m .

Theorem 0.3. Suppose qi j is a root of unity and not 1 for all i < j .

(1) The center of Tq[x1, . . . , xn] is a polynomial ring if and only if it is of the form
T
[
x L1

1 , . . . , x Ln
n
]
, if and only if det(Yp,m) 6= 0 in Fp for all primes p and all

integers m > 0 such that Ip,m 6=∅.

(2) If the center of Tq[x1, . . . , xn] is the subalgebra T
[
x L1

1 , . . . , x Ln
n
]
, then the

center of Vn(q,A) is the same subalgebra and Vn(q,A) is finitely generated
and free over it.
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The above criterion can be simplified when n = 3 or 4 [Corollaries 5.4 and 5.5].
The point of Theorem 0.3 is that it provides an explicit linear algebra criterion for
when the center of Tq[x1, . . . , xn] is isomorphic to a polynomial ring.

Question 0.4. Suppose that A := Vn(q,A) is finitely generated and free over its
center Z . What is the discriminant d(A/Z)?

Theorems 0.1 and 0.2 answer this question for two special cases.
A secondary goal of this paper is to provide some quick applications. These

discriminant formulas have potential applications in algebraic geometry, number
theory and the study of Clifford algebras. In Section 8 (the final section), we give
some immediate applications of discriminants to the cancellation problem and the
automorphism problem for several classes of noncommutative algebras.

Let us briefly review some definitions. An algebra A is called cancellative if
A[t] ∼= B[t] for some algebra B implies A ∼= B. Let Aut(A) be the group of all
algebra automorphisms of A. Let A be connected graded. An algebra automorphism
g of A is called unipotent if

g(v)= v+ (higher degree terms)

for all homogeneous elements v ∈ A. Let Autuni(A) denote the subgroup of Aut(A)
consisting of all unipotent automorphisms [CPWZ 2016, after Theorem 3.1]. When
Autuni(A) is trivial, Aut(A) is usually small and easy to handle. We will give a
criterion on when Autuni(A) is trivial.

Let A be a domain and let F be a subset of A. Let Sw(F) be the set of g ∈ A such
that f = agb for some a, b ∈ A and 0 6= f ∈ F. Let D1(F) be the k-subalgebra of A
generated by Sw(F). For n > 2, we define Dn(F) = D1(Dn−1(F)) inductively,
and define D(F)=

⋃
n≥1 Dn(F). This algebra is called the F-divisor subalgebra

of A. When F = {d(A/Z)}, D(F) is called the discriminant-divisor subalgebra
of A and is denoted by D(A). The main result in Section 8 is the following.

Theorem 0.5. Suppose k is a field of characteristic zero. Let A be a connected
graded domain of finite Gelfand–Kirillov dimension. Assume that A is finitely
generated and free over its center. If D(A) = A, then A is cancellative and
Autuni(A)= {1}.

The above theorem can be applied to some Artin–Schelter regular algebras of
global dimension 4 in Examples 6.3 and 8.4. Further applications are certainly
expected.

This paper is organized as follows. Background material about discriminants
is provided in Section 1. We prove Theorem 0.1 in Section 2 and Theorem 0.2 in
Section 3. Sections 4–6 concern the question of when Tq[x1, . . . , xn] and Vn(q,A)
are finitely generated and free over their centers and contain the proof of Theorem 0.3.
In Section 7, we review and introduce some invariants related to discriminants,



Discriminant formulas and applications 561

locally nilpotent derivations, and automorphisms, which will be used in Section 8.
In Section 8, some applications are provided and Theorem 0.5 is proven.

1. Preliminaries

In this section we recall some definitions and basic properties of the discriminant.
A basic reference is [CPWZ 2015a, Section 1].

Throughout, let k be a base commutative domain and let everything be over k.
Let A be an algebra and let Z be a central subalgebra of A such that A is finitely
generated and free over Z . A modified version of the discriminant was introduced in
[CPWZ 2016] when A is not free over Z ; however, in this paper, we only consider
the case when A is finitely generated and free over Z . Let r be the rank of A over Z .

We embed A in the endomorphism ring End(AZ ) by sending a ∈ A to the left
multiplication la : A→ A. Since A is free over Z of rank r , End(AZ )∼= Mr×r (Z).
Define the trace function

tr : A −→ End(AZ )∼= Mr×r (Z)
trm
−→ Z , (E1.0.1)

where trm is the usual matrix trace. The trace function tr is independent of the
choice of basis of A over Z .

Definition 1.1. [CPWZ 2015a, Definition 1.3(3)] Retain the above notation. Sup-
pose that A is a free module over a central subalgebra Z with a Z-basis {z1, . . . , zr }.
The discriminant of A over Z is

d(A/Z)= det(tr(zi zj ))r×r ∈ Z .

By [CPWZ 2015a, Proposition 1.4(2)], d(A/Z) is unique up to a scalar in Z×.
For x, y ∈ Z , we use the notation x=Z× y to indicate that x= cy for some c∈ Z×. So
d(A/Z)=Z× det(tr(zi zj ))r×r as in [CPWZ 2015a, Definition 1.3(3)]. The following
lemma is easy.

Lemma 1.2. Retain the notation of Definition 1.1. Let (A′, Z ′) be another pair of
algebras such that Z ′ is a central subalgebra of A′ and A′ is a free Z ′-module of
rank r . Let g : A→ A′ be an algebra homomorphism such that:

(a) g(Z)⊆ Z ′.

(b) {g(z1), . . . , g(zr )} is a Z ′-basis of A′.

Then g(d(A/Z))=(Z ′)× d(A′/Z ′).

Proof. For any a ∈ A, we define a′ = g(a). Write azi =
∑r

j=1ai j zj for all i . By
applying g to the last equation, we have a′z′i =

∑r
j=1a′i j z

′

j . By definition (E1.0.1),
tr(a)=

∑
i ai i and

tr(g(a))= tr(a′)=
∑

i

a′i i = g
(∑

i

ai i

)
= g(tr(a))
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for all a ∈ A. By Definition 1.1 and the above equation,

g(d(A/Z))= g(det(tr(zi zj ))r×r )= det(tr(z′i z
′

j ))r×r =(Z ′)× d(A′/Z ′). �

Let Z be a central subalgebra of A and consider an Ore set C ⊂ Z . Then the
localization ZC−1 is central in AC−1.

Lemma 1.3. Let Z be a central subalgebra of A. Suppose A is free over Z of
rank r. Then AC−1 is free over ZC−1 of rank r. As a consequence,

d
(
AC−1/ZC−1)

=(ZC−1)× d(A/Z).

Proof. Let {z1, . . . , zr } be a Z-basis of A. Then it is also a ZC−1-basis of AC−1.
The consequence follows from Lemma 1.2. �

We will need the following result from [CPWZ 2016]. We use T in place of k to
denote a commutative domain.

Proposition 1.4. Let T be a commutative domain and let A = Tq[x1, . . . , xn].
Suppose Z := T

[
xα1

1 , . . . , xαn
n
]

is a central subalgebra of A, where the αi are
positive integers.

(1) [CPWZ 2016, Proposition 2.8] Let r =
∏n

i=1αi . Then

d(A/Z)=T× r r
( n∏

i=1

xαi−1
i

)r

.

(2) If n = 2, Z = T
[
xm

1 , xm
2

]
, and q12 is a primitive m-th root of unity, then

d(A/Z)=T× m2m2(
xm

1 xm
2
)m(m−1)

.

(3) If qi j =−1 for all i < j and αi = 2 for all i , then

d(A/Z)=T× 2n2n
( n∏

i=1

x2
i

)2n−1

.

Proof. Parts (2) and (3) are special cases of part (1). �

The next lemma is a special case of [CPWZ 2016, Proposition 4.10]. Suppose Z
is a central subalgebra of A and A is free over Z of rank r <∞. We fix a Z-basis
of A, say b := {b1 = 1, b2, . . . , br }. Suppose A is an N-filtered algebra such that
the associated graded ring gr A is a domain. For any element f ∈ A, let gr f denote
the associated element in gr A. Let gr b denote the set {gr b1, . . . , gr br }, which is a
subset of gr A.

Lemma 1.5. Retain the above notation. Suppose that gr A is finitely generated and
free over gr Z with basis gr b. Then

gr(d(A/Z))=(gr Z)× d(gr A/ gr Z).
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2. Discriminant of Aq over its center

Let T be a commutative domain and let q ∈ T× be a primitive n-th root of unity for
some n ≥ 2. Let Aq be the q-quantum Weyl algebra over T generated by x and y
and subject to the relation yx = qxy + a for some a ∈ T. This agrees with the
definition of Aq given in the Introduction when T = k and a = 1. It is easy to
check that the center of Aq , denoted by Z(Aq), is T [xn, yn

], and that Aq is free
over Z(Aq) of rank n2. A Z(Aq)-basis of Aq is B := {x i y j

| 0≤ i, j ≤ n−1}. The
aim of this section is to compute the discriminant d(Aq/Z(Aq)).

Let A′ be the T-subalgebra of Aq generated by x ′ := (1− q)x and y. Since
yx ′= qx ′y+(1−q)a and (1−q) may not be invertible, there is no obvious algebra
homomorphism from Aq to A′. Let Z ′ be the subalgebra T [(x ′)n, yn

] which is the
center of A′.

Lemma 2.1. Retain the above notation. Then

d(A′/Z ′)= (1− q)n
2(n−1)d(Aq/Z(Aq)).

Proof. Let tr′ : A′→ Z ′ be the trace function defined in (E1.0.1). We use this trace
function to compute the discriminant d(A′/Z ′).

Let B′ := {(x ′)i y j
}0≤i, j≤n−1. Then B′ is a Z ′-basis of A′. Note that A′ and Aq

have the same ring of fractions and Z(Aq) and Z ′ have the same fraction field.
Since the trace function is independent of the choice of basis, we have tr′(a)= tr(a)
for all a ∈ A′.

Picking any two elements bs = x is y js and bt = x it y jt in B, we have corresponding
elements b′s = (x

′)is y js and b′t = (x
′)it y jt in B. Hence

tr′(b′sb′t)= tr
(
(1− q)is+it bsbt

)
= (1− q)is+it tr(bsbt).

By definition, d(A′/Z ′)= det
[
tr′(b′sb′t)b′s ,b′t∈B′

]
. Hence we have

d(A′/Z ′)= det
[
(tr′(b′sb′t))b′s ,b′t∈B′

]
= det

[(
(1− q)is+it tr(bsbt)

)
bs ,bt∈B

]
= (1− q)N det

[
(tr(bsbt))bs ,bt∈B

]
= (1− q)N d(Aq/Z(Aq)),

where

N =
∑

all is ,it

(is + it)= 2
∑
all is

is = 2n(0+ 1+ 2+ · · ·+ (n− 1))= n2(n− 1).

The assertion follows. �

Following the above lemma, we first compute d(A′/Z ′). We can rewrite A′

as T 〈x ′, y〉/(yx ′ − qx ′y − (1− q)a) so that the positions of x ′ and y are more
symmetrical.
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Let C ={(yn)i | i ≥ 1}. Consider the localizations Z ′′ := Z ′C−1 and A′′ := A′C−1.
Let

x ′′ := x ′− ay−1
= (1− q)x − (ay−n)yn−1

∈ A′′.

Lemma 2.2. Retain the above notation. The following hold:

(1) yx ′′− qx ′′y = 0.

(2) A′′ := A′C−1 is generated by T, (yn)−1, x ′′ and y.

(3) (x ′′)n is central and d(A′′/Z ′′)=(Z ′′)× n2n2
((x ′′)n yn)n(n−1).

(4) d(A′′/Z ′′)=(Z ′′)× n2n2
((1− q)nxn yn

− an)n(n−1).

Proof. (1) We have yx ′′−qx ′′y = y((1−q)x−ay−1)−q((1−q)x−ay−1)y = 0.

(2) This is clear.

(3) Since qn
= 1, (x ′′)n commutes with y by part (1). By part (2), (x ′′)n commutes

with every element in A′′.
Consider an algebra homomorphism g :Tq [x1, x2]→A′′ determined by g(x1)= x ′′

and g(x2) = y. Then the center of B := Tq [x1, x2] is R := T
[
xn

1 , xn
2

]
and

{
x i

1x j
2 |

0 ≤ i, j ≤ n − 1
}

is an R-basis of B. It is clear that A′′ is free of rank n2 and
that A′′ =

∑
0≤i, j≤n−1(x

′)i y j Z ′′. Hence {(x ′′)i y j
| 0≤ i, j ≤ n− 1} is a Z ′′-basis

of A′′. Then the hypotheses of Lemma 1.2 hold. Applying Lemma 1.2 to g, we have
g(d(B/R)) =(Z ′)× d(A′′/Z ′′). By Proposition 1.4(2), d(B/R) = n2n2(

xn
1 xn

2

)n(n−1).
Therefore, d(A′′/Z ′′)=(Z ′)× n2n2

((x ′′)n yn)n(n−1).

(4) In the following, we will let ψ = y−1, z = x ′′ and p = q−1. The commutation
relation between x ′ and ψ is

ψx ′ = (1− q)ψx = (1− q)(pxψ − paψ2)= px ′ψ − (p− 1)aψ2. (E2.2.1)

Recall that z = x ′′ = x ′− aψ . Write zn
=
∑n

i=0 ci (x ′)iψn−i. Since zn is central
(see part (3)), we have ci = 0 unless i = 0, n. It is clear that cn = 1. Next we deter-
mine c0. Since A′′ is a free module over Z ′′ with basis {(x ′)iψ j

| 0≤ i, j ≤ n−1},
we can work modulo the right Z ′′-submodule W generated by (x ′)iψ j , where
0< i < n and 0≤ j < n. Let ≡ denote equivalence mod W.

By induction, for i = 1, . . . , n− 1, we have

ψ i x ′ = pi x ′ψ i
− (pi

− 1)(aψ i+1). (E2.2.2)

Then ψ i x ′ ≡−(pi
− 1)(aψ i+1). For each 1≤ j ≤ n− 1, write

z j
=

j∑
i=0

c j
i (x
′)iψ j−i .
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Then x ′z j
∈W for all j <n−1 and x ′zn−1

≡ (x ′)n. For each j , we haveψ j−1zn− j
=∑n− j

i=0 d j
i (x
′)iψn−1−i for some d j

i ∈ Z ′, so

x ′ψ j−1zn− j
∈W (E2.2.3)

for all j ≥ 2. By the above computation and (E2.2.1)–(E2.2.3), we have

zn
− (x ′)n = (x ′− aψ)zn−1

− (x ′)n

= x ′zn−1
− (x ′)n − aψzn−1

≡−aψ(x ′− aψ)zn−2

≡−a(px ′ψ − (p− 1)aψ2
− aψ2)zn−2

≡−a(−pa)ψ2zn−2
− apx ′ψzn−2

≡−a(−pa)ψ2zn−2

≡−a(−pa)(ψ2x − aψ3)zn−3

≡−a(−pa)(−p2a)ψ3zn−3

...

≡−a(−pa)(−p2a) · · · (−pn−1a)ψn

= (−a)n p(n−1)n/2ψn
=−anψn.

Therefore,
zn
≡−anψn

+ (x ′)n.

Hence c0 =−an and zn
= (x ′)n − anψn. Combining all of the above, we have

(x ′′)n yn
= ((x ′)n − anψn)yn

= (x ′)n yn
− an
= (1− q)nxn yn

− an.

Part (4) follows from part (3) and the above formula. �

Lemma 2.3. The discriminant of A′ over its center Z ′ is

d(A′/Z ′)=T× n2n2
((1− q)nxn yn

− an)n(n−1).

Proof. Let g be the embedding of A′ into A′′ = A′C−1, viewed as an inclu-
sion. By Lemma 1.2, g sends d(A′/Z ′) to d(A′′/Z ′′). Combining this fact with
Lemma 2.2(4), we have

d(A′/Z ′)=(Z ′′)× g(d(A′/Z(A′)))=(Z ′′)× d(A′′/Z ′′)

=(Z ′′)× n2n2
((1− q)nxn yn

− an)n(n−1).

Let 8 be the element d(A′/Z ′)
{
n2n2

((1− q)nxn yn
− an)n(n−1)

}−1, which can be
viewed as an element in the quotient ring of A′. By the above equation, 8 is
in (Z ′′)×. Since Z ′′ = T [(x ′)n, y±n

], 8 is of the form αysn for some α ∈ T×
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and some s. By symmetry, 8 is also of the form β(x ′)tn for some β ∈ T× and
some t . Hence s = t = 0, α = β ∈ T× and 8 = α ∈ T×. Therefore, d(A′/Z ′) =
αn2n2

((1− q)nxn yn
− an)n(n−1) and the assertion follows. �

Now let

m :=
n−1∏
i=2

(1+ q + · · ·+ q i−1). (E2.3.1)

We can show that n = (1−q)n−1m by first factoring the polynomial xn
− 1 ∈ T [x]

and dividing by (x − 1):

xn
− 1=

n−1∏
i=0

(x − q i ) H⇒

n−1∑
i=0

x i
=

xn
− 1

x − 1
=

n−1∏
i=1

(x − q i ).

We then substitute 1 for x as follows:

n =
n−1∏
i=1

(1− q i )= (1− q)n−1
n−1∏
i=2

(1+ q + · · ·+ q i−1)= (1− q)n−1m. (E2.3.2)

Now we are ready to prove the main result of this section, which also recovers
Theorem 0.1.

Theorem 2.4. Retain the above notation. The discriminant of Aq over its center
Z(Aq) is

d(Aq/Z(Aq))=T× (nm)n
2
((1− q)nxn yn

− an)n(n−1).

Proof. Using Lemmas 2.1 and 2.3 and equation (E2.3.2), we have

(1− q)n
2(n−1)d(Aq/Z(Aq))=T× (nm(1− q)n−1)n

2
((1− q)nxn yn

− an)n(n−1).

Since Aq is a domain, we obtain

d(Aq/Z(Aq))=T× (nm)n
2
((1− q)nxn yn

− an)n(n−1). �

Remark 2.5. (1) By [CPWZ 2016, Lemma 2.7(7)], the integer n in Theorem 2.4
is nonzero in T. However, n and m may not be invertible in general.

(2) Theorem 0.1 is clearly a consequence of Theorem 2.4.

A slight generalization of Theorem 2.4 is the following.

Theorem 2.6. Let T be a commutative domain and q ∈ T× be a primitive n-th root
of unity. Let B be the T-algebra of the form

T 〈x, y〉
(yx − qxy = a, xn = b, yn = c)

,
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where a, b, c ∈ T. Suppose that B is a free module over T with basis {x i y j
|

0≤ i, j ≤ n−1}. Then d(B/T )=T× (nm)n
2
((1−q)nxn yn

−an)n(n−1), where m is
given in (E2.3.1).

Proof. First note that it is well-known and easy to check that T is the center of B.
Recall that Aq is the algebra of the form T 〈x, y〉/(yx − qxy = a). There is

a natural algebra homomorphism g from Aq to B sending x to x and y to y
and t ∈ T to t ∈ T. Then the hypotheses in Lemma 1.2 hold. By Lemma 1.2,
g(d(Aq/Z(Aq)))= d(B/T ). Now the assertion follows from Theorem 2.4. �

3. Discriminant of Clifford algebras

In this section we assume that 2−1
∈ k. We fix an integer n ≥ 2.

Let T be a commutative domain and let A := {ai j | 1 ≤ i < j ≤ n} be a set of
scalars in T. We write aj i = ai j if i < j . Let Vn(A) be the T-algebra generated by
x1, . . . , xn and subject to the relations

xi xj + xj xi = ai j for all i 6= j.

This algebra was studied in [CPWZ 2015a; 2015b]. Some basic properties of Vn(A)
are given in [CPWZ 2015a, Section 4]. Let M1 be the matrix

M1 :=


2x2

1 a12 · · · a1n

a21 2x2
2 · · · a2n

...
...

. . .
...

an1 an2 · · · 2x2
n

 . (E3.0.1)

This is a symmetric matrix with entries in Z := T
[
x2

1 , . . . , x2
n
]
. We will define a

sequence of matrices Mi later. Note that Z is a central subalgebra of Vn(A). If we
write M1 = (mi j,1)n×n , then mi j,1 = xj xi + xi xj for all i , j .

The algebra Vn(A) is a Clifford algebra over Z . We will recall the definition
of the Clifford algebra associated to a quadratic form in the second half of this
section. In the next few lemmas, we are basically diagonalizing the quadratic form,
which is elementary and well-known in the classical case; see [Lam 2005, Chapter I,
Corollary 2.4] for some related material. Since we need an explicit construction to
complete the proof of our main result, details will be provided below.

We will introduce a sequence of new variables starting with

xi,1 = xi for all i = 1, . . . , n,

and

ai j,1 = ai j for all i 6= j, and ai i,1 = 2x2
i for all i.
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So we have xj,1xi,1+ xi,1xj,1 = ai j,1 for all i , j . Let

x1,2 := x1,1 and xi,2 := xi,1−
1
2a1i,1x−2

1,1x1,1 for all i ≥ 2. (E3.0.2)

Lemma 3.1. Retain the above notation.

(1) xi,2x1,2+ x1,2xi,2 = 0 for all i ≥ 2.

(2) x2
i,2 = x2

i,1−
1
4a2

1i,1x−2
1,1 for all i ≥ 2.

(3) xi,2xj,2+ xj,2xi,2 = ai j,1−
1
2a1i,1a1 j,1x−2

1,1 for all 2≤ i < j ≤ n.

(4) Let M2 be the matrix (xi,2xj,2+ xj,2xi,2)1≤i, j≤n . Then det M2 = det M1.

(5) Let
C1 =

{
x2i

1,1
}

i≥1.

Then the localization Vn(A)
[
C−1

1

]
is free over Z

[
C−1

1

]
with basis

{
xd1

1,2 · · · x
dn
n,2|

ds = 0, 1
}
.

Proof. (1)–(3) These follow by direct computation.

(4) Let N be the matrix

1 0 0 · · · 0

−
1
2a12,1x−2

1,1 1 0 · · · 0

−
1
2a13,1x−2

1,1 0 1 · · · 0
...

...
...

. . .
...

−
1
2a1n,1x−2

1,1 0 0 · · · 1


.

By linear algebra and part (3), one can check that NM1 N T
= M2. Since det N = 1,

we have det M2 = det M1.

(5) First of all, Vn(A) is free over Z with basis
{

xd1
1,1 · · · x

dn
n,1 | ds = 0, 1

}
. In the

localization Vn(A)
[
C−1

1

]
, this basis can be transformed to a basis

{
xd1

1,2 · · · x
dn
n,2|

ds = 0, 1
}

by using (E3.0.2). �

After we have xi,2, define ai j,2 to be xi,2xj,2+ xj,2xi,2 for all i , j . Now we define
xi,s and ai j,s inductively.

Definition 3.2. Let s ≥ 3 and suppose that xi,s−1 and ai j,s−1 are defined inductively.
Define

xi,s := xi,s−1 for all i < s,

xi,s := xi,s−1−
1
2as−1i,s−1x−1

s−1,s−1 for all i ≥ s.
(E3.2.1)

Define ai j,s := xi,s xj,s + xj,s xi,s for all i , j .
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Similar to Lemma 3.1, we have the following lemma. Its proof is also similar to
the proof of Lemma 3.1, so it is omitted.

Lemma 3.3. Retain the above notation. Let 2≤ s ≤ n.

(1) xi,s xj,s + xj,s xi,s = 0 for all i < j and i < s.

(2) xi,s = xi,s−1 if i < s and x2
i,s = x2

i,s−1−
1
4a2

s−1i,s−1x−2
s−1,s−1 for all i ≥ s.

(3) xi,s xj,s+ xj,s xi,s = ai j,s−1−
1
2as−1i,s−1as−1 j,s−1x−2

s−1,s−1 for all s ≤ i < j ≤ n.

(4) Let Ms be the matrix (xi,s xj,s + xj,s xi,s)1≤i, j≤n . Then det Ms = det M1.

(5) Let Cs−1 be the Ore set{
x2i1

1,1x2i1
2,2 · · · x

2is−1
s−1,s−1

}
i1,...,is−1≥1.

Then the localization Vn(A)
[
C−1

s−1

]
is free over Z

[
C−1

s−1

]
with basis

{
xd1

1,s· · · x
dn
n,s|

ds = 0, 1
}
.

We need two more lemmas before we prove the main result.

Lemma 3.4. Let T be a commutative domain. Let A be a T-algebra containing T
as a subalgebra, generated by x1, . . . , xn and satisfying the relations xj xi+xi xj = 0
for all i < j and x2

i = ai ∈ T. Suppose that A is a free module over T with basis{
xd1

1 · · · x
dn
n | ds = 0, 1

}
. Then

d(A/T )=T×

( n∏
i=1

2x2
i

)2n−1

=T×

( n∏
i=1

x2
i

)2n−1

.

Proof. Let B = T−1[x1, . . . , xn] and Z = T
[
x2

1 , . . . , x2
n
]
. Then B is a free module

over Z with basis
{

xd1
1 · · · x

dn
n | ds = 0, 1

}
. Let g be the algebra map from B to A

sending T to T, xi to xi . Then the hypotheses in Lemma 1.2 holds. By Lemma 1.2,
g(d(B/Z))=T× d(A/T ). Note that d(B/Z) was computed in Proposition 1.4(3) to
be
(∏n

i=12x2
i

)2n−1

, as we assume that 2 is invertible. Now the assertion follows. �

Let A be an Ore domain and let Q(A) denote the skew field of fractions of A.
Let Z be the commutative subalgebra T

[
x2

1 , . . . , x2
n
]
⊂ Vn(A). For each 1≤ 1≤ n,

let Zi be the subring of Q(Z) of the form

Q
(
T
[
x2

1 , . . . , x̂2
i , . . . , x2

n
])[

x2
i
]
.

Lemma 3.5. Retain the above notation.

(1)
⋂n

i=1 Zi = Q(T )
[
x2

1 , . . . , x2
n
]
.

(2) Z
[
C−1

n−1

]
⊆ Zn , where Z

[
C−1

n−1

]
is defined in Lemma 3.3(5).

Proof. (1) This is an easy commutative algebra fact.

(2) By Lemma 3.3(2) and induction, each x2
i,s, for all 1≤ i < n and all 1≤ s ≤ n,

is in Q
(
T
[
x2

1 , . . . , x2
n−1

])
. So Z

[
C−1

n−1

]
⊆ Zn . �



570 Kenneth Chan, Alexander A. Young and James J. Zhang

Theorem 3.6. Suppose 2 is invertible. Let Z = T
[
x2

1 , . . . , x2
n
]
. Then

d(Vn(A)/Z)=T× (det M1)
2n−1

,

where M1 is given in (E3.0.1).

Proof. Consider the variables {xi,n}
n
i=1 defined in Lemma 3.3. By Lemma 3.3(5),

Vn(A)
[
C−1

n−1

]
is free over Z

[
C−1

n−1

]
with basis

{
xd1

1,s · · · x
dn
n,s | ds = 0, 1

}
. By Lemma

3.4, the discriminant

d
(
Vn(A)

[
C−1

n−1

]
/Z
[
C−1

n−1

])
is of the form

(∏n
i=1 x2

i

)2n−1

up to a unit in Z
[
C−1

n−1

]
. By Lemma 3.3(4), we have

d
(
Vn(A)

[
C−1

n−1

]
/Z
[
C−1

n−1

])
=

( n∏
i=1

x2
i

)2n−1

= (det Mn)
2n−1
= (det M1)

2n−1
.

By Lemma 1.3,

d(Vn(A)/Z)=(Z[C−1
n−1])

× d
(
Vn(A)

[
C−1

n−1

]
/Z
[
C−1

n−1

])
=(Z[C−1

n−1])
× (det M1)

2n−1
.

Let 8 be the element d(Vn(A)/Z)−1(det M1)
2n−1

. Then 8 ∈
(
Z
[
C−1

n−1

])×. This
means that both 8 and 8−1 are in Z

[
C−1

n−1

]
⊆ Zn . By symmetry, 8 is Zi for all i .

Thus 8 is in
⋂n

i=1 Zi = Q(T )
[
x2

1 , . . . , x2
n
]
. Similarly, 8−1 is in Q(T )

[
x2

1 , . . . , x2
n
]
.

Therefore, 8,8−1
∈ Q(T ).

Write d(Vn(A)/Z)= c(det M1)
2n−1

, where c=8−1
∈ Q(T ). It remains to show

c ∈ Z×. Note that Vn(A) is a filtered algebra such that gr Vn(A)∼= T−1[x1, . . . , xn].
By Lemma 1.5,

gr d(Vn(A)/Z)=Z× d(gr Vn(A)/ gr Z).

The left-hand side of the above is c
(∏

i=1 x2
i

)2n−1

and the right-hand side of the
above is

(∏
i=1 x2

i

)2n−1

by Proposition 1.4(3) (assuming 2 is invertible). Thus
c ∈ Z×, as required. �

Theorem 0.2 is a special case of Theorem 3.6 by taking ai j = 1 for all i < j .
The algebras Vn(A) and Wn are special Clifford algebras. Now we consider a

Clifford algebra in a more general setting. Let T be a commutative domain and
let V be a free T-module of rank n. Given a quadratic form q : V → T, we can
associate to this data the Clifford algebra

C(V, q)=
T 〈V 〉

(x2− q(x) | x ∈ V )
.
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Note that this q is different from the parameter q in the definition of the q-quantum
Weyl algebra Aq and the parameter set q in the Vn(q,A) and Tq[x1, . . . , xn]. Con-
sider the bilinear form associated to q ,

b(x, y)= 1
2(q(x + y)− q(x)− q(y)) (E3.6.1)

for all x, y ∈ V. If we choose a T-basis x1, . . . , xn for V and let

B := (bi j )= (b(xi , xj ))n×n ∈ T n×n (E3.6.2)

be the symmetric matrix which represents b with respect to this basis, then the
relations of C(V, q) are

xi xj + xj xi = 2bi j for all i, j. (E3.6.3)

Define det(q) to be det(B).
The following main result is a consequence of Theorem 3.6 and Lemma 1.2.

Theorem 3.7. Let A :=C(V, q) be a Clifford algebra over a commutative domain T
defined by a quadratic form q : V → T. Pick a T-basis of V, say {xi }

n
i=1. Then

d(A/T )=T× (det(xi xj + xj xi )n×n)
2n−1
=T× det(q)2

n−1
. (E3.7.1)

Proof. Let b : V⊗2
→ T be the symmetric bilinear form associated to the quadratic

form q. Let ai j = 2b(xi , xj ) for all i < j and A = {ai j }1≤i< j≤n . Then there
is a canonical algebra surjection π : Vn(A)→ C(V, q) sending xi → xi for all
i = 1, . . . , n and t → t for all t ∈ T, and the kernel of π is the ideal generated
by
{

x2
i − bi i

}n
i=1. Clearly, π

(
T
[
x2

1 , . . . , x2
n
])
= T and the matrix (xi xj + xj xi )n×n

equals M1. It is easy to check that
{

xd1
1 · · · x

dn
n | di = 0, 1

}
is a basis of Vn(A) over

T
[
x2

1 , . . . , x2
n
]

and a basis of C(V, q) over T. The first equation of (E3.7.1) follows
from Theorem 3.6 and Lemma 1.2 and the second equation follows from the fact
that 2B= (xi xj + xj xi )n×n and 2 is invertible. �

In the rest of this section we briefly discuss “generic Clifford algebras”, which
will appear again in Section 8. (This generic Clifford algebra should be called a
“universal Clifford algebra”, but the term “universal Clifford algebra” has already
been used).

Fix an integer n. Let I be the set {(i, j) | 1 ≤ i ≤ j ≤ n} that can be thought
of as the quotient set {(i, j) | 1 ≤ i, j ≤ n}/((i, j) ∼ ( j, i)). Let w denote the
integer 1

2 n(n+ 1). There is a bijection between I and the set of the first w integers
{1, 2, . . . , w}. Let Tg be the commutative domain k[t(i, j) | (i, j) ∈ I ], which is
isomorphic to k[t1, . . . , tw]. Define a Tg-algebra Ag generated by x1, . . . , xn and
subject to the relations

xi xj + xj xi = 2t(i, j) for all 1≤ i ≤ j ≤ n. (E3.7.2)
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Let Vg =
⊕n

i=1 Tgxi . Define a bilinear form bg : Vg⊗Vg→ Tg by bg(xi , xj )= t(i, j)

and the associated quadratic form by qg(x)= bg(x, x) for all x ∈ Vg. The “generic
Clifford algebra” Ag is defined to be the Clifford algebra associated to (Vg, qg). For
any Clifford algebra C(V, q) over a commutative ring T, by comparing (E3.6.3)
with (E3.7.2), one sees that there is an algebra map Ag→C(V, q) sending xi→ xi

and t(i, j)→ bi j . Define deg xi = 1 for all i and deg t(i, j) = 2 for all (i, j) ∈ I . Then
Ag is a connected graded algebra over k.

We also define some factor algebras of Ag. Let J be a subset of {(i, j) |
1≤ i < j ≤ n} and let wJ denote the integer w− |J |. Let Tg,J be the commutative
polynomial ring k[ti, j | (i, j) ∈ I \ J ], which is isomorphic to k[t1, . . . , twJ ]. Define
a Tg,J -algebra Ag,J generated by x1, . . . , xn and subject to the relations

xi xj + xj xi =

{
2t(i, j), (i, j) ∈ I \ J,
0, (i, j) ∈ J.

(E3.7.3)

Let Vg,J =
⊕n

i=1 Tg,J xi . Define a bilinear form bg,J : Vg,J ⊗ Vg,J → Tg,J by

bg,J (xi , xj )=

{
t(i, j), (i, j) ∈ I \ J,
0, (i, j) ∈ J,

and the associated quadratic form by qg,J (x)= bg(x, x) for all x ∈ Vg,J . Then Ag,J

is the Clifford algebra associated to (Vg,J , qg,J ). If J ⊆ J ′⊆ {(i, j) | 1≤ i < j ≤ n},
there is an algebra map Ag,J → Ag,J ′ sending xi → xi and

t(i, j)→

{
t(i, j), (i, j) /∈ J ′,
0, (i, j) ∈ J ′ \ J.

In particular, Ag,J is a connected graded factor ring of Ag.
In part (4) of the next lemma, we will use a few undefined concepts that are

related to the homological properties of an algebra. We refer to [Levasseur 1992;
Lu et al. 2007; Rogalski and Zhang 2012] for definitions.

Lemma 3.8. Retain the above notation. Assume that k is a field of characteristic
not 2. Let J ′ be subset of {(i, j) | 1≤ i < j ≤ n} and let J = J ′ \{(i0, j0)} for some
(i0, j0) ∈ J ′.

(1) The Hilbert series of Ag is

HAg (t)=
(1+ t)n

(1− t2)w
, where w = 1

2 n(n+ 1).

(2) The Hilbert series of Ag,J is

HAg,J (t)=
(1+ t)n

(1− t2)wJ
, where wJ = w− |J |.

(3) t(i0, j0) is a central regular element in Ag,J ′ , and Ag,J = Ag,J ′/(t(i0, j0)).
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(4) Ag and Ag,J are connected graded Artin–Schelter regular, Auslander regular,
Cohen–Macaulay noetherian domains.

Proof. (1) Note that Ag is a free module over Tg with basis
{

xd1
1 · · · x

dn
n | ds = 0, 1

}
.

Recall that deg xi = 1 and deg t(i, j) = 2. We have

HAg (t)= (1+ t)n HTg (t)=
(1+ t)n

(1− t2)w
.

(2) The proof is similar. Use the fact that HTg,J (t)= 1/(1− t2)wJ.

(3) It is clear that t(i0, j0) is central in Ag,J ′ and that Ag,J = Ag,J ′/(t(i0, j0)). So the
ideal (t(i0, j0)) is the left ideal t(i0, j0)Ag,J ′ and the right ideal Ag,J ′ t(i0, j0). By parts (1)
and (2), the Hilbert series of (t(i0, j0)) is t2 HAg,J ′

(t). So t(i0, j0) is regular.

(4) We only provide a proof for Ag. The proof for Ag,J is similar.
From part (3), JM :={t(i, j) |1≤ i< j≤n} is a sequence of regular central elements

in Ag of positive degree. It is easy to see that Ag,JM (= Ag/(JM)) is isomorphic
to the skew polynomial ring k−1[x1, . . . , xn], which is an Artin–Schelter regular,
Auslander regular, Cohen–Macaulay noetherian domain. Applying [Lu et al. 2007,
Lemma 7.6] repeatedly, Ag has finite global dimension. Applying [Levasseur 1992,
Proposition 3.5, Theorem 5.10] repeatedly, Ag is a noetherian Auslander Gorenstein
and Cohen–Macaulay domain. By [Levasseur 1992, Theorem 6.3], Ag is Artin–
Schelter Gorenstein. Since Ag has finite global dimension, it is Auslander regular
and Artin–Schelter regular. �

Remark 3.9. Retain the above notation. (1) Some homological properties of the
algebra Ag are given in Lemma 3.8. It would be interesting to work out combinatorial
and geometric invariants (and properties) of Ag. For example, what are the point-
module and line-module schemes of Ag? Definitions of these schemes can be found
in [Vancliff and Van Rompay 2000; Vancliff et al. 1998].

(2) Another way of presenting Ag is the following. Let S be a k-vector space of
dimension n. Define Ag to be k〈S〉/([x2, y] = 0 | for all x, y,∈ S). By using this
new expression, one can easily see that the group of graded algebra automorphisms
of Ag, denoted by Autgr(Ag), is isomorphic to GLn(k).

(3) Suppose n ≥ 2. The full automorphism group Aut(Ag) has not been determined.
It is known that Aut(Ag) is not affine. For example, if f (t) is a polynomial in t , then

xi →

{
xi , i > 1,
x1+ f ([x1, x2]

2)x2, i = 1,

extends to an algebra automorphism of Ag.

(4) It seems interesting to study the “cubic algebra” k〈S〉/([x3,y]=0 | for all x,y∈ S)
and higher-degree analogues.
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(5) The quotient division ring of Ag, denoted by Dg, is called the “generic Clifford
division algebra of rank n”. It would be interesting to study algebraic properties
or invariants of Dg.

4. Center of skew polynomial rings

To use the discriminant most effectively, one needs to first understand the center of
an algebra. In this section we give a criterion for when Tq[x1, . . . , xn] is free over
its center and when the center of Tq[x1, . . . , xn] is a polynomial ring.

Recall that T is a commutative domain and q := {qi j ∈ T× | 1≤ i < j ≤ n} is a set
of invertible scalars. Let P := Tq[x1, . . . , xn] be the skew polynomial ring over T
and subject to the relations (E0.2.1). We assume that di j := o(qi j ) <∞ and write

qi j = exp
(
2π
√
−1ki j/di j

)
, (E4.0.1)

where |ki j |<di j and (ki j , di j )=1. Note that, by our convention, qi j =q−1
j i for all i , j .

Hence, we choose ki j = −kj i and di j = dj i . We also adopt the convention that if
qi j = 1 then ki j = 0 and di j = 1. In particular, ki i = 0 and di i = 1. We can extend
P to P

[
x−1

1 , . . . , x−1
n
]
, with an inverse for each xi , with the expected relations

xi x−1
i = x−1

i xi = 1, xj x−1
i = q−1

i j x−1
i xj , and x−1

j x−1
i = qi j x−1

i x−1
j .

We need to do some analysis to understand the center of P. Let ηi denote conjugation
by xi , sending f 7→ x−1

i f xi , and let ξ = x s1
1 · · · x

sn
n . Then

ηi (ξ)= exp
(
2π
√
−1eT

i Y s
)
ξ,

where Y ∈ son(Q) has (i, j)-th entry ki j/di j , s is the column vector whose i-th entry
is si appearing in the powers of ξ , and ei is the i-th standard basis vector in Qn.

Lemma 4.1. Retain the above notation. Then ξ is in the center Z(P) of P if and
only if Y s ∈ Zn.

Proof. Since P is generated by {xi }, we have ξ ∈ Z(P) if and only if ηi (ξ)= ξ for
all i , if and only if exp

(
2π
√
−1eT

i Y s
)
= 1, if and only if eT

i Y s ∈ Z for all i , and
finally, if and only if Y s ∈ Zn. �

By choosing the standard basis for Qn, we can consider Y as a linear transfor-
mation Qn

→ Qn by sending s 7→ Y s. Here we view Qn as column vectors and
Y as a left multiplication. We can restrict this map to Zn

⊂Qn (embedded via the
standard basis) and compose with the quotient Qn

→Qn/Zn to obtain a Z-module
homomorphism Y ′ : Zn

→Qn/Zn.

Lemma 4.2. Retain the above notation. Then ξ ∈ Z(P) if and only if s ∈ ker(Y ′).

Proof. By Lemma 4.1, ξ ∈ Z(P) if and only if Y s ∈ Zn, which is equivalent to
Y ′(s)= 0 by the definition of Y ′. �
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Let D be the matrix (di j )n×n and let L i be the lcm of the entries in the i-th row
of D, namely, L i = lcm{di j | j = 1, . . . , n}. Since D is a symmetric matrix, L i is
also the lcm of the entries in i-th column. Observe that Z(P) contains the central
subring P ′ := k

[
x L1

1 , . . . , x Ln
n
]
. In other words, ker(Y ′) contains the Z-lattice 3

spanned by L i ei for i = 1, . . . , n. Therefore, Y ′ factors through

Zn
→ M := Zn/3=

n⊕
i=1

Z/L i Z.

For each s ∈ Zn, the i-th entry of Y ′(s) is
∑

j ki j sj/di j ∈Q/Z, which is L i -torsion,
or equivalently, in L−1

i Z/Z. Therefore, Y ′ induces a map

M→ M ′ :=
n⊕

i=1

L−1
i Z/Z.

Since M ′ is naturally isomorphic to M, we can define an endomorphism

Y : M→ M
by setting

Y s =
( n∑

j=1

L i (ki j sj/di j )

)n

i=1
.

In particular, Y ej =
∑n

i=1(ki j L i/di j )ei . Sometimes we think of Y as a matrix:

Y = (ki j L i/di j )n×n = diag(L1, . . . , Ln)Y.

The following lemma is a reinterpretation of [CPWZ 2016, Lemma 2.3].

Lemma 4.3. Retain the above notation. The following are equivalent.

(1) The center Z(P) of P is a polynomial ring.

(2) Z(P)= P ′.

(3) ker(Y )= 0.

(4) Y is an isomorphism.

Proof. (1)⇔ (2): One implication is clear. For the other implication, we assume
that the center Z(P) is a polynomial ring. By [CPWZ 2016, Lemma 2.3], Z(P) is of
the form T

[
xai

1 , . . . , xai
n
]
. It is easy to check that L i | ai for all i . Since Z(P)⊇ P ′,

ai = L i for all i . The assertion follows.

(3)⇒ (2): Let ξ := x s1
1 · · · x

sn
n ∈ Z(P) and s= (si )

n
i=1. By Lemma 4.2, s ∈ ker(Y ′).

Since Y is induced by Y ′, we have Y (s)= 0. By part (3), s = 0 in M = Zn/3. So
s ∈3, which is equivalent to ξ ∈ P ′. Therefore, Z(P)= P ′, as desired.

(2)⇒ (3): Let ξ := x s1
1 · · · x

sn
n ∈ P , where s := (si )

n
i=1 ∈ ker(Y ), viewed as a vector

in M. By the definition of M, we might assume that each si is nonnegative and less
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than L i . Since Y is induced by Y ′, we have s ∈ ker(Y ′). By Lemma 4.2, ξ ∈ Z(P).
By part (2) and our choice of 0≤ si < L i , we have ξ = 1 or s = 0, as desired.

(3)⇔ (4): This is clear since M is finite. �

The advantage of working with Y is that ker(Y )= 0 is equivalent to Y being an
isomorphism. Next we need to understand when Y is an isomorphism. For the rest
of this section we use ⊗ for ⊗Z and Fp for Z/pZ.

Lemma 4.4. The morphism Y is an isomorphism if and only if Y ⊗ Fp is an
isomorphism for all primes p.

Proof. As a Z-module, M is finite, and it suffices to show that Y is surjective if and
only if Y ⊗ Fp is surjective for each prime p. This is clear since −⊗ Fp is right
exact, so surjectivity of a map can be checked on closed fibers. �

Fix any prime p. Let Mp = M ⊗ Fp and Yp = Y ⊗ Fp. For any ei , if L i /∈ pZ,
then the image of ei is zero in Mp. We can therefore use {ei | L i ∈ pZ} as a basis
of Mp. Consequently, Mp is a vector space over Fp of dimension at most n, and
we can write Yp as a matrix over Fp. Next we will decompose the vector space Mp

and the matrix Yp.
For each positive integer m, let Mp,m denote the subspace of Mp generated by
{ei | L i ∈ pmZ− pm+1Z}. Let Yp,m be the endomorphism

Mp,m −→ Mp
Yp
−→Mp −→ Mp,m,

where the first map is the inclusion and the last map is the natural projection using
the given basis {ei | L i ∈ pZ}. Then Yp,m can be expressed as the submatrix of Y
taken from the rows and columns with indices i such that ei ∈ Mp,m . For all but
finitely many values of m, we have Mp,m = 0, and in this case, Yp,m is a 0×0 matrix.
We adopt the convention that the determinant of a 0× 0 matrix is 1. In general,
det(Yp,m) is in Fp.

Lemma 4.5. The following are equivalent.

(1) The map Yp is an isomorphism.

(2) For all positive integers m, Yp,m is an isomorphism.

(3) det(Yp,m) 6= 0 for all positive integers m.

Proof. It is clear that (2) and (3) are equivalent, so we need only show that (1) and (2)
are equivalent.

Let m > 0, and let i , j be such that L i ∈ pmZ− pm+1Z and L j /∈ pmZ. Since
L j = lcm{dk j | k= 1, . . . , n}, we have di j /∈ pmZ and ki j L i/di j ∈ pZ. Therefore, the
ei -component of Ypej is zero. We can extend this to show that, for any m >m′ > 0,
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the Mp,m′-component of Yp(Mp,m) is zero, or equivalently,

Yp(Mp,m)⊆
⊕
n≥m

Mp,n =: Nm .

This implies that, for any m > 0, Yp acts as an endomorphism on Nm . Since
each Mp is finite dimensional, Yp is an isomorphism if and only if it acts as an
isomorphism on each subquotient Nm/Nm+1 ∼= Mp,m . This action is already given
by Yp,m , so the assertion follows. �

Combining all the lemmas in this section we have:

Theorem 4.6. The center of the skew polynomial ring Tq[x1, . . . , xn] is a polyno-
mial ring if and only if det(Yp,m) 6= 0 for all primes p and all integers m > 0.

Theorem 4.6 is a slight generalization of Theorem 0.3(a) without the hypothesis
that qi j 6= 1 for all i 6= j . The definition of the matrices Yp,m is not straightforward,
so we give an example below. Hopefully, the example will show that this matrix is
not hard to understand.

Example 4.7. We start with the following skew-symmetric matrix with entries in Q:

Y :=



0 4
27

2
9 0 2

3
3
5

−
4

27 0 1
3

7
9

1
3

1
5

−
2
9 −

1
3 0 1

6
1
2

1
2

0 − 7
9 −

1
6 0 2

3 0

−
2
3 −

1
3 −

1
2 −

2
3 0 5

8

−
3
5 −

1
5 −

1
2 0 −5

8 0


.

One can easily construct qi j by (E4.0.1) and the skew polynomial ring Tq[x1, . . . , x6]

by (E0.2.1), but the point of this example is to work out the matrices Yp,m for all
primes p and all m > 0. By considering the denominators of the entries of Y, one
sees that

(L1, L2, L3, L4, L5, L6)= (33
· 5, 33

· 5, 2 · 32, 2 · 32, 23
· 3, 23

· 5).

This implies that Yp,m is a trivial matrix (or a 0× 0 matrix) except for p = 2, 3, 5.
Next we consider

Y = diag(L1, . . . , L6)Y =



0 20 30 0 90 81
−20 0 45 105 45 27
−4 −6 0 3 9 9

0 −14 −3 0 12 0
−16 −8 −12 −16 0 15
−24 −8 −20 0 −25 0


.
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Recall that Mp,m has a basis {ei | L i ∈ pmZ− pm+1Z} and Yp,m is the square sub-
matrix of Y with indices {i | L i ∈ pmZ− pm+1Z} and with entries evaluated in Fp.

For p = 2, Y2,m are the following:

• Y2,1 is the principle (3, 4)-submatrix of Y, and is
(0

1
1
0

)
.

• Y2,3 uses indices 5, 6, and is
( 0

1
1
0

)
.

• For all m = 2 or m > 3, Y2,m is trivial.

Therefore, Y2 is an isomorphism by Lemma 4.5.
For p = 3, Y3,m are the following:

• Y3,1 uses only index 5, and is the 1× 1 zero matrix.

• Y3,2 uses indices 3, 4, and is the 2× 2 zero matrix.

• Y3,3 uses indices 1, 2, and is
( 0
−1

1
0

)
.

• For all m > 3, Y3,m is trivial.

Since det(Y3,1) = det(Y3,2) = 0, Y3 is not an isomorphism by Lemma 4.5. Con-
sequently, the center of Tq[x1, . . . , x6] is not a polynomial ring by Theorem 4.6.

For p = 5, Y5,m are the following:

• Y5,1 uses indices 1, 2, 6, and

Y5,1 =

 0 0 1
0 0 2
−1 −2 0

 .
• For all m > 1, Y5,m is trivial.

It is easy to check that det(Y5,1)= 0. Therefore, Y5 is not an isomorphism.
For p > 5, Yp,m is trivial for all m > 0.

5. Low dimensional cases

We start with some easy consequences of Theorem 4.6 and then discuss the case
when n is 3 or 4.

Corollary 5.1. Suppose there are a prime p and an m > 0 such that Mp,m is odd
dimensional. Then Yp is not an isomorphism. As a consequence, the center of
Tq[x1, . . . , xn] is not a polynomial ring.

Proof. If Yp,m is a skew-symmetric matrix of odd size, its determinant is zero (this
is true even when p = 2). The rest follows from Lemma 4.5 and Theorem 4.6. �

Corollary 5.2. Suppose there is a prime p such that Mp is odd dimensional. Then
Yp is not an isomorphism. As a consequence, the center of Tq[x1, . . . , xn] is not a
polynomial ring.
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Proof. Since Mp =
⊕
∞

m=1 Mp,m , if it is odd dimensional, at least one Mp,m must be
odd dimensional. The assertion follows from Corollary 5.1. �

Corollary 5.3. Suppose, for each prime p, that p | di j for at most one pair (i, j),
1≤ i < j ≤ n. Then Yp is an isomorphism for each p. As a consequence, the center
of Tq[x1, . . . , xn] is a polynomial ring.

Proof. If di j /∈ pZ for all i , j , then L i /∈ pZ for all i , Mp = 0 and Yp is trivially an
isomorphism.

If di j ∈ pmZ− pm+1Z for some i , j and some positive integer m, and each of
every other term dk` is not in pZ, then L i , L j ∈ pmZ− pm+1Z, and each of every
other Lk is not in pZ. This shows that Yp,m is a nonzero 2× 2 skew-symmetric
matrix (i.e., det(Yp,m) 6= 0) and Mp,m′ = 0 for each m′ 6= m. The rest follows from
Lemma 4.5 and Theorem 4.6. �

Next we give simple criteria for Y to be an isomorphism in the cases n = 3, 4.

Corollary 5.4. The center of Tq[x1, x2, x3] is a polynomial ring if and only if
(di j , dik)= 1 for all different i , j , k.

Proof. There are only three d terms — d12, d13, and d23. If each (di j , dik) equals 1,
then no prime is a factor of more than one term in {di j }. By Corollary 5.3, the
center of Tq[x1, x2, x3] is a polynomial ring.

Conversely, suppose that p is a prime such that di j , dik ∈ pZ for some i , j , k. Then
L1, L2, L3 ∈ pZ. This implies that Mp has dimension 3. Hence, by Corollary 5.2,
Yp is not an isomorphism. So Y is not an isomorphism. Therefore, the center of
Tq[x1, x2, x3] is not a polynomial ring by Lemma 4.3. �

Corollary 5.5. The center of Tq[x1, x2, x3, x4] is a polynomial ring if and only if ,
for each prime p, one of the following holds:

(a) L i /∈ pZ for all i .

(b) For some positive integer m, Yp,m is 4× 4 with nonzero determinant.

(c) There are distinct indices i, j, k, ` ∈ {1, 2, 3, 4} and a nonnegative integer m
such that di j ∈ pm+1Z, dk` ∈ pmZ− pm+1Z, and every other d term is not in
pm+1Z.

Proof. Let P = Tq[x1, x2, x3, x4]. By Lemmas 4.3 and 4.4, Z(P) is a polynomial
ring if and only if Yp is an isomorphism for all p. It remains to show that, for
each p, Yp is an isomorphism if and only if one of (a), (b), or (c) holds. Now we
fix p and prove the assertion in three cases according to the shape of Mp.

First we prove the “if” part.

(a) If L i /∈ pZ for all i , then Mp = 0 and Yp is trivially an isomorphism. This
handles the case when Mp = 0.
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(b) If for some m > 0, Yp,m is 4× 4 with nonzero determinant, then every other
Yp,r (for all r 6=m) is a 0×0 matrix and, consequently, Yp is an isomorphism. This
is the case when Mp = Mp,m is 4-dimensional for one m.

(c) Assume the hypotheses in part (c). Let m′ > m be the integer such that
di j ∈ pm′Z− pm′+1Z. If m = 0, then di j is the only d term divisible by p. Hence
Yp,m′ is a skew-symmetric 2× 2 nonzero matrix and Yp,r is trivial for all r 6= m′.
Therefore, Yp is an isomorphism. If m > 0, then Yp,m and Yp,m′ are both skew-
symmetric and 2× 2, and (because kk`Lk/dk` /∈ pZ) nonzero. Furthermore, every
other Yp,r is 0× 0 for all r 6= m,m′. Therefore, Yp is an isomorphism.

For the rest we prove the “only if” part.
Suppose that Yp is an isomorphism. By Corollary 5.2, Mp is even dimensional,

that is, dim Mp = 0, 2 or 4.
The dim Mp = 0 case coincides with the case when L i /∈ pZ for all i , so we

obtain case (a).
For the dim Mp = 2 case, at least one di j lies in pZ and L i , L j lie in pZ, and no

other d term is a multiple of p, so Yp is necessarily an isomorphism. We can set
m = 0, so that di j ∈ pm+1Z, and all other dab are not in pm+1Z. So we obtain (c).

All that remains is the dim Mp = 4 case. Each Mp,m is even dimensional by
Corollary 5.1. If dim Mp,m = 4 for some m, then Yp,m is 4× 4 and Yp is an isomor-
phism if and only if det(Yp,m) 6= 0. So we obtain case (b).

Finally, suppose there exist m′>m> 0 such that dim Mp,m = dim Mp,m′ = 2. Let
i , j , k, ` be distinct such that L i , L j ∈ pm′Z− pm′+1Z and Lk, L` ∈ pmZ− pm+1Z.
We must have that di j ∈ pm′Z⊆ pm+1Z and every other d term is not in pm+1Z. If
dk` /∈ pmZ, then kk`Lk/dk`, k`k L`/d`k ∈ pZ and Yp,m is the 2×2 zero matrix, yield-
ing a contradiction. Therefore, dk` must be in pmZ. So we obtain case (c) again. �

6. Center of generalized Weyl algebras

Let T be a commutative k-domain. In this section we assume that q := {qi j } is a
set of roots of unity in T and let A := {ai j | 1≤ i < j ≤ j} be a subset of T. Define
the generalized Weyl algebra associated to (q,A) to be the central T-algebra

V (q,A) :=
T 〈x1, . . . , xn〉

(xj xi − qi j xi xj − ai j | i 6= j)
.

Consider a filtration on V (q,A) with deg xi = 1 and det t = 0 for all t ∈ T. Suppose

gr V (q,A) is naturally isomorphic to Tq[x1, . . . , xn]. (E6.0.1)

Consider the hypothesis that,

for any pair (i, j), ai j = 0 whenever qi j = 1. (E6.0.2)
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Proposition 6.1. Suppose (E6.0.1) and (E6.0.2) and let A = V (q,A). If the center
Z(gr A) is a polynomial ring, then so is Z(A), and Z(A)∼= Z(gr A).

Proof. If Z(gr A) is a polynomial ring, then Z(gr A) = T
[
x L1

1 , . . . , x Ln
n
]
, where

L i = lcm{di j | j = 1, . . . , n} (Lemma 4.3). Recall that di j is the order of qi j .
First we claim that x L i

i is in the center of A. For each j , we have the equation
xj xi= qi j xi xj +ai j . If qi j = 1, then xj commutes with xi by hypothesis (E6.0.2), so
xj commutes with x L i

i . If qi j 6= 1, then the order of qi j is di j . The equation
xj xi = qi j xi xj + ai j implies that xj commutes with xdi j

i , as each xj xk
i is equal to

qk
ij x

k
i xj +

(
1+qi j +· · ·+qk−1

i j

)
ai j . Since di j divides L i , xj commutes with x L i

i for
all j 6= i . This shows that x L i

i is central.
Since gr A is the skew polynomial ring Tq[x1, . . . , xn], it is easy to check that

gr Z(A) ⊂ Z(gr A). Since Z(gr A) is generated by
{

x L i
i

}n
i=1, induction on the

degree of element f ∈ Z(A) shows that f is generated by x L i
i . Therefore, the

assertion follows. �

Proposition 6.2. Retain the above notation and suppose (E6.0.1). If ai j 6= 0 for
some i 6= j , then qikqjk = 1 for all k 6= i or j .

Proof. We resolve xk xj xi in two different ways:

(xk xj )xi = (qjk xj xk + ajk)xi

= qjk xj (xk xi )+ ajk xi

= qjk xj (qik xi xk + aik)+ ajk xi

= qjkqik(xj xi )xk + qjkaik xj + ajk xi

= qjkqik(qi j xi xj + ai j )xk + qjkaik xj + ajk xi

= qjkqikqi j xi xj xk + qjkqikai j xk + qjkaik xj + ajk xi ,

and similarly

xk(xj xi )= xk(qi j xi xj + ai j )

= qi j (xk xi )xj + ai j xk

= qi j (qik xi xk + aik)xj + ai j xk

= qi j qik xi (xk xj )+ qi j aik xj + ai j xk

= qi j qikqjk xi xj xk + qi j qikajk xi + qi j aik xj + ai j xk .

Comparing the coefficients of xk gives the result. �

When an algebra A is finitely generated and free over its center (as in the situation
of Proposition 6.1), one should be able to compute the discriminant of A over its
center. We give an example here.
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Example 6.3. Let A be generated by x1, x2, x3, x4 and subject to the relations

x3x1− x1x2 = 0, x4x2+ x2x4 = 0,

x3x2− x2x3 = 0, x3x4+ x4x3 = 0,

x4x1+ x1x4 = 0, x1x2+ x2x1 = x2
3 + x2

4 .

(E6.3.1)

This is the example in [Vancliff and Van Rompay 2000, Lemma 1.1] (with λ= 0).
It is an iterated Ore extension, and therefore Artin–Schelter regular of global
dimension 4.

It is not hard to check that the center of A is generated by x2
i . This algebra is a

factor ring of the algebra B over T := k[t] generated by x1, x2, x3, x4 and subject
to the relations

x3x1− x1x2 = 0, x4x2+ x2x4 = 0,

x3x2− x2x3 = 0, x3x4+ x4x3 = 0,

x4x1+ x1x4 = 0, x1x2+ x2x1 = t.

(E6.3.2)

Note that gr B is a skew polynomial ring over T with the above relations by
setting t = 0. The Y-matrix is 

0 1
2 0 1

2

−
1
2 0 0 1

2

0 0 0 1
2

−
1
2 −

1
2 −

1
2 0

 .
By Corollary 5.5(b), B has center T

[
x2

1 , x2
2 , x2

3 , x2
4

]
. The discriminant of B over

its center is 248
(
4x2

1 x2
2 − t2

)8x16
3 x16

4 , by the next lemma. By Lemma 1.2, the
discriminant of A over its center is 248

(
4x2

1 x2
2 −

(
x2

3 + x2
4

)2)8x16
3 x16

4 . We will see in
the next sections that D(A)= A. As a consequence of Theorem 0.5, A is cancellative
and the automorphism group of A is affine.

Lemma 6.4. Suppose the k[t]-algebra B is generated by x1, x2, x3, x4 and subject
to the six relations given (E6.3.2). Then the discriminant of B over its center is
248
(
4x2

1 x2
2 − t2

)8x16
3 x16

4 .

Sketch of the proof. It is routine to check that the center of B is

Z(B)= k[t]
[
x2

1 , x2
2 , x2

3 , x2
4
]
.

The algebra B is a free module over Z(B) of rank 16 with a Z(B)-basis
{

xa
1 xb

2 xc
3xd

4 |

a, b, c, d = 0, 1
}
. Let {z1, . . . z16} be the above Z(B)-basis. Then we can compute
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the matrix (tr(zi zj ))16×16:

16 0 0 0 0 8t 0 0 0 0 0 0 0 0 0 0
0 16a 8t 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8t 16b 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16c 0 0 0 0 0 0 0 8ct 0 0 0 0
0 0 0 0 16d 0 0 0 0 0 0 0 8dt 0 0 0
8t 0 0 0 0 α 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 16ac 0 8ct 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −16ad 0 −8dt 0 0 0 0 0 0
0 0 0 0 0 0 8ct 0 16bc 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −8dt 0 −16bd 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −16cd 0 0 0 0 −8cdt
0 0 0 8ct 0 0 0 0 0 0 0 β 0 0 0 0
0 0 0 0 8dt 0 0 0 0 0 0 0 γ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16acd 8cdt 0
0 0 0 0 0 0 0 0 0 0 0 0 0 8cdt 16bcd 0
0 0 0 0 0 0 0 0 0 0 −8cdt 0 0 0 0 δ


Here α=−16ab+8t2, β=−16abc+8ct2, γ =−16abd+8dt2, δ=16abcd−8cdt2,
and a = x2

1, b = x2
2, c = x2

3, d = x2
4. We skip the details in computing the above

traces. By using Maple, its determinant is 248
(
4x2

1 x2
2 − t2

)8x16
3 x16

4 . �

7. Three subalgebras

In this section we discuss three (possibly different) subalgebras of A, all of which
are helpful for the applications in the next section.

Makar-Limanov invariants. The first subalgebra is the Makar-Limanov invariant
of A [Makar-Limanov 1996]. This invariant has been very useful in commutative
algebra. For any k-algebra A, let Der(A) denote the set of all k-derivations of A
and let LND(A) denote the set of locally nilpotent k-derivations of A.

Definition 7.1. Let A be an algebra over k.

(1) The Makar-Limanov invariant of A is

ML(A)=
⋂

δ∈LND(A)

ker(δ). (E7.1.1)

(2) We say that A is LND-rigid if ML(A)= A, or LND(A)= {0}.

(3) We say that A is strongly LND-rigid if ML(A[t1, . . . , td ])= A for all d ≥ 0.

The following lemma is clear. Part (2) follows from the fact that ∂ ∈ LND(A) if
and only if g−1∂g ∈ LND(A).
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Lemma 7.2. Let A be an algebra.

(1) ML(A) is a subalgebra of A.

(2) For any g ∈ Aut(A), we have g(ML(A))=ML(A).

Divisor subalgebras. Throughout this subsection let A be a domain containing Z.
Let F be a subset of A. Let Sw(F) be the set of g ∈ A such that f = agb for some
a, b ∈ A and 0 6= f ∈ F. Here Sw stands for “subword”, which can be viewed as
a divisor.

Definition 7.3. Let F be a subset of A.

(1) Let D0(F)= F. Inductively define Dn(F) as the k-subalgebra of A generated
by Sw(Dn−1(F)). The subalgebra D(F)=

⋃
n≥0 Dn(F) is called the F-divisor

subalgebra of A. If F is the singleton { f }, we simply write D({ f }) as D( f ).

(2) If f = d(A/Z) (if it exists), we call D( f ) the discriminant-divisor subalgebra
of A, or DDS of A, and write it as D(A).

The following lemma is well-known [Makar-Limanov 2008, p. 4].

Lemma 7.4. Let x , y be nonzero elements in A and let ∂ ∈ LND(A). If ∂(xy)= 0,
then ∂(x)= ∂(y)= 0.

Proof. Let m and n be the largest integers such that ∂m(x) 6= 0 and ∂n(y) 6= 0. Then
the product rule and the choice of m, n imply that

∂m+n(xy)=
m+n∑
i=0

(n+m
i

)
∂ i (x)∂m+n−i (y)=

(n+m
m

)
∂m(x)∂n(y) 6= 0.

So m+ n = 0. The assertion follows. �

Lemma 7.5. Let F be a subset of ML(A). Then D(F)⊆ML(A).

Proof. Let ∂ be any element in LND(A). By hypothesis, ∂( f )= 0 for all f ∈ F. By
Lemma 7.4, ∂(x)= 0 for all x ∈ Sw(F). So ∂ = 0 when restricted to D1(F). By
induction, ∂ = 0 when restricted to D(F). The assertion follows by taking arbitrary
∂ ∈ LND(A). �

Lemma 7.6. Suppose d(A/Z) is defined. Then the DDS D(A) is preserved by all
g ∈ Aut(A).

Proof. By [CPWZ 2015a, Lemma 1.8(6)] or [CPWZ 2016, Lemma 1.4(4)], d(A/Z)
is g-invariant up to a unit. So, if g ∈ Aut(A), then g maps Sw(d(A/Z)) to
Sw(d(A/Z)) and D1(d(A/Z)) to D1(d(A/Z)). By induction, one sees that g maps
Dn(d(A/Z)) to Dn(d(A/Z)). So the assertion follows. �

We need to find some elements f ∈ A so that ∂( f )= 0 for all ∂ ∈ LND(A). The
next lemma was proven in [CPWZ 2016, Proposition 1.5].
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Lemma 7.7. Let Z be the center of A and let d ≥ 0. Suppose A× = k×. Assume
that A is finitely generated and free over Z. Then we have ∂(d(A/Z))= 0 for all
∂ ∈ LND(A[t1, . . . , td ]).

Proof. Let f denote the element d(A[t1, . . . , td ]/Z [t1, . . . , td ]) in Z [t1, . . . , td ].
By [CPWZ 2016, Proposition 1.5], ∂( f )= 0. By [CPWZ 2015a, Lemma 5.4],

f =k× d(A/Z).

The assertion follows. �

Here is the first relationship between the two subalgebras.

Proposition 7.8. Retain the hypothesis of Lemma 7.7. Let d ≥ 0. Then

D(A)⊆ML(A[t1, . . . , td ])⊆ A.

Proof. It is clear that ML(A[t1, . . . , td ])⊆ A by [Bell and Zhang 2016]. Let f equal
d(A/Z), which is in A⊆ A[t1, . . . , td ]. By Lemma 7.7, f ∈ML(A[t1, . . . , td ]). Let
D′( f ) be the discriminant-divisor subalgebra of f in A[t1, . . . , td ]. By Lemma 7.5,
D′( f ) ⊆ ML(A[t1, . . . , td ]). It is clear from the definition that D( f ) ⊆ D′( f ).
Therefore, the assertion follows. �

In particular, by taking d = 0, we have D(A)⊆ML(A).

Aut-bounded subalgebra. In this subsection we assume that A is filtered such that
the associated graded ring gr A is a connected graded domain. Later we further
assume that A is connected graded. Since gr A is a connected graded domain, we
can define deg f to be the degree of gr f , and the degree satisfies the equation

deg(xy)= deg x + deg y

for all x, y ∈ A.

Definition 7.9. Retain the above hypotheses. Let G be a subgroup of Aut(A) and
let V be a subset of A.

(1) Let x be an element in A. The G-bound of x is

degG(x) := sup{deg(g(x)) | g ∈ G}.

(2) Let g be in Aut(A). The V-bound of g is

degg(V ) := sup{deg(g(x)) | x ∈ V }.

(3) The G-bounded subalgebra of A, denoted by βG(A), is the set of elements
x in A with finite G-bound. It is clear that βG(A) is a subalgebra of A
(Lemma 7.10(1)). In particular, the Aut-bounded subalgebra of A, denoted by
β(A), is the set of elements x in A with finite Aut(A)-bound.
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The following lemma is easy, so we omit the proof.

Lemma 7.10. Retain the above notation. Let G be a subgroup of Aut(A).

(1) The set βG(A) is a subalgebra of A.

(2) g(βG(A))= βG(A) for all g ∈ G.

Here is the relation between the two subalgebras D(A) and β(A). Let V be a
subset of A. We say V is of bounded degree if there is an N such that deg(v) < N
for all v ∈ V.

Proposition 7.11. Let A be a filtered algebra such that gr A is a connected graded
domain. Suppose that G ⊆ Aut(A) and F ⊆ A.

(1) If G(F) has bounded degree, then D(F)⊆ βG(A).

(2) If f ∈ A is such that g( f )=Z(A)× f for all g ∈ G, then D( f )⊆ βG(A).

(3) Assume that A is finitely generated and free over its center Z. Let f = d(A/Z).
Then D(A)= D( f )⊆ β(A).

Proof. (1) We have D0(F)= F ⊆ βG(A) by assumption and use induction on n.
Suppose that Dn−1(F) ⊆ βG(A). Assume that Dn(F) is not contained in βG(A).
Then there exists an x ∈ Dn(A) such that G(x) does not have bounded degree. Since
Dn(A) is generated by Sw(Dn−1(A)) as an algebra, there is an f ∈ Sw(Dn−1(A))
such that G( f ) does not have bounded degree. By definition of Sw(Dn−1(A)),
there exists a nonzero f ′ ∈ Dn−1(A) and a, b ∈ A such that f ′ = a f b. Since
gr A is a domain, we have deg(g( f ′)) = deg(g(a))+ deg(g( f ))+ deg(g(b)) for
all g ∈ G. Hence G( f ′) does not have bounded degree, which is a contradiction.
Hence Dn(F)⊆ βG(A) for all n ≥ 1. Therefore, D(F)⊆ βG(A).

(2) Since Z(A)× ⊆ A0, we see that G( f ) has bounded degree, hence part (2)
follows from part (1).

(3) The third assertion is a special case of part (2) by Lemma 1.2. �

Under the hypotheses of Propositions 7.8 and 7.11 (and assuming that A is
finitely generated and free over its center Z ), we have:

ML(A)

D(A)

β(A)

A

⊇
⊆

⊇
⊆

For the rest of this section, we assume that A is a connected graded domain and
that k contains the field Q. An automorphism g of A is called unipotent if

g(v)= v+ (higher degree terms) (E7.11.1)
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for all homogeneous elements v ∈ A. Let Autuni(A) denote the subgroup of
Aut(A) consisting of unipotent automorphisms [CPWZ 2016, after Theorem 3.1].
If g ∈ Autuni(A), we can define

log g := −
∞∑

i=1

1
i
(1− g)i . (E7.11.2)

Let C be the completion of A with respect to the graded maximal ideal m := A≥1.
Then C is a local ring containing A as a subalgebra. We can define degl :C→Z by
setting degl(v) to be the lowest degree of the nonzero homogeneous components of
v ∈ C . We define a unipotent automorphism of C in a similar way to (E7.11.1) by
using degl . It is clear that if g∈Autuni(A), then it induces a unipotent automorphism
of C , which is still denoted by g.

Lemma 7.12. Let A be a connected graded domain. Let g ∈ Autuni(A) and let G
be any subgroup of Aut(A) containing g. Let B denote βG(A). Then (log g)|B is a
locally nilpotent derivation of B. Further, g|B is the identity if and only if (log g)|B
is zero.

Proof. Let C be the completion of A with respect to the graded maximal ideal
m := A≥1. Let g also denote the algebra automorphism of C induced by g. Then g
is also a unipotent automorphism of C .

Since g is unipotent, degl(1−g)(v)>degl v for any 0 6=v∈C . By induction, one
has deg(1−g)n(v)≥n+deg v for all n≥1. Thus (log g)(v) converges and therefore
is well-defined. It follows from a standard argument that log g is a derivation of C
(this is also a consequence of [Freudenburg 2006, Proposition 2.17(b)]).

Let v be an element in B :=βG(A). Note that gn(v)∈ B for all n by Lemma 7.10.
Since v∈ B, there is an N0 such that deg gn(v)<N0 for all n. If (1−g)n(v) 6=0, then

deg(1− g)n(v)= deg
( n∑

i=0

(n
i

)
gi (v)

)
< N0 for all n. (E7.12.1)

When n ≥ N0, the inequalities from the previous paragraph imply that

degl(1− g)n(v)≥ n+ deg v ≥ N0, (E7.12.2)

which contradicts (E7.12.1) unless (1− g)n(v)= 0. Therefore,

(1− g)n(v)= 0 for all n > N0. (E7.12.3)

By (E7.12.3), the infinite sum of log g in (E7.11.2) terminates when applied
to v ∈ B, and (log g)(v) ∈ A. By Lemma 7.10, (log g)(v) ∈ B. Since log g is a
derivation of C , it is a derivation when restricted to B.
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Next we need to show that it is a locally nilpotent derivation when restricted
to B. It suffices to verify that, for any v ∈ B, (log g)N (v)= 0 for N � 0, which
follows from (E7.11.2) and (E7.12.3).

The final assertion follows from the fact that g is the exponential function of
log g and log g is locally nilpotent. �

Now we are ready to prove the second part of Theorem 0.5 without the finite
GK-dimension hypothesis.

Theorem 7.13. Let k be a field of characteristic zero and let A be a connected
graded domain over k. Assume that A is finitely generated and free over its center Z
in part (2).

(1) If ML(A)= β(A)= A, then Autuni(A)= {1}.

(2) If D(A)= A, then Autuni(A)= {1}.

Proof. (1) By hypothesis, B := β(A) equals A. Let g ∈ Autuni(A). Then (log g)|B
is a locally nilpotent derivation of B by Lemma 7.12. Hence log g ∈ LND(A).
Since ML(A) = A, we have LND(A) = {0}. So log g = 0. By Lemma 7.12, g is
the identity.

(2) Combining the hypothesis D(A)= A with Propositions 7.8 and 7.11, we have
ML(A)= β(A)= A. The assertion follows from part (1). �

8. Applications

In this section we assume that k is a field of characteristic zero.

Zariski cancellation problem. The Zariski cancellation problem for noncommu-
tative algebras was studied in [Bell and Zhang 2016]. We recall some definitions
and results.

Definition 8.1. [Bell and Zhang 2016, Definition 1.1] Let A be an algebra.

(1) We call A cancellative if A[t] ∼= B[t] for some algebra B implies that A ∼= B.

(2) We call A strongly cancellative if, for any d ≥ 1, A[t1, . . . , td ] ∼= B[t1, . . . , td ]
for some algebra B implies that A ∼= B.

The original Zariski cancellation problem, or ZCP, asks if the polynomial ring
k[t1, . . . , tn], where k is a field, is cancellative. A recent result of Gupta [2014a;
2014b] settled the question negatively in positive characteristic for n ≥ 3. The
ZCP in characteristic zero remains open for n ≥ 3. Some history and partial results
can be found in [Bell and Zhang 2016], where the authors used discriminants and
locally nilpotent derivations to study the ZCP for noncommutative rings.

One of their main results is the following.
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Theorem 8.2 [Bell and Zhang 2016, Theorems 0.4 and 3.3]. Let A be a finitely gen-
erated domain of finite Gelfand–Kirillov dimension. If A is strongly LND-rigid (re-
spectively, LND-rigid), then A is strongly cancellative (respectively, cancellative).

Now we have an immediate consequence, which is the first part of Theorem 0.5.
Combining it with Theorem 7.13, we have finished the proof of Theorem 0.5.

Theorem 8.3. Let A be a finitely generated domain of finite GK-dimension. Let Z
be the center of A and suppose A× = k×. Assume that A is finitely generated and
free over Z. If A = D(A), then A is strongly cancellative.

Proof. Combining the hypothesis A = D(A) with Proposition 7.8, we have

A = D(A)⊆ML(A[t1, . . . , td ])⊆ A.

So ML(A[t1, . . . , td ])= A, or A is strongly LND-rigid. The assertion follows from
Theorem 8.2. �

Next we give two examples.

Example 8.4. Let A be generated by x1, x2, x3, x4 and subject to the relations

x1x2+ x2x1 = 0, x2x3+ x3x2 = 0,

x1x3+ x3x1 = 0, x3x4+ x4x3 = 0,

x1x4+ x4x1 = x2
3 , x2x4+ x4x2 = 0.

This is an iterated Ore extension, so it is Artin–Schelter regular of global dimen-
sion 4. This is a special case of the algebra in [Vancliff et al. 1998, Definition 3.1].
Set x2

i = yi for i = 1, . . . , 4. Then Z(A) = k[y1, y2, y3, y4]. The M1-matrix of
(E3.0.1) is

(ai j )4×4 =


2y1 0 0 y3

0 2y2 0 0
0 0 2y3 0
y3 0 0 2y4

 .
The determinant det(ai j ) is f0 := 4y2 y3

(
4y1 y4− y2

3

)
. By Theorem 3.7, the discrim-

inant f := d(A/Z) is f 23

0 . It is clear that y2, y3 ∈ Sw( f ) and y1, y4 ∈ Sw(D1( f )).
Thus xi ∈ Sw(D2( f )) for all i . Consequently, A = D(A). By Theorem 8.3, A is
strongly cancellative.

The next example is somewhat generic.

Example 8.5. Let T be a commutative domain and let A=C(V, q) be the Clifford
algebra associated to a quadratic form q : V → T where V is a free T-module of
rank n. Suppose that n is even. Then the center of A is T [Lam 2005, Chapter 5,
Theorem 2.5(a)]. We assume that A is a domain with A× = k×. Let t1, . . . , tw be a
set of generators of T, and suppose that q(V )⊆ (t1 · · · tw)T or det(q) ∈ (t1 · · · tw)T.



590 Kenneth Chan, Alexander A. Young and James J. Zhang

Then by Theorem 3.7 we have f := d(A/T ) ∈ (t1 · · · tw)2
n−1

. So ts ∈ Sw( f ) for
all s. This shows that T ⊆D(A) and then A =D(A) (as x2

i ∈ T ). By Theorem 8.3,
A is strongly cancellative.

Remark 8.6. Let A be the algebra in Example 6.3. Using the formula for d(A/Z)
given in Lemma 6.4, it is easy to see that A = D(A). So A is cancellative by
Theorem 8.3.

Automorphism problem. By [CPWZ 2015a; 2016], the discriminant controls the
automorphism group of some noncommutative algebras. In this section we com-
pute some automorphism groups by using the discriminants computed in previous
sections. We first recall some definitions and results.

We modify the definitions in [CPWZ 2015a; 2016] slightly. Let A be an N-filtered
algebra such that gr A is a connected graded domain. Let X := {x1, . . . , xn} be a
set of elements in A such that it generates A and gr X generates gr A. We do not
require deg xi = 1 for all i .

Definition 8.7. Let f be an element in A and let X ′={x1, . . . , xm} be a subset of X .
We say f is dominating over X ′ if, for any subset {y1, . . . , yn} ⊆ A that is linearly
independent in the quotient k-space A/k, there is a lift of f , say F(X1, . . . , Xn),
in the free algebra k〈X1, . . . , Xn〉, such that deg F(y1, . . . , yn) > deg f whenever
deg yi > deg xi for some xi ∈ X ′.

The following lemma is easy.

Lemma 8.8. Retain the above notation. Suppose f := d(A/Z) is dominating
over X ′. Then for every automorphism g ∈ Aut(A), we have deg g(xi )≤ deg xi for
all xi ∈ X ′.

Proof. Let yi = g(xi ). Then {y1, . . . , yn} is linearly independent in A/k (as
{x1, . . . , xn} is linearly independent in A/k). If deg yi > deg xi for some i , by the
dominating property, there is a lift of f in the free algebra, say F(X1, . . . , Xn),
such that deg F(y1, . . . , yn) > deg f . Since g is an algebra automorphism,

F(y1, . . . , yn)= F(g(x1), . . . , g(xn))= g(F(x1, . . . , xn))= g( f ).

By [CPWZ 2015a, Lemma 1.8(6)], g( f )= f (up to a unit in Z ). Hence

deg F(y1, . . . , yn)= deg g( f )= deg f,

yielding a contradiction. Therefore, deg g(xi )= deg yi ≤ deg xi for all i . �

We will study the automorphism group of a class of Clifford algebras; see
Example 8.5.

Example 8.9. Let A be the Clifford algebra over a commutative k-domain T as in
Example 8.5 and assume that n is even. Let {z1, . . . , zn} denote a set of generators
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for A. We will use {x1, . . . , xn} for the generators of the generic Clifford algebra Ag

defined in Section 3. Then there is an algebra homomorphism from Ag to A sending
xi to zi for all i . Since n is even, T is the center of A. Assume that A is a filtered
algebra such that gr A is a connected graded domain, so we can define the degree of
any nonzero element in A. Further assume that deg ti = 2 (not 1) for all i = 1, . . . , w
and deg zi > 2 for all i = 1, 2, . . . , n. In particular, there is no element of degree 1.
Some explicit examples are given later in this example.

Recall that we assumed q(V )⊆ (t1 · · · tw)T. Let 2bi j = zj zi + zi zj . Then we can
write bi j = (t1 · · · tw)N b′i j for some N > 0. By Theorem 3.7, the discriminant is
f := d(A/T ) =

[(∏w
s=1 ts

)Nd ′
]2n−1

, where d ′ = det(2b′i j )n×n . We need another
hypothesis, which is that

deg d ′ < N . (E8.9.1)

Let X ′ = {ti }wi=1 and X = {zi }
n
i=1 ∪ X ′. Then f is a noncommutative polynomial

over X ′. We first claim that f is dominating over X ′. Let {yi }
w
i=1 be a set of

elements in A\k. If deg yi > 2 for some i , then deg
[(∏w

s=1 ys
)Nd ′(y1, . . . , yw)

]2n−1

is strictly larger than the degree of f , as we assume that deg d ′ < N. This shows
the claim.

Now let g be any algebra automorphism of A and let yi be g(ti ) for all i . Then,
by Lemma 8.8, deg yi = 2. It follows from the relations zi zi = bi i that deg zi > 3.
Hence (gr A)2 is generated by the ti . This implies that yi is in the span of X ′ and k.
In some sense, every automorphism of A is affine (with respect to X ′). It is a big
step in understanding the automorphism group of A.

Below we study the automorphism group of a family of subalgebras of the generic
Clifford algebra Ag of rank n that is defined in Section 3. As before, we assume
n is even. We have two different sets of variables t , one for Ag and the other for
general A. It would be convenient to unify these in the following discussion. So we
identify {t(i, j) | 1≤ i ≤ j ≤ n} with {ti }wi=1 via a bijection φ. Here w = 1

2 n(n+ 1)
as in the definition of Ag (Section 3).

Let r be any positive integer and let Bg,r be the graded subalgebra of Ag gen-
erated by {t(i, j)} for all 1 ≤ i ≤ j ≤ n (or {ti }wi=1) and zi := xi

(∏w
k=1 tk

)r for all
i = 1, 2, . . . , n. Since Bg,r is a graded subalgebra of Ag, it is a connected graded
domain. This is also a Clifford algebra over Tg := k[t(i, j)] generated by z1, . . . , zn

and subject to the relations

zj zi + zi zj = 2
( w∏

k=1

tk

)2r

t(i, j) =: 2bi j

from which the bilinear form b and associated quadratic form q can easily be
recovered. In particular, q(V ) ⊆

(∏w
k=1 tk

)2r Tg, where V =
⊕n

i=1Tgzi . By the
definition of Ag, we have deg ti = 2. Then deg zi = 1+ 4rw > 3. Now we assume
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that N := 2r is bigger than 2n, which is the degree of d ′ := det(t(i, j)). So we have

n < r, or equivalently deg d ′ < N ,

as required by (E8.9.1). See also Remark 8.10.
Let g be an algebra automorphism of Bg,d . By the above discussion, g(ti ), for

each i , is a linear combination of {tj }wj=1 and 1. Using the relations z2
i = bi i , we see

that deg g(zi )= deg(zi ) for all i . Thus g must be a filtered automorphism of Bg,d .
Since g preserves the discriminant f and f is homogeneous in ti , we have

deg g(ti ) = 2. Further, by using the expression of f and the fact that Tg is a
UFD, g(ti ) can not be a linear combination of the tj of more than one term. Thus
g(ti )= ci tj for some j and some ci ∈ k×. This implies that there is a permutation
σ ∈ Sw and a collection of units {ci }

w
i=1 such that g(ti ) = ci tσ(i) for all i . Since

g is filtered (by the last paragraph), g(zi ) =
∑n

h=1dihzh + ei , where dih, ei ∈ k.
Applying g to the relation

z2
i = bi i =

( w∏
i=1

ti

)N

tφ(i,i), where N := 2r,

we obtain that(∑
h

dihzh

)2

+ 2ei

(∑
h

dihzh

)
+ e2

i =

( w∏
i=1

ci ti

)N

g(tφ(i,i)).

Since
(∑

h dihzh
)2
∈ T, we have ei

(∑
h dihzh

)
= 0. Consequently, ei = 0 and

g(zi )=
∑n

h=1dihzh . Applying g to the relations

zi zj + zj zi = 2bi j = 2
( w∏

i=1

ti

)N

tφ(i, j)

and expanding the left-hand side, we obtain∑
h,l

dihdjl(zhzl + zl zh)= 2
( w∏

i=1

ci ti

)N

g(tφ(i, j)).

Hence dihdjl is nonzero for only one pair (h, l). Thus there is a set of units {di }
n
i=1

and a permutation ψ ∈ Sn such that g(zi )= di zψ(i) for all i = 1, . . . , n. Then the
above equation implies that

di dj

( w∏
i=1

ti

)N

tφ(ψ(i),ψ( j)) =

( w∏
i=1

ci

)N( w∏
i=1

ti

)N

cφ(i, j)tσ(φ(i, j))

for all i , j . Therefore,

φ(ψ(i), ψ( j))= σ(φ(i, j)) (E8.9.2)
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and

di dj =

( w∏
i=1

ci

)N

cφ(i, j) (E8.9.3)

for all i , j .
By (E8.9.2), σ is completely determined by ψ ∈ Sn . Let d̄i = di

(∏w
i=1ci

)−r.
Then (E8.9.3) says that d̄i d̄j = cφ(i, j). So

∏w
i=1ci =

∏
1≤i≤ j≤n d̄i d̄j . This means

the cφ(i, j) and di are completely determined by the d̄i . In conclusion,

Aut(Bg,r )∼= {ψ ∈ Sn}n
{
d̄i ∈ k× | i = 1, . . . , n

}
∼= Sn n (k×)n.

In particular, every algebra automorphism of Bg,r is a graded algebra automorphism.

Remark 8.10. As a consequence of the computation in Example 8.9, Aut(Bg,r )

is independent of the parameter r when r > n. In fact, this assertion holds for all
r > 0, but its proof requires a different and longer analysis, so it is omitted. On the
other hand, Aut(Bg,0)= Aut(Ag) is very different; see Remark 3.9(3).

We will work out one more automorphism group below.

Example 8.11. We continue to study Example 8.4 and prove that every algebra
automorphism of A in Example 8.4 is graded. Some unimportant details are omitted
due to the length.

Claim 1: m := A≥1 is the only ideal of codimension 1 satisfying dimm/m2
= 4.

Suppose I = (x1− a1, x2− a2, x3− a3, x4− a4) is an ideal of A of codimension 1
such that dimk I/I 2

= 4. Then the map π : xi → ai for all i extends to an algebra
homomorphism A→ k. Applying π to the relations of A in (E8.4.1), we obtain

a1a2 = 0, a1a3 = 0, 2a1a4 = a2
3, a2a3 = 0, a3a4 = 0, a2a4 = 0.

Therefore, (ai ) is either (a1, 0, 0, 0), or (0, a2, 0, 0), or (0, 0, 0, a4). By symmetry,
we consider the first case and the details of the other cases are omitted. Let
zi = xi − ai for all i . Then the first relation of (E8.4.1) becomes

z1z2+ z2z1 = (x1− a1)x2+ x2(x1− a1)=−2a1x2 =−2a1z2.

So 2a1z2 ∈ I 2. Since dim I/I 2
= 4, we have a1 = 0. Thus we have proved Claim 1.

One of the consequences of Claim 1 is that any algebra automorphism of A
preserves m. So we have a short exact sequence

1→ Autuni(A)→ Aut(A)→ Autgr(A)→ 1,

where Autgr(A) is the group of graded algebra automorphisms of A and Autuni(A)
is the group of unipotent algebra automorphisms of A.

Claim 2: If f is a nonzero normal element in degree 1, then B := A/( f ) is an
Artin–Schelter regular domain of global dimension 3. By [Rogalski and Zhang 2012,
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Lemma 1.1], B has global dimension 3. Since A satisfies the χ -condition [Artin and
Zhang 1994], so does B. As a consequence, B is AS regular of global dimension 3
[Artin and Schelter 1987]. It is well-known that every Artin–Schelter regular
algebra of global dimension 3 is a domain (following by the Artin–Schelter–Tate–
Van den Bergh classification [Artin and Schelter 1987; Artin et al. 1991; 1990]).

Claim 3: If f ∈ A1 is a normal element, then f ∈ kx2 or f ∈ kx3. First of all, both
x2 and x3 are normal elements by the relations (E8.4.1). Note that xi g = η−1(g)xi

for i = 2, 3, where η−1 is the algebra automorphism of A sending xi to −xi for all i .
Suppose that f is nonzero normal and f /∈ kx3 ∪ kx4. Then the image f̄ of f

is normal in A/(x3). Since A/(x3) is a skew polynomial ring, by [Kirkman et al.
2010, Lemma 3.5(d)], f̄ is a scalar multiple of xi for some i = 1, 2, or 4. This
implies that f is either ax1 + bx3, or ax2 + bx3, or ax4 + bx3 for some a, b ∈ k.
If b = 0, then f = x1 or x4. The relation x1x4+ x4x1 = x2

3 implies that A/( f ) is
not a domain (as x2

3 = 0 in A/( f )). This contradicts Claim 2. So the only possible
case is f = x2 (again yielding a contradiction). Now assume that b 6= 0 (and a 6= 0
because f /∈ kx3∪ kx4). We consider the first case and the details of the other cases
are similar and omitted. Since f = ax1+ bx3, the relation x1x3+ x3x1 = 0 implies
that x2

1 = 0 in A/( f ), which contradicts Claim 2. In all these cases, we obtain a
contradiction, and therefore f ∈ kx2 or f ∈ kx3.

Since A/(x2) is not isomorphic to A/(x3), there is no algebra automorphism
sending x2 to x3. As a consequence, any graded automorphism ψ of A maps
x2 → c2x2 and x3 → c3x3. Let g be any graded algebra automorphism of A.
Let ḡ be the induced algebra automorphism of A/(x3). By [Kirkman et al. 2010,
Lemma 3.5(e)], ḡ sends x1→ c1x1 and x4→ c4x4, or x1→ c1x4 and x4→ c4x1.
Then, by using the original relations in (E8.4.1), one can check that g is of the form

x1→ c1x1, x2→ c2x2, x3→ c3x3, x4→ c4x4,

where c1c2 = c2
3 = c2

4, or

x1→ c1x4, x2→ c2x2, x3→ c3x3, x4→ c4x1,

where c1c2 = c2
3 = c2

4. So

Autgr(A)∼=
{
(c1, c2, c3, c4) ∈ (k×)4 | c1c2 = c2

3 = c2
4
}
,

which is completely determined.

Claim 4: Autuni(A) is trivial. Recall that the discriminant of A over its center is

d :=
(
x2

2 x2
3
(
4x2

1 x2
4 − x4

3
))8
.

By Example 8.4, the DDS subalgebra D(A) is the whole algebra A. The assertion
follows from Theorem 0.5.
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Combining all these claims, one sees that Aut(A)=Autgr(A), which is described
in Claim 3.

Remark 8.12. Ideas as in Remark 8.10 also apply to Example 6.3 and a similar
conclusion holds. The interested reader can fill out the details.
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Regularized theta lifts and (1,1)-currents
on GSpin Shimura varieties

Luis E. Garcia

We introduce a regularized theta lift for reductive dual pairs (Sp4, O(V )), for V a
quadratic vector space over a totally real number field. The lift takes values in the
space of (1,1)-currents on the Shimura variety attached to GSpin(V ); we show
its values are cohomologous to currents given by integration on special divisors
against automorphic Green functions. A later paper will show how to evaluate
the new lift on differential forms obtained as usual (nonregularized) theta lifts.
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3. Currents and regularized theta lifts 606
4. An example: products of Shimura curves 637
Acknowledgments 642
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1. Introduction

1A. Background and main results. The theory of the theta correspondence pro-
vides one of the most powerful tools to construct automorphic forms on classical
groups. In recent years, the work of many authors has led to a geometric version
of this theory describing the behavior of various spaces of so-called special cycles.
Namely, the arithmetic quotients of symmetric spaces attached to classical groups
SO(p, q) and U (p, q) are equipped with a large collection of cycles coming from
the subgroups that fix a given rational subspace; these are generally known as special
cycles. After the work of Kudla and Millson [1986; 1987; 1990] constructing theta
functions that represent their Poincaré dual forms, it has become clear that their
cohomological properties are very closely connected with the theta correspondence;
see, e.g., [Kudla 1997] for a description of their cup products and intersection
numbers for the group SO(n, 2).

In cases where these arithmetic quotients are naturally quasiprojective algebraic
varieties (e.g., for the group SO(n, 2) just mentioned), some of these special cycles
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Keywords: Shimura varieties, theta series, Weil representation.
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define complex subvarieties, and it is interesting to ask about more refined invariants,
such as Green currents for them, or their image in the appropriate Chow groups.
The work of Borcherds [1998; 1999] and its generalization by Bruinier [2002; 2012]
successfully addressed these questions for the case of special divisors on arithmetic
quotients of SO(n, 2). Their construction relies again on the theta correspondence
and is based on considering theta lifts with respect to the reductive dual pair
(SL2, O(V )). The automorphic forms on SL2(A) used in their work as an input are
not of moderate growth; thus, the integrals defining the theta lifts are not convergent
and need to be regularized. With the proper regularization procedure, one can
construct Green functions for special divisors, and also meromorphic automorphic
forms, as theta lifts.

One might wonder if regularized theta lifts for reductive dual pairs of the form
(Sp2n, O(V )) for n ≥ 2 can be defined and whether one can construct interesting
currents on arithmetic quotients of the symmetric space associated with SO(VR)

in this way. Consider such a quotient X0 associated with a lattice 0 ⊂ SO(n, 2),
and let (Y, f ) be a pair consisting of a subvariety Y ⊂ X0 and a meromorphic
function f ∈ C(Y )×. In view of the explicit description of motivic cohomology
and regulator maps in terms of higher Chow groups (see, e.g., [Goncharov 2005]),
it is interesting to consider the current log | f | · δY , whose value on a differential
form α ∈ A ∗c (X0) is given by

(log | f | · δY , α)=

∫
Y

log | f | ·α. (1-1)

The first goal of this paper is to show that, for many pairs (Y, f ) such that Y
is a special subvariety and f has divisor supported in special cycles, the current
log | f | · δY can be obtained as a regularized theta lift for (Sp4, O(V )). This follows
from Theorem 1.1 below. For motivation, note that conjectures by Beilinson [1984]
relate the values of ddc-closed Q-linear combinations of such currents with the
values at certain integral points of L-functions attached to X0. Our construction
allows us to compute the values of some more general currents by using the theta
correspondence; a followup paper will relate them to special values of standard
L-functions of automorphic representations of Sp4. Let us now describe more
precisely the main objects involved in the statement of the theorem.

Let F be a totally real number field and V be a quadratic vector space over
F . We assume that the signature of V is ((n, 2), (n+ 2, 0), . . . , (n+ 2, 0)) with n
positive and even. Let H = ResF/Q GSpin(V ). Attached to H there is a Shimura
variety X of dimension n whose complex points at a finite level determined by a
neat open compact subgroup K ⊂ H(A f ) are given by

XK = H(Q)\(D× H(A f ))/K . (1-2)
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Here D denotes the hermitian symmetric space attached to the Lie group SO(VR).
For fixed K , the complex manifold XK is a finite union of arithmetic quotients
of the form X0 := 0\D+, where D+ denotes one of the connected components
of D. Consider two vectors v,w ∈ V spanning a totally positive definite plane in
V and write 0v (resp. 0v,w) for the stabilizer of v (resp. of both v and w) in 0.
One can define complex submanifolds D+v ⊂ D+ and D+v,w ⊂ D+v , each of complex
codimension one, and holomorphic maps

D+v,w
//

��

D+v
//

��

D+

��

X (v,w)0 = 0v,w\D+v,w
ι

// X (v)0 = 0v\D+v
f

// X0

(1-3)

where the maps in the bottom row are proper and generically one-to-one. In
Section 3B we recall the construction of a function

G(v,w)0 ∈ C∞
(
X (v)0 − ι(X (v,w)0)

)
that is a Green function for the divisor [ι(X (v,w)0)] ∈ Div(X (v)0); this function
is locally integrable and hence defines a current [G(v,w)0] ∈ D0(X (v)0). Define
the current

[8(v,w)0] = 2π i · f∗([G(v,w)0]) ∈ D1,1(X0), (1-4)

where f∗ : D0(X (v)0)→ D1,1(X0) denotes the pushforward map. Note that the
Q-linear span of the currents [8(v,w)0] for varying w and fixed v includes all the
currents of the form 2π i · log | f | · δX (v)0 , where f ∈ C(X (v)0)×⊗Z Q is one of
the meromorphic functions constructed by Bruinier [2012, Theorem 6.8]. Given a
totally positive definite symmetric matrix T ∈ Sym2(F) and a Schwartz function
ϕ ∈ S (V (A f )

2) fixed by K , in Section 3G we define a current [8(T, ϕ)K ] ∈
D1,1(XK ) as a finite sum of currents [8(v,w)0] weighted by the values of ϕ. As
an example, consider the case treated in Section 4B, where XK = X B

0 × X B
0 is a

self-product of a full level Shimura curve X B
0 attached to an indefinite quaternion

algebra B over Q. Here the currents [8(T, ϕ)K ] admit a description in terms of
Hecke correspondences and CM points on XK . Namely, if p is a prime not dividing
the discriminant of B such that p ≡ 1 (mod 4), and writing L =Q[

√
−p], then for

a certain choice of ϕ = ϕ0 we have[
8

((
1

p

)
, ϕ0

)
K

]
= 2π i · (X B

0
1
−−→ X B

0 × X B
0 )∗([G tL/Q[CM(OL )]]). (1-5)

where1 denotes the diagonal embedding and G tL/Q[CM(OL )] denotes a Green function
for the divisor tL/Q[CM(OL)] of points in X B

0 with CM by OL (see (4-28)).
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Our first main result will show that the currents [8(T, ϕ)K ] are cohomologous
to some currents obtained by a process of regularized theta lifting. Let us now
introduce these theta lifts. In Section 3H we define, for ϕ ∈ S (V (A f )

2) fixed
by K and g ∈ Sp4(AF ), a theta function θ(g;ϕ)K valued in the space of smooth
(1,1)-forms on XK . In the same section, we introduce a function

MT (s) : N (F)\N (A)× A(R)0 −→ C. (1-6)

Here T denotes a totally positive definite symmetric 2-by-2 matrix, s is a complex
number, N ⊂ Sp4,F denotes the unipotent radical of the Siegel parabolic of Sp4,F
and A(R)0 denotes the connected component of the identity of the real points
of the subgroup A ⊂ Sp4,F of diagonal matrices in Sp4,F . This function grows
exponentially along A(R)0. We define the regularized theta lift(

MT (s), θ(·, ϕ)K
)reg
=

∫
A(R)0

∫
N (F)\N (A)

MT (na, s)θ(na, ϕ)K dn da, (1-7)

with appropriate measures dn and da.

Theorem 1.1. (1) The regularized integral (MT (s), θ(·;ϕ)K )
reg converges for

Re(s)� 0 on an open dense set of XK whose complement has measure zero
and defines a locally integrable (1,1)-form 8(T, ϕ, s)K on XK .

(2) Let D̃1,1(XK ) = D1,1(XK )/(Im(∂) + Im(∂̄)). The current [8(T, ϕ, s)K ] ∈
D̃1,1(XK ) defined by 8(T, ϕ, s)K admits meromorphic continuation to s ∈ C;
moreover, its constant term at s = s0 = (n− 1)/2 satisfies

CTs=s0
[8(T, ϕ, s)K ] = [8(T, ϕ)K ]

as elements of D̃1,1(XK ).

In fact, Proposition 3.19 shows that the currents in the theorem are compatible
under the maps D1,1(XK ′)→ D1,1(XK ) induced from inclusions K ′ ⊂ K of open
compact subgroups, so that we obtain currents

[8(T, ϕ)] = ([8(T, ϕ)K ])K ∈ D1,1(X) := lim
←−−

K
D1,1(XK ) (1-8)

and similarly [8(T, ϕ, s)] ∈ D1,1(X) that agree on closed differential forms.
A particularly interesting subspace of D1,1(XK ) is the image of the regulator

map

rD : CH2(XK , 1)→ D1,1(XK ) (1-9)

whose definition we recall in Section 3I; in particular, we would like to characterize
the currents [8K ] in the Q-linear span of the currents [8(T, ϕ)K ] that belong to the
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image of rD . We will prove in Proposition 3.23 that, when dim XK ≥ 4, we have
for such a current 8K ,

[8K ] ∈ rD ⇐⇒ ddc
[8K ] = 0. (1-10)

Let us assume from now on that V is anisotropic over F ; this implies that XK
is compact. Once the currents [8(T, ϕ)] have been constructed, we would like to
evaluate them on differential forms α ∈A n−1,n−1

c (XK ). Since the form8(T, ϕ, s)K
is obtained as a (regularized) integral, it is natural to try to do so by interchanging
the integrals. However, the regularized integral is not absolutely convergent, and
the exchange is not justified. To get around this problem, we introduce some locally
integrable (1,1)-forms 8̃(T, ϕ, s)K related to the8(T, ϕ, s)K in Theorem 1.1. They
are also obtained as regularized theta lifts and the associated currents [8̃(T, ϕ, s)K ]
are compatible under the maps induced by inclusions K ′⊂K , thus defining a current
[8̃(T, ϕ, s)] ∈D1,1(X). As before, these currents enjoy a property of meromorphic
continuation to s ∈ C, and their constant terms satisfy

CTs=s0
[8̃(T1, ϕ1, s)] − [8̃(T2, ϕ2, s)] ≡ [8(T1, ϕ1)] − [8(T2, ϕ2)] (1-11)

modulo Im(∂)+ Im(∂̄) for pairs (T1, ϕ1), (T2, ϕ2) related by a certain involution ι
(see (3-82)). Here, at a finite level K , the current on the right hand side is a finite
sum of currents of the form [8(v,w)0] − [8(w, v)0], with [8(v,w)0] given by
(1-4); see Remark 3.24 for some motivation on these currents. Moreover, using
ideas of Bruinier and Funke [2004], we show that the values [8̃(T, ϕ, s)K ](α) for
large Re(s) can be computed by reversing the order of integration; the precise
statement is the following.

Proposition 3.27. Let K ⊂ H(A f ) be an open compact subgroup that fixes ϕ and
let α ∈ A n−1,n−1

c (XK ). Then, for Re(s)� 0, we have

([8̃(T, ϕ, s)K ], α)=
∫

A(R)0

∫
N (F)\N (A)

M̃ T (na, s)
∫

XK

θ(na;ϕ⊗ ϕ̃∞)K ∧α dn da.

This result also gives information on the values of the currents [8(T, ϕ)]; see
Corollary 3.28.

1B. Outline of the paper. We now describe the contents of each section in more
detail. Section 2 is a review of definitions and basic facts about Shimura varieties
X attached to GSpin groups. In it we recall the definition of the relevant Shimura
datum, describe the connected components of XK at a finite level K and introduce
the tautological line bundle L and its canonical metric. Then we recall the definition
of special cycles in XK and their weighted versions introduced by Kudla.

In Section 3 we construct currents in D1,1(XK ). Sections 3A and 3B first review
previous work by Oda, Tsuzuki and Bruinier on secondary spherical functions on
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the symmetric space D attached to SO(n, 2), and on automorphic Green functions
for special divisors on arithmetic quotients 0\D+ (here D+ denotes one of the
connected components of D). In Section 3C we introduce some differential forms
with singularities on D. These forms depend on a complex parameter s and are
used in Section 3D to define (1,1)-forms on 0\D+ with singularities on special
divisors. We prove that these (1,1)-forms are locally integrable and therefore
define currents in D1,1(0\D+). Section 3E then shows that these currents admit
meromorphic continuation to s ∈ C and that their regularized value at a certain
value s0 is cohomologous to the pushforward of the automorphic Green function in
Section 3B defined on a certain special divisor. An adelic formulation of the above
constructions is provided in Section 3F. After this, in Section 3G, we introduce
weighted currents; their behavior under pullbacks induced by inclusions of open
compact subgroups K ′ ⊂ K and under the Hecke algebra of the GSpin group is
described. Section 3H explains how these weighted currents can be constructed
as regularized theta lifts for the dual pair (Sp4, O(V )). In Section 3I we give a
necessary and sufficient condition for the currents above to belong to the image of
the regulator map from the higher Chow group CH2(XK , 1). Section 3J introduces
some related currents on XK and uses their presentation as regularized theta lifts to
prove that they can be evaluated on differential forms by interchanging the order of
integration.

The example of a product of Shimura curves described above is considered in
Section 4. This section starts with some definitions and basic facts on Shimura
curves in Section 4A. In Section 4B, we describe several of the currents introduced
in Section 3 in terms of Hecke correspondences and CM divisors.

1C. Notation. The following conventions will be used throughout the paper.

• We write Ẑ = lim
←−−n(Z/nZ) and M̂ = M ⊗Z Ẑ for any abelian group M . We

write A f =Q⊗Z Ẑ for the finite adeles of Q and A= A f ×R for the full ring
of adeles.

• For a number field F , we write AF = F ⊗Q A, AF, f = F ⊗Q A f and F∞ =
F ⊗Q R. We will suppress F from the notation if no ambiguity can arise.

• For a finite set of places S of F , we will denote by AS and AS the subset of
adeles in AF supported on S and away from S, respectively.

• We denote by ψQ =
⊗

v ψQv
: Q\AQ→ C× the standard additive character

of AQ, defined by

ψQp(x)= e−2π i x for x ∈ Z[p−1
],

ψR(x)= e2π i x for x ∈ R.
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If Fv is a finite extension of Qv , we set ψv = ψQv
(tr(x)), where tr : Fv→Qv

is the trace map. For a number field F , we write ψ =
⊗

v ψv : F\AF → C×

for the resulting additive character of AF .

• For a locally compact, totally disconnected topological space X , the symbol
S (X) denotes the Schwartz space of locally constant, compactly supported
functions on X . For X a finite dimensional vector space over R, the sym-
bol S (X) denotes the Schwartz space of all C∞ functions on X all whose
derivatives are rapidly decreasing.

• For a ring R, we denote by Matn(R) the set of all n-by-n matrices with entries
in R. The symbols 1n and 0n denote the identity and zero matrices in Matn(R).

• The transpose of a matrix x ∈ Matn(R), is denoted tx , and the set of all
symmetric matrices in Matn(R) is Symn(R)= {x ∈Matn(R) | x = tx}.

• X q Y denotes the disjoint union of X and Y .

• If an object φ(s) depends on a complex parameter s and is meromorphic in s,
we denote by CTs=s0

φ(s) the constant term of its Laurent expansion at s = s0.

2. Shimura varieties and special cycles

2A. Shimura varieties. We recall the facts about orthogonal Shimura varieties that
we will need. We follow [Kudla 1997] closely, to which the reader is referred for
further details. Let F be a totally real number field of degree d with embeddings
σi : F→R, i = 1, . . . , d . Let (V, Q) a quadratic vector space over F of dimension
n+ 2 (with n ≥ 1); we assume that V1 = V ⊗F,σ1 R has signature (n, 2) and that
Vσi = V ⊗F,σi R is positive definite for i = 2, . . . , d .

Let H = ResF/Q GSpin(V ). The group H fits into a short exact sequence

1−→ ResF/Q Gm −→ H −→ ResF/Q SO(V )−→ 1. (2-1)

Denote by D the set of oriented negative definite planes in V1. We will fix once
and for all a point z0 ∈ D and will denote by D+ the connected component of
D containing z0. The group SO(V1) ∼= SO(n, 2) acts transitively on D, and the
stabilizer Kz0

of z0 is isomorphic to SO(n)×SO(2). We have

D∼= SO(n, 2)/(SO(n)×SO(2)). (2-2)

To the pair (H,D) one can attach a Shimura variety Sh(H,D) that has a canonical
model over σ1(F). Namely, in [Kudla 1997, p. 44] a homomorphism

h0 : ResC/R Gm = C× −→ H(R)=
∏

i=1,...,d

GSpin(Vσi ) (2-3)
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is defined such that D becomes identified with the space of conjugates of h0 by H(R);
the resulting action of H(R) on D factors through the projection H(R)→ SO(V1).
For any compact open subgroup K ⊂ H(A f ), we have

XK = Sh(H,D)K (C)= H(Q)\(D× H(A f ))/K . (2-4)

Thus XK is the complex analytification of a quasiprojective variety Sh(H,D)K of
dimension n defined over σ1(F). If V is anisotropic over F , then Sh(G,D)K is
actually projective.

We recall the description of the connected components of XK . Let H der ∼=

ResF/Q Spin(V ) be the derived subgroup of H . There is an exact sequence

1−→ H der
−→ H

ν
−→ T −→ 1, (2-5)

where T = ResF/Q Gm and ν is given by the spinor norm. Let T (R)+ = (R>0)
d
⊂

T (R) and H+(R)= ν−1(T (R)+) be the set of elements of H(R) of totally positive
spinor norm; this is the subgroup of H(R) stabilizing D+. Define

H+(Q)= H(Q)∩ H+(R). (2-6)

By the strong approximation theorem, we can find h1 = 1, . . . , hr ∈ H(A f ) such
that

H(A f )=

r∐
j=1

H+(Q)hj K . (2-7)

For j = 1, . . . , r , let 0hj = H+(Q)∩ hj K h−1
j . Then

XK
∼=

r∐
j=1

0hj\D
+. (2-8)

We will also need to consider Shimura varieties attached to (V, Q) as above with
n = 0. In this case, the symmetric domain associated with SO(V1) consists of
just one point, while D= D+qD− consists of two points (corresponding to two
different orientations of the same negative definite plane z0). Since it turns out to
be more convenient for our purposes, we define XK as in (2-4) and Sh(H,D)K to
be the union of two copies of the usual Shimura variety attached to H , so that with
these notations we have XK = Sh(H,D)K (C).

For n ≥ 1, we can introduce a different model for D that makes the presence of
an SO(V1)-invariant complex structure obvious. Let Q be the quadric in P(V1(C))

given by
Q = {v ∈ P(V1(C)) | (v, v)= 0}. (2-9)

Note that if {v1, v2} is an orthogonal basis of z ∈ D with (v1, v1)= (v2, v2)=−1,
then v := v1− iv2 ∈ V1⊗C satisfies (v, v)= 0 and (v, v̄) < 0. Moreover, the line
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[v] := C · v is independent of the orthogonal basis we have chosen. Thus we obtain
a well defined map D→Q and one checks that it gives an isomorphism

D−→Q− = {w ∈ P(Vσ1(C)) | (w,w)= 0, (w, w̄) < 0} (2-10)

onto the open subset Q− of the quadric Q.
Consider the tautological line bundle L over Q− defined by

L \ {0} := {w ∈ V1(C) | (w,w)= 0, (w, w̄) < 0}. (2-11)

The action of H(R) on D lifts naturally to L and gives it the structure of a H(R)-
equivariant bundle. Any element v ∈ V1 defines a section sv of L ∨ by the rule
sv(w) = (v,w). We will only consider sv for v of positive norm. The section sv
defines an analytic divisor

div(sv)= {w ∈ P(V1(C)) | (v,w)= 0}. (2-12)

Under the isomorphism D∼=Q− described above, div sv corresponds to Dv ⊂ D,
where Dv denotes the set of negative definite planes in V1 that are orthogonal to v.

The line bundle L carries a natural hermitian metric ‖ · ‖ defined by ‖w‖2 =
|(w, w̄)|; this metric is H(R)-equivariant. We say that a function f ∈ C∞(D−Dv)

has a logarithmic singularity along Dv if f (z)− log ‖sv(z)‖2 extends to C∞(D).

2B. Special cycles. Let U ⊂ V be a totally positive definite subspace and let W
be its orthogonal complement in V . Denote by HU the pointwise stabilizer of U
in H . Then HU ∼= ResF/Q GSpin(W ); its associated symmetric domain can be
identified with DU ∩D+, where DU denotes the subset of D consisting of planes
z that are orthogonal to U . For a compact open K ⊂ H(A f ) and h ∈ H(A f ), let
KU,h = HU (A f )∩ hK h−1, an open compact subset of HU (A f ). Define

X (U, h)K = HU (Q)\(DU × HU (A f ))/KU,h . (2-13)

If h= 1, we write X (U )K := X (U, 1)K . Thus X (U, h)K is the set of complex points
of a variety Sh(HU ,DU )KU,h defined over σ1(F). There is a morphism

iU : Sh(HU ,DU )−→ Sh(H,D) (2-14)

defined over σ1(F); on complex points it induces a map

iU,h,K : X (U, h)K −→ XK (2-15)

that is proper and birational onto its image. Denote by Z(U, h)K the associated
effective cycle on XK . For a set of vectors x = (x1, . . . , xr ) ∈ V r spanning a
totally positive definite vector space U of dimension r , we will write Z(x, h)K for
Z(U, h)K .
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For a description of the connected components of these special cycles, see [Kudla
1997, Sections 3 and 4]; the main result is that these cycles have a finite number
of components of the form Z(U, h)0 that we now define. For h ∈ H(A f ), let
0h = H+(Q)∩ hK h−1. Define 0U,h = 0h ∩ HU (R) and consider the map

X (U, h)0 := 0U,h\D
+

U −→ 0h\D
+
= X0h . (2-16)

(For h= 1, we will just write X (U )0 for X (U, 1)0). The image defines a connected
cycle in X0h that we denote by Z(U, h)0.

In [Kudla 1997], certain weighted sums of these cycles are defined. Namely, let
r = dimF U and denote by Symr (F)>0 the space of totally positive definite r -by-r
matrices with coefficients in F . For T ∈ Symr (F)>0 and ϕ ∈S (V (A f )

r )K with
values in a ring R, define

Z(T, ϕ)K =
∑

h∈HU (A f )\H(A f )/K

ϕ(h−1x)Z(x, h)K , (2-17)

where x = (x1, . . . , xr ) ∈ V r is any vector with 1
2(xi , x j )= T (if no such x exists,

we set Z(T, ϕ) = 0). Note that the sum is finite and hence defines a cycle in
Z r (XK )⊗Z R.

3. Currents and regularized theta lifts

In this section we introduce some differential forms and currents on arithmetic
quotients of D+. Some of these forms will be defined as Poincaré series by summa-
tion of 0-translates of a differential form on D+. Here and throughout this paper,
0 ⊂ H+(R) denotes a group of the form 0 = H+(Q)∩ K , where K ⊂ H(A f ) is
some neat open compact subgroup. If U ⊂ V is a totally positive definite subspace,
we will write 0U = 0∩ HU (R), where HU denotes the pointwise stabilizer of U in
H . If U is spanned by vectors v1, . . . , vr , we will sometimes write 0v1,...,vr for 0U .

Several currents defined in this Section will be described explicitly in Section 4B,
where we consider the particular case when XK is a product of Shimura curves. The
description given there is in terms of Hecke correspondences and CM points, and
the reader is advised to study the examples given there to understand the definitions
and properties to follow.

3A. Secondary spherical functions on D. Recall that D denotes the set of oriented,
negative definite 2-planes in V1 = V ⊗F,σ1 R. For every vector v ∈ V1 of positive
norm we have defined an analytic divisor Dv ⊂ D consisting of those z ∈ D that
are orthogonal to v. Denote by Hv(R) the stabilizer of v in H(R). Then we have
Dv
∼=Hv(R)/(K∩Hv(R)), so that Dv can be identified with the hermitian symmetric

space associated with Hv(R). We write D+v := Dv ∩D+.
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We recall some of the main results of Oda and Tsuzuki [2003] concerning
the existence and main properties of secondary spherical functions on D. To
state these results, we need to introduce certain subgroups of G = SO(V1). Let
{v1, . . . , vn+2} be a basis of V1 whose quadratic form is In,2 and such that v=v1. Let
z0=〈vn+1, vn+2〉 and denote by Kz0

the stabilizer of z0 in SO(V1)
+. Let W ⊂ V1 be

the plane generated by v1 and vn+1 and let A= SO(W )0 be the identity component
of its orthogonal group. Then A={at | t ∈R} where atv1= cosh(t)v1+sinh(t)vn+1.
Let

A+ = {at | t ≥ 0} (3-1)

and Gv be the stabilizer of v in G. Then there is a double coset decomposition

G = GvA+Kz0
. (3-2)

Proposition 3.1 [Oda and Tsuzuki 2003, Proposition 2.4.2]. Let1D be the invariant
Laplacian on D and let ρ0=n/2. Let s be a complex number with Re(s)>ρ0. There
exists a unique function φ(2)(v, z, s) ∈ C∞(D−Dv) with the following properties:

(1) 1Dφ
(2)(v, z, s)= (s2

− ρ2
0)φ

(2)(v, z, s).

(2) φ(2)(v, gz, s)= φ(2)(v, z, s) for every g ∈ Gv.

(3) Consider the function φ(2)(v, g, s) = φ(2)(v, gz0, s) for g ∈ G. It belongs to
C∞(G−GvKz0

) and satisfies φ(2)(v, g′gk, s)=φ(2)(v, g, s) for every g′∈Gv ,
k ∈ Kz0

. Writing G = GvA+Kz0
as above, we have

φ(2)(v, at , s)= log(t)+ O(1) as t→ 0,

φ(2)(v, at , s)= O(e−(Re(s)+ρ0)t) as t→+∞.

It follows that φ(2)(hv, hz, s)= φ(2)(v, z, s) for all h ∈ H(R) and z ∈ D. For a
totally positive vector v ∈ V (F), we will simply write φ(2)(v, z, s) for φ(2)(v1, z, s),
where v1 denotes the image of v in V1. We will sometimes write φ(2)D (v, z, s) for
φ(2)(v, z, s) if we need to be precise about the domain of definition.

The function φ(2)(v, z, s) admits an explicit description in terms of the Gaussian
hypergeometric function. Namely, for |z|< 1, let F(a, b, c, z) be the function given
by

F(a, b, c, z)=
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
,

where we write (a)0 = 1 and (a)n = 0(a+ n)/0(a) for n ≥ 1. For a vector v ∈ V1

and a plane z ∈ D, denote by vz⊥ the projection of v to the orthogonal complement
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z⊥ of z in V1. Then [Oda and Tsuzuki 2003, (2.5.3)]:

φ(2)(v, z, s)=

−
0
( s+ρ0

2

)
0
( s−ρ0

2 +1
)

20(s+1)

(
Q(v)

Q(vz⊥)

)s+ρ0
2

F
(

s+ρ0

2
,

s−ρ0

2
+1, s+1,

Q(v)
Q(vz⊥)

)
. (3-3)

3B. Green currents for special divisors. The functions φ(2)(v, z, s) can be used
to construct Green functions for the special divisors introduced above. Namely,
let 0 ⊂ H(R) be of the form 0 = H+(Q)∩ K and v ∈ V (F) be a vector of totally
positive norm. Recall that we write 0v = 0 ∩ Hv(R). For Re(s) > ρ0, define

G(v, z, s)0 = 2
∑

γ∈0v\0

φ(2)(v, γ z, s). (3-4)

The sum converges absolutely a.e. and defines an integrable function G(v, s)0 on
X0 [Oda and Tsuzuki 2003, Proposition 3.1.1]. Denote by [G(v, s)0] the associated
current on X0, defined by

[G(v, s)0](α)=
∫

X0
G(v, z, s)0 ·α(z), (3-5)

for α ∈ A 2n
c (X0). This current admits meromorphic continuation to s ∈ C with

only simple poles [Oda and Tsuzuki 2003, Theorem 6.3.1]. In fact, as shown by
Bruinier [2012, Theorem 5.12], one can refine this result to show that the function
G(v, z, s)0 itself has meromorphic continuation to the whole complex plane and
that the resulting function is real analytic on X0 − Z(v)0. Define

G(v)0 = CTs=ρ0 G(v, s)0 (3-6)

to be the constant term of G(v, s)0 at s = ρ0.

Theorem 3.2 [Bruinier 2012, Theorem 5.14, Corollary 5.16]. The function G(v)0
is real analytic on X0 − Z(v)0 and has a logarithmic singularity on Z(v)0. The
form ddcG(v)0 = −(2π i)−1∂∂̄G(v)0 extends to a C∞ form on X0 and one has
the equation of currents:

ddc
[G(v)0] = δZ(v)0 + [ddcG(v)0]. (3-7)

Consider now a pair of vectors v,w spanning a totally positive definite plane U
in V . Denote by pv⊥(w) the projection of w to the orthogonal complement of v.
Recall that we write X (v)0 = 0v\D+v and 0v,w = 0 ∩ HU (R). The map

0v,w\D
+

U → X (v)0
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then defines an effective divisor Z(v,w)0 in X (v)0. We define

G(v,w, z, s)0 = 2
∑

γ∈0v,w\0v

φ
(2)
Dv
(pv⊥(w), γ z, s). (3-8)

The results described above imply that the sum converges when Re(s) � 0 to
an integrable function on X (v)0, and that we have a meromorphic continuation
property, so that we can define

G(v,w, z)0 = CTs=(n−1)/2 G(v,w, z, s)0. (3-9)

The function G(v,w)0 is then real analytic on X (v)0 − Z(v,w)0 and has a loga-
rithmic singularity on Z(v,w)0.

3C. The functions φ(v,w, z, s) on D. For a pair of vectors v,w ∈ V1, denote by
pw(v) and pw⊥(v) the projection of v to the line spanned byw and to the orthogonal
complement of w, respectively.

Definition 3.3. Let v,w be a pair of vectors in V1 spanning a positive definite plane
and let s0 = (n− 1)/2. For Re(s) > s0, define

φ(v,w, z, s)=−1
2
0
( s+s0

2

)
0
( s−s0

2 + 1
)

0(s+ 1)

(
Q(v)− Q(pw(v))

Q(vz⊥)− Q(pw(v))

)s+s0
2

× F
(

s+ s0

2
,

s− s0

2
+ 1, s+ 1,

Q(v)− Q(pw(v))
Q(vz⊥)− Q(pw(v))

)
. (3-10)

The following basic properties of φ(v,w, z, s) are easily checked.

Lemma 3.4. (1) For every h ∈ Hv(R), φ(v,w, z, s)= φ(v,w, hz, s).

(2) For every h ∈ H(R), φ(hv, hw, hz, s)= φ(v,w, z, s).

(3) The restriction of φ(v,w, z, s) to Dw equals φ(2)Dw
(pw⊥(v), z, s).

(4) Consider the function φ(v,w, g, s) = φ(v,w, gz0, s), for g ∈ G. It belongs
to C∞(G − GvKz0

) and satisfies φ(v,w, g′gk, s) = φ(v,w, g, s) for every
g′ ∈ Gv, k ∈ Kz0

. Writing G = GvA+Kz0
as above, we have

φ(v,w, at , s)= log(t)+ O(1) as t→ 0, (3-11)

φ(v,w, at , s)= O(e−(Re(s)+s0)t) as t→+∞. (3-12)

Note that (1) and (2) imply φ(v,w, z, s)=φ(v, hvw, z, s) for every hv ∈ Hv(R),
so that for fixed v, z, s, the function φ(v,w, z, s) only depends on the Hv(R)-
orbit of w. Moreover, property (3-12) also holds for all partial derivatives of
φ(v,w, z, s). Note also that property (3-11) implies that φ(v,w, z, s) is locally
integrable. Concerning the behavior of the partial derivatives of φ(v,w, z, s) as z
approaches Dv, we have the following lemma.
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Lemma 3.5. Each of the partial derivatives ∂φ(v,w, z, s), ∂̄φ(v,w, z, s) and
∂∂̄φ(v,w, z, s) is locally integrable.

Proof. Let U ⊂ D+ be open with coordinates {z1, . . . , zn} such that the analytic
divisor D+v ∩U is given by the equation z1= 0 on U . Choosing a trivialization of L

on U we can write−Q(vz)=‖sv(z)‖2= h(z)|z1|
2, where h(z) is real analytic on U .

It follows from the expansion of the hypergeometric function F(a, b, a + b, w)
around w = 1 (see [Lebedev 1965, (9.7.5)]) that, for fixed v,w, s and z ∈U ,

φ(v,w, z, s)= log |z1| + |z1|
2 log |z1| f (z)+ g(z), (3-13)

where f and g are real analytic functions on U . Thus at worst the singularities of
‖∂φ(v,w, z, s)‖, ‖∂̄φ(v,w, z, s)‖ and ‖∂∂̄φ(v,w, z, s)‖ are of the form |z1|

−1 or
log |z1|, and the statement follows. �

The function φ(v,w, z, s) can also be obtained as a Laplace transform of a certain
Whittaker function that depends on s. Namely, consider Kummer’s hypergeometric
function:

M(a, b, z)=
+∞∑
n=0

(a)n
(b)n

zn

n!
. (3-14)

The function

Mν,µ(z)= e−z/2z1/2+µM
(1

2 +µ− ν, 1+ 2µ, z
)

(3-15)

is then a solution of the Whittaker differential equation

d2w

dz2 +

(
−

1
4
+
ν

z
−
µ2
− 1/4
z2

)
w = 0. (3-16)

It is characterized among solutions of this equation by its asymptotic behavior,
given by:

Mν,µ(z)= zµ+1/2(1+ O(z)) when z→ 0, (3-17)

Mν,µ(z)=
0(1+ 2µ)

0(µ− ν+ 1/2)
ez/2z−ν(1+ O(z−1)) when z→∞. (3-18)

For a positive definite symmetric matrix T =
(

a b
b c

)
, define

s0 = (n− 1)/2, k = 1− s0, (3-19)

C(T, s)=−1
2
0
( s−s0

2 + 1
)

0(s+ 1)

(
4π det T

c

)−k/2

, (3-20)

and

MT (y, s)=C(T, s)|y|−k/2 M−k/2,s/2

(∣∣∣∣4π det T
c

y
∣∣∣∣)e

2πb2
c y, Re(s)>s0. (3-21)
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Now consider v,w ∈ V1 spanning a positive definite plane and denote by

T (v,w)= 1
2

(
(v, v) (v,w)

(v,w) (w,w)

)
(3-22)

the associated moment matrix. Then (see [Erdélyi et al. 1954, p. 215, §4.22 (11)])

φ(v,w, z, s)=
∫
∞

0
MT (v,w)(y, s)e−2πy(Q(vz⊥ )−Q(vz))

dy
y
. (3-23)

3D. Currents in D1,1(X0). We now define some (1,1)-forms and currents on X0
by summation over translates by elements of 0 of some differential forms with
singularities on D. For vectors v,w ∈ V (F) spanning a totally positive definite
space, consider the (1,1)-form ω(v,w, z, s) defined for z ∈ D+− (D+v ∪D+w) by

ω(v,w, z, s)= ∂̄(φ(w, v, z, s)∂φ(v,w, z, s))

= ∂̄φ(w, v, z, s)∧ ∂φ(v,w, z, s)

+φ(w, v, z, s)∂̄∂φ(v,w, z, s). (3-24)

We would like to define a (1,1)-form on X0 by averaging the form ω(v,w, z, s)
over 0. Before making such a definition, we need to check that the resulting sums
converge in a suitable sense. This is the content of the next result. Note that we
have

γ ∗(ω(v,w, s))(z)= ω(γ−1v, γ−1w, z, s)

for all γ ∈ 0, due to the invariance property in Lemma 3.4(2).

Proposition 3.6. Let v,w ∈ V (F) be vectors spanning a totally positive definite
plane. Let U = D+− (0 ·D+v ∪0 ·D

+
w). For Re(s)� 0, the sum∑

γ∈0v,w\0

ω(γ−1v, γ−1w, z, s)

and all its partial derivatives converge normally for every z ∈U.

Proof. Since the function φ(v,w, γ z, s) is defined and smooth for every z ∈
D−Dγ−1v, all the terms in the sum are defined whenever z ∈U . Fix z0 ∈U and
let U0 ⊂ U be a compact neighborhood of z0; then there exists ε > 0 such that
|Q((γ v)z)|> ε and |Q((γw)z)|> ε for all γ ∈ 0 and all z ∈U0. It follows from
Lemma 3.4 that on U0 we have

‖ω(γ−1v, γ−1w, z, s)‖< Cε |Q((γ−1v)z⊥)|
−(s+s0)/2 |Q((γ−1w)z⊥)|

−(s+s0)/2

for some constant Cε > 0, and a similar bound holds for the sums of all the partial
derivatives of the summands. Thus, for z ∈ U0, the sums in the statement are
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dominated by a constant multiple of∑
γ∈0v,w\0

|Q((γ−1v)z⊥)|
−(s+s0)/2 |Q((γ−1w)z⊥)|

−(s+s0)/2.

Pick a lattice L ⊂ V (F) such that 0 · (v,w)⊂ L2; then the above sum is dominated
by ( ∑

λ∈L
Q(λ)=Q(v)

|Q(λz⊥)|
−(s+s0)/2

)( ∑
λ∈L

Q(λ)=Q(w)

|Q(λz⊥)|
−(s+s0)/2

)
,

which converges normally on U , since the assignment v 7→ Q(vz⊥)−Q(vz) defines
a positive definite quadratic form on V1 that depends continuously on z. �

Define
8(v,w, z, s)0 = 2

∑
γ∈0v,w\0

ω(γ−1v, γ−1w, z, s), (3-25)

and note that

8(v,w, z, s)0 =8(γ v, γw, z, s)0 for all γ ∈ 0. (3-26)

Proposition 3.6 shows that8(v,w, ·, s)0 converges and defines a smooth (1,1)-form
on X0 − (Z(v)0 ∪ Z(w)0).

Denote the cotangent bundle of a manifold X by T ∗X . A section s of a metrized
vector bundle (E, ‖ · ‖) over a manifold X endowed with a measure dµ(z) is said
to be L1 (or integrable) if ‖s‖ ∈ L1(X, dµ(z)). Our next goal is to show that
8(v,w, z, s)0 is integrable on X0; this is the content of Proposition 3.9. The next
two lemmas will be used in the proof.

Lemma 3.7. Let M be a complete, simply connected Riemannian manifold of
everywhere nonpositive sectional curvature. Let X, Y ⊂ M be complete, simply
connected, totally geodesic submanifolds that intersect transversely and at a single
point z0 ∈ M. For z ∈ M , denote by d(z, z0) the geodesic distance between z
and z0 and by dX (z) and dY (z) the geodesic distance from z to X and from z to
Y , respectively. Then there exists a constant k > 0 such that d(z0, z) ≥ t implies
max{dX (z), dY (z)} ≥ kt for every t ≥ 0.

Proof. Let d > 0 and suppose that max{dX (z), dY (z)}< d. Choose points zX ∈ X
and zY ∈ Y such that d(zX , z) < d and d(zY , z) < d . Let γ (zX , zY ) be the geodesic
segment connecting zX and zY ; such a geodesic exists, is unique and minimizes
the distance (see [Chavel 2006, Exercise IV.12(a)]), hence its length l(γ (zX , zY ))

satisfies l(γ (zX , zY )) < 2d . Let γ (z0, zX ) and γ (z0, zY ) be the geodesic segments
in X and Y connecting z0 and zX and z0 and zY , respectively; as before, these
geodesics exist and are unique and minimizing.
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Consider now the triangle T in M with sides {γ (z0, zX ), γ (z0, zY ), γ (zX , zY )}.
This is a geodesic triangle since X and Y are totally geodesic. Note that the angle
at z0 is bounded below since X and Y are assumed to intersect transversely. By the
Cartan–Hadamard theorem (see [Bridson and Haefliger 1999, Theorem II.4.1]), the
space M is a C AT (0) space, in other words the (unique up to congruence) triangle
in the euclidean plane with same sides as T has larger angles than T (see [Bridson
and Haefliger 1999, Proposition II.1.7(4)]). It follows that d(z0, zX )≤ cd(zX , zY )

for some positive constant c. Hence d(z0, z) ≤ d(z0, zX )+ d(zX , z) < (2c+ 1)d
as required. �

Lemma 3.8. Let M , X , Y be as in Lemma 3.7. Assume that the codimension of X
and Y in M is greater than one and that the sectional curvature of M is bounded
below. Let f1,s, f2,s :R>0→R>0 be continuous functions defined for Re(s)> s0>0
such that

t fi,s(t)= O(1), as t→ 0,

fi,s(t)= e−Re(s)t , as t→∞,

for i = 1, 2. Let dµ(z) be the Riemannian volume element of M. Then, with notation
as in Lemma 3.7, we have∫

M
f1,s(dX (z)) f2,s(dY (z)) dµ(z) <∞,

for Re(s)� 0.

Proof. Let UX = {z ∈ M | dX (z) ≤ 1} and UY = {z ∈ M | dY (z) ≤ 1} be tubular
neighborhoods around X and Y of radius 1. Let U = M − (UX ∪UY ). It suffices
to show that fs(z)= f1,s(dX (z)) f2,s(dY (z)) is integrable when restricted to U , UX

and UY .
Consider first the integral over U . By hypothesis, the functions f1,s(dX (z)) and

f2,s(dY (z)) are bounded on U . By Lemma 3.7, there exists a constant k > 0 such
that

fs(z)= O(e−Re(s)kd(z,z0))

for z ∈U . Let S(z0, t) be the geodesic sphere with center z0 and radius t and denote
by A(t) its area. Since M has curvature that is bounded below, there exists ρ > 0
such that A(t)= O(eρt) (see [Chavel 2006, Theorem III.4.4]). It follows that∫

U
fs(z) dµ(z) <∞

whenever Re(s) > ρ/k.
Now consider the integral over UX (the same argument works for UY ). Since

fs(z) is locally integrable, it suffices to integrate over UX−(UX∩UY ). The inclusion
i : X ⊂ UX admits a left inverse π : UX → X whose fibers are diffeomorphic to
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the closed unit disk in C (this is because the exponential map from the total space
of the normal bundle of X to M is a diffeomorphism). We can compute the
integral over UX by first integrating over the fibers of π and then integrating over
X . By hypothesis, the integral of fs(z) over π−1(z) is O(e−Re(s)d(z,z0)) for every
z ∈ X−(X ∩UY ). Now the resulting integral over X converges for Re(s)� 0 since
the area of a sphere of radius t in X is O(eρt) as above. �

We can now prove that 8(v,w, z, s)0 is integrable on X0 . Recall that D carries
an H(R)-invariant Riemannian metric; it induces an invariant metric on

∧2 T ∗D
that we denote by ‖ · ‖.

Proposition 3.9. Let v,w ∈ V (F) be vectors spanning a totally positive plane. For
Re(s)� 0, the sum 8(v,w, z, s)0 converges outside a set of measure zero in X0
and defines an L1 section of (

∧2 T ∗X0, ‖ · ‖).

Proof. The sum converges for z /∈ Z(v)0 ∪ Z(w)0 by Proposition 3.6, and this set
has measure zero. Thus it remains to prove integrability. We need to show that∫

X0
‖8(v,w, z, s)‖ dµ(z)

is convergent, where dµ(z) denotes an invariant volume form on D+. By Fubini’s
theorem, it suffices to show that∫

0v,w\D+
‖ω(w, v, z, s)‖ dµ(z) <∞.

Let H ′(R)= (Hv)+(R)∩ (Hw)+(R) and let Z H ′(R) be the center of H ′(R). Since
the integrand is left invariant under H ′(R) by Lemma 3.4 and Z H ′(R)0v,w\H ′(R)
has finite volume (see [Borel 1969]), this is equivalent to∫

H ′(R)\D+
‖ω(w, v, z, s)‖ dµ(z) <∞. (∗)

We now apply Lemma 3.8. Namely, let M = H ′(R)\D+. Let X = H ′(R)\D+v and
Y = H ′(R)\D+w . Note that there is a map π : D+→ D+v that is left inverse to the
inclusion D+v ⊂D+ and turns D+ into an Hv(R)+-equivariant real vector bundle of
rank 2 over D+v (see [Kudla and Millson 1988, p. 26]). Hence the inclusions

{∗} = H ′(R)\D+v,w ⊂ H ′(R)\D+v ⊂ H ′(R)\D+

are diffeomorphic to zero sections of vector bundles, in particular they are simply
connected. Moreover D+v and D+w are totally geodesic submanifolds of D+, and
the latter is known to have sectional curvatures that are bounded below and every-
where nonpositive. Hence X , Y and M satisfy the hypotheses in Lemma 3.7 and
Lemma 3.8. Moreover, by Lemma 3.5, the integrand also satisfies the hypotheses
in Lemma 3.8; applying it gives (∗) and hence the assertion. �
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Since 8(v,w, z, s)0 is an integrable section of
∧2 T ∗X0 , its coordinates in any

chart U ⊂ X0 are locally integrable functions. Thus8(v,w, z, s)0 defines a current
on X0.

Definition 3.10. Let v,w ∈ V (F) be vectors spanning a totally positive definite
plane. For Re(s)� 0, define a current [8(v,w, s)0] ∈ D1,1(X0) by

[8(v,w, s)0](ω)=
∫

X0
8(v,w, s)0 ∧ω, (3-27)

for ω ∈ A n−1,n−1
c (X0).

Recall that we assume 0 = H+(Q)∩ K for some open compact K ⊂ H(A f ).
For h ∈ H(A f ), we write 0h = H+(Q)∩ hK h−1 and we define

8(v,w, h, s)0 =8(v,w, s)0h , (3-28)

an L1 section of ∧2T ∗(0h\D
+). As above, we denote by [8(v,w, h, s)0] the

associated current in D1,1(0h\D
+).

3E. Some properties of [8(v,w, h, s)0]. We now introduce another family of
currents [8(v,w)0] on X0 . These currents are obtained by restricting a compactly
supported form ω ∈ A n−1,n−1

c (X0) to a special divisor X (v)0 and integrating it
against a Green function of the form (3-6). In this section we will prove that the
current [8(v,w, s)0] introduced above, regarded modulo Im(∂)+ Im(∂̄), admits
meromorphic continuation to the complex plane s and that the current [8(v,w)0]
is cohomologous to the current obtained as the constant term of the meromorphic
continuation of [8(v,w, s)0] at a certain value s = s0.

For v ∈ V (F) of totally positive norm, denote by δX (v)0 ∈ D1,1(X0) the current
of integration along X (v)0. That is, for ω ∈ A n−1,n−1

c (X0), we have

δX (v)0 (ω)=

∫
X (v)0

ω. (3-29)

Consider now v,w ∈ V (F) spanning a totally positive definite plane. In Section 3B
we recalled the construction (see [Bruinier 2012; Oda and Tsuzuki 2003]) of a
function G(v,w)0 ∈ C∞(X (v)0 − Z(v,w)0). The function has a logarithmic
singularity along Z(v,w)0, hence is locally integrable on X (v)0 and defines
an element of D0(X (v)0) that we denote by [G(v,w)0]. Recall that there is a
pushforward map

f∗ : D0(X (v)0)→ D1,1(X0) (3-30)

induced by f : X (v)0 → X0 and defined by ( f∗(α), ω) = (α, f ∗(ω)) for α in
D0(X (v)0) and ω in A n−1,n−1

c (X0).
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Definition 3.11. Let v,w ∈ V (F) spanning a totally positive definite plane. Define
the current [8(v,w)0] ∈ D1,1(X0) by

[8(v,w)0] = 2π i · f∗([G(v,w)0]). (3-31)

For h ∈ H(A f ) and K ⊂ H(A f ) such that 0 = H+(Q)∩ K , define

[8(v,w, h)0] = [8(v,w)0h ], (3-32)

where 0h = H+(Q)∩ hK h−1.

That is, for ω ∈ A n−1,n−1
c (X0), we have

[8(v,w)0](ω)= 2π i
∫

X (v)0
G(v,w)0 ·ω. (3-33)

See Section 4B2 for an example.
The next proposition relates the currents [8(v,w)0] and [8(v,w, s)0] and is

key to the computation of values of [8(v,w)0] on forms obtained as theta lifts as
below. Let

D̃1,1(X0)= D1,1(X0)/(Im(∂)+ Im(∂̄)). (3-34)

We let [8(v,w, s)0] and [8(v,w)0] also denote the classes of [8(v,w, s)0] and
[8(v,w)0] in D̃1,1(X0).

Proposition 3.12. The current [8(v,w, s)0] ∈ D̃1,1(X0) admits meromorphic con-
tinuation to s ∈ C. Let CTs=s0

[8(v,w, s)0] ∈ D̃1,1(X0) denote the constant term
of [8(v,w, s)0] at s = s0. Then

CTs=s0
[8(v,w, s)0] = [8(v,w)0] (3-35)

as elements of D̃1,1(X0).

Proof. Let α ∈ A n−1,n−1
c (X0). By Proposition 3.9, we have

[8(v,w, s)0](α)= 2
∫
0v,w\D+

ω(v,w, z, s)∧α(z).

For fixed s, write gv(z) = φ(v,w, z, s) and gw(z) = φ(w, v, z, s). We regard
gv as a smooth function defined on 0v,w\D+−0v,w\D+v . If we choose an open
U ⊂0v,w\D+ such that the analytic divisor (0v,w\D+v )∩U is given by the equation
z = 0, then it follows from (3-13) that

∂gv(z)=
dz
z
+ o(|z|−1), ∂̄gv(z)=

dz̄
z̄
+ o(|z|−1).

(Here o(|z|−1) stands for a differential form α on U − (0v,w\D+v ) ∩ U such
that the components of |z|α extend to continuous functions on U vanishing on
(0v,w\D

+
v )∩U .) Similar statements hold for gw(z) when z approaches 0v,w\D+w .

Denote by δv ∈ D1,1(0v,w\D
+) the current given by integration on 0v,w\D+v . The
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following identity of currents on 0v,w\D+ follows from Stokes’s theorem applied
to 0v,w\D+− (0v,w\D+v ∪0v,w\D

+
w):

∂̄[gw∂gv] = [∂̄gw∂gv] + [gw∂̄∂gv] − 2π igwδv. (3-36)

We find that for any closed compactly supported form αc ∈ A n−1,n−1
c (0v,w\D

+),∫
0v,w\D+

ω(v,w, z, s)∧αc(z)= 2π i
∫
0v,w\D

+
v

φ(w, v, z, s)αc(z). (3-37)

The form α(z) is not compactly supported, but we claim that (3-37) is still true for
Re(s)� 0 when we replace αc(z) by α(z). Assuming this for now and using that
the restriction of φ(w, v, z, s) to Dv equals φ(2)Dv

(pv⊥(w), z, s), we conclude that
for Re(s)� 0

[8(v,w, s)0](α)≡ 2π i · 2
∫
0v,w\D

+
v

φ
(2)
Dv
(pv⊥(w), z, s)α(z)

= 2π i
∫
0v\D

+
v

2
∑

γ∈0v,w\0v

φ
(2)
Dv
(pv⊥(w), γ z, s)α(z)

= 2π i
∫
0v\D

+
v

G(pv⊥(w), z, s)0v ·α(z).

This last equation defines a current on X0 that admits meromorphic continuation to
s ∈ C and whose constant term at s = s0 is given by [8(v,w)0]; the claim follows
from this.

It only remains to show that (3-37) still holds when we replace αc(z) by α(z). Let
X = 0v,w\D+ and consider the submanifolds Xv = 0v,w\D+v and Xw = 0v,w\D+w
of X . Let Xv,w = Xv∩Xw =0v,w\D+v,w. As remarked by Kudla and Millson [1988,
p. 26], the exponential map of the normal bundle of Xv,w ⊂ X is a diffeomorphism,
and hence X carries a natural vector bundle structure π : X→ Xv,w of rank 4 over
Xv,w with totally geodesic fibers. For t > 0, let Xv(t) = {z ∈ X | dXv (z) ≤ t} be
the tubular neighborhood of radius t around Xv; here dXv (z) denotes the geodesic
distance between z and Xv. Define Xw(t) and Xv,w(t) similarly and let X (t) =
Xv,w(t)− (Xv(1/t)∪ Xw(1/t)). Then we have X − (Xv ∪ Xw)=

⋃
t≥1 X (t) and∫

X
ω(v,w, z, s)∧α = lim

t→∞

∫
X (t)

ω(v,w, z, s)∧α.

Denote by Sv,w(t) = ∂Xv,w(t) the boundary of Xv,w(t). By Stokes’s theorem,
(3-37) is equivalent to∫

Sv,w(t)−(Xv(1/t)∪Xw(1/t))
φ(w, v, z, s)∂φ(v,w, z, s)∧α −→ 0,
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as t→∞. Since ‖α‖ is bounded, it suffices to show that∫
Sv,w(t)−(Xv(1/t)∪Xw(1/t))

|φ(w, v, z, s)| · ‖∂φ(v,w, z, s)‖ dµ(z)−→ 0, (3-38)

as t →∞. Now let H ′(R) = (Hv)+(R)∩ (Hw)+(R) and note that the integrand
is invariant under H ′(R). Let M = H ′(R)\D+ and consider the submanifolds
X = H ′(R)\D+v and Y = H ′(R)\D+w of M , whose intersection is a single point
z0. Let S(z0, t) be the sphere of geodesic radius t around z0 and let X (1/t) and
Y (1/t) be tubular neighborhoods of X and Y with radius 1/t . Since Xv,w has finite
volume by [Borel 1969, Theorem 15.5], to show that the integrals in (3-38) tend
to 0 it suffices to show that∫

S(z0,t)−(X (1/t)∪Y (1/t))
|φ(w, v, z, s)| · ‖∂φ(v,w, z, s)‖ dµ(z)−→ 0,

as t→∞. Now Lemma 3.7 and Lemma 3.4 show that the integrand is O(te−k Re(s)t)

for some positive constant k > 0. Since the sectional curvatures of M are bounded
below, we have Area(S(z0, t))= O(eρt) for some positive constant ρ > 0 and hence
(3-37) holds, with αc replaced by α, for Re(s) > ρ/k. �

3F. Currents on XK . We introduce now currents in D1,1(XK ). Fix a neat open
compact subgroup K ⊂ H(A f ) and recall that we write

XK = H(Q)\(D× H(A f ))/K .

Thus XK is a compact complex manifold with finitely many components. These
were described in Section 2: choose h1 = 1, . . . , hr ∈ H(A f ) such that

H+(Q)\H(A f )/K =
r∐

j=1

H+(Q)hj K .

For h ∈ H(A f ), we write 0h = H+(Q)∩ hK h−1 (and 0 = 01). Then

XK
∼=

r∐
j=1

0hj\D
+.

Let v,w∈ V (F) span a totally positive definite plane U and recall that we denote by
HU ⊂H the pointwise stabilizer of U . For h∈H(A f ), let KU,h=HU (A f )∩hK h−1.
Choose coset representatives h′i ∈ HU (A f ) such that

(HU )+(Q)\HU (A f )/KU,h =

s∐
i=1

(HU )+(Q)h′i KU,h, (3-39)

and write h′i h= γi hj ki with γi ∈ H+(Q), ki ∈ K and hj = hj (i) a coset representative
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as in (2-8). Note that the double coset (HU )+(Q)γi0hj is well defined, that is, it is
independent of the choice of h′i and decomposition h′i h = γi hj ki .

Definition 3.13. Assume that n > 2. We define 8(v,w, h, s)K to be the section of∧2 T ∗(XK ) whose restriction to the connected component 0hj\D
+ is∑

i→ j

8(γ−1
i v, γ−1

i w, hj , s)0, (3-40)

where the sum runs over those i such that j (i)= j .

Note that this is well defined because of the invariance property (3-26). For
n = 2 we give a different definition. Namely, assume that n = 2 and choose γ0 in
H(Q) such that γ−1

0 D+U = D−U . With h′i as in (3-39), write γ0h′i h = γi0hj0ki0 with
γi0 ∈ H+(Q), ki0 ∈ K and hj0 = hj0(i0) a coset representative as in (2-8). As above,
the double coset (HU )+(Q)γi00hj0

is well defined.

Definition 3.14. Assume that n = 2. We define 8(v,w, h, s)K to be the section of∧2 T ∗(XK ) whose restriction to the connected component 0hj\D
+ is∑

i→ j

8(γ−1
i v, γ−1

i w, hj , s)0 +
∑
i0→ j

8(γ−1
i0
v, γ−1

i0
w, hj , s)0, (3-41)

where the sums run over those i and i0 such that j (i)= j and j0(i0)= j , respectively.

The forms 8(v,w, h, s)K are locally integrable on XK . We denote by

[8(v,w, h, s)K ] ∈ D1,1(XK ) (3-42)

the corresponding current on XK .
We also define a current

[8(v,w, h)K ] ∈ D1,1(XK ) (3-43)

whose restriction to the connected component 0hj\D
+ is∑

i→ j

[8(γ−1
i v, γ−1

i w, hj )0] if n > 2,

∑
i→ j

[8(γ−1
i v, γ−1

i w, hj )0] +
∑
i0→ j

[8(γ−1
i0
v, γ−1

i0
w, hj )0] if n = 2,

(3-44)

with the currents in the sum as in (3-32). See Section 4B3 for an example.

Remark 3.15. The above definitions reflect the structure of the connected compo-
nents of the special cycles Z(v,w, h)K in Section 2B. Namely, let v,w ∈ V (F) be
vectors spanning a totally positive definite plane and h ∈ H(A f ). Attached to such
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a pair there are Shimura varieties X (v,w, h)K and X (v, h)K (see (2-13)) together
with proper maps

X (v,w, h)K
ι
−→ X (v, h)K

f
−→ XK . (3-45)

Then ι∗([X (v,w, h)K ]) defines a divisor on X (v, h)K , and a finite sum of functions
of the form (3-9) defines a Green function G(v,w, h)K on X (v, h)K with a loga-
rithmic singularity along ι∗([X (v,w, h)K ]). Writing [G(v,w, h)K ] for the current
in D0(XK ) associated with G(v,w, h)K , it follows from Kudla’s description of the
connected components of the cycles Z(v,w, h)K (see [Kudla 1997, Lemma 4.1])
that

[8(v,w, h)K ] = 2π i · f∗([G(v,w, h)K ]).

Some basic properties of the forms 8(v,w, h, s)K are summarized in the next
lemma; these properties are analogous to those of special cycles proved in [Kudla
1997, Lemma 2.2]. Recall that for every h ∈ H(A f ) there is a map

r(h) : XhK h−1 −→ XK (3-46)

sending H(Q)(z, h′)hK h−1 to H(Q)(z, h′h)K . The map r(h) is an isomorphism
of complex manifolds, and we denote by 8 7→8 · h the induced map defined on
sections of the bundle of differential forms.

Lemma 3.16. (1) 8(v,w, hk, s)K =8(v,w, h, s)K for all k ∈ K .

(2) 8(v,w, hU h, s)K =8(v,w, h, s)K for all hU ∈ HU (A f ).

(3) 8(γ v, γw, γ h, s)K =8(v,w, h, s)K for all γ ∈ H(Q).

(4) 8(v,w, h1h−1, s)hK h−1 · h =8(v,w, h1, s)K for all h1, h ∈ H(A f ).

Proof. Part (1) is obvious. Part (2) follows from the fact that for any complete set
{h′i | i = 1, . . . , s} of coset representatives for

S(U, h, K )= (HU )+(Q)\HU (A f )/KU,h,

the set {h′i h
−1
U | i = 1, . . . , s} is a complete set of representatives for S(U, hU h, K ).

To prove part (3), note that given any set {h′i | i = 1, . . . , s} as above and any
γ ∈ H(Q), the elements γ h′iγ

−1 for i = 1, . . . , s form a complete set of representa-
tives for S(γ (U ), γ h, K ), so that writing γ h′iγ

−1
· (γ h)= (γ γi )hj ki with j = j (i)

leads to

8(γ v,γw,γ h,s)K
∣∣
0hj\D

+ =

∑
i→ j

8
(
(γ γi )

−1γ v,(γ γi )
−1γw, z,s

)
0hj

=

∑
i→ j

8(γ−1
i v,γ−1

i w, z,s)0hj
= 8(v,w,h,s)K

∣∣
0hj\D

+,

as was to be shown. Finally, (4) follows from the fact that if {hj | j = 1, . . . , r} is
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a set of coset representatives for H+(Q)\H(A f )/K , then {hj h−1
| j = 1, . . . , r} is

a set of coset representatives for H+(Q)\H(A f )/hK h−1. �

Assume that K ′ ⊂ K , with K ′ an open compact subgroup of H(A f ) and let
pr : X K ′ → XK be the natural projection map. The following lemma computes
pr∗(8(v,w, h, s)K ).

Lemma 3.17. Let K ′ ⊂ K be as above. Then

pr∗(8(v,w, h, s)K )=
∑

k∈h−1 KU,hh\K/K ′

8(v,w, hk, s)K ′ .

Proof. Note that the sum on the right hand side is well defined by (1) and (2)
of Lemma 3.16. Now consider the restriction of 8(v,w, h, s)K to 0hj\D

+. By
definition, this is the sum ∑

i∈I

8(γ−1
i v, γ−1

i w, h, s)0hj
,

where γi ∈ H+(Q) satisfies γi hj ki = h′i h for some ki ∈ K and h′i ∈ HU (A f ), with
{h′i | i ∈ I } a complete set of representatives of the double coset

(HU )+(Q)\HU (A f )∩ H+(Q)hj K h−1/KU,h .

Assume first that n > 2. By [Kudla 1997, Lemma 5.7(i)], this double coset is in
bijection with the set of 0hj -orbits in

S(v,w, hj K h−1) := H+(Q) · (v,w)∩ hj K h−1
· (v,w).

The bijection sends 0hj ·(vi , wi ), where (vi , wi )= γi ·(v,w)= hj ki h−1
·(v,w) with

γi ∈ H+(Q) and k ∈ K , to the double coset (HU )+(Q)γ
−1
i hj ki h−1KU,h . Substitut-

ing the definition of 8(v,w, h, s)0hj
, we see that the restriction of 1

28(v,w, h, s)K
to 0hj\D

+ is given by ∑
(v′,w′)∈S(v,w,hj K h−1)

ω(v′, w′, z, s).

This sum can be rewritten as∑
k∈h−1 KU,hh\K/K ′

∑
(v′,w′)∈S(v,w,hj K ′(hk)−1)

ω(v′, w′, z, s)

and the claim follows directly from this. The proof for n = 2 proceeds similarly by
using [Kudla 1997, Lemma 5.7(ii)]. �

Analogous statements to those in Lemma 3.16 and Lemma 3.17 hold for the
currents [8(v,w, h, s)K ] and [8(v,w, h)K ].
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3G. Weighted currents. Following Kudla’s [1997] definition of weighted cycles
we introduce currents in D1,1(X) = lim

←−−
D1,1(XK ) as finite sums of the currents

[8(v,w, h, s)K ] above weighted by the values of a Schwartz function S (V (A f )
2).

Given a totally positive definite symmetric matrix T ∈ Sym2(F), let

�T (A f )= {(v,w) ∈ V (A f )
2
| T (v,w)= T }, (3-47)

where T (v,w) is defined in (3-22). Assume that �T (A f ) 6=∅. Then there exists
(v0, w0) ∈�T (A f )∩ V (F)2 by the Hasse principle for quadratic forms. Moreover,
the action of H(A f ) on �T (A f ) is transitive by Witt’s theorem. Let K be a
compact open subgroup of H(A f ). The orbits of K on �T (A f ) are open, and so if
ϕ ∈S (V (A f )

2) is invariant under K , we have

Supp(ϕ)∩�T (A f )=

k∐
i=1

K ξ−1
i · (v0, w0) (3-48)

for some elements ξ1, . . . , ξk ∈ H(A f ).

Definition 3.18. Let T ∈ Sym2(F) be a totally positive definite matrix and let
ϕ ∈ S (V (A f )

2) be fixed by K . With (v0, w0) and ξi as above and Re(s) � 0,
define

8(T, ϕ, s)K =
k∑

i=1

ϕ
(
ξ−1

i · (v0, w0)
)
·8(v0, w0, ξi , s)K .

We denote by [8(T, ϕ, s)K ] the corresponding current in D1,1(XK ).

Note that 8(T, ϕ, s)K is independent of the choice of {ξ1, . . . , ξk} by (1) and
(2) of Lemma 3.16. The behavior of 8(T, ϕ, s)K under pullbacks coming from
compact subgroups K ′⊂ K is simpler than that of the forms8(v,w, h, s)K defined
above. The next proposition proves this and an equivariance property for the action
of H(A f ).

Proposition 3.19. (1) Let K ′ ⊂ K be an open compact subgroup of H(A f ) and
consider the natural map pr : X K ′→ XK . Then

pr∗(8(T, ϕ, s)K )=8(T, ϕ, s)K ′ .

(2) For any h ∈ H(A f ), we have

8(T, ω(h)ϕ, s)hK h−1 =8(T, ϕ, s)K · h
−1,

where ω(h)ϕ is the Schwartz function given by ω(h)ϕ(v,w)=ϕ(h−1v, h−1w).

Proof. To prove (1), let (v0, w0)∈�T (F) and denote by HU the pointwise stabilizer
in H of the plane spanned by v0 and w0. Note that the map h 7→ h−1

· (v0, w0)
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induces a bijection HU (A f )\H(A f ) ∼= �T (A f ). Now we use Lemma 3.17 and
obtain

pr∗(8(T, ϕ, s)K )

=

∑
h∈HU (A f )\H(A f )/K

ω(h)ϕ(v0, w0) pr∗(8(v0, w0, h, s)K )

=

∑
h∈HU (A f )\H(A f )/K

∑
k∈h−1 KU,hh\K/K ′

ω(h)ϕ(v0, w0)8(v,w, hk, s)K ′

=

∑
h∈HU (A f )\H(A f )/K ′

ω(h)ϕ(v0, w0)8(v0, w0, h, s)K ′ =8(T, ϕ, s)K ′ .

Part (2) follows directly from part (4) of Lemma 3.16. �

We can also define a weighted version of the currents [8(v,w, h)K ] in (3-43).
Namely, for T ∈ Sym2(F)�0 and ϕ ∈S (V (A f )

2) fixed by K as above and ξi as
in (3-48), let

[8(T, ϕ)K ] =
k∑

i=1

ϕ(ξ−1
i · (v0, w0)) · [8(v0, w0, ξi )K ] ∈ D1,1(XK ). (3-49)

See Section 4B4 for an example. It follows from (1) in Proposition 3.19 that the
currents [8(T, ϕ, s)K ] and [8(T, ϕ)K ] are compatible under inclusions K ′ ⊂ K
and hence one can define

[8(T, ϕ, s)] = ([8(T, ϕ, s)K ])K ∈ D1,1(X)= lim
←−−

K
D1,1(XK ),

[8(T, ϕ)] = ([8(T, ϕ)K ])K ∈ D1,1(X).
(3-50)

Moreover, the space D1,1(X) carries a natural left action of H(A f ) induced by the
maps r(h)−1

: XK → XhK h−1 ; we denote the action of h ∈ H(A f ) on 8 ∈D1,1(X)
by 8 · r(h)−1. Then, for any h ∈ H(A f ), we have

[8(T, ω(h)ϕ, s)] = [8(T, ϕ, s)] · r(h)−1,

[8(T, ω(h)ϕ)] = [8(T, ϕ)] · r(h)−1.
(3-51)

That is, the assignments T ⊗ ϕ 7→ [8(T, ϕ, s)] and T ⊗ ϕ 7→ [8(T, ϕ)] induce
H(A f )-equivariant linear maps

C[Sym2(F)>0]⊗S (V (A f )
2)−→ D1,1(X). (3-52)

3H. A regularized theta lift. From now on and to avoid dealing with metaplectic
groups, we will assume that V has even dimension over F . Our next goal is to show
that, for Re(s)� 0, the form 8(T, ϕ, s) can be obtained as a regularized theta
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lift. More precisely, below we introduce a function MT (g, s) defined on a certain
subgroup of Sp4(AF ) and a theta function θ(g;ϕ) that takes values in A 1,1(X).
We then define a regularized theta lift (MT (s), θ( · ;ϕ))reg. The main result of this
section (Proposition 3.21) shows that the regularized theta lift converges on an
open dense subset of X and moreover agrees with 8(T, ϕ, s) there. The next two
subsections define the functions just mentioned.

3H1. Schwartz forms. For z ∈ D, note that the map v 7→ Q(vz⊥)− Q(vz) defines
a positive definite quadratic form on V1. We write

ϕ0(v, z)= e−2π(Q(vz⊥ )−Q(vz)) (3-53)

for the Gaussian associated with z. Note that ϕ0(v, z) lies in S (V1)⊗ C∞(D)

and that it is fixed by H(R), i.e., ϕ0(hx, hz)= ϕ0(x, z) for every h ∈ H(R). Now
define

ϕ1,1(v,w, z) ∈ [S (V 2
1 )⊗A 1,1(D)]H(R) (3-54)

by

ϕ1,1(v,w, z)= ∂̄(ϕ0(w, z)∂ϕ0(v, z))

= ∂̄ϕ0(w, z)∧ ∂ϕ0(v, z)+ϕ0(w, z)∂̄∂ϕ0(v, z). (3-55)

For a quadratic vector space (W, Q) with positive definite quadratic form, let
ϕ0
+
(v,w) ∈S (W 2) be the standard Gaussian defined by

ϕ0
+
(v,w)= e−2π(Q(v)+Q(w)). (3-56)

For v ∈ V (R), denote by vi , i = 1, . . . , d the image of v under the natural map
V (R)→ V ⊗F,σi R. Define

ϕ1,1
∞
∈ [S (V (R)2)⊗A 1,1(D)]H(R) (3-57)

by

ϕ1,1
∞
(v,w, z)= ϕ1,1(v1, w1, z)⊗ϕ0

+
(v2, w2)⊗ · · ·⊗ϕ

0
+
(vd , wd). (3-58)

Denote by ω=ωψ the Weil representation of Sp4(AF ) on S (V (A)2)with respect
to our fixed character ψ (see, e.g., [Kudla and Rallis 1988] for explicit formulas).
For g = (g f , g∞) ∈ Sp4(AF ), h ∈ H(A f ) and ϕ ∈ S (V (A f )

2) fixed by an open
compact subgroup K of H(A f ), the theta function

θ(g;ϕ)K =
∑

(v,w)∈V (F)2

ω(g f )ϕ(v,w) ·ω(g∞)ϕ1,1
∞
(v,w) (3-59)

defines a (1,1)-form on XK .



Regularized theta lifts and (1,1)-currents 625

3H2. Regularized lifts. Let κ = n+2
2 . For a ∈ R>0, define

Wa(y)=
(4πa)κ−1

0(κ − 1)
· yκ/2e−2πay, y > 0. (3-60)

Note that ∫
∞

0
Wa(y)yκ/2e−2πay dy

y2 = 1. (3-61)

Consider the following subgroups of Sp4,F :

N (k)=
{

n = n(X)=
(

12 X
12

) ∣∣∣ X = tX ∈ Sym2(k)
}
, (3-62)

A(k)=

a = m(t, v)=


y

t
y−1

t−1


∣∣∣∣∣ y, t ∈ k×

 . (3-63)

Let dn be the unique Haar measure on N (A) such that Vol(N (F)\N (A), dn)= 1.
Denote by A(R)0 the connected component of the identity in A(R). Let da be the
measure on A(R)0 defined by∫

A(R)0
f (a)da

=

∫
(R>0)d

∫
(R>0)d

f
(
m(y1/2

1 , t1/2
1 ), . . . ,m(y1/2

d , t1/2
d )

) dy1

y2
1

dt1
t2
1
· · ·

dyd

y2
d

dtd
t2
d
, (3-64)

where dyi , dti denote the Lebesgue measure.
For a matrix T ∈ Sym2(F), define a character ψT : N (F)\N (A) → C× by

ψT (n(X))=ψ(tr(T X)). For such a symmetric matrix T =
(

a b
b c

)
and i = 1, . . . , d ,

we write

σi (T )=
(

ai bi

bi ci

)
,

where ai = σi (a), bi = σi (b) and ci = σi (c). We also write T ι
=
(

c b
b a

)
.

Definition 3.20. For T =
(

a b
b c

)
∈ Sym2(F) totally positive definite, the function

MT (na, s) : N (F)\N (A)× A(R)0 −→ C

is defined by

MT (nm(y1/2, t1/2), s)= (2κ−1
dim(V ))ψT (n)Mσ1(T )(y1, s)Mσ1(T )ι(t1, s)

× (y1t1)
1− κ2

d∏
i=2

Wai (yi )Wci (ti ), (3-65)

where κ4 = 2 and κn = 1 for n > 5.
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Given a measurable function f : Sp4(AF )→ C that satisfies f (ng)= f (g) for
all n ∈ N (F), define

(MT (s), f )reg
=

∫
A(R)0

∫
N (F)\N (A)

MT (na, s) f (na) dn da, (3-66)

provided that the integral converges.

Proposition 3.21. Let T ∈ Sym2(F) be a positive definite symmetric matrix, ϕ be
a Schwartz form in S (V (A f )

2) fixed by an open compact subgroup K ⊂ H(A f )

and θ(g;ϕ)K be the theta function defined in (3-59). Then there is a dense open set
U ⊆ XK with complement of measure zero such that for Re(s)� 0, the regularized
theta lift

(MT (s), θ( · ;ϕ)K )
reg

converges and equals 8(T, ϕ, s)K on U.

Proof. The sum defining θ(na;ϕ)K and the inner integral in (MT (s), θ( · , h;ϕ)K )
reg

unfold to ∫
A(R)0

MT (a, s)
∑

(v,w)∈�T (F)

ϕ(v,w)ω(a)ϕ1,1
∞
(v,w, z) da.

Let

Ũ = D−
⋃

(v,w)∈�T (F)∩Supp(ϕ)

(Dv ∪Dw),

so that Ũ is an open dense subset of D whose complement has measure zero.
By Fubini’s theorem and Lemma 3.22 below, the sum and the integral can be
interchanged whenever z ∈ Ũ ; thus the above equals∑

(v,w)∈�T (F)

ϕ(v,w)

∫
A(R)0

MT (a, s)ω(a)ϕ1,1
∞
(v,w, z) da.

The integral can be computed using equations (3-23) and (3-61). We obtain∫
A(R)0

MT (a, s)ω(a)ϕ1,1
∞
(v,w, z) da = 2ω(v,w, z, s).

Assume first that n > 2. Then H+(Q) acts transitively on �T (F), by [Kudla
1997, Lemma 5.5]; fixing (v0, w0) ∈ �T (F) we see that for z ∈ Ũ , the integral
(MT (s), θ( · ;ϕ)K )

reg equals

I (v0, w0, ϕ, s) :=
∑

(v,w)∈H+(Q)·(v0,w0)

ϕ(v,w) ·ω(v,w, z, s).
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With hj , j = 1, . . . , r as in (2-8), we have

I (v0, w0, ϕ, s)|0hj \D
+ =

∑
(v,w)∈H+(Q)·(v0,w0)

ω(hj )ϕ(v,w) ·ω(v,w, z, s).

Let ξi , i = 1, . . . , k be as in (3-48) and define

S j,i (v0, w0)= H+(Q) · (v0, w0)∩ hj K ξ−1
i · (v0, w0).

Note that ω(hj )ϕ(v,w)= ϕ(ξ
−1
i · (v0, w0)) for every (v,w) ∈ S j,i (v0, w0) and

H+(Q) · (v0, w0)∩Supp(ω(hj )ϕ)=

k∐
i=1

S j,i (v0, w0).

Hence

I (v0, w0, ϕ, s)|0hj \D
+ =

k∑
i=1

ϕ(ξ−1
i · (v0, w0))

∑
(v,w)∈S j,i (v0,w0)

ω(v,w, z, s).

Note that the set S j,i (v0, w0) is stable under 0hj = H+(Q)∩ hj K h−1
j , so that we

can write∑
(v,w)∈S j,i (v0,w0)

ω(v,w, z, s)=
∑

(v,w)∈0hj\S j,i (v0,w0)

∑
γ∈(0hj )v,w\0hj

ω(γ−1v, γ−1w, z, s)

=

∑
(v,w)∈0hj\S j,i (v0,w0)

8(v,w, z, s)0hj
.

By [Kudla 1997, Lemma 5.7(i)], the set of orbits 0hj\S j,i (v0, w0) is in bijection
with the double coset (where we write HU for Hv0,w0)

(HU )+(Q)\HU (A f )∩ H+(Q)hj K ξ−1
i /KU,ξi .

Moreover, the bijection is as follows: Suppose (v,w) ∈ S j,i (v0, w0) is of the form
γ · (v0, w0)= hj kξ−1

· (v0, w0). Then 0hj · (v,w) corresponds to the double coset
(HU )+(Q)γ

−1hj kξ−1KU,ξi . Thus, by definition of 8(v,w, h, s)K we have∑
(v,w)∈0hj \S j,i (v0,w0)

8(v,w, z, s)0 =8(v0, w0, ξi , s)K |0hj \D
+,

and hence

I (v0, w0, ϕ, s)|0hj \D
+ =

k∑
i=1

ϕ(ξ−1
i · (v0, w0)) ·8(v0, w0, ξi , s)K |0hj \D

+

for every j , as was to be shown.
Now assume that n=2. By [Kudla 1997, Lemma 5.5], the group H+(Q) acts with

two orbits on�T (F), and we have�T (F)= H+(Q)·(v0, w0)qH+(Q)γ0 ·(v0, w0)
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for any γ0 ∈ H(Q) that fixes the plane U0 spanned by (v0, w0) but reverses its
orientation given by the ordered basis {v0, w0}. Thus, for z ∈ Ũ , the integral
(MT (s), θ( · ;ϕ)K )

reg equals

I (v0, w0, ϕ, s)+ I (γ0 · (v0, w0), ϕ, s).

Define
S j,i (v0, w0, γ0)= H+(Q)γ0 · (v0, w0)∩ hj K ξ−1

i · (v0, w0).

Then S j,i (v0, w0, γ0) is stable under 0hj and one shows as above that

I (γ0 · (v0, w0), ϕ, s)|0hj\D
+

=

k∑
i=1

ϕ(ξ−1
i · (v0, w0))

∑
(v,w)∈0hj\S j,i (v0,w0,γ0)

8(v,w, z, s)0hj
.

Note that we can choose γ0 so that γ0 · v0 = v0 and γ0 · w0 = −w0. Since
ω(v,w, z, s) = ω(v,−w, z, s), we conclude from [Kudla 1997, Lemma 5.7(ii)]
that

8(v0, w0, ξi , s)K |0hj \D
+

=

∑
(v,w)∈0hj\S j,i (v0,w0)

8(v,w, z, s)0hj
+

∑
(v,w)∈0hj\S j,i (v0,w0,γ0)

8(v,w, z, s)0hj
,

and the claim follows from this. �

The next lemma completes the proof of Proposition 3.21.

Lemma 3.22. Let T ∈ Sym2(F) be totally positive definite, ϕ be a Schwartz form
in S (V (A f )

2) and let

Ũ = D−
⋃

(v,w)∈�T (F)∩Supp(ϕ)

(Dv ∪Dw).

Then, for Re(s)� 0, the sum∑
(v,w)∈�T (F)

|ϕ(v,w)|

∫
A(R)0
|MT (a, s)| · ‖ω(a)ϕ1,1

∞
(v,w, z)‖ da (3-67)

converges for every z ∈ Ũ .

Proof. Let (v,w) ∈ �T (F). It is enough to show that, for Re(s) � 0 and any
0 ⊂ H+(R), the sum∑

γ∈0v,w\0

∫
A(R)0
|MT (a, s)| · ‖ω(a)ϕ1,1

∞
(γ−1v, γ−1w, z)‖ da
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converges for z ∈D+− (0 ·D+v ∪0 ·D
+
w), since (3-67) is a finite linear combination

of sums of this form. Note that if ω(v, z) is any of the forms ∂ϕ0(v, z), ∂̄ϕ0(v, z)
or ∂∂̄ϕ0(v, z), then we can write

‖ω(v, z)‖ =
∑

i

‖Pi (v, z)‖ ·ϕ0(v, z),

where the sum over i is finite and the functions Pi (v, z) are polynomial functions of
v for fixed z satisfying ‖Pi (hv, hz)‖=‖Pi (v, z)‖ for every h ∈ H(R). In particular,
there exists a positive constant C and a natural number k (in fact, k= 2 will do) such
that ‖Pi (v, z)‖ ≤ C Q(vz⊥)

k for every z ∈ D+ and every v of fixed positive norm
Q(v)= m > 0. Now choose ε > 0 such that |Q(γ−1v)z|> ε and |Q(γ−1w)z|> ε

for all γ ∈ 0. Then there exists a constant Cε > 0 such that∫
A(R)0
|MT (a, s)| · ‖ω(a)ϕ1,1

∞
(γ−1v, γ−1w, z)‖ da

< Cε
∣∣Q(γ−1v)z⊥ · Q(γ

−1w)z⊥
∣∣− s+s0

2 +k
,

and the claim follows as in the proof of Proposition 3.6. �

Theorem 1.1 now follows from Proposition 3.12 and Proposition 3.21.

3I. Higher Chow groups and regulators. We next focus on the relationship be-
tween the currents 8(T, ϕ) introduced above and the currents in the image of the
regulator map

rD : CH2(XK , 1)→ D1,1(XK ). (3-68)

Let us first recall the definitions of the higher Chow group CH2(XK , 1) and of the
above map.

Let Y be an irreducible algebraic variety defined over a field k. The group
CH2(Y, 1) is defined as a quotient

CH2(Y, 1)= Z2(Y, 1)/B2(Y, 1). (3-69)

An element c ∈ Z2(Y, 1) is a finite linear combination

c =
∑

i

ai · (πi : Zi → Y, fi ), (3-70)

where Zi is a normal variety over k of dimension dim(Y )− 1, πi is a generically
finite proper map, fi is a meromorphic function on Zi , and ai ∈Q; it is also required
that ∑

i

ai · (πi )∗(div fi )= 0 (3-71)

as a cycle of codimension 2 in Y . For a description of B2(Y, 1), see [Voisin 2002].
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Suppose that k ⊆ C. Define a map

rD : CH2(Y, 1)−→ D1,1(YC)∑
i

ai · (πi : Zi → Y, fi ) 7−→ 2π i
∑

ai · (πi )∗([log | fi |]),
(3-72)

where (πi )∗(log | fi |) ∈ D1,1(YC) is the current defined by(
(πi )∗(log | fi |), α

)
=

∫
Zi

π∗i (α) · log | fi | (3-73)

for α ∈A
2 dim(Y )−2

c (YC). The map rD is known as a regulator map; it is linear and
its image defines a rational vector subspace of D1,1(YC). Note also that for any
c ∈ CH2(Y, 1), the current rD(c) is ddc-closed: this follows from the identity of
currents

ddc(πi )∗(log | fi |
2)= δdiv fi (3-74)

and condition (3-71).
Note that the currents [8(T, ϕ)] in (3-50) are not ddc-closed. In fact, for the

currents [8(v,w)0] in (3-31), we have

ddc
[8(v,w)0] = δZ(v,w)0 + ddcG(v,w)0 · δX (v)0 . (3-75)

Here ddcG(v,w)0 extends to a smooth 2-form defined on X (v)0 , and the current
ddcG(v,w)0 · δX (v)0 ∈ D1,1(X0) is defined by(

ddcG(v,w)0 · δX (v)0 , α
)
=

∫
X (v)0

ddcG(v,w)0 ∧α,

for α ∈ A n−1,n−1
c (X0).

Since 8(T, ϕ) is not ddc-closed, it is not in the image of the regulator map
defined above. It is natural to ask for necessary and sufficient conditions for a
finite linear combination

∑
T,ϕ a(T, ϕ)[8(T, ϕ)] with a(T, ϕ)∈Q to belong to the

image of the regulator. The next proposition proves a weak result in this direction
when n ≥ 4. It turns out that in this case being ddc-closed is also sufficient.

Proposition 3.23. Assume that n ≥ 4. Let 8K =
∑

T,ϕ a(T, ϕ)[8(T, ϕ)K ] ∈
D1,1(XK ), where the sum is finite and a(T, ϕ) ∈ Q. Then ddc8K = 0 if and
only if 8K = rD(c) for some c ∈ CH2(XK , 1).

Proof. Above we showed that rD(c) is ddc-closed for any c ∈ CH2(XK , 1). Now
let 8K =

∑
T,ϕ a(T, ϕ)[8(T, ϕ)K ] as in the statement and assume that ddc8K = 0.

We compute

0= ddc8K =
∑
T,ϕ

a(T, ϕ) · (δZ(T,ϕ)K +9(T, ϕ)K ), (3-76)
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where 9(T, ϕ)K ∈ D1,1(XK ) is a current whose support is a finite union of special
divisors on XK . More precisely, we have

9(T, ϕ)K =
∑

i

ddcGi · δX (vi ,hi )K
,

where the sum is finite and Gi is a finite linear combination of Green functions
of the form (3-6) on X (vi , hi )K with logarithmic singularities on special divisors.
Since the currents 9(T, ϕ)K and δZ(T,ϕ)K are supported in different codimensions,
it follows from (3-76) that ∑

T,ϕ

a(T, ϕ) · δZ(T,ϕ)K = 0, (3-77)

∑
T,ϕ

a(T, ϕ) ·9(T, ϕ)K = 0. (3-78)

(To see this, pick a basis of open neighborhoods (U j ) j≥1 of
⋃

T,ϕ Z(T, ϕ)K and
compactly supported smooth functions φ j :U j→[0, 1] such that φ j |Z(T,ϕ)K ≡1. For
α ∈A n−2,n−2

c (XK ), evaluate (3-76) on the sequence (φ jα) j≥1 and apply dominated
convergence on each X (vi , hi )K .) Write∑

T,ϕ

a(T, ϕ)[8(T, ϕ)K ] =
∑

i

GiδX (vi ,hi )K
,

where the sum over i is finite and Gi is a Green function on X (vi , hi )K . Now
Equation (3-78) implies that the summand corresponding to a connected spe-
cial divisor X (v)0 in this sum is of the form G(v, 0)δX (v)0 , where G(v, 0) is
a Green function on X (v)0 that satisfies ddcG(v, 0) = 0. Since n ≥ 4, we have
H 1(X (v)0,C)= 0 (see [Vogan and Zuckerman 1984, Theorem 8.1]) and it follows
that G(v, 0)=a(v, 0) log | fv,0| for some meromorphic function fv,0 ∈ k(X (v)0)×

and some a(v, 0) ∈ Q. Thus, denoting by πv,0 the map X (v)0 → XK , we
find that 8K =

∑
v,0 a(v, 0) · (πv,0)∗(log | fv,0|), where the sum is finite. Con-

sider now the formal sum
∑

a(v, 0) · (πv,0, fv,0). By Equation (3-77), we have∑
v,0 a(v, 0)·(πv,0)∗(div fv,0)=0 and hence it defines an element c∈CH2(XK , 1)

satisfying rD(c)=8K . �

3J. Evaluating currents on differential forms. Let α ∈ A n−1,n−1
c (XK ) be a com-

pactly supported form. Since Proposition 3.21 shows that the forms 8(T, ϕ, s)K
are theta lifts, one can try to evaluate

[8(T, ϕ, s)K ](α)=
∫

XK

8(T, ϕ, s)K ∧α

by interchanging the integrals. However, this interchange is not justified since the
resulting integrals are not absolutely convergent. In this section, we will introduce
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certain currents [8̃(T, ϕ, s)] closely related to the [8(T, ϕ, s)]. These currents
will be meromorphic in s ∈ C (modulo Im(∂) + Im(∂̄) as before) and we will
show that their constant term at s = s0 is a certain Q-linear combination of the
[8(T, ϕ)]. Moreover, following ideas in [Bruinier and Funke 2004], we will give
an expression of these currents as regularized theta lifts that allows us to evaluate
them by interchanging the integrals (see Proposition 3.27).

For a pair of vectors (v,w) ∈ V (F)2 spanning a totally positive definite plane,
consider the (1,1)-form

ω̃(v, w, z, s)= φ(v,w, z, s)∂∂̄φ(w, v, z, s) (3-79)

in A 1,1(D−(Dv∪Dw)). The form ω̃(v, w, z, s) is related to the form ω(v,w, z, s)
as follows:

ω(v,w, z, s)+ω(w, v, z, s)

= ∂̄φ(w, v, z, s)∧ ∂φ(v,w, z, s)+φ(w, v, z, s)∂̄∂φ(v,w, z, s)

+ ∂φ(v,w, z, s)∧ ∂̄φ(w, v, z, s)+φ(v,w, z, s)∂∂̄φ(w, v, z, s)

= ω̃(v, w, z, s)− ω̃(w, v, z, s). (3-80)

For 0 ⊂ H+(R), define a (1,1)-form on X0 by

8̃(v,w, z, s)0 =
∑

γ∈0v,w\0

ω̃(γ−1v, γ−1w, z, s). (3-81)

The proofs of Propositions 3.6 and 3.9 apply to this sum and show that it con-
verges normally on X0 − (X (v)0 ∪ X (w)0) and defines a locally integrable (1,1)-
form on X0. We define forms 8̃(v,w, h, s)K and 8̃(T, ϕ, s)K as in Section 3F
and Section 3G by replacing ω(v,w, z, s) with ω̃(v, w, z, s) throughout. As be-
fore, denote by [8̃(T, ϕ, s)K ] the current in D1,1(XK ) corresponding to the form
8̃(T, ϕ, s)K . The proof of Proposition 3.19 shows that the currents [8̃(T, ϕ, s)K ]
for varying K form a compatible system under the maps induced by inclusions
K ′ ⊂ K , so that we obtain a current [8̃(T, ϕ, s)] ∈ D1,1(X)= lim

←−−K D1,1(XK ).
Let us now describe the relation of the currents [8̃(T, ϕ, s)] with the currents
[8(T, ϕ)]. For T =

(
a b
b c

)
∈ Sym2(F)>0 and ϕ ∈S (V (A f )

2), define

T ι
=

(
c b
b a

)
, ϕι(v,w)= ϕ(w, v). (3-82)

Then it follows from Proposition 3.12 and Equation (3-80) that the image of the
current [8̃(T, ϕ, s)]− [8̃(T ι, ϕι, s)] in D̃1,1(X) admits meromorphic continuation
to s ∈ C and that its constant term at s = s0 = (n− 1)/2 is given by

CTs=s0
[8̃(T, ϕ, s)] − [8̃(T ι, ϕι, s)] ≡ [8(T, ϕ)] − [8(T ι, ϕι)], (3-83)
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where≡ denotes equality of currents modulo ∂+ ∂̄ . See Section 4B5 for an example
of a current of this form.

Remark 3.24. From the point of view of regulator maps rD,K : CH2(XK , 1)→
D1,1(XK ), the currents on the right hand side of Equation (3-83) are quite natural
objects. Namely, let [8] ∈ D1,1(X0) be any current of the form [8] = rD(c) with
c=

∑
ni (Ci , fi ) ∈ CH2(X0, 1) (see Section 3I for definitions) such that the Ci are

special divisors and the fi ∈ k(Ci )
×
⊗Q are (pushforwards of) the meromorphic

functions constructed by Bruinier [2012, Theorem 6.8]. Then condition (3-71)
implies that [8] is a linear combination with Q-coefficients of currents [8(v,w)0]−
[8(w, v)0] for some pairs (v,w) ∈ V (F)2. The current [8(T, ϕ)] − [8(T ι, ϕι)]

is just a finite sum of such currents, weighted by the values of ϕ.

Our next goal is to obtain an expression of 8̃(T, ϕ, s)K as a regularized theta
lift with good convergence properties. To do so, we will use a relation between
∂∂̄ϕ0(v, z) and ϕKM(v, z) established by Bruinier and Funke.

Denote by
ϕKM ∈ [S (V1)⊗A 1,1(D)]H(R) (3-84)

the S (V1)-valued, closed (1,1)-form constructed by Kudla and Millson [1986]. We
have

ϕKM(v, z)= P(v, z)ϕ0(v, z), (3-85)

where P(v, z) ∈ [C∞(V1)⊗ A 1,1(D)]H(R) is, for fixed z, a polynomial in v of
degree 2 (see [Kudla 1997, (7.16)] for an explicit description of P(v, z); our ϕKM
is denoted ϕ(1) there).

Let τ = x + iy be an element of the upper half plane and let gτ =
( y1/2 xy−1/2

0 y−1/2

)
∈

SL2(R). Define

ϕ0(v, τ, z)= y−(n−2)/4ω(gτ )ϕ0(v, z)= y · e
(
Q(vz⊥)τ + Q(vz)τ̄

)
, (3-86)

ϕKM(v, τ, z)= y−(n+2)/4ω(gτ )ϕKM(v, z). (3-87)

Here ω denotes the Weil representation of SL2(R) on S (V1) and e(x)= e2π i x . Our
presentation of [8̃(T, ϕ, s)K ] as a regularized theta lift will use the following result.

Proposition 3.25 [Bruinier and Funke 2004, Theorem 4.4]. Let L =−2i Im(τ )2 ∂
∂τ̄

be the Maass lowering operator. Then

ddcϕ0(v, τ, z)=−LϕKM(v, τ, z) (3-88)

where d and dc
= (4π i)−1(∂ − ∂̄) are the usual differential operators on D.

Using this result, we can find a different expression for the form ∂̄∂φ(v,w, z, s).
Let L be the lowering operator in Proposition 3.25. For a symmetric positive definite
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matrix T =
(

a b
b c

)
and τ = x + iy ∈ H, define

M̃T (τ, s)= 4πy2 ∂

∂τ̄
(MT (y, s)e−2π iax). (3-89)

One computes

M̃T (τ, s)= C̃(T, s)y1−k/2 M1−k/2,s/2

(∣∣∣∣4π det T
c

y
∣∣∣∣)e

2πb2
c ye−2π iax , (3-90)

with C̃(T, s)= π iC(T, s) · (s+ s0).

Lemma 3.26. For v,w ∈�T (V1) and Re(s)� 0, we have

∂̄∂φ(v,w, z, s)=
∫
∞

0
M̃T (y, s)ϕKM(v, y, z)

dy
y2 .

Proof. Recall the integral expression for φ(v,w, z, s) given in (3-23). In terms of
ϕ0(v, τ, z), we have

φ(v,w, z, s)=
∫
∞

0
MT (y, s)ϕ0(v, y, z)

dy
y2

=

∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)xϕ0(v, τ, z)

dx dy
y2 .

Using (3-88), we obtain

ddcφ(v,w, z, s)=
∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)x ddcϕ0(v, τ, z)

dx dy
y2

=−

∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)x LϕKM(v, τ, z)

dx dy
y2

=−

∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)x ∂̄(ϕKM(v, τ, z) dτ)

=− lim
N→∞

∫
FN

MT (y, s)e−2π i Q(v)x ∂̄(ϕKM(v, τ, z) dτ),

where FN = [0, 1]× [N−1, N ] ⊂ H. Applying Stokes’s Theorem, we find

ddcφ(v,w, z, s)=
∫
∞

0

∫ 1

0
∂̄(MT (y, s)e−2π i Q(v)x)∧ϕKM(v, τ, z) dτ

− lim
N→∞

(
MT (N , s)ϕKM(v, N , z)−MT (N−1, s)ϕKM(v, N−1, z)

)
.

Since ddc
=−(2π i)−1∂∂̄ , we see that to establish the claim it suffices to show that

the second term in the right hand side vanishes. This follows for z /∈Dv from the
asymptotic behavior of MT (y, s) given by (3-17) and (3-18). �
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We can now express 8̃(T, ϕ, s)K as a regularized theta lift. Namely, for T =(
a b
b c

)
∈ Sym2(F) totally positive definite, define a function

M̃ T (na, s) : N (F)\N (A)× A(R)0 −→ C

by

M̃ T (nm(y1/2, t1/2), s)= 2κ−1
dim(V )ψT (n)Mσ1(T )(y1, s)M̃σ1(T )ι(t1, s)

× y1−κ/2
1 t−κ/21

d∏
i=2

Wai (yi )Wci (ti ). (3-91)

We also need to specify a Schwartz form

ϕ̃∞ ∈ [S (V (R)2)⊗A 1,1(D)]H(R)

to define the regularized theta lift. Define

ϕ̃1,1(v,w, z)= ϕ0(v, z) ·ϕKM(w, z) ∈S (V 2
1 )⊗A 1,1(D) (3-92)

and

ϕ̃∞(v,w, z)= ϕ̃1,1(v1, w1, z)⊗ϕ0
+
(v2, w2)⊗ · · ·⊗ϕ

0
+
(vd , wd), (3-93)

so that for every g ∈ Sp4(AF ) and ϕ ∈S (V (A f )
2) fixed by K , the theta function

θ(g;ϕ⊗ ϕ̃∞)K =
∑

(v,w)∈V (F)2

ω(g f )ϕ(v,w) ·ω(g∞)ϕ̃∞(v,w) (3-94)

defines a (1,1)-form on XK . Given a measurable function f : Sp4(AF )→ C that
satisfies f (ng)= f (g) for all n ∈ N (F), define

(M̃ T (s), f )reg
=

∫
A(R)0

∫
N (F)\N (A)

M̃ T (na, s) f (na) dn da, (3-95)

provided that the integral converges. Then we have the identity

8̃(T, ϕ, s)K = (M̃ T (s), θ( · ;ϕ⊗ ϕ̃∞)K )
reg, (3-96)

valid in an open set U ⊂ XK whose complement has measure zero. This is proved
in the same way as Proposition 3.21.

Here is the desired result that shows that one can evaluate [8̃(T, ϕ, s)] by
interchanging the order of integration.

Proposition 3.27. Let K ⊂ H(A f ) be an open compact subgroup that fixes ϕ and
let α ∈ A n−1,n−1

c (XK ). Then, for Re(s)� 0, we have

([8̃(T, ϕ, s)K ], α)=
∫

A(R)0

∫
N (F)\N (A)

M̃ T (na, s)
∫

XK

θ(na;ϕ⊗ ϕ̃∞)K ∧α dn da.
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Proof. Performing the integration over N (F)\N (A), we find

([8̃(T, ϕ, s)K ], α)=
∫

XK

∫
A(R)0

M̃ T (a, s)
∑

(v,w)∈�T (F)

ϕ(v,w)·ω(a)ϕ̃∞(v,w, z)∧α,

and we need to prove that this expression is absolutely convergent. Since K has
only finitely many orbits on the support of ϕ, it suffices to show that∫

0v,w\D+

∫
A(R)0

M̃ T (a, s) ·ω(a)ϕ̃∞(v,w, z)∧ η

is absolutely convergent, for any vectors v,w∈�T (F) and any compactly supported
form η ∈ A n−1,n−1

c (0\D+). This will follow if we can show that∫
0v,w\D+

∫
A(R)0
|M̃ T (a, s)| · ‖ω(a)ϕ̃∞(v,w, z)‖ da dµ(z) <∞,

that is, we need to show that the inner integral in this expression yields an integrable
function on 0v,w\D+. Denote this inner integral by f (v,w, z, s). Note that

‖ϕ̃∞(v,w, z)‖ =
∑

i

‖Pi (w, z)‖ ·ϕ0(v, z)ϕ0(w, z),

where the sum over i is finite and, for fixed z, the Pi (w, z) are polynomials inw (val-
ued in differential forms). These polynomials satisfy ‖Pi (hw, hz)‖ = ‖Pi (w, z)‖
for all h ∈ H(R) and have degree 2; see [Kudla 1997, (7.16)]. Hence

‖ϕ̃∞(v,w, z)‖< C · Q(wz⊥) ·ϕ
0(v, z)ϕ0(w, z),

for some constant C > 0. Using this estimate, we find that

f (v,w, z, s)= O
(
Q(vz⊥)

−
s+s0

2 · Q(wz⊥)
−

s+s0
2
)

if |Q(vz)|, |Q(wz)|> ε > 0,

f (v,w, z, s)= O
(
log(|Q(vz)|) · |Q(wz⊥)|

−
s+s0

2 +1) as |Q(vz)| → 0,

f (v,w, z, s)= O
(
log(|Q(wz)|) · |Q(vz⊥)|

−
s+s0

2
)

as |Q(wz)| → 0.

Since f (v,w, h′z, s)= f (v,w, z, s) for h′ ∈ H ′(R)= (Hv)+(R)∩ (Hw)+(R) and
the quotient 0v,w\D+v,w has finite volume, the claim follows from these estimates
by Lemma 3.8 applied to H ′(R)\D+. �

Corollary 3.28. Let K ⊂ H(A f ) be an open compact subgroup that fixes ϕ and let
α ∈ A n−1,n−1

c (XK ) be a closed form. For g ∈ Sp4(AF ), write

θ(g;ϕ, α)=
∫

XK

θ(g;ϕ⊗ ϕ̃∞)∧α.
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Then

([8(T, ϕ)K ] − [8(T
ι, ϕι)K ], α)

= CTs=(n−1)/2[(M̃ T (s), θ( · ;ϕ, α))reg
− (M̃ T ι(s), θ( · ;ϕι, α))reg

].

Proof. This follows from (3-83) and Proposition 3.27. �

4. An example: products of Shimura curves

The goal of this section is to illustrate the main constructions and results above
in one of the simplest cases: when the Shimura variety attached to GSpin(V ) is a
product of Shimura curves attached to a quaternion algebra B over Q. In this case,
the currents in Section 3 can be described in the more familiar language of Hecke
correspondences and CM points. We give this description in Section 4B.

Throughout this section, we fix an indefinite quaternion algebra B over Q; we
assume that B � M2(Q). We write S for the set of places where B ramifies and
d(B) for the discriminant of B. Denote by n : B→ F the reduced norm and let V
be B endowed with the quadratic form given by Q(v) = n(v). Then (V, Q) is a
nondegenerate quadratic space over Q with signature (2, 2) and χV = 1.

4A. Quaternion algebras and Shimura curves. The group H =GSpin(V ) can in
this case be described more concretely. Namely, consider B× as an algebraic group
over Q defined by

B×(R)= (B⊗Q R)× (4-1)

for any Q-algebra R and let

B××GL1 B× = {(g1, g2) ∈ B×× B× | n(g1)= n(g2)}. (4-2)

The group B× × B× acts on V by (g1, g2) · x = g1xg−1
2 . This induces an exact

sequence
1−→ Gm −→ B××GL1 B× −→ SO(V )−→ 1 (4-3)

showing that

SO(V )∼= Gm\(B××GL1 B×), GSO(V )∼= Gm\(B×× B×) (4-4)

and in fact one has
H ∼= B××GL1 B×. (4-5)

The theory in Section 2 applies to this case. If we denote by H the Poincaré upper
half plane, we have

D+ ∼= H×H. (4-6)
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Fix once and for all an isomorphism ι : B⊗Q AS ∼= M2(A
S). For p ∈ S, denote by

OB,p the maximal order of B⊗Q Qp. Let

ÔB = ι
−1
(

M2

(∏
p/∈S

Zp

))
×

∏
p∈S

OB,p, KB = Ô×B . (4-7)

Then ÔB is a maximal order of B⊗Q A f and K B is a maximal compact subgroup
of B(A f )

×.
Define the (full level) Shimura curve attached to B to be

XB,K = B×(Q)\(H±× B×(A f ))/K . (4-8)

Then XB,K is the set of complex points of a complete curve CK defined over Q.
Let K = (KB × KB)∩ H(A f ) and define the (full level) Shimura variety

XK = H(Q)\(D× H(A f ))/K . (4-9)

Thus XB,K is the set of complex points of the surface CK × CK . By (2-8), the
surface XB,K is connected.

Given v ∈V of positive norm and denoting by W ⊂V its orthogonal complement,
we have

Hv = GSpin(W )∼= B× (4-10)

as algebraic groups over Q. The special divisors Z(v, h)K are hence given by
embedded Shimura curves in XK .

4B. Examples of (1,1)-currents. Let us give some explicit examples of the cur-
rents introduced in Section 3 in the case when XK is a product of Shimura curves, in
the more classical language of Hecke correspondences and CM points. Assume that
F =Q for simplicity and denote by d(B)= p1 · · · p2r the discriminant of B. Let
ÔB and KB = Ô×B be as in (4-7) and let K = (KB×KB)∩H(A f ). Then OB = B∩ÔB

is a maximal order in B. Denote by O1
B ⊂ O×B be the subgroup of units of reduced

norm 1. The group O1
B acts on H through the embedding ι∞ : O1

B→ SL2(R) and
we conclude that

XB,K
∼= O1

B\H=: X
B
0 (4-11)

is the full level Shimura curve X B
0 and that XK = X B

0 × X B
0 .

4B1. Special divisors. Consider the vector v1 = 1 ∈ B = V of norm 1. Then the
inclusion Hv1 ⊂ H corresponds to the diagonal embedding 1 : B×→ B××GL1 B×

and hence the map iv1,1,K : X (v1)K → XK defined in (2-15) is just the diagonal

1 : X B
0 −→ X B

0 × X B
0 . (4-12)
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More generally, suppose v ∈ OB has reduced norm d and consider the map
iv,1,K : X (v)K → XK . If d equals a prime p - d(B) then the intersection Hv(Q)∩K
is an Eichler order OB(p) of level p in B and the map iv,1,K : X (v)K → XK equals
the map

X B
0 (p)−→ X B

0 × X B
0 (4-13)

whose image is the Hecke correspondence T(p). Similarly, if d is a divisor of d(B),
we obtain the graph of the Atkin–Lehner involution wd .

4B2. Currents for connected cycles: G(v,w)0 and [8(v,w)0]. Consider now
v,w ∈ B spanning a positive definite plane. To simplify matters, let us assume
that v = 1 and that w ∈ OB is such that R := Z[w] is the full ring of integers of an
imaginary quadratic field L = R⊗Z Q; such an R is then automatically optimally
embedded in OB (recall that an embedding j : R ↪→ OB is said to be optimal if
j (L)∩OB = j (R)). The diagram (1-3) in this case becomes

{τp
v⊥
(w)}

//

��

H
1

//

pr

��

H×H

pr× pr
��

{Pw := pr(τp
v⊥
(w))} // X B

0
1

// X B
0 × X B

0

and Pw ∈ X B
0 is a point with CM by R (for one of the two CM-types of R). The

function G(v,w)0 ∈ C∞(X B
0 − {Pw}) defined by (3-9) is a Green function for

the divisor [Pw] ∈ Div(X B
0 ); we denote this function by G[Pw] and the associated

current in D0,0(X B
0 ) by [G[Pw]]. The current [8(v,w)0] in (3-33) is given by

[8(v,w)0] = 2π i ·1∗([G[Pw]]), (4-14)

so that for α ∈ A 1,1(X B
0 × X B

0 ) we have

[8(v,w)0](α)= 2π i
∫

X B
0

G[Pw] ·1
∗(α). (4-15)

4B3. The current [8(v,w, 1)K ]. Our next goal is to write down an explicit example
of the current [8(v,w, 1)K ] in (3-43). We have

Hv,w = GSpin(Q〈v,w〉)= L× (4-16)

as an algebraic group over Q. The embeddings Hv,w→ Hv→ H correspond to
embeddings of algebraic groups

L× −→ B×
1
−→ B××GL1 B×, (4-17)

defined over Q, where the second embedding is just the diagonal. Note that
Hv,w(R)= (K ⊗Q R)× = C× with spinor norm the usual norm on C. In particular,
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every element of this group has positive spinor norm and hence (Hv,w)+(R) =
Hv,w(R) and (Hv,w)+(Q) = Hv,w(Q) = L×. Moreover, since R→ O is optimal,
we have

(Hv,w)+(Q)\Hv,w(A f )/KU ∼= L×\A×L , f /Ô
×

L = Pic(OL). (4-18)

Let {h′i | i = 1, . . . , s} be a set of representatives for this double coset and write
h′i = γi ki with γi ∈ H+(Q) and ki ∈ K . Note that we can find γi ∈ (Hv)+(Q) and
ki ∈ K ∩ Hv(A f ). With such choices, we have∑

i

[8(γ−1
i v, γ−1

i w)0] =
∑

i

[8(v, γ−1
i w)0]. (4-19)

The sum
∑

i [γ
−1
i · Pw] defines a divisor on X B

0 of degree h(OL). In fact, by
Shimura’s description of the Galois action, this divisor coincides with the orbit
under Gal(H/L) of Pw ∈ X B

0 (H), with H the Hilbert class field of L . Hence we
can write ∑

i

[γ−1
i Pw] = tH/L [Pw]. (4-20)

(Here tH/L stands for taking the trace from H to L). Since in this case n = 2,
the current [8(v,w, 1)K ] involves an additional sum. Namely, we need to choose
γ0 ∈ H(Q) such that γ0 · D

+

U = D−U ; we can find such an element satisfying
additionally that γ0 · v = v and γ0 ·w = −w. Now we have to find ki0 ∈ K and
γi0 ∈ H+(Q) such that γ0h′i = γi0ki0 . With our choice of K this is easy to do
explicitly: let ε ∈ O×B be a unit of norm −1; such an element always exists by
[Vignéras 1980, Corollary 5.9]. Then (ε, ε) ∈ H(Q)∩ K . If h′i = γi ki as above,
then we can choose γi0 = γ0γi ·(ε, ε)

−1 and ki0 = (ε, ε)ki . Then we have γ−1
i0
·v= v

and γ−1
i0
·w =−(ε, ε) · γ−1

i ·w and hence∑
i

[8(γ−1
i0
v, γ−1

i0
w)0] =

∑
i

[8(v, (ε, ε)γ−1
i w)0], (4-21)

since [8(v,w)0] = [8(v,−w)0]. By Shimura’s reciprocity law [Ogg 1983, Equa-
tion (5)], if Pw′ is the point of X B

0 corresponding to Dw′ ⊂D=H±, then its complex
conjugate Pw′ corresponds to D(ε,ε)·w′ . It follows that∑

i

[γ−1
i Pw] +

∑
i

[γ−1
i0

Pw] = tH/Q[Pw] (4-22)

and hence

[8(v,w, 1)K ] = 2π i ·1∗([G tH/Q[Pw]]), (4-23)

with G tH/Q[Pw] a Green function for the divisor tH/Q[Pw] on X B
0 .
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4B4. The current [8(T, ϕ)K ]. Consider now an order R = Z[α] in an imaginary
quadratic field L⊂C and let x2

−t x+n be the minimal polynomial of α. We assume
that L admits an embedding into B and (for simplicity) that (d(L), d(B))= 1 and
that R = OL is the ring of integers of L . Define

T =
(

1 t/2
t/2 n

)
,

ϕO2
B
= characteristic function of Ô2

B,

(4-24)

and let us describe the current [8(T, ϕO2
B
)] in (3-49). To do so, we need to describe

the set of K -cosets of Supp(ϕO2
B
)∩�T (A f ). We have

K\[Supp(ϕO2
B
)∩�T (A f )] = (Ô

×

B ×Ẑ×
Ô×B )\�T (Ô

2
B)

=

∏
v-∞

(O×B,v ×Z×v
O×B,v)\�T (O

2
B,v). (4-25)

Note that the assignment j 7→ j (α) induces a bijection between the (optimal)
embeddings j : R→OB and the set of elementsw∈OB with t (w)= t and n(w)=n,
and this statement holds true locally too. It follows that the map (1, w) 7→w induces
a one-to-one correspondence

(O×B,v ×Z×v
O×B,v)\�T (O

2
B,v)←→ { j : R→ OB,v optimal}/O×B,v, (4-26)

where the equivalence in the right-hand side is with respect to conjugation by O×B,v .
The set on the right-hand side has cardinality 1 if Bv ∼= M2(Qv) and 2 if Bv is
division; moreover, in the latter case the local Atkin–Lehner involution permutes
the two elements (see [Vignéras 1980, Theorems II.3.1, II.3.2]). Hence the set

K\[Supp(ϕO2
B
)∩�T (A f )] (4-27)

is a torsor under the Atkin–Lehner group WB . Since the set CM(OL) of points in
X B

0 with CM by OL is a torsor under Pic(OL)×WB , we conclude that[
8

((
1 t/2

t/2 n

)
, ϕO2

B

)
K

]
= 2π i · (X B

0
1
→ X B

0 × X B
0 )∗([G tL/Q[CM(OL )]]) (4-28)

is the pushforward along the diagonal of a Green current [G tL/Q[CM(OL )]] for the
divisor tL/Q[CM(OL)].

Note that by choosing ϕ ∈ S (V (A f )
2) to have support in a single K -orbit of

(4-27), we recover all the currents of the form (4-23).

4B5. The current [8(T, ϕ)K ] − [8(T
ι, ϕι)K ]. Recall that we have defined an in-

volution ι on the set of pairs (T, ϕ), given by (3-82). Our next goal is to give an
example of the action of ι.
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Let p be a prime, p ≡ 1 (mod 4) and not dividing d(B), and define

T =
(

1
p

)
,

ϕO2
B
= characteristic function of Ô2

B .

(4-29)

The previous computation of [8(T, ϕO2
B
)] shows that this current is supported on

the diagonal 1, and more precisely that[
8

((
1

p

)
, ϕO2

B

)
K

]
= 2π i · (X B

0
1
→ X B

0 × X B
0 )∗([G tL/Q[CM(Z[

√
−p])]]).

Note that ϕιO2
B
= ϕO2

B
and that T ι

=
( p

1

)
. In particular, the current [8(T ι, ϕιO2

B
)] is

different from [8(T, ϕO2
B
)], as the former is supported on the Hecke correspondence

T(p). More precisely, the same argument as above, with trivial modifications, shows
that[

8

((
p

1

)
, ϕO2

B

)
K

]
= 2π i · (X B

0 (p)→ X B
0 × X B

0 )∗([G tL/Q[CM(Z[
√
−p])]]),

where here [CM(Z[
√
−p])] denotes the divisor consisting of all points in X B

0 (p)
with CM by Z[

√
−p] (for some CM type of Z[

√
−p]).
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Multiple period integrals and cohomology
Roelof W. Bruggeman and Youngju Choie

We give a version of the Eichler–Shimura isomorphism with a nonabelian H 1

in group cohomology. Manin has given a map from vectors of cusp forms to a
noncommutative cohomology set by means of iterated integrals. We show that
Manin’s map is injective but far from surjective. By extending Manin’s map we
are able to construct a bijective map and remarkably this establishes the existence
of a nonabelian version of the Eichler–Shimura map.

1. Introduction

In the theory of modular forms the Eichler–Shimura isomorphism has played an
important role, with many applications. For instance, it gives integrality of eigenval-
ues for Hecke operators and algebraicity of the critical values of the L-functions of
modular forms, which, for example, enables the construction of p-adic L-functions
and gives a connection to Iwasawa theory as well as the computational aspects of
modular form theory. The Eichler–Shimura isomorphism relates spaces of cusp
forms of integral weight to a parabolic cohomology group, namely,

Sk(SL2(Z))⊕ Sk(SL2(Z))∼= H 1
par(SL2(Z),Ck−2[X, Y ]),

where Ck−2[X, Y ] is the SL2(Z)-module of homogeneous polynomials of degree
k− 2 in the indeterminates X , Y , and where Sk(SL2(Z)) (resp. Sk(SL2(Z))) is the
space of holomorphic (resp. antiholomorphic) cusp forms of weight k.

The Eichler–Shimura isomorphism was eventually extended in [Knopp 1974]
and [Knopp and Mawi 2010] by establishing a canonical isomorphism between
1-cohomology of cofinite discrete subgroups 0 of SL2(R) with appropriate holo-
morphic coefficients and the space of cusp forms with real weight.

Manin [2005] defined a “nonabelian” H 1 in group cohomology with values in
a nonabelian group, and a map from a product of spaces of cusp forms to this
cohomology set, in analogy to the Eichler–Shimura map. Manin’s construction uses
iterated integrals in the spirit of the multiple zeta values which have proved so useful

Choie is partially supported by NRF-2015049582 and NRF-2013R1A2A2A01068676.
MSC2010: primary 11F67; secondary 11F75.
Keywords: cusp form, iterated integral, noncommutative cohomology.
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in understanding zeta values and mixed Tate motives, for example. Manin’s integrals
give a way to express multiple L-values of modular forms and have been studied
by the second author [Choie 2014] and independently in the thesis of N. Provost
[2014] recently. In [Choie 2014] the period polynomials whose coefficients are
multiple L-values were treated as elements in a nonabelian H 1 for the first time.

In a recent talk at ICM, Brown [2014] mentioned a connection between the
iterated integrals of Manin and certain mixed motives. He explained how to interpret
motivic multiple zeta values as periods of the pro-unipotent fundamental groupoid
of the projective line minus three points X = P1

\ {0, 1,∞} via iterated integral
of smooth 1-forms on a differentiable manifold discussed by Chen [1977]. Hain
[2015] discussed the relation between Manin’s iterated integrals and the Hodge
theory of modular groups. However, it was not clear yet how to relate Manin’s
iterated integral and Eichler–Shimura theory. Manin’s map from spaces of cusp
forms to cohomology differs in two aspects from the Eichler–Shimura map: the
summand Sk(SL2(Z)) is absent and the map is injective but not surjective.

This paper addresses the second difference by extending Manin’s map to more
complicated combinations of spaces of cusp forms to obtain a variant of the Eichler–
Shimura isomorphism with values in a nonabelian cohomology H 1. Our main result
(Theorem 6.7) states that there is an extension of Manin’s map that is bijective
onto a noncommutative cohomology set. It is remarkable that there exists some
nonabelian version of the Eichler–Shimura map.

To obtain our main result we modify Manin’s construction [2005] in several ways
in the spirit of a variant Eichler–Shimura isomorphism established in [Knopp 1974;
Knopp and Mawi 2010]: first replace the finite-dimensional spaces of polynomials
by spaces of functions on the lower half-plane. Secondly, unlike in the classical
Eichler–Shimura isomorphism, antiholomorphic modular forms are not considered.
Thirdly, we allow automorphic forms for cofinite discrete subgroups 0 of SL2(R)

with arbitrary real weights and multiplier system. Finally, we collapse the number
of variables in the iterated integrals.

To be more precise consider the iterated integral

R`( f1, . . . , f`; y, x; t1, . . . , t`)

:=

∫ y

τ1=x
f1(τ1)(τ1− t1)w1

∫ τ1

τ2=x
f2(τ2)(τ2− t2)w2

· · ·

∫ τ`−1

τ`=x
f`(τ`)(τ`− t`)w` dτ` · · · dτ2 dτ1, (1-1)

where x , y are in the extended complex upper half-plane and each tj , 1≤ j ≤ `, is
in the lower half-plane. If the f j are cusp forms of even integral weight wj + 2, the
iterated integral defines a polynomial function in the tj , 1≤ j ≤ `, whose coefficients
are multiple L-values of f j . The resulting iterated integral is holomorphic in
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(t1, . . . , t`) in the product of ` copies of the lower half-plane if the f j are cusp
forms of real weight. As the order ` of the iterated integral increases, the relations
between iterated integrals become more and more complicated. However, the
relations between iterated integrals of order ` look simple modulo all products of
iterated integrals of lower order. Manin [2005; 2006] has shown how to give a
neat formulation for all relations among iterated integrals of the type indicated in
(1-1). His approach works with formal series in noncommuting variables and can
be applied to much more general iterated integrals than studied here.

The factors (τj − tj )
wj in (1-1) occur also in the definition of cocycles attached

to cusp forms. Manin attaches to vectors of cusp forms ( f1, . . . , f`) a cocycle in a
noncommutative cohomology set, and thus gives a generalization of the Eichler–
Shimura map. The cohomology has values in a noncommutative subgroup N(A) of
the unit group of the noncommutative ring A of formal power series in noncommut-
ing variables A1, . . . , A` with coefficients in spaces of holomorphic functions on the
lower half-plane. The variables Aj correspond to spaces of cusp forms Swj+2(0, vj )

with positive real weights wj + 2 and corresponding multiplier systems vj . Then
Manin’s approach leads to a map

∏̀
j=1

Swj+2(0, vj )−→ H 1(0; N(A)) (1-2)

from a product of finitely many spaces of cusp forms to a noncommutative coho-
mology set. This (nonlinear) map is far from surjective. In Theorem 6.7 we show
that Manin’s map can be extended, and that all elements of the cohomology set
H 1(0; N(A)) can be related to combinations of cusp forms by means of iterated
integrals. The simplification t1 = · · · = t` in the iterated integrals is essential for
our methods to work.

Sections 2 and 3 have a preliminary nature. We review the approach of Knopp
[1974] of associating cocycles to any cusp form of real weight and the definition
of the iterated integrals that we use. Sections 4 and 5 discuss Manin’s approach
of using formal series in noncommuting variables to associate noncommutative
cocycles to vectors of cusp forms. In Section 6 we extend this approach in such
a way that the resulting map from collections of cusp forms to noncommutative
cohomology is bijective.

2. Cusp forms and theorem of Knopp and Mawi

Discrete group. Let 0 be a cofinite discrete subgroup of SL2(R) with translations.
Without loss of generality we assume that

(
−1

0
0
−1

)
∈ 0. For convenience we

conjugate 0 into a position for which ∞ is among its cusps and such that the
subgroup 0∞ of 0 fixing∞ is generated by T =

( 1
0

1
1

)
.
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Notation. For w ∈ R and v a corresponding unitary multiplier system, we denote
by Sw+2(0, v) the space of holomorphic cusp forms of weight w+2 and multiplier
system v. This is the finite-dimensional space of holomorphic functions f on
the upper half-plane satisfying f (γ z) = v(γ )(cz + d)w+2 f (z) for γ ∈ 0, with
exponential decay upon approach of the cusps. If the weight w+ 2 is integral, a
multiplier system is a character.

Functions with at most polynomial growth. By V (v,w), with w ∈ R and v a
corresponding multiplier system, we denote the space of holomorphic functions
on the lower half-plane H− with at most polynomial growth at the boundary P1

R

of H−, provided with the action of γ =
(a

c
b
d

)
∈ 0 given by

f |v,−wγ (t)= v(γ )(ct + d)−w f (γ t). (2-1)

The condition that f has polynomial growth on H− can be formulated as

| f (t)| ≤ C1|t |A+C2|Im t |−A for all t ∈ H−, for some A,C1,C2 ≥ 0. (2-2)

The action |v,−w of 0 preserves this condition.

Remarks. (a) In [Bruggeman et al. 2014, §1.4] we denoted the representation
V (v,w) of 0 by D−∞v,−w (actually we used r = w+ 2 as the main parameter, and
wrote D−∞v,2−r ).

(b) The polynomial growth condition in (2-2) can be formulated in terms of an
estimate by one function Q(t) = |Im t |/|t − i |2 as | f (t)| ≤ CQ(t)−A for some
A,C ≥ 0. See the discussion in [Bruggeman et al. 2014, §1.5].

Knopp’s cocycles associated to cusp forms. Knopp [1974] associated to cusp forms
f ∈ Sw+2(0, v) a cocycle ψ̄f given by

ψ̄f,γ (z)=
∫
∞

γ−1∞

f (τ )(τ − z̄)w dτ .

This cocycle takes values in the holomorphic functions on the upper half-plane H

that have at most polynomial growth on H in the sense of (2-2) (now with t replaced
by z ∈ H). We avoid the complex conjugation by taking a cocycle with values in
the holomorphic functions on the lower half-plane H− with at most polynomial
growth at the boundary:

ψf,γ (t)=
∫
∞

τ=γ−1∞

f (τ )(τ − t)w dτ. (2-3)

So ψf has values in the 0-module V (v,w).
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Theorem 2.1 [Knopp and Mawi 2010]. For real weight w+ 2 and corresponding
unitary multiplier system v, the map f 7→ [ψf ] determines a linear bijection

Sw+2(0, v)−→ H 1(0; V (v,w)).

Knopp [1974] conjectured this result, and proved it for many cases. Finally, the
remaining cases were completed in [Knopp and Mawi 2010].

Remarks. (a) A multiplier system v is called unitary if |v(γ )| = 1 for all γ ∈ 0.

(b) Since Sw+2(0, v)= {0} for w+2≤ 0, the theorem implies that the cohomology
groups vanish as well for w+ 2≤ 0.

(c) If w ∈ Z≥0, the cocycles take values in polynomial functions on H−, which for
the trivial multiplier system form a submodule of V (1, w) isomorphic to Cw[X, Y ].

If the multiplier system v has values only in {1,−1} then conjugation gives
cocycles in the same module. The Eichler–Shimura theory gives the parabolic coho-
mology group with values in polynomial functions of degree at most w as the direct
sum of the images of the two maps f 7→ [ψf ] and f 7→ [ψ̄f ]. However, in the large
module of polynomially growing functions, the cocycles ψ̄f become coboundaries.
Also the cocycles associated to Eisenstein series become coboundaries over the
module of functions with at most polynomial growth.

(d) Knopp [1974] shows that the parabolic cohomology group H 1
par(0; V (v,w)) is

equal to the cohomology group H 1(0; V (v,w)).

3. Iterated integrals

By taking t1 = · · · = t` = t we consider the following holomorphic function in t
running through the lower half-plane:

R`( f1, . . . , f`; y, x; t) :=
∫ y

τ1=x
f1(τ1)(τ1− t)w1

∫ τ1

τ2=x
f2(τ2)(τ2− t)w2

· · ·

∫ τ`−1

τ`=x
f`(τ`)(τ`− t)w` dτ` · · · dτ2 dτ1. (3-1)

It is a multilinear form on
∏`

j=1Swj+2(0, vj ) for ` pairs (v1, w1), . . . , (v`, w`) of
real numbers wj and corresponding unitary multiplier systems vj . The parameter t
is in the lower half-plane H−. The value of the iterated integral does not depend on
the path of integration, provided we take care to approach cusps along geodesic
half-lines (for instance, vertically).

The most interesting case is y=γ−1
∞, γ ∈0, and x=∞. For `=1 this gives the

valueψf1,γ of the cocycle in (2-3). That is why we call R`( f1, . . . , f`; γ−1
∞,∞; t)

a multiple period integral.
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Functions with at most polynomial growth. The condition of polynomial growth in
(2-2) is preserved by the action of 0 given for γ =

(a
c

b
d

)
by

h|v,−wγ (t)= v(γ )−1(ct + d)wh(γ t),

v(γ )= v1(γ )v2(γ ) · · · v`(γ ),

w = w1+w2+ · · ·+w`.

(3-2)

By V (v,w) we denote the vector space of holomorphic functions on H− with
the action |v,−w given in (3-2). Multiplication of functions gives a bilinear map
V (v;w)× V (v′;w′)→ V (vv′;w+w′). The action behaves according to the rule

(h|v,−wγ )(h′|v′,−w′γ )= (hh′)|vv′,−w−w′γ. (3-3)

Lemma 3.1. For f = ( f1, . . . , f`) ∈
∏`

j=1Swj+2(0, vj ), the multiple period inte-
gral R`( f ; y, x; · ) defines an element of V (v,w).

Proof. Each cusp form has at most polynomial growth on H, and has exponential
decay at cusps when the cusp is approached along a geodesic half-line. This implies
that the iterated integral in (3-1) has at most polynomial growth in t and τ`−1. Succes-
sively this also implies polynomial growth in τj−1 and t of the further integrals. �

Trivial relation. Directly from the definition we have

R`( f ; x, x; t)= 0. (3-4)

Lemma 3.2. For γ ∈ 0,

R`( f ; γ−1 y, γ−1x; t)= R`( f ; y, x; · )|v,−wγ (t). (3-5)

Proof. In the following computation all τj are replaced by γ τj , with γ =
(a

c
b
d

)
∈ 0:

R`( f ; x, y; · )|v,−wγ (t)

=

∏̀
j=1

(vj (γ )
−1(ct + d)wj )

∫ y

τ1=x
f1(τ1)(τ1− γ t)w1

∫ τ`−1

τ`=x
f`(τ`)(τ`− γ t)w`

dτ` · · · dτ1

=

∏̀
j=1

(vj (γ )
−1(ct + d)wj )

∫ γ−1 y

τ1=γ−1x
f1(γ τ1)

(τ1− t)w1

(cτ1+ d)w1(ct + d)w1∫ γ−1(γ τ`−1)

τ`=γ−1x
f`(γ τ`)

(τ`− t)w`

(cτ`+ d)w`(ct + d)w`
dτ`

(cτ`+ d)2
· · ·

dτ1

(cτ1+ d)2

= R`( f ; γ−1 y, γ−1x; t). �

Cocycles. For `= 1 we get the cocycle ψf in (2-3):

ψf,γ (t)=−R1( f ; γ−1
∞,∞; t). (3-6)
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Decomposition. It is easy to see that the cocycles in (2-3) satisfy the cocycle relation

cγ δ = cγ |δ+ cδ

for γ, δ ∈ 0: use the decomposition relation
∫ a

b +
∫ b

c =
∫ a

c for integrals together
with the invariance relation in Lemma 3.2.

There are decomposition relations for the iterated integrals in (3-1), which can be
obtained by application of the decomposition relation for integrals of one variable
to the subintegrals in (3-1). For the orders 2 and 3 these relations take the form

R2( f1, f2; z, y; t)+ R2( f1, f2; y, x; t)− R2( f1, f2; z, x; t)

= R1( f1; z, y; t)R1( f2; y, x; t), (3-7)

R3( f1, f2, f3; z, y; t)+ R3( f1, f2, f3; y, x; t)− R3( f1, f2, f2; z, x; t)

=−R1( f1; z, y; t)R2( f2, f3; y, x; t)+ R2( f1, f2; z, y; t)R1( f3; y, x; t). (3-8)

We have written these relations in such a way that the quantity on the left should be
zero if the standard decomposition would hold. On the right is a correction term
consisting of products of iterated integrals of lower order.

Example. The decomposition relations can be used to obtain relations between
values of multiple L-functions at special points, as studied in [Choie 2014] and in
the thesis by Provost [2014] independently.

Let us take 0 = SL2(Z), and assume that v1 = v2 = 1, and w1, w2 ∈ 2Z≥0. This
implies that the multiple integrals yield polynomial functions in the variable t . We
apply (3-7) with z = x =∞ and y = 0. With (3-4),

R2( f1, f2;∞, 0; t)+ R2( f1, f2; 0,∞; t)= R1( f1;∞, 0; t)R1( f2; 0,∞; t).

Using the binomial theorem, we see that R1( f ;∞, 0; t) is a polynomial in t with
coefficients that can be expressed in values of completed L-functions. In a similar
way, R2( f1, f2;∞, 0; t) is a polynomial in t with coefficients that can be expressed
in values of a completed multiple L-function of order 2 as defined in [Choie 2014,
(2.6)]. With Lemma 3.2,

R2( f1, f2; 0,∞; · )= R2( f1, f2;∞, 0; · )|−wS,

where S =
( 0

1
−1

0

)
. In this way, the decomposition relation (3-7) implies the equality

of two polynomials. Comparing coefficients leads to the relation in [Choie 2014,
Theorem 3.1].

This account is a simplification. The decomposition relations are valid for the
iterated integrals in (1-1), and lead for wj ∈ 2Z≥0 to polynomials in two variables.
Choie [2014] works in that generality.
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4. Formal series

Manin [2005; 2006] has indicated a way to give structure to the decomposition
relations of any order. His approach works in a general context of iterated integrals
associated to cusp forms. The factors (τj − t)w of the kernel in (3-1) and (τj − tj )

in (1-1) may be replaced by more general factors, for instance, by factors leading
to iterated L-integrals as studied in [Choie 2014]. Here we use Manin’s formalism
for the iterated integrals in (3-1).

We keep fixed ` combinations of a weight wj + 2 ∈ R and a corresponding
unitary multiplier system vj . For a vector f = ( f1, . . . , f`) ∈

∏`
j=1Swj+2(0, vj ) of

length `, we form iterated integrals of arbitrary order

Rn( fm1, fm2, . . . , fmn ; y, x; t) (4-1)

for any choice m = (m1, . . . ,mn) ∈ {1, . . . , `}n , for any n ≥ 0. For n = 0 we define
this quantity to be 1. The same f j may occur several times as fmi . So we do not
get linearity in f j . The result is a holomorphic function on H−, and has at most
polynomial growth by Lemma 3.1.

To formulate the 0-equivariance, we put for m = (m1,m2, . . . ,mn)

v(m) := vm1vm2 · · · vmn , w(m) := wm1 +wm2 + · · ·+wmn . (4-2)

We consider the iterated integral in (4-1) as an element of V (v(m),w(m)). For
the empty sequence m = () we put V (v(),w()) = C with the trivial action |1,0.
Multiplication follows the rule in (3-3). Lemma 3.2 can be applied.

Power series in noncommuting variables. We choose ` spaces of cusp forms
Swj+2(0, vj ) with wj + 2> 0 and unitary multiplier systems vj , for 1≤ j ≤ `. We
indicate this choice by the symbol A. For this choice A we take ` noncommuting
variables A1, A2, . . . , A`.

Let O(A) be the set of formal power series in the Aj for which the coefficient of
the monomial Am1 Am2 · · · Amn is in V (v(m),w(m)) for each m ∈ {1, . . . , `}n . The
constant term is in V (v(),w())= C. The relation (3-3) implies that O(A) is a ring.

Formal series associated to vectors of cusp forms. Following Manin we combine
all iterated integrals in (4-1) as coefficients of an element of the ring O(A). Let

SA(0)=
∏̀
j=1

Swj+2(0, vj ). (4-3)

For f = ( f1, . . . , f`) ∈ SA(0) define the formal series J ( f ; y, x; t) ∈ O(A) by

J ( f ; y, x; t)

= 1+
∑
n≥1

∑
m1,...,mn∈{1,...,`}

Rn( fm1, fm2, . . . , fmn ; y, x; t)Am1 Am2 · · · Amn . (4-4)
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Remarks. (a) J ( f ; z, w; · ) is an invertible element of O(A) since it has a nonzero
constant term.

(b) The coefficients Rn( fm1, . . . , fmn ; y, x; t) are continuous functions of y, x ∈H∗,
and are holomorphic in x, y ∈ H.

(c) The Aj codes for the space Swj+2(0, vj ). This approach differs from that in
[Manin 2005, §2]. There the formal variables code for linearly independent elements
of the space

∏
j Swj+2(0, vj ).

Action of 0. We define an action of 0 on O(A) by the action |v(m),−w(m) on the
coefficient of Am1 · · · Amn . Lemma 3.2 implies the relation

J ( f ; γ−1 y, γ−1x; · )= J ( f ; y, x; · )|γ for each γ ∈ 0. (4-5)

Multiplication properties. These formal series satisfy for z, y, x ∈ H∗

J ( f ; x, x; t)= 1, (4-6)

J ( f ; x, y; t)= J ( f ; y, x; t)−1, (4-7)

J ( f ; z, x; t)= J ( f ; z, y; t)J ( f ; y, x; t). (4-8)

We will prove a more general result in Proposition 6.3.
These relations encapsulate infinitely many relations between multiple period

integrals. The reader who takes the trouble to compare the coefficients of A1 A2 in
(4-8) obtains the relation (3-7). Similarly, relation (3-8) is given by the coefficient
of A1 A2 A3.

Commutative example. In the modular case we may look at w= N/2−2 for some
N ∈ Z≥1. As the corresponding multiplier system we choose vN/2 determined by

vN/2

(
1 1
0 1

)
= eπ i N/12, vN/2

(
0 −1
1 0

)
= e−π i N/4. (4-9)

For 1≤ N ≤ 24 the space of cusp forms is one-dimensional, in fact:

SN/2+2(0(1), vN/2)= CηN ,

where η(τ)= q1/24∏
n≥1(1− qn), q = e2π iτ , is the Dedekind eta function.

We take `= 1, with w1 = N/2− 2 and multiplier system vN/2. The ring O(A)
is a commutative ring of formal power series in one variable A. The coefficient
of Am is in the 0(1)-module V (vm N/2,m N/2− 2m).

If we take 1≤ N ≤ 24, then with f = (ηN ) we get in (4-4)

J ( f ; y, x; t)= 1+
∑
n≥1

Rn((η
N )×n
; y, x; t)An, (4-10)

where (ηN )×n means a sequence of n copies of ηN .
If N >24 we still can work with f = ( f ), but now f need not be a multiple of ηN .
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5. From cusp forms to noncommutative cohomology

Manin uses relation (4-8) to associate a noncommutative cocycle to the vector
f = ( f1, . . . , f`) of cusp forms. We first reformulate Manin’s description [2005,
§1] of noncommutative cohomology for a right action, and then determine the map
from vectors of cusp forms to noncommutative cohomology.

Noncommutative cohomology. Let G and N be groups, written multiplicatively,
and suppose that for each g ∈ G there is an automorphism n 7→ n|g of N such
that the map g 7→ |g is an antihomomorphism from G to the automorphism group
Aut(N ), i.e., n|(gh)= (n|g)|h for n ∈ N and g, h ∈ G.

A map ρ : G→ N is called a 1-cocycle if it satisfies

ρgh = (ρg|h)ρh for all g, h ∈ G. (5-1)

The set of such cocycles is called Z1(G; N ). It is not a group. Nevertheless it
contains the special element 1 : g 7→ 1.

The group N acts on Z1(G; N ) from the left, by ρ 7→ nρ defined by

nρg = (n|g)ρgn−1. (5-2)

The cohomology set H 1(G; N ) is the set of N -orbits in Z1(G; N ) for this action.
The orbit of the cocycle g 7→ 1 is called the set of coboundaries B1(G; N ).

Noncommutative cocycles attached to a sequence of cusp forms. As the group N
we use the subgroup N(A) of the group of those units in O(A)∗ that have constant
term equal to 1. The series J ( f ; y, x; · ) in (4-4) is an element of N(A).

Following Manin we define for f = ( f1, . . . , f`) ∈ SA(0) and x ∈ H∗

9( f )xγ (t)= J ( f ; γ−1x, x; t). (5-3)

The properties (4-5) and (4-8) imply that this defines a noncommutative cocycle
9( f )x ∈ Z1(0; N(A)), and that its cohomology class CohA( f ) ∈ H 1(0; N(A))
does not depend on the choice of the base-point x . We write 9( f )=9( f )∞.

Proposition 5.1. The map

CohA : SA(0)→ H 1(0; N(A)) (5-4)

is injective.

Proof. Suppose that the cocycles 9( f1, . . . , f`) and 9( f ′1, . . . , f ′`) are in the same
cohomology class. Then there is an n ∈ N(A) such that for all γ ∈ 0

9( f ′1, . . . , f ′`)γ = (n|γ )9( f1, . . . , f`)γ n−1. (5-5)
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We denote the coefficient of Aj in n by nj ∈ V (vj , wj ). In relation (5-5) we consider
only the constant term and the term with Aj , and work modulo all other terms:

1−ψf ′j ,γ Aj ≡ (1+ nj Aj )(1−ψf j ,γ Aj )(1− nj Aj ).

Taking the factor of Aj gives

−ψf ′j ,γ = nj |vj ,−wjγ −ψf j ,γ − nj .

In other words, ψf ′j and ψf j differ by a coboundary. We have used the noncommuta-
tive relation (5-5) in N(A) to get a commutative relation in V (vj , wj ).

By the theorem of Knopp and Mawi (Theorem 2.1) we conclude that f ′j = f j

for all j . Hence CohA is injective. �

Remarks. (a) Implicit in the proof is the quotient of A by the ideal generated by
all monomials in the Aj with degree 2. The corresponding quotient of N(A) is
isomorphic to the direct sum of the V (vj , wj ).

(b) The injectivity of the map from cusp forms to cocycles is a point in common
for this result, the theorem of Knopp and Mawi, and the classical Eichler–Shimura
result. The bijectivity in the theorem of Knopp and Mawi is not shared by the
classical result, where conjugates of cocycles also determine cohomology classes.
In the next section we will see that the whole group H 1(0; N(A)) can be described
with cusp forms, but in a more complicated way than by the map CohA.

Commutative example. Toward the end of page 653 we considered the case `= 1.
Then N(A) is a commutative group, and H 1(0; N(A)) is a cohomology group.

When 0 = 0(1), with the choices and notations indicated on page 653, the
cocycle 9(ηN ) vanishes on

( 1
0

1
1

)
(hence may be called a parabolic cocycle), and is

determined by its value on S =
( 0

1
−1

0

)
:

9(ηN )S(t)= J (ηN
; 0,∞; t)= 1+

∑
n≥1

Rn((η
N )×n
; 0,∞; t)An. (5-6)

The coefficient of An is an iterated period integral of ηN . The cocycle satisfies the
well known relations (9(ηN )S|S)9(ηN )S=1 and9(ηN )S=9(η

N )S|T ′9(ηN )S|T ,
with T ′ =

( 1
1

0
1

)
= TST .

6. Noncommutative cocycles and collections of cusp forms

The proof of Proposition 5.1 is based on the fact that the vector of cusp forms f can
be recovered from the terms of degree 1 in the formal series J ( f ; γ−1

∞,∞; t).
In this section we associate to collections of cusp forms noncommutative cocycles
of a more general nature.
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We keep fixed the choice A of positive weights w1 + 2, . . . , w` + 2 and cor-
responding multiplier systems v1, . . . , v`. To each monomial B = Am1 · · · Amd

in O(A) we associate the shifted weight w(B) := w(m) and the multiplier system
v(B) := v(m) as defined in (4-2) for m = (m1, . . . ,md) ∈ {1, . . . , `}d . So w(B)
and v(B) depend only on the factors Ami occurring in B, not on their order.

Definition 6.1. We call the degree d(B) of the monomial B = Am1 · · · Amd the
number d of factors Aj (1≤ j ≤ `) occurring in it.

Let B(A) be the set of all monomials B in A1, . . . , A` with d(B)≥ 1 for which
Sw(B)+2(0, v(B)) 6= {0}. We put

S(A;0) :=
∏

B∈B(A)

Sw(B)+2(0, v(B)). (6-1)

Remarks. (a) The space of cusp forms Sw(B)+2(0, v(B)) may be zero. In fact, this
is necessarily the case if w(B) ≤ −2. For w(B) > −2 it may also happen to be
zero, depending on 0 and v(B).

(b) The set B(A) is often infinite. We recall that elements of infinite direct sums of
vector spaces have zero components at all but finitely many B ∈ B(A). Here we
use the product. Its elements may have nonzero components for all B.

(c) We denote elements of S(A;0) by h, with component h(B) in the factor
corresponding to the monomial B.

(d) There may be more than one monomial B for which Sw(B)+2(0, v(B)) is equal
to a given space of cusp forms. See (f2) below for an example where this happens
for infinitely many monomials.

(e) The space SA(0)=
∏`

j=1Swj+2(0, vj ) in (4-3) may be considered as a subspace
of S(A;0). To do this we define for a given f = ( f1, . . . , f`) ∈ SA(0) the element
h ∈ S(A;0) by

h(Aj )= f j , h(B)= 0, if d(B)≥ 2.

(f) In the commutative case ` = 1 we have B(A) ⊂ {An
: n ∈ Z≥1}. We consider

three specializations of the example on page 653.

(f1) Take N = 24. So B(A)={An
: n ∈Z≥1}, w(B)= 10n and v(B)= v12= v0= 1.

Hence
S(A;0(1))=

∏
n≥1

S10n+2(0(1), 1). (6-2)

(f2) Take N = 4. So w(An)= 0 for all n ≥ 1 and the space S2(0(1), v2n) is equal
to Cη4 if n ≡ 1 mod 6 and zero otherwise. This implies that

B(A)= {An
≥ 1 : n ≡ 1 mod 6}.
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Since v(B)= vn = v2 for n ≡ 1 mod 6, we obtain

S(A;0(1))=
∏
n≥1

n≡1 mod 6

S2(0(1), v2). (6-3)

(f3) Take N =1. So w(B)=w1=−
3
2 , and nw1<−2 for n≥2. Hence B(A)={A},

v(B)= v1/2, and

S(A;0(1))= S1/2(0(1), v1/2)= Cη, (6-4)

with η(τ)= eπ iτ/12∏
n≥1(1− e2π inτ ).

Lemma 6.2. For each h ∈ S(A;0), the series

J (h; y, x; t)

:= 1+
∑
n≥1

∑
B1,...,Bn∈B(A)

Rn(h(B1), h(B2), . . . , h(Bn); y, x; t)B1 B2 · · · Bn (6-5)

converges and defines an element of N(A).

Proof. The degree of B1 B2 · · · Bn is at least n. For convergence in O(A) there
should be for each D ≥ 0 only finitely many terms with degree at most D. This
restricts n to n ≤ D, and the Bj to monomials of degree bounded by D, of which
there are only finitely many.

The terms with n ≥ 1 cannot contribute to the constant term, hence we obtain an
element of N(A). �

Remarks. (a) If h(Bi ) = 0 for some i in the iterated integral in (6-5), then the
integral vanishes. In (6-5) we could have restricted the Bi in the sum by the condition
h(Bi ) 6= 0. In particular, J (0; y; x; t)= 1.

(b) Definition (6-5) extends definition (4-4). If f ∈ SA(0) is considered as an
element h ∈ S(A;0), as in remark (e) to Definition 6.1, then

J ( f ; y, x; t)= J (h; y, x; t). (6-6)

Proposition 6.3. For all h ∈ S(A;0), γ ∈ 0, z, y, x ∈ H∗,

J (h; γ−1 y, γ−1x; · )= J (h; y, x; · )|γ, (6-7)

J (h; x, x; t)= 1, (6-8)

J (h; z, x; t)= J (h; z, y; t)J (h; y, x; t), (6-9)

J (h; x, y; t)= J (h; y, x; t)−1. (6-10)

Proof. The relations (6-7) and (6-8) follow directly from Lemma 3.2 and (3-1). We
will prove relation (6-9) in a sequence of lemmas, and finally will derive relation
(6-10) from relation (6-9).
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Relation (6-9). This relation holds in a general context of iterated integrals; auto-
morphic properties are not needed. Our proof follows [Manin 2006, Proposition 1.2]
closely. We first show relation (6-9) for x, y, z ∈ H.

Lemma 6.4. For h ∈ S(A;0) put

�(h; z; t) :=
∑

B∈B(A)

(z− t)w(B)h(B; z) dz · B. (6-11)

This formal series of O(A)-valued differential forms converges, and for z ∈ H

dz J (h; z, x; t)=�(h; z; t)J (h; z, x; t). (6-12)

Proof. The sum in (6-11) is infinite in most cases. The convergence follows from
the fact that the number of monomials with a given degree is finite. The differential
of a nonconstant term in (6-5) is given by

dz Rn(h(B1), h(B2), . . . , h(Bn); z, x; t)B1 B2 · · · Bn

= h(B1; z)(z− t)w(B1)B1 Rn−1(h(B2), . . . , h(Bn); z, x; t)B2 · · · Bn.

With a renumbering in the summation this gives (6-12). �

Lemma 6.5. dz J (h; z, x; t)−1
=−J (h; z, x; t)−1�(h; z; t).

Proof. The inverse is defined by the relation

1= J (h; z, x; t)−1 J (h; z, x; t).

Taking the differential of both sides gives, with (6-12),

0= (dz J (h; z, x; t)−1)J (h; z, x; t)+ J (h; z, x; t)−1�(h; z; t)J (h; z, x; t).

Right multiplication by J (h; z, x; t) gives the relation in the lemma. �

Lemma 6.6. For fixed x and y, put K (z) = J (h; z, y; t)−1 J (h; z, x; t). Then
K (z)= J (h; y, x; t).

Proof. With Lemmas 6.4 and 6.5 we find

dz K (z)=−J (h;z,y;t)−1�(h;z;t)J (h;z,x;t)+J (h;z,y;t)−1�(h;z;t)J (h;z,x;t)
= 0.

Hence K (z) is constant. By (6-8), its value is

K (y)= J (h; y, y; t)−1 J (h(y, x; t)= J (h; y, x; t). �

Completion of the proof of relation (6-9). The relation

K (z)= J (h; y, x; t)= J (h; z, y; t)−1 J (h; z, x; t)

implies the desired result for z, y, x ∈ H. By continuity it holds for z, y, x ∈ H∗.
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Relation (6-10). This relation follows from (6-8) and (6-9). This ends the proof of
Proposition 6.3. �

Noncommutative cocycle. From (6-7) and (6-9) it follows that for any h ∈ S(A;0)

9(h)γ := J (h; γ−1
∞,∞; t) (6-13)

defines a cocycle γ →9(h)γ in Z1(0; N(A)).
If we replace ∞ in (6-13) by another base-point x ∈ H∗ we get a cocycle

in the same cohomology class. So h 7→ 9(h) induces a map from S(A;0) to
the noncommutative cohomology set H 1(0; N(A)), extending the map CohA in
Proposition 5.1.

The main result of this paper is the bijectivity of this map:

Theorem 6.7. Let A denote the choice of finitely many positive weights w1 + 2,
w2+2, . . . , w`+2 and corresponding multiplier systems v1, . . . , v` of 0. For each
noncommutative cohomology class c ∈ H 1(0; N (A)) there is a unique element
h ∈ S(A;0) such that 9(h) ∈ c.

Proof. The induction runs over k≥0. We start with a cocycle X0
∈ Z1(0; N(A)), and

replace it in the course of an induction procedure by cocycles X1,X2, . . . in the same
cohomology class. During the induction we form a sequence h0, h1, . . . , hk, . . .

of elements of S(A;0), and a strictly increasing sequence of integers c0, c1, . . . .
The connection between the induction quantities Xk , hk and ck is given by the
requirement that at each stage of the induction the following conditions hold:

(H) hk(B)= 0 for all B with d(B) > ck .

(XPs) If Xk
γ −9(hk)γ =

∑
B a(γ, B)B, where the sum B runs over all noncom-

mutative polynomials in A1, . . . , A`, then for each γ ∈ 0

a(γ, B)= 0 for all B with d(B)≤ k.

Either at a certain stage k in the induction procedure the process stops, and we
take h = hk , or the process goes on indefinitely, in which case we construct h as
a limit of the hk . In both cases we show that 9(h) is in the cohomology class of
the Xk , and that the element h is uniquely determined.

Start of the induction. For a given cocycle X0 in the cohomology class c we put
h0 = 0 and ck = 0. Then for all γ ∈ 0

X0
γ −9(h0)γ = X0

γ − 1

has no constant term, and conditions (H) and (XPs) are trivially satisfied.

Has the end of the induction process been reached? If Xk
=9(hk), we have found

a description of the class c as required in the theorem. This may happen already at
the start of the induction if X0 is the trivial cocycle γ 7→ 1.
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Induction, choice of ck+1. If the process has not ended, then the difference Yk
:=

Xk
−9(hk) determines a nonzero map γ 7→Yk

γ from 0 to O(A). It is not a cocycle.
We define ck+1 as the minimum degree such that Yk

γ ∈ O(A) has nonzero terms
of degree ck+1 in A1, . . . , A` for some γ ∈ 0. Since condition (XPs) holds for k
we have ck+1 > ck .

Cocycle relation. The cocycle relations for the noncommutative cocycles Xk and
9(hk) give

Yk
γ δ =

(
(Yk
γ +9(hk)γ )|δ

)
(Yk
δ +9(hk)δ)− (9(hk)γ |δ)9(hk)δ

= (Yk
γ |δ)9(hk)δ + (9(hk)γ |δ)Y

k
δ + (Y

k
γ |δ)Y

k
δ . (6-14)

By condition (XPs) and the choice of ck+1, the element Yk
γ ∈ O(A) has no terms

with degree less than ck+1. We denote by Ȳk
γ the sum of the terms of Yk

γ with exact
degree ck+1. We consider relation (6-14) modulo terms with degree strictly larger
than ck+1:

Ȳk
γ δ ≡ (Ȳ

k
γ |δ)9(hk)δ + (9(hk)γ |δ)Ȳ

k
δ + 0. (6-15)

In the two products only the constant term 1 of 9(hk)γ and 9(hk)δ is relevant, and
we obtain

Ȳk
γ δ = Ȳk

γ |δ+ Ȳk
δ . (6-16)

So the noncommutative cocycle relations for Xk and 9(hk) imply that γ 7→ Ȳk
γ is

a commutative cocycle with values in the additive group of O(A).
The elements Ȳk

γ have the form

Ȳk
γ =

K∑
n=1

ϕn
γCn, Cn = Apn,1 Apn,2 · · · Apn,ck+1

, (6-17)

with ϕn
γ ∈ V (v(Cn),w(Cn)). The Cn have degree ck+1 in A1, . . . , A`. For each n

there is some γ ∈0 for which ϕn
γ 6= 0. Relation (6-16) implies that each component

of Ȳk is a cocycle: ϕn
∈ Z1

(
0; V (v(Cn),w(Cn))

)
. By Theorem 2.1 there exist

an ∈ V (v(Cn),w(Cn)) and unique cusp forms gn ∈ Sw(Cn)+2(0, v(Cn)) such that
for all γ ∈ 0

ϕn
γ =−ψgn,γ + an|v(Cn),−w(Cn)(γ − 1). (6-18)

Induction, choice of Xk+1. Take

Hk = 1−
K∑

n=1

anCn. (6-19)

This is an element of N(A). We define the cocycle Xk+1 in the same class as Xk by

Xk+1
γ = (Hk |γ )X

k
γ H−1

k . (6-20)
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Induction, choice of hk+1. It may happen that Cn 6∈ B(A) for some n ∈ {1, . . . , k}.
Then Sw(Cn)+2(0, v(Cn))= 0, and ϕn is a coboundary and gn = 0.

By condition (H) we have hk(Cn)= 0 for 1≤ n≤ K . We construct hk+1 from hk

by taking hk+1(Cn)= gn for those n for which Cn ∈ B(A), and hk+1(B)= hk(B)
otherwise. So hk(B) = hk+1(B) for all B with d(B) > ck+1, and condition (H)
stays valid for k+ 1. If Cn 6∈ B(A) for all n, then hk+1 = hk .

Induction, check of condition (XPs) for k+ 1. Modulo terms of order larger than
ck+1, we have

Xk+1
γ ≡

(
1−

∑
n

an|γCn

)
(9(hk)γ + Ȳk

γ )

(
1+

∑
n

anCn

)
(by (6-20), (XPs))

≡9(hk)γ + Ȳk
γ −

∑
n

an|γCn +
∑

n

anCn

≡9(hk)γ +
∑

n

(
−ψgn,γ + an|(γ − 1)− an|γ + an

)
Cn (by (6-17), (6-18))

=9(hk)γ +
∑

n

R1(gn; γ
−1
∞,∞)Cn (by (3-6)). (6-21)

By (6-13) and (6-5), we have

9(hk+1)γ

= 1+
∑
m≥1

∑
B1,...,Bm∈B(A)

Rm(hk+1(B1), hk+1(B2), . . . , hk+1(Bm); γ
−1
∞,∞; t)

× B1 B2 · · · Bm,

in which we can leave out the terms in which a Bi occurs with d(Bi ) > ck+1,
by condition (H). If we leave out the terms with a Bi for which d(Bi ) > ck , we
obtain 9(hk)γ . If there is a Bi with d(Bi ) > ck this is one of the Cn in (6-17),
with d(Bi )= d(Cn)= ck+1. Working modulo terms with degree larger than ck+1

we obtain

9(hk+1)γ −9(hk)γ ≡
∑

1≤n≤K
Cn∈B(A)

R1(hk+1(Cn); γ
−1
∞,∞; t)Cn

=

∑
1≤n≤K

Cn∈B(A)

R1(gn; γ
−1
∞,∞; t)Cn. (6-22)

A comparison of (6-21) and (6-22) gives condition (XPs) for k+ 1.

The induction may halt. It may happen that the induction stops at stage k; namely,
if Xk
=9(hk). Then we have found an element h = hk ∈ S(A;0) such that 9(h)

is in the class c.
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The induction may have infinitely many steps. It may also happen that we have
obtained after infinitely many steps an infinite sequence of cocycles Xk in the
class c, an infinite sequence of hk , and a strictly increasing sequence of ck satisfying
conditions (H) and (XPs) for all k. For each monomial B ∈ B(A) there is at most
one k such that hn(B)= 0 for n ≤ k, and hn(B)= hk+1(B) for n ≥ k+ 1. So the
componentwise limit h := limk→∞ hk exists.

The construction of the sequence (Xk)k implies that

Xk
γ = ((Hk−1 Hk−2 · · · H0)|γ )X

0
γ (Hk−1 Hk−2 · · · H0)

−1,

with Hk as in (6-19). The infinite product H = · · · H2 H1 H0 converges in N(A),
since each Hk equals 1 plus a term in degree ck+1. Similarly, J (h; γ−1

∞,∞; t) is
the limit of the J (hk; γ

−1
∞,∞; t) as k→∞, since enlarging k we change only

terms of degrees larger than ck . Condition (XPs) is valid for all k, so the conclusion
is that, in the limit,

(H |γ )X0 H−1
=9(h). (6-23)

Uniqueness. Let X0
=9(h′) for some h′ ∈ S(A;0). We claim that, in the induction

procedure described above applied to this cocycle X0, we have at each stage

hk(B)= h′(B) for all B ∈ B(A) with d(B)≤ ck; (6-24)

Xk
≡9(h′) modulo terms of degree larger than ck . (6-25)

This is true at the start of the induction (use c0 = 0).
At stage k, the nonzero terms with lowest degree in

Yk
γ = J (h′; γ−1

∞,∞; t)− J (hk; γ
−1
∞,∞; t)

are due to the C ∈ B(A) with degree equal to ck+1. So

Ȳγ =
∑

C∈B(A)
d(C)=ck+1

R1(h′(B); γ−1
∞,∞; t)C. (6-26)

Let us number the monomials in this sum as C1, . . . ,CK . Then ϕn
γ in (6-18) is

equal to −ψh′(Cn),γ , and an = 0, Hk = 1. This implies that hk+1(C) = h′(C) for
the monomials C ∈ B(A) with degree ck+1, and Xk+1

= Xk
≡9(h′) modulo terms

with degree larger than ck+1.
At the end of the induction process we have B=B′, thus obtaining uniqueness. �

Concluding remarks. (a) Manin [2005; 2006] used formal series similar to those
in (4-4) to get a simple description of relations among iterated integrals. In that
approach the noncommutative cohomology set H 1(0; N(A)) is a tool. In this paper
we further study the cohomology set H 1(0; N(A)).
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(b) One may apply the approach of this paper to weights in Z≥2 and trivial multiplier
systems. Then the iterated integrals are polynomial functions. These are in a much
smaller 0-module than the functions with polynomial growth that we employ. The
consequence is that the theorem analogous to the theorem of Knopp and Mawi
(Theorem 2.1) does not hold. Cocycles attached to conjugates of holomorphic cusp
forms have to be considered as well (see [Knopp 1974]). However, iterated integrals
in which occur both holomorphic and antiholomorphic cusp forms satisfy more
complicated decomposition relations. We think that Manin’s formalism does not
work in that situation.

(c) The same problem occurs if we use the modules in Theorems B and D of
[Bruggeman et al. 2014], unless we pick the weights wj + 2 in such a way that the
elements w(C) that occur in the sums defining J (B; y, x; t) are never in Z≥0.

(d) We work with iterated integrals of the type in (3-1). Equation (1-1) defines
iterated integrals depending on variables t1, . . . , t` all running independently through
the lower half-plane. It would be nice to have results for the corresponding noncom-
mutative cocycles. These cocycles can be defined, and one can show injectivity
of the map from cusp forms to cohomology, like in Proposition 5.1. We did not
manage to adapt the proof of Theorem 6.7 to cocycles of this type. The problem is
to construct formal sequences of the type in (6-5) such that they have the lowest
degree terms in a prescribed summand in the decomposition of the tensor products
V (v1, w1)⊗ · · ·⊗ V (v`, w`) into submodules.
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The existential theory of
equicharacteristic henselian valued fields

Sylvy Anscombe and Arno Fehm

We study the existential (and parts of the universal-existential) theory of equi-
characteristic henselian valued fields. We prove, among other things, an existential
Ax–Kochen–Ershov principle, which roughly says that the existential theory of an
equicharacteristic henselian valued field (of arbitrary characteristic) is determined
by the existential theory of the residue field; in particular, it is independent of the
value group. As an immediate corollary, we get an unconditional proof of the
decidability of the existential theory of Fq((t)).

1. Introduction

We study the first order theory of a henselian valued field (K , v) in the language of
valued fields. For residue characteristic zero, this theory is well-understood through
the celebrated Ax–Kochen–Ershov (AKE) principles, which state that, in this case,
the theory of (K , v) is completely determined by the theory of the residue field Kv
and the theory of the value group vK (see, e.g., [Prestel and Delzell 2011, §4.6]). In
other words, if a sentence holds in one such valued field, then it holds in any other
with elementarily equivalent residue field and value group (the transfer principle).
As a consequence, one gets that the theory of (K , v) is decidable if and only if the
theory of the residue field and the theory of the value group are decidable.

Some of this theory can be carried over to certain mixed characteristic henselian
valued fields such as the fields of p-adic numbers Qp, whose theory was axioma-
tised and proven to be decidable by Ax–Kochen and Ershov in 1965. However,
for henselian valued fields of positive characteristic, no such general principles
are available. For example, in [Kuhlmann 2001], it is shown that the theory of
characteristic p> 0 henselian valued fields with value group elementarily equivalent
to Z and residue field Fp is incomplete. It is not known whether there is a suitable
modification of the AKE principles that hold for arbitrary henselian valued fields
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of positive characteristic, and the decidability of the field of formal power series
Fq((t)) is a long-standing open problem.

For the first problem, the most useful approximations are AKE principles for
certain classes of valued fields, most notably F.-V. Kuhlmann’s recently published
work [2014] on the model theory of tame fields. For the second problem, the best
known result is by Denef and Schoutens [2003], who proved that resolution of
singularities in positive characteristic would imply that the existential theory of
Fq((t)) is decidable (i.e., Hilbert’s tenth problem for Fq((t)) has a positive solution).

In this work, we take a different approach at deepening our understanding of
the positive characteristic case: instead of limiting ourselves to certain classes of
valued fields, we attempt to prove results for arbitrary equicharacteristic henselian
valued fields, but (having results like Denef–Schoutens in mind) instead restrict
to existential or slightly more general sentences. The technical heart of this work
is a study of transfer principles for certain universal-existential sentences, which
builds on the aforementioned [Kuhlmann 2014]; see the results in Section 5. While
some of these general results will have applications for example in the theory of
definable valuations (see [Anscombe and Koenigsmann 2014; Cluckers et al. 2013;
Fehm 2015; Prestel 2015] for some of the recent developments), in this work we
then restrict this machinery to existential sentences and deduce the following result
(cf. Theorem 6.5):

Theorem 1.1. For any field F , the theory T of equicharacteristic henselian non-
trivially valued fields with residue field which models both the existential and
universal theories of F is ∃-complete, i.e., for any existential sentence φ either
T |H φ or T |H ¬φ.

Note that the value group plays no role here: the existential theory of an equichar-
acteristic henselian nontrivially valued field is determined solely by its residue field.
From this theorem, we obtain an AKE principle for ∃-sentences (cf. Corollary 7.2):

Corollary 1.2. Let (K , v), (L , w) be equicharacteristic henselian nontrivially val-
ued fields. If the residue fields Kv and Lw have the same existential theory, then so
do the valued fields (K , v) and (L , w).

Moreover, we conclude the following corollary on decidability (cf. Corollary 7.5):

Corollary 1.3. Let (K , v) be an equicharacteristic henselian valued field. The
following are equivalent:

(1) The existential theory of Kv in the language of rings is decidable.

(2) The existential theory of (K , v) in the language of valued fields is decidable.

As an immediate consequence, we get the first unconditional proof of the de-
cidability of the existential theory of Fq((t)) (cf. Corollary 7.7). Note, however,
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that the conditional result in [Denef and Schoutens 2003] is for a language with a
constant for t — Section 7 also contains a brief discussion of this difference.

As indicated above, these results are essentially known in residue characteristic
zero (cf. Remark 7.3), but are new in positive characteristic. However, each of
the above results fails if “equicharacteristic” is dropped or replaced by “mixed
characteristic”, in contrast to the mixed characteristic AKE principles mentioned
above (cf. Remark 7.4 and Remark 7.6).

2. Valued fields

For a valued field (K , v) we denote by vK = v(K×) its value group, by Ov its
valuation ring, and by Kv = {av | a ∈Ov} its residue field. For standard definitions
and facts about henselian valued fields we refer the reader to [Engler and Prestel
2005]. As a rule, if L/K is a field extension to which the valuation v can be
extended uniquely, we denote also this unique extension by v. This applies in
particular if v is henselian, and for the perfect hull L = K perf of K . We will make
use of the following well-known fact:

Lemma 2.1. Let (K , v) be a valued field and let F/Kv be any field extension. Then
there is an extension of valued fields (L , w)/(K , v) such that Lw/Kv is isomorphic
to the extension F/Kv.

Proof. See, e.g., [Kuhlmann 2004, Theorem 2.14]. �

The next lemma is also probably well known, but for lack of reference we sketch
a proof, which closely follows [Kuhlmann 2011, Lemma 9.30].

Definition 2.2. Let (K , v) be a valued field. A partial section (of the residue
homomorphism) is a map f : E → K , for some subfield E ⊆ Kv, which is an
Lring-embedding such that ( f (a))v = a for all a ∈ E . It is a section if E = Kv.

Lemma 2.3. Let (K , v) be an equicharacteristic henselian valued field, let E ⊆ Kv
be a subfield of the residue field, and suppose that there is a partial section
f : E→ K . If F/E is a separably generated subextension of Kv/E then we may
extend f to a partial section F→ K .

Proof. Write L1 := f (E). Let T be a separating transcendence base for F/E and,
for each t ∈ T , choose st ∈ K such that stv= t . Then S := {st | t ∈ T } is algebraically
independent over L1. Thus we may extend f to a partial section E(T )→ L1(S)
by sending t 7→ st .

Let L2 be the relative separable algebraic closure of L1(S) in K . By Hensel’s
lemma, L2v is separably algebraically closed in Kv. Thus F is contained in L2v.
Since v is trivial on L2, the restriction of the residue map to L2 is an isomorphism
L2→ L2v. Thus the restriction to F of the inverse of the residue map is a partial
section F→ K which extends f , as required. �
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Recall that a valued field (K , v) of residue characteristic p is tame if it is
henselian, the value group vK is p-divisible, the residue field Kv is perfect, and
(K , v) is defectless, i.e., for every finite extension L/K ,

[L : K ] = [Lv : Kv] · [vL : vK ].

Proposition 2.4. Let (K , v) be a valued field. There exists an extension (K t , vt) of
(K , v) such that (K t , vt) is tame, K t is perfect, vt K t

=
1

p∞ vK , and K tvt
= Kvperf.

Proof. In the special case char(K )= char(Kv), any maximal immediate extension
of K perf satisfies the claim. In general, [Kuhlmann et al. 1986, Theorem 2.1,
Proposition 4.1, and Proposition 4.5(i)] gives such a K t that is in addition algebraic
over K . �

3. Model theory of valued fields

Let
Lring = {+,−, ·, 0, 1}

be the language of rings and let

Lvf = {+
K ,−K , ·K , 0K , 1K ,+0, <0, 00,∞0,+k,−k, ·k, 0k, 1k, v, res}

be a three sorted language for valued fields (like the Denef–Pas language, but
without an angular component) with a sort K for the field itself, a sort 0 ∪ {∞}
for the value group with infinity, and a sort k for the residue field, as well as both
the valuation map v and the residue map res, which we interpret as the constant 0k

map outside the valuation ring. For a field C , we let Lring(C) and Lvf(C) be the
languages obtained by adding symbols for elements of C . In the case of Lvf(C),
the constant symbols are added to the field sort K .

A valued field (K , v) gives rise in the usual way to an Lvf-structure

(K , vK ∪ {∞}, Kv, v, res),

where vK is the value group, Kv is the residue field, and res is the residue map.
For notational simplicity, we will usually write (K , v) to refer to the Lvf-structure it
induces. For further notational simplicity, we write (K , D) instead of (K , (dc)c∈C),
where D = {dc | c ∈ C} is the set of interpretations of the constant symbols.
Combining these two simplifications, we write (K , v, D) for the Lvf(C)-structure

(K , vK ∪ {∞}, Kv, v, res, (dc)c∈C).

We also write Dv for the set of residues of elements from D.
As usual, we say that an Lvf(C)-formula is an ∃-formula if it is logically equiv-

alent to a formula in prenex normal form with only existential quantifiers (over
any of the three sorts). We say that an Lvf(C)-sentence is an ∀k

∃-sentence if it is
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logically equivalent to a sentence of the form ∀x ψ(x), where ψ is an ∃-formula
and the universal quantifiers range over the residue field sort.

Let (K , v, D) ⊆ (L , w, E) be an extension of Lvf(C)-structures. Note that
dc = ec for all c ∈ C . We say that certain Lvf(C)-sentences φ go up from K to L
if (K , v, D) |H φ implies that (L , w, E) |H φ. For examples, ∃-sentences always
go up every extension. Furthermore, if (L , w)/(K , v) is an extension of valued
fields such that Lw/Kv is trivial, then ∀k

∃-Lvf(K )-sentences go up from (K , v)
to (L , w). Although the previous statement is not referenced directly, it underlies
many of the arguments in Section 5.

Lemma 3.1. Let L/K be an extension of fields. If K �∃ L , then K perf
�∃ Lperf.

Proof. This is clear, since K perf
=
⋃

n K p−n
and Lperf

=
⋃

n L p−n
, and the Frobenius

gives that K p−n
�∃ L p−n

for all n. �

F.-V. Kuhlmann [2014] proves the following on the model theory of tame fields:

Proposition 3.2. The elementary class of tame fields has the relative embedding
property. That is, for tame fields (K , v) and (L , w) with common subfield (F, u), if

(1) (F, u) is defectless,

(2) (L , w) is |K |+-saturated,

(3) vK/uF is torsion-free and Kv/Fu is separable, and

(4) there are embeddings ρ : vK → wL (over uF) and σ : Kv→ Lw (over Fu),

then there exists an embedding ι : (K , v)→ (L , w) over (F, u) which respects ρ
and σ .

Proof. See [Kuhlmann 2014, Theorem 7.1]. (Note that this result is stated in the
language

L′vf = {+,−, ·,
−1, 0, 1, O},

where O is a binary predicate which is interpreted in a valued field (K , v) so that
O(a, b) if and only if va ≥ vb. However, the exact choice of language does not
directly affect us.) �

From Proposition 3.2, Kuhlmann deduces the following AKE principle:

Theorem 3.3. The class of tame fields is an AKE�-class: if (L , w)/(K , v) is an
extension of tame fields with vK � wL and Kv � Lw, then (K , v)� (L , w).

Proof. See [Kuhlmann 2014, Theorem 1.4]. �
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4. Power series fields

For a field F and an ordered abelian group 0 we denote by F((0)) the field of
generalised power series with coefficients in F and exponents in 0; see, e.g., [Efrat
2006, §4.2]. We identify F((Z)) with the field of formal power series F((t)) and
denote the power series valuation on any subfield of any F((0)) by vt .

Lemma 4.1. A field (F((0)), vt) of generalised power series is maximal. In partic-
ular, it is tame if and only if F is perfect and 0 is p-divisible.

Proof. See [Efrat 2006, Theorem 18.4.1] and note that maximal implies henselian
and defectless. �

Proposition 4.2. Let A be a complete discrete (i.e., with value group Z) equicharac-
teristic valuation ring. Let F ⊆ A be a set of representatives for the residue classes
which forms a field. Let s ∈ A be a uniformiser (i.e., an element of least positive
value). Then A is isomorphic to F[[s]] by an isomorphism which fixes F pointwise.

Proof. See [Serre 1979], Chapter 2 Proposition 5 and the discussion following the
example. �

Corollary 4.3. Let F be a field and let E/F((t)) be a finite extension such that
Evt = F. Then (E, vt , F) is isomorphic to (F((s)), vs, F). This applies in particu-
lar to finite extensions of F((t)) inside F((Q)).

Proof. We are already provided with a section since F ⊆ F((t))⊆ E and Evt = F .
Since E/F((t)) is finite, E is also a complete discrete equicharacteristic valued
field (cf. [Serre 1979, Chapter 2 Proposition 3]). By Proposition 4.2, there is an
F-isomorphism of valued fields E→ F((s)). �

Definition 4.4. We denote by F(t)h the henselization of F(t) with respect to vt ,
i.e., the relative algebraic closure of F(t) in F((t)), and by F((t))Q the relative
algebraic closure of F((t)) in F((Q)).

Lemma 4.5. For any field F we have (F(t)h, vt)�∃ (F((t)), vt).

Proof. See [Kuhlmann 2014, Theorem 5.12]. �

The following proposition may be deduced from the more general [Kuhlmann
2014, Lemma 3.7], but we give a proof in this special case for the convenience of
the reader.

Proposition 4.6. If F is perfect, then F((t))Q is tame.

Proof. We have that F((t))Qvt=F is perfect and vt F((t))Q=Q is p-divisible. More-
over, as an algebraic extension of the henselian field F((t)), F((t))Q is henselian.
It remains to show that F((t))Q is defectless.

Let E/F((t))Q be a finite extension of degree n. Since F((Q)) is perfect, so
is F((t))Q, and hence F((Q))/F((t))Q is regular. Therefore, if E ′ = F((Q)) · E



The existential theory of equicharacteristic henselian valued fields 671

denotes the compositum of F((Q)) and E in an algebraic closure of F((Q)), then
[E ′ : F((Q))] = n. Since F((Q)) is maximal (Lemma 4.1), E ′/F((Q)) is defectless.
So since (F((Q)), vt) is henselian and vt F((Q)) = Q is divisible, we get that
[E ′vt : F] = n. Since E ′vt/F is separable, we can assume without loss of generality
that F ′ := E ′vt ⊆ E ′ (Lemma 2.3).

F((Q)) n E ′ E ′

F((t))Q n

reg.

E

reg.

E F ′

F n F ′

The extension E ′/E is also regular, since E/F((t))Q is algebraic. In particular, E
is relatively algebraically closed in E ′; so since E F ′/E is algebraic we have that
F ′ ⊆ E . Thus Evt = F ′, which shows that E/F((t))Q is defectless. �

In particular, Theorem 3.3 implies that F((t))Q � F((Q)). We therefore get the
following picture:

F(t)
alg.

F(t)h
�∃ F((t))

alg.
F((t))Q

�

F((Q))

5. The transfer of universal-existential sentences

Throughout this section F/C will be a separable extension of fields of characteris-
tic p. We show that the truth of ∀k

∃-sentences transfers between various valued
fields. Usually the valued fields considered will have only elementarily equivalent
residue fields. However, for convenience, we will sometimes discuss ∃-sentences
with additional parameters from the residue field.

Lemma 5.1 (going down from F((0))). Suppose that F is perfect. Let φ be an
∃-Lvf(F)-sentence, let F � F be an elementary extension, and let 0 be an ordered
abelian group. If (F((0)), vt , F) |H φ, then (F(t)h, vt , F) |H φ.

Proof. Without loss of generality we may assume that 0 is nontrivial. For notational
simplicity, we suppress the parameters F from the notation. Let 1 be the divisible
hull of 0. Then (F((0)), vt)⊆ (F((1)), vt), and existential sentences “go up”, so
(F((1)), vt) |H φ.

Choose an embedding of Q into 1; this induces an embedding (F((Q)), vt)⊆

(F((1)), vt), and therefore (F((t))Q, vt)⊆ (F((1)), vt). Since the theory of divis-
ible ordered abelian groups is model complete (see, e.g., [Prestel and Delzell 2011,
Thm. 4.1.1]),

vt F((t))Q =Q�1= vt F((1)).
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Moreover,
F((t))Qvt = F � F = F((1))vt .

Thus, since (F((t))Q, vt) is tame by Proposition 4.6 and (F((1)), vt) is tame by
Lemma 4.1, Theorem 3.3 implies that

(F((t))Q, vt)� (F((1)), vt).

Therefore, (F((t))Q, vt) |H φ.
Let E be a finite extension of F((t)) that contains witnesses to the truth of φ in

(F((t))Q, vt). Thus (E, vt) |H φ. By Corollary 4.3, there is an Lvf(F)-isomorphism

f : (E, vt)→ (F((t)), vt).

Thus (F((t)), vt) |H φ. By Lemma 4.5,

(F(t)h, vt)�∃ (F((t)), vt),

hence (F(t)h, vt) |H φ, as claimed. �

Definition 5.2. Let H(F/C) be the class of tuples (K , v, D, i), where (K , v, D)
is an Lvf(C)-structure and i : F→ Kv is a map such that

(1) (K , v) is an equicharacteristic henselian nontrivially valued field,

(2) c 7→ dc is an Lring-embedding C→ K ,

(3) the valuation is trivial on D, and

(4) i : (F,C)→ (Kv, Dv) is an Lring(C)-embedding.

Lemma 5.3 (going up from F(t)h). Let φ be an ∃-Lvf-sentence with parameters
from C and the residue sort of (F(t)h, vt), and suppose that (F(t)h, vt ,C) |H φ.
Then, for all (K , v, D, i)∈H(F/C), we have that (K , v, D) |Hφ (where we replace
the parameters from the residue sort by their images under the map i).

Proof. Write φ = ∃x ψ(x; c, β) for some quantifier-free formula ψ and parameters
c from C and β from F(t)hvt . Note that the variables in the tuple x may be from
any sorts. Let a be such that

(F(t)h, vt ,C) |H ψ(a; c, β).

Since F(t)h is the directed union of fields E0(t)h for finitely generated subfields
E0 of F , there exists a subfield E of F containing C such that E/C is finitely
generated, a ∈ E(t)h , and β ∈ E(t)hvt . Thus

(E(t)h, vt ,C) |H ψ(a; c, β).

Since F/C is separable and E/C is finitely generated, E is separably generated
over C . Thus i(E)/Dv is separably generated. Note that the map Dv→ D given
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by dcv 7→ dc is a partial section. By Lemma 2.3 we may extend it to a partial
section g : i(E)→ K . Let h := g ◦ i |E be the composition. Then

h : (E, v0,C)→ (K , v, D)

is an Lvf(C)-embedding, where v0 denotes the trivial valuation on E :

Kv Kresoo

F i // i(F)

E
i |E // i(E)

g // h(E)

C
∼= // Dv

∼= // D

Since (K , v) is nontrivial, there exists s ∈ K× with v(s) > 0, which must be
transcendental over h(E), since v is trivial on h(E). As the rational function field
E(t) admits (up to equivalence) only one valuation which is trivial on E and positive
on t , we may extend h to an Lvf(C)-embedding

h′ : (E(t), vt ,C)→ (K , v, D)

by sending t 7→ s. Since (K , v) is henselian, there is a unique extension of h′ to an
Lvf(C)-embedding

h′′ : (E(t)h, vt ,C)→ (K , v, D).

So, since existential sentences “go up”,

(K , v, D) |H ψ(h′′(a); h′′(c), h′′(β)),

and thus (K , v, D) |H φ, as claimed. �

Definition 5.4. We let RF/C be the Lring(C)-theory of F and let R1
F/C be the subthe-

ory consisting of existential and universal sentences. Let TF/C (respectively, T 1
F/C )

be the Lvf(C)-theory consisting of the following axioms (expressed informally
about a structure (K , v, D)):

(1) (K , v) is an equicharacteristic henselian nontrivially valued field,

(2) c 7→ dc is an Lring-embedding C→ K ,

(3) the valuation v is trivial on D, and

(4) (Kv, Dv) is a model of RF/C (respectively, R1
F/C ).
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The “1” is intended to suggest that the sentences considered contain only one type
of quantifier. Note that for any (K , v, D) |H T 1

F/C , the map dcv 7→ dc is a partial
section of the residue map. Let φ be an ∀k

∃-sentence and write φ = ∀k x ψ(x) for
some ∃-formula ψ(x) with free variables x belonging to the residue field sort. Let
xKv denote the set of x-tuples from Kv. Then we observe that (K , v, D) |H φ if
and only if xKv ⊆ψ(K ). In this next proposition we show that, roughly, if TF/C is
consistent with the property “ xF ⊆ ψ” then in fact TFperf/Cperf entails “ xF ⊆ ψ”.

Proposition 5.5 (main proposition). Let ψ(x) be an ∃-Lvf(C)-formula with free
variables x belonging to the residue field sort. Suppose there exists

(K , v, D) |H TF/C ∪ {∀
k x ψ(x)}.

Then, for all (L , w, E, i) ∈ H(Fperf/Cperf), we have xi(F)⊆ ψ(L).

Proof. Since (K , v, D) models TF/C , we have (Kv, Dv)≡ (F,C). Passing, if nec-
essary, to an elementary extension of (K , v, D), there is an elementary embedding

f : (F,C)
�
→ (Kv, Dv).

As noted after the definition of TF/C , the map g0 : Dv→ D given by dcv 7→ dc is
a partial section. Since F/C is separable, f (F)/Dv is also separable. Thus
any finitely generated subextension of f (F)/Dv is separably generated. By
Lemma 2.3 we may pass again, if necessary, to an elementary extension and extend
g0 to a partial section g : f (F)→ K . Note that g is also an Lring(C)-embedding
( f (F), Dv)→ (K , D).

Let h := g ◦ f . Then h : (F,C) → (K , D) is an Lring(C)-embedding. Be-
cause g is a section, the valuation v is trivial when restricted to the image of h.
Thus, if v0 denotes the trivial valuation on F , the map h is an Lvf(C)-embedding
(F, v0,C)→ (K , v, D). The induced embedding of residue fields h̄ : Fv0→ Kv
is the composition of the elementary embedding f with an isomorphism. Thus
h̄ : Fv0→ Kv is an elementary embedding. From now on we identify (F, v0,C)
with its image under h as a substructure of (K , v, D), noting that the residue field
extension is an elementary extension.

Kv Kresoo

F
f // f (F)

g // h(F)

C
∼= // Dv

sep

g0 // D
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Choose an extension (K t , vt)/(K , v) as in Proposition 2.4. Since K t is per-
fect, we can embed Dperf into K t over D so that (K t , vt , Dperf) is an Lvf(Cperf)-
structure. Furthermore (Fperf, v0,Cperf) is naturally (identified with) a substructure
of (K t , vt , Dperf). Since Fv0 � Kv, Lemma 3.1 gives that

Fperfv0 = Fvperf
0 �∃ Kvperf

= K tvt .

Thus there is an elementary extension Fperfv0� F and an embedding σ : K tvt
→ F

over Fperfv0; see the diagram below.
Now we consider the two valued fields (K t , vt) and (F((vt K t)), vt)with common

subfield (Fperf, v0). Note that K t is tame by definition, and F((vt K t)) is tame by
Lemma 4.1. As a trivially valued field, (Fperf, v0) is defectless. The extension of
value groups vt K t/v0 Fperf is isomorphic to vt K t , thus it is torsion-free. The exten-
sion K tvt/Fperfv0 is separable since Fperfv0 is isomorphic to Fperf which is perfect.
Let (F((vt K t)), vt)

∗ be a |K |+-saturated elementary extension of (F((vt K t)), vt).
We have satisfied the hypotheses of Proposition 3.2, thus there exists an embedding

ι : (K t , vt)→ (F((vt K t)), vt)
∗

over (Fperf, v0). As existential sentences “go up”, we get that (F((vt K t)), vt)
∗, and

therefore also (F((vt K t)), vt), models the existential Lvf(Fperf)-theory of (K t , vt).

F((vt K t))∗

F((vt K t))

�

K t

ι

99

res
// K tvt σ // F

K K perf

F Fperf ∼= // Fperfv0

�∃
�

C Cperf

Our assumption was that ψ(x) is an ∃-Lvf(C)-formula with free variables x be-
longing to the residue field sort, and that (K , v, D) |H ∀k x ψ(x), i.e., xKv ⊆ψ(K ).
Then xFv ⊆ xKv ⊆ ψ(K ) (note that we write Fv rather than F because we have
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identified F with a subfield of K ). Let

9F := {ψ(a) | a ∈ xFv}.

Then9F is a set of ∃-Lvf(C)-sentences (with additional parameters from Fv) which
is equivalent to the property that “ xFv ⊆ ψ”. We may now restate our assumption
as (K , v) |H 9F . Since existential sentences “go up”, (K t , vt) |H 9F . By the
result of the previous paragraph, we have (F((vt K t)), vt) |H9F . By an application
of Lemma 5.1, (Fperf(t)h, vt) |H 9F . By Lemma 5.3, (L , w) |H 9F (where we
replace the parameters from Fv by their images under the map i). This shows that
xi(F)⊆ ψ(L), as claimed. �

Corollary 5.6 (near ∀k
∃-C-completeness). Let ψ(x) be an ∃-Lvf(C)-formula with

free variables x belonging to the residue field sort. Suppose there exists

(K , v, D) |H TF/C ∪ {∀
k x ψ(x)}.

Then there exists n ∈ N such that xLw ⊆ ψ(L p−n
) for all (L , w, E) |H TF/C .

Proof. Let (L , w, E) |H TF/C . As F/C is separable and (Lw, Ew) ≡ (F,C)
as Lring(C)-structures, Lw/Ew is also separable. In particular, both (K , v, D)
and (L , w, E) are models of TLw/Ew, and thus we may apply the conclusion of
Proposition 5.5 to

(Lperf, w, Eperf, id) ∈ H(Lwperf/Ewperf).

Thus we have that xLw ⊆ ψ(Lperf). To find n, we use a simple compactness
argument, as follows.

Write the formula ψ(x) as ∃ y ρ(x, y, c), for a quantifier-free Lvf-formula ρ. For
each n ∈ N, let ψn(x) be the formula ∃ y ρ(x pn

, y, cpn
) and consider the Lvf(C)-

structure (L p−n
, w, E) which extends (L , w, E). Then, for a ∈ xLw, a ∈ ψ(L p−n

)

if and only if a ∈ψn(L). Let p(x) be the set of formulas {¬ψn(x) | n ∈N}. If p(x)
is a type, i.e., p(x) is consistent with TF/C , then we may realise it by a tuple a in
a model (L , w, E) |H TF/C . Thus a /∈ ψ(L p−n

), for all n ∈ N. Since Lperf is the
directed union

⋃
n∈N L p−n

(even as Lvf(C)-structures), we have that a /∈ ψ(Lperf).
This contradicts the result of the previous paragraph.

Consequently, there exists n ∈N such that TF/C entails ∀k x ψn(x). Equivalently,
for all (L , w, E) |H TF/C , we have xLw ⊆ ψ(L p−n

), as required. �

Corollary 5.7 (perfect residue field, ∀k
∃-C-completeness). Suppose that F is per-

fect. Then TF/C is ∀k
∃-C-complete, i.e., for any ∀k

∃-Lvf(C)-sentence φ, either
TF/C |H φ or TF/C |H ¬φ.

Proof. Suppose that there is (K , v, D) |H TF/C ∪ {φ} and let (L , w, E) |H TF/C .
Then (K , v, D) |H TLw/Ew and

(L , w, E, id) ∈ H(Lw/Ew)= H(Lwperf/Ewperf).
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We write φ = ∀k x ψ(x) for some ∃-Lvf(C)-formula ψ(x) with free variables x
belonging to the residue field sort. Then (K , v, D) |H φ means that xKv ⊆ ψ(K ).
Applying Proposition 5.5, we have that xLw ⊆ ψ(L). Thus (L , w, E) |H φ. This
shows that TF/C |H φ, as required. �

Remark 5.8. We do not know whether the assumption that F is perfect is necessary
in Corollary 5.7. However, note that Corollary 5.7 cannot be extended from ∀k

∃-
sentences to arbitrary ∀∃-sentences (even without parameters and with only one
universal quantifier). For example, the sentence

∀x∃y (v(x)= v(y2))

expresses 2-divisibility of the value group, so is satisfied in F((Q)) but not in F((t)).
On the other hand, one could generalise Corollary 5.7 by slightly adapting the

proof to allow also sentences with more general quantifiers over the residue field,
namely Qk

∃-Lvf(C)-sentences, i.e., sentences of the form

∃
k x1∀

k y1 . . . ∃
k xn∀

k yn ψ(x1, y1, . . . , xn, yn)

with ψ(x1, y1, . . . , xn, yn) an ∃-Lvf(C)-formula.

6. The existential theory

We now restrict the machinery of the previous section to existential sentences and
prove Theorem 1.1 from the introduction. We fix a field F , let C be the prime field
of F , and write TF = TF/C , H(F)= H(F/C).

Lemma 6.1. TF is ∃-complete, i.e., for any ∃-Lvf-sentence φ, either TF |H φ or
TF |H ¬φ.

Proof. Suppose that TF ∪ {φ} is consistent. Thus there exists (K , v) |H TF ∪ {φ}.
Simply viewing φ as an ∀k

∃-formula ∀k x ψ(x) with ψ(x) = φ, we have that
Kv ⊆ψ(K ). By Corollary 5.6 there exists n ∈N such that, for every (L , w) |H TF ,
Lw ⊆ ψ(L p−n

). In particular, ψ(L p−n
) is nonempty. Since no parameters appear

in ψ , we may apply the n-th power of the Frobenius map to get that ψ(L) is
nonempty, for every (L , w) |H TF . Viewing φ as an ∃-sentence again, we have that
(L , w) |H φ. Thus TF |H φ, as required. �

For the proof of Theorem 1.1 it remains to show that T 1
F already entails those

existential and universal sentences which are entailed by TF .

Definition 6.2. We define two subtheories of T 1
F . Let T ∃F be the Lvf-theory consist-

ing of the following axioms (expressed informally about a structure (K , v)):

(1) (K , v) is an equicharacteristic henselian nontrivially valued field and

(2) Kv is a model of the existential Lring-theory of F .
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Let T ∀F be the Lvf-theory consisting of the following axioms (again expressed
informally):

(1) (K , v) is an equicharacteristic henselian nontrivially valued field and

(2) Kv is a model of the universal Lring-theory of F .

Note that T 1
F ≡ T ∃F ∪ T ∀F .

Lemma 6.3. Let φ be an existential Lvf-sentence. If TF |H φ then T ∃F |H φ.

Proof. Let (K , v) |H T ∃F . Then Kv is a model of Th∃(F); equivalently the theory
of Kv is consistent with the atomic diagram of F . Thus there is an elementary
extension (K , v)� (K ∗, v∗) with an embedding σ : F→ K ∗v∗, cf. [Marker 2002,
Lemma 2.3.3]. Note that (K ∗, v∗, σ ) ∈ H(F) and that (F(t)h, vt) |H TF , hence
(F(t)h, vt) |Hφ. Therefore, Lemma 5.3 implies that (K ∗, v∗) |Hφ; thus (K , v) |Hφ.
This shows that T ∃F |H φ. �

Lemma 6.4. Let φ be a universal Lvf-sentence. If TF |H φ then T ∀F |H φ.

Proof. Let (K , v) |H T ∀F . Then Kv |H Th∀(F). There exists F ′ ≡ F with an
embedding σ : Kv→ F ′ (see [Marker 2002, Exercise 2.5.10]). Using Lemma 2.1,
we may choose an equicharacteristic nontrivially valued field (L , w) which extends
(K , v) and is such that Lw is isomorphic to F ′. In particular Lw≡ F . Let (L , w)h

be the henselisation of (L , w); then we have (L , w)h |H TF , so (L , w)h |H φ. Since
φ is universal, we conclude that (K , v) |H φ. �

Theorem 6.5 (∃-completeness). T 1
F is ∃-complete, i.e., for any ∃-Lvf-sentence φ

either T 1
F |H φ or T 1

F |H ¬φ.

Proof. Let φ be an existential Lvf-sentence. By Lemma 6.1, either TF |H φ or
TF |H¬φ. In the first case we apply Lemma 6.3 and find that T ∃F |H φ; in the second
case we apply Lemma 6.4 and find that T ∀F |H ¬φ. Since T 1

F ≡ T ∃F ∪ T ∀F , in either
case T 1

F “decides” φ, and we are done. �

Remark 6.6. Let χ(x) be an existential Lring-formula with one free variable. In
[Anscombe and Fehm 2016], we apply Theorem 6.5 to the following ∃- or ∀-Lvf-
sentences:

(1) ∀x (χ(x)→ v(x)≥ 0),

(2) ∀x (χ(x)→ v(x) > 0), and

(3) ∃x (v(x) > 0∧ x 6= 0∧χ(x)).

We also apply Corollary 5.6 to the ∀k
∃-Lvf-sentence

(4) ∀k x∃y (res(y)= x ∧χ(y)).
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7. An “existential AKE principle” and existential decidability

Theorem 6.5 shows that the existential (respectively, universal) theory of an equichar-
acteristic henselian nontrivially valued field depends only on the existential (re-
spectively, universal) theory of its residue field. We formulate this in the following
“existential AKE principle”.

Theorem 7.1. Let (K , v) and (L , w) be equicharacteristic henselian nontrivially
valued fields. Then

(K , v) |H Th∃(L , w) if and only if Kv |H Th∃(Lw).

Proof. (⇒): Note that the maximal ideal is defined by the quantifier-free formula
v(x)>0. Therefore any existential statement about the residue field can be translated
into an existential statement about the valued field.
(⇐): If Kv |H Th∃(Lw) then (K , v) |H T ∃Lw. By Lemma 6.1, TLw entails

the existential theory of (L , w), and by Lemma 6.3, T ∃Lw entails the existential
consequences of TLw. Combining these two statements, we have that T ∃Lw entails the
existential theory of (L , w). Thus (K , v)models the existential theory of (L , w). �

Corollary 7.2. Let (K , v) and (L , w) be equicharacteristic henselian nontrivially
valued fields. Then

Th∃(K , v)= Th∃(L , w) if and only if Th∃(Kv)= Th∃(Lw).

Proof. This follows from Theorem 7.1, since Th∃(K , v)= Th∃(L , w) if and only
if both (K , v) |H Th∃(L , w) and (L , w) |H Th∃(K , v), and Th∃(Kv)= Th∃(Lw) if
and only if both Kv |H Th∃(Lw) and Lw |H Th∃(Kv). �

Note that Corollary 7.2 is in fact simply a reformulation of Theorem 6.5. Note
moreover that, by the usual duality between existential and universal sentences, the
same principle holds with “∃” replaced by “∀”.

Remark 7.3. The reader has probably noticed that as opposed to the usual AKE
principles, the value group does not occur here. However, since the existential theory
of a valued field determines the existential theory of its value group, Corollary 7.2
could also be phrased as

Th∃(K , v)= Th∃(L , w) if and only if

Th∃(Kv)= Th∃(Lw) and Th∃(vK )= Th∃(wL).

In fact, all nontrivial ordered abelian groups have the same existential theory (which
follows immediately from the completeness of the theory of divisible ordered
abelian groups; see also [Gurevich and Kokorin 1963]). In residue characteristic
zero, this special form of the existential AKE principle was known before; see,
e.g., [Koenigsmann 2014, p. 192].
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Remark 7.4. In mixed characteristic the situation is very different. Fix a prime
p and let (K , v) and (L , w) be henselian nontrivially valued fields. Just as in
Remark 7.3, the existential theory of a valued field determines the existential theory
of the residue field and the value group, i.e.,

Th∃(K , v)=Th∃(L , w) H⇒ Th∃(Kv)=Th∃(Lw) and Th∃(vK )=Th∃(wL).

However, in mixed characteristic the converse fails. For example, consider the
valued fields (K , v)= (Qp, vp) and (L , w)= (Qp(

√
p), vp). Both residue fields

Kv and Lw are equal to Fp and both value groups are isomorphic to Z, but the
existential theories of (K , v) and (L , w) are not equal since Qp does not contain
a square-root of p. In particular, both Theorem 6.5 and Corollary 7.2 fail if we
replace “equicharacteristic” by “mixed characteristic”.

One feature of mixed characteristic is that the existential theory of (K , v) deter-
mines the existential theory of (vK , vp), which is the ordered abelian group vK
together with the distinguished nonzero element vp. Therefore, if (K , v) and (L , w)
are both of characteristic zero and residue characteristic p, we have the implication

Th∃(K , v)= Th∃(L , w) =⇒

Th∃(Kv)= Th∃(Lw) and Th∃(vK , vp)= Th∃(wL , wp). (∗)

Note that not all ordered abelian groups with a distinguished nonzero element have
the same existential theory. For example, Th∃(Z, 1) 6= Th∃(Z, 2). Nevertheless, we
claim that the implication (∗) is not invertible. To prove this claim we need a new
counterexample because vp p is minimal positive in vpQp but vp p = 2vp

√
p in

vpQp(
√

p), and so

Th∃(vpQp, vp p)= Th∃(Z, 1) 6= Th∃(Z, 2)= Th∃(vpQp(
√

p), vp p).

Instead, we cite the example of two valued fields (L1, v) and (F1, v) which were
constructed in [Anscombe and Kuhlmann 2016, Theorem 1.5]. Both are tame and
algebraic extensions of (Q, vp), both residue fields L1v and F1v are equal to Fp,
and both value groups vL1 and vF1 are equal to the p-divisible hull of 1

p−1(vp p)Z.
Nevertheless (L1, v) 6≡ (F1, v). In fact, since L1 and F1 are algebraic, we have that
Th∃(L1, v) 6= Th∃(F1, v). This example shows that the converse to (∗) does not
hold, even under the additional hypothesis that (K , v) and (L , w) are tame.

Next we deduce Corollary 1.3 from Theorem 6.5.

Corollary 7.5. Let (K , v) be an equicharacteristic henselian valued field. The
following are equivalent.

(1) Th∃(Kv) is decidable.

(2) Th∃(K , v) is decidable.
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Proof. 2=⇒ 1: As before, residue fields are interpreted in valued fields in such a
way that existential statements about Kv remain existential statements about (K , v).
Therefore, if (K , v) is ∃-decidable, then Kv is ∃-decidable.

1=⇒ 2: Write F := Kv and suppose that F is ∃-decidable. If v is trivial, then
(K , v)= (F, v) is also ∃-decidable, so suppose that v is nontrivial. We may recur-
sively enumerate the existential and universal theory R1

F of F , so T 1
F is effectively

axiomatisable. By Theorem 6.5, T 1
F is an ∃-complete subtheory of Th(K , v). Thus

we may decide the truth of existential (and universal) sentences in (K , v). �

Remark 7.6. If we replace “equicharacteristic” by “mixed characteristic” then the
statement of Corollary 7.5 is no longer true. To see this, let P be an undecidable set
of primes, let K be the extension of Qp generated by a family of l-th roots of p, for
l ∈ P , and let v be the unique extension of vp to K . Then Kv = Fp, so Th∃(Kv) is
decidable, but Th∃(vK , vp) is undecidable, hence so is Th∃(K , v). At present, we
do not know of an example of a mixed characteristic henselian valued field (K , v)
for which Th∃(Kv) and Th∃(vK , vp) are decidable but Th∃(K , v) is undecidable.

Let Lvf(t) be the language of valued fields with an additional parameter t , and
let q be a prime power. In [Denef and Schoutens 2003], it is shown that resolution
of singularities in characteristic p would imply that the existential Lvf(t)-theory
of Fq((t)) is decidable. Using our methods we can prove the following weaker but
unconditional result.

Corollary 7.7. The existential theory of Fq((t)) in the language of valued fields is
decidable.

First proof. We can apply Corollary 7.5, noting that Th∃(Fq) is decidable. �

For the sake of interest, we present a more direct proof of this special case.
However, note that this “second proof” uses the decidability of Fq , while the “first
proof” used only the decidability of the existential theory of Fq .

Second proof. As an equicharacteristic tame field (Proposition 4.6) with decidable
residue field and value group, (Fq((t))Q, vt) is decidable, by [Kuhlmann 2014,
Theorem 7.7(a)]. Since (Fq((t))Q, vt) is the directed union of structures isomorphic
to (Fq((t)), vt) (Corollary 4.3), in fact (Fq((t)), vt) and (Fq((t))Q, vt) have the same
∃-Lvf-theory. Thus, to decide the existential Lvf-theory of (Fq((t)), vt), it suffices
to apply the decision procedure for the Lvf-theory of (Fq((t))Q, vt). �

Remark 7.8. Since Corollary 7.7 shows decidability of the existential theory of
Fq((t)) in the language of valued fields Lvf, in which the valuation ring is definable
by a quantifier-free formula, we also get decidability of the existential theory of
the ring Fq [[t]]. It might however be interesting to point out that it was proven only
recently that already decidability of the existential theory of Fq((t)) in the language
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of rings would imply decidability of the existential theory of the ring Fq [[t]]; see
[Anscombe and Koenigsmann 2014, Corollary 3.4].

Remark 7.9. The ∃-Lvf(t)-theory of (Fq((t)), vt) is equivalent to the ∀K
1 ∃-Lvf-

theory of (Fq((t)), vt). This “equivalence” is meant in the sense that there is a truth-
preserving effective translation between ∃-Lvf(t)-sentences and ∀∃-Lvf-sentences
which have only one universal quantifier ranging over the valued field sort (and
arbitrary existential quantifiers). In this argument we make repeated use of the
fact that, for all a ∈ Fq((t)) with vt(a) > 0 and a 6= 0, there is an Lvf-embedding
Fq((t))→ Fq((t)) which sends t 7→ a.

Let φ(t) be an existential Lvf(t)-sentence. We claim that φ(t) is equivalent to
the ∀K

1 ∃-Lvf-sentence

∀u ((v(u) > 0∧ u 6= 0)→ φ(u)).

This follows from the fact about embeddings stated above.
On the other hand, let ψ(x) be an ∃-Lvf-formula in one free variable x in the

valued field sort and consider the ∃-Lvf(t)-sentence χ which is defined to be

∃y∃z0 . . . ∃zq−1

(
yt = 1∧ψ(y)∧

∧
j

zq
j = z j∧

∧
i 6= j

zi 6= z j∧
∧

j
ψ(z j+t)∧

∧
j
ψ(z j )

)
.

Written more informally, the sentence χ expresses that

ψ(t−1)∧
∧

z∈Fq

(ψ(z+ t)∧ψ(z)).

We claim that ∀x ψ(x) and χ are equivalent. First suppose that Fq((t)) |H ∀x ψ(x).
By choosing (z j ) to be an enumeration of Fq , we immediately have that Fq((t)) |Hχ .

In the other direction, suppose that Fq((t)) |H χ and let a ∈ Fq((t)). If vt(a) < 0
then consider the embedding which sends t 7→ a−1. Since ψ(t−1) holds, applying
the embedding shows thatψ(a) also holds. On the other hand suppose that vt(a)≥0.
If a ∈ Fq then χ already entails that ψ(a). Now suppose that a /∈ Fq and let z be the
residue of a. Consider the embedding which sends t 7→ a− z (note that a− z 6= 0).
Since ψ(z+ t) holds, applying the embedding shows that ψ(a) also holds. This
completes the proof that Fq((t)) |H ∀x ψ(x).
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On twists of modules over
noncommutative Iwasawa algebras

Somnath Jha, Tadashi Ochiai and Gergely Zábrádi

It is well known that, for any finitely generated torsion module M over the
Iwasawa algebra Zp[[0]], where 0 is isomorphic to Zp, there exists a continuous
p-adic character ρ of 0 such that, for every open subgroup U of 0, the group of
U -coinvariants M(ρ)U is finite; here M(ρ) denotes the twist of M by ρ. This
twisting lemma was already used to study various arithmetic properties of Selmer
groups and Galois cohomologies over a cyclotomic tower by Greenberg and
Perrin-Riou. We prove a noncommutative generalization of this twisting lemma,
replacing torsion modules over Zp[[0]] by certain torsion modules over Zp[[G]]
with more general p-adic Lie group G. In a forthcoming article, this noncom-
mutative twisting lemma will be used to prove the functional equation of Selmer
groups of general p-adic representations over certain p-adic Lie extensions.

Introduction

Let us fix an odd prime p throughout the paper. We denote by 0 a p-Sylow subgroup
of Z×p . For a compact p-adic Lie group G and the ring O of integers of a finite
extension of Qp, we denote the Iwasawa algebra O[[G]] of G with coefficient in O
by 3O(G).

In this article, we study 3O(G)-modules, motivated by [Coates et al. 2005].
More precisely, we study specializations of certain 3O(G)-modules by two-sided
ideals of 3O(G). Recall that the paper [Coates et al. 2005] establishes a reasonable
setting of noncommutative Iwasawa theory in the following situation.

(G) G is a compact p-adic Lie group which has a closed normal subgroup H such
that G/H is isomorphic to 0.
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According to the philosophy of [Coates et al. 2005], for a reasonable ordinary
p-adic representation T of a number field K and a pair of compact p-adic Lie
groups H ⊂ G satisfying the condition (G), the Pontryagin dual S∨A of the Selmer
group SA of the Galois representation A = T ⊗Qp/Zp over a Galois extension
K∞/K with Gal(K∞/K )∼= G seems to be a nice object. The 3O(G)-module S∨A
divided by the largest p-primary torsion subgroup S∨A(p) is conjectured to belong to
the category nH (G) which consists of finitely generated 3O(G)-modules M such
that M is also finitely generated over 3O(H). From such arithmetic background,
we are led to study finitely generated 3O(G)-modules for a compact Lie group G
with H ⊂ G satisfying the condition (G).

On the other hand, for any open subgroup U of G and for any arithmetic module
S∨A as above, the largest U -coinvariant quotient (S∨A)U is expected to be related
to the Selmer group of A over a finite extension L of K with Gal(L/K )∼= G/U .
As remarked above, we have the following fact (Tw) when G = 0 (i.e., when
H = 1) which was used quite effectively in the work of Greenberg [1989] and
Perrin-Riou [2003].

(Tw) For any finitely generated torsion3O(0)-module M , there exists a continuous
character ρ : 0→ Z×p such that the largest U -coinvariant quotient (M ⊗Zp

Zp(ρ))U of M ⊗Zp Zp(ρ) is finite for every open subgroup U of 0, where
Zp(ρ) is a free Zp-module of rank one on which 0 acts through the character
0

ρ
→ Z×p .

We call such a statement (Tw) a twisting lemma. In this commutative situation
of G = 0, the twisting lemma is proved in a quite elementary way. For example,
we consider the characteristic ideal charO[[0]]M . If we take a ρ such that the values
ρ(γ )−1ζpn − 1 do not coincide with any roots of the distinguished polynomial
associated to charO[[0]]M when natural numbers n and pn-th roots of unity ζpn vary,
the twisting lemma is known to hold.

If we have a twisting lemma in a noncommutative setting, it seems quite useful
for some arithmetic applications for noncommutative Iwasawa theory. On the other
hand, for a noncommutative G, it was not clear what to do to prove the twisting
lemma because we cannot talk about “roots of characteristic polynomials” as we
did in commutative setting. We finally succeeded in proving the twisting lemma
which is stated as our Main Theorem below.

For a 3O(G)-module M and a continuous character ρ : 0→ Z×p , we denote by
M(ρ) the 3O(G)-module M ⊗Zp Zp(ρ) with diagonal G-action.

Main Theorem. Let G be a compact p-adic Lie group and let H be a closed
normal subgroup such that G/H is isomorphic to 0. Let M be a 3O(G)-module
which is finitely generated over 3O(H).



On twists of modules over noncommutative Iwasawa algebras 687

Then there exists a continuous character ρ : 0→ Z×p such that the largest U-
coinvariant quotient M(ρ)U of M(ρ) is finite for every open normal subgroup U
of G.

We give some examples of a pair H ⊂ G satisfying the condition (G) and a
3O(G)-module M which should appear in arithmetic applications.

Examples. (1) Let us choose a prime p ≥ 5. Let E be a non-CM elliptic curve
over Q with good ordinary reduction at p. Take K = Q(E[p]) and set K∞ =
Q
(⋃

n≥1 E[pn
]
)
. Then by a well known result of Serre, Gal(K∞/K ) is an open

subgroup of GL2(Zp). By Weil pairing, the cyclotomic Zp extension Kcyc of K
is contained in K∞. We denote Gal(K∞/K ), Gal(K∞/Kcyc) and Gal(Kcyc/K ) by
G, H and 0 respectively. The pair H ⊂ G satisfies the condition (G).

Let us consider the Pontryagin dual S∨A of the Selmer group SA of the Galois
representation A = Tp E ⊗Qp/Zp over the Galois extension K∞/K discussed
above. We take M to be the module S∨A/S

∨

A(p). It is conjectured that the module
M = S∨A/S

∨

A(p) is in the category nH (G) (see [Coates et al. 2005, Conjecture 5.1])
and there are examples where this conjecture is satisfied (see [loc. cit.]).

(2) Let us choose a p-th power free integer m≥ 2. Put K =Q(µp), Kcyc=Q(µp∞)

and K∞=
⋃
∞

n=1 Kcyc(m1/pn
). Such an extension K∞/K is called a false-Tate curve

extension. We denote Gal(K∞/K ), Gal(K∞/Kcyc) and Gal(Kcyc/K ) by G, H and
0 respectively. Note that we have G ∼= Zp oZp, H ∼= Zp and 0 ∼= Zp. Again the
pair H ⊂ G satisfies the condition (G).

Let us consider the Pontryagin dual S∨A of the Selmer group SA of the Galois
representation A = T ⊗Qp/Zp over a Galois extension K∞/K discussed above.
We take M to be the module S∨A/S

∨

A(p). Under certain assumptions on A, it is
expected that S∨A/S

∨

A(p) will be in nH (G). We refer to [Hachimori and Venjakob
2003] for some examples of S∨A/S

∨

A(p) which are in nH (G).

(3) Let K be an imaginary quadratic field in which a rational prime p 6= 2 splits.
Let K∞ be the unique Z⊕2

p -extension of K . Let G = Gal(K∞/K ) and H =
Gal(K∞/Kcyc). Once again the pair H ⊂ G satisfies the condition (G).

For the Pontryagin dual S∨A of the Selmer group SA of the Galois representation
A = T ⊗Qp/Zp over a Galois extension K∞/Q in this commutative two-variable
situation, similar phenomena as above are expected and we take M to be the module
S∨A/S

∨

A(p).

In a forthcoming joint work of two of us [Jha and Ochiai≥2016], the Main Theorem
above will be applied to establish the functional equation of Selmer groups for
general p-adic representations over a general noncommutative p-adic Lie extension.
This is a partial motivation for our present work for two of us. Note that the third
author proved the functional equation of Selmer groups for elliptic curves over
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false-Tate curve extension (see [Zábrádi 2008]) and for non-CM elliptic curves in
GL2-extension (see [Zábrádi 2010]). But the main method of the papers [Zábrádi
2008; 2010] is not based on the twisting lemma.

Notation. Unless otherwise specified, all modules over 3O(G) are considered as
left modules. Throughout the paper we fix a topological generator γ of 0.

1. Preliminary Theorem

In this section, we formulate and prove the Preliminary Theorem below, which
gives the same conclusion as the Main Theorem under stronger assumptions (i.e.,
the hypothesis (H) and nonexistence of nontrivial element of order p in G). In the
next section, our Main Theorem is deduced from the Preliminary Theorem and the
Key Lemma which is given in the next section.

Preliminary Theorem. Let G be a compact p-adic Lie group without any element
of order p and let H be a closed normal subgroup such that G/H is isomorphic to
0. Let M be a finitely generated torsion 3O(G)-module satisfying the following
condition.

(H) There is a 3O(H)-linear homomorphism M → Zp[[H ]]⊕d that induces an
isomorphism M ⊗Zp Qp −→

∼ (Zp[[H ]]⊗Zp Qp)
⊕d after taking ⊗Zp Qp.

Then there exists a continuous character ρ : 0 → Z×p such that the largest U-
coinvariant quotient M(ρ)U of M(ρ) is finite for every open normal subgroup U
of G.

Before going into the proof of the Preliminary Theorem, we collect some basic
results in noncommutative Iwasawa theory which are relevant for the article.

Lemma 1. Let H ⊂ G be a pair satisfying the condition (G) and let M be a finitely
generated 3O(G)-module which satisfies the condition (H). Then there exists a
matrix A ∈ Md(Zp[[H ]]⊗Zp Qp) such that M ⊗Zp Qp is isomorphic to

(Zp[[G]]⊗Zp Qp)
⊕d/(Zp[[G]]⊗Zp Qp)

⊕d(γ̃ 1d − A), (1)

where γ is a topological generator of 0 and γ̃ ∈ G is a fixed lift of γ and elements
in (Zp[[G]]⊗Zp Qp)

⊕d are regarded as row vectors.

Proof. Let us take a basis v1, . . . , vd of the free Zp[[H ]]⊗Zp Qp-module M⊗Zp Qp.
Through the isomorphism M⊗Zp Qp−→

∼ (Zp[[H ]]⊗Zp Qp)
⊕d fixed by the condition

(H), γ̃ acts on M . Thus we define a matrix A= (ai j )1≤i, j≤d ∈Md(Zp[[H ]]⊗Zp Qp)

by
γ̃ · vi =

∑
1≤ j≤d

a j iv j .
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We denote the module presented in (1) by NA. By construction, we have a
Zp[[H ]]⊗Zp Qp-linear isomorphism (Zp[[H ]]⊗Zp Qp)

⊕d
−→∼ NA on which γ̃ acts

in the same manner as the action of γ̃ on M ⊗Zp Qp. �

We denote by U the set of all open normal subgroups U of G. We remark that
the set U is a countable set since G is profinite and has a countable base at the
identity.

Lemma 2. For any U ∈ U , Zp[G/U ]⊗Zp Qp is isomorphic to a finite number of
products of matrix algebras

∏k(U )
i=1 Mri (Qp).

Proof. First of all, the algebra Zp[G/U ] ⊗Zp Qp ∼= Qp[G/U ] is a semisimple
algebra over Qp since G/U is a finite group and Qp is of characteristic 0. We have
an isomorphism

Qp[G/U ] ∼=
ln∏

i=1

Msi (Di ),

where Di is a finite dimensional division algebra over Qp. For each i , the center Ki

of Di is a finite extension of Qp. It is well-known that dimKi Di is a square of some
natural number ti and Di ⊗Ki Qp is isomorphic to Mti (Qp). Thus Msi (Di )⊗Qp

is isomorphic to [Ki :Qp] copies of Msi+ti (Qp). The lemma follows immediately
from this. �

Proof of the Preliminary Theorem. First, we remark that for an open normal
subgroup U of G, we have

M(ρ)U is finite if and only if M(ρ)U ⊗Zp Qp = 0. (2)

Since the operation of taking the base extension ⊗Zp Qp commutes with the opera-
tion of taking the largest U -coinvariant quotient, by Lemma 1 we have

M(ρ)U ⊗Zp Qp

∼= (Zp[G/U ]⊗Zp Qp)
⊕d/(Zp[G/U ]⊗Zp Qp)

⊕d(γ̃⊕d
U − AU (ρ)), (3)

where we denote the projection of γ̃ ∈G to G/U by γ̃U . Here, the matrix AU (ρ) ∈

Md(Zp[G/U ]⊗Zp Qp) is defined as the image of ρ(γ )−1 A ∈Md(Zp[[H ]]⊗Zp Qp)

via the composite map

Md(Zp[[H ]]⊗Zp Qp)−→ Md(Zp[[G]]⊗Zp Qp)−→ Md(Zp[G/U ]⊗Zp Qp).

Taking the base extension ⊗Qp Qp of the isomorphism (3), we have a Qp-linear
isomorphism by Lemma 2:

M(ρ)U ⊗Zp Qp ∼=

k(U )∏
i=1

Mri (Qp)
⊕d
/

Mri (Qp)
⊕d(γ⊕d

U,i − AU,i (ρ)) (4)
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where γU,i ∈ AutQp
(Mri (Qp)) and AU,i (ρ) ∈ EndQp

(Mri (Qp)
⊕d) are defined as

follows. We consider the base extension to Qp of

γ̃U ∈ AutZp[G/U ]⊗Zp Qp(Zp[G/U ]⊗Zp Qp)⊂ AutQp(Zp[G/U ]⊗Zp Qp).

This is an element of AutQp

(∏k(U )
i=1 Mri (Qp)

)
. We denote the projection of this

element to the i-th component by γU,i . The base extension to Qp of

AU (ρ) ∈ Md(Zp[G/U ]⊗Zp Qp)⊂ EndQp

(
(Zp[G/U ]⊗Zp Qp)

⊕d)
is an element of EndQp

(∏k(U )
i=1 Mri (Qp)

⊕d
)
, and we denote the projection of this

element to the i-th component by AU,i (ρ).
Now, we denote by AU,i the element AU,i (1). We remark that AU,i (ρ) is equal

to ρ(γ )−1 AU,i for any continuous character ρ : 0→ Z×p . We define EVU,i to be
the set of roots of the characteristic polynomial

PU,i (T ) := det(γ⊕d
U,i − AU,i T ).

Since γ⊕d
U,i is an automorphism, the polynomial PU,i (T ) is not zero. Hence EVU,i

is a finite set. We denote the union of EVU,i for 1 ≤ i ≤ k(U ) by EVU , which is
again a finite set. If ρ(γ )−1 is not contained in EVU ∩ Z×p , the module in (4) is
zero and hence the module in (3) is zero. Now, we denote by EVM the union of
EVU ∩Z×p over all U ∈ U . Since U is a countable set, EVM is a countable set. Thus
Z×p \EVM is nonempty since Z×p is uncountable. By choosing ρ(γ )−1

∈ Z×p \EVM ,
we complete the proof. �

2. Proof of the Main Theorem

In this section, we prove the Main Theorem, which relies on the following result.

Key Lemma. Let G be a compact p-adic Lie group without any element of order
p and let H be a closed subgroup such that G/H is isomorphic to 0. Let M
be 3O(G)-module which is finitely generated over 3O(H). Then, there exists
an open subgroup G0 ⊂ G containing H , a 3O(G0)-module N which is a free
3O(H)-module of finite rank, and a surjective 3O(G0)-linear homomorphism
N � M.

Proof. We denote by I the Jacobson radical of 3O(H). Note that I is a two sided
ideal of 3O(H) such that we have 3O(H)/I ∼= Fq , where Fq is the residue field of
O. We also have 3O(G)/I ∼= Fq [[0]] by definition.

Let us take a system of generators m1, . . . ,md of M as a 3O(H)-module. Note
that M is equipped with a topology obtained by a natural 3O(H)-module structure.
The set {I n M}n∈N forms a system of open neighborhoods of M .
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Choose a topological generator γ of 0 and take a lift γ̃ ∈ G of γ . By continuity
of the action of G on M , the following two conditions hold true simultaneously for
a sufficiently large integer n:

(i) We have (γ̃ pn
− 1)mi ∈ I M for any i with 1≤ i ≤ d.

(ii) The conjugate action of γ̃ pn
on I/I 2 is trivial.

We will choose and fix a natural number n satisfying the conditions (i) and (ii). Then
we define G0 to be the preimage of 0 pn

by the surjection G � 0. By definition,
G0 is an open subgroup of G which contain H .

Let us consider the set {ai j ∈ I }1≤i, j≤d such that we have (γ̃ pn
− 1)m j =∑d

i=1 ai j mi . We consider F (resp. F ′) which is a free 3O(G0)-module of rank d
equipped with a system of generators f1, . . . , fd (resp. f ′1, . . . , f ′d ). We consider a
3O(G0)-linear homomorphism

ϕ : F ′ −→ F, f ′j 7→ (γ̃ pn
− 1) f j −

d∑
i=1

ai j fi .

We define a 3O(G0)-module N to be the cokernel of the map ϕ above.

Claim. For each i with 1 ≤ i ≤ d, we denote the image of fi by f̄i . Then the
3O(G0)-module N is a free 3O(H)-module of finite rank d with a system of
generators f̄1, . . . , f̄d .

If the claim holds true, a 3O(G0)-linear homomorphism N � M sending f̄i

to mi for each i is surjective. Since N is free over 3O(H), this is what we want.
Thus it remains only to prove the claim.

By applying the functor 3O(G0)/I3O(G0)⊗3O(G0) · to the map ϕ, and noting
that

3O(G0)/I ∼= Fq [[0]],

we obtain

ϕI : ⊕
d
j=1Fq [[0

pn
]] f ′j

×(γ̃ pn
−1)

−−−−−→⊕
d
j=1Fq [[0

pn
]] f j .

Since N/I N is isomorphic to the cokernel of the above map ϕI , N/I N is a free Fq -
module of rank d . By applying the topological Nakayama lemma (see [Balister and
Howson 1997, Corollary in §3]) to the compact 3O(H)-module N , N is generated
by f̄1, . . . , f̄d over 3O(H). We will prove that N is free of rank d over 3O(H)
with this system of generators. Let r be an arbitrary natural number. Since we
have a natural surjection from the r-fold tensor product of I/I 2 to I r/I r+1, the
conjugate action of γ̃ pn

on I r/I r+1 is also trivial. Thus, by applying the functor
I r/I r+13O(G0)⊗3O(G0) · to the map ϕ, we obtain a 3O(G0)-linear map

ϕ⊗ I r/I r+1
: I r F ′/I r+1 F ′ −→ I r F/I r+1 F
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which is again defined as a multiplication of (γ̃ pn
− 1). This proves

dimFq N/I s N =
s−1∑
r=0

dimFq I r N/I r+1 N =
s−1∑
r=0

dimFq (I
r/I r+1)⊕d .

Thus the cardinality of N/I s N is equal to the cardinality of (3O(H)/I )⊕d for
any natural number s, which implies that N is free of rank d over 3O(H). This
completes the proof of the claim. �

Proof of Main Theorem. We will use the Key Lemma and the Preliminary Theorem
to prove the Main Theorem in two steps.

First, we consider the situation where G is a compact p-adic Lie group without
any element of order p and H is a closed subgroup such that G/H is isomorphic
to 0. Thus we dropped the assumption (H) of the Preliminary Theorem but we still
keep the assumption of nonexistence of a nontrivial element of order p in G.

Let M be 3O(G)-module which is finitely generated over 3O(H). By the Key
Lemma, for a sufficiently large natural number n, we have a surjective 3O(G0)-
linear homomorphism N � M from a free 3O(H)-module N of finite rank. Here
G0 is a unique open subgroup G0 ⊂ G of index pn containing H . Note that the
module N satisfies condition (H) of the Preliminary Theorem. We thus find a
continuous character ρ0 :0

pn
→Z×p such that N (ρ0)U0 is finite for any open normal

subgroup U0 of G0. By the proof of the Preliminary Theorem, we can choose
uncountably many such ρ0. Thus, we see that we can take ρ0 as above so that the
value of ρ0 is contained in a open subgroup 1+ pnZp of Z×p . Then, we take a
continuous character ρ : 0→ Z×p whose restriction to 0 pn

coincides with ρ0. The
twist M(ρ) with this character is what we want in our Main Theorem. In fact, for
any open normal subgroup U of G, we have a surjection N (ρ0)U0 � M(ρ)U taking
an open normal subgroup U0 of G0 contained in U . Since N (ρ0)U0 is finite by the
Preliminary Theorem, M(ρ)U must be finite. Thus we finished the proof of our
Main Theorem under the assumption of nonexistence of a nontrivial element of
order p in G.

Now we deduce our Main Theorem assuming that it is true under the assumption
of nonexistence of a nontrivial element of order p in G. We consider the situation
where G is a compact p-adic Lie group with elements of order p and H is a closed
subgroup such that G/H is isomorphic to 0. Let M be a 3O(G)-module which
is finitely generated over 3O(H). Let G ′ be a uniform open normal subgroup of
G (see [Lazard 1965, Chapter III, §(3.1)]), which is automatically without any
elements of order p. Let H ′ be the intersection of H and G ′. Since M is finitely
generated over 3O(H) and since H ′ is of finite index in H , M is finitely generated
over 3O(H ′). According to the result in our first step, there exist a continuous
character ρ ′ : G ′/H ′→ Z×p such that M(ρ ′)U ′ is finite for every open subgroup U ′
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of G ′. Note that G ′/H ′ is naturally regarded as an open subgroup of G/H . Thus
by choosing ρ ′ so that the image of ρ ′ is small enough in Z×p compared to the
index of G ′/H ′ in G/H , there exists a continuous character ρ : G/H→ Z×p whose
restriction to G ′/H ′ coincides with ρ ′. Now for any open normal subgroup U of
G, we take an open normal subgroup U ′ of G ′ which is contained in U . We have a
natural map M(ρ ′)U ′→M(ρ)U , where M(ρ ′)U ′ is finite by the choice of ρ ′ and by
our discussion above. Unlike in the first step, M(ρ ′)U ′→ M(ρ)U is not necessarily
surjective. However, the cokernel of this map is still finite by construction. We thus
deduce that M(ρ)U is finite, which completes the proof of the Main Theorem. �

Remark (p-torsion modules). For a compact p-adic Lie group G without any
element of order p, it is well-known that 3O(G) is left and right noetherian. Let
N be a finitely generated p-primary torsion left 3O(G) module. Then, we have
N = N [pr

] for some r ∈N. For any open normal subgroup U of G, NU is a finitely
generated Z/pr Z[G/U ] module. In other words, NU is always finite when N is of
p-primary torsion.

For a finitely generated torsion3O(G)module M , we consider the exact sequence

0−→ M(p)−→ M −→ M/M(p)−→ 0,

where M(p) is the largest p-primary torsion submodule of M . Then, from the
preceding discussion, it is clear that in the situation of the Main Theorem, for any
continuous ρ :0→Z×p and for any open normal subgroup U of G, M(ρ)U is finite
if and only if

(
(M/M(p))(ρ)

)
U is finite.

In particular, when we want to apply the Main Theorem to arithmetic situations
coming from Selmer groups of certain Galois modules A, we remark that S∨A(ρ)U
is finite if and only if

(
(S∨A/S

∨

A(p))(ρ)
)

U is finite.
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