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Tits has defined Steinberg groups and Kac–Moody groups for any root system
and any commutative ring R. We establish a Curtis–Tits-style presentation for
the Steinberg group St of any irreducible affine root system with rank ≥ 3, for
any R. Namely, St is the direct limit of the Steinberg groups coming from the
1- and 2-node subdiagrams of the Dynkin diagram. In fact, we give a completely
explicit presentation. Using this we show that St is finitely presented if the rank
is ≥ 4 and R is finitely generated as a ring, or if the rank is 3 and R is finitely
generated as a module over a subring generated by finitely many units. Similar
results hold for the corresponding Kac–Moody groups when R is a Dedekind
domain of arithmetic type.

1. Introduction

Suppose R is a commutative ring and A is one of the ABCDEFG Dynkin diagrams,
or equivalently its Cartan matrix. Steinberg [1968] defined what is now called the
Steinberg group StA(R), by generators and relations. It plays a central role in
K-theory and some aspects of Lie theory.

Kac–Moody algebras are infinite-dimensional generalizations of the semisimple
Lie algebras. When R = R and A is an affine Dynkin diagram, the corresponding
Kac–Moody group is a central extension of the loop group of a finite-dimensional
Lie group. For a general ring R and any generalized Cartan matrix A, the definition
of a Kac–Moody group is due to Tits [1987]. A difficulty in tracing the story is
that Tits began by defining a “Steinberg group” which unfortunately differs from
Steinberg’s original group when A has an A1 component. This was resolved by
Morita and Rehmann [1990] by adding extra relations to Tits’ definition. So there
are two definitions of the Steinberg group. Increasing the chance of confusion,
they agree for most A of interest, including the irreducible affine diagrams of rank
≥ 3. We follow Morita and Rehmann, so the Steinberg group StA(R) reduces to
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Steinberg’s original group when this is defined. See Section 3 for further background
on St.

Tits then defined another functor R 7→ G̃A(R) as a quotient of his version of
the Steinberg group. In this paper we will omit the tilde and refer to GA(R) as
the Kac–Moody group of type A over R. The relations added by Morita and
Rehmann to the definition of StA(R) are among the relations that Tits imposed in
his definition of GA(R). Therefore, we may regard GA(R) as a quotient of StA(R),
just as Tits did, even though our StA(R) is not quite the same as his. (Tits actually
defined G̃D(R) where D is a root datum; by GA(R) we refer to the root datum
whose generalized Cartan matrix is A and which is “simply connected in the strong
sense” [Tits 1987, p. 551]. The general case differs from this one by enlarging or
shrinking the center of G̃D(R).) See Section 3 for further background on G.

The meaning of “Kac–Moody group” is far from standardized. Tits [1987] wrote
down axioms (KMG1)–(KMG9) that one could demand of a functor from rings to
groups before calling it a Kac–Moody functor. He showed in [loc. cit., Theorem 1′]
that any such functor admits a natural homomorphism from GA, which is an isomor-
phism at every field. So Kac–Moody groups over fields are well-defined, and over
general rings GA approximates the yet unknown ultimate definition. This is why we
refer to GA as the Kac–Moody group. But GA does not quite satisfy Tits’ axioms,
so ultimately some other language may be better. See Section 6 for more on this.

The purpose of this paper is to simplify Tits’ presentations of StA(R) and GA(R)
when A is an affine Dynkin diagram of rank (number of nodes) ≥ 3. We will always
take affine diagrams to be irreducible. We will show that StA(R) and GA(R) are
finitely presented under quite weak hypotheses on R. This is surprising because
there is no obvious reason for an infinite-dimensional group over (say) Z to be
finitely presented, and Tits’ presentations are “very” infinite. His generators are
indexed by all pairs (root, ring element), and his relations specify the commutators
of many pairs of these generators. Subtle implicitly defined coefficients appear
throughout his relations.

The main step in proving our finite presentation results is to first establish smaller,
and more explicit, presentations for StA(R) and GA(R). These presentations are
not necessarily finite, but they do apply to all R. In [Allcock 2015] we wrote down a
presentation for a group functor we called the pre-Steinberg group PStA. We have
reproduced it in Section 2, for any generalized Cartan matrix A. The generators are
Si and Xi (t) with i varying over the nodes of the Dynkin diagram and t varying
over R. The relations are (2-1)–(2-28), but (2-27)–(2-28) may be omitted when A
is 2-spherical (it has no edges labeled “∞”) and has no A1 components. This case
includes all affine diagrams of rank ≥ 3. The only way the presentation fails to
be finite is that the Xi (t) are parameterized by elements of R, and each Chevalley
relation is parameterized by pairs of elements of R.
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The name “pre-Steinberg group” reflects the fact that there is a natural map from
PStA(R) to the Steinberg group StA(R). In Section 3 we will describe this in a con-
ceptual manner. But in terms of presentations it suffices to say that our Xi (t) and Si

map to the group elements xαi (t) and ŵαi (1) in Morita and Rehmann’s definition of
StA(R) [1990, §2]. Our general philosophy is that PStA(R) is interesting only as a
means of approaching StA(R), as in the following theorem, which is our main result.

Theorem 1.1 (presentation of affine Steinberg and Kac–Moody groups). Suppose
A is an affine Dynkin diagram of rank ≥ 3 and R is a commutative ring. Then the
natural map from the pre-Steinberg group PStA(R) to the Steinberg group StA(R)
is an isomorphism. In particular, StA(R) has a presentation with generators Si and
Xi (t), with i varying over the simple roots and t over R, and relations (2-1)–(2-26).

One obtains Tits’ Kac–Moody group GA(R) by adjoining the relations

h̃i (u)h̃i (v)= h̃i (uv) (1-1)

for all simple roots i and all units u, v of R, where

h̃i (u) := s̃i (u)s̃i (−1), s̃i (u) := Xi (u)Si Xi (1/u)S−1
i Xi (u).

We remark that if A is a spherical diagram (that is, its Weyl group is finite) then
it follows immediately from an alternate description of PStA that PStA→StA

is an isomorphism; see Section 3 or [Allcock 2015, §7]. So Theorem 1.1 extends
the isomorphism PStA

∼=StA from the spherical case to the affine case, except
for the two affine diagrams of rank 2. See [Allcock and Carbone 2016] for a
further extension, to the simply laced hyperbolic case, and [Allcock 2015] for
generalizations beyond the hyperbolic case.

For a moment we return to the case where A is an arbitrary generalized Cartan
matrix. If B1⊆ B2 are two subdiagrams of A then there is a natural homomorphism
PStB1

(R)→PStB2
(R). This is because the generators and relations of PStB1

(R)
are among those of PStB2

(R), by the fact that our presentations of these groups
are defined in terms of the nodes and edges of these subdiagrams of A. Using these
maps, we consider the directed system of groups PStB(R), where B varies over
the subdiagrams of A of rank ≤ 2. It is a formality that the direct limit is PStA(R);
this is just an abstract way of saying that each generator or relation of PStA(R)
already appears in the presentation of some PStB(R) with B of rank ≤ 2.

When A is affine of rank ≥ 3, PStA(R)→ StA(R) is an isomorphism by
Theorem 1.1. And PStB(R) → StB(R) is an isomorphism for every proper
subdiagram B of A, since such subdiagrams are spherical. It follows that we may
replace PSt by St throughout the preceding paragraph, proving the following
result. The point is that affine Steinberg groups of rank ≥ 3 are built up from the
classical Steinberg groups of types A1, A2

1, A2, B2 and G2.
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Corollary 1.2 (Curtis–Tits presentation). Suppose A is an affine Dynkin diagram
of rank ≥ 3 and R is a commutative ring. Then StA(R) is the direct limit of the
groups StB(R), where B varies over the subdiagrams of A of rank ≤ 2, and the
maps between these groups are as specified above. The same result also holds with
St replaced by G throughout. �

An informal way to restate Corollary 1.2 is that a presentation for StA(R) can
be got by amalgamating one’s favorite presentations for the StB(R). Splitthoff
[1986] discovered quite weak sufficient conditions for the latter groups to be finitely
presented. When these hold, one would therefore expect StA(R) also to be finitely
presented. The next theorem expresses this idea precisely. Claim (ii) is part of
[Allcock 2015, Theorem 1.4]. See Section 6 for the proof of claim (i).

Theorem 1.3 (finite presentability). Suppose A is an affine Dynkin diagram and R
is any commutative ring. Then the Steinberg group StA(R) is finitely presented as
a group if either

(i) rk A > 3 and R is finitely generated as a ring, or

(ii) rk A = 3 and R is finitely generated as a module over a subring generated by
finitely many units.

In either case, if the unit group of R is finitely generated as an abelian group, then
Tits’ Kac–Moody group GA(R) is finitely presented as a group.

One of the main motivations for Splitthoff’s work was to understand when the
Chevalley–Demazure groups, over Dedekind domains of interest in number theory,
are finitely presented. This was finally settled by Behr [1967; 1998], capping a long
series of works by many authors. The following analogue of these results follows
immediately from Theorem 1.3. How close the analogy is depends on how well GA

approximates whatever plays the role of the Chevalley–Demazure group scheme in
the setting of Kac–Moody theory.

Corollary 1.4 (finite presentation in arithmetic contexts). Suppose K is a global
field, meaning a finite extension of Q or Fq(t). Suppose S is a nonempty finite set
of places of K , including all infinite places in the number field case. Let R be the
ring of S-integers in K .

Suppose A is an affine Dynkin diagram. Then Tits’ Kac–Moody group GA(R) is
finitely presented if rk A≥ 3, unless K is a function field and |S| = 1, when rk A> 3
suffices. �

We remark that if R is a field then the GA case of Corollary 1.2 is due to
Abramenko and Mühlherr [1997] (see also [Devillers and Mühlherr 2007]). Namely,
suppose A is any generalized Cartan matrix which is 2-spherical, and that R is a
field (but not F2 if A has a double bond, and neither F2 nor F3 if A has a triple bond).
Then GA(R) is the direct limit of the groups GB(R). Abramenko and Mühlherr
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[1997, p. 702] state that if A is affine then one can remove the restrictions R 6=F2, F3.
One of our goals is to bring Kac–Moody groups into the world of geometric and

combinatorial group theory, which mostly addresses finitely presented groups. For
example, which Kac–Moody groups admit classifying spaces with finitely many
cells below some chosen dimension? What other finiteness properties do they
have? Do they have Kazhdan’s property T ? What isoperimetric inequalities do they
satisfy in various dimensions? Are there (nonsplit) Kac–Moody groups over local
fields whose uniform lattices (suitably defined) are word hyperbolic? Are some
Kac–Moody groups (or classes of them) quasi-isometrically rigid? We find the last
question very attractive, since the corresponding answer for lattices in Lie groups is
deep (see [Eskin and Farb 1997; Farb and Schwartz 1996; Kleiner and Leeb 1997;
Schwartz 1995]).

Regarding property T we would like to mention work of Hartnick and Köhl [2015]
who showed that many Kac–Moody groups over local fields have property T when
equipped with the Kac–Peterson topology. Also, Shalom [1999] and Neuhauser
[2003] respectively showed that the loop groups of (i.e., the spaces of continuous
maps from S1 to) SLn(C) and Sp2n(C) have property T .

2. Presentation of the pre-Steinberg group PStA(R)

Suppose R is any commutative ring and A is any generalized Cartan matrix. Write I
for the set of A’s nodes, and for i, j ∈ I write mi j for the order of the product of the
corresponding generators of the Weyl group. Following [Allcock 2015, §7], the pre-
Steinberg group PStA(R) is defined by the following presentation. The generators
are Si and Xi (t) with t ∈ R. The relations are (2-1)–(2-28) below, in which i , j vary
over I and t , u vary over R. We use the notation Y � Z to say that Y and Z commute.

If A has no A1 components and is 2-spherical (all mi j are finite), then the last two
relations (2-27)–(2-28) follow from the others and may be omitted [Allcock 2015,
Remark 7.13]. If A is affine of rank ≥ 3 then it satisfies this condition, and our
main result (Theorem 1.1) is that the presentation equally well defines the Steinberg
group StA(R).

For every i ∈ I we impose the relations

Xi (t)Xi (u)= Xi (t + u), (2-1)

Si = Xi (1)Si Xi (1)S−1
i Xi (1). (2-2)

For all i , j we impose the relations

S2
i Sj S−2

i = Sεj , (2-3)

S2
i Xj (t)S−2

i = Xj (εt), (2-4)

where ε = (−1)Ai j .
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Whenever mi j = 2 we impose the relations

Si Sj = Sj Si , (2-5)

Si � Xj (t), (2-6)

Xi (t)� Xj (u). (2-7)

Whenever mi j = 3 we impose the relations

Si Sj Si = Sj Si Sj , (2-8)

Sj Si Xj (t)= Xi (t)Sj Si , (2-9)

Xi (t)� Si Xj (u)S−1
i , (2-10)

[Xi (t), Xj (u)] = Si Xj (tu)S−1
i . (2-11)

Whenever mi j = 4 we impose the following relations; in (2-14)–(2-17), s (resp. l)
refers to whichever of i and j is the shorter (resp. longer) root:

Si Sj Si Sj = Sj Si Sj Si , (2-12)

Si Sj Si � Xj (t), (2-13)

Ss Xl(t)S−1
s � Sl Xs(u)S−1

l , (2-14)

Xl(t)� Ss Xl(u)S−1
s , (2-15)

[Xs(t), Sl Xs(u)S−1
l ] = Ss Xl(−2tu)S−1

s , (2-16)

[Xs(t), Xl(u)] = Sl Xs(−tu)S−1
l · Ss Xl(t2u)S−1

s . (2-17)

Whenever mi j = 6 we impose the following relations; s and l have the same
meaning they had in the previous paragraph:

Si Sj Si Sj Si Sj = Sj Si Sj Si Sj Si , (2-18)

Si Sj Si Sj Si � Xj (t), (2-19)

Xl(t)� Sl Ss Xl(u)S−1
s S−1

l , (2-20)

Ss Sl Xs(t)S−1
l S−1

s � Sl Ss Xl(u)S−1
s S−1

l , (2-21)

Ss Xl(t)S−1
s � Sl Xs(u)S−1

l , (2-22)

[Xl(t), Ss Xl(u)S−1
s ] = Sl Ss Xl(tu)S−1

s S−1
l , (2-23)

[Xs(t), Ss Sl Xs(u)S−1
l S−1

s ] = Ss Xl(3tu)S−1
s , (2-24)

[Xs(t), Sl Xs(u)S−1
l ] = Ss Sl Xs(−2tu)S−1

l S−1
s · Ss Xl(−3t2u)S−1

s

· Sl Ss Xl(−3tu2)S−1
s S−1

l , (2-25)

[Xs(t), Xl(u)] = Ss Sl Xs(t2u)S−1
l S−1

s · Sl Xs(−tu)S−1
l

· Ss Xl(t3u)S−1
s · Sl Ss Xl(−t3u2)S−1

s S−1
l . (2-26)
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This paper [Allcock 2015]

(2-1) (7.4)
(2-2) (7.26)
(2-3) (7.2)–(7.3)
(2-4) (7.5)
(2-5)∪ (2-8)∪ (2-12)∪ (2-18) (7.1)
(2-6) (7.6)
(2-7) (7.10), the A2

1 Chevalley relation
(2-9) (7.7)
(2-10)–(2-11) (7.11)–(7.12), the A2 Chevalley relations
(2-13) (7.8)
(2-14)–(2-17) (7.13)–(7.16), the B2 Chevalley relations
(2-19) (7.9)
(2-20)–(2-26) (7.17)–(7.23), the G2 Chevalley relations
(2-27) (7.24)
(2-28) (7.25)

Table 1. Correspondence between our relations and those of [Allcock 2015].

Officially, the next two relations are part of the presentation of PStA(R). But as
mentioned above, they may be omitted if A is 2-spherical without A1 components.
We let r vary over the units of R and impose the relations

h̃i (r)Xj (t)h̃i (r)−1
= Xj (r Ai j t), (2-27)

h̃i (r) Sj Xj (t)S−1
j h̃i (r)−1

= Sj Xj (r−Ai j t)S−1
j , (2-28)

where h̃i (r) is defined in Theorem 1.1.
Because we have organized the relations differently than we did in [Allcock

2015], we will state the correspondence explicitly. See Table 1.

3. Steinberg and pre-Steinberg groups

Our goal in this section is to describe the Steinberg group and to give a second
description of the pre-Steinberg group. This description makes visible the latter
group’s natural map to the Steinberg group, and is the form we will use for our
calculations in Section 5.

We work in the setting of [Tits 1987] and [Allcock 2015], so R is a commuta-
tive ring and A is a generalized Cartan matrix. This matrix determines a complex
Lie algebra g called the Kac–Moody algebra, and we write 8 for the set of real
roots of g. For each real root α, its root space gα comes with a distinguished pair
of (complex vector space) generators, each the negative of the other. We write gα,Z
for their integral span, and we define the root group Uα as gα,Z ⊗ R ∼= R. Tits’
definition of the Steinberg group begins with the free product ∗α∈8 Uα.



540 Daniel Allcock

We emphasize that there is no natural way to choose an isomorphism R→ Uα.
If ±e are the two distinguished generators for gα , then there are two natural choices
for the parameterization of Uα, namely t 7→ (±e)⊗ t . Often we will choose one
of these and call it Xα; we speak of this as a “sign choice”. Making such a choice
makes computations more concrete, but breaks the symmetry.

In Tits’ definition of StA(R), the relations have the following form. He calls a
pair α, β ∈8 prenilpotent if some element of the Weyl group W sends both α, β
to positive roots, and some other element of W sends both to negative roots. A
consequence of this condition is that every root in Nα+Nβ is real, which enables
Tits to write down Chevalley-style relators for α, β. That is, for every prenilpotent
pair α, β he imposes relations of the form

[element of Uα, element of Uβ] =
∏

γ∈θ(α,β)−{α,β}

(element of Uγ ), (3-1)

where θ(α, β) := (Nα+Nβ)∩8 and N = {0, 1, 2, . . .}. The exact relations are
given in a rather implicit form in [Tits 1987, §3.6]. Writing them down explicitly
requires choosing parameterizations of Uα, Uβ and each Uγ . We suppose this has
been done as above, with the parameterizations being Xα, Xβ and the various Xγ .
Then the relations take the form

[Xα(t), Xβ(u)] =
∏

roots γ=mα+nβ
with m,n≥1

Xγ
(
Nαβγ tmun), (3-2)

where the Nαβγ are integers determined by the structure constants of g, the sign
choices made in parameterizing the root groups, and the ordering of the terms on
the right side. See [Tits 1987, §§3.4–3.6] for details, or Section 5 for the cases
we will need. Morita [1987; 1988] showed that the right side has at most 1 term
except when (Qα⊕Qβ)∩8 has type B2 or G2, and found simple formulas for the
constants (up to sign).

For Tits, this is the end of the definition of the Steinberg group. We called this
group StTits

A (R) in [Allcock 2015] to avoid confusion with StA(R) itself, which
we take to also satisfy the Morita–Rehmann relations. These extra relations play
the role of making the “maximal torus” and “Weyl group” in StTits

A (R) act in the
expected way on root spaces. These relations follow from the Chevalley relations
when A is 2-spherical without A1 components, so the reader could skip down to
the definition of the Kac–Moody group GA(R).

Here is a terse description of the Morita–Rehmann relations; see [Morita and
Rehmann 1990, Relations (B′)] or [Allcock 2015, §6] for details. For each simple
root α ∈8 and each of the two choices e for a generator of gα,Z, we impose relations
as follows. By a standard construction, the choice of e distinguishes a generator f
for g−α,Z. Using e and f as above, we obtain parameterizations of Uα and U−α
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which we will call Xe and X f . For r ∈ R∗ we define s̃e(r)= Xe(r)X f (1/r)Xe(r) and
h̃e(r)= s̃e(r)s̃e(−1). Morita and Rehmann impose relations that describe the actions
of s̃e(1) and h̃e(r) on every Uβ , where β varies over 8. First, conjugation by s̃e(1)
sends Uβ to Usα(β) in the same way that s∗e := (exp ade)(exp adf )(exp ade) ∈ Aut g
does. (Here sα is the reflection in α, and for the relation to make sense one must
check that s∗e sends gβ,Z to gsα(β),Z.) Second, every h̃e(r) acts on Uβ ∼= R by scaling
by r 〈α

∨,β〉, where α∨ is the coroot associated to α.
The quotient of StTits

A (R) by all these relations is the definition of the Steinberg
group StA(R) and agrees with Steinberg’s original group when A is spherical. We
remark that we let e vary over both possible choices of generator for gα,Z just to
avoid choosing one. But one could choose one without harm, because it turns out
that the relations imposed for e are the same as those imposed for −e. Also, Morita
and Rehmann write ŵα rather than s̃e, and their definition of it uses X f (−1/r)
rather than X f (1/r). This sign just reflects the fact that they use a different sign
on f than Tits does, in the “standard” basis e, f , h for sl2.

The Kac–Moody group GA(R) is defined as the quotient of StA(R) by the
relations (1-1).

In Section 2 we defined the pre-Steinberg group PStA(R) in terms of generators
and relations. It also has an “intrinsic” definition: the same as StA(R), except that
Tits’ Chevalley relations are imposed only for classically nilpotent pairs α, β. This
means (Qα+Qβ)∩8 is finite and α+β is nonzero, which is equivalent to α, β satis-
fying α+β 6=0 and lying in some A1, A2

1, A2, B2 or G2 root system. As the name sug-
gests, such a pair is prenilpotent. So PStA(R) is defined the same way as StA(R),
just omitting the Chevalley relations for prenilpotent pairs that are not classically pre-
nilpotent. In particular, StA(R) is a quotient of PStA(R), hence the prefix “pre-”.

In [Allcock 2015] we defined PStA(R) this way and then showed that it has the
presentation in Section 2. In this paper, for ease of exposition we defined PStA(R)
by this presentation. But we will use the above “intrinsic” description in the proof
of Theorem 1.1. So equality between the two versions of PStA(R) is essential for
our work. We proved it in [loc. cit., Theorem 1.2] and restate it now:

Theorem 3.1 (the two models of PStA(R)). Let A be a generalized Cartan ma-
trix and R a commutative ring. For each simple root αi , choose one of the two
distinguished parameterizations Xei : R→ Uαi . Then the pre-Steinberg group as
defined in Section 2 is isomorphic to the pre-Steinberg group as defined above, by
Si 7→ s̃ei (1) and Xi (t) 7→ Xei (t). �

4. Nomenclature for affine root systems

Our proof of Theorem 1.1, appearing in the next section, refers to the root system as
a whole, with the simple roots playing no special role. It is natural in this setting to
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[Moody and
Pianzola 1995] [Kac 1990] condition

Ãn A(1)n A(1)n n ≥ 1
B̃n B(1)n B(1)n n ≥ 2
C̃n C (1)

n C (1)
n n ≥ 2

D̃n D(1)
n D(1)

n n ≥ 3
Ẽn E (1)

n E (1)
n n = 6, 7, 8

F̃4 F (1)
4 F (1)

4

G̃2 G(1)
2 G(1)

2

B̃ even
n B(2)n D(2)

n+1 n ≥ 2

C̃ even
n C (2)

n A(2)2n−1 n ≥ 2

B̃C odd
n BC (2)

n A(2)2n n ≥ 1

F̃ even
4 F (2)

4 E (2)
6

G̃ 0 mod 3
2 G(3)

2 D(3)
4

Table 2. Our and others’ names for affine root systems; see Section 4.

use nomenclature for the affine root systems that emphasizes this global perspective.
Our notation X̃ ···n in Table 2 is close to that in [Moody and Pianzola 1995, §3.5]. The
differences are that our superscripts describe the construction of the root systems,
and that we use a tilde to indicate affineness. For the affine root systems obtained
by “folding”, Kac’s nomenclature [1990, pp. 54–55] emphasizes not the affine root
system itself but rather the one being folded.

It is very easy to describe the set 8 of real roots in the root system X̃ ···n . Let 8
be a root system of type Xn , let 3 be its root lattice, and let 3 be 3⊕ Z. Then
8 ⊆ 3 is the set of pairs (root of Xn,m ∈ Z) satisfying the condition that if the
root is long then m has the property “· · ·” indicated in the superscript, if any.

A set of simple roots can be described as follows. We begin with a set of simple
roots for the root system 80 ⊆8 consisting of roots of the form (ᾱ, 0). This is an
Xn root system except for B̃C odd

n , when it has type Bn . The affinizing simple root
is (ᾱ, 1), where ᾱ is the lowest root of 80 in the absence of a superscript, or twice
the lowest short root for B̃C odd

n , or the lowest short root in all other cases. This can
be used to verify the correspondences between our nomenclature and those of [Kac
1990] and [Moody and Pianzola 1995].

The condition on n in Table 2 is the weakest condition for which the definition of
X̃ ···n makes sense. If one wishes to avoid duplication, so that each isomorphism class
of affine root system appears exactly once, then one should omit one of Ã3 ∼= D̃3,
one of B̃2 ∼= C̃2 and one of B̃ even

2
∼= C̃ even

2 . Both [Kac 1990] and [Moody and
Pianzola 1995] omit D̃3, B̃2 and C̃ even

2 . Also, [Moody and Pianzola 1995] gives
A(2)1 as an alternate name for BC (2)

1 .
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5. The isomorphism PStA(R) → StA(R)

This section is devoted to proving Theorem 1.1, whose hypotheses we assume
throughout. In light of Theorem 3.1, our goal is to show that the Chevalley relations
for the classically prenilpotent pairs imply those of the remaining prenilpotent pairs.
We will begin by saying which pairs of real roots are prenilpotent and which are
classically prenilpotent. Then we will analyze the pairs that are prenilpotent but
not classically prenilpotent.

We fix the affine Dynkin diagram A, write 8, 8, 3, 3 as in Section 4, and
use an overbar to indicate projections of roots from 8 to 8. It is easy to see that
α, β ∈8 are classically prenilpotent if and only if α = β or ᾱ, β̄ ∈8 are linearly
independent. The following lemma describes which pairs of roots are prenilpotent
but not classically prenilpotent, and what their Chevalley relations are (except for
one special case discussed later).

Lemma 5.1. The following are equivalent:

(i) α, β are prenilpotent but not classically prenilpotent.

(ii) α 6= β are not equal and ᾱ, β̄ differ by a positive scalar factor.

(iii) α 6=β, and either ᾱ= β̄ are equal or else one is twice the other and8= B̃C odd
n .

When these equivalent conditions hold, the Chevalley relations between Uα , Uβ are
[Uα,Uβ] = 1, unless 8 = B̃C odd

n , ᾱ and β̄ are the same short root of 8 = BCn ,
and α+β ∈8.

Proof. We think of the Weyl group W acting on affine space in the usual way, with
each root corresponding to an open halfspace. A root is positive if its halfspace
contains the fundamental chamber, or negative if not. Recall that two roots α, β ∈8
form a prenilpotent pair if some element w+ of W sends both to positive roots, and
some w− ∈W sends both to negative roots. The existence of both w± is equivalent
to saying that some chamber lies in the halfspaces of both α and β, and some other
chamber lies in neither of them. (Proof: applyw± to the fundamental chamber rather
than to {α, β}.) By Euclidean geometry, this happens only if either their bounding
hyperplanes are nonparallel or their bounding hyperplanes are parallel and one
halfspace contains the other. In the first case, ᾱ and β̄ are linearly independent, so α,
β are classically prenilpotent. In the second case, ᾱ and β̄ differ by a positive scalar.
If α and β are equal then they form a classically prenilpotent pair. Otherwise they do
not, because (Qα⊕Qβ)∩8 is infinite. This proves the equivalence of (i) and (ii).

To see the equivalence of (ii) and (iii) we refer to the fact that 8 is a reduced
root system (i.e, the only positive multiple of a root that can be a root is that root
itself) except in the case 8 = B̃C odd

n . In this last case, the only way one root of
8= BCn can be a positive multiple of a different root is that the long roots are got
by doubling the short roots.
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The proof of the final claim is similar. Except in the excluded case, we have
8∩(Nᾱ+Nβ̄)={ᾱ, β̄}. The corresponding claim for8 follows, so θ(α, β)−{α, β}
is empty and the right-hand side of (3-2) is the identity. That is, the Chevalley rela-
tions for α, β read [Uα,Uβ]=1. (In the excluded case,8∩(Nα+Nβ)={α, β, α+β}.
So the Chevalley relations set the commutators of elements of Uα with elements
of Uβ equal to certain elements of Uα+β . See Case 6 below.) �

Recall from Theorem 3.1 that StA(R) may be got from PStA(R) by adjoining
the Chevalley relations for every prenilpotent pair α, β that is not classically
prenilpotent. So to prove Theorem 1.1 it suffices to show that these relations
already hold in PSt :=PStA(R). In light of Lemma 5.1, the proof falls into seven
cases, according to 8 and the relative position of ᾱ and β̄. Conceptually, they are
organized as follows; see below for their exact hypotheses. Case 1 applies if ᾱ = β̄
is a long root of some A2 root system in 8. Case 2 (resp. 3) applies if ᾱ = β̄ is
a long (resp. short) root of some B2 root system in 8. Case 4 applies if ᾱ = β̄ is
a short root of 8 = G2. The rest of the cases are specific to 8 = B̃C odd

n . Case 5
applies if β̄ = 2ᾱ. Case 6 or 7 applies if ᾱ = β̄ is a short root of BCn . There are
two cases because α+β may or may not be a root.

In every case but one we must establish [Uα,Uβ] = 1. Each case begins by
choosing two roots in 8, of which β is a specified linear combination, and whose
projections to 8 are specified. Given the global description of 8 from Section 4,
this is always easy. Then we use the Chevalley relations for various classically
prenilpotent pairs to deduce the Chevalley relations for α, β.

Case 1 of Theorem 1.1. Assume ᾱ = β̄ is a root of 8= An≥2, 8= Dn or 8= En ,
or a long root of 8 = G2. Choose γ̄ , δ̄ ∈ 8 as shown, and choose lifts γ, δ ∈ 8
summing to β. (Choose any γ ∈8 lying over γ̄ , define δ=β−γ , and use the global
description of 8 to check that δ ∈8. This is trivial except in the case 8= G̃ 0 mod 3

2 ,
when it is easy.)

γ̄

ᾱ, β̄

δ̄

Because ᾱ + γ̄ , ᾱ + δ̄ /∈ 8, it follows that α + γ, α + δ /∈ 8. So the Chevalley
relations [Uα,Uγ ] = [Uα,Uδ] = 1 hold. The Chevalley relations for γ , δ imply
[Uγ ,Uδ] = Uγ+δ = Uβ . (These relations are (2-23) in the G2 case and (2-11) in
the others. One can write them as [Xγ (t), Xδ(u)] = Xγ+δ(tu) in the notation of the
next paragraph.) Since Uα commutes with Uγ and Uδ , it commutes with the group
they generate, hence Uβ . �

The other cases use the same strategy: express an element of Uβ in terms of
other root groups, and then evaluate its commutator with an element of Uα. But
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the calculations are more delicate. We will work with explicit elements Xγ (t) ∈ Uγ
for various roots γ ∈8. Here t varies over R, and the definition of Xγ (t) depends
on choosing a basis vector eγ for gγ,Z ⊆ g, as explained in Section 3. For each γ
there are two possibilities for eγ . The point of making these sign choices is to write
down the relations explicitly.

For example, if s, l ∈ I are the short and long roots of a B2 subdiagram of A,
then we copy their relations from (2-17): for all t, u ∈ R,

[Xs(t), Xl(u)] = Sl Xs(−tu)S−1
l · Ss Xl(t2u)S−1

s . (5-1)

The reason for writing the right side this way is to avoid making choices: to write
down the relation, one only needs to specify generators es and el for gs,Z and gl,Z,
not the other root spaces involved. But for explicit computation one must choose
generators for these other root spaces. Because Ss and Sl permute the root spaces
in the same way the reflections in s and l do, the terms on the right in (5-1) lie in
Ul+s and Ul+2s . Therefore, after choosing suitable generators el+s and el+2s for
gl+s,Z and gl+2s,Z, we may rewrite (5-1) as

[Xs(t), Xl(u)] = Xl+s(−tu) · Xl+2s(t2u). (5-2)

Now, if σ and λ are short and long simple roots for any copy of B2 in 8, then some
element w of the Weyl group sends some pair of simple roots to them. Taking
s and l to be this pair, and defining Xσ , Xλ, Xλ+σ and Xλ+2σ as the w-conjugates
of Xs , Xl , Xl+s and Xl+2s , we can write the Chevalley relation for σ and λ by
applying the substitution s 7→ σ and l 7→ λ to (5-2):

[Xσ (t), Xλ(u)] = Xλ+σ (−tu) · Xλ+2σ (t2u). (5-3)

In this way we can obtain the Chevalley relations we will need, for any classically
prenilpotent pair, from the ones listed explicitly in Section 2. One could also refer
to other standard references, for example, [Carter 1972, §5.2].

The root system B̃C odd
n≥2 appears as a possibility in several cases, including the next

one. We will use “short”, “middling” and “long” to refer to its three root lengths.

Case 2 of Theorem 1.1. Assume ᾱ = β̄ is a long root of 8 = Bn≥2, 8 = Cn≥2,
8= BCn≥2 or 8= F4. Our first step is to choose roots λ̄, σ̄ ∈8 as pictured:

λ̄ ᾱ, β̄

σ̄

This is easily done using any standard description of 8. (Note: although λ̄ stands
for “long” and σ̄ for “short”, σ̄ is actually a middling root in the case 8= BCn .)
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Our second step is to choose lifts λ, σ ∈8 with β = λ+2σ . If 8 equals B̃n , C̃n

or F̃4 then one chooses any lift σ of σ̄ and defines λ as β − 2σ . This works since
every element of 3 lying over a root of 8 is a root of 8. If 8 equals B̃ even

n , C̃ even
n ,

F̃ even
4 or B̃C odd

n then this argument might fail since 8 is “missing” some long roots.
Instead, one chooses any λ ∈ 8 lying over λ̄ and defines σ as (β − λ)/2. Now,
β−λ= (β̄− λ̄,m) with m being even by the meaning of the superscript “even” or
“odd”. Also, β̄− λ̄ is divisible by 2 in 3 by the figure above. It follows that σ ∈3.
Then, as an element of 3 lying over a short (or middling) root of 8, σ lies in 8.

Because σ , λ are simple roots for a B2 root system inside 8, their Chevalley
relation (5-3) holds in PSt. This shows that any element of Uβ = Uλ+2σ can be
written in the form

(some xλ+σ ∈ Uλ+σ ) ·
[
(some xσ ∈ Uσ ), (some xλ ∈ Uλ)

]
. (5-4)

Referring to the picture of 8 shows that α+ λ+ σ /∈8. Therefore, the Chevalley
relations in PSt include [Uα,Uλ+σ ] = 1. In particular, Uα commutes with the
first term of (5-4). The same argument shows that Uα also commutes with the
other terms, hence with any element of Uβ . This shows that the Chevalley relations
present in PSt imply [Uα,Uβ] = 1, as desired. �

Case 3 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8= Bn≥2, 8= Cn≥2 or
8= F4, or a middling root of 8= BCn≥2. We may choose λ, σ ∈8 with sum β

and the following projections to8 (by a simpler argument than in the previous case):

λ̄ ᾱ, β̄

σ̄

The Chevalley relations for σ , λ are (5-3), showing that any element of Uβ = Uσ+λ
can be written in the form[

(some xσ ∈ Uσ ), (some xλ ∈ Uλ)
]
· (some xλ+2σ ∈ Uλ+2σ ). (5-5)

As in the previous case, we will conjugate this by an arbitrary element of Uα . This re-
quires the following Chevalley relations. We have [Uα,Uλ]= 1 and [Uα,Uλ+2σ ]= 1
by the same argument as before. What is new is that the Chevalley relations for
α, σ depend on whether α+ σ is a root. If it is not, then Uα commutes with Uσ
and therefore with (5-5). That is, [Uα,Uβ] = 1 as desired. If α+ σ is a root then
[Uα,Uσ ] ⊆ Uα+σ . Then conjugating (5-5) by an element of Uα yields[

xσ · (some xα+σ ∈ Uα+σ ), xλ
]
· xλ+2σ ,

which we can simplify by further use of Chevalley relations. Namely, neither
λ+α+ σ nor α+ 2σ is a root, so Uα+σ centralizes Uλ and Uσ . Therefore, xα+σ
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centralizes the other terms in the commutator, and hence drops out, leaving (5-5).
This shows that conjugation by any element of Uα leaves invariant every element
of Uβ . That is, [Uα,Uβ] = 1. �

Case 4 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8 = G2. This is the
hardest case by far. Begin by choosing roots σ̄ , λ̄ ∈8 as shown, with lifts σ, λ ∈8
summing to β:

σ̄
ᾱ, β̄

λ̄

Many different root groups appear in the argument, so we choose a generator eγ of
γ ’s root space, for each γ ∈8 that is a nonnegative linear combination of α, σ , λ.

Next we write down the G2 Chevalley relations in PSt that we will need, derived
from (2-20)–(2-26). We will record them in the 8= G̃2 case and then comment on
the simplifications that occur if 8= G̃ 0 mod 3

2 . After negating some of the eγ , for γ
involving σ and λ but not α, we may suppose that the Chevalley relations (2-26)
for σ , λ read

[Xσ (t), Xλ(u)] = X2σ+λ(t2u)Xσ+λ(−tu)X3σ+λ(t3u)X3σ+2λ(−t3u2). (5-6)

Then we may negate eα+2σ+λ, if necessary, to suppose the Chevalley relations (2-24)
for α, 2σ + λ read

[Xα(t), X2σ+λ(u)] = Xα+2σ+λ(3tu). (5-7)

After negating some of the eγ , for γ involving α and σ but not λ, we may suppose
that the Chevalley relations (2-25) for σ and α read

[Xσ (t), Xα(u)] = Xα+σ (−2tu)Xα+2σ (−3t2u)X2α+σ (−3tu2). (5-8)

We know the Chevalley relations (2-24) for σ and α+ σ have the form

[Xσ (t), Xα+σ (u)] = Xα+2σ (3εtu), (5-9)

where ε =±1. We cannot choose the sign because we’ve already used our freedom
to negate eα+2σ in order to get (5-8). Similarly, we know that the Chevalley relations
(2-23) for λ and α+ 2σ are

[Xλ(t), Xα+2σ (u)] = Xα+2σ+λ(ε
′tu) (5-10)

for some ε′ =±1. (We will see at the very end that ε = ε′ = 1.)
We were able to write down these relations because we could work out the roots

in the positive span of any two given roots. This used the assumption 8= G̃2, but



548 Daniel Allcock

now suppose 8= G̃ 0 mod 3
2 . It may happen that some of the vectors appearing in

the previous paragraph, projecting to long roots of 8=G2, are not roots of 8. One
can check that if α−β is divisible by 3 in 3 then there is no change. On the other
hand, if α − β 6≡ 0 (mod 3) then α + 2σ + λ, α + 2σ and 2α + σ are not roots.
Because (Qα⊕Q(2σ + λ))∩8 now has type A2 rather than G2, (5-7) is replaced
by [Uα,U2σ+λ] = 1, from (2-10). And (Qα⊕Qσ)∩8 also has type A2 now, so
(5-8) is replaced by [Xσ (t), Xα(t)] = Xα+σ (tu), obtained from (2-11), and (5-9)
is replaced by [Uσ ,Uα+σ ] = 1, from (2-10). Finally, there is no relation (5-10)
because there is no longer a root group Uα+2σ . The calculations below use the
relations (5-6)–(5-10). To complete the proof, one must also carry out a similar
calculation using (5-6) and the altered versions of (5-7)–(5-9). This calculation is
so much easier that we omit it.

The long roots 3σ + 2λ, α+ 2σ + λ and 2α+ σ all lie over 3σ̄ + 2λ̄. These
root groups commute with all others that will appear, by the Chevalley relations in
PSt, and they commute with each other by Case 1 above. We will use this without
specific mention.

Since β = σ + λ, we may take (5-6) with t = 1 and rearrange, to express any
element of Uβ as

Xβ(u)= X3σ+λ(u)X3σ+2λ(−u2)
[
Xλ(u), Xσ (1)

]
X2σ+λ(u). (5-11)

We use this to express the commutators generating [Uα,Uβ]:

[Xα(t), Xβ(u)] = Xα(t)X3σ+λ(u)Xα(t)−1
· Xα(t)X3σ+2λ(−u2)Xα(t)−1

·
[
Xα(t)Xλ(u)Xα(t)−1, Xα(t)Xσ (1)Xα(t)−1]
· Xα(t)X2σ+λ(u)Xα(t)−1

· X2σ+λ(−u)
[
Xσ (1), Xλ(u)

]
X3σ+2λ(u2)X3σ+λ(−u). (5-12)

Because Uα centralizes U3σ+λ, U3σ+2λ and Uλ, we may cancel all the Xα(t) in
the first two terms, and in the first term of the first commutator. Because U3σ+2λ

centralizes all terms present, we may cancel the terms X3σ+2λ(±u2). The terms be-
tween the commutators assemble themselves into [Xα(t), X2σ+λ(u)], which equals
Xα+2σ+λ(3tu) by (5-7). Because Uα+2σ+λ centralizes all terms present, we may
move this term to the very beginning. Finally, from (5-8) one can rewrite the second
term of the first commutator as

Xα(t)Xσ (1)Xα(t)−1
= X2α+σ (3t2)Xα+2σ (3t)Xα+σ (2t)Xσ (1).

After all these simplifications, (5-12) reduces to

[Xα(t), Xβ(u)] = Xα+2σ+λ(3tu)X3σ+λ(u)

· [Xλ(u), X2α+σ (3t2)Xα+2σ (3t)Xα+σ (2t)Xσ (1)][Xσ (1), Xλ(u)]X3σ+λ(−u).

(5-13)
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Now we focus on the first commutator [ · · · , · · · ] on the right side. All its terms
commute with U2α+σ , so we may drop the X2α+σ (3t2) term. Writing out what
remains gives

[ · · · , · · · ] = Xλ(u)Xα+2σ (3t)Xα+σ (2t)Xσ (1)

· Xλ(−u)Xσ (−1)Xα+σ (−2t)Xα+2σ (−3t).

By repeatedly using (5-9)–(5-10) and the commutativity of various pairs of root
groups, we move all the Xλ and Xσ terms to the far right. A page-long computation
yields

[ · · · , · · · ] = Xα+2σ+λ(3ε′tu− 6εε′tu)
[
Xλ(u), Xσ (1)

]
.

Plugging this into (5-13), and canceling the commutators and the X3σ+λ(±u)
terms, yields

[Xα(t), Xβ(u)] = Xα+2σ+λ(3tu+ 3ε′tu− 6εε′tu)= Xα+2σ+λ(Ctu),

where C equals 0, ±6 or 12 depending on ε, ε′ ∈ {±1}.
If C = 0 (i.e., ε= ε′= 1) then we have established the desired Chevalley relation
[Uα,Uβ] = 1 and the proof is complete. Otherwise we pass to the quotient St

of PSt. Here Uα and Uβ commute, so we derive the relation Xα+2σ+λ(Ct) = 1
in St. Since this identity holds universally, it holds for R = C, so the image of
Uα+2σ+λ(C) in St(C) is the trivial group. This is a contradiction, since St(C) acts
on the Kac–Moody algebra g, with Xα+2σ+λ(t) acting (nontrivially for t 6= 0) by
exp ad(teα+2σ+λ). Since C 6= 0 leads to a contradiction, we must have C = 0 and
so the Chevalley relation [Uα,Uβ] = 1 holds in PSt. �

Case 5 of Theorem 1.1. Assume β̄ = 2ᾱ in8= BCn≥2. Choose µ̄, λ̄ ∈8 as shown,
and lift them to µ, λ ∈ 8 with 2µ+ λ = β. (Mnemonic: µ is middling and λ is
long.)

λ̄

ᾱ

β̄

µ̄

As in Case 2 (when ᾱ and β̄ were the same long root of 8= Bn), we can express
any element of Uβ in the form

(some xµ+λ ∈ Uµ+λ) ·
[
(some xλ ∈ Uλ), (some xµ ∈ Uµ)

]
.

The Chevalley relations in PSt include the commutativity of Uα with Uλ, Uµ and
Uµ+λ. So Uα also centralizes Uβ . �

Case 6 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8= BCn≥2 and α+β is
a root. This is the exceptional case of Lemma 5.1, and the Chevalley relation we
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must establish is not [Uα,Uβ] = 1. We will determine the correct relation during
the proof. We begin by choosing µ̄, σ̄ ∈8 as shown and lifting them to µ, σ ∈8
with µ+ σ = β, so that σ , µ generate a B2 root system:

σ̄ ᾱ, β̄

µ̄

We choose a generator eγ for the root space of each nonnegative linear combination
γ ∈8 of α, σ , µ. By changing the signs of eσ+µ and e2σ+µ if necessary, we may
suppose that the Chevalley relations (2-17) for σ , µ are

[Xσ (t), Xµ(u)] = Xσ+µ(−tu)X2σ+µ(t2u). (5-14)

Since σ +µ= β we may take t = 1 in (5-14) to express any element of Uβ :

Xβ(u)= X2σ+µ(u)[Xµ(u), Xσ (1)]. (5-15)

Using this one can express any generator for [Uα,Uβ]:

[Xα(t), Xβ(u)] = Xα(t)X2σ+µ(u)Xα(t)−1

· [Xα(t)Xµ(u)Xα(t)−1, Xα(t)Xσ (1)Xα(t)−1
]

· [Xσ (1), Xµ(u)] · X2σ+µ(−u). (5-16)

By the Chevalley relations [Uα,U2σ+µ] = [Uα,Uµ] = 1, the Xα(t)±1 cancel in the
first term on the right side and in the first term of the first commutator.

Now we consider the Chevalley relations of α and σ . Since ᾱ+ σ̄ is a middling
root of 8, and 8 contains every element of 3 lying over every such root, we see
that α + σ is a root of 8. In particular, (Qα⊕Qσ)∩8 is a B2 root system, in
which α and σ are orthogonal short roots. The Chevalley relations (2-16) for α, σ
are therefore

[Xα(t), Xσ (u)] = Xα+σ (−2tu), (5-17)

after changing the sign of eα+σ if necessary.
Next, µ+σ +α = α+β is a root by hypothesis. We choose eµ+σ+α so that the

Chevalley relations (2-16) for µ, α+ σ are

[Xµ(t), Xα+σ (u)] = Xµ+α+σ (−2tu). (5-18)

Now we rewrite (5-16), applying the cancellations mentioned above and rewriting
the second term in the first commutator using (5-17):

[Xα(t), Xβ(u)]

= X2σ+µ(u) ·
[
Xµ(u), Xα+σ (−2t)Xσ (1)

]
·
[
Xσ (1), Xµ(u)

]
· X2σ+µ(−u). (5-19)
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Now we restrict attention to the first commutator on the right side and use the
Chevalley relations [Uα+σ ,Uσ ] = 1 and (5-18) to obtain

[Xµ(u),Xα+σ(−2t)Xσ(1)] = Xµ(u)Xα+σ(−2t) · Xσ(1) · Xµ(−u)Xσ(−1)Xα+σ(2t)

= Xµ+α+σ(4tu)Xα+σ(−2t)Xµ(u) · Xσ(1)

· Xµ+α+σ(4tu)Xα+σ(2t)Xµ(−u)Xσ(−1).

The projections to 8 of any two roots occurring as subscripts are linearly indepen-
dent. Therefore, any two of them are classically prenilpotent, so their Chevalley
relations are present in PSt. In particular, Uµ+α+σ centralizes all the other terms;
we gather the Xµ+α+σ (4tu) terms at the beginning. Next, [Uσ ,Uα+σ ] = 1, so we
may move Xσ (1) to the right across Xα+σ (2t). Then we can use (5-18) again to
move Xµ(u) rightward across Xα+σ (2t). The result is

[Xµ(u), Xα+σ (−2t)Xσ (1)] = Xµ+α+σ (4tu)[Xµ(u), Xσ (1)].

Plugging this into (5-19) and canceling the commutators gives

[Xα(t), Xβ(u)] = X2σ+µ(u)Xµ+α+σ (4tu)X2σ+µ(−u)= Xα+β(4tu).

Tits’ Chevalley relation in his definition of St has the same form, with the factor
4 replaced by some integer C . (Although we don’t need it, we remark that C =±4
by the second displayed equation in [Tits 1987, §3.5], or from [Morita 1988,
Theorem 2(2)]. This is related to the fact that (Qα⊕Qβ)∩8 is a rank 1 affine root
system, of type B̃C odd

1 .) If C 6= 4 then in St we deduce Xα+β((C − 4)tu)= 1 for
all t, u ∈ R and all rings R, leading to the same contradiction we found in Case 4.
Therefore, C=4 and we have established that Tits’ relation already holds in PSt. �

Case 7 of Theorem 1.1. Assume ᾱ = β̄ is a short root of 8 = BCn≥2 and α+ β
is not a root. This is similar to the previous case but much easier. We choose
µ, σ and the eγ in the same way, except that µ+ σ +α is no longer a root, so the
Chevalley relation (5-18) is replaced by [Uµ,Uα+σ ] = 1. We expand Xβ(u) as in
(5-15) and obtain (5-19) as before. But this time the Xα+σ (−2t) term centralizes
both Uµ and Uσ , so it vanishes from the commutator. The right side of (5-19) then
collapses to 1 and we have proven [Uα,Uβ] = 1 in PSt. �

6. Finite presentations

In this section we prove Theorem 1.3, that various Steinberg and Kac–Moody
groups are finitely presented. At the end we make several remarks about possible
variations on the definition of Kac–Moody groups.
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Proof of Theorem 1.3. We must show that StA(R) is finitely presented under either
of the two stated hypotheses. By Theorem 1.1 it suffices to prove this with PSt in
place of St.

(ii) We are assuming that rk A = 3 and that R is finitely generated as a module
over a subring generated by finitely many units. Theorem 1.4(ii) of [Allcock 2015]
shows that if R satisfies this hypothesis and A is 2-spherical, then PStA(R) is
finitely presented. This proves (ii).

(i) Now we are assuming that rk A > 3 and that R is finitely generated as a
ring. Theorem 1.4(iii) of [Allcock 2015] gives the finite presentability of PStA(R)
if every pair of nodes of the Dynkin diagram lies in some irreducible spherical
diagram of rank ≥ 3. (This use of a covering of A by spherical diagrams was also
used by Capdeboscq [2013].) By inspecting the list of affine Dynkin diagrams of
rank > 3, one checks that this treats all cases of (i) except

A =
α β γ δ

(with some orientations of the double edges). In this case, no irreducible spherical
diagram contains α and δ. Note that β 6= γ since rk A > 3.

For this case we use a variation on the proof of Theorem 1.4(iii) of [Allcock
2015]. Consider the direct limit G of the groups StB(R) as B varies over all
irreducible spherical diagrams of rank ≥ 2. If rk B ≥ 3 then StB(R) is finitely
presented by Theorem I of [Splitthoff 1986]. If rk B = 2 then StB(R) is finitely
generated by [Allcock 2015, Lemma 12.2]. Since every irreducible rank 2 diagram
lies in one of rank > 2, it follows that G is finitely presented. Now, G satisfies all
the relations of StA(R) except for the commutativity of St{α} with St{δ}. Because
these groups may not be finitely generated, we might need infinitely many additional
relations to impose commutativity in the obvious way.

So we proceed indirectly. Let Yα be a finite subset of St{α} which together with
St{β} generates St{α,β}. This is possible since St{α,β} is finitely generated. We
define Yδ similarly, with γ in place of β. We define H as the quotient of G by the
finitely many relations [Yα, Yδ] = 1, and we claim that the images in H of St{α}
and St{δ} commute.

A computation in H establishes this: First, every element of Yδ centralizes St{β}
by the definition of G, and every element of Yα by that of H . Therefore, it centralizes
St{α,β}, hence St{α}. We’ve shown that St{α} centralizes Yδ , and it centralizes St{γ }
by the definition of G. Therefore, it centralizes St{γ,δ}, hence St{δ}.

H has the same generators as PStA(R), and its defining relations are among
those defining PStA(R). On the other hand, we have shown that the generators
of H satisfy all the relations in PStA(R). So H ∼= PStA(R). In particular,
PStA(R) is finitely presented.
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It remains to prove the finite presentability of GA(R) under the extra hypothesis
that the unit group of R is finitely generated as an abelian group. This follows from
[Allcock 2015, Lemma 12.4], which says that the quotient of PStA(R) by all the
relations (1-1) is equally well-defined by finitely many of them. Choosing finitely
many such relations, and imposing them on the quotient StA(R) of PStA(R),
gives all the relations (1-1). The quotient of StA(R) by these is the definition of
GA(R), proving its finite presentation. �

Remark 6.1 (completions). We have worked with the “minimal” or “algebraic”
forms of Kac–Moody groups. One can consider various completions, such as
those surveyed in [Tits 1985]. None of these completions can possibly be finitely
presented, so no analogue of Theorem 1.3 exists. But it is reasonable to hope for
an analogue of Corollary 1.2.

Remark 6.2 (Chevalley–Demazure group schemes). If A is spherical then we write
CDA for the simply connected version of the associated Chevalley–Demazure group
scheme. This is the unique most natural (in a certain technical sense) algebraic
group over Z of type A. If R is a Dedekind domain of arithmetic type, then the
question of whether CDA(R) is finitely presented was settled by Behr [1967; 1998].
We emphasize that our Theorem 1.3 does not give a new proof of his results, because
CDA(R) may be a proper quotient of GA(R). The kernel of StA(R)→ CDA(R) is
called K2(A; R) and contains the relators (1-1). It can be extremely complicated.

For a nonspherical Dynkin diagram A, the functor CDA is not defined. The
question of whether there is a good definition, and what it would be, seems to
be completely open. Only when R is a field is there known to be a unique “best”
definition of a Kac–Moody group [Tits 1987, Theorem 1′, p. 553]. The main
problem is what extra relations to impose on GA(R). The remarks below discuss
the possible forms of some additional relations.

Remark 6.3 (Kac–Moody groups over integral domains). If R is an integral
domain with fraction field k, then it is open whether GA(R)→ GA(k) is injec-
tive. If GA satisfies Tits’ axioms then this would follow from (KMG4), but Tits
does not assert that GA satisfies his axioms. If GA(R)→ GA(k) is not injective,
then the image seems a better candidate than GA(R) itself for the role of “the”
Kac–Moody group.

Remark 6.4 (Kac–Moody groups via representations). Fix a root datum D and a
commutative ring R. By using Kostant’s Z-form of the universal enveloping algebra
of g, one can construct a Z-form V λ

Z of any integrable highest-weight module V λ

of g. Then one defines V λ
R as V λ

Z ⊗ R. For each real root α, one can exponentiate
gα,Z ⊗ R ∼= R to get an action of Uα ∼= R on V λ

R . One can define the action of
the torus (R∗)n directly. Then one can take the group Gλ

D(R) generated by these
transformations and call it a Kac–Moody group. This approach is extremely natural
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and not yet fully worked out. The first such work for Kac–Moody groups over rings
is Garland’s landmark paper [1980] treating affine groups; see also Tits’ survey
[1985, §5], its references, and the recent articles [Bao and Carbone 2015] and
[Carbone and Garland 2012].

Tits [1987, p. 554] asserts that this construction allows one to build a Kac–Moody
functor satisfying all his axioms (KMG1)–(KMG9). We imagine that he reasoned
as follows. First, show that each Gλ

D is a Kac–Moody functor and therefore by Tits’
theorem admits a canonical functorial homomorphism from GA, where A is the
generalized Cartan matrix of D. One cannot directly apply Tits’ theorem, because
Gλ

D(R) only comes equipped with the homomorphisms SL2(R)→Gλ
D(R) required

by Tits when SL2(R) is generated by its subgroups
( 1

0
∗

1

)
and

( 1
∗

0
1

)
. Presumably this

difficulty can be overcome. Second, define I as the intersection of the kernels of all
the homomorphisms GA→Gλ

D, and then define the desired Kac–Moody functor
as GA/I .

Remark 6.5 (Kac–Moody groups as amalgams of Chevalley–Demazure groups).
The difficulty in the previous remark, that SL2(R) is not always generated by
unipotent elements, might be resolved as follows. One can consider the spherical
subdiagrams B of A, construct the corresponding Chevalley–Demazure groups
CDB(R), and amalgamate these as in Corollary 1.2, rather than amalgamating
Steinberg groups. Our results here and in [Allcock 2015] show that this amalgam
satisfies the Chevalley relations of all of the prenilpotent pairs that are not classically
prenilpotent. (For nonaffine diagrams this requires A to be 3-spherical; 2-sphericity
will do if A is simply laced or R has no tiny quotients.) And it is the smallest
extension of Tits’ construction that recovers CDA(R) when A is spherical. We
propose this amalgam, possibly with extra relations, as a reasonable candidate for
the definition of Kac–Moody groups.

Remark 6.6 (loop groups). Suppose X is one of the ABCDEFG diagrams, X̃ is
its affine extension as in Section 4, and R is a commutative ring. The well-known
description of affine Kac–Moody algebras and loop groups makes it natural to
expect that GX̃ (R) is a central extension of GX (R[t±1

]) by R∗. The most general
results along these lines that I know of are Theorems 10.1 and B.1 in [Garland
1980], although they concern slightly different groups. Instead, one might simply
define the loop group GX̃ (R) as a central extension of CDX (R[t±1

]) by R∗, where
the 2-cocycle defining the extension would have to be made explicit. Then one
could try to show that GX̃ satisfies Tits’ axioms.

It is natural to ask whether such a group GX̃ (R) would be finitely presented if
R is finitely generated. If R∗ is finitely generated then this is equivalent to the
finite presentation of the quotient CDX

(
R[t±1

]
)
. If rk X ≥ 3 then StX

(
R[t±1

]
)

is
finitely presented by Theorem I of [Splitthoff 1986]. Then, as explained in Section 7
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of [loc. cit.], the finite presentability of CDX
(
R[t±1

]
)

boils down to properties of
K1
(
X, R[t±1

]
)

and K2
(
X, R[t±1

]
)
.
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