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We introduce a regularized theta lift for reductive dual pairs (Sp4, O(V )), for V a
quadratic vector space over a totally real number field. The lift takes values in the
space of (1,1)-currents on the Shimura variety attached to GSpin(V ); we show
its values are cohomologous to currents given by integration on special divisors
against automorphic Green functions. A later paper will show how to evaluate
the new lift on differential forms obtained as usual (nonregularized) theta lifts.
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1. Introduction

1A. Background and main results. The theory of the theta correspondence pro-
vides one of the most powerful tools to construct automorphic forms on classical
groups. In recent years, the work of many authors has led to a geometric version
of this theory describing the behavior of various spaces of so-called special cycles.
Namely, the arithmetic quotients of symmetric spaces attached to classical groups
SO(p, q) and U (p, q) are equipped with a large collection of cycles coming from
the subgroups that fix a given rational subspace; these are generally known as special
cycles. After the work of Kudla and Millson [1986; 1987; 1990] constructing theta
functions that represent their Poincaré dual forms, it has become clear that their
cohomological properties are very closely connected with the theta correspondence;
see, e.g., [Kudla 1997] for a description of their cup products and intersection
numbers for the group SO(n, 2).

In cases where these arithmetic quotients are naturally quasiprojective algebraic
varieties (e.g., for the group SO(n, 2) just mentioned), some of these special cycles
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define complex subvarieties, and it is interesting to ask about more refined invariants,
such as Green currents for them, or their image in the appropriate Chow groups.
The work of Borcherds [1998; 1999] and its generalization by Bruinier [2002; 2012]
successfully addressed these questions for the case of special divisors on arithmetic
quotients of SO(n, 2). Their construction relies again on the theta correspondence
and is based on considering theta lifts with respect to the reductive dual pair
(SL2, O(V )). The automorphic forms on SL2(A) used in their work as an input are
not of moderate growth; thus, the integrals defining the theta lifts are not convergent
and need to be regularized. With the proper regularization procedure, one can
construct Green functions for special divisors, and also meromorphic automorphic
forms, as theta lifts.

One might wonder if regularized theta lifts for reductive dual pairs of the form
(Sp2n, O(V )) for n ≥ 2 can be defined and whether one can construct interesting
currents on arithmetic quotients of the symmetric space associated with SO(VR)

in this way. Consider such a quotient X0 associated with a lattice 0 ⊂ SO(n, 2),
and let (Y, f ) be a pair consisting of a subvariety Y ⊂ X0 and a meromorphic
function f ∈ C(Y )×. In view of the explicit description of motivic cohomology
and regulator maps in terms of higher Chow groups (see, e.g., [Goncharov 2005]),
it is interesting to consider the current log | f | · δY , whose value on a differential
form α ∈ A ∗c (X0) is given by

(log | f | · δY , α)=

∫
Y

log | f | ·α. (1-1)

The first goal of this paper is to show that, for many pairs (Y, f ) such that Y
is a special subvariety and f has divisor supported in special cycles, the current
log | f | · δY can be obtained as a regularized theta lift for (Sp4, O(V )). This follows
from Theorem 1.1 below. For motivation, note that conjectures by Beilinson [1984]
relate the values of ddc-closed Q-linear combinations of such currents with the
values at certain integral points of L-functions attached to X0. Our construction
allows us to compute the values of some more general currents by using the theta
correspondence; a followup paper will relate them to special values of standard
L-functions of automorphic representations of Sp4. Let us now describe more
precisely the main objects involved in the statement of the theorem.

Let F be a totally real number field and V be a quadratic vector space over
F . We assume that the signature of V is ((n, 2), (n+ 2, 0), . . . , (n+ 2, 0)) with n
positive and even. Let H = ResF/Q GSpin(V ). Attached to H there is a Shimura
variety X of dimension n whose complex points at a finite level determined by a
neat open compact subgroup K ⊂ H(A f ) are given by

XK = H(Q)\(D× H(A f ))/K . (1-2)
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Here D denotes the hermitian symmetric space attached to the Lie group SO(VR).
For fixed K , the complex manifold XK is a finite union of arithmetic quotients
of the form X0 := 0\D+, where D+ denotes one of the connected components
of D. Consider two vectors v,w ∈ V spanning a totally positive definite plane in
V and write 0v (resp. 0v,w) for the stabilizer of v (resp. of both v and w) in 0.
One can define complex submanifolds D+v ⊂ D+ and D+v,w ⊂ D+v , each of complex
codimension one, and holomorphic maps

D+v,w
//

��

D+v
//

��

D+

��

X (v,w)0 = 0v,w\D+v,w
ι

// X (v)0 = 0v\D+v
f

// X0

(1-3)

where the maps in the bottom row are proper and generically one-to-one. In
Section 3B we recall the construction of a function

G(v,w)0 ∈ C∞
(
X (v)0 − ι(X (v,w)0)

)
that is a Green function for the divisor [ι(X (v,w)0)] ∈ Div(X (v)0); this function
is locally integrable and hence defines a current [G(v,w)0] ∈ D0(X (v)0). Define
the current

[8(v,w)0] = 2π i · f∗([G(v,w)0]) ∈ D1,1(X0), (1-4)

where f∗ : D0(X (v)0)→ D1,1(X0) denotes the pushforward map. Note that the
Q-linear span of the currents [8(v,w)0] for varying w and fixed v includes all the
currents of the form 2π i · log | f | · δX (v)0 , where f ∈ C(X (v)0)×⊗Z Q is one of
the meromorphic functions constructed by Bruinier [2012, Theorem 6.8]. Given a
totally positive definite symmetric matrix T ∈ Sym2(F) and a Schwartz function
ϕ ∈ S (V (A f )

2) fixed by K , in Section 3G we define a current [8(T, ϕ)K ] ∈
D1,1(XK ) as a finite sum of currents [8(v,w)0] weighted by the values of ϕ. As
an example, consider the case treated in Section 4B, where XK = X B

0 × X B
0 is a

self-product of a full level Shimura curve X B
0 attached to an indefinite quaternion

algebra B over Q. Here the currents [8(T, ϕ)K ] admit a description in terms of
Hecke correspondences and CM points on XK . Namely, if p is a prime not dividing
the discriminant of B such that p ≡ 1 (mod 4), and writing L =Q[

√
−p], then for

a certain choice of ϕ = ϕ0 we have[
8

((
1

p

)
, ϕ0

)
K

]
= 2π i · (X B

0
1
−−→ X B

0 × X B
0 )∗([G tL/Q[CM(OL )]]). (1-5)

where1 denotes the diagonal embedding and G tL/Q[CM(OL )] denotes a Green function
for the divisor tL/Q[CM(OL)] of points in X B

0 with CM by OL (see (4-28)).
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Our first main result will show that the currents [8(T, ϕ)K ] are cohomologous
to some currents obtained by a process of regularized theta lifting. Let us now
introduce these theta lifts. In Section 3H we define, for ϕ ∈ S (V (A f )

2) fixed
by K and g ∈ Sp4(AF ), a theta function θ(g;ϕ)K valued in the space of smooth
(1,1)-forms on XK . In the same section, we introduce a function

MT (s) : N (F)\N (A)× A(R)0 −→ C. (1-6)

Here T denotes a totally positive definite symmetric 2-by-2 matrix, s is a complex
number, N ⊂ Sp4,F denotes the unipotent radical of the Siegel parabolic of Sp4,F
and A(R)0 denotes the connected component of the identity of the real points
of the subgroup A ⊂ Sp4,F of diagonal matrices in Sp4,F . This function grows
exponentially along A(R)0. We define the regularized theta lift(

MT (s), θ(·, ϕ)K
)reg
=

∫
A(R)0

∫
N (F)\N (A)

MT (na, s)θ(na, ϕ)K dn da, (1-7)

with appropriate measures dn and da.

Theorem 1.1. (1) The regularized integral (MT (s), θ(·;ϕ)K )
reg converges for

Re(s)� 0 on an open dense set of XK whose complement has measure zero
and defines a locally integrable (1,1)-form 8(T, ϕ, s)K on XK .

(2) Let D̃1,1(XK ) = D1,1(XK )/(Im(∂) + Im(∂̄)). The current [8(T, ϕ, s)K ] ∈
D̃1,1(XK ) defined by 8(T, ϕ, s)K admits meromorphic continuation to s ∈ C;
moreover, its constant term at s = s0 = (n− 1)/2 satisfies

CTs=s0
[8(T, ϕ, s)K ] = [8(T, ϕ)K ]

as elements of D̃1,1(XK ).

In fact, Proposition 3.19 shows that the currents in the theorem are compatible
under the maps D1,1(XK ′)→ D1,1(XK ) induced from inclusions K ′ ⊂ K of open
compact subgroups, so that we obtain currents

[8(T, ϕ)] = ([8(T, ϕ)K ])K ∈ D1,1(X) := lim
←−−

K
D1,1(XK ) (1-8)

and similarly [8(T, ϕ, s)] ∈ D1,1(X) that agree on closed differential forms.
A particularly interesting subspace of D1,1(XK ) is the image of the regulator

map

rD : CH2(XK , 1)→ D1,1(XK ) (1-9)

whose definition we recall in Section 3I; in particular, we would like to characterize
the currents [8K ] in the Q-linear span of the currents [8(T, ϕ)K ] that belong to the
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image of rD . We will prove in Proposition 3.23 that, when dim XK ≥ 4, we have
for such a current 8K ,

[8K ] ∈ rD ⇐⇒ ddc
[8K ] = 0. (1-10)

Let us assume from now on that V is anisotropic over F ; this implies that XK
is compact. Once the currents [8(T, ϕ)] have been constructed, we would like to
evaluate them on differential forms α ∈A n−1,n−1

c (XK ). Since the form8(T, ϕ, s)K
is obtained as a (regularized) integral, it is natural to try to do so by interchanging
the integrals. However, the regularized integral is not absolutely convergent, and
the exchange is not justified. To get around this problem, we introduce some locally
integrable (1,1)-forms 8̃(T, ϕ, s)K related to the8(T, ϕ, s)K in Theorem 1.1. They
are also obtained as regularized theta lifts and the associated currents [8̃(T, ϕ, s)K ]
are compatible under the maps induced by inclusions K ′⊂K , thus defining a current
[8̃(T, ϕ, s)] ∈D1,1(X). As before, these currents enjoy a property of meromorphic
continuation to s ∈ C, and their constant terms satisfy

CTs=s0
[8̃(T1, ϕ1, s)] − [8̃(T2, ϕ2, s)] ≡ [8(T1, ϕ1)] − [8(T2, ϕ2)] (1-11)

modulo Im(∂)+ Im(∂̄) for pairs (T1, ϕ1), (T2, ϕ2) related by a certain involution ι
(see (3-82)). Here, at a finite level K , the current on the right hand side is a finite
sum of currents of the form [8(v,w)0] − [8(w, v)0], with [8(v,w)0] given by
(1-4); see Remark 3.24 for some motivation on these currents. Moreover, using
ideas of Bruinier and Funke [2004], we show that the values [8̃(T, ϕ, s)K ](α) for
large Re(s) can be computed by reversing the order of integration; the precise
statement is the following.

Proposition 3.27. Let K ⊂ H(A f ) be an open compact subgroup that fixes ϕ and
let α ∈ A n−1,n−1

c (XK ). Then, for Re(s)� 0, we have

([8̃(T, ϕ, s)K ], α)=
∫

A(R)0

∫
N (F)\N (A)

M̃ T (na, s)
∫

XK

θ(na;ϕ⊗ ϕ̃∞)K ∧α dn da.

This result also gives information on the values of the currents [8(T, ϕ)]; see
Corollary 3.28.

1B. Outline of the paper. We now describe the contents of each section in more
detail. Section 2 is a review of definitions and basic facts about Shimura varieties
X attached to GSpin groups. In it we recall the definition of the relevant Shimura
datum, describe the connected components of XK at a finite level K and introduce
the tautological line bundle L and its canonical metric. Then we recall the definition
of special cycles in XK and their weighted versions introduced by Kudla.

In Section 3 we construct currents in D1,1(XK ). Sections 3A and 3B first review
previous work by Oda, Tsuzuki and Bruinier on secondary spherical functions on
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the symmetric space D attached to SO(n, 2), and on automorphic Green functions
for special divisors on arithmetic quotients 0\D+ (here D+ denotes one of the
connected components of D). In Section 3C we introduce some differential forms
with singularities on D. These forms depend on a complex parameter s and are
used in Section 3D to define (1,1)-forms on 0\D+ with singularities on special
divisors. We prove that these (1,1)-forms are locally integrable and therefore
define currents in D1,1(0\D+). Section 3E then shows that these currents admit
meromorphic continuation to s ∈ C and that their regularized value at a certain
value s0 is cohomologous to the pushforward of the automorphic Green function in
Section 3B defined on a certain special divisor. An adelic formulation of the above
constructions is provided in Section 3F. After this, in Section 3G, we introduce
weighted currents; their behavior under pullbacks induced by inclusions of open
compact subgroups K ′ ⊂ K and under the Hecke algebra of the GSpin group is
described. Section 3H explains how these weighted currents can be constructed
as regularized theta lifts for the dual pair (Sp4, O(V )). In Section 3I we give a
necessary and sufficient condition for the currents above to belong to the image of
the regulator map from the higher Chow group CH2(XK , 1). Section 3J introduces
some related currents on XK and uses their presentation as regularized theta lifts to
prove that they can be evaluated on differential forms by interchanging the order of
integration.

The example of a product of Shimura curves described above is considered in
Section 4. This section starts with some definitions and basic facts on Shimura
curves in Section 4A. In Section 4B, we describe several of the currents introduced
in Section 3 in terms of Hecke correspondences and CM divisors.

1C. Notation. The following conventions will be used throughout the paper.

• We write Ẑ = lim
←−−n(Z/nZ) and M̂ = M ⊗Z Ẑ for any abelian group M . We

write A f =Q⊗Z Ẑ for the finite adeles of Q and A= A f ×R for the full ring
of adeles.

• For a number field F , we write AF = F ⊗Q A, AF, f = F ⊗Q A f and F∞ =
F ⊗Q R. We will suppress F from the notation if no ambiguity can arise.

• For a finite set of places S of F , we will denote by AS and AS the subset of
adeles in AF supported on S and away from S, respectively.

• We denote by ψQ =
⊗

v ψQv
: Q\AQ→ C× the standard additive character

of AQ, defined by

ψQp(x)= e−2π i x for x ∈ Z[p−1
],

ψR(x)= e2π i x for x ∈ R.



Regularized theta lifts and (1,1)-currents 603

If Fv is a finite extension of Qv , we set ψv = ψQv
(tr(x)), where tr : Fv→Qv

is the trace map. For a number field F , we write ψ =
⊗

v ψv : F\AF → C×

for the resulting additive character of AF .

• For a locally compact, totally disconnected topological space X , the symbol
S (X) denotes the Schwartz space of locally constant, compactly supported
functions on X . For X a finite dimensional vector space over R, the sym-
bol S (X) denotes the Schwartz space of all C∞ functions on X all whose
derivatives are rapidly decreasing.

• For a ring R, we denote by Matn(R) the set of all n-by-n matrices with entries
in R. The symbols 1n and 0n denote the identity and zero matrices in Matn(R).

• The transpose of a matrix x ∈ Matn(R), is denoted tx , and the set of all
symmetric matrices in Matn(R) is Symn(R)= {x ∈Matn(R) | x = tx}.

• X q Y denotes the disjoint union of X and Y .

• If an object φ(s) depends on a complex parameter s and is meromorphic in s,
we denote by CTs=s0

φ(s) the constant term of its Laurent expansion at s = s0.

2. Shimura varieties and special cycles

2A. Shimura varieties. We recall the facts about orthogonal Shimura varieties that
we will need. We follow [Kudla 1997] closely, to which the reader is referred for
further details. Let F be a totally real number field of degree d with embeddings
σi : F→R, i = 1, . . . , d . Let (V, Q) a quadratic vector space over F of dimension
n+ 2 (with n ≥ 1); we assume that V1 = V ⊗F,σ1 R has signature (n, 2) and that
Vσi = V ⊗F,σi R is positive definite for i = 2, . . . , d .

Let H = ResF/Q GSpin(V ). The group H fits into a short exact sequence

1−→ ResF/Q Gm −→ H −→ ResF/Q SO(V )−→ 1. (2-1)

Denote by D the set of oriented negative definite planes in V1. We will fix once
and for all a point z0 ∈ D and will denote by D+ the connected component of
D containing z0. The group SO(V1) ∼= SO(n, 2) acts transitively on D, and the
stabilizer Kz0

of z0 is isomorphic to SO(n)×SO(2). We have

D∼= SO(n, 2)/(SO(n)×SO(2)). (2-2)

To the pair (H,D) one can attach a Shimura variety Sh(H,D) that has a canonical
model over σ1(F). Namely, in [Kudla 1997, p. 44] a homomorphism

h0 : ResC/R Gm = C× −→ H(R)=
∏

i=1,...,d

GSpin(Vσi ) (2-3)



604 Luis E. Garcia

is defined such that D becomes identified with the space of conjugates of h0 by H(R);
the resulting action of H(R) on D factors through the projection H(R)→ SO(V1).
For any compact open subgroup K ⊂ H(A f ), we have

XK = Sh(H,D)K (C)= H(Q)\(D× H(A f ))/K . (2-4)

Thus XK is the complex analytification of a quasiprojective variety Sh(H,D)K of
dimension n defined over σ1(F). If V is anisotropic over F , then Sh(G,D)K is
actually projective.

We recall the description of the connected components of XK . Let H der ∼=

ResF/Q Spin(V ) be the derived subgroup of H . There is an exact sequence

1−→ H der
−→ H

ν
−→ T −→ 1, (2-5)

where T = ResF/Q Gm and ν is given by the spinor norm. Let T (R)+ = (R>0)
d
⊂

T (R) and H+(R)= ν−1(T (R)+) be the set of elements of H(R) of totally positive
spinor norm; this is the subgroup of H(R) stabilizing D+. Define

H+(Q)= H(Q)∩ H+(R). (2-6)

By the strong approximation theorem, we can find h1 = 1, . . . , hr ∈ H(A f ) such
that

H(A f )=

r∐
j=1

H+(Q)hj K . (2-7)

For j = 1, . . . , r , let 0hj = H+(Q)∩ hj K h−1
j . Then

XK
∼=

r∐
j=1

0hj\D
+. (2-8)

We will also need to consider Shimura varieties attached to (V, Q) as above with
n = 0. In this case, the symmetric domain associated with SO(V1) consists of
just one point, while D= D+qD− consists of two points (corresponding to two
different orientations of the same negative definite plane z0). Since it turns out to
be more convenient for our purposes, we define XK as in (2-4) and Sh(H,D)K to
be the union of two copies of the usual Shimura variety attached to H , so that with
these notations we have XK = Sh(H,D)K (C).

For n ≥ 1, we can introduce a different model for D that makes the presence of
an SO(V1)-invariant complex structure obvious. Let Q be the quadric in P(V1(C))

given by
Q = {v ∈ P(V1(C)) | (v, v)= 0}. (2-9)

Note that if {v1, v2} is an orthogonal basis of z ∈ D with (v1, v1)= (v2, v2)=−1,
then v := v1− iv2 ∈ V1⊗C satisfies (v, v)= 0 and (v, v̄) < 0. Moreover, the line
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[v] := C · v is independent of the orthogonal basis we have chosen. Thus we obtain
a well defined map D→Q and one checks that it gives an isomorphism

D−→Q− = {w ∈ P(Vσ1(C)) | (w,w)= 0, (w, w̄) < 0} (2-10)

onto the open subset Q− of the quadric Q.
Consider the tautological line bundle L over Q− defined by

L \ {0} := {w ∈ V1(C) | (w,w)= 0, (w, w̄) < 0}. (2-11)

The action of H(R) on D lifts naturally to L and gives it the structure of a H(R)-
equivariant bundle. Any element v ∈ V1 defines a section sv of L ∨ by the rule
sv(w) = (v,w). We will only consider sv for v of positive norm. The section sv
defines an analytic divisor

div(sv)= {w ∈ P(V1(C)) | (v,w)= 0}. (2-12)

Under the isomorphism D∼=Q− described above, div sv corresponds to Dv ⊂ D,
where Dv denotes the set of negative definite planes in V1 that are orthogonal to v.

The line bundle L carries a natural hermitian metric ‖ · ‖ defined by ‖w‖2 =
|(w, w̄)|; this metric is H(R)-equivariant. We say that a function f ∈ C∞(D−Dv)

has a logarithmic singularity along Dv if f (z)− log ‖sv(z)‖2 extends to C∞(D).

2B. Special cycles. Let U ⊂ V be a totally positive definite subspace and let W
be its orthogonal complement in V . Denote by HU the pointwise stabilizer of U
in H . Then HU ∼= ResF/Q GSpin(W ); its associated symmetric domain can be
identified with DU ∩D+, where DU denotes the subset of D consisting of planes
z that are orthogonal to U . For a compact open K ⊂ H(A f ) and h ∈ H(A f ), let
KU,h = HU (A f )∩ hK h−1, an open compact subset of HU (A f ). Define

X (U, h)K = HU (Q)\(DU × HU (A f ))/KU,h . (2-13)

If h= 1, we write X (U )K := X (U, 1)K . Thus X (U, h)K is the set of complex points
of a variety Sh(HU ,DU )KU,h defined over σ1(F). There is a morphism

iU : Sh(HU ,DU )−→ Sh(H,D) (2-14)

defined over σ1(F); on complex points it induces a map

iU,h,K : X (U, h)K −→ XK (2-15)

that is proper and birational onto its image. Denote by Z(U, h)K the associated
effective cycle on XK . For a set of vectors x = (x1, . . . , xr ) ∈ V r spanning a
totally positive definite vector space U of dimension r , we will write Z(x, h)K for
Z(U, h)K .
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For a description of the connected components of these special cycles, see [Kudla
1997, Sections 3 and 4]; the main result is that these cycles have a finite number
of components of the form Z(U, h)0 that we now define. For h ∈ H(A f ), let
0h = H+(Q)∩ hK h−1. Define 0U,h = 0h ∩ HU (R) and consider the map

X (U, h)0 := 0U,h\D
+

U −→ 0h\D
+
= X0h . (2-16)

(For h= 1, we will just write X (U )0 for X (U, 1)0). The image defines a connected
cycle in X0h that we denote by Z(U, h)0.

In [Kudla 1997], certain weighted sums of these cycles are defined. Namely, let
r = dimF U and denote by Symr (F)>0 the space of totally positive definite r -by-r
matrices with coefficients in F . For T ∈ Symr (F)>0 and ϕ ∈S (V (A f )

r )K with
values in a ring R, define

Z(T, ϕ)K =
∑

h∈HU (A f )\H(A f )/K

ϕ(h−1x)Z(x, h)K , (2-17)

where x = (x1, . . . , xr ) ∈ V r is any vector with 1
2(xi , x j )= T (if no such x exists,

we set Z(T, ϕ) = 0). Note that the sum is finite and hence defines a cycle in
Z r (XK )⊗Z R.

3. Currents and regularized theta lifts

In this section we introduce some differential forms and currents on arithmetic
quotients of D+. Some of these forms will be defined as Poincaré series by summa-
tion of 0-translates of a differential form on D+. Here and throughout this paper,
0 ⊂ H+(R) denotes a group of the form 0 = H+(Q)∩ K , where K ⊂ H(A f ) is
some neat open compact subgroup. If U ⊂ V is a totally positive definite subspace,
we will write 0U = 0∩ HU (R), where HU denotes the pointwise stabilizer of U in
H . If U is spanned by vectors v1, . . . , vr , we will sometimes write 0v1,...,vr for 0U .

Several currents defined in this Section will be described explicitly in Section 4B,
where we consider the particular case when XK is a product of Shimura curves. The
description given there is in terms of Hecke correspondences and CM points, and
the reader is advised to study the examples given there to understand the definitions
and properties to follow.

3A. Secondary spherical functions on D. Recall that D denotes the set of oriented,
negative definite 2-planes in V1 = V ⊗F,σ1 R. For every vector v ∈ V1 of positive
norm we have defined an analytic divisor Dv ⊂ D consisting of those z ∈ D that
are orthogonal to v. Denote by Hv(R) the stabilizer of v in H(R). Then we have
Dv
∼=Hv(R)/(K∩Hv(R)), so that Dv can be identified with the hermitian symmetric

space associated with Hv(R). We write D+v := Dv ∩D+.
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We recall some of the main results of Oda and Tsuzuki [2003] concerning
the existence and main properties of secondary spherical functions on D. To
state these results, we need to introduce certain subgroups of G = SO(V1). Let
{v1, . . . , vn+2} be a basis of V1 whose quadratic form is In,2 and such that v=v1. Let
z0=〈vn+1, vn+2〉 and denote by Kz0

the stabilizer of z0 in SO(V1)
+. Let W ⊂ V1 be

the plane generated by v1 and vn+1 and let A= SO(W )0 be the identity component
of its orthogonal group. Then A={at | t ∈R} where atv1= cosh(t)v1+sinh(t)vn+1.
Let

A+ = {at | t ≥ 0} (3-1)

and Gv be the stabilizer of v in G. Then there is a double coset decomposition

G = GvA+Kz0
. (3-2)

Proposition 3.1 [Oda and Tsuzuki 2003, Proposition 2.4.2]. Let1D be the invariant
Laplacian on D and let ρ0=n/2. Let s be a complex number with Re(s)>ρ0. There
exists a unique function φ(2)(v, z, s) ∈ C∞(D−Dv) with the following properties:

(1) 1Dφ
(2)(v, z, s)= (s2

− ρ2
0)φ

(2)(v, z, s).

(2) φ(2)(v, gz, s)= φ(2)(v, z, s) for every g ∈ Gv.

(3) Consider the function φ(2)(v, g, s) = φ(2)(v, gz0, s) for g ∈ G. It belongs to
C∞(G−GvKz0

) and satisfies φ(2)(v, g′gk, s)=φ(2)(v, g, s) for every g′∈Gv ,
k ∈ Kz0

. Writing G = GvA+Kz0
as above, we have

φ(2)(v, at , s)= log(t)+ O(1) as t→ 0,

φ(2)(v, at , s)= O(e−(Re(s)+ρ0)t) as t→+∞.

It follows that φ(2)(hv, hz, s)= φ(2)(v, z, s) for all h ∈ H(R) and z ∈ D. For a
totally positive vector v ∈ V (F), we will simply write φ(2)(v, z, s) for φ(2)(v1, z, s),
where v1 denotes the image of v in V1. We will sometimes write φ(2)D (v, z, s) for
φ(2)(v, z, s) if we need to be precise about the domain of definition.

The function φ(2)(v, z, s) admits an explicit description in terms of the Gaussian
hypergeometric function. Namely, for |z|< 1, let F(a, b, c, z) be the function given
by

F(a, b, c, z)=
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
,

where we write (a)0 = 1 and (a)n = 0(a+ n)/0(a) for n ≥ 1. For a vector v ∈ V1

and a plane z ∈ D, denote by vz⊥ the projection of v to the orthogonal complement



608 Luis E. Garcia

z⊥ of z in V1. Then [Oda and Tsuzuki 2003, (2.5.3)]:

φ(2)(v, z, s)=

−
0
( s+ρ0

2

)
0
( s−ρ0

2 +1
)

20(s+1)

(
Q(v)

Q(vz⊥)

)s+ρ0
2

F
(

s+ρ0

2
,

s−ρ0

2
+1, s+1,

Q(v)
Q(vz⊥)

)
. (3-3)

3B. Green currents for special divisors. The functions φ(2)(v, z, s) can be used
to construct Green functions for the special divisors introduced above. Namely,
let 0 ⊂ H(R) be of the form 0 = H+(Q)∩ K and v ∈ V (F) be a vector of totally
positive norm. Recall that we write 0v = 0 ∩ Hv(R). For Re(s) > ρ0, define

G(v, z, s)0 = 2
∑

γ∈0v\0

φ(2)(v, γ z, s). (3-4)

The sum converges absolutely a.e. and defines an integrable function G(v, s)0 on
X0 [Oda and Tsuzuki 2003, Proposition 3.1.1]. Denote by [G(v, s)0] the associated
current on X0, defined by

[G(v, s)0](α)=
∫

X0
G(v, z, s)0 ·α(z), (3-5)

for α ∈ A 2n
c (X0). This current admits meromorphic continuation to s ∈ C with

only simple poles [Oda and Tsuzuki 2003, Theorem 6.3.1]. In fact, as shown by
Bruinier [2012, Theorem 5.12], one can refine this result to show that the function
G(v, z, s)0 itself has meromorphic continuation to the whole complex plane and
that the resulting function is real analytic on X0 − Z(v)0. Define

G(v)0 = CTs=ρ0 G(v, s)0 (3-6)

to be the constant term of G(v, s)0 at s = ρ0.

Theorem 3.2 [Bruinier 2012, Theorem 5.14, Corollary 5.16]. The function G(v)0
is real analytic on X0 − Z(v)0 and has a logarithmic singularity on Z(v)0. The
form ddcG(v)0 = −(2π i)−1∂∂̄G(v)0 extends to a C∞ form on X0 and one has
the equation of currents:

ddc
[G(v)0] = δZ(v)0 + [ddcG(v)0]. (3-7)

Consider now a pair of vectors v,w spanning a totally positive definite plane U
in V . Denote by pv⊥(w) the projection of w to the orthogonal complement of v.
Recall that we write X (v)0 = 0v\D+v and 0v,w = 0 ∩ HU (R). The map

0v,w\D
+

U → X (v)0
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then defines an effective divisor Z(v,w)0 in X (v)0. We define

G(v,w, z, s)0 = 2
∑

γ∈0v,w\0v

φ
(2)
Dv
(pv⊥(w), γ z, s). (3-8)

The results described above imply that the sum converges when Re(s) � 0 to
an integrable function on X (v)0, and that we have a meromorphic continuation
property, so that we can define

G(v,w, z)0 = CTs=(n−1)/2 G(v,w, z, s)0. (3-9)

The function G(v,w)0 is then real analytic on X (v)0 − Z(v,w)0 and has a loga-
rithmic singularity on Z(v,w)0.

3C. The functions φ(v,w, z, s) on D. For a pair of vectors v,w ∈ V1, denote by
pw(v) and pw⊥(v) the projection of v to the line spanned byw and to the orthogonal
complement of w, respectively.

Definition 3.3. Let v,w be a pair of vectors in V1 spanning a positive definite plane
and let s0 = (n− 1)/2. For Re(s) > s0, define

φ(v,w, z, s)=−1
2
0
( s+s0

2

)
0
( s−s0

2 + 1
)

0(s+ 1)

(
Q(v)− Q(pw(v))

Q(vz⊥)− Q(pw(v))

)s+s0
2

× F
(

s+ s0

2
,

s− s0

2
+ 1, s+ 1,

Q(v)− Q(pw(v))
Q(vz⊥)− Q(pw(v))

)
. (3-10)

The following basic properties of φ(v,w, z, s) are easily checked.

Lemma 3.4. (1) For every h ∈ Hv(R), φ(v,w, z, s)= φ(v,w, hz, s).

(2) For every h ∈ H(R), φ(hv, hw, hz, s)= φ(v,w, z, s).

(3) The restriction of φ(v,w, z, s) to Dw equals φ(2)Dw
(pw⊥(v), z, s).

(4) Consider the function φ(v,w, g, s) = φ(v,w, gz0, s), for g ∈ G. It belongs
to C∞(G − GvKz0

) and satisfies φ(v,w, g′gk, s) = φ(v,w, g, s) for every
g′ ∈ Gv, k ∈ Kz0

. Writing G = GvA+Kz0
as above, we have

φ(v,w, at , s)= log(t)+ O(1) as t→ 0, (3-11)

φ(v,w, at , s)= O(e−(Re(s)+s0)t) as t→+∞. (3-12)

Note that (1) and (2) imply φ(v,w, z, s)=φ(v, hvw, z, s) for every hv ∈ Hv(R),
so that for fixed v, z, s, the function φ(v,w, z, s) only depends on the Hv(R)-
orbit of w. Moreover, property (3-12) also holds for all partial derivatives of
φ(v,w, z, s). Note also that property (3-11) implies that φ(v,w, z, s) is locally
integrable. Concerning the behavior of the partial derivatives of φ(v,w, z, s) as z
approaches Dv, we have the following lemma.
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Lemma 3.5. Each of the partial derivatives ∂φ(v,w, z, s), ∂̄φ(v,w, z, s) and
∂∂̄φ(v,w, z, s) is locally integrable.

Proof. Let U ⊂ D+ be open with coordinates {z1, . . . , zn} such that the analytic
divisor D+v ∩U is given by the equation z1= 0 on U . Choosing a trivialization of L

on U we can write−Q(vz)=‖sv(z)‖2= h(z)|z1|
2, where h(z) is real analytic on U .

It follows from the expansion of the hypergeometric function F(a, b, a + b, w)
around w = 1 (see [Lebedev 1965, (9.7.5)]) that, for fixed v,w, s and z ∈U ,

φ(v,w, z, s)= log |z1| + |z1|
2 log |z1| f (z)+ g(z), (3-13)

where f and g are real analytic functions on U . Thus at worst the singularities of
‖∂φ(v,w, z, s)‖, ‖∂̄φ(v,w, z, s)‖ and ‖∂∂̄φ(v,w, z, s)‖ are of the form |z1|

−1 or
log |z1|, and the statement follows. �

The function φ(v,w, z, s) can also be obtained as a Laplace transform of a certain
Whittaker function that depends on s. Namely, consider Kummer’s hypergeometric
function:

M(a, b, z)=
+∞∑
n=0

(a)n
(b)n

zn

n!
. (3-14)

The function

Mν,µ(z)= e−z/2z1/2+µM
( 1

2 +µ− ν, 1+ 2µ, z
)

(3-15)

is then a solution of the Whittaker differential equation

d2w

dz2 +

(
−

1
4
+
ν

z
−
µ2
− 1/4
z2

)
w = 0. (3-16)

It is characterized among solutions of this equation by its asymptotic behavior,
given by:

Mν,µ(z)= zµ+1/2(1+ O(z)) when z→ 0, (3-17)

Mν,µ(z)=
0(1+ 2µ)

0(µ− ν+ 1/2)
ez/2z−ν(1+ O(z−1)) when z→∞. (3-18)

For a positive definite symmetric matrix T =
(

a b
b c

)
, define

s0 = (n− 1)/2, k = 1− s0, (3-19)

C(T, s)=−1
2
0
( s−s0

2 + 1
)

0(s+ 1)

(
4π det T

c

)−k/2

, (3-20)

and

MT (y, s)=C(T, s)|y|−k/2 M−k/2,s/2

(∣∣∣∣4π det T
c

y
∣∣∣∣)e

2πb2
c y, Re(s)>s0. (3-21)
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Now consider v,w ∈ V1 spanning a positive definite plane and denote by

T (v,w)= 1
2

(
(v, v) (v,w)

(v,w) (w,w)

)
(3-22)

the associated moment matrix. Then (see [Erdélyi et al. 1954, p. 215, §4.22 (11)])

φ(v,w, z, s)=
∫
∞

0
MT (v,w)(y, s)e−2πy(Q(vz⊥ )−Q(vz))

dy
y
. (3-23)

3D. Currents in D1,1(X0). We now define some (1,1)-forms and currents on X0
by summation over translates by elements of 0 of some differential forms with
singularities on D. For vectors v,w ∈ V (F) spanning a totally positive definite
space, consider the (1,1)-form ω(v,w, z, s) defined for z ∈ D+− (D+v ∪D+w) by

ω(v,w, z, s)= ∂̄(φ(w, v, z, s)∂φ(v,w, z, s))

= ∂̄φ(w, v, z, s)∧ ∂φ(v,w, z, s)

+φ(w, v, z, s)∂̄∂φ(v,w, z, s). (3-24)

We would like to define a (1,1)-form on X0 by averaging the form ω(v,w, z, s)
over 0. Before making such a definition, we need to check that the resulting sums
converge in a suitable sense. This is the content of the next result. Note that we
have

γ ∗(ω(v,w, s))(z)= ω(γ−1v, γ−1w, z, s)

for all γ ∈ 0, due to the invariance property in Lemma 3.4(2).

Proposition 3.6. Let v,w ∈ V (F) be vectors spanning a totally positive definite
plane. Let U = D+− (0 ·D+v ∪0 ·D

+
w). For Re(s)� 0, the sum∑

γ∈0v,w\0

ω(γ−1v, γ−1w, z, s)

and all its partial derivatives converge normally for every z ∈U.

Proof. Since the function φ(v,w, γ z, s) is defined and smooth for every z ∈
D−Dγ−1v, all the terms in the sum are defined whenever z ∈U . Fix z0 ∈U and
let U0 ⊂ U be a compact neighborhood of z0; then there exists ε > 0 such that
|Q((γ v)z)|> ε and |Q((γw)z)|> ε for all γ ∈ 0 and all z ∈U0. It follows from
Lemma 3.4 that on U0 we have

‖ω(γ−1v, γ−1w, z, s)‖< Cε |Q((γ−1v)z⊥)|
−(s+s0)/2 |Q((γ−1w)z⊥)|

−(s+s0)/2

for some constant Cε > 0, and a similar bound holds for the sums of all the partial
derivatives of the summands. Thus, for z ∈ U0, the sums in the statement are
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dominated by a constant multiple of∑
γ∈0v,w\0

|Q((γ−1v)z⊥)|
−(s+s0)/2 |Q((γ−1w)z⊥)|

−(s+s0)/2.

Pick a lattice L ⊂ V (F) such that 0 · (v,w)⊂ L2; then the above sum is dominated
by ( ∑

λ∈L
Q(λ)=Q(v)

|Q(λz⊥)|
−(s+s0)/2

)( ∑
λ∈L

Q(λ)=Q(w)

|Q(λz⊥)|
−(s+s0)/2

)
,

which converges normally on U , since the assignment v 7→ Q(vz⊥)−Q(vz) defines
a positive definite quadratic form on V1 that depends continuously on z. �

Define
8(v,w, z, s)0 = 2

∑
γ∈0v,w\0

ω(γ−1v, γ−1w, z, s), (3-25)

and note that

8(v,w, z, s)0 =8(γ v, γw, z, s)0 for all γ ∈ 0. (3-26)

Proposition 3.6 shows that8(v,w, ·, s)0 converges and defines a smooth (1,1)-form
on X0 − (Z(v)0 ∪ Z(w)0).

Denote the cotangent bundle of a manifold X by T ∗X . A section s of a metrized
vector bundle (E, ‖ · ‖) over a manifold X endowed with a measure dµ(z) is said
to be L1 (or integrable) if ‖s‖ ∈ L1(X, dµ(z)). Our next goal is to show that
8(v,w, z, s)0 is integrable on X0; this is the content of Proposition 3.9. The next
two lemmas will be used in the proof.

Lemma 3.7. Let M be a complete, simply connected Riemannian manifold of
everywhere nonpositive sectional curvature. Let X, Y ⊂ M be complete, simply
connected, totally geodesic submanifolds that intersect transversely and at a single
point z0 ∈ M. For z ∈ M , denote by d(z, z0) the geodesic distance between z
and z0 and by dX (z) and dY (z) the geodesic distance from z to X and from z to
Y , respectively. Then there exists a constant k > 0 such that d(z0, z) ≥ t implies
max{dX (z), dY (z)} ≥ kt for every t ≥ 0.

Proof. Let d > 0 and suppose that max{dX (z), dY (z)}< d. Choose points zX ∈ X
and zY ∈ Y such that d(zX , z) < d and d(zY , z) < d . Let γ (zX , zY ) be the geodesic
segment connecting zX and zY ; such a geodesic exists, is unique and minimizes
the distance (see [Chavel 2006, Exercise IV.12(a)]), hence its length l(γ (zX , zY ))

satisfies l(γ (zX , zY )) < 2d . Let γ (z0, zX ) and γ (z0, zY ) be the geodesic segments
in X and Y connecting z0 and zX and z0 and zY , respectively; as before, these
geodesics exist and are unique and minimizing.
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Consider now the triangle T in M with sides {γ (z0, zX ), γ (z0, zY ), γ (zX , zY )}.
This is a geodesic triangle since X and Y are totally geodesic. Note that the angle
at z0 is bounded below since X and Y are assumed to intersect transversely. By the
Cartan–Hadamard theorem (see [Bridson and Haefliger 1999, Theorem II.4.1]), the
space M is a C AT (0) space, in other words the (unique up to congruence) triangle
in the euclidean plane with same sides as T has larger angles than T (see [Bridson
and Haefliger 1999, Proposition II.1.7(4)]). It follows that d(z0, zX )≤ cd(zX , zY )

for some positive constant c. Hence d(z0, z) ≤ d(z0, zX )+ d(zX , z) < (2c+ 1)d
as required. �

Lemma 3.8. Let M , X , Y be as in Lemma 3.7. Assume that the codimension of X
and Y in M is greater than one and that the sectional curvature of M is bounded
below. Let f1,s, f2,s :R>0→R>0 be continuous functions defined for Re(s)> s0>0
such that

t fi,s(t)= O(1), as t→ 0,

fi,s(t)= e−Re(s)t , as t→∞,

for i = 1, 2. Let dµ(z) be the Riemannian volume element of M. Then, with notation
as in Lemma 3.7, we have∫

M
f1,s(dX (z)) f2,s(dY (z)) dµ(z) <∞,

for Re(s)� 0.

Proof. Let UX = {z ∈ M | dX (z) ≤ 1} and UY = {z ∈ M | dY (z) ≤ 1} be tubular
neighborhoods around X and Y of radius 1. Let U = M − (UX ∪UY ). It suffices
to show that fs(z)= f1,s(dX (z)) f2,s(dY (z)) is integrable when restricted to U , UX

and UY .
Consider first the integral over U . By hypothesis, the functions f1,s(dX (z)) and

f2,s(dY (z)) are bounded on U . By Lemma 3.7, there exists a constant k > 0 such
that

fs(z)= O(e−Re(s)kd(z,z0))

for z ∈U . Let S(z0, t) be the geodesic sphere with center z0 and radius t and denote
by A(t) its area. Since M has curvature that is bounded below, there exists ρ > 0
such that A(t)= O(eρt) (see [Chavel 2006, Theorem III.4.4]). It follows that∫

U
fs(z) dµ(z) <∞

whenever Re(s) > ρ/k.
Now consider the integral over UX (the same argument works for UY ). Since

fs(z) is locally integrable, it suffices to integrate over UX−(UX∩UY ). The inclusion
i : X ⊂ UX admits a left inverse π : UX → X whose fibers are diffeomorphic to



614 Luis E. Garcia

the closed unit disk in C (this is because the exponential map from the total space
of the normal bundle of X to M is a diffeomorphism). We can compute the
integral over UX by first integrating over the fibers of π and then integrating over
X . By hypothesis, the integral of fs(z) over π−1(z) is O(e−Re(s)d(z,z0)) for every
z ∈ X−(X ∩UY ). Now the resulting integral over X converges for Re(s)� 0 since
the area of a sphere of radius t in X is O(eρt) as above. �

We can now prove that 8(v,w, z, s)0 is integrable on X0 . Recall that D carries
an H(R)-invariant Riemannian metric; it induces an invariant metric on

∧2 T ∗D
that we denote by ‖ · ‖.

Proposition 3.9. Let v,w ∈ V (F) be vectors spanning a totally positive plane. For
Re(s)� 0, the sum 8(v,w, z, s)0 converges outside a set of measure zero in X0
and defines an L1 section of (

∧2 T ∗X0, ‖ · ‖).

Proof. The sum converges for z /∈ Z(v)0 ∪ Z(w)0 by Proposition 3.6, and this set
has measure zero. Thus it remains to prove integrability. We need to show that∫

X0
‖8(v,w, z, s)‖ dµ(z)

is convergent, where dµ(z) denotes an invariant volume form on D+. By Fubini’s
theorem, it suffices to show that∫

0v,w\D+
‖ω(w, v, z, s)‖ dµ(z) <∞.

Let H ′(R)= (Hv)+(R)∩ (Hw)+(R) and let Z H ′(R) be the center of H ′(R). Since
the integrand is left invariant under H ′(R) by Lemma 3.4 and Z H ′(R)0v,w\H ′(R)
has finite volume (see [Borel 1969]), this is equivalent to∫

H ′(R)\D+
‖ω(w, v, z, s)‖ dµ(z) <∞. (∗)

We now apply Lemma 3.8. Namely, let M = H ′(R)\D+. Let X = H ′(R)\D+v and
Y = H ′(R)\D+w . Note that there is a map π : D+→ D+v that is left inverse to the
inclusion D+v ⊂D+ and turns D+ into an Hv(R)+-equivariant real vector bundle of
rank 2 over D+v (see [Kudla and Millson 1988, p. 26]). Hence the inclusions

{∗} = H ′(R)\D+v,w ⊂ H ′(R)\D+v ⊂ H ′(R)\D+

are diffeomorphic to zero sections of vector bundles, in particular they are simply
connected. Moreover D+v and D+w are totally geodesic submanifolds of D+, and
the latter is known to have sectional curvatures that are bounded below and every-
where nonpositive. Hence X , Y and M satisfy the hypotheses in Lemma 3.7 and
Lemma 3.8. Moreover, by Lemma 3.5, the integrand also satisfies the hypotheses
in Lemma 3.8; applying it gives (∗) and hence the assertion. �
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Since 8(v,w, z, s)0 is an integrable section of
∧2 T ∗X0 , its coordinates in any

chart U ⊂ X0 are locally integrable functions. Thus8(v,w, z, s)0 defines a current
on X0.

Definition 3.10. Let v,w ∈ V (F) be vectors spanning a totally positive definite
plane. For Re(s)� 0, define a current [8(v,w, s)0] ∈ D1,1(X0) by

[8(v,w, s)0](ω)=
∫

X0
8(v,w, s)0 ∧ω, (3-27)

for ω ∈ A n−1,n−1
c (X0).

Recall that we assume 0 = H+(Q)∩ K for some open compact K ⊂ H(A f ).
For h ∈ H(A f ), we write 0h = H+(Q)∩ hK h−1 and we define

8(v,w, h, s)0 =8(v,w, s)0h , (3-28)

an L1 section of ∧2T ∗(0h\D
+). As above, we denote by [8(v,w, h, s)0] the

associated current in D1,1(0h\D
+).

3E. Some properties of [8(v,w, h, s)0]. We now introduce another family of
currents [8(v,w)0] on X0 . These currents are obtained by restricting a compactly
supported form ω ∈ A n−1,n−1

c (X0) to a special divisor X (v)0 and integrating it
against a Green function of the form (3-6). In this section we will prove that the
current [8(v,w, s)0] introduced above, regarded modulo Im(∂)+ Im(∂̄), admits
meromorphic continuation to the complex plane s and that the current [8(v,w)0]
is cohomologous to the current obtained as the constant term of the meromorphic
continuation of [8(v,w, s)0] at a certain value s = s0.

For v ∈ V (F) of totally positive norm, denote by δX (v)0 ∈ D1,1(X0) the current
of integration along X (v)0. That is, for ω ∈ A n−1,n−1

c (X0), we have

δX (v)0 (ω)=

∫
X (v)0

ω. (3-29)

Consider now v,w ∈ V (F) spanning a totally positive definite plane. In Section 3B
we recalled the construction (see [Bruinier 2012; Oda and Tsuzuki 2003]) of a
function G(v,w)0 ∈ C∞(X (v)0 − Z(v,w)0). The function has a logarithmic
singularity along Z(v,w)0, hence is locally integrable on X (v)0 and defines
an element of D0(X (v)0) that we denote by [G(v,w)0]. Recall that there is a
pushforward map

f∗ : D0(X (v)0)→ D1,1(X0) (3-30)

induced by f : X (v)0 → X0 and defined by ( f∗(α), ω) = (α, f ∗(ω)) for α in
D0(X (v)0) and ω in A n−1,n−1

c (X0).
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Definition 3.11. Let v,w ∈ V (F) spanning a totally positive definite plane. Define
the current [8(v,w)0] ∈ D1,1(X0) by

[8(v,w)0] = 2π i · f∗([G(v,w)0]). (3-31)

For h ∈ H(A f ) and K ⊂ H(A f ) such that 0 = H+(Q)∩ K , define

[8(v,w, h)0] = [8(v,w)0h ], (3-32)

where 0h = H+(Q)∩ hK h−1.

That is, for ω ∈ A n−1,n−1
c (X0), we have

[8(v,w)0](ω)= 2π i
∫

X (v)0
G(v,w)0 ·ω. (3-33)

See Section 4B2 for an example.
The next proposition relates the currents [8(v,w)0] and [8(v,w, s)0] and is

key to the computation of values of [8(v,w)0] on forms obtained as theta lifts as
below. Let

D̃1,1(X0)= D1,1(X0)/(Im(∂)+ Im(∂̄)). (3-34)

We let [8(v,w, s)0] and [8(v,w)0] also denote the classes of [8(v,w, s)0] and
[8(v,w)0] in D̃1,1(X0).

Proposition 3.12. The current [8(v,w, s)0] ∈ D̃1,1(X0) admits meromorphic con-
tinuation to s ∈ C. Let CTs=s0

[8(v,w, s)0] ∈ D̃1,1(X0) denote the constant term
of [8(v,w, s)0] at s = s0. Then

CTs=s0
[8(v,w, s)0] = [8(v,w)0] (3-35)

as elements of D̃1,1(X0).

Proof. Let α ∈ A n−1,n−1
c (X0). By Proposition 3.9, we have

[8(v,w, s)0](α)= 2
∫
0v,w\D+

ω(v,w, z, s)∧α(z).

For fixed s, write gv(z) = φ(v,w, z, s) and gw(z) = φ(w, v, z, s). We regard
gv as a smooth function defined on 0v,w\D+−0v,w\D+v . If we choose an open
U ⊂0v,w\D+ such that the analytic divisor (0v,w\D+v )∩U is given by the equation
z = 0, then it follows from (3-13) that

∂gv(z)=
dz
z
+ o(|z|−1), ∂̄gv(z)=

dz̄
z̄
+ o(|z|−1).

(Here o(|z|−1) stands for a differential form α on U − (0v,w\D+v ) ∩ U such
that the components of |z|α extend to continuous functions on U vanishing on
(0v,w\D

+
v )∩U .) Similar statements hold for gw(z) when z approaches 0v,w\D+w .

Denote by δv ∈ D1,1(0v,w\D
+) the current given by integration on 0v,w\D+v . The
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following identity of currents on 0v,w\D+ follows from Stokes’s theorem applied
to 0v,w\D+− (0v,w\D+v ∪0v,w\D

+
w):

∂̄[gw∂gv] = [∂̄gw∂gv] + [gw∂̄∂gv] − 2π igwδv. (3-36)

We find that for any closed compactly supported form αc ∈ A n−1,n−1
c (0v,w\D

+),∫
0v,w\D+

ω(v,w, z, s)∧αc(z)= 2π i
∫
0v,w\D

+
v

φ(w, v, z, s)αc(z). (3-37)

The form α(z) is not compactly supported, but we claim that (3-37) is still true for
Re(s)� 0 when we replace αc(z) by α(z). Assuming this for now and using that
the restriction of φ(w, v, z, s) to Dv equals φ(2)Dv

(pv⊥(w), z, s), we conclude that
for Re(s)� 0

[8(v,w, s)0](α)≡ 2π i · 2
∫
0v,w\D

+
v

φ
(2)
Dv
(pv⊥(w), z, s)α(z)

= 2π i
∫
0v\D

+
v

2
∑

γ∈0v,w\0v

φ
(2)
Dv
(pv⊥(w), γ z, s)α(z)

= 2π i
∫
0v\D

+
v

G(pv⊥(w), z, s)0v ·α(z).

This last equation defines a current on X0 that admits meromorphic continuation to
s ∈ C and whose constant term at s = s0 is given by [8(v,w)0]; the claim follows
from this.

It only remains to show that (3-37) still holds when we replace αc(z) by α(z). Let
X = 0v,w\D+ and consider the submanifolds Xv = 0v,w\D+v and Xw = 0v,w\D+w
of X . Let Xv,w = Xv∩Xw =0v,w\D+v,w. As remarked by Kudla and Millson [1988,
p. 26], the exponential map of the normal bundle of Xv,w ⊂ X is a diffeomorphism,
and hence X carries a natural vector bundle structure π : X→ Xv,w of rank 4 over
Xv,w with totally geodesic fibers. For t > 0, let Xv(t) = {z ∈ X | dXv (z) ≤ t} be
the tubular neighborhood of radius t around Xv; here dXv (z) denotes the geodesic
distance between z and Xv. Define Xw(t) and Xv,w(t) similarly and let X (t) =
Xv,w(t)− (Xv(1/t)∪ Xw(1/t)). Then we have X − (Xv ∪ Xw)=

⋃
t≥1 X (t) and∫

X
ω(v,w, z, s)∧α = lim

t→∞

∫
X (t)

ω(v,w, z, s)∧α.

Denote by Sv,w(t) = ∂Xv,w(t) the boundary of Xv,w(t). By Stokes’s theorem,
(3-37) is equivalent to∫

Sv,w(t)−(Xv(1/t)∪Xw(1/t))
φ(w, v, z, s)∂φ(v,w, z, s)∧α −→ 0,
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as t→∞. Since ‖α‖ is bounded, it suffices to show that∫
Sv,w(t)−(Xv(1/t)∪Xw(1/t))

|φ(w, v, z, s)| · ‖∂φ(v,w, z, s)‖ dµ(z)−→ 0, (3-38)

as t →∞. Now let H ′(R) = (Hv)+(R)∩ (Hw)+(R) and note that the integrand
is invariant under H ′(R). Let M = H ′(R)\D+ and consider the submanifolds
X = H ′(R)\D+v and Y = H ′(R)\D+w of M , whose intersection is a single point
z0. Let S(z0, t) be the sphere of geodesic radius t around z0 and let X (1/t) and
Y (1/t) be tubular neighborhoods of X and Y with radius 1/t . Since Xv,w has finite
volume by [Borel 1969, Theorem 15.5], to show that the integrals in (3-38) tend
to 0 it suffices to show that∫

S(z0,t)−(X (1/t)∪Y (1/t))
|φ(w, v, z, s)| · ‖∂φ(v,w, z, s)‖ dµ(z)−→ 0,

as t→∞. Now Lemma 3.7 and Lemma 3.4 show that the integrand is O(te−k Re(s)t)

for some positive constant k > 0. Since the sectional curvatures of M are bounded
below, we have Area(S(z0, t))= O(eρt) for some positive constant ρ > 0 and hence
(3-37) holds, with αc replaced by α, for Re(s) > ρ/k. �

3F. Currents on XK . We introduce now currents in D1,1(XK ). Fix a neat open
compact subgroup K ⊂ H(A f ) and recall that we write

XK = H(Q)\(D× H(A f ))/K .

Thus XK is a compact complex manifold with finitely many components. These
were described in Section 2: choose h1 = 1, . . . , hr ∈ H(A f ) such that

H+(Q)\H(A f )/K =
r∐

j=1

H+(Q)hj K .

For h ∈ H(A f ), we write 0h = H+(Q)∩ hK h−1 (and 0 = 01). Then

XK
∼=

r∐
j=1

0hj\D
+.

Let v,w∈ V (F) span a totally positive definite plane U and recall that we denote by
HU ⊂H the pointwise stabilizer of U . For h∈H(A f ), let KU,h=HU (A f )∩hK h−1.
Choose coset representatives h′i ∈ HU (A f ) such that

(HU )+(Q)\HU (A f )/KU,h =

s∐
i=1

(HU )+(Q)h′i KU,h, (3-39)

and write h′i h= γi hj ki with γi ∈ H+(Q), ki ∈ K and hj = hj (i) a coset representative
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as in (2-8). Note that the double coset (HU )+(Q)γi0hj is well defined, that is, it is
independent of the choice of h′i and decomposition h′i h = γi hj ki .

Definition 3.13. Assume that n > 2. We define 8(v,w, h, s)K to be the section of∧2 T ∗(XK ) whose restriction to the connected component 0hj\D
+ is∑

i→ j

8(γ−1
i v, γ−1

i w, hj , s)0, (3-40)

where the sum runs over those i such that j (i)= j .

Note that this is well defined because of the invariance property (3-26). For
n = 2 we give a different definition. Namely, assume that n = 2 and choose γ0 in
H(Q) such that γ−1

0 D+U = D−U . With h′i as in (3-39), write γ0h′i h = γi0hj0ki0 with
γi0 ∈ H+(Q), ki0 ∈ K and hj0 = hj0(i0) a coset representative as in (2-8). As above,
the double coset (HU )+(Q)γi00hj0

is well defined.

Definition 3.14. Assume that n = 2. We define 8(v,w, h, s)K to be the section of∧2 T ∗(XK ) whose restriction to the connected component 0hj\D
+ is∑

i→ j

8(γ−1
i v, γ−1

i w, hj , s)0 +
∑
i0→ j

8(γ−1
i0
v, γ−1

i0
w, hj , s)0, (3-41)

where the sums run over those i and i0 such that j (i)= j and j0(i0)= j , respectively.

The forms 8(v,w, h, s)K are locally integrable on XK . We denote by

[8(v,w, h, s)K ] ∈ D1,1(XK ) (3-42)

the corresponding current on XK .
We also define a current

[8(v,w, h)K ] ∈ D1,1(XK ) (3-43)

whose restriction to the connected component 0hj\D
+ is∑

i→ j

[8(γ−1
i v, γ−1

i w, hj )0] if n > 2,

∑
i→ j

[8(γ−1
i v, γ−1

i w, hj )0] +
∑
i0→ j

[8(γ−1
i0
v, γ−1

i0
w, hj )0] if n = 2,

(3-44)

with the currents in the sum as in (3-32). See Section 4B3 for an example.

Remark 3.15. The above definitions reflect the structure of the connected compo-
nents of the special cycles Z(v,w, h)K in Section 2B. Namely, let v,w ∈ V (F) be
vectors spanning a totally positive definite plane and h ∈ H(A f ). Attached to such
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a pair there are Shimura varieties X (v,w, h)K and X (v, h)K (see (2-13)) together
with proper maps

X (v,w, h)K
ι
−→ X (v, h)K

f
−→ XK . (3-45)

Then ι∗([X (v,w, h)K ]) defines a divisor on X (v, h)K , and a finite sum of functions
of the form (3-9) defines a Green function G(v,w, h)K on X (v, h)K with a loga-
rithmic singularity along ι∗([X (v,w, h)K ]). Writing [G(v,w, h)K ] for the current
in D0(XK ) associated with G(v,w, h)K , it follows from Kudla’s description of the
connected components of the cycles Z(v,w, h)K (see [Kudla 1997, Lemma 4.1])
that

[8(v,w, h)K ] = 2π i · f∗([G(v,w, h)K ]).

Some basic properties of the forms 8(v,w, h, s)K are summarized in the next
lemma; these properties are analogous to those of special cycles proved in [Kudla
1997, Lemma 2.2]. Recall that for every h ∈ H(A f ) there is a map

r(h) : XhK h−1 −→ XK (3-46)

sending H(Q)(z, h′)hK h−1 to H(Q)(z, h′h)K . The map r(h) is an isomorphism
of complex manifolds, and we denote by 8 7→8 · h the induced map defined on
sections of the bundle of differential forms.

Lemma 3.16. (1) 8(v,w, hk, s)K =8(v,w, h, s)K for all k ∈ K .

(2) 8(v,w, hU h, s)K =8(v,w, h, s)K for all hU ∈ HU (A f ).

(3) 8(γ v, γw, γ h, s)K =8(v,w, h, s)K for all γ ∈ H(Q).

(4) 8(v,w, h1h−1, s)hK h−1 · h =8(v,w, h1, s)K for all h1, h ∈ H(A f ).

Proof. Part (1) is obvious. Part (2) follows from the fact that for any complete set
{h′i | i = 1, . . . , s} of coset representatives for

S(U, h, K )= (HU )+(Q)\HU (A f )/KU,h,

the set {h′i h
−1
U | i = 1, . . . , s} is a complete set of representatives for S(U, hU h, K ).

To prove part (3), note that given any set {h′i | i = 1, . . . , s} as above and any
γ ∈ H(Q), the elements γ h′iγ

−1 for i = 1, . . . , s form a complete set of representa-
tives for S(γ (U ), γ h, K ), so that writing γ h′iγ

−1
· (γ h)= (γ γi )hj ki with j = j (i)

leads to

8(γ v,γw,γ h,s)K
∣∣
0hj\D

+ =

∑
i→ j

8
(
(γ γi )

−1γ v,(γ γi )
−1γw, z,s

)
0hj

=

∑
i→ j

8(γ−1
i v,γ−1

i w, z,s)0hj
= 8(v,w,h,s)K

∣∣
0hj\D

+,

as was to be shown. Finally, (4) follows from the fact that if {hj | j = 1, . . . , r} is
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a set of coset representatives for H+(Q)\H(A f )/K , then {hj h−1
| j = 1, . . . , r} is

a set of coset representatives for H+(Q)\H(A f )/hK h−1. �

Assume that K ′ ⊂ K , with K ′ an open compact subgroup of H(A f ) and let
pr : X K ′ → XK be the natural projection map. The following lemma computes
pr∗(8(v,w, h, s)K ).

Lemma 3.17. Let K ′ ⊂ K be as above. Then

pr∗(8(v,w, h, s)K )=
∑

k∈h−1 KU,hh\K/K ′

8(v,w, hk, s)K ′ .

Proof. Note that the sum on the right hand side is well defined by (1) and (2)
of Lemma 3.16. Now consider the restriction of 8(v,w, h, s)K to 0hj\D

+. By
definition, this is the sum ∑

i∈I

8(γ−1
i v, γ−1

i w, h, s)0hj
,

where γi ∈ H+(Q) satisfies γi hj ki = h′i h for some ki ∈ K and h′i ∈ HU (A f ), with
{h′i | i ∈ I } a complete set of representatives of the double coset

(HU )+(Q)\HU (A f )∩ H+(Q)hj K h−1/KU,h .

Assume first that n > 2. By [Kudla 1997, Lemma 5.7(i)], this double coset is in
bijection with the set of 0hj -orbits in

S(v,w, hj K h−1) := H+(Q) · (v,w)∩ hj K h−1
· (v,w).

The bijection sends 0hj ·(vi , wi ), where (vi , wi )= γi ·(v,w)= hj ki h−1
·(v,w) with

γi ∈ H+(Q) and k ∈ K , to the double coset (HU )+(Q)γ
−1
i hj ki h−1KU,h . Substitut-

ing the definition of 8(v,w, h, s)0hj
, we see that the restriction of 1

28(v,w, h, s)K
to 0hj\D

+ is given by ∑
(v′,w′)∈S(v,w,hj K h−1)

ω(v′, w′, z, s).

This sum can be rewritten as∑
k∈h−1 KU,hh\K/K ′

∑
(v′,w′)∈S(v,w,hj K ′(hk)−1)

ω(v′, w′, z, s)

and the claim follows directly from this. The proof for n = 2 proceeds similarly by
using [Kudla 1997, Lemma 5.7(ii)]. �

Analogous statements to those in Lemma 3.16 and Lemma 3.17 hold for the
currents [8(v,w, h, s)K ] and [8(v,w, h)K ].
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3G. Weighted currents. Following Kudla’s [1997] definition of weighted cycles
we introduce currents in D1,1(X) = lim

←−−
D1,1(XK ) as finite sums of the currents

[8(v,w, h, s)K ] above weighted by the values of a Schwartz function S (V (A f )
2).

Given a totally positive definite symmetric matrix T ∈ Sym2(F), let

�T (A f )= {(v,w) ∈ V (A f )
2
| T (v,w)= T }, (3-47)

where T (v,w) is defined in (3-22). Assume that �T (A f ) 6=∅. Then there exists
(v0, w0) ∈�T (A f )∩ V (F)2 by the Hasse principle for quadratic forms. Moreover,
the action of H(A f ) on �T (A f ) is transitive by Witt’s theorem. Let K be a
compact open subgroup of H(A f ). The orbits of K on �T (A f ) are open, and so if
ϕ ∈S (V (A f )

2) is invariant under K , we have

Supp(ϕ)∩�T (A f )=

k∐
i=1

K ξ−1
i · (v0, w0) (3-48)

for some elements ξ1, . . . , ξk ∈ H(A f ).

Definition 3.18. Let T ∈ Sym2(F) be a totally positive definite matrix and let
ϕ ∈ S (V (A f )

2) be fixed by K . With (v0, w0) and ξi as above and Re(s) � 0,
define

8(T, ϕ, s)K =
k∑

i=1

ϕ
(
ξ−1

i · (v0, w0)
)
·8(v0, w0, ξi , s)K .

We denote by [8(T, ϕ, s)K ] the corresponding current in D1,1(XK ).

Note that 8(T, ϕ, s)K is independent of the choice of {ξ1, . . . , ξk} by (1) and
(2) of Lemma 3.16. The behavior of 8(T, ϕ, s)K under pullbacks coming from
compact subgroups K ′⊂ K is simpler than that of the forms8(v,w, h, s)K defined
above. The next proposition proves this and an equivariance property for the action
of H(A f ).

Proposition 3.19. (1) Let K ′ ⊂ K be an open compact subgroup of H(A f ) and
consider the natural map pr : X K ′→ XK . Then

pr∗(8(T, ϕ, s)K )=8(T, ϕ, s)K ′ .

(2) For any h ∈ H(A f ), we have

8(T, ω(h)ϕ, s)hK h−1 =8(T, ϕ, s)K · h
−1,

where ω(h)ϕ is the Schwartz function given by ω(h)ϕ(v,w)=ϕ(h−1v, h−1w).

Proof. To prove (1), let (v0, w0)∈�T (F) and denote by HU the pointwise stabilizer
in H of the plane spanned by v0 and w0. Note that the map h 7→ h−1

· (v0, w0)
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induces a bijection HU (A f )\H(A f ) ∼= �T (A f ). Now we use Lemma 3.17 and
obtain

pr∗(8(T, ϕ, s)K )

=

∑
h∈HU (A f )\H(A f )/K

ω(h)ϕ(v0, w0) pr∗(8(v0, w0, h, s)K )

=

∑
h∈HU (A f )\H(A f )/K

∑
k∈h−1 KU,hh\K/K ′

ω(h)ϕ(v0, w0)8(v,w, hk, s)K ′

=

∑
h∈HU (A f )\H(A f )/K ′

ω(h)ϕ(v0, w0)8(v0, w0, h, s)K ′ =8(T, ϕ, s)K ′ .

Part (2) follows directly from part (4) of Lemma 3.16. �

We can also define a weighted version of the currents [8(v,w, h)K ] in (3-43).
Namely, for T ∈ Sym2(F)�0 and ϕ ∈S (V (A f )

2) fixed by K as above and ξi as
in (3-48), let

[8(T, ϕ)K ] =
k∑

i=1

ϕ(ξ−1
i · (v0, w0)) · [8(v0, w0, ξi )K ] ∈ D1,1(XK ). (3-49)

See Section 4B4 for an example. It follows from (1) in Proposition 3.19 that the
currents [8(T, ϕ, s)K ] and [8(T, ϕ)K ] are compatible under inclusions K ′ ⊂ K
and hence one can define

[8(T, ϕ, s)] = ([8(T, ϕ, s)K ])K ∈ D1,1(X)= lim
←−−

K
D1,1(XK ),

[8(T, ϕ)] = ([8(T, ϕ)K ])K ∈ D1,1(X).
(3-50)

Moreover, the space D1,1(X) carries a natural left action of H(A f ) induced by the
maps r(h)−1

: XK → XhK h−1 ; we denote the action of h ∈ H(A f ) on 8 ∈D1,1(X)
by 8 · r(h)−1. Then, for any h ∈ H(A f ), we have

[8(T, ω(h)ϕ, s)] = [8(T, ϕ, s)] · r(h)−1,

[8(T, ω(h)ϕ)] = [8(T, ϕ)] · r(h)−1.
(3-51)

That is, the assignments T ⊗ ϕ 7→ [8(T, ϕ, s)] and T ⊗ ϕ 7→ [8(T, ϕ)] induce
H(A f )-equivariant linear maps

C[Sym2(F)>0]⊗S (V (A f )
2)−→ D1,1(X). (3-52)

3H. A regularized theta lift. From now on and to avoid dealing with metaplectic
groups, we will assume that V has even dimension over F . Our next goal is to show
that, for Re(s)� 0, the form 8(T, ϕ, s) can be obtained as a regularized theta
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lift. More precisely, below we introduce a function MT (g, s) defined on a certain
subgroup of Sp4(AF ) and a theta function θ(g;ϕ) that takes values in A 1,1(X).
We then define a regularized theta lift (MT (s), θ( · ;ϕ))reg. The main result of this
section (Proposition 3.21) shows that the regularized theta lift converges on an
open dense subset of X and moreover agrees with 8(T, ϕ, s) there. The next two
subsections define the functions just mentioned.

3H1. Schwartz forms. For z ∈ D, note that the map v 7→ Q(vz⊥)− Q(vz) defines
a positive definite quadratic form on V1. We write

ϕ0(v, z)= e−2π(Q(vz⊥ )−Q(vz)) (3-53)

for the Gaussian associated with z. Note that ϕ0(v, z) lies in S (V1)⊗ C∞(D)

and that it is fixed by H(R), i.e., ϕ0(hx, hz)= ϕ0(x, z) for every h ∈ H(R). Now
define

ϕ1,1(v,w, z) ∈ [S (V 2
1 )⊗A 1,1(D)]H(R) (3-54)

by

ϕ1,1(v,w, z)= ∂̄(ϕ0(w, z)∂ϕ0(v, z))

= ∂̄ϕ0(w, z)∧ ∂ϕ0(v, z)+ϕ0(w, z)∂̄∂ϕ0(v, z). (3-55)

For a quadratic vector space (W, Q) with positive definite quadratic form, let
ϕ0
+
(v,w) ∈S (W 2) be the standard Gaussian defined by

ϕ0
+
(v,w)= e−2π(Q(v)+Q(w)). (3-56)

For v ∈ V (R), denote by vi , i = 1, . . . , d the image of v under the natural map
V (R)→ V ⊗F,σi R. Define

ϕ1,1
∞
∈ [S (V (R)2)⊗A 1,1(D)]H(R) (3-57)

by

ϕ1,1
∞
(v,w, z)= ϕ1,1(v1, w1, z)⊗ϕ0

+
(v2, w2)⊗ · · ·⊗ϕ

0
+
(vd , wd). (3-58)

Denote by ω=ωψ the Weil representation of Sp4(AF ) on S (V (A)2)with respect
to our fixed character ψ (see, e.g., [Kudla and Rallis 1988] for explicit formulas).
For g = (g f , g∞) ∈ Sp4(AF ), h ∈ H(A f ) and ϕ ∈ S (V (A f )

2) fixed by an open
compact subgroup K of H(A f ), the theta function

θ(g;ϕ)K =
∑

(v,w)∈V (F)2

ω(g f )ϕ(v,w) ·ω(g∞)ϕ1,1
∞
(v,w) (3-59)

defines a (1,1)-form on XK .
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3H2. Regularized lifts. Let κ = n+2
2 . For a ∈ R>0, define

Wa(y)=
(4πa)κ−1

0(κ − 1)
· yκ/2e−2πay, y > 0. (3-60)

Note that ∫
∞

0
Wa(y)yκ/2e−2πay dy

y2 = 1. (3-61)

Consider the following subgroups of Sp4,F :

N (k)=
{

n = n(X)=
(

12 X
12

) ∣∣∣ X = tX ∈ Sym2(k)
}
, (3-62)

A(k)=

a = m(t, v)=


y

t
y−1

t−1


∣∣∣∣∣ y, t ∈ k×

 . (3-63)

Let dn be the unique Haar measure on N (A) such that Vol(N (F)\N (A), dn)= 1.
Denote by A(R)0 the connected component of the identity in A(R). Let da be the
measure on A(R)0 defined by∫

A(R)0
f (a)da

=

∫
(R>0)d

∫
(R>0)d

f
(
m(y1/2

1 , t1/2
1 ), . . . ,m(y1/2

d , t1/2
d )

) dy1

y2
1

dt1
t2
1
· · ·

dyd

y2
d

dtd
t2
d
, (3-64)

where dyi , dti denote the Lebesgue measure.
For a matrix T ∈ Sym2(F), define a character ψT : N (F)\N (A) → C× by

ψT (n(X))=ψ(tr(T X)). For such a symmetric matrix T =
(

a b
b c

)
and i = 1, . . . , d ,

we write

σi (T )=
(

ai bi

bi ci

)
,

where ai = σi (a), bi = σi (b) and ci = σi (c). We also write T ι
=
(

c b
b a

)
.

Definition 3.20. For T =
(

a b
b c

)
∈ Sym2(F) totally positive definite, the function

MT (na, s) : N (F)\N (A)× A(R)0 −→ C

is defined by

MT (nm(y1/2, t1/2), s)= (2κ−1
dim(V ))ψT (n)Mσ1(T )(y1, s)Mσ1(T )ι(t1, s)

× (y1t1)
1− κ2

d∏
i=2

Wai (yi )Wci (ti ), (3-65)

where κ4 = 2 and κn = 1 for n > 5.
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Given a measurable function f : Sp4(AF )→ C that satisfies f (ng)= f (g) for
all n ∈ N (F), define

(MT (s), f )reg
=

∫
A(R)0

∫
N (F)\N (A)

MT (na, s) f (na) dn da, (3-66)

provided that the integral converges.

Proposition 3.21. Let T ∈ Sym2(F) be a positive definite symmetric matrix, ϕ be
a Schwartz form in S (V (A f )

2) fixed by an open compact subgroup K ⊂ H(A f )

and θ(g;ϕ)K be the theta function defined in (3-59). Then there is a dense open set
U ⊆ XK with complement of measure zero such that for Re(s)� 0, the regularized
theta lift

(MT (s), θ( · ;ϕ)K )
reg

converges and equals 8(T, ϕ, s)K on U.

Proof. The sum defining θ(na;ϕ)K and the inner integral in (MT (s), θ( · , h;ϕ)K )
reg

unfold to ∫
A(R)0

MT (a, s)
∑

(v,w)∈�T (F)

ϕ(v,w)ω(a)ϕ1,1
∞
(v,w, z) da.

Let

Ũ = D−
⋃

(v,w)∈�T (F)∩Supp(ϕ)

(Dv ∪Dw),

so that Ũ is an open dense subset of D whose complement has measure zero.
By Fubini’s theorem and Lemma 3.22 below, the sum and the integral can be
interchanged whenever z ∈ Ũ ; thus the above equals∑

(v,w)∈�T (F)

ϕ(v,w)

∫
A(R)0

MT (a, s)ω(a)ϕ1,1
∞
(v,w, z) da.

The integral can be computed using equations (3-23) and (3-61). We obtain∫
A(R)0

MT (a, s)ω(a)ϕ1,1
∞
(v,w, z) da = 2ω(v,w, z, s).

Assume first that n > 2. Then H+(Q) acts transitively on �T (F), by [Kudla
1997, Lemma 5.5]; fixing (v0, w0) ∈ �T (F) we see that for z ∈ Ũ , the integral
(MT (s), θ( · ;ϕ)K )

reg equals

I (v0, w0, ϕ, s) :=
∑

(v,w)∈H+(Q)·(v0,w0)

ϕ(v,w) ·ω(v,w, z, s).
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With hj , j = 1, . . . , r as in (2-8), we have

I (v0, w0, ϕ, s)|0hj \D
+ =

∑
(v,w)∈H+(Q)·(v0,w0)

ω(hj )ϕ(v,w) ·ω(v,w, z, s).

Let ξi , i = 1, . . . , k be as in (3-48) and define

S j,i (v0, w0)= H+(Q) · (v0, w0)∩ hj K ξ−1
i · (v0, w0).

Note that ω(hj )ϕ(v,w)= ϕ(ξ
−1
i · (v0, w0)) for every (v,w) ∈ S j,i (v0, w0) and

H+(Q) · (v0, w0)∩Supp(ω(hj )ϕ)=

k∐
i=1

S j,i (v0, w0).

Hence

I (v0, w0, ϕ, s)|0hj \D
+ =

k∑
i=1

ϕ(ξ−1
i · (v0, w0))

∑
(v,w)∈S j,i (v0,w0)

ω(v,w, z, s).

Note that the set S j,i (v0, w0) is stable under 0hj = H+(Q)∩ hj K h−1
j , so that we

can write∑
(v,w)∈S j,i (v0,w0)

ω(v,w, z, s)=
∑

(v,w)∈0hj\S j,i (v0,w0)

∑
γ∈(0hj )v,w\0hj

ω(γ−1v, γ−1w, z, s)

=

∑
(v,w)∈0hj\S j,i (v0,w0)

8(v,w, z, s)0hj
.

By [Kudla 1997, Lemma 5.7(i)], the set of orbits 0hj\S j,i (v0, w0) is in bijection
with the double coset (where we write HU for Hv0,w0)

(HU )+(Q)\HU (A f )∩ H+(Q)hj K ξ−1
i /KU,ξi .

Moreover, the bijection is as follows: Suppose (v,w) ∈ S j,i (v0, w0) is of the form
γ · (v0, w0)= hj kξ−1

· (v0, w0). Then 0hj · (v,w) corresponds to the double coset
(HU )+(Q)γ

−1hj kξ−1KU,ξi . Thus, by definition of 8(v,w, h, s)K we have∑
(v,w)∈0hj \S j,i (v0,w0)

8(v,w, z, s)0 =8(v0, w0, ξi , s)K |0hj \D
+,

and hence

I (v0, w0, ϕ, s)|0hj \D
+ =

k∑
i=1

ϕ(ξ−1
i · (v0, w0)) ·8(v0, w0, ξi , s)K |0hj \D

+

for every j , as was to be shown.
Now assume that n=2. By [Kudla 1997, Lemma 5.5], the group H+(Q) acts with

two orbits on�T (F), and we have�T (F)= H+(Q)·(v0, w0)qH+(Q)γ0 ·(v0, w0)
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for any γ0 ∈ H(Q) that fixes the plane U0 spanned by (v0, w0) but reverses its
orientation given by the ordered basis {v0, w0}. Thus, for z ∈ Ũ , the integral
(MT (s), θ( · ;ϕ)K )

reg equals

I (v0, w0, ϕ, s)+ I (γ0 · (v0, w0), ϕ, s).

Define
S j,i (v0, w0, γ0)= H+(Q)γ0 · (v0, w0)∩ hj K ξ−1

i · (v0, w0).

Then S j,i (v0, w0, γ0) is stable under 0hj and one shows as above that

I (γ0 · (v0, w0), ϕ, s)|0hj\D
+

=

k∑
i=1

ϕ(ξ−1
i · (v0, w0))

∑
(v,w)∈0hj\S j,i (v0,w0,γ0)

8(v,w, z, s)0hj
.

Note that we can choose γ0 so that γ0 · v0 = v0 and γ0 · w0 = −w0. Since
ω(v,w, z, s) = ω(v,−w, z, s), we conclude from [Kudla 1997, Lemma 5.7(ii)]
that

8(v0, w0, ξi , s)K |0hj \D
+

=

∑
(v,w)∈0hj\S j,i (v0,w0)

8(v,w, z, s)0hj
+

∑
(v,w)∈0hj\S j,i (v0,w0,γ0)

8(v,w, z, s)0hj
,

and the claim follows from this. �

The next lemma completes the proof of Proposition 3.21.

Lemma 3.22. Let T ∈ Sym2(F) be totally positive definite, ϕ be a Schwartz form
in S (V (A f )

2) and let

Ũ = D−
⋃

(v,w)∈�T (F)∩Supp(ϕ)

(Dv ∪Dw).

Then, for Re(s)� 0, the sum∑
(v,w)∈�T (F)

|ϕ(v,w)|

∫
A(R)0
|MT (a, s)| · ‖ω(a)ϕ1,1

∞
(v,w, z)‖ da (3-67)

converges for every z ∈ Ũ .

Proof. Let (v,w) ∈ �T (F). It is enough to show that, for Re(s) � 0 and any
0 ⊂ H+(R), the sum∑

γ∈0v,w\0

∫
A(R)0
|MT (a, s)| · ‖ω(a)ϕ1,1

∞
(γ−1v, γ−1w, z)‖ da
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converges for z ∈D+− (0 ·D+v ∪0 ·D
+
w), since (3-67) is a finite linear combination

of sums of this form. Note that if ω(v, z) is any of the forms ∂ϕ0(v, z), ∂̄ϕ0(v, z)
or ∂∂̄ϕ0(v, z), then we can write

‖ω(v, z)‖ =
∑

i

‖Pi (v, z)‖ ·ϕ0(v, z),

where the sum over i is finite and the functions Pi (v, z) are polynomial functions of
v for fixed z satisfying ‖Pi (hv, hz)‖=‖Pi (v, z)‖ for every h ∈ H(R). In particular,
there exists a positive constant C and a natural number k (in fact, k= 2 will do) such
that ‖Pi (v, z)‖ ≤ C Q(vz⊥)

k for every z ∈ D+ and every v of fixed positive norm
Q(v)= m > 0. Now choose ε > 0 such that |Q(γ−1v)z|> ε and |Q(γ−1w)z|> ε

for all γ ∈ 0. Then there exists a constant Cε > 0 such that∫
A(R)0
|MT (a, s)| · ‖ω(a)ϕ1,1

∞
(γ−1v, γ−1w, z)‖ da

< Cε
∣∣Q(γ−1v)z⊥ · Q(γ

−1w)z⊥
∣∣− s+s0

2 +k
,

and the claim follows as in the proof of Proposition 3.6. �

Theorem 1.1 now follows from Proposition 3.12 and Proposition 3.21.

3I. Higher Chow groups and regulators. We next focus on the relationship be-
tween the currents 8(T, ϕ) introduced above and the currents in the image of the
regulator map

rD : CH2(XK , 1)→ D1,1(XK ). (3-68)

Let us first recall the definitions of the higher Chow group CH2(XK , 1) and of the
above map.

Let Y be an irreducible algebraic variety defined over a field k. The group
CH2(Y, 1) is defined as a quotient

CH2(Y, 1)= Z2(Y, 1)/B2(Y, 1). (3-69)

An element c ∈ Z2(Y, 1) is a finite linear combination

c =
∑

i

ai · (πi : Zi → Y, fi ), (3-70)

where Zi is a normal variety over k of dimension dim(Y )− 1, πi is a generically
finite proper map, fi is a meromorphic function on Zi , and ai ∈Q; it is also required
that ∑

i

ai · (πi )∗(div fi )= 0 (3-71)

as a cycle of codimension 2 in Y . For a description of B2(Y, 1), see [Voisin 2002].
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Suppose that k ⊆ C. Define a map

rD : CH2(Y, 1)−→ D1,1(YC)∑
i

ai · (πi : Zi → Y, fi ) 7−→ 2π i
∑

ai · (πi )∗([log | fi |]),
(3-72)

where (πi )∗(log | fi |) ∈ D1,1(YC) is the current defined by(
(πi )∗(log | fi |), α

)
=

∫
Zi

π∗i (α) · log | fi | (3-73)

for α ∈A
2 dim(Y )−2

c (YC). The map rD is known as a regulator map; it is linear and
its image defines a rational vector subspace of D1,1(YC). Note also that for any
c ∈ CH2(Y, 1), the current rD(c) is ddc-closed: this follows from the identity of
currents

ddc(πi )∗(log | fi |
2)= δdiv fi (3-74)

and condition (3-71).
Note that the currents [8(T, ϕ)] in (3-50) are not ddc-closed. In fact, for the

currents [8(v,w)0] in (3-31), we have

ddc
[8(v,w)0] = δZ(v,w)0 + ddcG(v,w)0 · δX (v)0 . (3-75)

Here ddcG(v,w)0 extends to a smooth 2-form defined on X (v)0 , and the current
ddcG(v,w)0 · δX (v)0 ∈ D1,1(X0) is defined by(

ddcG(v,w)0 · δX (v)0 , α
)
=

∫
X (v)0

ddcG(v,w)0 ∧α,

for α ∈ A n−1,n−1
c (X0).

Since 8(T, ϕ) is not ddc-closed, it is not in the image of the regulator map
defined above. It is natural to ask for necessary and sufficient conditions for a
finite linear combination

∑
T,ϕ a(T, ϕ)[8(T, ϕ)] with a(T, ϕ)∈Q to belong to the

image of the regulator. The next proposition proves a weak result in this direction
when n ≥ 4. It turns out that in this case being ddc-closed is also sufficient.

Proposition 3.23. Assume that n ≥ 4. Let 8K =
∑

T,ϕ a(T, ϕ)[8(T, ϕ)K ] ∈
D1,1(XK ), where the sum is finite and a(T, ϕ) ∈ Q. Then ddc8K = 0 if and
only if 8K = rD(c) for some c ∈ CH2(XK , 1).

Proof. Above we showed that rD(c) is ddc-closed for any c ∈ CH2(XK , 1). Now
let 8K =

∑
T,ϕ a(T, ϕ)[8(T, ϕ)K ] as in the statement and assume that ddc8K = 0.

We compute

0= ddc8K =
∑
T,ϕ

a(T, ϕ) · (δZ(T,ϕ)K +9(T, ϕ)K ), (3-76)
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where 9(T, ϕ)K ∈ D1,1(XK ) is a current whose support is a finite union of special
divisors on XK . More precisely, we have

9(T, ϕ)K =
∑

i

ddcGi · δX (vi ,hi )K
,

where the sum is finite and Gi is a finite linear combination of Green functions
of the form (3-6) on X (vi , hi )K with logarithmic singularities on special divisors.
Since the currents 9(T, ϕ)K and δZ(T,ϕ)K are supported in different codimensions,
it follows from (3-76) that ∑

T,ϕ

a(T, ϕ) · δZ(T,ϕ)K = 0, (3-77)

∑
T,ϕ

a(T, ϕ) ·9(T, ϕ)K = 0. (3-78)

(To see this, pick a basis of open neighborhoods (U j ) j≥1 of
⋃

T,ϕ Z(T, ϕ)K and
compactly supported smooth functions φ j :U j→[0, 1] such that φ j |Z(T,ϕ)K ≡1. For
α ∈A n−2,n−2

c (XK ), evaluate (3-76) on the sequence (φ jα) j≥1 and apply dominated
convergence on each X (vi , hi )K .) Write∑

T,ϕ

a(T, ϕ)[8(T, ϕ)K ] =
∑

i

GiδX (vi ,hi )K
,

where the sum over i is finite and Gi is a Green function on X (vi , hi )K . Now
Equation (3-78) implies that the summand corresponding to a connected spe-
cial divisor X (v)0 in this sum is of the form G(v, 0)δX (v)0 , where G(v, 0) is
a Green function on X (v)0 that satisfies ddcG(v, 0) = 0. Since n ≥ 4, we have
H 1(X (v)0,C)= 0 (see [Vogan and Zuckerman 1984, Theorem 8.1]) and it follows
that G(v, 0)=a(v, 0) log | fv,0| for some meromorphic function fv,0 ∈ k(X (v)0)×

and some a(v, 0) ∈ Q. Thus, denoting by πv,0 the map X (v)0 → XK , we
find that 8K =

∑
v,0 a(v, 0) · (πv,0)∗(log | fv,0|), where the sum is finite. Con-

sider now the formal sum
∑

a(v, 0) · (πv,0, fv,0). By Equation (3-77), we have∑
v,0 a(v, 0)·(πv,0)∗(div fv,0)=0 and hence it defines an element c∈CH2(XK , 1)

satisfying rD(c)=8K . �

3J. Evaluating currents on differential forms. Let α ∈ A n−1,n−1
c (XK ) be a com-

pactly supported form. Since Proposition 3.21 shows that the forms 8(T, ϕ, s)K
are theta lifts, one can try to evaluate

[8(T, ϕ, s)K ](α)=
∫

XK

8(T, ϕ, s)K ∧α

by interchanging the integrals. However, this interchange is not justified since the
resulting integrals are not absolutely convergent. In this section, we will introduce
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certain currents [8̃(T, ϕ, s)] closely related to the [8(T, ϕ, s)]. These currents
will be meromorphic in s ∈ C (modulo Im(∂) + Im(∂̄) as before) and we will
show that their constant term at s = s0 is a certain Q-linear combination of the
[8(T, ϕ)]. Moreover, following ideas in [Bruinier and Funke 2004], we will give
an expression of these currents as regularized theta lifts that allows us to evaluate
them by interchanging the integrals (see Proposition 3.27).

For a pair of vectors (v,w) ∈ V (F)2 spanning a totally positive definite plane,
consider the (1,1)-form

ω̃(v, w, z, s)= φ(v,w, z, s)∂∂̄φ(w, v, z, s) (3-79)

in A 1,1(D−(Dv∪Dw)). The form ω̃(v, w, z, s) is related to the form ω(v,w, z, s)
as follows:

ω(v,w, z, s)+ω(w, v, z, s)

= ∂̄φ(w, v, z, s)∧ ∂φ(v,w, z, s)+φ(w, v, z, s)∂̄∂φ(v,w, z, s)

+ ∂φ(v,w, z, s)∧ ∂̄φ(w, v, z, s)+φ(v,w, z, s)∂∂̄φ(w, v, z, s)

= ω̃(v, w, z, s)− ω̃(w, v, z, s). (3-80)

For 0 ⊂ H+(R), define a (1,1)-form on X0 by

8̃(v,w, z, s)0 =
∑

γ∈0v,w\0

ω̃(γ−1v, γ−1w, z, s). (3-81)

The proofs of Propositions 3.6 and 3.9 apply to this sum and show that it con-
verges normally on X0 − (X (v)0 ∪ X (w)0) and defines a locally integrable (1,1)-
form on X0. We define forms 8̃(v,w, h, s)K and 8̃(T, ϕ, s)K as in Section 3F
and Section 3G by replacing ω(v,w, z, s) with ω̃(v, w, z, s) throughout. As be-
fore, denote by [8̃(T, ϕ, s)K ] the current in D1,1(XK ) corresponding to the form
8̃(T, ϕ, s)K . The proof of Proposition 3.19 shows that the currents [8̃(T, ϕ, s)K ]
for varying K form a compatible system under the maps induced by inclusions
K ′ ⊂ K , so that we obtain a current [8̃(T, ϕ, s)] ∈ D1,1(X)= lim

←−−K D1,1(XK ).
Let us now describe the relation of the currents [8̃(T, ϕ, s)] with the currents
[8(T, ϕ)]. For T =

(
a b
b c

)
∈ Sym2(F)>0 and ϕ ∈S (V (A f )

2), define

T ι
=

(
c b
b a

)
, ϕι(v,w)= ϕ(w, v). (3-82)

Then it follows from Proposition 3.12 and Equation (3-80) that the image of the
current [8̃(T, ϕ, s)]− [8̃(T ι, ϕι, s)] in D̃1,1(X) admits meromorphic continuation
to s ∈ C and that its constant term at s = s0 = (n− 1)/2 is given by

CTs=s0
[8̃(T, ϕ, s)] − [8̃(T ι, ϕι, s)] ≡ [8(T, ϕ)] − [8(T ι, ϕι)], (3-83)
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where≡ denotes equality of currents modulo ∂+ ∂̄ . See Section 4B5 for an example
of a current of this form.

Remark 3.24. From the point of view of regulator maps rD,K : CH2(XK , 1)→
D1,1(XK ), the currents on the right hand side of Equation (3-83) are quite natural
objects. Namely, let [8] ∈ D1,1(X0) be any current of the form [8] = rD(c) with
c=

∑
ni (Ci , fi ) ∈ CH2(X0, 1) (see Section 3I for definitions) such that the Ci are

special divisors and the fi ∈ k(Ci )
×
⊗Q are (pushforwards of) the meromorphic

functions constructed by Bruinier [2012, Theorem 6.8]. Then condition (3-71)
implies that [8] is a linear combination with Q-coefficients of currents [8(v,w)0]−
[8(w, v)0] for some pairs (v,w) ∈ V (F)2. The current [8(T, ϕ)] − [8(T ι, ϕι)]

is just a finite sum of such currents, weighted by the values of ϕ.

Our next goal is to obtain an expression of 8̃(T, ϕ, s)K as a regularized theta
lift with good convergence properties. To do so, we will use a relation between
∂∂̄ϕ0(v, z) and ϕKM(v, z) established by Bruinier and Funke.

Denote by
ϕKM ∈ [S (V1)⊗A 1,1(D)]H(R) (3-84)

the S (V1)-valued, closed (1,1)-form constructed by Kudla and Millson [1986]. We
have

ϕKM(v, z)= P(v, z)ϕ0(v, z), (3-85)

where P(v, z) ∈ [C∞(V1)⊗ A 1,1(D)]H(R) is, for fixed z, a polynomial in v of
degree 2 (see [Kudla 1997, (7.16)] for an explicit description of P(v, z); our ϕKM
is denoted ϕ(1) there).

Let τ = x + iy be an element of the upper half plane and let gτ =
( y1/2 xy−1/2

0 y−1/2

)
∈

SL2(R). Define

ϕ0(v, τ, z)= y−(n−2)/4ω(gτ )ϕ0(v, z)= y · e
(
Q(vz⊥)τ + Q(vz)τ̄

)
, (3-86)

ϕKM(v, τ, z)= y−(n+2)/4ω(gτ )ϕKM(v, z). (3-87)

Here ω denotes the Weil representation of SL2(R) on S (V1) and e(x)= e2π i x . Our
presentation of [8̃(T, ϕ, s)K ] as a regularized theta lift will use the following result.

Proposition 3.25 [Bruinier and Funke 2004, Theorem 4.4]. Let L =−2i Im(τ )2 ∂
∂τ̄

be the Maass lowering operator. Then

ddcϕ0(v, τ, z)=−LϕKM(v, τ, z) (3-88)

where d and dc
= (4π i)−1(∂ − ∂̄) are the usual differential operators on D.

Using this result, we can find a different expression for the form ∂̄∂φ(v,w, z, s).
Let L be the lowering operator in Proposition 3.25. For a symmetric positive definite
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matrix T =
(

a b
b c

)
and τ = x + iy ∈ H, define

M̃T (τ, s)= 4πy2 ∂

∂τ̄
(MT (y, s)e−2π iax). (3-89)

One computes

M̃T (τ, s)= C̃(T, s)y1−k/2 M1−k/2,s/2

(∣∣∣∣4π det T
c

y
∣∣∣∣)e

2πb2
c ye−2π iax , (3-90)

with C̃(T, s)= π iC(T, s) · (s+ s0).

Lemma 3.26. For v,w ∈�T (V1) and Re(s)� 0, we have

∂̄∂φ(v,w, z, s)=
∫
∞

0
M̃T (y, s)ϕKM(v, y, z)

dy
y2 .

Proof. Recall the integral expression for φ(v,w, z, s) given in (3-23). In terms of
ϕ0(v, τ, z), we have

φ(v,w, z, s)=
∫
∞

0
MT (y, s)ϕ0(v, y, z)

dy
y2

=

∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)xϕ0(v, τ, z)

dx dy
y2 .

Using (3-88), we obtain

ddcφ(v,w, z, s)=
∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)x ddcϕ0(v, τ, z)

dx dy
y2

=−

∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)x LϕKM(v, τ, z)

dx dy
y2

=−

∫
∞

0

∫ 1

0
MT (y, s)e−2π i Q(v)x ∂̄(ϕKM(v, τ, z) dτ)

=− lim
N→∞

∫
FN

MT (y, s)e−2π i Q(v)x ∂̄(ϕKM(v, τ, z) dτ),

where FN = [0, 1]× [N−1, N ] ⊂ H. Applying Stokes’s Theorem, we find

ddcφ(v,w, z, s)=
∫
∞

0

∫ 1

0
∂̄(MT (y, s)e−2π i Q(v)x)∧ϕKM(v, τ, z) dτ

− lim
N→∞

(
MT (N , s)ϕKM(v, N , z)−MT (N−1, s)ϕKM(v, N−1, z)

)
.

Since ddc
=−(2π i)−1∂∂̄ , we see that to establish the claim it suffices to show that

the second term in the right hand side vanishes. This follows for z /∈Dv from the
asymptotic behavior of MT (y, s) given by (3-17) and (3-18). �
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We can now express 8̃(T, ϕ, s)K as a regularized theta lift. Namely, for T =(
a b
b c

)
∈ Sym2(F) totally positive definite, define a function

M̃ T (na, s) : N (F)\N (A)× A(R)0 −→ C

by

M̃ T (nm(y1/2, t1/2), s)= 2κ−1
dim(V )ψT (n)Mσ1(T )(y1, s)M̃σ1(T )ι(t1, s)

× y1−κ/2
1 t−κ/21

d∏
i=2

Wai (yi )Wci (ti ). (3-91)

We also need to specify a Schwartz form

ϕ̃∞ ∈ [S (V (R)2)⊗A 1,1(D)]H(R)

to define the regularized theta lift. Define

ϕ̃1,1(v,w, z)= ϕ0(v, z) ·ϕKM(w, z) ∈S (V 2
1 )⊗A 1,1(D) (3-92)

and

ϕ̃∞(v,w, z)= ϕ̃1,1(v1, w1, z)⊗ϕ0
+
(v2, w2)⊗ · · ·⊗ϕ

0
+
(vd , wd), (3-93)

so that for every g ∈ Sp4(AF ) and ϕ ∈S (V (A f )
2) fixed by K , the theta function

θ(g;ϕ⊗ ϕ̃∞)K =
∑

(v,w)∈V (F)2

ω(g f )ϕ(v,w) ·ω(g∞)ϕ̃∞(v,w) (3-94)

defines a (1,1)-form on XK . Given a measurable function f : Sp4(AF )→ C that
satisfies f (ng)= f (g) for all n ∈ N (F), define

(M̃ T (s), f )reg
=

∫
A(R)0

∫
N (F)\N (A)

M̃ T (na, s) f (na) dn da, (3-95)

provided that the integral converges. Then we have the identity

8̃(T, ϕ, s)K = (M̃ T (s), θ( · ;ϕ⊗ ϕ̃∞)K )
reg, (3-96)

valid in an open set U ⊂ XK whose complement has measure zero. This is proved
in the same way as Proposition 3.21.

Here is the desired result that shows that one can evaluate [8̃(T, ϕ, s)] by
interchanging the order of integration.

Proposition 3.27. Let K ⊂ H(A f ) be an open compact subgroup that fixes ϕ and
let α ∈ A n−1,n−1

c (XK ). Then, for Re(s)� 0, we have

([8̃(T, ϕ, s)K ], α)=
∫

A(R)0

∫
N (F)\N (A)

M̃ T (na, s)
∫

XK

θ(na;ϕ⊗ ϕ̃∞)K ∧α dn da.
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Proof. Performing the integration over N (F)\N (A), we find

([8̃(T, ϕ, s)K ], α)=
∫

XK

∫
A(R)0

M̃ T (a, s)
∑

(v,w)∈�T (F)

ϕ(v,w)·ω(a)ϕ̃∞(v,w, z)∧α,

and we need to prove that this expression is absolutely convergent. Since K has
only finitely many orbits on the support of ϕ, it suffices to show that∫

0v,w\D+

∫
A(R)0

M̃ T (a, s) ·ω(a)ϕ̃∞(v,w, z)∧ η

is absolutely convergent, for any vectors v,w∈�T (F) and any compactly supported
form η ∈ A n−1,n−1

c (0\D+). This will follow if we can show that∫
0v,w\D+

∫
A(R)0
|M̃ T (a, s)| · ‖ω(a)ϕ̃∞(v,w, z)‖ da dµ(z) <∞,

that is, we need to show that the inner integral in this expression yields an integrable
function on 0v,w\D+. Denote this inner integral by f (v,w, z, s). Note that

‖ϕ̃∞(v,w, z)‖ =
∑

i

‖Pi (w, z)‖ ·ϕ0(v, z)ϕ0(w, z),

where the sum over i is finite and, for fixed z, the Pi (w, z) are polynomials inw (val-
ued in differential forms). These polynomials satisfy ‖Pi (hw, hz)‖ = ‖Pi (w, z)‖
for all h ∈ H(R) and have degree 2; see [Kudla 1997, (7.16)]. Hence

‖ϕ̃∞(v,w, z)‖< C · Q(wz⊥) ·ϕ
0(v, z)ϕ0(w, z),

for some constant C > 0. Using this estimate, we find that

f (v,w, z, s)= O
(
Q(vz⊥)

−
s+s0

2 · Q(wz⊥)
−

s+s0
2
)

if |Q(vz)|, |Q(wz)|> ε > 0,

f (v,w, z, s)= O
(
log(|Q(vz)|) · |Q(wz⊥)|

−
s+s0

2 +1) as |Q(vz)| → 0,

f (v,w, z, s)= O
(
log(|Q(wz)|) · |Q(vz⊥)|

−
s+s0

2
)

as |Q(wz)| → 0.

Since f (v,w, h′z, s)= f (v,w, z, s) for h′ ∈ H ′(R)= (Hv)+(R)∩ (Hw)+(R) and
the quotient 0v,w\D+v,w has finite volume, the claim follows from these estimates
by Lemma 3.8 applied to H ′(R)\D+. �

Corollary 3.28. Let K ⊂ H(A f ) be an open compact subgroup that fixes ϕ and let
α ∈ A n−1,n−1

c (XK ) be a closed form. For g ∈ Sp4(AF ), write

θ(g;ϕ, α)=
∫

XK

θ(g;ϕ⊗ ϕ̃∞)∧α.
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Then

([8(T, ϕ)K ] − [8(T
ι, ϕι)K ], α)

= CTs=(n−1)/2[(M̃ T (s), θ( · ;ϕ, α))reg
− (M̃ T ι(s), θ( · ;ϕι, α))reg

].

Proof. This follows from (3-83) and Proposition 3.27. �

4. An example: products of Shimura curves

The goal of this section is to illustrate the main constructions and results above
in one of the simplest cases: when the Shimura variety attached to GSpin(V ) is a
product of Shimura curves attached to a quaternion algebra B over Q. In this case,
the currents in Section 3 can be described in the more familiar language of Hecke
correspondences and CM points. We give this description in Section 4B.

Throughout this section, we fix an indefinite quaternion algebra B over Q; we
assume that B � M2(Q). We write S for the set of places where B ramifies and
d(B) for the discriminant of B. Denote by n : B→ F the reduced norm and let V
be B endowed with the quadratic form given by Q(v) = n(v). Then (V, Q) is a
nondegenerate quadratic space over Q with signature (2, 2) and χV = 1.

4A. Quaternion algebras and Shimura curves. The group H =GSpin(V ) can in
this case be described more concretely. Namely, consider B× as an algebraic group
over Q defined by

B×(R)= (B⊗Q R)× (4-1)

for any Q-algebra R and let

B××GL1 B× = {(g1, g2) ∈ B×× B× | n(g1)= n(g2)}. (4-2)

The group B× × B× acts on V by (g1, g2) · x = g1xg−1
2 . This induces an exact

sequence
1−→ Gm −→ B××GL1 B× −→ SO(V )−→ 1 (4-3)

showing that

SO(V )∼= Gm\(B××GL1 B×), GSO(V )∼= Gm\(B×× B×) (4-4)

and in fact one has
H ∼= B××GL1 B×. (4-5)

The theory in Section 2 applies to this case. If we denote by H the Poincaré upper
half plane, we have

D+ ∼= H×H. (4-6)
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Fix once and for all an isomorphism ι : B⊗Q AS ∼= M2(A
S). For p ∈ S, denote by

OB,p the maximal order of B⊗Q Qp. Let

ÔB = ι
−1
(

M2

(∏
p/∈S

Zp

))
×

∏
p∈S

OB,p, KB = Ô×B . (4-7)

Then ÔB is a maximal order of B⊗Q A f and K B is a maximal compact subgroup
of B(A f )

×.
Define the (full level) Shimura curve attached to B to be

XB,K = B×(Q)\(H±× B×(A f ))/K . (4-8)

Then XB,K is the set of complex points of a complete curve CK defined over Q.
Let K = (KB × KB)∩ H(A f ) and define the (full level) Shimura variety

XK = H(Q)\(D× H(A f ))/K . (4-9)

Thus XB,K is the set of complex points of the surface CK × CK . By (2-8), the
surface XB,K is connected.

Given v ∈V of positive norm and denoting by W ⊂V its orthogonal complement,
we have

Hv = GSpin(W )∼= B× (4-10)

as algebraic groups over Q. The special divisors Z(v, h)K are hence given by
embedded Shimura curves in XK .

4B. Examples of (1,1)-currents. Let us give some explicit examples of the cur-
rents introduced in Section 3 in the case when XK is a product of Shimura curves, in
the more classical language of Hecke correspondences and CM points. Assume that
F =Q for simplicity and denote by d(B)= p1 · · · p2r the discriminant of B. Let
ÔB and KB = Ô×B be as in (4-7) and let K = (KB×KB)∩H(A f ). Then OB = B∩ÔB

is a maximal order in B. Denote by O1
B ⊂ O×B be the subgroup of units of reduced

norm 1. The group O1
B acts on H through the embedding ι∞ : O1

B→ SL2(R) and
we conclude that

XB,K
∼= O1

B\H=: X
B
0 (4-11)

is the full level Shimura curve X B
0 and that XK = X B

0 × X B
0 .

4B1. Special divisors. Consider the vector v1 = 1 ∈ B = V of norm 1. Then the
inclusion Hv1 ⊂ H corresponds to the diagonal embedding 1 : B×→ B××GL1 B×

and hence the map iv1,1,K : X (v1)K → XK defined in (2-15) is just the diagonal

1 : X B
0 −→ X B

0 × X B
0 . (4-12)



Regularized theta lifts and (1,1)-currents 639

More generally, suppose v ∈ OB has reduced norm d and consider the map
iv,1,K : X (v)K → XK . If d equals a prime p - d(B) then the intersection Hv(Q)∩K
is an Eichler order OB(p) of level p in B and the map iv,1,K : X (v)K → XK equals
the map

X B
0 (p)−→ X B

0 × X B
0 (4-13)

whose image is the Hecke correspondence T(p). Similarly, if d is a divisor of d(B),
we obtain the graph of the Atkin–Lehner involution wd .

4B2. Currents for connected cycles: G(v,w)0 and [8(v,w)0]. Consider now
v,w ∈ B spanning a positive definite plane. To simplify matters, let us assume
that v = 1 and that w ∈ OB is such that R := Z[w] is the full ring of integers of an
imaginary quadratic field L = R⊗Z Q; such an R is then automatically optimally
embedded in OB (recall that an embedding j : R ↪→ OB is said to be optimal if
j (L)∩OB = j (R)). The diagram (1-3) in this case becomes

{τp
v⊥
(w)}

//

��

H
1

//

pr

��

H×H

pr× pr
��

{Pw := pr(τp
v⊥
(w))} // X B

0
1

// X B
0 × X B

0

and Pw ∈ X B
0 is a point with CM by R (for one of the two CM-types of R). The

function G(v,w)0 ∈ C∞(X B
0 − {Pw}) defined by (3-9) is a Green function for

the divisor [Pw] ∈ Div(X B
0 ); we denote this function by G[Pw] and the associated

current in D0,0(X B
0 ) by [G[Pw]]. The current [8(v,w)0] in (3-33) is given by

[8(v,w)0] = 2π i ·1∗([G[Pw]]), (4-14)

so that for α ∈ A 1,1(X B
0 × X B

0 ) we have

[8(v,w)0](α)= 2π i
∫

X B
0

G[Pw] ·1
∗(α). (4-15)

4B3. The current [8(v,w, 1)K ]. Our next goal is to write down an explicit example
of the current [8(v,w, 1)K ] in (3-43). We have

Hv,w = GSpin(Q〈v,w〉)= L× (4-16)

as an algebraic group over Q. The embeddings Hv,w→ Hv→ H correspond to
embeddings of algebraic groups

L× −→ B×
1
−→ B××GL1 B×, (4-17)

defined over Q, where the second embedding is just the diagonal. Note that
Hv,w(R)= (K ⊗Q R)× = C× with spinor norm the usual norm on C. In particular,
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every element of this group has positive spinor norm and hence (Hv,w)+(R) =
Hv,w(R) and (Hv,w)+(Q) = Hv,w(Q) = L×. Moreover, since R→ O is optimal,
we have

(Hv,w)+(Q)\Hv,w(A f )/KU ∼= L×\A×L , f /Ô
×

L = Pic(OL). (4-18)

Let {h′i | i = 1, . . . , s} be a set of representatives for this double coset and write
h′i = γi ki with γi ∈ H+(Q) and ki ∈ K . Note that we can find γi ∈ (Hv)+(Q) and
ki ∈ K ∩ Hv(A f ). With such choices, we have∑

i

[8(γ−1
i v, γ−1

i w)0] =
∑

i

[8(v, γ−1
i w)0]. (4-19)

The sum
∑

i [γ
−1
i · Pw] defines a divisor on X B

0 of degree h(OL). In fact, by
Shimura’s description of the Galois action, this divisor coincides with the orbit
under Gal(H/L) of Pw ∈ X B

0 (H), with H the Hilbert class field of L . Hence we
can write ∑

i

[γ−1
i Pw] = tH/L [Pw]. (4-20)

(Here tH/L stands for taking the trace from H to L). Since in this case n = 2,
the current [8(v,w, 1)K ] involves an additional sum. Namely, we need to choose
γ0 ∈ H(Q) such that γ0 · D

+

U = D−U ; we can find such an element satisfying
additionally that γ0 · v = v and γ0 ·w = −w. Now we have to find ki0 ∈ K and
γi0 ∈ H+(Q) such that γ0h′i = γi0ki0 . With our choice of K this is easy to do
explicitly: let ε ∈ O×B be a unit of norm −1; such an element always exists by
[Vignéras 1980, Corollary 5.9]. Then (ε, ε) ∈ H(Q)∩ K . If h′i = γi ki as above,
then we can choose γi0 = γ0γi ·(ε, ε)

−1 and ki0 = (ε, ε)ki . Then we have γ−1
i0
·v= v

and γ−1
i0
·w =−(ε, ε) · γ−1

i ·w and hence∑
i

[8(γ−1
i0
v, γ−1

i0
w)0] =

∑
i

[8(v, (ε, ε)γ−1
i w)0], (4-21)

since [8(v,w)0] = [8(v,−w)0]. By Shimura’s reciprocity law [Ogg 1983, Equa-
tion (5)], if Pw′ is the point of X B

0 corresponding to Dw′ ⊂D=H±, then its complex
conjugate Pw′ corresponds to D(ε,ε)·w′ . It follows that∑

i

[γ−1
i Pw] +

∑
i

[γ−1
i0

Pw] = tH/Q[Pw] (4-22)

and hence

[8(v,w, 1)K ] = 2π i ·1∗([G tH/Q[Pw]]), (4-23)

with G tH/Q[Pw] a Green function for the divisor tH/Q[Pw] on X B
0 .
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4B4. The current [8(T, ϕ)K ]. Consider now an order R = Z[α] in an imaginary
quadratic field L⊂C and let x2

−t x+n be the minimal polynomial of α. We assume
that L admits an embedding into B and (for simplicity) that (d(L), d(B))= 1 and
that R = OL is the ring of integers of L . Define

T =
(

1 t/2
t/2 n

)
,

ϕO2
B
= characteristic function of Ô2

B,

(4-24)

and let us describe the current [8(T, ϕO2
B
)] in (3-49). To do so, we need to describe

the set of K -cosets of Supp(ϕO2
B
)∩�T (A f ). We have

K\[Supp(ϕO2
B
)∩�T (A f )] = (Ô

×

B ×Ẑ×
Ô×B )\�T (Ô

2
B)

=

∏
v-∞

(O×B,v ×Z×v
O×B,v)\�T (O

2
B,v). (4-25)

Note that the assignment j 7→ j (α) induces a bijection between the (optimal)
embeddings j : R→OB and the set of elementsw∈OB with t (w)= t and n(w)=n,
and this statement holds true locally too. It follows that the map (1, w) 7→w induces
a one-to-one correspondence

(O×B,v ×Z×v
O×B,v)\�T (O

2
B,v)←→ { j : R→ OB,v optimal}/O×B,v, (4-26)

where the equivalence in the right-hand side is with respect to conjugation by O×B,v .
The set on the right-hand side has cardinality 1 if Bv ∼= M2(Qv) and 2 if Bv is
division; moreover, in the latter case the local Atkin–Lehner involution permutes
the two elements (see [Vignéras 1980, Theorems II.3.1, II.3.2]). Hence the set

K\[Supp(ϕO2
B
)∩�T (A f )] (4-27)

is a torsor under the Atkin–Lehner group WB . Since the set CM(OL) of points in
X B

0 with CM by OL is a torsor under Pic(OL)×WB , we conclude that[
8

((
1 t/2

t/2 n

)
, ϕO2

B

)
K

]
= 2π i · (X B

0
1
→ X B

0 × X B
0 )∗([G tL/Q[CM(OL )]]) (4-28)

is the pushforward along the diagonal of a Green current [G tL/Q[CM(OL )]] for the
divisor tL/Q[CM(OL)].

Note that by choosing ϕ ∈ S (V (A f )
2) to have support in a single K -orbit of

(4-27), we recover all the currents of the form (4-23).

4B5. The current [8(T, ϕ)K ] − [8(T
ι, ϕι)K ]. Recall that we have defined an in-

volution ι on the set of pairs (T, ϕ), given by (3-82). Our next goal is to give an
example of the action of ι.



642 Luis E. Garcia

Let p be a prime, p ≡ 1 (mod 4) and not dividing d(B), and define

T =
(

1
p

)
,

ϕO2
B
= characteristic function of Ô2

B .

(4-29)

The previous computation of [8(T, ϕO2
B
)] shows that this current is supported on

the diagonal 1, and more precisely that[
8

((
1

p

)
, ϕO2

B

)
K

]
= 2π i · (X B

0
1
→ X B

0 × X B
0 )∗([G tL/Q[CM(Z[

√
−p])]]).

Note that ϕιO2
B
= ϕO2

B
and that T ι

=
( p

1

)
. In particular, the current [8(T ι, ϕιO2

B
)] is

different from [8(T, ϕO2
B
)], as the former is supported on the Hecke correspondence

T(p). More precisely, the same argument as above, with trivial modifications, shows
that[

8

((
p

1

)
, ϕO2

B

)
K

]
= 2π i · (X B

0 (p)→ X B
0 × X B

0 )∗([G tL/Q[CM(Z[
√
−p])]]),

where here [CM(Z[
√
−p])] denotes the divisor consisting of all points in X B

0 (p)
with CM by Z[

√
−p] (for some CM type of Z[

√
−p]).
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