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Residual intersections and
the annihilator of Koszul homologies

Seyed Hamid Hassanzadeh and Jose Naéliton

We study Cohen–Macaulayness, unmixedness, the structure of the canonical
module and the stability of the Hilbert function of algebraic residual intersec-
tions. We establish some conjectures about these properties for large classes of
residual intersections without restricting the local number of generators of the
ideals involved. To determine the above properties, we construct a family of
approximation complexes for residual intersections. Moreover, we determine
some general properties of the symmetric powers of quotient ideals which were
not known even for special ideals with a small number of generators. Finally, we
show acyclicity of a prime case of these complexes to be equivalent to finding a
common annihilator for higher Koszul homologies, which unveils a tight relation
between residual intersections and the uniform annihilator of positive Koszul
homologies, shedding some light on their structure.

1. Introduction

Understanding the residual of the intersection of two algebraic varieties is an intrigu-
ing concept in algebraic geometry. Similar to many other notions in intersection
theory, the concept of residual intersections needs the proper interpretation to
encompass the desired algebraic and geometric properties. In the sense of [Artin
and Nagata 1972], which is our point of view, the notion is a vast generalization
of linkage (or liaison), which is more ubiquitous, but also harder to understand.
Let X and Y be irreducible closed subschemes of a Noetherian scheme Z with
codimZ (X)≤ codimZ (Y )= s and Y 6⊂ X . Then Y is called a residual intersection
of X if the number of equations needed to define X ∪ Y as a subscheme of Z is
the smallest possible, that is, s. Precisely, if R is a Noetherian ring, I an ideal of
height g and s ≥ g an integer, then:
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• An (algebraic) s-residual intersection of I is a proper ideal J of R such that
ht(J )≥ s and J = (a :R I ) for some ideal a⊂ I generated by s elements.

• A geometric s-residual intersection of I is an algebraic s-residual intersection
J of I such that ht(I + J )≥ s+ 1.

Based on a construction of Laksov for residual intersection, Fulton [1998, Defi-
nition 9.2.2] presents a formulation for residual intersection that, locally, can be
expressed as follows: suppose that X = Spec(R) and that Y and S are closed
subschemes of X defined by the ideals a and I , respectively. Let X̃ = Proj(RR(I ))
be the blow-up of X along S. Consider the natural map π : X̃→ X . Let Ỹ =π−1(Y )
and S̃ = π−1(S). Then Ỹ = Proj(RR(I )/aRR(I )) and S̃ = Proj(RR(I )/IRR(I ))
are closed subschemes of X̃ with ideal sheaves IỸ and IS̃ , where IS̃ is an in-
vertible sheaf. Let Z ′ ⊆ X̃ be the closed subscheme defined by the ideal sheaf
IZ ′ = IỸ · I

−1
S̃

. Then Z ′ is called the residual scheme to S̃ in Ỹ . Precisely
Z ′ = Proj(RR(I )/γRR(I )) in which γ = a ⊆ (RR(I ))[1]. Finally, the residual
intersection to S in Y [Fulton 1998, Definition 9.2.2] is the direct image of OZ ′ ,
i.e., π∗(OZ ′). Since OZ ′ is a coherent sheaf, by [Hartshorne 1977, Chapter III,
Proposition 8.5],

π∗(OZ ′)=
(
H 0(X̃ ,OZ ′)

)̃
=
(
0(X̃ ,OZ ′)

)̃
.

Note that 0(X̃ ,OZ ′) equals 0∗(X̃ ,OZ ′(0)), which is equal to the ideal transform
DRR(I )+(RR(I )/γRR(I ))[0], by an application of the Čech complex. The latter is
closely related, and in many cases determined, by the ideal

H 0
RR(I )+(RR(I )/γRR(I ))[0] =

⋃
(aI i
:R I i+1).

In [Hassanzadeh 2012] and in the current work, we consider the symmetric
algebra SymR(I ) instead of the Rees algebra RR(I ). This generalization has already
proved its usefulness in studying multiple-point formulas by Kleiman; see [Fulton
1998, Example 17.6.2]. We then find a kind of arithmetical residual intersection
to be

⋃(
γ Symi

R(I ) :R Symi+1
R (I )

)
, where γ = a ⊆ Symi

R(I )[1]. Comparing the
above three definitions for residual intersection, we have

J = (a : I )⊆
⋃(

γ Symi
R(I ) :R Symi+1

R (I )
)
⊆

⋃
(aI i
:R I i+1).

Interestingly, these ideals coincide if the algebraic residual intersection J does not
share any associated primes with I, e.g., if J is unmixed and the residual is geometric.

Determining the cases where the first inclusion above is an equality leads us to
define a third variation of algebraic residual intersection.

Definition 1.1. An arithmetic s-residual intersection J = (a : I ) is an algebraic
s-residual intersection such that µRp((I/a)p)≤ 1 for all prime ideals p⊇ (I + J )
with ht(p)≤ s. (Here µ denotes the minimum number of generators.)
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Clearly any geometric s-residual intersection is arithmetic. Moreover, for any
algebraic s-residual intersection J = (a : ( f1, . . . , fr )) which is not geometric, all
of the colon ideals (a : fi ) are arithmetic s-residual intersections and at least one of
them is not geometric.

In this paper we introduce a family of complexes, denoted by {iZ+• }∞i=0, to
approximate the i-th symmetric power of I/a, which is denoted by Symi

R(I/a) for
i > 1. The idea to define this family is inspired by [Hassanzadeh 2012] in which
the single complex 0Z+• is treated. H0(0Z+• ) is a cyclic module of the form R/K ,
where K is called the disguised s-residual intersection of I with respect to a; see
Definition 2.1. The study of the other members of the above family of complexes
sheds some more light on the structure of residual intersections. A flavor of our
main results in Section 2 is the following:

Main results. Let (R,m) be a Cohen–Macaulay (CM) local ring of dimension d
and let I be an ideal with ht(I )= g > 0. Let s ≥ g and 1 ≤ k ≤ s− g+ 2 and let
J = (a : I ) be any (algebraic) s-residual intersection. Suppose that I is strongly
Cohen–Macaulay (SCM). Then:

(1) (Theorem 2.14) The canonical module of R/J is Syms−g+1
R (I/a), provided the

residual is arithmetic and R is Gorenstein.

(2) (Corollary 2.8) depth(R/a)= d − s.

(3) (Corollary 2.8) J is unmixed of codimension s.

(4) (Theorem 2.6 and Proposition 3.1) kZ+• is acyclic, H0(kZ+• )=Symk
R(I/a) and

the latter is CM of dimension d−s (the acyclicity of kZ+• implies conjecture (5)
below in the arithmetic case).

These results address the following (implicit) conjectures made during the devel-
opment of the theory of algebraic residual intersections.

Conjectures. Let R be a CM local ring and let I be SCM, or even just satisfying
sliding depth (SD). Then:

(1) R/J is Cohen–Macaulay.

(2) The canonical module of R/J is the (s− g+ 1)-st symmetric power of I/a, if
R is Gorenstein.

(3) a is minimally generated by s elements.

(4) J is unmixed.

(5) The Hilbert series of R/J depends only on I and the degrees of the generators
of a.

The first conjecture essentially goes back to [Artin and Nagata 1972], and it has
been asked as an open question in [Huneke and Ulrich 1988]. At the Sundance
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conference in 1990, Ulrich [1992] mentioned conjectures (1)–(4) above as desirable
facts to be proved. The property of the Hilbert function is rather recent and has
been analyzed by Chardin, Eisenbud and Ulrich [Chardin et al. 2001; Chardin et al.
2015].

It should be mentioned that these conjectures are proved if one supposes in
addition that the ideal I has locally few generators, a condition which is called Gs ,
or if it has a deformation with the Gs property. Over time the Gs condition has
become a “standard” assumption in the theory of residual intersections which is
not avoidable in some cases. However, the desire is to prove the above assertions
without restricting the local number of generators of I.

In comparison, obtaining the structure of the canonical module in the absence of
the Gs condition is more challenging. To achieve this, we show that under the above
hypotheses, Syms−g+1

R (I/a) is a faithful maximal Cohen–Macaulay R/J -module
of type 1. Concerning the type of modules, we prove even more. We show in
Theorem 2.12 that the inequality

rR
(
Symk

R(I/a)
)
≤

(
r + s− g− k

r − 1

)
rR(R)

holds for any 1 ≤ k ≤ s − g + 1, where, for a finitely generated R-module M,
rR(M) := dimR/m Extdepth(M)

R (R/m,M) is the Cohen–Macaulay type of M.
In Section 3, we present several applications of the theorems and constructions

so far. We state how much the Hilbert functions of R/J and R/a depend on the
generators and/or degrees of I and a. If I is SCM, then the Hilbert function of
the disguised residual intersection, and that of Symk

R(I/a), if 1 ≤ k ≤ s − g+ 2,
depends only on the degrees of the generators of a and the Koszul homologies of I.
In particular, k = 1 implies that the Hilbert function of R/a is constant on the open
set of ideals a generated by s forms of the given degrees such that ht(a : I ) ≥ s.
This is comparable with results in [Chardin et al. 2001], where the same assertion
is concluded under some Gs hypotheses.

The graded structure of kZ+• shows that if I satisfies the SD1 condition, then

reg
(
Symk

R(I/a)
)
≤ reg(R)+ dim(R0)+ σ(a)− (s− g+ 1− k) indeg(I/a)− s

for k ≥ 1. These applications were not known even when ideal I satisfies the Gs

condition. Finally, in Proposition 3.4, by a combination of older and newer facts, we
show that for any algebraic s-residual intersection J = a : I, if I is SCM and evenly
linked to a Gs ideal (or has a deformation with these properties) then the disguised
residual intersection and the algebraic residual intersection coincide. Based on
this fact, we conjecture that (Conjecture 5.9) in the presence of the sliding depth
condition, the disguised residual intersection is the same as the algebraic residual
intersection.
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In Section 4, we try to understand better the structure of the complex 0Z+• in
the case where I/a is principal, e.g., I = (a, b). We find in Theorem 4.4 that
Hi (0Z+• (a, f )) ' bHi (a1, . . . , as) for all i ≥ 1 and H0(0Z+• (a, f )) ' R/(a : b).
This fact shows how much the homologies of Z+

•
complexes may depend on the

generating sets, as well as showing a tight relation between the uniform annihilator of
Koszul homologies and acyclicity of Z+

•
. As a byproduct, Corollary 4.6 suggests that

to study the properties of colon ideals, instead of assuming ht((a1, . . . , as) : I )≥ s,
one may only need to suppose that IHi (a1, . . . , as)= 0 locally at codimension s−1.

Motivated by the facts in Section 4, we investigate the uniform annihilator of
positive Koszul homologies in Section 5. Not much is known about the annihilator
of Koszul homologies. In Corollary 5.6, we show that for a residual intersection
J = a : I , where I satisfies SD and depth(R/I )≥ d − s,

I ⊆
⋂
j≥1

Ann(Hj (a)).

Surprisingly, this result contradicts one of the unpublished but well-known results
of G. Levin [Vasconcelos 2005, Theorem 5.26], which yielded in [Corso et al.
2006] that Supp(H1(a))= Supp(H0(a)). Simple examples of residual intersection
disprove this last claim. Moreover, we show in Theorem 5.4 that for an s-residual
intersection J = (a : I ), if I satisfies SD and depth(R/I )≥d−s, so does a. This is an
interesting result since for a long time it was known that the residual intersections of
the ideal a are Cohen–Macaulay although no one was aware of the SD property of a.

2. Residual approximation complexes

In this section we introduce a family of complexes which approximate the residual
intersection and some of its related symmetric powers. We denote this family by
{iZ+• }∞i=0. The complex 0Z+• was already defined in [Hassanzadeh 2012] and used to
prove the CM-ness of arithmetic residual intersections of ideals with sliding depth.

Throughout this section, R is a Noetherian ring of dimension d , and I = ( f )=
( f1, . . . , fr ) is an ideal of grade g ≥ 1. Although by adding one variable we
could also treat the case g = 0, for simplicity we keep the assumption g ≥ 1. Let
a = (a1, . . . , as) be an ideal contained in I, with s ≥ g, let J = a :R I, and let
S = R[T1, . . . , Tr ] be a polynomial extension of R with indeterminates Ti . We
denote the symmetric algebra of I over R by SI or, in general, the symmetric
algebra of an R-module M by SymR(M) and the k-th symmetric power of M by
Symk

R(M). We consider SI as an S-algebra via the ring homomorphism S→ SI

sending Ti to fi as an element of (SI )1 = I ; then SI = S/L. Let ai =
∑r

j=1cj i fj ,
γi =

∑r
j=1cj i Tj , γ = (γ1, . . . , γs) and g := (T1, . . . , Tr ).

For a sequence of elements x in a commutative ring A and an A-module M, we
denote the Koszul complex by K•(x;M), its cycles by Zi (x;M) and its homologies
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by Hi (x;M). For a graded module M, indeg(M) := inf{i : Mi 6= 0} and end(M) :=
sup{i :Mi 6=0}. Setting deg(Ti )=1 for all i , S is a standard graded ring over S0= R.

To set one more convention, when we draw the picture of a double complex
obtained from a tensor product of two finite complexes (in the sense of [Weibel
1994, 2.7.1]), say A⊗ B, we always put A in the vertical direction and B in the
horizontal one. We also label the module which is in the upper-right corner as (0, 0)
and consider the labels for the rest as the points in the third quadrant.

kZ+• complexes. The first object in the construction of the family of kZ+• complexes
is one of the approximation complexes — the Z-complex [Herzog et al. 1983]. We
consider the approximation complex Z•( f ),

0→ Zr−1⊗R S(1− r)→ · · · → Z1⊗R S(−1)→ Z0⊗R S→ 0,

where Zi = Zi ( f ) is the i-th cycle of the Koszul complex K•( f , R).
The second object is the Koszul complex K•(γ , S),

0→ Ks(γ1, . . . , γs)(−s)→ · · · → K1(γ1, . . . , γs)(−1)→ K0(γ1, . . . , γs)→ 0.

Let D• = Tot(K•(γ , S)⊗S Z•( f )). Then

Di =

min{i,r−1}⊕
j=i−s

[Z j ⊗R S](
s

i− j)(−i). (2-1)

For a graded S-module M , the k-th graded component of M is denoted by M[k].
Let (D•)[k] for k ∈ Z be the k-th graded strand of D•. We have (Di )[k] = 0 for all
k < i ; in particular,

Hk((D•)[k])= Ker(Dk→ Dk−1)[k]. (2-2)

Now, let C •g = C •g(S) be the Čech complex of S with respect to the sequence
g= (T1, . . . , Tr ),

C •g : 0→ C0
g(= S)→ C1

g→ · · · → Cr
g→ 0.

We then consider the bicomplex C •g⊗S D• with C0
g ⊗S D0 in the corner. This

bicomplex gives rise to two spectral sequences for which the second terms of the
horizontal spectral are

2E−i,− j
hor = H j

g (Hi (D•)), (2-3)

and the first terms of the vertical spectral are

E−i,− j
ver =

{
0→H r

g (Dr+s−1)→· · ·→H r
g (D1)→H r

g (D0)→ 0 if j = r,
0 otherwise.

(2-4)
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Since we have H r
g (Di ) = H r

g

(⊕
j [Z j ⊗ S](−i)

)
=
⊕

j Z j ⊗ H r
g (S)(−i) and

end(H r
g (S)) = −r , it follows that end(H r

g (Di )) = i − r , thus H r
g (Di )[i−r+ j] = 0,

for all j ≥ 1. We then define the following sequence of complexes indexed by k ≥ 0:

0→ H r
g (Dr+s−1)[k]→ · · · → H r

g (Dr+k+1)[k]
φk
−→ H r

g (Dr+k)[k]→ 0. (2-5)

Since the vertical spectral (2-4) collapses at the second step, the horizontal spec-
tral converges to the homologies of H r

g (D•). Since all of the homomorphisms are
homogeneous of degree 0, the convergence inherits to any graded component. There-
fore, for any k ≥ 0, there exists a filtration · · · ⊆ F2k ⊆ F1k ⊆ Coker(φk) such that

Coker(φk)

F1k
'
(
∞E−k,0

hor

)
[k]. (2-6)

Observing that H−t
g (Hh(D•)) = 0 for all (t, h) ∈ N × N0, one has lE−k,0

hor ⊆

H 0
g (Hk(D•)) for all l ≥ 2. Hence we have the following chain of maps for which,

except the isomorphism in the middle, all maps are canonical and the map on the
right is given by (2-2):

H r
g (Dr+k)[k] // Coker(φk) // Coker(φk)

F1k

'

tt
∞(E−k,0

hor

)
[k]

1−1
// H 0

g (Hk(D))[k]
1−1
// Hk(D)[k]

1−1
// (Dk)[k]

(2-7)

We denote the composition of the above chain of R-homomorphisms by τk .
Finally, we define the promised family of complexes as follows. For any integer

k ≥ 0, kZ+• is a complex of length s consisting of two parts: the right part is (D•)[k]
and the left part is (1Ever)[k]. These parts are joined via τk . More precisely,

kZ+• : 0→ kZ+s → · · ·
φk
−→ kZ+k+1

τk
−→ kZ+k → · · · → kZ+0 → 0, (2-8)

wherein

kZ+i =
{
(Di )[k], i ≤min{k, s},
H r
g (Di+r−1)[k], i > k.

(2-9)

The structure of kZ+• depends in two ways on the generating sets. Namely, it
depends on the generating set of I, which is f, and the expression of the generators
of a in terms of the generators of I, which are given by ci j . However, for k ≥ 1,
we have

H0(kZ+• )= H0(D•)[k] = (SI /(γ )SI )[k] = Symk
R(I/a).

The case where k = 0 is also very interesting. However, the structure of H0(0Z+• )
is not as clear as the cases where k > 0.
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Definition 2.1. Let R be a Noetherian ring and let a⊆ I be two ideals of R. The
disguised s-residual intersection of I with respect to a is the unique ideal K such that
H0(0Z+• )= R/K. The reasons for choosing the attribute disguised are as follows:
K is contained in J = (a : I ) and it has the same radical as J has; if R is CM, J is an
algebraic residual intersection and I satisfies some sliding depth condition, then K
is Cohen–Macaulay; moreover, K coincides with J in the case where the residual is
arithmetic, by [Hassanzadeh 2012, Theorem 2.11]. We conjecture (Conjecture 5.9)
that under the above assumptions K is always the same as J despite that it does
not appear so.

Acyclicity and Cohen–Macaulayness. One more occasion where the properties
of kZ+• are independent of the generating sets of I and a is the following lemma,
which is crucial to proving the acyclicity of kZ+• .

Lemma 2.2. Let R be a Noetherian ring and let a⊆ I be two ideals of R. If I = a,
then every complex kZ+• defined in (2-8) is exact.

Proof. Since the approximation complex Z•( f ) is a differential graded algebra,
Hi (Z•) is an SI = S/L-module for all i . Likewise, since the approximation complex
K•(γ ) is a differential graded algebra, Hi (K•(γ )) is an S/(γ )-module for all i . The
bicomplex K•(γ )⊗S Z• gives rise to the horizontal spectral sequence with second
terms 2E−i,− j

hor = Hj (K•(γ ; Hi (Z•))). It follows that (L+ (γ )) annihilates 2E−i,− j
hor

and consequently annihilates ∞E−i,− j
hor , which is a subquotient of 2E−i,− j

hor . By the
convergence of the spectral sequence to the homologies of the total complex H•(D•),
it is straightforward to deduce that Hi (D•) is an (L+ (γ ))-torsion module for all i ,
i.e., (L+ (γ ))N Hi+ j (D•)= 0 for all i , j and for some N. Considering the equation
I = a in (SI )1, we have L+ (γ )= L+ g. Therefore,

H j
g (Hi (D•))= H j

g+L(Hi (D•))= H j
(γ )+L(Hi (D•))=

{
Hi (D•), j = 0,
0, j > 0.

(2-10)

Once more we study the spectral sequences arising from C •g ⊗ D•, which were
already mentioned in (2-8). Applying (2-10), we draw both horizontal and vertical
spectral sequences simultaneously as follows:

∞Ehor : 0 · · · 0 Hk(D•)[k] · · · H0(D•)[k]

1Ever : 0 · · · 0 · · · 0

H r
g (Dr+s−1)[k] // · · ·

φk
// H r

g (Dr+k)[k]

τk

// 0 0 · · · 0
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Since Hj (D•) is a subquotient of Dj , we have Hj (D•)[k] = 0 for all j > k. Also,
by (2-10) there is only one nonzero row in the horizontal spectral. On the other
hand, g is a regular sequence on the Dj which in turn shows that the vertical spectral
is just one line.

Consequently, Hj (kZ+• ) := Hj+r−1(H r
g (D•))[k] = Hj−1(D•)[k] = 0 whenever

j>k+1. On the other hand, if j<k, then Hj (kZ+• ) :=Hj (D•)[k]=Hj+r (H r
g(D•)[k]).

However, the latter is zero since end(H r
g (Dr+ j )) ≤ j . This shows that kZ+• is

exact on the left and also on the right hand of τk .
It remains to prove the exactness in the joint points k and k+ 1. For this, notice

that
(
∞E−i,− j

hor

)
[k]= 0 for j ≥ 1, hence Fjk/F( j+1)k =

(
∞E−k− j,− j

hor

)
[k]= 0 for j ≥ 1.

Consequently, F1k = 0 in (2-6). Therefore, the map τk defined in (2-7) is exactly
the canonical map H r

g (Dr+k)[k]
Can.
−−→Coker(φk)[k] as required. �

As already mentioned in the Introduction, some sliding depth conditions are
needed to prove the acyclicity of the kZ+• complexes.

Definition 2.3. Let (R,m) be a Noetherian local ring of dimension d and let
I = ( f1, . . . , fr ) be an ideal of grade g ≥ 1. Let k and t be two integers. We say
that the ideal I satisfies SDk at level t if depth(Hi ( f ; R))≥min{d−g, d−r+i+k}
for all i ≥ r − g− t . Whenever t = r − g, we simply say that I satisfies SDk and
we let SD stand for SD0.

I is strongly Cohen–Macaulay, or SCM, if Hi ( f ; R) is CM for all i . Clearly
SCM is equivalent to SDr−g.

Similarly, we say that I satisfies the sliding depth condition on cycles, or SDCk , at
level t if depth(Zi ( f , R))≥min{d−r+i+k, d−g+2, d} for all i ≥r−g−t . Again
if t = r − g, we simply say that I satisfies SDCk and we use SDC instead of SDC0.

Some of the basic properties and relations between conditions SDk and SDCk

are explained in the following proposition.

Proposition 2.4. Let (R,m) be a CM local ring of dimension d and let I =
( f1, . . . , fr ) be an ideal of grade g ≥ 1. Let k and t be two integers. Then:

(1) The properties SDCk and SDk at level t localize; they only depend on I and
not the generating set, if t = r − g.

(2) SDk implies SDCk+1.

(3) SDk at level t < r − g implies SDCa at level t for a ≤ g+ t + 2− d.

(4) SDCk+1 at level t implies SDk at level t for any t , if g ≥ 2. This implication is
also the case if g = 1 and k = 0.

(5) SD0 at level t ≥ 1 implies SDC0 at level t .

Proof. Part (1) is essentially proved in [Vasconcelos 1994]. Part (2) was proved in
[Hassanzadeh 2012, Proposition 2.5]. Part (3) follows after analyzing the spectral
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sequences derived from the tensor product of the truncated Koszul complex

0→ Zi ( f )→ Ki → Ki−1→ · · · → K0→ 0

and the Čech complex C•m(R). To prove (4), we consider the depth inequalities
derived from the short exact sequences 0 → Zi+1( f ) → Ki+1 → Bi ( f ) → 0
and 0 → Bi ( f ) → Zi ( f ) → Hi ( f ) → 0. To show (5), we use the fact that
SDCk holds for any k at level −1, then a recursive induction applying depth(Zi )≥

min{depth(Hi ), d, depth(Zi+1)− 1} proves the assertion. �

In the next theorem we present sufficient conditions for the acyclicity of kZ+• .
The strategy taken here to prove the acyclicity is the same as the one applied in
[Hassanzadeh 2012] (however, the reader should notice that the complex C• defined
in [Hassanzadeh 2012] is a little bit different from 0Z+• here; in the former, the tail
is substituted by a free complex but still C• remains quasi-isomorphic to 0Z+• ). Since
the complex is finite, we avail ourselves of “lemme d’aciclicité” of Peskine and
Szpiro: we assume some sliding depth conditions and prove the acyclicity in height
s−1 wherein I = a. By Lemma 2.2, kZ+• is exact, if I = a. Then an induction will
show the acyclicity globally.

Although the proof here is more involved than [Hassanzadeh 2012, Proposition
2.8], we prefer to omit it to go faster to newer theorems. The Cohen–Macaulay
hypothesis in this theorem is needed to show that if for an R-module M we have
depth(M)≥ d−t , then for any prime p we have depth(Mp)≥ ht(p)−t [Vasconcelos
1994, Section 3.3].

Proposition 2.5. Let (R,m) be a CM local ring of dimension d and let J = (a : I )
be an s-residual intersection. Assume that I = ( f1, . . . , fr ) and ht(I )= g ≥ 1. Fix
0≤ k ≤max{s, s− g+ 2}. Then the complex kZ+• is acyclic, if any of the following
hypotheses holds:

(1) 1≤ s ≤ 2 and s = k, or

(2) r + k ≥ s+ 1, k ≤ 2, and I satisfies SDC1 at level s− g− k, or

(3) r + k ≤ s and I satisfies SD, or

(4) r + k ≥ s+ 1, k ≥ 3, I satisfies SDC1 at level s− g− k, and depth(Zi ( f ))≥
d − s+ k for 0≤ i ≤ k.

Consequently, having a finite acyclic complex whose components have sufficient
depth, one can estimate the depth of the zeroth homology.

Theorem 2.6. Let (R,m) be a CM local ring of dimension d and let I =( f1, . . . , fr )

be an ideal with ht(I )= g≥ 1. Let s ≥ g and fix 0≤ k ≤min{s, s−g+2}. Suppose
that one the following hypotheses holds:

(i) r + k ≤ s and I satisfies SD, or
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(ii) r+k ≥ s+1, I satisfies SDC1 at level s−g−k, and depth(Zi ( f ))≥ d−s+k
for 0≤ i ≤ k, or

(iii) k ≤ s− r + 2 and I satisfies SD, or

(iv) depth(Hi ( f ))≥min{d−s+k−2, d−g} for 0≤ i≤k−1 and I satisfies SD, or

(v) I is strongly Cohen–Macaulay.

Then for any s-residual intersection J = (a : I ), the complex kZ+• is acyclic.
Furthermore, Symk

R(I/a) if 1≤ k ≤ s−g+2, or the disguised residual intersection
if k = 0, is CM of codimension s.

In the above theorem, the cases where k = 0, 1 and s − g + 1 are the most
important ones. For, k = 0 is related to the disguised residual intersection, k = 1 is
connected to R/a, and k = s− g+ 1 is related to the canonical module of R/J.

Remark 2.7. Any of the conditions (iii)–(v) are stronger than (i) and (ii). Con-
dition (i) in Theorem 2.6 implies that depth(R/I ) ≥ d − s + k and condition (v)
implies that depth(R/I )≥ d − g ≥ d − s. The other conditions, (ii), (iii) and (iv),
yield depth(R/I )≥ d − s+ k− 2. Therefore, to have a better consequence of the
theorem, it may not be too much to require depth(R/I )≥ d − s.

The first two items in the next corollary settle conjectures (3) and (4) mentioned
in the Introduction.

Corollary 2.8. Let (R,m) be a CM local ring of dimension d and let I =( f1, . . . , fr)

be an ideal with ht(I )= g≥ 1. Suppose that depth(R/I )≥ d−s and that I satisfies
any of the conditions in Theorem 2.6 for k = 1, for instance, if I satisfies SD. Then,
for any algebraic s-residual intersection J = (a : I ):

(1) depth(R/a)= d − s and thus a is minimally generated by s elements.

(2) J is unmixed of height s.

(3) Ass(R/a) ⊆ Ass(R/I ) ∪Ass(R/J ). Furthermore, if I is unmixed then the
equality holds.

(4) If the residual is arithmetic, then Symi
R(I/a) is a faithful R/J -module for all i .

Proof. (1) Applying Theorem 2.6 for k= 1, we have depth(I/a)= d−s. Therefore,
the result follows from the exact sequence 0→ I/a→ R/a→ R/I → 0 and the
fact that depth(R/I )≥ d − s by hypothesis.

(2) J has codimension at least s, thus for any p ∈ Ass(R/J ) we have ht(p) ≥ s.
On the other hand, Ass(R/J ) ⊆ Ass(R/a) and any prime ideal in the latter has
codimension less than s by (1) (see [Bruns and Herzog 1998, Proposition 1.2.13]).
This yields the unmixedness of J.
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(3) Let p ∈ Ass(R/a). Then ht(p)≤ s, by (1). If ht(p) < s or p 6⊃ J, then ap = Ip
and thus p ∈ Ass(R/I ); otherwise ht(p) = s and p ⊇ J , which clearly means
p ∈ Ass(R/J ). Verification of the last statement is straightforward.

(4) To see this, we refer to the proof of [Hassanzadeh 2012, Theorem 2.11] wherein
it is shown that, in the spectral sequence defined in (2-3), K :=

(
∞E0,0

hor

)
[0] ⊆ J ⊆(

2E0,0
hor

)
[0]. Moreover, in the case where the residual is arithmetic, this spectral

sequence, locally in height s, collapses in the second page. Hence all of these
inclusions are equality. We just notice that(2E0,0

hor

)
[0] = H 0

g (H0(D•))[0] =
∞⋃

i=0

(γ ·Symi
R(I ) :R Symi+1

R (I )).

Thus once equality in the above line happens, J =γ ·Symi
R(I ) :R Symi+1

R (I ) for all i .
Therefore, Symi

R(I/a)= Symi+1
R (I )/γ ·Symi

R(I ) is a faithful R/J -module. �

The following examples show the accuracy of the conditions in Theorem 2.6 and
Corollary 2.8(4).

Example 2.9. Let

R =Q[x1, . . . , x7], M =
(

0 x1 x2 x3

x4 x5 x6 x7

)
, and I = I2(M).

Set
f0 =−x4x1, f3 =−x3x4,

f1 =−x2x4, f4 = x1x7− x3x5,

f2 = x1x6− x2x5, f5 = x2x7− x3x6.

Macaulay2 computations show that depth(Z1(I )) = 6, depth(Z2(I )) = 2 and
depth(Z3(I )) = 6, hence I satisfies SDC1 at level 0 but not at level 1. However,
Z1 has enough depth, hence condition (ii) in Theorem 2.6 is fulfilled whenever
2 ≤ s ≤ 4. The nontrivial case will be s = 4. Also, depth(R/I ) = 4 > d − s = 3.
It then follows from Corollary 2.8 that for any 4-residual intersection J = a : I
we have ht(J )= 4= µ(a). It is easy to see that I satisfies G∞; hence [Eisenbud
et al. 2004, Proposition 3.7bis] implies that `(I )≥ 5. On the other hand, the Plüker
relations show that f2 f3− f1 f4+ f0 f5= 0. Hence I is not generated by analytically
independent elements; that is, `(I )= 5. Therefore, the same proposition in [loc. cit.]
proves that there must exist a 5-residual intersection J = a : I such that ht(J ) > 5.
By the latter, Corollary 2.8 guarantees that, for that ideal a, the module I/a cannot
be CM and thus Theorem 2.6 does not work because SDC1 at level 1 is not satisfied.

Another note about this example is that depth(R/I 2)=2, according to Macaulay2;
therefore, Ext5(R/I 2, R) 6= 0. The vanishing of this Ext module would be sufficient
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to prove that I is 4-residually S2 in [Chardin et al. 2001, Theorem 4.1], whereas
we saw in the above corollary that I is 4-residually unmixed.

Example 2.10. The arithmetic hypothesis in Corollary 2.8(4) cannot be dropped.
Let R = Q[x, y], I = (x, y) and a = (x2, y2). Then we have J = (a, xy) and
Ann(Sym2

R(I/a)) = (aI : I 2) = (x, y). The latter is not J, since the residual
(linkage) is not arithmetic.

In the case where the residual intersection is geometric, we have stronger corol-
laries.

Corollary 2.11. Let (R,m) be a CM local ring of dimension d and let I =
( f1, . . . , fr ) be an ideal with ht(I )= g ≥ 1. Suppose that depth(R/I )≥ d − s and
that I satisfies any of the conditions in Theorem 2.6 for some 1 ≤ k ≤ s − g+ 2.
Then, for any geometric s-residual intersection J = (a : I ) and for that k:

(1) I k/aI k−1 is isomorphic to Symk
R(I/a) and it is a faithful maximal Cohen–

Macaulay R/J -module.

(2) aI k−1
= I k
∩ J.

(3) I k
+ J is a CM ideal of height s+ 1 and ht(I k

+ J/J )= 1.

Proof.

(1) Consider the natural map

ϕ :
Symk

R(I )

γ Symk−1
R (I )

→
I k

aI k−1

that sends Ti to fi . The map ϕ is onto. Let K =Ker(ϕ). We show that Ass(K )=∅,
hence K = 0. We have

Ass(K )⊆ Ass
(

Symk
R(I )

γ Symk−1
R (I )

)
.

By Theorem 2.6,

depth
(

Symk
R(I )

γ Symk−1
R (I )

)
= d − s,

hence for any associated prime p in the latter we have ht(p)≤ s. However, since J
is a geometric residual, for any p of codimension ≤ s, either Ip = ap or Ip = (1). In
the former case,

Symk
R(Ip)

γp Symk−1
R (Ip)

= 0

for k ≥ 1, which implies that p 6∈Ass(K ). In the latter case, Symk
R(Ip)= Rp, hence

ϕp is an isomorphism, which means Kp = 0; in particular, p 6∈ Ass(K ). Therefore,
Ass(K ) = ∅, hence K = 0. The CM-ness of Symk

R(I/a) was already shown in
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Theorem 2.6. To see that I k/aI k−1 is faithful, one may use Corollary 2.8 and
part (1), or just notice that J ⊆ aI k−1

: I k and that the equality holds locally at all
associated primes of J which are of height s.

(2) Consider the canonical map ψ : I k/(aI k−1)→ (I k
+ J )/J. By (2), I k/aI k−1

is CM of dimension d − s, which in conjunction with the fact that the residual is
geometric shows that ψ is an isomorphism for all 0≤ k ≤ s− g+ 2. Notice that
(I k
+ J )/J ' I k/(J ∩ I k). Thus the canonical map implies J ∩ I k

= aI k−1.

(3) By (1) and (2), (I k
+ J )/J is CM of dimension d − s. Also, by Theorem 2.6,

R/J is CM of dimension d − s. Thus the exact sequence 0→ (I k
+ J )/J →

R/J→ R/(I k
+ J )→ 0 implies depth(R/I k

+ J )≥ d− s−1. On the other hand,
since the residual is geometric, ht(I k

+ J ) ≥ s + 1, which in turn completes the
proof. To see that ht((I k

+ J )/J )= 1, it is enough to notice that R/J is CM. �

We now proceed to determine the structure of the canonical module of R/J. This
achievement is via a study of the type of an appropriate candidate for the canonical
module. Recall that in a Noetherian local ring (R,m) the type of a finitely generated
module M is the dimension of the R/m-vector space Extdepth(M)

R (R/m,M), and
it is denoted by rR(M) or just r(M).

Theorem 2.12. Let (R,m) be a CM local ring of dimension d and let I=( f1, . . . , fr)

be an ideal with ht(I ) = g ≥ 2. Let J = (a : I ) be an s-residual intersection of I
and let 1≤ k ≤ s− g+ 1. Suppose that I is SCM. Then

rR
(
Symk

R(I/a)
)
≤

(
r + s− g− k

r − 1

)
rR(R).

Proof. First we deal with the case where g = 2. Consider the complex kZ+• ,

0→ H r
g (Dr+s−1)[k]→ · · ·

φk
−→ H r

g (Dr+k)[k]
τk
−→(Dk)[k]→ · · · → (D0)[k]→ 0. (2-11)

We study the depth of the components of this complex. Since Zr−1 = R, we
have depth(kZ+r+s−1) = d. For k ≤ j ≤ s − 2, the first cycle which appears in
Dr+ j is Zr−s+ j and, by the SCM condition, it has depth equal to d = d − g+ 2,
which is at least d − s+ ( j + 1)+ 1. As for the right part of the complex, we have
depth(Zi )=d−g+2≥d−s+k+1 for all 0≤ i≤k, since by assumption k≤ s−g+1.

Summing up, we have

depth(kZ+i )≥ d − s+ i + 1 for all i = 0, . . . , s− 1. (2-12)

Now, let F•→ R/m be a free resolution of R/m. We put the double complex
HomR(F•, kZ+• ) in the third quadrant with HomR(F0, kZ+0 ) in the center. The two
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arisen spectral sequences are

∞E−i,− j
hor =

{
Ext j

R

(
R/m,Symk

R(I/a)
)
, i = 0,

0, i 6= 0,
and 1E−i,− j

ver =Ext j
R(R/m, kZ+i ).

The latter vanishes for all (i, j) such that j−i ≤ d−s and i 6= s, according to (2-12).
The convergence of both complexes to the homology module of the total complex
implies that Extd−s

R

(
R/m,Symk

R(I/a)
)
'
∞E−s,−d

ver . The latter is a submodule of
ExtdR(R/m, kZ+s ). Therefore, rR

(
Symk

R(I/a)
)
≤ dimR/m

(
ExtdR(R/m, kZ+s )

)
.

Following from the construction of D•, we have Dr+s−1 = S(−r+1− s). Hence

kZ+s = H r
g (S)[−r+1−s+k].

To calculate the dimension of the above Ext module, we just need to know how
many copies of R appear in the inverse polynomial structure of the above local
cohomology module. The answer is simply the number of positive solutions of the
numerical equation α1+ · · ·+αr = r − 1+ s− k, which is

(r−k+s−2
r−1

)
. Therefore,

rR

(
Symk

R(I/a)
)
≤
(r+s−2−k

r−1

)
r(R) in the case where g = 2.

Now, let ht(I )= g ≥ 2. We choose a regular sequence a of length g−2 inside a

which is a part of a minimal generating set of a. I/a is still SCM by [Huneke 1983,
Corollary 1.5]; moreover, J/a = a/a : I/a. Recall that µ(a)= s by Corollary 2.8;
therefore, J/a is an (s− g+ 2)-residual intersection of I/a which is of height 2.
Hence we return to the case g = 2 to obtain

rR
(
Symk

R(I/a)
)
= rR/a

(
Symk

R/a(I/a)
)

≤

(
r + (s− g+ 2)− 2− k

r − 1

)
rR/a(R/a)=

(
r + s− g− k

r − 1

)
rR(R)

(see [Bruns and Herzog 1998, Exercise 1.2.26]). �

Remark 2.13. Clearly the above proof works for k = 0 as well; hence if I is SCM
of ht(I )≥ 2 and K is a disguised s-residual intersection of I , then

rR(R/K )≤
(

r + s− g
r − 1

)
rR(R).

Everything is now ready for us to explain the structure of the canonical module.

Theorem 2.14. Suppose that (R,m) is a Gorenstein local ring of dimension d. Let
I be an SCM ideal with ht(I ) = g and let J = (a : I ) be an arithmetic s-residual
intersection of I. Then ωR/J is isomorphic to Syms−g+1

R (I/a). It is isomorphic to
(I s−g+1

+ J )/J in the geometric case. Furthermore, R/J is generically Gorenstein
and R/J is Gorenstein if and only if I/a is principal.

Proof. Without loss of generality, we may suppose that g ≥ 2; otherwise we may
add a new variable x to R and consider ideals a+ (x) and I + (x) in the local ring
R[x]m+(x) wherein we have J + (x)= (a+ (x)) : (I + (x)).
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R/J is CM by Theorem 2.6. Respectively, by Theorem 2.6, Corollary 2.8 and
Theorem 2.12, Syms−g+1

R (I/a) is a maximal CM, faithful R/J -module and of
type 1. Therefore, it is the canonical module of R/J by [Bruns and Herzog 1998,
Proposition 3.3.13]. In the geometric case, Syms−g+1

R (I/a)' (I s−g+1
+ J )/J by

Corollary 2.11.
To see that R/J is generically Gorenstein, notice that for any prime ideal p⊇ J

of height s we have r((R/J )p)= µ((ωR/J )p)= µ
(
Syms−g+1

Rp
((I/a)p)

)
, which is 1

since the residual is arithmetic by the assumption. Finally, let t = µ(I/a); then
r(R/J )= µ(ωR/J )=

(s−g+t
t−1

)
which is 1 if and only if t = 1. �

3. Hilbert function, Castelnuovo–Mumford regularity

Although the family {kZ+• } does not consist of free complexes, it can approximate
R/J and Symk

R(I/a) very closely. Several numerical invariants or functions such
as Castelnuovo–Mumford regularity, projective dimension and the Hilbert function
can be estimated via this family. Chardin, Eisenbud and Ulrich [Chardin et al. 2001]
restated an old question [Stanley 1980] asking for which open sets of ideals a the
Hilbert function of R/a depends only on the degrees of the generators of a. In
[Chardin et al. 2001], the authors consider the following two conditions:

(A1) if the Hilbert function of R/a is constant on the open set of ideals a generated
by s forms of the given degrees such that codim(a : I )≥ s; and

(A2) if the Hilbert function of R/(a : I ) is constant on this set.

It is shown in [Chardin et al. 2001, Theorem 2.1] that ideals with some slight
depth conditions in conjunction with Gs−1 or Gs satisfy these two conditions. In
this direction we have the following result which, in addition to showing the validity
of conditions (A1) and (A2) under some sliding depth condition, provides a method
for computing the desired Hilbert functions.

Proposition 3.1. Let R be a CM graded ring over an Artinian local ring R0, and let
I and a be two homogeneous ideals of R. Let J = (a : I ) be an s-residual intersection.
Let 0≤ k ≤ s− g+ 2 and suppose that I satisfies any of the following hypotheses:

(1) 1≤ s ≤ 2 and s = k, or

(2) r + k ≥ s+ 1, k ≤ 2, and I satisfies SDC1 at level s− g− k, or

(3) r + k ≤ s and I satisfies SD, or

(4) r + k ≥ s+ 1, k ≥ 3, I satisfies SDC1 at level s− g− k, and depth(Zi ( f ))≥
d − s+ k for 0≤ i ≤ k.

Then the Hilbert function of the disguised s-residual intersection, if k = 0, and that
of Symk

R(I/a), if 1≤ k ≤ s− g+ 2, depends only on the degrees of the generators
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of a and the Koszul homologies of I. In particular, if I satisfies any of the above
conditions for k = 1 then the Hilbert function of R/a satisfies (A1).

Proof. By Proposition 2.5, the standing assumptions on I imply the acyclicity of
kZ+• . Hence the Hilbert function of H0(kZ+• ) is derived from the Hilbert functions
of the components of kZ+• which, according to (2-1) and (2-9), are just some direct
sums of the Koszul cycles of I shifted by the twists appearing in the Koszul complex
K•(γ , S). Since the Hilbert functions of Koszul cycles are inductively calculated in
terms of those of the Koszul homologies, the Hilbert function of H0(kZ+• ) depends
on the Koszul homologies of I and just the degrees of the generators of a. In the
case where k = 1, we know the Hilbert function of I/a= Sym1

R(I/a) and therefore
we know the Hilbert function of R/a by 0→ I/a→ R/a→ R/I → 0. �

The next important numerical invariant associated to an algebraic or geometric
object is Castelnuovo–Mumford regularity. Here we present an upper bound for the
regularity of the disguised s-residual intersection K and the regularity of Symk

R(I/a)
(if 1≤ k ≤ s− g+ 1).

Assume that R =
⊕

n≥0 Rn is a positively graded *local Noetherian ring of
dimension d over a Noetherian local ring (R0,m0), and set m=m0+ R+. Suppose
that I and a are homogeneous ideals of R generated by homogeneous elements
f1, . . . , fr and a1, . . . , as , respectively. Let deg ft = it for all 1 ≤ t ≤ r with
i1 ≥ · · · ≥ ir and deg at = lt for 1 ≤ t ≤ s. For a graded ideal b, the sum of the
degrees of a minimal generating set of b is denoted by σ(b).

Proposition 3.2. With the same notation just introduced above, let (R,m) be a
CM *local ring, let I be an ideal with ht(I ) = g ≥ 2 and let s ≥ g. Suppose that
J = (a : I ) is an s-residual intersection of I and K is the disguised s-residual
intersection of I with respect to a. Suppose that any of the following conditions
hold for some 0≤ k ≤ s− g+ 1:

(i) r + k ≤ s and I satisfies SD1, or

(ii) r+k≥ s+1, I satisfies SDC2 at level s−g−k, and depth(Zi ( f ))≥d−s+k+1
for 0≤ i ≤ k.

Then if k ≥ 1,

reg
(
Symk

R(I/a)
)
≤ reg(R)+ dim(R0)+ σ(a)− (s− g+ 1− k) indeg(I/a)− s.

And if k = 0,

reg(R/K )≤ reg(R)+ dim(R0)+ σ(a)− (s− g+ 1) indeg(I/a)− s.

Proof. The proof of this fact is essentially the same as that of [Hassanzadeh 2012,
Theorem 3.6] wherein the case of k = 0 is verified. A crucial part of repeating
that proof is that we have to change the structure of the families {kZ+• } from the
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beginning by substituting the tails with a free complex. Another way to prove
this result in the case where I is SCM may be by applying the “g = 2” trick in
Theorem 2.12. �

The inequality in the above proposition becomes more interesting in particular
cases; for example, if R is a polynomial ring over a field and k = 1, this inequality
reads as

regR(I/a)+ (s− g) indeg(I/a)≤ σ(a)− s.

Hence we have a numerical obstruction for J = (a : I ) to be an s-residual intersection.
At the other end of the spectrum we have k = s− g+ 1. This case corresponds

to the canonical module of R/J.
The next proposition improves [Hassanzadeh 2012, Proposition 3.5] by removing

the Gs condition.

Proposition 3.3. Suppose that (R,m) is a positively graded Gorenstein *local
ring, over a Noetherian local ring (R0,m0), with canonical module ωR = R(b) for
some integer b. Let I be a homogeneous SCM ideal with ht(I ) = g, let a ⊂ I be
homogeneous and let J = (a : I ) be an arithmetic s-residual intersection of I. Then
ωR/J = Syms−g+1

R (I/a)(b+ σ(a)).
In particular, if dim(R0)= 0 then

reg(R/J )= reg(R)+ σ(a)− indeg
(
Syms−g+1

R (I/a)
)
− s.

Proof. We may and do assume that g ≥ 2. First suppose that g = 2. We keep
the notation defined at the beginning of Section 2 to define the complex kZ+• .
Considering R as a subalgebra of S = R[T1, . . . , Tr ], we write the degrees of an
element x of R as the 2-tuple (deg x, 0) with the second entry zero. Therefore,
deg ft = (it , 0) for all 1≤ t ≤ r , deg at = (lt , 0) for all 1≤ t ≤ s, deg Tt = (it , 1)
for all 1≤ t ≤ r , and thus deg γt = (lt , 1) for all 1≤ t ≤ s. With this notation the
Z-complex has the shape

Z• : 0→ Zr−1⊗R S(0,−r + 1)→ · · · → Z1⊗R S(0,−1)→ Z0⊗R S→ 0.

Consequently,

Zr−1 = R
(
−

r∑
t=1

it , 0
)
⊗R S(0,−r + 1),

and, taking into account the fact that a1, . . . , as is a minimal generating set of a by
Corollary 2.8,

Dr+s−1 = S
(
−

r∑
t=1

it − σ(a),−s− r + 1
)
.
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It then follows that (s−1)Z+s = H r
g (Dr+s−1)[∗,s−1] is isomorphic to

H r
g (S)

(
−

r∑
t=1

it − σ(a), 0
)
[∗,−r ]

'

(
RT−1

1 · · · T
−1

r

(
−

r∑
t=1

it

))
(−σ(a))' R(−σ(a)). (3-1)

Notice that deg(T−1
j )= (−i j ,−1).

We next turn to the proof of Theorem 2.12 and consider the spectral sequences
therein for k = s − g + 1 = s − 1. We have 1E−s,−d

ver = ExtdR(R/m, (s−1)Z+s )
which is isomorphic to ExtdR(R/m, R(b))(−b − σ(a)) by (3-1). The latter is in
turn homogeneously isomorphic to R/m(−b− σ(a)), since R is Gorenstein. The
inclusion

Extd−s
R

(
R/m,Syms−g+1

R (I/a)
)
'
∞E0,−(d−s)

hor ↪→ 1E−s,−d
ver = ExtdR(R/m, (s−1)Z+s )

is indeed an isomorphism, since the latter is a vector space of dimension one. In the
graded case, all of the homomorphisms in the proof of Theorem 2.12 are homoge-
neous; therefore, the above isomorphism implies Extd−s

R

(
R/m,Syms−g+1

R (I/a)
)
'

R/m(−b−σ(a)). We already know that in the local caseωR/J =Syms−2+1
R (I/a), by

Theorem 2.14, hence in the graded case we have ωR/J = Syms−2+1
R (I/a)(b+σ(a)).

Now suppose that g ≥ 2 and let a = a1, . . . , ag−2 be a regular sequence in a

which is a part of its minimal generating set. Then ωR/a = (R/a)(b+ σ(a)) and,
moreover, we go back to the case where g = 2. We then have

ωR/J = Sym(s−g+2)−2+1
R/a

( I/a
a/a

)
((b+ σ(a))+ σ(a/a))

= Syms−g+1
R (I/a)(b+ σ(a)). �

Finally, one may ask whether under the Gs condition our methods can contribute
more information about the structure of residual intersections than what is known
so far. The next result shows that in the presence of the Gs condition the complex
0Z+• approximates R/J for any (algebraic) s-residual intersection J. In particular,
the above facts about regularity and the Hilbert function hold for R/J.

Proposition 3.4. Let (R,m) be a Gorenstein local ring and suppose that I is SCM
and evenly linked to an ideal which satisfies Gs . Then the disguised s-residual
intersections of I , with respect to an ideal a, is the same as the algebraic residual
intersection J = a : I.

Proof. It is shown in [Huneke and Ulrich 1988, Theorem 5.3] that under the
above assumptions on I there exists a deformation (R′, I ′) of (R, I ) such that
I ′ is SCM and Gs . Let I = ( f1, . . . , fr ), a = (a1, . . . , as), and suppose that
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ai =
∑r

j=1 ci j fj . Let si j be a lifting of ci j to R′ and let f ′i be a lifting of fi to R′.
Let X = (xi j ) be an s × r matrix of invariants and define α := (α1, . . . , αs) =

X · ( f ′1, . . . , f ′r )
t. Let R̃ = R′[xi j ](m+(xi j−si j )) and J̃ := (α1, . . . , αs) :R̃ I ′R̃. By

[Huneke and Ulrich 1988, Lemma 3.2], J̃ is a geometric s-residual intersection
of I ′R̃. We construct the complex 0Z+•

(
(α1, . . . , αs); ( f ′1, . . . , f ′s )

)
in R̃ and set

R̃/K̃ = H0
(

0Z+• ((α1, . . . , αs); ( f ′1, . . . , f ′s ))
)
. Since J̃ is a geometric residual,

we have J̃ = K̃ .
Assume that π is the projection from R̃ to R which sends xi j to ci j . By [Hassan-

zadeh 2012, Proposition 2.13], R/π(K̃ )= H0(0Z+• ) and, by [Huneke and Ulrich
1988, Theorem 4.7], π( J̃ )= J. Therefore, R/π(K̃ )= R/π( J̃ )= R/J. �

4. Arithmetic residual intersections

In this section we scrutinize the structure of the 0Z+• complex in the case where I/a
is cyclic. We find that the homologies of 0Z+• determine the uniform annihilator
of nonzero Koszul homologies. The importance of this fact is that, although the
Koszul complex is an old object, not much is known about the annihilator of higher
homologies. Besides the rigidity and differential graded algebra structure of the
homologies, there is an interesting paper of Corso, Huneke, Katz and Vasconcelos
[Corso et al. 2006] wherein the authors make efforts to find out “whether the annihi-
lators of nonzero Koszul homology modules of an unmixed ideal is contained in the
integral closure of that ideal”. However, it seems that the situation of mixed ideals
is more involved; for example, for a= (x2

−xy, y2
−xy, z2

− zw,w2
− zw), (taken

from [loc. cit.]), we have Ann(H1)= ā, the integral closure, and Ann(H2)=
√
a.

This example shows that the intersection of the annihilators has a better structure
than the union. This is an interesting example for us since (a : ā) is a 4-residual
intersection, with ā/a cyclic and ā satisfying SD.

Since a part of our results works well with arithmetic s-residual intersections, it
is worth mentioning some general properties of these ideals.

Proposition 4.1. Let R be a Noetherian ring, let a= (a1, . . . , as)⊂ I be an ideal
of R and let J = a : I be an s-residual intersection. Then:

(i) J is an arithmetic s-residual intersection if and only if ht
(
0 :
∧2
(I/a)

)
≥ s+1.

(ii) If 2 is unit in R, then I + J ⊆
(
0 :
∧2
(I/a)

)
.

(iii) The following statements are equivalent:

(1) For all i ≤ s, an i-residual intersection of I exists.
(2) For any prime ideal p⊃ I such that ht(p)≤ s−1, we haveµ(Ip)≤ht(p)+1.
(3) There exist a1, . . . , as ∈ I such that, for i ≤ s − 1, Ji = (a1, . . . , ai ) : I

is an arithmetic i-residual intersection and J = (a1, . . . , as) : I is an
(algebraic) s-residual intersection.
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(iv) J is an arithmetic s-residual intersection if and only if there exists an element
b ∈ I such that ht((a, b) : I )≥ s+ 1.

Proof. For (i), J =a : I is an arithmetic s-residual if and only if ht(Fitt j (I/a))≥ s+ j
for j = 0, 1 [Eisenbud 1995, Proposition 20.6]. Moreover, Fitt j (I/a) and the
annihilator of

∧j+1
(I/a) have the same radical [Eisenbud 1995, Exercise 20.10]

which yields the assertion. Part (ii) is straightforward. Part (iii) goes along the same
line as the proof of [Ulrich 1994, Lemma 1.4]. Part (iv) follows from [Ulrich 1994,
Lemma 1.3]. �

The concept of s-parsimonious ideals first appeared in [Chardin et al. 2001],
where it is shown in Proposition 3.1 that weakly s-residually S2 ideals which
satisfy Gs are s-parsimonious. However, if I is an ideal which satisfies the conditions
of Corollary 2.8 then it follows from [Chardin et al. 2001, Proposition 3.3(a)] that
I is s-parsimonious.

Remark 4.2. Let (R,m) be a CM local ring of dimension d , and let I be an ideal
such that depth(R/I ) ≥ d − s and such that I satisfies any of the conditions in
Theorem 2.6 for k = 1. Then for any arithmetic s-residual intersection J = (a : I ),
there exists an element b ∈ I such that J = (a : b).

This remark is further motivation to study the cases where I/a is cyclic.
To exploit the structure of H•(0Z+• (a; a, b)), the following lemma is crucial.

Lemma 4.3. Let a = (a1, . . . , as), I = ( f ) = (b, a1, . . . , as), and consider the
complex D• defined in (2-1). Let Z ′

•
, B ′

•
and H ′

•
be the cycles, boundaries and

homologies of the Koszul complex K•(a1, . . . , as). Put B̃i = (B ′i :Z ′i b) and S =
R[T0, T1, . . . , Ts] with standard grading. Then:

(i) We have

Hi (D•)∼=
(Z ′i ⊗R R[T0])(−i)

(B̃i ⊗R T0 R[T0])(−i)
,

and, in particular,

(Hi (D•)T0)[0]
∼= bHi (a1, . . . , as) for all i.

(ii) If R is a graded ring and b, a1, . . . , as are homogeneous, then we have a
homogeneous isomorphism

(Hi (D•)T0)[0]
∼= bHi (a1, . . . , as)((i + 1) deg(b)) for all i.

Proof. (i) To compute the homology modules of D•, we consider the two spectral
sequences arising from its double complex structure (2-1). We put this double
complex in the second quadrant and locate K0(γ )⊗S Z0( f ) in the corner.

Set S = R[T0, T1, . . . , Ts], where T0 corresponds to b and Ti to ai . Then
(γ1 · · · γs)= (T1 · · · Ts) is a regular sequence on Zi = Zi [T0, T1, . . . , Ts](−i), with
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Zi = Zi (b, a1, . . . , as). We then have 1E−i, j
ver = Hj (K•(γ )⊗Zi ) = 0 for all j ≥ 1

and all i . We also have (S/(T1, T2, . . . , Ts))⊗S Zi = R[T0] ⊗R Zi , in which we
consider R[T0] as an S-module by the trivial multiplication Ti R[T0] = 0, 1≤ i ≤ s.
It then follows that 1E0,•

ver is the complex

0→ Zs+1⊗R R[T0](−s− 1) ∂s+1
−−→· · · → Z1⊗R R[T0](−1)

∂1
−→Z0⊗R R[T0] → 0, (4-1)

wherein the differentials are induced by those in Z•( f ). As well,

Hi
(1E0,•

ver
)
= Hi

(
Z•⊗S (S/(T1, T2, . . . , Ts))

)
(−i). (4-2)

Considering the convergence of the spectral sequences to the homology module
of the total complex D•, we have Hi (D•) = Hi

(
1E0,•

ver
)
= Ker(∂i )/ Im(∂i+1). We

compute this homology in two steps.

Step 1: (Ker(∂i )) Let zi =
(∑

j rj ej1∧ej2∧· · ·∧eji )ω(T0)∈ Zi [T0](−i). We study
two cases: first, if j1 6= 0 for every j which appears in the above presentation of zi ,
then we have zi ∈ Z ′i [T0] and, moreover,

∂i (zi )=
∑

j

rj

( i∑
l=1

ej1 ∧ · · · ∧ ejl−1 ∧ ejl+1 ∧ · · · ∧ eji Tlω(T0)

)
= 0,

where the last vanishing is due to the fact that Ti R[T0] = 0 for all 1 ≤ i ≤ s. It
follows that zi ∈ Ker(∂i ).

Second, we show that if j1 = 0 for some j that appears in zi then zi 6∈ Ker(∂i ).
Writing zi = z′i + z′′i ∧ e0, where z′i and z′′i do not involve e0, one has

∂i (zi )= ∂i (z′i )+ ∂i−1(z′′i )∧ e0+ (−1)i+1T0z′′i

by the DG-algebra structure of (Z•, ∂ ′•). Since z′i and z′′i do not involve e0, it follows
that ∂i (z′i ) = 0 and ∂i−1(z′′i ) = 0 by the multiplication on R[T0]. Thus ∂i (zi ) =

(−1)i+1T0z′′i 6= 0. Therefore, ker(∂i )= Zi (a1, . . . , as)[T0](−i)= Z ′i [T0](−i).

Step 2: (Im(∂i+1)) To compute the image, we consider an arbitrary element

zi+1ω(T0)=

(∑
j

rj ej1 ∧ ej2 ∧ · · · ∧ eji+1

)
ω(T0) ∈ Zi+1[T0](−i − 1)

and write zi+1 = z′i+1+ z′′i+1 ∧ e0, where z′i+1 and z′′i+1 do not involve e0. Recall
that Zi+1 = Zi+1( f ). Consider the Koszul complex (K•( f ), d•). We have

0= d(zi+1)= d(z′i+1)+ d(z′′i+1)∧ e0+ (−1)i bz′′i+1.

Since z′i+1 and z′′i+1 do not involve e0, the above equation implies that d(z′′i+1)= 0
and bz′′i+1 = d((−1)i+1z′i+1), hence z′′i+1 ∈ (B

′

i :Z ′i b).
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Conversely, for any z′′i+1 ∈ (B
′

i :Z ′i b), we have bz′′i+1 = d((−1)i+1z′i+1) for some
z′i+1 ∈ K ′i+1, hence zi+1 = (z′i+1+ z′′i+1 ∧ e0) ∈ Zi+1.

On the other hand, ∂(zi+1) = ∂(z′i+1) + ∂(z
′′

i+1 ∧ e0) = 0 + ∂(z′′i+1 ∧ e0) =

(−1)i T0z′′i+1.
It follows that Im(∂i+1)= (T0 B̃i [T0])(−i). Finally, the above two steps show that

Hi (D•)=
(Z ′i ⊗R R[T0])(−i)

(B̃i ⊗R T0 R[T0])(−i)
.

To see the last assertion, just notice that

((Z ′i [T0]T0)(−i))[0] = Z ′i
[
T0, T−1

0

]
[−i] = T−i

0 Z ′i ,

and
((B̃i T0[T0]T0)(−i))[0] = T−i

0 B̃i .

Therefore,

(Hi (D•)T0)[0] ' Z ′i/B̃i = Z ′i/(B
′

i :Z ′i b)= H ′i /(0 :H ′i b)' bHi (a1, . . . , as). (4-3)

(ii) In the graded case, every homomorphism in the above argument is homogeneous
except the first and last isomorphisms in (4-3). To see the desired shift, notice that
the bidegree of T0 is (deg(b), 1). Hence, considering (Hi (D•)T0) in bidegree (0, 0),
we have

(Hi (D•)T0)[(0,0)] '
T−i

0

(
(Z ′i )[i deg(b)]

)
T−i

0

(
(B̃i )[i deg(b)]

) ' (Z ′i
B̃i

)
[i deg(b)]

.

Moreover, there exists the homogeneous exact sequence

0→ B̃i → Z ′i → bHi (a1, . . . , as)(deg(b))→ 0,

which yields the assertion. �

Now, we are ready to explain our main theorem in this section. The dependence
of the homology modules of 0Z+• (a, f ) on the generating sets becomes clear by
this theorem; furthermore, it motivates the study of the uniform annihilator of the
Koszul homology modules.

Theorem 4.4. Let R be a (Noetherian) ring, and let a = (a) = (a1, . . . , as)

and I = ( f ) = (b, a1, . . . , as). Then Hi (0Z+• (a, f )) ' bHi (a1, . . . , as) for all
i ≥ 1 and H0(0Z+• (a, f )) ' R/(a : b); furthermore, in the graded case we have
Hi (0Z+• (a, f ))' bHi (a1, . . . , as)((i + 1) deg(b)) for i ≥ 1.

Proof. We study the spectral sequences arising from the third-quadrant double com-
plex C •g⊗D• with C0

g⊗D0 in the center. Since T0, T1, . . . , Ts is a regular sequence
on the Di , we have (1Ever)[0] = H s+1

g (D•)[0]. The latter is Z+
•

by definition (2-5),
which is the truncated complex 0Z+• (a, f )≥1.
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On the other hand, in the horizontal spectral sequence we deal with H j
g (Hi (D•)).

Hi (D•) is annihilated by (T1, . . . , Ts) by (4-2), which implies that H j
g (Hi (D•))=

H j
(T0)
(Hi (D•)) for all i and j . Also notice that H 0

(T0)
(Hi (D•))[0] = 0 for i ≥ 1, since

indeg(Di )= i . Hence

(2E−i,− j
hor

)
[0] =


H 0
(T0)
(H0(D•))[0], i = 0 and j = 0,

H 1
(T0)
(Hi (D•))[0] = (Hi (D•)T0)[0], i ≥ 1 and j = 1,

0, otherwise.

(4-4)

Considering both spectrals at the same time, we have:

(2Ehor)[0] : 0 0 H 0
(T0)
(H0(D•))[0]

· · · H 1
(T0)
(H2(D•))[0] H 1

(T0)
(H1(D•))[0] H 1

(T0)
(H0(D•))[0]

· · · 0 0 0

Z+
•
= (1Ever)[0] :

...
...

...

H s+1
g (Ds+1)[0] // H s+1

g (Ds)[0] // H s+1
g (Ds−1)[0] // · · ·

By the convergence of the spectral sequences, we have Hi+1(0Z+• )= Hi (Z+• )=
H 1
(T0)
(Hi+1(D•))[0] for i ≥ 1. Quite generally, H 1

(T0)
(Hi+1(D•))[0] is isomorphic to

(Hi+1(D•)T0)[0], which in turn is isomorphic to bHi+1(a1, . . . , as) by Lemma 4.3.
In the case where i = 0, the convergence of the spectral sequences provides the
exact sequence

0→ H 1
(T0)
(H1(D•))0→ H0(Z+• )

ψ
−→ H 0

(T0)
(H0(D•))0→ 0. (4-5)

According to (2-5), H0(Z+• ) = Coker(φ0), and ψ is used to define τ0 in (2-7).
Therefore, Ker(ψ)= H1(0Z+• ) and its image determines H0(0Z+• ), which we will
compute below.

Since the horizontal spectral stabilizes in the second step, we have ∞E0,0
hor =

2E0,0
hor = H 0

(T0)
(H0(D•)). Moreover, end(H s+1

g (Ds+1)) = 0, thus
(
∞E0,0

hor

)
[i] = 0 for

i ≥ 1, which in particular implies that H 0
(T0)
(H0(D•))[1] = 0. Specifically, we

then have T0 H 0
(T0)
(H0(D•))[0] = 0. Recall that H0(D•) = Sym(I )/γ Sym(I ) and

that we consider SI := SymR(I ) as an S = R[T0, . . . , Ts]-module via the ring
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homomorphism S→ SI sending T0 to b and Ti to ai as an element of (SI )[1] = I.
Hence T0 H 0

(T0)
(H0(D•))[0] = 0 as an element in (Sym(I )/γ Sym(I ))[1] = I/a is

equivalent to saying that H 0
(T0)
(H0(D•))[0] ⊆ (a : b).

On the other hand, H 0
(T0)
(H0(D•))[0]= (a :b)∪

(⋃
∞

i=1
(
aSymi

R(I ) :R Symi+1
R (I )

))
,

hence H 0
(T0)
(H0(D•))0 ⊇(a : b), which yields H 0

(T0)
(H0(D•))[0] = (a : b).

Further, by Lemma 4.3, H 1
(T0)
(H1(D•))[0]= (H1(D•)T0)[0]= bH1( f1, f2, . . . , fs).

Substituting these facts in the short exact sequence (4-5), the assertion follows. �

As a summary we have the following corollary.

Corollary 4.5. Let R be a (Noetherian) ring, and let a = (a) = (a1, . . . , as) and
I = ( f ) = (b, a1, . . . , as). If bHi (a1, . . . , as) = 0 for all i ≥ 1, then there exists
an exact complex

0→ Z+s → Z+s−1→ · · · → Z+0 → (a :R b)→ 0,

wherein Z+i =
⊕r

j=i+1 Z j ( f )⊕nj for some positive integers nj and r. In particular,
the index of the lowest cycle which appears in the components increases along
the complex.

Theorem 4.4, in conjunction with other conditions which imply the acyclicity of
the complex 0Z+• , yields nontrivial facts about the uniform annihilators of nonzero
Koszul homologies.

Corollary 4.6. Let (R,m) be a CM local ring of dimension d, and suppose that
I = (b, a1, . . . , as) satisfies SD. If dim(bHi (a1, . . . , as))≤ d − s for all i ≥ 1 then

• bHi (a1, . . . , as)= 0 for all i ≥ 1, and

• depth(R/((a1, . . . , as) : I ))≥ d − s.

Proof. We consider the complex 0Z+• (a; (b, a)). By Theorem 4.4, the hypothesis
on the dimensions implies that this complex is acyclic locally at codimension
s− 1. Then, appealing to the acyclicity lemma, the sliding depth hypothesis shows
that the complex is acyclic on the punctured spectrum and, finally, acyclic (the
same technique which we used to prove Proposition 2.5). Once more applying
Theorem 4.4, we conclude the first assertion. The depth inequality follows from
the proof of Theorem 2.6. �

As a final remark in this section, we notice that if (a : I ) is an s-residual
intersection then dim(IHi (a)) ≤ d − s for all i . Thus, the latter property may be
considered as a generalization of algebraic residual intersection.

5. Uniform annihilator of Koszul homologies

Motivated by the results in the previous section, we concentrate on the uniform
annihilator of Koszul homologies in this section. In the main theorem of this
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section, we see that in any residual intersection J = a : I the sliding depth condition
passes from I to a. This fact was known to experts only in the presence of the G∞
condition [Ulrich 1994, 1.8(3)+1.12], which is not that surprising since I is then
generated by a d-sequence. However, it was unknown even for perfect ideals of
height 2 which are not G∞; see [Eisenbud and Ulrich 2016] for such an example.

The next interesting result in this section is Corollary 5.6, in which we show that,
for any residual intersection J = a : I with I satisfying sliding depth, I is contained
in the uniform annihilator of the nonzero Koszul homologies of a. Hence this is a
kind of universal property for such ideals.

The next proposition is fundamental to proving the aforementioned results, though
it is also interesting by itself.

Proposition 5.1. Let (R,m) be a CM local ring of dimension d, and let a =
( f1, f2, . . . , fs) and I = ( f1, f2, . . . , fr ) be ideals with s ≤ r . Let J = (a : I ) and
g = ht(I ) = ht(a) ≥ 1. Let n be an integer and suppose that ht(J ) ≥ n ≥ 1 and
that depth(Hl( f1, f2, . . . , fr ))≥ d − r + j for l ≥ r − n+ 2. Then, for any k with
r ≥ k ≥ s and any j ≥ k− n+ 2:

(i) depth(Hj ( f1, f2, . . . , fk)≥ d − k+ j , and

(ii) I ⊆ Ann(Hj ( f1, f2, . . . , fk)).

Both assertions hold for sequences of the form ( f1, . . . , fs, fi1, . . . , fik−s ), where
{ fi1, . . . , fik−s } ⊆ { fs+1, . . . , fr }.

Proof. The proof is by a recursive induction on k. By assumption, the result is true
for k = r . Suppose that it is true for k ≤ r . We now apply a recursive induction on
j ≥ (k− 1)− n+ 2 to show the following claims:

(1) fk Hj ( f1, f2, . . . , fk−1)= 0;

(2) depth(Hj ( f1, f2, . . . , fk−1))≥ d − (k− 1)+ j ;

(3) depth(Z j ( f1, f2, . . . , fk−1))≥ d − (k− 1)+ j ;

(4) depth(Bj ( f1, f2, . . . , fk−1))≥ d − (k− 1)+ j .

Since these claims are clear for j > k−g, we consider an integer j ≥ (k−1)−n+3
and we suppose, by induction hypothesis, that the result holds for j . A simple
depth-chasing between cycles, boundaries and homologies shows that (2)–(4) for
j − 1 follow from (1) for j − 1 and the induction hypotheses of (2)–(4) for j . We
just notice that condition (1) provides the exact sequence

0→ Hj ( f1, . . . , fk−1)→ Hj ( f1, . . . , fk)→ Hj−1( f1, . . . , fk−1)→ 0.

We then proceed to prove (1) for j−1 while assuming the four claims hold for j .
To do this, we show that fk Hj−1( f1, f2, . . . , fk−1)p = 0 by an induction on ht(p).
For ht(p) < n it is clear, since Ip = ap. Now let q be a prime ideal with ht(q)≥ n
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and suppose that (1)–(4) hold locally for all p such that p⊂ q. We may, and will,
replace (R,m) by (Rq, qRq). Considering the exact sequence

0→ Z j ( f1, . . . , fk−1)→
∧j
(Rk−1)→ Bj−1( f1, . . . , fk−1)→ 0,

out of the Koszul complex, we obtain

depth(Bj−1)≥min
{
depth

(∧j
(Rk−1)

)
, depth(Z j )− 1

}
≥ d − (k− 1)+ j − 1.

By assumption, j ≥ k − n + 2, which implies that depth(Bj−1( f1, . . . , fk−1)) ≥

d − n+ 2≥ 2. This time,

0→ Bj−1( f1, . . . , fk−1)→ Z j−1( f1, . . . , fk−1)→ Hj−1( f1, . . . , fk−1)→ 0

implies that depth(Hj−1)≥ 1, since depth(Z j−1)≥ 1, as dim(Rq)≥ n ≥ 1.
We now consider the exact sequence

0→ Hj ( f1, . . . , fk−1)→ Hj ( f1, . . . , fk−1, fk)→ 0j−1→ 0,

where 0j−1 = (0 :Hj−1( f1,..., fk−1) fk).
The induction hypotheses imply that

depth(0j−1)≥min{depth(Hj ( f1, . . . , fk−1, fk)), depth(Hj ( f1, . . . , fk−1))− 1}

≥min{d − k+ j, d − (k− 1)+ j − 1} ≥ d − k+ j

≥ d − k+ (k− n+ 2)= d − n+ 2≥ 2.

At last, we have the inclusion 0j−1 ⊆ Hj−1, where the former has depth at
least 2 and the latter has depth at least 1, while the equality holds on the punctured
spectrum, by the induction hypothesis. Therefore, this inclusion must be an equality,
which proves claim (1) for j − 1.

Applying the above argument for k = r , we have depth(Hj ( f1, . . . , fr−1)) ≥

d − (r − 1) + j for all j ≥ (r − 1) − n + 2, and fr Hj ( f1, f2, . . . , fr−1) = 0.
However, as long as we fix f1, . . . , fs we may change the role of fr with any one of
{ fs+1, . . . , fr }. In other words, we have depth(Hj ( f1, . . . , fs, . . . , f̂i , . . . , fr ))≥

d−(r−1)+ j for all j ≥ (r−1)−n+2, and fi Hj ( f1, . . . , fs, . . . , f̂i , . . . , fr )= 0.
notice that, for any ideal a⊆ I ′⊆ I, we have ht(a : I ′)≥ht(a : I )≥n. Therefore, if (i)
holds for ( f1, . . . , fs, fi1, . . . , fik−s ), where { fi1, . . . , fik−s } ⊆ { fs+1, . . . , fr }, then
the above argument shows that (i) holds for ( f1, . . . , fs, fi1, . . . , fik−s−1) and, more-
over, that fik−s Hj ( f1, . . . , fs, fi1, . . . , fik−s−1)= 0 for j ≥ k−1−n+2. Since fik−s

varies over the set { fs+1, . . . , fr }, we must have IHj ( f1, . . . , fs, fi1, . . . , fik−s−1)=0
for j ≥ k− 1− n+ 2, which completes the proof. �

We next want to show, in Lemma 5.3, that under the sliding depth condition
there exists a similar depth inequality for cycles of the Koszul complex. For this,
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we need the following lemma which is reminiscent of the inductive Koszul long
exact sequence.

Lemma 5.2. Let R be a commutative ring, let { f0, f1, . . . , fr } ⊆ R, Z•, B• be
the Koszul cycles and boundaries with respect to the sequence { f1, f2, . . . , fr },
let Z ′

•
be the Koszul cycles with respect to the sequence ( f0, f1, . . . , fr ) and let

0• = (B• :Z• f0). Then, for any j ≥ 0, there exists an exact sequence

0→ Z j → Z ′j → 0j−1→ 0.

Proof. The Koszul complex K•( f1, f2, . . . , fr ) is canonically a subcomplex of
K•( f0, f1, . . . , fr ). We will denote the differential of both complexes by d. Let
{e0, e1, . . . , er } be the canonical basis of Rr+1. Every θ ∈ Z ′j can be written uniquely
as a sum θ = e0∧w+ v, where e0 does not appear in terms w and v. Since θ ∈ Z ′j ,

0= d(θ)= d(e0 ∧w+ v)= f0w− e0 ∧ d(w)+ d(v).

It follows that{
e0 ∧ d(w)= 0
f0w =−d(v)

hence
{

d(w)= 0
f0w =−d(v)

therefore w ∈ 0j−1.

We define ϕ : Z ′j → 0j−1 by ϕ(θ)= ϕ(e0 ∧w+ v)= w. The homomorphism ϕ

is well-defined, as the expression is unique. It is onto, since for any w ∈ 0j−1

there is a v ∈ Kj ( f1, f2, . . . , fr ) such that f0w =−d(v). Hence θ = e0 ∧w+ v ∈

Kj ( f0, f1, . . . , fr ) is the preimage of w.
Moreover, Z j = ker(ϕ). On one hand, if θ ∈ Z ′j belongs to Z j , then there is no

e0 in its decomposition in terms of the canonical basis of Rr+1. Consequently,
θ = e0∧w+v= v and w= 0. On the other hand, if 0= d(θ)= d(e0∧w+v)=w,
then θ = v. Therefore, θ ∈ Z ′j ∩ Kj ( f1, f2, . . . , fr )= Z j . �

The next lemma is needed in the proof of Theorem 5.4. Notice that the sliding
depth condition does not pass automatically from homologies to cycles because
there is a level restriction; see Proposition 2.4.

Lemma 5.3. Let (R,m) be a CM local ring of dimension d. Let a= ( f1, f2, . . . , fs)

and I = ( f1, f2, . . . , fr ) be ideals with s ≤ r , and let J = (a : I ) and g = ht(I )=
ht(a)≥ 1. Suppose that ht (J )≥ n ≥ 1 and that I satisfies SD. Then, for k ≥ s and
j ≥ k− n+ 2,

depth(Z j ( f1, f2, . . . , fk))≥ d − k+ j + 1.

Proof. By Proposition 5.1, IHj ( f1, f2, . . . , fk) = 0 whenever s ≤ k ≤ r and
j ≥ k−n+ 2. Therefore, by Lemma 5.2, we have the following exact sequence for
k− 1≥ s and j − 1≥ (k− 1)− n+ 2:

0→ Z j ( f1, f2, . . . , fk−1)→ Z j ( f1, f2, . . . , fk)→ Z j−1( f1, f2, . . . , fk−1)→ 0.
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We will prove the result by a recursive induction on k. If k = r , then it fol-
lows from Proposition 2.4. Suppose that the result holds for k ≥ s + 1. Since
Z j ( f1, f2, . . . , fk−1) satisfies SDC1 for j ≥ (k − 1)− g + 1, we can use a new
induction on j to conclude that

depth(Z j−1( f1, f2, . . . , fk−1))≥ d − (k− 1)+ ( j − 1)+ 1= d − k+ j + 1. �

We are now ready to prove the main theorem of this section. As we mentioned
at the beginning of the section, this fact was known only in the presence of the G∞
condition, under which the problem reduced to studying the properties of ideals
generated by d-sequences. Here the only assumption is the sliding depth and that
depth(R/I )≥ d − s.

Theorem 5.4. Let (R,m) be a CM local ring of dimension d and let J = (a : I ) be an
s-residual intersection with s ≥ ht(I )≥ 1. If I satisfies SD and depth(R/I )≥ d−s,
then a satisfies SD as well.

Proof. We apply Lemma 5.3 for n = s. It then follows that

depth(Z j ( f1, f2, . . . , fs))≥ d − s+ j + 1

for j ≥ 2. The hypothesis depth(R/I )≥ d − s enables us to apply Corollary 2.8,
which in turn implies that depth(R/a) ≥ d − s. Therefore, depth(a) ≥ d − s + 1
and hence depth(Z1(a))≥ d − s+ 2; that is, a satisfies SDC1, which is equivalent
to SD by Proposition 2.4. �

In the next proposition we prove a partial converse of Theorem 5.4.

Proposition 5.5. Let (R,m) be a CM local ring of dimension d, and let a =
( f1, f2, . . . , fs) and I = ( f1, f2, . . . , fr ) with s≤ r . Let J = (a : I ) be an s-residual
intersection. If a satisfies SD, then, for any s ≤ k ≤ r and j ≥ k− s+ 1:

(i) depth(Hj ( f1, f2, . . . , fk))≥ d − k+ j , and

(ii) depth(Z j ( f1, f2, . . . , fk))≥ d − k+ j + 1.

Proof. We will use induction on k. If k= s, then (ii) is clear by Proposition 2.4. Sup-
pose that the result holds for k ≥ s+ 1. Then, by the induction hypothesis, we have

depth(Hj ( f1, f2, . . . , fk))≥ d − k+ j ≥ d − s+ 1.

By a similar argument as in the proof of Proposition 5.1, IHj ( f1, f2, . . . , fk)= 0
for all j ≥ k− s+ 1. Then we have the short exact sequences

0→ Hj ( f1, f2, . . . , fk)→ Hj ( f1, f2, . . . , fk+1)→ Hj−1( f1, f2, . . . , fk)→ 0

and

0→ Z j ( f1, f2, . . . , fk)→ Z j ( f1, f2, . . . , fk+1)→ Z j−1( f1, f2, . . . , fk)→ 0,
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provided by Lemma 5.2 for any j ≥ k+ 1− s+ 1.
A depth-chasing then completes the proof. �

The next corollary of Theorem 5.4 shows a tight relation between the uniform
annihilator of nonzero Koszul homology modules and residual intersections.

Corollary 5.6. Let (R,m) be a CM local ring of dimension d, and let I satisfy
SD and depth(R/I ) ≥ d − s with s ≥ ht(I ) ≥ 1. Let J = (a : I ) be an s-residual
intersection and use Hj (a) to denote the j-th Koszul homology module with respect
to a minimal generating set of a. Then

I ⊆
⋂
j≥1

Ann(Hj (a)). (?)

Furthermore, the equality happens in the following cases, if depth(R/I )≥ d−s+1
(hence s ≥ g+ 1):

• If µ(Ip) ≤ s − i for a fixed positive integer i and for all p ∈ Ass(R/I ), then
I = Ann(Hj (a)) for all 1≤ j ≤ i .

• If R is Gorenstein and Ass(R/I )=min(R/I ), then I =
⋂

j≥1Ann(Hj (a)).

Proof. By Corollary 2.8, a is minimally generated by s elements. According to
Theorem 5.4, for any j , we have depth(Hj (a))≥d−s+ j . In particular, ht(p)≤ s−1
for any p ∈ Ass(Hj (a)) with j ≥ 1; see [Bruns and Herzog 1998, 1.2.13].

To show that IHj (a)= 0, we show that it has no associated prime. Notice that
IHj (a)⊆ Hj (a), hence, for any p ∈ Ass(IHj (a)), we have ht(p)≤ s− 1 for which
Ip = ap. Therefore, (IHj (a))p = 0 as desired.

To see the equality, we localize at associated primes of I which have height at
most s− 1, so that Ip = ap for them. Now let (a1, . . . , as) be a minimal generating
set of a. If µ(Ip)≤ s− i then Hj (a1, . . . , as)p has a direct summand of (R/a)p for
all 1≤ j ≤ i , and thus its annihilator is ap = Ip. In the case where R is Gorenstein
and Ass(R/I ) = min(R/I ), we see that, locally at the associated primes of R/I,
Ip is unmixed and, moreover, (a1, . . . , as)p is not a regular sequence since s> ht(p).
Hence, for t = ht(Ip), Ann(Hs−t(ap)) is the unmixed part of ap= Ip which is Ip. �

The next amazing example shows a benefit of relaxing the Gs condition in our
theorems. However, we took this example from [Eisenbud and Ulrich 2016] wherein
the authors used it to show the necessity of the Gs condition in their theorems.

Example 5.7. Let (R,m)=Q[x1, . . . , x5](x1,...,x5) and let I = I4(N ), where

N =


x2 x3 x4 x5

x1 x2 x3 x4

0 x1 x2 0
0 0 x1 x2

0 0 0 x1

 .
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Let 1i be the minors obtained by omitting the i-th row of N. We then consider a
to be the ideal generated by entries of

(11 −12 13 −14 15)


x1 0 0 0 0
0 x5 0 0 0
x3 x4 x5 x3 0
0 x3 x4 x5 0
0 x2 x3 x4 x5

 .
J = (a : I ) is a 5-residual intersection of I, and I is a perfect ideal of height 2 hence it
is SCM. Easily, one can see that any prime that contains I must contain p= (x1, x2);
that is, I is p-primary, since it is unmixed. The minimal presentation of I is given
by N . Therefore, Fitt4(I ) = m, and Fitt3(I ) 6⊂ p because x2

4 − x3x5 6∈ p, and
Fitt2(I )⊆ p because any combination of 3 “diagonal” elements contains either 0 or
x1 or x2. Thusµ(Ip)=3; in particular, I does not satisfy G3. However, it completely
suits our Corollary 5.6 for s = 5 and i = 2, hence Ann(H1(a))= Ann(H2(a))= I.
Also, since ht(J )=5, any prime ideal of height 2 containing a must contain I , which
means I = aunm. Since the ring is Gorenstein, we then have I = aunm

=Ann(H3(a))

(our Macaulay2 system was not able to calculate Ann(H1(a)) directly!).

We notice that Corollary 5.6 presents a universal property for any ideal a such
that J = (a : I ) is an s-residual intersection of I. For instance, in the above example,
for any other a such that J = (a : I ) is a 5-residual intersection of I, we have
Ann(H1(a))= Ann(H2(a))= Ann(H3(a))= aunm

= I.
An unpublished result of G.Levin [Vasconcelos 2005, Theorem 5.26] yields in

[Corso et al. 2006, Corollary 2.7] that if R is a Noetherian ring and a is an ideal of
finite projective dimension n, then (Ann(H1(a)))

n+1
⊆ a. Combining this result

with Corollary 5.6, one faces the strange fact that a and I have the same radical if
one adopts the conditions of Corollary 5.6. However, the following simple example
(taken from [Huneke 1983]) shows that [Corso et al. 2006, Corollary 2.7] is not
correct, and thus Levin’s result is not true.

Example 5.8. Let

X =
(

x1 x3 x5 x7

x2 x4 x6 x8

)
be a generic 2×4 matrix. Let J = I2(X), a= (x1x4−x2x3, x1x6−x2x5, x1x8−x2x7)

and I = (x1, x2). Then J = a : I is a geometric 3-residual intersection of I and is
prime, and a = I ∩ J , hence a is radical. Furthermore, Ann(H1(a)) = aunm

= I ,
which is not contained in a.

A simpler example would be the following degeneration of the above example.
Let a=

(
y2

1−y2
2 , y1 y3, y2 y4

)
∈ k[y1, . . . , y4]. Then Ann(H1(a))= (y1, y2) 6= rad(a).
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At the end, we make a conjecture and ask a question. The conjecture will imply
in turn the Cohen–Macaulayness of algebraic residual intersections for ideals with
the sliding depth condition.

Conjecture 5.9. If (R,m) is a CM local ring of dimension d and I satisfies SD
with depth(R/I )≥ d − s, then the disguised s-residual intersection of I coincides
with the algebraic s-residual intersection.

Here is a peculiar question that arises from Corollary 5.6.

Question 5.10. Does the equality hold in (?), if s > ht(I )?

Finally, we present, without proof (a proof is based on Proposition 5.1), the
following proposition which is an effort toward Question 5.10.

Proposition 5.11. Let (R,m) be a CM local ring of dimension d, and let a =
( f1, f2, . . . , fs) and I = ( f1, f2, . . . , fr ) be ideals with s≤ r and ht(I )= ht(a)≥ 1.
Suppose that ht(a : I )≥ n ≥ 1.

• If s + 1 ≤ r and depth(R/I ) ≥ d − n+ 1, then Ann(Hj ( f1, f2, . . . , fr )) = I
for 0≤ j ≤ r − s.

• If I satisfies SD, then, for µ≥ s and µ− g ≥ j ≥ µ− n+ 2,

Ann(Hj ( f1, f2, . . . , fµ))=
µ−s⋂
i=0

Ann(Hj−i ( f1, f2, . . . , fs)).
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