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The Prym map of degree-7 cyclic coverings
Herbert Lange and Angela Ortega

We study the Prym map for degree-7 étale cyclic coverings over a curve of
genus 2. We extend this map to a proper map on a partial compactification of the
moduli space and prove that the Prym map is generically finite onto its image of
degree 10.

1. Introduction

Consider an étale finite covering f : Y → X of degree p of a smooth complex
projective curve X of genus g ≥ 2. Let Nm f : JY → J X denote the norm map of
the corresponding Jacobians. One can associate to the covering f its Prym variety

P( f ) := (Ker Nm f )
0,

the connected component containing 0 of the kernel of the norm map, which is an
abelian variety of dimension

dim P( f )= g(Y )− g(X)= (p− 1)(g− 1).

The variety P( f ) carries a natural polarization, namely, the restriction of the princi-
pal polarization 2Y of JY to P( f ). Let D denote the type of this polarization. If,
moreover, f : Y→ X is a cyclic covering of degree p, then the group action induces
an action on the Prym variety. Let BD denote the moduli space of abelian varieties
of dimension (p−1)(g−1) with a polarization of type D and an automorphism of
order p compatible with the polarization. If Rg,p denotes the moduli space of étale
cyclic coverings of degree p of curves of genus g, we get a map

Prg,p :Rg,p→ BD

associating to every covering in Rg,p its Prym variety, called the Prym map.
Particularly interesting are the cases where dimRg,p = dimBD. For instance,

for p = 2 this occurs only if g = 6. In this case the Prym map Pr6,2 :R6→A5 is
generically finite of degree 27 (see [Donagi and Smith 1981]) and the fibers carry
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the structure of the 27 lines on a smooth cubic surface. For (g, p)= (4, 3), it is also
known that Pr4,3 is generically finite of degree 16 onto its 9-dimensional image BD

(see [Faber 1988]).
In this paper we investigate the case (g, p)= (2, 7), where dimRg,p = dimBD .

The main result of the paper is the following theorem. Let G be the cyclic group of
order 7.

Theorem 1.1. For any cyclic étale G-cover f : C̃→C of a curve C of genus 2, the
Prym variety Pr( f ) is an abelian variety of dimension 6 with a polarization of type
D = (1, 1, 1, 1, 1, 7) and a G-action. The Prym map

Pr2,7 :R2,7→ BD

is generically finite of degree 10.

The paper is organized as follows. First we compute in Section 2 the dimension
of the moduli space BD when (g, p) = (2, 7). In Sections 3–5, we extend the
Prym map to a partial compactification of admissible coverings R̃2,7 such that
Pr2,7 : R̃2,7→ BD is a proper map. We prove the generic finiteness of the Prym
map in Section 6 by specializing to a curve in the boundary. In order to compute the
degree of the Prym map, we describe in Section 7 a complete fiber over a special
abelian sixfold with polarization type (1, 1, 1, 1, 1, 7), and in Section 8 we give
a basis for the Prym differentials for the different types of admissible coverings
appearing in the special fiber. Finally, in Section 9 we determine the degree of the
Prym map by computing the local degrees along the special fiber.

2. Dimension of the moduli space BD

As in the introduction, let R2,7 denote the moduli space of nontrivial cyclic étale
coverings f : C̃→ C of degree 7 of curves of genus 2. The Hurwitz formula gives
g(C̃)= 8. Hence the Prym variety P = P( f ) is of dimension 6 and the canonical
polarization of the Jacobian JC̃ induces a polarization of type (1, 1, 1, 1, 1, 7)
on P (see [Lange and Ortega 2011, p. 397]). Let σ denote an automorphism
of JC̃ generating the group of automorphisms of C̃/C . It induces an automorphism
of P, also of order 7, which is compatible with the polarization. The Prym map
Pr2,7 :R2,7→ BD is the morphism defined by f 7→ P( f ). Here BD is the moduli
space of abelian varieties of dimension 6 with a polarization of type (1, 1, 1, 1, 1, 7)
and an automorphism of order 7 compatible with the polarization. The main result
of this section is the following proposition.

Proposition 2.1. dimBD = dimR2,7 = 3.

Proof. Clearly dimR2,7 = dimM2 = 3. So we have to show that also dimBD = 3.
For this we use Shimura’s theory of abelian varieties with endomorphism structure
(see [Shimura 1963] or [Birkenhake and Lange 2004, Chapter 9]).
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Let K =Q(ρ7) denote the cyclotomic field generated by a primitive 7-th root of
unity ρ7. Clearly BD coincides with one of Shimura’s moduli spaces of polarized
abelian varieties with endomorphism structure in K. The field K is a totally complex
quadratic extension of a totally real number field of degree e0 = 3. Define

m := dim P
e0
= 2.

The polarization of P depends on the lattice of P and a matrix T ∈ Mm(Q(ρ7)).
The signature of T (see [Birkenhake and Lange 2004, p. 264]) is an e0-tuple of
nonnegative integers ((r1, s1), . . . , (re0, se0)) satisfying

rν + sν = m = 2

for all ν, where e0 is the number of real embeddings of the totally real subfield of
Q(ρ7). Recall that for each embedding Q(ρ7) ↪→C, the matrix T is skew-hermitian,
and the (rν, sν) are the signatures of the corresponding skew-hermitian matrices.
Then, according to [Shimura 1963, p. 162] or [Birkenhake and Lange 2004, p. 266,
lines 6–8], we have

dimBD =

e0∑
ν=1

rν sν ≤ 3, (2-1)

with equality if and only if rν = sν = 1 for all ν.
On the other hand, in Section 6 we will see that the map Pr2,7 is generically

injective. This implies that

dimBD ≥ dimR2,7 = 3,

which completes the proof of the proposition. �

Remark 2.2. According to [Ortega 2003], we know that P is isogenous to the
product of a Jacobian of dimension 3 with itself. Then EndQ(P) is not a simple
algebra. Hence, if one knows that Pr2,7 is dominant onto the component BD , then
[Birkenhake and Lange 2004, Proposition 9.9.1] implies that rν = sν = 1 for
ν = 1, 2, 3, which also gives dimBD = 3.

Remark 2.3. It is claimed in [Faber 1988] that the Prym map Pr2,6 :R2,6→BD

satisfies dimBD = dimR2,6= 3. In a subsequent paper [Lange and Ortega ≥ 2016],
we show that this does not occur. Moreover, we prove that there are no further
examples with this property in the case of étale cyclic coverings of degree 2p for a
prime p, but there are 3 more cases for cyclic ramified coverings of these degrees.

3. The condition (∗)

In this section we study the Prym map for coverings of degree 7 between stable
curves. Let G = Z/7Z be the cyclic group of order 7 with generator σ and let
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f : C̃→ C be a G-cover of a connected stable curve C of arithmetic genus g. We
fix in the sequel a primitive 7-th root of unity ρ. We assume the following condition
for the covering f :

(∗) The fixed points of σ are exactly the nodes of C̃ and at each node one local
parameter is multiplied by ρδ and the other by ρ−δ for some δ, 1≤ δ ≤ 3.

As in [Beauville 1977], we have f ∗ωC ' ωC̃ , which implies

pa(C̃)= 7g− 6.

Let Ñ and N be the normalizations of C̃ and C , respectively, and let f̃ : Ñ → N
be the induced map. At each node s of C̃ we make the usual identification

K∗s /O
∗

s ' C∗×Z×Z.

Then the action of σ on K∗s /O∗s is

σ∗((z,m, n)s)= (ρδ(m−n)z,m, n)s

for some δ, 1≤ δ ≤ 3. Here we label the branches at the node s such that a local
parameter at the first branch (corresponding to m) is multiplied by ρδ with 1≤ δ≤ 3.
Then we have

f∗((z,m, n)s)= (z7,m, n) f (s)

since f∗((z,m, n)s)=
∑6

k=0(σ
∗)k(z,m, n)s , viewed as a divisor at f (s), and

6∑
k=0

(σ∗)k(z,m, n)s =
( 6∏

k=0

(ρδ(m−n))kz, 7m, 7n
)

s

=
(
ρ
∑6

k=0 δ(m−n)kz7, 7m, 7n
)

s

=
(
ρδ(m−n) 6·7

2 z7, 7m, 7n
)

s

= (z7, 7m, 7n)s

= f ∗(z7,m, n) f (s).

We define the multidegree of a line bundle L on C̃ by

deg L = (d1, . . . , dv),

where v is the number of components of C̃ and di is the degree of L on the i-th
component of C̃ .

Lemma 3.1. Let L ∈ Pic C̃ with Nm L 'OC̃ . Then

L ' M ⊗ σ∗M−1
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for some M ∈ Pic C̃. Moreover, M can be chosen of multidegree (k, 0, . . . , 0) with
0≤ k ≤ 6.

Proof. As in [Mumford 1971, Lemma 1], using Tsen’s theorem, there is a divisor D
such that L 'OC̃(D) and f∗D = 0. We write

D =
∑

x∈C̃reg

x

︸ ︷︷ ︸
Dreg

+

∑
s∈C̃sing

(zs,ms, ns)s

︸ ︷︷ ︸
Dsing

. (3-1)

If x ∈ C̃reg is in the support of Dreg, then σ k(x) is in the support of Dreg for some
1≤ k ≤ 6. Since

x − σ k(x)= (x + σ(x)+ · · ·+ σ k−1(x))− σ(x + σ(x)+ · · ·+ σ k−1(x)),

there is a divisor Ereg such that Dreg = Ereg− σ
∗Ereg. From (3-1) one sees that the

divisor Dsing is the sum of divisors of the form (ρas , 0, 0)s for some 1 ≤ as ≤ 6.
Choosing an integer is such that −isδs ≡ as mod 7, we have

(1, is, 0)− σ∗(1, is, 0)= (ρ−δs is , 0, 0)= (ρas , 0, 0)s .

Then there is a divisor Esing such that Dsing = Esing−σ
∗Esing. Thus D = E −σ∗E

with E = Ereg+ Esing. Set M =OC̃(E). By replacing M with M⊗ f ∗N, where N
is a line bundle on C , we may assume that the multidegree of M is (ε1, . . . , εν) with
0≤ εi ≤ 6. Using the fact that C̃ is connected, the multidegree can be accumulated
on one of the components by further tensoring M with line bundles associated to
divisors of the form (1, 1,−1)s , since (1, 1,−1)s−σ∗(1, 1,−1)s= (1, 0, 0)s=0. �

Let P denote the Prym variety of f : C̃ → C , i.e., the connected component
containing 0 of the kernel of norm map Nm : JC̃ → JC . By definition, it is a
connected commutative algebraic group. Lemma 3.1 implies that P is the variety of
line bundles in ker Nm of the form M ⊗ σ∗M−1 with M of multidegree (0, . . . , 0).
Let ν : N → C and ν̃ : Ñ → C̃ denote the normalizations of C and C̃ , respectively.
Hence there is a map f̃ making the following diagram commutative:

Ñ ν̃
//

f̃
��

C̃

f
��

N ν
// C

Proposition 3.2. Suppose pa(C)= g. Then P is an abelian variety of dimension
6g− 6.
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Proof. (As in [Beauville 1977] and [Faber 1988].) Consider the diagram

0 // T̃ //

Nm
��

JC̃ ν̃∗
//

Nm
��

J Ñ //

Nm
��

0

0 // T // JC ν∗
// J N // 0

(3-2)

of commutative algebraic groups, where the vertical arrows are the norm maps
and T and T̃ are the groups of classes of divisors of multidegree (0, . . . , 0) with
singular support. Since f ∗ restricted to T is an isomorphism and Nm ◦ f ∗ = 7, the
norm on T̃ is surjective and

ker Nm
|T̃ ' T̃ [7] = {points of order 7 in T̃ }.

On the other hand, Lemma 3.1 implies that ker Nm consists either of 7 components
or is connected. Let R be the kernel of Nm : J Ñ→ J N. Then one obtains an exact
sequence

0→ T̃ [7] → R̃→ R→ 0 (3-3)

with R̃ = P if ker Nm is connected, and R̃ = P×Z/7Z if ker Nm is not connected.
We will see that in both cases P is an abelian variety.

Suppose first that C and hence C̃ are nonsingular. Then C̃ = Ñ and hence T̃ = 0.
Since ker(J Ñ → J N ) has 7 components, P is an abelian variety.

Suppose that C and thus also C̃ have s > 0 singular points. Then dim T̃ =
dim T = s. Then R is an abelian variety, since f̃ is ramified. We get a surjective
homomorphism P → R with kernel consisting of 7s elements when Ker Nm is
connected and 7s−1 when it is not. Hence also P is an abelian variety. Moreover,

dim P = dim R = dim JC̃ − dim JC.

Now, if C has s nodes and N has t connected components, then also C̃ has s nodes
and Ñ has t connected components. This implies

dim JC̃ − dim JC = pa(C̃)− pa(C)= 6g− 6. �

Let 2̃ denote the canonical polarization of the generalized Jacobian JC̃ (see
[Beauville 1977]). It restricts to a polarization 6 on the abelian subvariety P. We
denote the isogeny P→ P̂ associated to 6 by the same letter.

Proposition 3.3. The polarization 6 on P is of type D := (1, . . . , 1, 7, . . . , 7),
where 7 occurs {

g times if ker Nm is connected,
g− 1 times if ker Nm is not connected.
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Proof. (Similar to [Faber 1988, Proposition 2.4]; we use also [Beauville 1977,
Corollary 2.3, p. 156].) If C is smooth, this is well known. In this case ker f
consists of 7 components and 7 occurs g − 1 times in the polarization D (see
[Birkenhake and Lange 2004, §12.3]). So suppose C is not smooth and f is a
covering of type (∗). In this case the maps f ∗ and f̃ ∗ are injective.

Consider the isogeny

h : P × J N → J Ñ , (L ,M) 7→ ν̃∗(L)⊗ f̃ ∗M.

We first claim that ker h⊂ P[7]× J N [7]. To see this, let (L ,M)∈ ker h, i.e., L ∈ P
and M ∈ J N and ν̃∗(L)⊗ f̃ ∗M 'OÑ . Choose M ′ ∈ JC with

M ' ν∗M ′. (3-4)

Then
ν̃∗(L ⊗ f ∗M ′)' ν̃∗L ⊗ f̃ ∗ν∗M ′ ' ν̃∗L ⊗ f̃ ∗M 'OÑ , (3-5)

so L⊗ f ∗M ′ ∈ ker ν̃∗ ' T̃. Since f ∗ : T → T̃ is an isomorphism, there is a unique
N ∈ T such that

L ' f ∗(N ⊗M ′−1). (3-6)

This implies

(N ⊗M ′−1)⊗7
' Nm ◦ f ∗(N ⊗M ′−1)' Nm L 'OC

and hence L ∈ P[7] and using (3-5) we get

M⊗7
' Nm f̃ ∗M ' Nm f̃ ∗ν∗M ′ ' Nm ν̃∗L−1

' ν∗Nm L−1
' ν∗ON 'OC .

This completes the proof of the claim.
Now, since the map ν∗ : JC[7]→ J N [7] is surjective, we can choose M ′ in (3-4)

even as an element of JC[7]. Moreover, from (3-6) we also get N ∈ T [7], since
f ∗ is injective. Now consider the following extension of the map h to the whole of
the kernel of the norm map of f :

h̃ : ker Nm×J N → J Ñ , (L ,M) 7→ ν̃∗(L)⊗ f̃ ∗M.

We claim that

ker h̃ = {( f ∗(N ⊗M ′−1), ν∗M ′) | M ′ ∈ JC[7], N ∈ T [7]}. (3-7)

So ker h consists of those elements of the right-hand side of (3-7) for which
f ∗(N ⊗M ′−1) is contained in the connected component containing 0 of ker Nm f .

Proof of (3-7). The inclusion of ker h̃ in the left-hand side of the equation follows
from (3-4) and (3-6), which are valid for the extension h̃.
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For the converse inclusion, suppose that M ′ ∈ JC[7] and N ∈ T [7]. First note
that f ∗(N ⊗ M ′−1) ⊂ ker Nm, since Nm f ∗(N ⊗ M ′−1) ' (N ⊗ M ′−1)⊗7

' OC .
Moreover,

ν̃∗ f ∗(N ⊗M ′−1)⊗ f̃ ∗ν∗M ′ ' ν̃∗ f ∗(N ⊗M ′−1)⊗ ν̃∗ f ∗M ′ ' ν̃∗ f ∗N 'OÑ .

This completes the proof of (3-7). �

Since for any α ∈ T [7] we have (N ⊗ α)⊗ (α−1
⊗ M ′−1) ' N ⊗ M ′−1 and

ν∗(M ′⊗α)' ν∗M ′, we conclude that

dimF7 ker h̃ = dimF7 JC[7] = 2g− t,

with t = dim T = dim T̃. This implies

dimF7 ker h =
{

2g− t if ker is connected,
2g− t − 1 if ker is not connected,

since in the not-connected case ker Nm consists of 7 components.
Now ker h is a maximal isotropic subgroup of the kernel of the polarization of

P× J N, since this polarization is the pullback under h of the principal polarization
of J Ñ. This implies dimF7(ker6×J N [7])=2(dimF7 ker h). Since dimF7(J N [7])=
2g− 2t , it follows that

dimF7(ker6)=
{

2g if ker Nm is connected,
2g− 2 if ker Nm is not connected.

Since ker6 ⊂ P[7], this gives the assertion. �

Corollary 3.4. ker Nm consists of 7 components.

Proof. Consider C̃t → Ct , a family of coverings, where the central fiber C̃0→ C0

satisfies condition (∗) and all the other fibers are coverings of smooth curves. The
fibers in the associated family of abelian varieties ker Nmt have 7 components
for t 6= 0 and, according to Proposition 3.3, they have a polarization of type
(1, . . . , 1, 7, . . . , 7), where 7 appears g− 1 times. The type of a polarization in a
family of abelian varieties is constant since it is given by integers; therefore, ker Nm0

has the same polarization type as the nearby fibers and, again by Proposition 3.3,
ker Nm0 is nonconnected, so it consists of 7 components. �

4. The condition (∗∗)

As in the last section, let f : C̃→ C be a G-covering of stable curves. Recall that a
node z ∈ C̃ is either

• of index 1, i.e., |Stab z| = 1, in which case f −1( f (z)) consists of 7 nodes
which are cyclically permuted under σ , or



The Prym map of degree-7 cyclic coverings 779

• of index 7, i.e., |Stab z| = 7, in which case z is the only preimage of the node
f (z) and f is totally ramified at both branches of z. Since σ is of order 7, the
two branches of z are not exchanged.

We also say a node of C is of index i if a preimage (and hence every preimage)
under f is a node of index i . We assume the following conditions for the G-covering
f : C̃→ C of connected stable curves:

(∗∗)



pa(C)= g and pa(C̃)= 7g− 6;

σ is not the identity on any irreducible component of C̃ ;

if at a fixed node of σ one local parameter is multiplied by ρi , the other
is multiplied by ρ−i , where ρ denotes a fixed 7-th root of unity;

P := Pr( f ) is an abelian variety.

Under these assumptions the nodes of C̃ are exactly the preimages of the nodes
of C . We define for i = 1 and 7:

• ni := the number of nodes of C of index i , i.e., nodes whose preimage consists
of 7/ i nodes of C̃ ,

• ci := the number irreducible components of C whose preimage consists of
7/ i irreducible components of C̃ ,

• r := the number of fixed nonsingular points under σ .

Lemma 4.1. The covering satisfies (∗∗) if and only if r = 0 and c1 = n1.

In particular, any covering satisfying (∗∗) is an admissible G-cover (for the
definition, see Section 5), and coverings satisfying condition (∗) also verify (∗∗).

Proof. (As in [Beauville 1977] and [Faber 1988].) Let Ñ and N be the normaliza-
tions of C̃ and C , respectively. The covering f̃ : Ñ → N is ramified exactly at the
points lying over the fixed points of σ : C̃→ C̃ . Hence the Hurwitz formula says

pa(Ñ )− 1= 7(pa(N )− 1)+ 3r + 6n7.

So

pa(C̃)− 1= pa(Ñ )− 1+ 7n1+ n7 = 7(pa(N )− 1)+ 3r + 7n1+ 7n7.

Moreover,
pa(C)− 1= pa(N )− 1+ n1+ n7,

which altogether gives

pa(C̃)− 1= 7(pa(C)− 1)+ 3r.

Hence the first condition in (∗∗) is equivalent to r = 0.
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Now we discuss the condition that P is an abelian variety. For this consider
again the diagram (3-2). From the surjectivity of the norm maps it follows that P
is an abelian variety if and only if dim T̃ = dim T. Now

dim J Ñ = pa(Ñ )− n7− 7n1+ c7+ 7c1− 1
and thus

dim T̃ = (n7− c7)+ 7(n1− c1)+ 1 and dim T = (n7− c7)+ (n1− c1)+ 1.

Hence dim T̃ = dim T if and only if c1 = n1. �

Let f : C̃ → C be a G-covering satisfying condition (∗∗) with generating
automorphism σ . We denote by B the union of the components of C̃ fixed under σ
and write

C̃ = A1 ∪ · · · ∪ A7 ∪ B

with σ(Ai )= Ai+1, where A8 = A1. Observe that the covering B→ B/σ satisfies
condition (∗).

Proposition 4.2. (i) If B = ∅, then C̃ = A1 ∪ · · · ∪ A7, where A1 can be chosen
connected and tree-like, and #Ai ∩ Ai+1 = 1 for i = 1, . . . , 7.

(ii) If B 6= ∅, then Ai ∩ Ai+1 = ∅ for i = 1, . . . , 7. Each connected component
of A1 is tree-like and meets B at only one point. Also B is connected.

For the proof we need the following elementary lemma (the analogue of [Beauville
1977, Lemma 5.3] and [Faber 1988, Lemma 2.6]), which will be applied to the dual
graph of C̃ .

Lemma 4.3. Let 0 be a connected graph with a fixed-point free automorphism σ of
order 7. Then there exists a connected subgraph S of γ such that σ i (S)∩ σ i+1(S)
is empty for i = 0, . . . , 6 and

⋃6
i=0 σ

i (S) contains every vertex of 0.

Proof of Proposition 4.2. (As in [Beauville 1977] and [Faber 1988].) Let 0 denote
the dual graph of C̃ . If B =∅, let A1 correspond to the subgraph S of Lemma 4.3.
Let v be the number of vertices of S, e the number of edges of S and s the number
of nodes of A1 which belong to only one component. The equality c1 = n1 implies

v = e+ s− #A1 ∩ A2.

Since 1− v + e ≥ 0 and #A1 ∩ A2 ≥ 1 give s = 0, we have #A1 ∩ A2 = 1 and
1− v+ e = 0. So A1 is tree-like. This proves (i).

Assume B 6=∅ and define

• t := #A1 ∩ A2,

• m := #Ai ∩ B for i = 1, . . . , 7,

• iA1 := # irreducible components of A1,
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• cA1 := # of connected components of A1,

• nA1 := # nodes of A1.

Recall that assumption (∗∗) implies that B does not contain any node which moves
under σ . Then

c1 = iA1 and n1 = nA1 + r +m.

For any curve we have nA1−iA1+cA1≥0 (see [Beauville 1977, Proof of Lemma 5.3]).
Thus, if c1 = n1,

0= nA1 + t +m− iA1 ≥ t +m− cA1 .

Since C̃ is connected, any connected component of
⋃7

i=1 Ai meets B. But then any
connected component of A1 meets B, which implies m ≥ cA1 . Hence

0≥ t +m− cA1 ≥ t ≥ 0.

Hence t = 0, m = cA1 and nA1 − iA1 + cA1 = 0. So Ai ∩ Ai+1 = ∅ and B is
connected. �

In the next section we will extend the Prym map to the G-covers satisfying (∗∗),
thereby obtaining a proper map. Theorem 4.4 describes the associated Pryms by
reducing to the easier situation of coverings verifying (∗).

Theorem 4.4. Suppose that f : C̃→ C satisfies condition (∗∗). Then there exist
the following isomorphisms of polarized abelian varieties:

• In case (i) of Proposition 4.2, (P, 6)' ker((JA1)
7
→ JA1) with the polariza-

tion induced by the principal polarization on (JA1)
7.

• In case (ii) of Proposition 4.2, (P, 6)' ker((JA1)
7
→ JA1)× Q, where Q is

the generalized Prym variety associated to the covering B→ B/σ .

Proof. (As in [Beauville 1977, Theorem 5.4].) In case (i), C̃ is obtained from
the disjoint union of 7 copies of A1 by fixing 2 smooth points p and q of A1 and
identifying q in the i-th copy with p in the (i + 1)-st copy of A1 cyclically. The
curve C = C̃/G is obtained from A1 by identifying p and q , and f : C̃→ C is an
étale covering. Note that JA1 is an abelian variety, since A1 is tree-like.

Consider the diagram

0 // C∗ //

Nm
��

JC̃ //

Nm
��

(JA1)
7 //

m
��

0

0 // C∗ // JC // JA1 // 0
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in which m is the addition map. One checks immediately that Nm : C∗→ C∗ is an
isomorphism. This implies the assertion. Notice that the polarization of P is of type

(1, . . . , 1, 7, . . . , 7︸ ︷︷ ︸
g−1

).

In case (ii), we have

JC̃ ' (JA1)
7
× JB and P = (ker Nm)0 ' ker((JA1)

7
→ JA1)× Q,

which immediately implies the assertion. �

5. The extension of the Prym map to a proper map

Let Rg,7 denote the moduli space of nontrivial étale G-covers f : C̃→C of smooth
curves C of genus g, and let BD denote the moduli space of polarized abelian vari-
eties of dimension 6g−6 with polarization of type D, with D as in Proposition 3.3
and compatible with the G-action. As in the introduction we denote by

Prg,7 :Rg,7→ BD

the corresponding Prym map associating to the covering f the Prym variety Pr( f ).
In order to extend this map to a proper map, we consider the compactification Rg,7

of Rg,7 consisting of admissible G-coverings of stable curves of genus g introduced
in [Abramovich et al. 2003].

Let X → S be a family of stable curves of arithmetic genus g. A family of
admissible G-covers of X over S is a finite morphism Z→ X such that

(1) the composition Z→ X → S is a family of stable curves;

(2) every node of a fiber of Z→ S maps to a node of the corresponding fiber of
X → S;

(3) Z→ X is a principal G-bundle away from the nodes;

(4) if z is a node of index 7 in a fiber of Z→ S and ξ and η are local coordinates
of the two branches near z, any element of the stabilizer StabG(z) acts as

(ξ, η) 7→ (ρξ, ρ−1η),

where ρ is a primitive 7-th root of unity.

In the case of S = Spec C we just speak of an admissible G-cover. In this case
the ramification index at any node z over x equals the order of the stabilizer of z
and depends only on x . It is called the index of the G-cover Z→X at x . Since 7 is
a prime, the index of a node is either 1 or 7. Note that, for any admissible G-cover
Z→ X , the curve Z is stable if and only if X is stable.
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As shown in [Abramovich et al. 2003] or [Arbarello et al. 2011, Chapter 16],
the moduli space Rg,7 of admissible G-covers of stable curves of genus g is a
natural compactification of Rg,7. Clearly the coverings satisfying condition (∗∗)
are admissible and form an open subspace R̃g,7 of Rg,7.

Theorem 5.1. The map Prg,7 :Rg,7→BD extends to a proper map P̃rg,7 :R̃g,7→BD .

Proof. The proof is the same as the proof of [Faber 1988, Theorem 2.8] just
replacing 3-fold covers by 7-fold covers. So we will omit it. �

6. Generic finiteness of Pr2,7

From now on we consider only the case g = 2, i.e., of G-covers of curves of
genus 2. So dimR2,7 = dimM2 = 3 and BD is the moduli space of polarized
abelian varieties of type (1, 1, 1, 1, 1, 7) with G-action which is also of dimension 3.
Let [ f : C̃→ C] ∈R2,7 be a general point and let the covering f be given by the
7-division point η ∈ JC . The next lemma is a particular case of the results in [Lange
and Ortega 2011, p. 397–398] that we include here for the sake of completeness.

Lemma 6.1. (i) The cotangent space of BD at the point Pr2,7([ f : C̃→ C]) ∈ BD

is identified with the vector space
⊕3

i=1
(
H 0(ωC ⊗ η

i )⊗ H 0(ωC ⊗ η
7−i )

)
.

(ii) The codifferential of the map Pr2,7 :R2,7→ BD at the point ( f, η) is given by
the sum of the multiplication maps

3⊕
i=1

(
H 0(ωC ⊗ η

i )⊗ H 0(ωC ⊗ η
7−i )

)
−→ H 0(ω2

C).

Proof. (i) Consider the composed map Rg,7
Pr2,7
−−→BD

π
−→AD , where AD denotes

the moduli space of abelian varieties with polarization of type D. The cotangent
space of the image of [ f : C̃→C] in AD is by definition the cotangent at the Prym
variety P of f . It is well known that the cotangent space T ∗P,0 at 0 is

T ∗P,0 = H 0(C̃, ωC̃)
−
=

6⊕
i=1

H 0(C, ωC ⊗ η
i ). (6-1)

According to [Welters 1983] the cotangent space of AD at the point P can be
identified with the second symmetric product of H 0(C̃, ωC̃)

−. This gives

T ∗AD,P =

6⊕
i=1

S2 H 0(ωC ⊗ η
i )⊕

3⊕
i=1

(
H 0(ωC ⊗ η

i )⊗ H 0(ωC ⊗ η
7−i )

)
. (6-2)

Since the map π : BD → AD is finite onto its image and the group G acts on
the cotangent space of BD at the point, we conclude that this space can be identi-
fied with a 3-dimensional G-subspace of the G-space T ∗AD,P , which is defined over
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the rationals. But there is only one such subspace, namely,

3⊕
i=1

(
H 0(ωC ⊗ η

i )⊗ H 0(ωC ⊗ η
7−i )

)
.

This gives (i).

(ii) It is well known that the cotangent space of R2,7 at a point (C, η) without
automorphism is given by H 0(ω2

C) and the codifferential of Pr2,7 :R2,7→AD at
(C, η) by the natural map S2(H 0(C̃, ωC̃)

−) −→ H 0(ω2
C). The assertion follows

immediately from Lemma 6.1(i) and equations (6-1) and (6-2). �

Theorem 6.2. The map P̃r2,7 : R̃2,7→ BD is surjective and hence of finite degree.

Proof. Since the extension P̃r2,7 is proper according to Theorem 5.1, it suffices to
show that the map Pr2,7 is generically finite. Now Pr2,7 is generically finite as soon
as its differential at the generic point [ f : C̃ → C] ∈ R2,7 is injective. Let f be
given by the 7-division point η. According to Lemma 6.1, the codifferential of Pr2,7

at [ f : C̃→ C] is given by (the sum of) the multiplication of sections

µC,η :

3⊕
j=1

H 0(C, ωC ⊗ η
j )⊗ H 0(C, ωC ⊗ η

7− j )−→ H 0(C, ω2
C).

Note that the surjectivity of µC,η is an open condition in R2,7. Since R2,7 is
irreducible and R̃2,7 is open and dense in R2,7, it suffices to show that the map
µX,η is surjective at a point (X, η) in the compactification R2,7, even if Pr2,7 is
not defined at (X, η). So if µX,η is surjective at this point, it will be surjective at
a general point of R2,7. Moreover, it suffices to show that µX,η is injective, since
both sides of the map are of dimension 3.

Consider the curve
X = Y ∪ Z ,

the union of two rational curves intersecting in 3 points q1, q2, q3 which we can
assume to be [1, 0], [0, 1], [1, 1], respectively. The line bundle ηX = (ηY , ηZ ) on X
of degree 0 is uniquely determined by the gluing of the fiber over the nodes

OY|qi

·ci
−→OZ|qi

,

given by the multiplication by a nonzero constant ci . We may assume c3 = 1 and
since η7

X 'OX we have c7
1 = c7

2 = 1. Notice that ωX |Y =OY (1) and ωX |Z =OZ (1)
and the restrictions ηY , ηZ are trivial line bundles.

From the exact sequence

0→OZ (−2)→ ωX ⊗ η
i
X

βi
−→OY (1)→ 0
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we have h0(X, ωX⊗η
i
X )=1 for i =1, . . . , 6. Moreover, since H 0(Z ,OZ (−2))=0,

the map βi induces an inclusion H 0(X, ωX⊗η
i
X ) ↪→ H 0(Y,OY (1)) for i = 1, . . . , 6.

Therefore, to study the injectivity of µX,η, it is enough to check whether the pro-
jection of

⊕3
i=1H 0(X,ωX⊗η

i
X)⊗H 0(X,ωX⊗η

7−i
X ) to H 0(Y,OY(1))⊗H 0(Y,OY(1))

is contained in the kernel of the multiplication map

H 0(Y,OY (1))⊗ H 0(Y,OY (1))−→ H 0(Y,OY (2)).

We claim that the line bundle ωX = (ω|Y , ω|Z ) is uniquely determined and one
can choose the gluing ci at the nodes qi to be the multiplication by the same
constant. To see this, first notice that, since (X, ωX ) is a limit linear series of
canonical line bundles, the nodes of X are necessary Weierstrass points of X . Let
s3 ∈ H 0(X, ωX (−2q3)) be a section giving a trivialization of ωY and ωZ away
from q3. For i = 1, 2, we have

OY (1)|qi

s−1
3
−→OX |qi

s3
−→OZ (1)|qi ,

which implies that c1 = c2. Similarly, by using a section in H 0(X, ωX (−2q2)) one
shows that c1 = c3.

A section of ωX |Y ⊗η
i
Y 'OY (1) for i = 1, 2, 3 is of the form fi (x, y)= ai x+bi y,

with ai , bi constants. Suppose that the sections fi are in the image of the inclusion

H 0(X, ωX ⊗ η
i
X ) ↪→ H 0(Y,OY (1)).

By evaluating the section at the points qi and using the gluing conditions, one gets
ai = ci

1− 1 and bi = ci
2− 1. One obtains a similar condition for the image of the

sections of H 0(X, ωX ⊗ η
7−i
X ) in H 0(Y,OY (1)). Set j = 7− i . By multiplying the

corresponding sections of ωX ⊗ η
i
X and ωX ⊗ η

j
X we have that an element in the

image of µX,η is of the form(
2− ci

1− c j
1

)
x2
+
(
2− ci

2− c j
2

)
y2
−
(
2− c j

1 − ci
2+ c j

1ci
2− ci

1− c j
2 + ci

1c j
2

)
xy.

Hence, after taking the sum of such sections for i = 1, 2, 3 we conclude that there is
a nontrivial element in the kernel of µX,η if and only if there is a nontrivial solution
for the linear system Ax = 0 with

A =


2− c1− c6

1 2− c1c6
2− c6

1c2 2− c2− c6
2

2− c2
1− c5

1 2− c2
1c5

2− c5
1c2

2 2− c2
2− c5

2

2− c3
1− c4

1 2− c3
1c4

2− c4
1c3

2 2− c3
2− c4

2

 .
Clearly, if ci = 1 for some i or c1 = c2, the determinant of A vanishes. We compute

1
7 det A=c6

1(c
3
2−c5

2)+c5
1(c

6
2−c3

2)+c4
1(c

2
2−c2)+c3

1(c
5
2−c6

2)+c2
1(c2−c4

2)+c1(c4
2−c2

2).
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Suppose that ci 6= 1 and c2 = ck
1 for some 2 ≤ k ≤ 6. Then a straightforward

computation shows that det A 6= 0 if and only if k = 3 or k = 5.
In conclusion, we can find a limit linear series (X, ηX ) with η7

X 'OX , for suitable
values of the ci , such that the composition map in the commutative diagram⊕3

i=1 H 0(X, ωX ⊗ η
i )⊗ H 0(X, ωX ⊗ η

7−i ) //
� _

��

H 0(X, ω2
X )

'

��

H 0(Y,OY (1))⊗ H 0(Y,OY (1)) // H 0(Y,OY (2))

is an isomorphism. �

7. A complete fiber of P̃r2,7

For a special point of BD , consider a smooth curve E of genus 1. Then the kernel
of the addition map

X = X (E) := ker(m : E7
→ E) with m(x1, . . . , x7)= x1+ · · ·+ x7

is an abelian variety of dimension 6, isomorphic to E6. The kernel of the induced
polarization of the canonical principal polarization of E7 is {(x, . . . , x) : x ∈ E[7]},
which consists of 72 elements. So the polarization on X induced by the canonical
polarization of E7 is of type D = (1, 1, 1, 1, 1, 7). Since the symmetric group S7

acts on E7 in the obvious way, X admits an automorphism of order 7. Hence
X with the induced polarization is an element of BD. To be more precise, the
group S7 admits exactly 120 subgroups of order 7. Hence to every elliptic curve
there exist exactly 120 abelian varieties X as above with G-action. All of them are
isomorphic to each other, since the corresponding subgroups are conjugate to each
other according the Sylow theorems. We want to determine the complete preimage
P̃r−1

2,7(X) of X . We need some lemmas. For simplicity we denote by Pr( f ) the
Prym variety of a covering f in R̃2,7.

Lemma 7.1. Let f : C̃ → C be a covering satisfying (∗∗) with g = 2 such that
Pr( f )' X. Then C contains a node of index 1.

Proof. Suppose that either C is smooth or all the nodes of C are of index 7. Then
the exact sequence (3-3) gives an isogeny j : Pr( f )→ Pr( f̃ ) onto the Prym variety
of the normalization f̃ of f . Actually, in the smooth case, j is an isomorphism
and, if there is a node of index 1, the kernel T̃ [7] is positive dimensional. The
isomorphism Pr( f ) = X implies that the kernel of j is of the form {(x, . . . , x)}
with x ∈ X [7]. Hence the action of the symmetric group S7 on X descends to a
nontrivial action on Pr( f̃ ).

We can extend this action to J Ñ by combining it with the identity on J N. Namely,
J Ñ ' (J N × Pr( f̃ ))/H , where H is constructed as follows. Let 〈η〉 ⊂ J N [7]
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be the subgroup defining the covering f̃ and let H1 ⊂ J N [7] be its orthogonal
complement with respect to the Weil pairing. Then H = {(α,− f ∗α) : α ∈ H1}.
Since f ∗H1 = {(x, . . . , x) : x ∈ E[7]} ⊂ Pr( f ), we get an S7-action on J Ñ which
is clearly nontrivial.

If C is smooth, then Ñ ' C̃ . On the other hand, if all the nodes of C are of index 7,
then Ñ consists of at least two components. In any case, for each component Ñi

of Ñ we have
# Aut(J Ñi )≥

1
2 #S7 = 2520.

Moreover, according to a classical theorem of Weil, Aut Ñi embeds into Aut J Ñi

with quotient of order ≤ 2. So

# Aut Ñi ≥
1
2 # Aut(J Ñi ).

On the other hand, Ñi is a smooth curve of genus≤ 8. So Hurwitz’s theorem implies

# Aut(Ñi )≤ 84 · (8− 1)= 588.

Together, this gives a contradiction. �

Lemma 7.2. Let f : C̃ → C be a covering satisfying (∗∗) such that C has a
component containing nodes of index 1 and 7. Then any node of index 1 is the
intersection with another component of C.

Proof. Suppose x and y are nodes of C in a component Ci of index 1 and 7,
respectively. Then the preimage f −1(Ci ) is a component, since over y the map f
is totally ramified. Since f −1(x) consists of 7 nodes, the equality n1 = c1 implies
that x is the intersection of 2 components. �

Theorem 7.3. Let X = ker(m : E7
→ E) be a polarized abelian variety as above.

The fiber P̃r−1
2,7(X) consists of the following 4 types of elements of R̃2,7 (see

Figure 1).

(i) C=E/p ∼ q and C̃=
⊔7

i=1 Ei/pi ∼ qi+1 with Ei'E for all i and q8=q1 and
we can enumerate in such a way that the preimages of p and q are pi , qi ∈ Ei .

(ii) C = E1∪p E2 consists of 2 elliptic curves intersecting in one point p. Then up
to exchanging E1 and E2 we have: C̃ consists of an elliptic curve F1, which
is a 7-fold cover of E1 and 7 copies of E2 ' E not intersecting each other and
intersecting F1 each in one point.

(iii) C = E1 ∪p E2 with E2 elliptic and E1 rational with a node at q. Then E2 ' E
and f −1(E2) consists of 7 disjoint curves all isomorphic to E and f −1(E1)

is a rational curve with one node lying 7:1 over E1 and intersecting each
component of f −1(E2) in a point over p.

(iv) C = E1 ∪p E2 as in (iii) and C̃ is an étale G-cover over C.
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We call the coverings of the theorem of type (i), (ii), (iii) and (iv), respectively.
Theorem 7.3 will be used in Proposition 7.5 to describe the complete fibers of the
Prym map over X (E).

Proof. There are 7 types of stable curves of genus 2. We determine the coverings
f : C̃→ C in P̃r−1

2,7(X) in each case separately.

(1) There is no étale G-cover f : C̃→ C of a smooth curve C of genus 2 such that
P = Pr( f )' X . This is a direct consequence of Lemma 7.1.

(2) If C = E/p ∼ q then the singular point of C is of index 1 and f : C̃→ C is a
G-covering satisfying (∗∗) such that P = Pr( f )' X . Then

C̃ =
7⊔

i=1

Ei/(pi ∼ qi+1)

with Ei ' E and we enumerate in such a way that the preimages of p and q are
pi and qi with q8 = q1. In this case Pr( f )' X .

Proof: According to Lemma 7.1 the node is necessarily of index 1 and thus the
map f̃ : C̃ → C is étale. The exact sequence (3-3) together with Corollary 3.4
gives an isomorphism P ' R with R the Prym variety of the map f̃ . Clearly we
can enumerate the components of Ñ in such a way that C̃ is as above and R is the
kernel of the map m :×

7
i=1 E→ E , i.e., R ' X . We are in case (i) of the theorem.

(3) There is no rational curve C with 2 nodes admitting a G-cover f : C̃ → C
satisfying (∗∗) such that P = Pr( f )' X .

Proof: Suppose there is such a covering. By Lemmas 7.1 and 7.2 both nodes are of
index 1 and hence the map C̃→ C is étale. Then all components of C̃ are rational.
This implies that P ' C∗6 is not an abelian variety, a contradiction.

(4) Let C = E1 ∪p E2 consist of 2 elliptic curves intersecting in one point and
let f : C̃→ C be a covering satisfying (∗∗) such that P = Pr( f )' X . Then, up
to exchanging E1 and E2, we have that C̃ consists of an elliptic curve F1, which
is a 7-fold cover of E1 and 7 copies of E2 ' E not intersecting each other and
intersecting F1 each in one point. So X = ker(m : E7

2→ E2).

Proof: By Lemma 7.1 the node is of index 1 and the map f : C̃→C is étale. Since
there is no connected graph with 14 vertices and 7 edges, we are necessarily in
case (ii) of the theorem.

(5) Suppose C = E1 ∪p E2 with components E2 elliptic and E1 rational with a
node q and f : C̃→C a G-covering satisfying (∗∗) such that P =Pr( f )' X . Then
E2 ' E and either f : C̃→C is étale and connected or C̃ consists of 7 components
all isomorphic to E and a rational component F2 over E2 totally ramified exactly
over q and intersecting each Ei exactly in one point lying over p. So Pr( f )' X .
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Proof: According to Lemma 7.1 at least one node of C is of index 1. Suppose first
that both nodes are of index 1. Then clearly f is étale and we are in case (iv) of
the theorem. If only one node is of index 1, then according to Lemma 7.2 q is of
index 7 and p of index 1. This gives case (iii) of the theorem.

(6) There is no curve C consisting of 2 rational components intersecting in one
point p admitting a G-cover f : C̃→ C satisfying (∗∗) such that P = Pr( f )' X .

Proof: According to Lemmas 7.1 and 7.2 the node p is of index 1 and the nodes
q1 and q2 of the rational components of C are of index 1 or 7. By the Hurwitz formula
all components of C̃ are rational. This implies Pr( f )' C∗6, contradicting (∗∗).

(7) If C is the union of 2 rational curves intersecting in 3 points, there is no cover
f : C̃→ C satisfying (∗∗) such that P = Pr( f )' X .

Proof: By Lemma 7.1 at least one of the 3 nodes of C is of index 1. So C̃ consists
of at least 8 components. But then the other nodes also are of index 1, because if
one node is of index 7, the curve C̃ consists of 2 components only. Hence all 3
nodes are of index 1. But then all components of C̃ are rational. So P = Pr( f )
cannot be an abelian variety, contradicting (∗∗).

Together, steps (1)–(7) prove the theorem. �

Corollary 7.4. Let E be a general elliptic curve. Then the fiber P̃r−1
2,7(X (E))

consists of two irreducible components S1 and S2. The component S1 is a covering
over E whose points correspond to coverings of type (i), except for one point, which
corresponds to a covering of type (iv). The component S2 is a finite covering of
the moduli space of elliptic curves, and every point corresponds to a covering of
type (ii), except for two points, one of which corresponds to a covering of type (iii)
and the other to a covering of type (iv). The components S1 and S2 intersect at a
point corresponding to a covering of type (iv) (see Figure 1).

Proof. It is known that for 2 elliptic curves E1 6= E2 we can have X (E1)' X (E2)

as abelian varieties, but not necessarily as polarized abelian varieties. Hence X (E)
determines E (which can be seen also from Theorem 7.3).

We claim that the coverings of type (iv) are contained in S1 and S2, whereas
the coverings of type (iii) are contained in S2 only: it is known that a curve C̃
degenerates to a curve C̃ ′ of some other type if and only if the dual graph of C̃ ′

can be contracted to the dual graph of C̃ . On the other hand, the locus of curves
covering some curve of genus ≥ 2 of some fixed degree is closed in the moduli
space of curves. Now considering the dual graphs of the curves C̃ of the coverings
of the different types gives the assertion.

In the case of coverings of type (i) we have C = E/p1 ∼ p2. We can use the
translations of E to fix p1, and then p2 is free, which gives the assertion, since
there are only finitely many étale coverings of C .
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(i)

pi ∼ qi+1
E

p ∼ q E

(ii)

F1

E

E1 E
p

(iii)

F1
r

E

E1
q p E

(iv)

F1

E

E1
q p E

Figure 1. Admissible coverings on the fiber of X (E).

In case (ii) we have C = E1 ∪p E2, where E1 is an arbitrary elliptic curve and
E2 ' E . Since p may be fixed with an isomorphism of E and E2, this gives the
isomorphism of P̃r−1

2,7(E)with a finite covering of the moduli space of elliptic curves,
again since there are only finitely many coverings C̃ of type (ii) of C .

Finally, in cases (iii) and (iv), the 3 points of the normalization of E1 given
by p and the 2 preimages of the node, which we can assume to be 1, 0, and∞,
respectively, determine the curve C uniquely. For type (iii) the induced map on the
normalization of F1 is a 7:1 map h : P1

→ P1 totally ramified at 2 points, which
we assume to be∞ and 0. So h can be expressed as a polynomial in one variable
of degree 7, with vanishing order 7 at 0 and such that h(1)= 1, that is, h(x)= x7.
Then the map h, and hence the covering, is uniquely determined. For a covering of
type (iv) over C we consider 7 copies of P1, where the point 1 on every rational
component is identified to the point∞ of another rational component, and we attach
elliptic curves isomorphic to E2 at each point 0. The number of étale coverings is
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the number of subgroups of order 7 in JE1[7] ' Z/7Z (the 7-torsion points in the
nodal curve E1 are determined by a 7-th root of unity). So there is only one such
covering up to isomorphism. �

Varying the elliptic curve E , we obtain a one-dimensional locus E⊂BD consisting
of the polarized abelian varieties X (E) with G-action as above. Let S denote the
preimage of E under the extended Prym map P̃r2,7 : R̃2,7→BD . The next proposition
is a direct consequence of Corollary 7.4.

Proposition 7.5. The scheme S has dimension 2 and is the union of 2 closed
subschemes

S = S1 ∪S2,

where S1 parametrizes coverings of type (i) and (iv), and S2 parametrizes cover-
ings of type (ii), (iii) and (iv). In particular, they intersect exactly in the points
parametrizing coverings of type (iv).

8. The codifferential on the boundary divisors

In this section we will give bases of the Prym differentials and an explicit description
of the codifferential of the Prym map.

Let f : C̃→C be a covering corresponding to a point of S. We want to compute
the rank of the codifferential of the Prym map Pr2,7 : R̃2,7 → BD at the point
[ f : C̃→ C] ∈ R̃2,7. According to [Donagi and Smith 1981] this codifferential is
the map

P∗ : S2(H 0(C̃, ωC̃)
−
)G
→ H 0(C, �C ⊗ωC),

where �C is the sheaf of Kähler differentials on C and S2
(
H 0(C̃, ωC̃)

−
)G is the

cotangent space to BD at the Prym variety of the covering f : C̃ → C . Letting
j :�C→ ωC denote the canonical map, we first compute the rank of the composed
map

S2(H 0(C̃, ωC̃)
−
)G P∗
−→ H 0(C, �C ⊗ωC)

j
−→ H 0(C, ω2).

Suppose first that f is of type (i), (ii) or (iv). In these cases the covering f is
étale and hence given by a 7-division point η of JC . According to the analogue of
[Lange and Ortega 2011, Equation (3.4)] we have

H 0(C̃, ωC)
−
=

6⊕
i=1

H 0(C, ωC ⊗ η
i ) (8-1)

and hence

S2(H 0(C̃, ωC)
−
)G
=

3⊕
i=1

(
H 0(C, ωC ⊗ η

i )⊗ H 0(C, ωC ⊗ η
7−i )

)
. (8-2)
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Using this, the above composed map is just the sum of the cup product map

φ :

3⊕
i=1

(
H 0(C, ωC ⊗ η

i )⊗ H 0(C, ωC ⊗ η
7−i )

)
−→ H 0(C, ω2

C), (8-3)

whose rank we want to compute first.
We shall give a suitable basis for the space of Prym differentials. First we

consider a covering of type (i) constructed as follows. Let E be a smooth curve of
genus 1 and let q 6= q ′ be two fixed points of E . Then

C := E/q ∼ q ′

is a stable curve of genus 2 with normalization n : E→C and node p :=n(q)=n(q ′).
Let f : C̃→ C be a cyclic étale covering with Galois group G = 〈σ 〉 ' Z/7Z. The
normalization ñ : Ñ → C̃ consists of 7 components Ni ' E with σ(Ni ) = Ni+1

for i = 1, . . . , 7 and N8 = N1. Let qi and q ′i be the elements of Ni corresponding
to q and q ′. Then ñ(qi ) = ñ(q ′i+1) =: pi for i = 1, . . . , 7 with q ′8 = q ′1. Clearly
σ(pi )= pi+1 for all i .

Recall that ωC̃ is the subsheaf of ñ∗
(
OÑ

∑
(qi + q ′i )

)
consisting of (local) sec-

tions ϕ which considered as sections of OÑ
∑
(qi + q ′i ) satisfy the condition

Resqi (ϕ)+Resq ′i+1
(ϕ)= 0

for i = 1, . . . , 7. Here we use the fact that ωÑ = OÑ . Consider the following
elements of H 0

(
C̃, ñ∗

(
OÑ

∑
(qi + q ′i )

))
, regarded as sections on Ñ :

ω1 :=

{
nonzero section of ON1(q1+ q ′1) vanishing at q1 and q ′1,
0 elsewhere,

ωi := (σ
−i )∗(ω1) for i = 2, . . . , 7.

Note that ωi is nonzero on Ni vanishing at qi and q ′i and zero elsewhere.
Now we construct similar differentials for coverings of type (ii). Let

C = E1 ∪p E2

consist of 2 elliptic curves E1 and E2 intersecting transversally in one point p, and
let f : C̃ → C be a covering of type (ii). So C̃ consists of an elliptic curve F1,
which is an étale cyclic cover of E1 of degree 7 and 7 disjoint curves E1

2, . . . , E7
2 all

isomorphic to E2. The curve Ei intersects F1 transversally in a point pi , such that
the group G permutes the curves Ei and the points pi cyclically, i.e., σ(E i

2)= E i+1
2

and σ(pi )= pi+1 with E8
2 = E1

2 and p8 = p1.
Let ñ : Ñ → C̃ denote the normalization map. Then Ñ is the disjoint union of

the 8 elliptic curves F1, E1
2, . . . , E7

2 . We denote the point pi by the same letter
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when considered as a point of F1 and E i
2. Consider the line bundle

L =OF1(p1+ · · ·+ p7)tOE1
2
(p1)t · · · tOE7

2
(p7).

Then ωC̃ is the subsheaf of ñ∗(L) consisting of (local) sections ϕ which considered
as sections of L satisfy the condition

(Respi )|F1(ϕ)+ (Respi )|E i
2
(ϕ)= 0 (8-4)

for i = 1, . . . , 7. Consider the following sections of ñ∗(L), regarded as sections
on Ñ :

ω1 :=

{
nonzero sections of OF1(p1) and OE1

2
(p1) satisfying (8-4) at p1,

0 elsewhere,

ωi := (σ
−i )∗(ω1) for i = 2, . . . , 7.

Thus ωi is nonzero on F1(pi )t E i
2(pi ) vanishing at pi and zero elsewhere.

We construct the analogous differentials for the covering f of type (iv), which is
uniquely determined according to Proposition 7.5. So let

C = E1 ∪p E2

with E2 elliptic and E1 a rational curve with one node q and let f : C̃→ C be the
covering of type (iv). Then C̃ consists of 14 components F1, . . . , F7 isomorphic
to P1 with f|Fi : Fi → E1 the normalization and E1

2, . . . , E7
2 all isomorphic to E2

with f
|E i

2
: E i

2→ E2 the isomorphism. Then E i
2 intersects Fi in the point pi lying

over p and no other component of C̃ . If qi and q ′i are the points of Fi lying over q ,
the Fi and Fi+1 intersect transversally in the points qi and q ′i+1 for i = 1, . . . , 7,
where q ′8 = q1. The group G permutes the components and points cyclically, i.e.,
σ(F1)= Fi+1 and similarly for E i

2, pi , qi and q ′i .
The normalization ñ : Ñ → C̃ of the curve C̃ is the disjoint union of the compo-

nents Fi and E i
2. We denote also the point pi by the same letter when considered

as a point of Fi and E i
2. Consider the following line bundle on Ñ :

L =
7⊔

i=1

OFi (qi + q ′i + pi )t

7⊔
i=1

OE i
2
(pi ).

Then ωC̃ is the subsheaf of ñ∗(L) consisting of (local) sections ϕ which viewed as
sections of L satisfy the conditions

(Respi )|Fi (ϕ)+ (Respi )|E i
2
(ϕ)= 0, (Resqi )|Fi (ϕ)+ (Resq ′i+1

)|Fi+1(ϕ)= 0 (8-5)
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for i = 1, . . . , 7. Consider the following sections of ñ∗(L), regarded as sections
on Ñ :

ω1 :=


nonzero sections of ωF1(q1+ q ′1+ p1) and OE1

2
(p1) satisfying (8-5)

at p1 and vanishing at q1 and q ′1,

0 elsewhere,

ωi := (σ
−i )∗(ω1) for i = 2, . . . , 7.

Note that up to a multiplicative constant there is exactly one such section ω1, since
h0(ωF1(q1+ q ′1+ p1))= 2 and h0(OE1

2
(p1))= 1.

Finally, we consider coverings of type (iii). Let C = E1∪p E2, as for the covering
of type (iv) above, and let f : C̃→ C be a covering of type (iii). So C̃ consists of
a rational curve F1 with a node r lying over the node q of C and 7 components
E1

2, . . . , E7
2 all isomorphic to E2. Then E i

2 intersects F1 in the point pi lying over p
and intersects no other component of C̃ . The group G acts on F1 with only a fixed
point r and permutes the E2

i and pi cyclically as above. We use the following
partial normalization ñ : Ñ → C̃ of C̃ :

Ñ := F1 t

7⊔
i=1

E i
2.

Consider the following line bundle on Ñ :

L =OF1(p1+ · · ·+ p7)t

7⊔
i=1

OE i
2
(pi ).

Since the canonical bundles of F1 and E i
2 are trivial, it is clear that ωC̃ is the

subsheaf of ñ∗(L) consisting of (local) sections ϕ which regarded as sections of L
satisfy the relations

(Respi )|F1(ϕ)+ (Respi )|E i
2
(ϕ)= 0 (8-6)

for i = 1, . . . , 7. As before, define a section

ω1 :=


nonzero sections of OF1(p1+ · · ·+ p7) and OE i

2
(p1)

vanishing at p1, . . . , p7,

0 elsewhere,

of ñ∗(L), considered as a section of Ñ , and define the sections ωi , for i = 2, . . . , 7,
as in the previous cases. Note that up to a multiplicative constant there is exactly
one such section ω1.

From now on, f : C̃→ C will be a covering of type (i)–(iv) as above. We fix a
primitive 7-th root of unity, for example, ρ := e2π i/7, and define for i = 0, . . . , 6
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the section

�i :=

7∑
j=1

ρi jω j .

Clearly �i is a global section of L that defines a section of ωC̃ , which we denote
with the same symbol.

Lemma 8.1. σ∗(�i ) = ρ
i�i for i = 0, . . . , 6. In particular, �0 ∈ H 0(C̃, ωC̃)

+

and {�1, . . . , �6} is a basis of H 0(C̃, ωC̃)
−.

Proof. The first assertion follows from a simple calculation using the definition
of ωi . So clearly �0 ∈ H 0(C̃, ωC̃)

+ and �i ∈ H 0(C̃, ωC̃)
− for i = 1, . . . , 6. Since

�1, . . . , �6 are in different eigenspaces of σ , they are linearly independent and
since H 0(C̃, ωC̃)

− is of dimension 6, they form a basis. �

Remark 8.2. In cases (i), (ii) and (iv), H 0(C, ωC ⊗ η
7−i ) is the eigenspace of σ i

and �i is a generator for i = 1, . . . , 6.

Proposition 8.3. The map

φ : S2(H 0(C̃, ωC̃)
−
)G
−→ H 0(C, ω2

C)

is of rank 1.

Proof. We have to show that the kernel of φ is 2-dimensional. A basis of
S2
(
H 0(C̃, ωC̃)

−
)G is given by {�1⊗�6, �2⊗�5, �3⊗�4}. Let a, b, c be complex

numbers with

φ(a�1⊗�6+ b�2⊗�5+ c�3⊗�4)= 0.

Define, for i = 1, . . . , 7,

ψi :=

7∑
i=1

ω j ⊗ω j+i−1.

An easy but tedious computation gives

�1⊗�6 = ψ1+ ρψ7+ ρ
2ψ6+ ρ

3ψ5+ ρ
4ψ4+ ρ

5ψ3+ ρ
6ψ2,

�2⊗�5 = ψ1+ ρψ4+ ρ
2ψ7+ ρ

3ψ3+ ρ
4ψ6+ ρ

5ψ2+ ρ
6ψ5,

�3⊗�4 = ψ1+ ρψ3+ ρ
2ψ5+ ρ

3ψ7+ ρ
4ψ2+ ρ

5ψ4+ ρ
6ψ6.
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So we get

0= φ
(
(a+ b+ c)ψ1+ (aρ6

+ bρ5
+ cρ4)ψ2+ (aρ5

+ bρ3
+ cρ)ψ3

+ (aρ4
+ bρ+ cρ5)ψ4+ (aρ3

+ bρ6
+ cρ2)ψ5

+ (aρ2
+ bρ4

+ cρ6)ψ6+ (aρ+ bρ2
+ cρ3)ψ7

)
= (a+ b+ c)(ω2

1+ · · ·+ω
2
7)

+
(
a(ρ+ ρ6)+ b(ρ2

+ ρ5)+ c(ρ3
+ ρ4)

) 7∑
j=1
ω jω j+1

+
(
a(ρ2
+ ρ5)+ b(ρ3

+ ρ4)+ c(ρ+ ρ6)
) 7∑

j=1
ω jω j+2

+
(
a(ρ3
+ ρ4)+ b(ρ+ ρ6)+ c(ρ2

+ ρ5)
) 7∑

j=1
ω jω j+3.

This section is zero if and only if its restriction to any component is zero. Now the
restriction to Ni for all i gives

0= a+ b+ c+ (6a+ 6b+ 6c)
6∑

j=1

ρ j
=−5(a+ b+ c).

So φ(a�1⊗�6+ b�2⊗�5+ c�3⊗�4) = 0 if and only if a+ b+ c = 0. Hence
the kernel of φ is of dimension 2, which proves the proposition. �

Proposition 8.3 shows that the codifferential map along the divisors S1 and S2

in Proposition 7.5 is not surjective. In fact, as we will see later, the kernel of φ
coincides with the conormal bundle of the image of these divisors in BD . In order
to compute the degree we will perform a blow-up along these divisors.

Let E ⊂ BD denote the one-dimensional locus consisting of the abelian varieties
which are of the form X = ker(m : E7

→ E) with m(x1, . . . , x7) = x1+ · · · + x7

for a given elliptic curve E . As we saw in Section 7, the induced polariza-
tion is of type D. Note that E is a closed subset of BD. The aim is to com-
pute the degree of Pr7,2 above a point X ∈ E . We denote by S ⊂ R̃2,7 the
inverse image of E under P̃r2,7. According to Proposition 7.5, S is a divisor
consisting of 2 irreducible components in the boundary R̃2,7 \ R2,7. We have
S = S1 ∪ S2, where a general point of S1 corresponds to the G-covers with
base an irreducible nodal curve of genus 1, and a point of S2 corresponds to
a product of elliptic curves intersecting in a point. Moreover, for any fixed el-
liptic curve E , S1 and S2 intersect in the unique point given by the covering of
type (iv).

As in [Donagi and Smith 1981], let B̃D be the blow-up of BD along E and
R̃' R̃2,7 the blow-up of R̃2,7 along the divisor S = P̃r−1

2,7(E). We then obtain the
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commutative diagrams

R̃

'

��

P̃
// B̃D

��

R̃2,7
P̃r2,7

// BD

S̃

'

��

P̃
// Ẽ

P1-bundle

��

S
P̃r2,7

// E

in which S̃ and Ẽ are the exceptional loci.
Lemma I.3.2 of [Donagi and Smith 1981] guarantees that the local degree of P̃r2,7

along a component of S equals the degree of the induced map on the exceptional
divisors P̃|Si : Si → Ẽ if the codifferential map P∗ is surjective on the respective
conormal bundles. Recall that the fibers of the conormal bundles at the point X are
given by

N ∗X,E/BD
= ker(T ∗XBD→ T ∗X E),

N ∗
(C,η),Si/R̃2,7

= ker(T ∗(C,η)R̃2,7→ T ∗(C,η)Si )

for i = 1, 2. As in [Donagi and Smith 1981], by taking level structures on the
moduli spaces we can assume we are working on fine moduli spaces, which allows
us to identify the tangent space to S1 at the G-admissible cover [C̃→ C], where
C = E/(p ∼ q), with the tangent space to M2 at C . Thus the conormal bundle
N ∗
(C,η),S1/R̃2,7

can be identified with the conormal bundle N ∗
C,10/M2

⊂H 0(�C⊗ωC),
where10 is the divisor of irreducible nodal curves in M2. Similarly, we can identify
the tangent space to S2 at [C̃→ C], where C = E1 ∪p E2, with the tangent space
to M2 at C . Thus N ∗

(C,η),S2/R̃2,7
can be identified with N ∗

C,11/M2
⊂ H 0(�C ⊗ωC),

where 11 is the divisor of reducible nodal curves in M2.
Using the fact that X = Pr(C̃,C) we can identify (TXAD)

∗
'
⊕6

i=1�i C and
S2
(
H 0(C̃, ωC)

−
)G as in (8-2). Then for a covering (C, η) the conormal bundles fit

in the commutative diagram

0 // N ∗X,E/BD
//

n∗

��

S2
(
H 0(C̃, ωC)

−
)G

//

P∗

��

T ∗X E //

��

0

0 // N ∗
(C,η),Si/R̃2,7

// H 0(C, �C ⊗ωC) //

H0( j)
��

T ∗(C,η)Si // 0

H 0(C, ω2
C)

(8-7)

in which n∗ is the conormal map, i = 1, 2 and j is induced by the canonical map
�C → ωC (see [Donagi and Smith 1981, IV, 2.3.3]).
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Lemma 8.4. The kernel of H 0( j) is one-dimensional.

Proof. As a map of sheaves, the canonical map j : �C ⊗ ωC → ω2
C has one-

dimensional kernel, namely, the one-dimensional torsion sheaf with support the
node of C (see [Donagi and Smith 1981, IV, 2.3.3]). On the other hand, the map
H 0( j) is the composition of the pullback to the normalization with the push forward
to C . This implies that the kernel of H 0( j) consists exactly of the sections of the
skyscraper sheaf supported at the node, and hence is one-dimensional. �

Proposition 8.5. For coverings of type (i)–(iv) the restricted codifferential map
n∗ :N ∗X,E/BD

→N ∗
(C,η),Si/R̃2,7

is surjective, for i = 1, 2.

Proof. First notice that from the “local-global” exact sequence (see [Bardelli 1989])
we have

Ker H 0( j)=N ∗C,10/M2
⊂ H 0(�C ⊗ωC).

Therefore, Ker H 0( j)⊂ ImP∗. Since dim Ker H 0( j)= 1 and, by Proposition 8.3,
dim Ker(H 0( j)◦P∗)= 2, we have dim Ker(P∗)= 1. By diagram (8-7) this implies
that the kernel of n∗ is of dimension ≤ 1. Since N ∗X,E/BD

is a vector space of
dimension 2 and N ∗

(C,η),Si/R̃2,7
a vector space of dimension 1, it follows that n∗ is

surjective. �

9. Local degree of Pr2,7 over the boundary divisors

First we compute the local degree of the Prym map P̃r2,7 along the divisor S1.
Since the conormal map of Pr2,7 along S1 is surjective according to Proposition 8.5,
[Donagi and Smith 1981, I, Lemma 3.2] implies that the local degree along S1 is
given by the degree of the induced map P̃ : S̃1→ Ẽ on the exceptional divisor S̃1. Now
the polarized abelian variety X (E) is uniquely determined by the elliptic curve E ,
according to its definition. Hence the curve E can be identified with the moduli
space of elliptic curves, i.e., with the affine line. The exceptional divisor Ẽ is then a
P1-bundle over E . On the other hand, S1 is a divisor in R̃2,7, so S̃1 is isomorphic
to S1. Clearly P̃ maps the fibers P̃r−1

(X (E))∩S̃1 onto the fibers P1 over the elliptic
curves E .

Now P̃r−1
(X (E)) ∩ S̃1 consists of coverings of type (i) and one covering of

type (iv), which we denote by C(iv)E . The coverings of type (i) have as base a nodal
curve of the form C= E/p∼q and we can assume that p=0, thus P̃r−1

(X (E))∩S̃1

is parametrized by E itself (the point q = 0 corresponds to the covering of type (iv)).
Hence the induced conormal map on the exceptional divisors P̃ : S̃1→ Ẽ restricted
to the fiber over X (E) is a map φ : E→ P1. Combining everything, we conclude
that the local degree of the Prym map along S1 coincides with the degree of the
induced map φ : E→ P1.

Proposition 9.1. The local degree of the Prym map P̃r2,7 along S1 is 2.
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Proof. According to what we have written above, it is sufficient to show that
the map φ : E → P1 induced by P̃ is a double covering. We use again the
identification (8-2) (and its analogue for coverings of type (iii)). As in [Donagi
and Smith 1981], let x , y be local coordinates at 0 and q, and let dx , dy be the
corresponding differentials. If (a, b, c) ∈ S2

(
H 0(C̃, ωC̃)

−
)

are coordinates in the
basis of Lemma 8.1, then P(Ker(H 0( j) ◦ P∗)) ' P1 has coordinates [a, b] and
its dual is identified with P(Im P̃|fiber). In order to describe the kernel of P∗, we
look at the multiplication on the stalk over the node p = (q ∼ 0). Around p the
line bundles ηi are trivial; therefore, the element (a, b, c) ∈

⊕3
i=1(ωC,p ⊗ωC,p)

(in coordinates a, b, c ∈Op for a fixed basis of ωC,p⊗ωC,p) is sent to a+ b+ c ∈
(�C ⊗ωC)p under P̃ . Thus the germ a+ b+ c ∈ Op is zero if it is in the kernel
of P∗. In particular, the coefficient of dx dy must vanish. Set α = a0 dx , β = b0 dx ,
γ = c0 dx , and let α = aq dy, β = bq dy, γ = cq dy be the local description of the
differentials. Then the coefficient of dx dy must satisfy

a0aq + b0bq + c0cq = 0. (9-1)

Now, by looking at the dual picture, we consider P1
=P(KerP∗)∗ ⊂P2∗. Let E be

embedded in P2∗ by the linear system |3·0|. The coordinate functions [a, b, c]∈P2∗

satisfy condition (9-1) for all q ∈ E . Then the points on the fiber over [aq , bq , cq ]

are points in E over the line passing through the origin 0 ∈ E ⊂ P2∗ and q . Hence
the map E→ P1 corresponds to the restriction to E of the projection P2∗

→ P1

from the origin, which is the double covering E→ P1 determined by the divisor
0+ q of E and thus of degree two. �

We now turn our attention to the Prym map on S2. By the surjectivity of the
conormal map of Pr2,7 on S2 (Proposition 8.5), the local degree along S2 is computed
by the degree of the map P̃ : S̃2→ Ẽ on the divisor S̃2, which is a P1-bundle over E .
Given an elliptic curve E , the fiber of P̃r−1

(X (E)) intersected with the divisor S2

consists of coverings of type (ii), one covering of type (iii), denoted by C(iii)E , and
one covering of type (iv), C(iv)E , which lies in the intersection with the divisor S1.

Recall that the type (ii) coverings have base curve C = E1 ∪ E intersecting at
one point, which we can assume to be 0, and with E1 an arbitrary elliptic curve.
The covering over C is the union of a degree-7 étale cyclic covering F1 over E1 and
7 elliptic curves Ei attached to F1 mapping each one of them isomorphically to E .
So the type (ii) coverings on the fiber over E are parametrized by pairs (E1, 〈η〉),
where E1 is an elliptic curve and 〈η〉 ⊂ E1 is a subgroup of order 7.

It is known that the parametrization space of the pairs (E1, 〈η〉) is the modular
curve Y0(7) := 00(7) \ H. The natural projection (E1, η) 7→ E1 defines a map
π0 :Y0(7)→C. Moreover, the curve Y0(7) admits a compactification X0(7) :=Y0(7)
such that the map π0 extends to a map π : X0(7)→P1 (see [Silverman 1986]). The
genus of X0(7) can be computed by the Hurwitz formula using the fact that π is of
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degree 8, and it is ramified over the points corresponding to elliptic curves with
j -invariant 0 and 123 (with ramification degree 4 on each fiber) and over∞, where
the inverse image consists of two cusps, one étale and the other of ramification
index 7. The two cusps over∞ represent the coverings C(iii)E and C(iv)E above X (E)
(see Remark 9.4). This gives that X0(7) is of genus zero. Thus, we can identify
S̃2 ∩ P̃r−1

(X (E)) with X0(7)' P1.
Then, since S̃2 ' S2, the restriction of the conormal map P̃ to a fiber over the

point [E] ∈ E is a map ψ : P1
→ P1.

Proposition 9.2. The map π coincides with the map ψ : P1
→ P1 of the fibers of

S̃2→ Ẽ over a point [E] ∈ E .

Proof. Let o and o′ be the zero elements of E and E1, respectively, with local
coordinates x and y, respectively. Set α = ao dx , β = bo dx , γ = co dx , and
let α = ao′ dy, β = bo′ dy, γ = co′ dy be the local description of elements of
(ωC,p ⊗ωC,p) around the node p = (o ∼ o′). As in the proof of Proposition 9.1,
for an element (a, b, c) in the kernel of P∗, the coefficient of dx dy must vanish,
i.e., it satisfies

aoao′ + bobo′ + coco′ = 0 (9-2)

in a neighborhood of the node. Considering the dual map, one sees that the fiber
of P̃ over a point [ao, bo, co] ∈ P(KerP∗)∗ ⊂ P2 with co =−ao− bo corresponds
to the pairs (E1, 〈η〉) such that the local functions a, b, c ∈ Op take the values
[ao′, bo′, co′] around the o′ ∈ E1 with co′ =−ao′−bo′ and such that they verify (9-2).
This determines completely the triple [ao′, bo′, co′], which depends only on the
values at the node o′ ∈ E1 of the base curve. Note that a, b, c are elements of the
local ring Op, which determines the curve E1 uniquely. In fact, its quotient ring is the
direct product of the function fields of E1 and E , which in turn determines the curves.
Therefore, the map ψ can be identified with the projection (E1, 〈η〉) 7→ E1. �

As an immediate consequence we have:

Corollary 9.3. The local degree of the Prym map P̃r2,7 along the divisor S2 is 8.

Using Proposition 9.1 and Corollary 9.3 we conclude that the degree of the Prym
map P̃r2,7 is 10, which finishes the proof of Theorem 1.1

Remark 9.4. The moduli interpretation of X0(7) \ Y0(7) is given by the Néron
polygons: one of the cusps represents a 1-gon, that is, a nodal cubic curve, corre-
sponding to the covering C(iii)E , and the other represents a 7-gon, that is, 7 copies
of P1 with the point 0 of one attached to the point∞ of the other in a closed chain,
which corresponds to the covering C(iv)E (see [Silverman 1994, IV, §8]).
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