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The Prym map of degree-7 cyclic coverings

Herbert Lange and Angela Ortega

We study the Prym map for degree-7 étale cyclic coverings over a curve of
genus 2. We extend this map to a proper map on a partial compactification of the
moduli space and prove that the Prym map is generically finite onto its image of
degree 10.

1. Introduction

Consider an étale finite covering f : ¥ — X of degree p of a smooth complex
projective curve X of genus g > 2. Let Nmy : JY — JX denote the norm map of
the corresponding Jacobians. One can associate to the covering f its Prym variety

P(f):= (KerNm/)°,

the connected component containing 0 of the kernel of the norm map, which is an
abelian variety of dimension

dim P(f) =g(¥Y) —g(X) =(p—D(g—-D.

The variety P (f) carries a natural polarization, namely, the restriction of the princi-
pal polarization ®y of JY to P(f). Let D denote the type of this polarization. If,
moreover, f :Y — X is a cyclic covering of degree p, then the group action induces
an action on the Prym variety. Let Bp denote the moduli space of abelian varieties
of dimension (p — 1)(g — 1) with a polarization of type D and an automorphism of
order p compatible with the polarization. If R, , denotes the moduli space of étale
cyclic coverings of degree p of curves of genus g, we get a map

Prg,p . Rg,p —> BD

associating to every covering in R, , its Prym variety, called the Prym map.
Particularly interesting are the cases where dim R, , = dim Bp. For instance,

for p =2 this occurs only if g = 6. In this case the Prym map Prg» : Rg — As is

generically finite of degree 27 (see [Donagi and Smith 1981]) and the fibers carry
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the structure of the 27 lines on a smooth cubic surface. For (g, p) = (4, 3), it is also
known that Pry 3 is generically finite of degree 16 onto its 9-dimensional image Bp
(see [Faber 1988]).

In this paper we investigate the case (g, p) = (2, 7), where dim R, , = dim Bp.
The main result of the paper is the following theorem. Let G be the cyclic group of
order 7.

Theorem 1.1. For any cyclic étale G-cover f : C—C of a curve C of genus 2, the
Prym variety Pr( f) is an abelian variety of dimension 6 with a polarization of type
D=(@1,1,1,1,1,7) and a G-action. The Prym map

Pr2,7 . R2,7 e BD

is generically finite of degree 10.

The paper is organized as follows. First we compute in Section 2 the dimension
of the moduli space Bp when (g, p) = (2,7). In Sections 3-5, we extend the
Prym map to a partial compactification of admissible coverings 732,7 such that
Pry7: 7~€2,7 — Bp is a proper map. We prove the generic finiteness of the Prym
map in Section 6 by specializing to a curve in the boundary. In order to compute the
degree of the Prym map, we describe in Section 7 a complete fiber over a special
abelian sixfold with polarization type (1, 1,1, 1, 1, 7), and in Section 8 we give
a basis for the Prym differentials for the different types of admissible coverings
appearing in the special fiber. Finally, in Section 9 we determine the degree of the
Prym map by computing the local degrees along the special fiber.

2. Dimension of the moduli space Bp

As in the introduction, let R, 7 denote the moduli space of nontrivial cyclic étale
coverings f : C — Cof degree 7 of curves of genus 2. The Hurwitz formula gives
g(5) = 8. Hence the Prym variety P = P(f) is of dimension 6 and the canonical
polarization of the Jacobian JC induces a polarization of type (1,1,1,1,1,7)
on P (see [Lange and Ortega 2011, p. 397]). Let o denote an automorphism
of JC generating the group of automorphisms of C /C. It induces an automorphism
of P, also of order 7, which is compatible with the polarization. The Prym map
Pry 7 : Ra,7 — Bp is the morphism defined by f — P(f). Here Bp is the moduli
space of abelian varieties of dimension 6 with a polarization of type (1,1, 1,1, 1,7)
and an automorphism of order 7 compatible with the polarization. The main result
of this section is the following proposition.

Proposition 2.1. dimBp =dim R, 7 =3.

Proof. Clearly dim R, 7 = dim M, = 3. So we have to show that also dim Bp = 3.
For this we use Shimura’s theory of abelian varieties with endomorphism structure
(see [Shimura 1963] or [Birkenhake and Lange 2004, Chapter 9]).
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Let K = Q(p7) denote the cyclotomic field generated by a primitive 7-th root of
unity p7. Clearly Bp coincides with one of Shimura’s moduli spaces of polarized
abelian varieties with endomorphism structure in K. The field K is a totally complex
quadratic extension of a totally real number field of degree ey = 3. Define

__dimP
m:= =
€0

2.

The polarization of P depends on the lattice of P and a matrix T € M,,(Q(p7)).
The signature of T (see [Birkenhake and Lange 2004, p. 264]) is an ep-tuple of
nonnegative integers ((r1, 51), ..., (Fey, S¢y)) satisfying

rtsy=m=2

for all v, where ¢ is the number of real embeddings of the totally real subfield of
Q(p7). Recall that for each embedding Q(p7) < C, the matrix T is skew-hermitian,
and the (r,, s,) are the signatures of the corresponding skew-hermitian matrices.
Then, according to [Shimura 1963, p. 162] or [Birkenhake and Lange 2004, p. 266,

lines 6-8], we have
€

dimBp = rys, <3, @2-1)
v=1
with equality if and only if r, =5, =1 for all v.
On the other hand, in Section 6 we will see that the map Pr, 7 is generically
injective. This implies that

dim Bp > dimR,.7 =3,

which completes the proof of the proposition. ([

Remark 2.2. According to [Ortega 2003], we know that P is isogenous to the
product of a Jacobian of dimension 3 with itself. Then Endg(P) is not a simple
algebra. Hence, if one knows that Pr, 7 is dominant onto the component Bp, then
[Birkenhake and Lange 2004, Proposition 9.9.1] implies that r, = s, = 1 for
v =1, 2, 3, which also gives dim Bp = 3.

Remark 2.3. It is claimed in [Faber 1988] that the Prym map Pry ¢ : R2.6 — Bp
satisfies dim Bp = dim R ¢ = 3. In a subsequent paper [Lange and Ortega > 2016],
we show that this does not occur. Moreover, we prove that there are no further
examples with this property in the case of étale cyclic coverings of degree 2p for a
prime p, but there are 3 more cases for cyclic ramified coverings of these degrees.

3. The condition (%)

In this section we study the Prym map for coverings of degree 7 between stable
curves. Let G = Z/7Z be the cyclic group of order 7 with generator o and let
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f: C — C be a G-cover of a connected stable curve C of arithmetic genus g. We
fix in the sequel a primitive 7-th root of unity p. We assume the following condition
for the covering f:

(%) The fixed points of o are exactly the nodes of C and at each node one local
parameter is multiplied by p? and the other by p—% for some §, 1 <§ < 3.

As in [Beauville 1977], we have f*w¢ =~ w, which implies
pa(C) =Tg —6.

Let N and N be the normalizations of C and C, respectively, and let f : N—>N
be the induced map. At each node s of C we make the usual identification

K;/Of ~C*xZ x Z.
Then the action of o on K} /OF is

§(m—n)

0*((vavn)s): (IO Z, m,ﬂ)s

for some 8, 1 <& < 3. Here we label the branches at the node s such that a local
parameter at the first branch (corresponding to /1) is multiplied by p® with 1 <§ <3.
Then we have

Fe((zym,n)g) = (27, m, n) fs)

since fy((z,m,n);) = Zgzo(o*)k(z, m, n), viewed as a divisor at f(s), and

6 6
> (@ @ mn), = (]‘[(p‘“’”"))kz, Tm, 7n)
k=0 k=0 S

= (p22=0 Sm=mk 7 T, 7n)
= (p‘s(m_”)é%zz Tm, 7n)

= (Z71 7m7 7n)S

N

N

= f*@,m,n) s,
We define the multidegree of a line bundle L on c by
degL =(dy,...,d,),

where v is the number of components of C and d; is the degree of L on the i-th
component of C.

Lemma 3.1. Let L € Pic C with Nm L ~ Op. Then

LMo M~}
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for some M € Pic C. Moreover, M can be chosen of multidegree (k, 0, ..., 0) with
0<k<eé.

Proof. As in [Mumford 1971, Lemma 1], using Tsen’s theorem, there is a divisor D
such that L ~ Ox(D) and f,.D = 0. We write

D= > x+ ) (zs.my.ny);. 3-1)

X€Creg 5€Csing
——
Dreg Dsing

Ifx e g‘reg is in the support of Dyeg, then o*(x) is in the support of Dy, for some
1 <k <6. Since

x—of@W) =(x4+oc@)+ -+ X)) —oc(x+o )+ -+ (X)),

there is a divisor Eyeg such that Dyeg = Ereg — 0" Ereg. From (3-1) one sees that the
divisor Dy, is the sum of divisors of the form (p%, 0, 0); for some 1 < a; < 6.
Choosing an integer i; such that —i;§; = a; mod 7, we have

(1,45, 0) — o*(1,is, 0) = (0%, 0,0) = (p*, 0, 0);.

Then there is a divisor Egjne such that Dgjpe = Egjng — 0* Egjng. Thus D = E —0*E
with E = Eyeg + Eging. Set M = Og(E). By replacing M with M ® f*N, where N
is a line bundle on C, we may assume that the multidegree of M is (€1, ..., €,) with
0 < ¢; < 6. Using the fact that C is connected, the multidegree can be accumulated
on one of the components by further tensoring M with line bundles associated to
divisors of the form (1, 1, —1),, since (1, 1, —1);—0c*(1, 1, —1);=(1,0,0);,=0. O

Let P denote the Prym variety of f : C — C, i.e., the connected component
containing O of the kernel of norm map Nm : J C — JC. By definition, it is a
connected commutative algebraic group. Lemma 3.1 implies that P is the variety of
line bundles in ker Nm of the form M ® o*M ! with M of multidegree (0, ..., 0).
Letv: N — C and v : N — C denote the normalizations of C and C, respectively.
Hence there is a map f making the following diagram commutative:

7
d

N —2sC

l

v

—

f

+— 0

Proposition 3.2. Suppose p,(C) = g. Then P is an abelian variety of dimension
6g — 6.
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Proof. (As in [Beauville 1977] and [Faber 1988].) Consider the diagram

Sk

0 T JC 2> JN 0
le le JNm (3-2)
0 T JC - JN 0

of commutative algebraic groups, where the vertical arrows are the norm maps
and T and T are the groups of classes of divisors of multidegree (0, ..., 0) with
singular support. Since f* restricted to T is an isomorphism and Nmo f* =7, the
norm on 7 is surjective and

ker Nm 7 =~ T[7] = {points of order 7 in T}.

On the other hand, Lemma 3.1 implies that ker Nm consists either of 7 components
or is connected. Let R be the kernel of Nm : JN — JN. Then one obtains an exact
sequence

0—>T[7]—- R— R—0 (3-3)

with R = P if ker Nm is connected, and R = P x Z /77 if ker Nm is not connected.
We will see that in both cases P is an abelian variety.

Suppose first that C and hence C are nonsingular. Then C =N and hence T =0.
Since ker(J N—> JN ) has 7 components, P is an abelian variety.

Suppose that C and thus also C have s > 0 smgular points. Then dim T =
dim 7 = s. Then R is an abelian variety, since f is ramified. We get a surjective
homomorphism P — R with kernel consisting of 7° elements when Ker Nm is
connected and 7°~! when it is not. Hence also P is an abelian variety. Moreover,

dim P = dim R = dim JC — dim JC.

Now, if C has s nodes and N has ¢ connected components, then also C has s nodes
and N has r connected components. This implies

dim JC — dim JC = p,(C) — pa(C) = 6g — 6. O

Let © denote the canonical polarization of the generalized Jacobian J C (see
[Beauville 1977]). It restricts to a polarization X on the abelian subvariety P. We
denote the isogeny P — P associated to X by the same letter.

Proposition 3.3. The polarization ¥ on P is of type D .= (1,...,1,7,...,7),
where T occurs

g times if ker Nm is connected,
g — 1 times if ker Nm is not connected.
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Proof. (Similar to [Faber 1988, Proposition 2.4]; we use also [Beauville 1977,
Corollary 2.3, p. 156].) If C is smooth, this is well known. In this case ker f
consists of 7 components and 7 occurs g — 1 times in the polarization D (see
[Birkenhake and Lange 2004, §12.3]). So suppose C is not smooth and f is a
covering of type (x). In this case the maps f* and f* are injective.

Consider the isogeny

h:PxJN—JN, (L,M)— " (L)® f*M.

We first claim that ker 2 C P[7] x JN|[7]. To see this, let (L, M) ekerh,ie., L€ P
and M € JN and v*(L) ® f*M ~ Of. Choose M’ € JC with

M~v'M. (3-4)
Then
PL® f*M) =~V L f*v'M ~V* L® f*M~ O, (3-5)

soL® f*M' €kerv* >~ T. Since f :T— T isan isomorphism, there is a unique
N € T such that
L~ f*(NM ™. (3-6)
This implies
(N@M'H®" ~Nmof*(NQM' ") ~NmL ~O¢
and hence L € P[7] and using (3-5) we get
M® ~Nm f*M ~Nm f*v*M' ~NmP* L~ ~v*Nm L~ ~v*Oy ~ Oc.

This completes the proof of the claim.

Now, since the map v* : JC[7] — JN[7] is surjective, we can choose M’ in (3-4)
even as an element of JC[7]. Moreover, from (3-6) we also get N € T'[7], since
f* is injective. Now consider the following extension of the map /4 to the whole of
the kernel of the norm map of f:

h:kerNm xJN — JN, (L, M) 7*(L)Q® f*M.
We claim that
kerh = {(f*(N@M'~"),v*M") | M’ € JC[T], N € T[7]}. (3-7)

So ker & consists of those elements of the right-hand side of (3-7) for which
f*(N ® M'~1) is contained in the connected component containing 0 of ker Nm¢.

Proof of (3-7). The inclusion of ker /1 in the left-hand side of the equation follows
from (3-4) and (3-6), which are valid for the extension 4.
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For the converse inclusion, suppose that M’ € JC[7] and N € T[7]. First note
that f*(N ® M'~!) C kerNm, since Nm f*(N @ M'~1) ~ (N @ M'~1)®7 ~ Oc.
Moreover,

PNOM ™Y@ F VM ~5* A (INQM ™)@V f*M ~7* f*N ~ Of.
This completes the proof of (3-7). U

Since for any « € T[7] we have (N ® o) @ (¢ ' @ M) ~ N ® M'~! and
v¥(M' ® a) >~ v*M’, we conclude that

dimg, ker i = dimg, JC[7] =2g —1,
with # = dim T = dim 7. This implies

. 2g —t if ker is connected,
dimg, ker h = ) .
2g —t—1 if ker is not connected,

since in the not-connected case ker Nm consists of 7 components.

Now ker £ is a maximal isotropic subgroup of the kernel of the polarization of
P x JN, since this polarization is the pullback under £ of the principal polarization
of JN. This implies dimp, (ker X x JN[7]) =2(dimg, ker /). Since dimg, (JN[7]) =
2g — 2t, it follows that
2g if ker Nm is connected,

dimg, (ker ¥) = . .
2g —2 if kerNm is not connected.

Since ker ¥ C P[7], this gives the assertion. O
Corollary 3.4. ker Nm consists of 7 components.

Proof. Consider C,—C,a family of coverings, where the central fiber Co — Co
satisfies condition () and all the other fibers are coverings of smooth curves. The
fibers in the associated family of abelian varieties ker Nm, have 7 components
for t+ # 0 and, according to Proposition 3.3, they have a polarization of type
a,...,1,7,...,7), where 7 appears g — 1 times. The type of a polarization in a
family of abelian varieties is constant since it is given by integers; therefore, ker Nmg
has the same polarization type as the nearby fibers and, again by Proposition 3.3,
ker Nmyg is nonconnected, so it consists of 7 components. U

4. The condition (%)

As in the last section, let f : C— Cbea G-covering of stable curves. Recall that a
node z € C is either

« of index 1, i.e., |Stabz| = 1, in which case f~'(f(z)) consists of 7 nodes
which are cyclically permuted under o, or
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» of index 7, i.e., |Stab z| = 7, in which case z is the only preimage of the node
f(z) and f is totally ramified at both branches of z. Since o is of order 7, the
two branches of z are not exchanged.

We also say a node of C is of index i if a preimage (and hence every preimage)
under f is a node of index i. We assume the following conditions for the G-covering
f : C — C of connected stable curves:

Pa(C) = g and p,(C) =7g —6;
o is not the identity on any irreducible component of C;

(%) { if at a fixed node of o one local parameter is multiplied by p, the other
is multiplied by p~, where p denotes a fixed 7-th root of unity;

P :=Pr(f) is an abelian variety.

Under these assumptions the nodes of C are exactly the preimages of the nodes
of C. We define fori =1 and 7:

« n; := the number of nodes of C of index i, i.e., nodes whose preimage consists
of 7/i nodes of C,

e ¢; := the number irreducible components of C whose preimage consists of
7/i irreducible components of C,

o r := the number of fixed nonsingular points under o.
Lemma 4.1. The covering satisfies (x%) if and only if r =0 and ¢1 = n;.

In particular, any covering satisfying (xx) is an admissible G-cover (for the
definition, see Section 5), and coverings satisfying condition (x) also verify (sx).

Proof. (As in [Beauville 1977] and [Faber 1988]. ) Let N and N be the normaliza-
tions of C and C, respectively. The covermg f N — N is ramified exactly at the
points lying over the fixed points of o : C — C. Hence the Hurwitz formula says

Pa(N) = 1=T(pa(N) — 1)+ 3r + 6n7.
So

Pa(C) = 1= pa(N)—14+Tn1+n7=T(pa(N) = 1) +3r +Tn; + Tn.

Moreover,
Pa(C) —1=pa(N)—1+n;+n7,

which altogether gives
Pa(C) =1 =T(pa(C) — 1) +3r.

Hence the first condition in () is equivalent to r = 0.



780 Herbert Lange and Angela Ortega

Now we discuss the condition that P is an abelian variety. For this consider
again the diagram (3-2). From the surjectivity of the norm maps it follows that P
is an abelian variety if and only if dim 7 = dim 7. Now

dim JN = pa(ﬁ) —n7—Tni+c7+7¢; —1
and thus

dimf:(n7—c‘7)+7(n1—cl)+1 and dim7 =7 —c7)+ (ny—cy) + 1.
Hence dim 7 = dim 7 if and only if ¢; = n,. O

Let f : C > Chbea G-covering satisfying condition (xx) with generating
automorphism o. We denote by B the union of the components of C fixed under o
and write

C=AU---UA;UB
with 0 (A;) = A;11, where Ag = A;. Observe that the covering B — B/o satisfies
condition ().
Proposition 4.2. (i) If B = 9, then C = A1 U---U A7, where A can be chosen
connected and tree-like, and #A; N Ajr1 =1 fori=1,...,7.
@{1) If B# O, then AiNAjy1 = fori=1,...,7. Each connected component
of Ay is tree-like and meets B at only one point. Also B is connected.

For the proof we need the following elementary lemma (the analogue of [Beauville

1977, Lemma 5.3] and [Faber 1988, Lemma 2.6]), which will be applied to the dual
graph of C.

Lemma 4.3. Let I be a connected graph with a fixed-point free automorphism o of
order 1. Then there exists a connected subgraph S of y such that o' (S) N o' T1(S)
is empty fori =0,...,6 and U?:o o' (S) contains every vertex of T.

Proof of Proposition 4.2. (As in [Beauville 1977] and [Faber 1988].) Let I denote
the dual graph of C.If B=o, let A correspond to the subgraph S of Lemma 4.3.
Let v be the number of vertices of S, e the number of edges of S and s the number
of nodes of A; which belong to only one component. The equality ¢; = n; implies

v=e+s—#A|NA;.

Since ] —v+e>0and #4; N Ay > 1 give s = 0, we have #A; N A, = 1 and
1 —v+4+e=0. So A is tree-like. This proves (i).
Assume B # & and define

o t:=#A1 N A,
em:=#A;,NBfori=1,...,7,

e iy, = # irreducible components of A,
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e cy4, :=# of connected components of Ay,

e ny4, :=#nodes of Aj.

Recall that assumption (xx) implies that B does not contain any node which moves
under o. Then

c1=is, and ny=ny, +r+m.

For any curve we have n4, —ia, +ca, > 0 (see [Beauville 1977, Proof of Lemma 5.3]).
Thus, if ¢ = n;,

OznA,—i-t—i-m—iA, > t+m—cy,.

Since C is connected, any connected component of UZ: |A; meets B. But then any
connected component of A; meets B, which implies m > c4,. Hence

0>t4+m—cy, >21t>0.

Hence t =0, m = ca4, and ng, —ia, +ca, =0. So A;NA;{; = & and B is
connected. U

In the next section we will extend the Prym map to the G-covers satisfying (xx),
thereby obtaining a proper map. Theorem 4.4 describes the associated Pryms by
reducing to the easier situation of coverings verifying ().

Theorem 4.4. Suppose that f : C—>cC satisfies condition (xx). Then there exist
the following isomorphisms of polarized abelian varieties:

o In case (i) of Proposition 4.2, (P, ¥) ~ker((JA;)! — JA}) with the polariza-
tion induced by the principal polarization on (JA,)".

e In case (ii) of Proposition 4.2, (P, ¥) ~ker((JA1)" — JA) x Q, where Q is
the generalized Prym variety associated to the covering B — B/o.

Proof. (As in [Beauville 1977, Theorem 5.4].) In case (i), C is obtained from
the disjoint union of 7 copies of A| by fixing 2 smooth points p and g of A and
identifying 4q in the i-th copy with p in the (i + 1)-st copy of A, cychcally The
curve C = C /G is obtained from A; by identifying p and ¢, and f : C — Cisan
étale covering. Note that JA; is an abelian variety, since A is tree-like.

Consider the diagram

0 C* JC (JA) —— 0

e e |-

0 C* JC JA, 0
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in which m is the addition map. One checks immediately that Nm : C* — C* is an
isomorphism. This implies the assertion. Notice that the polarization of P is of type

a,...,1,7,...,7).
——
g—1

In case (ii), we have
JC~ @A) xJB and P = (kerNm)?~ker((JA;) — JA;) x Q,

which immediately implies the assertion. U

5. The extension of the Prym map to a proper map

Let R, 7 denote the moduli space of nontrivial étale G-covers f : C — C of smooth
curves C of genus g, and let Bp denote the moduli space of polarized abelian vari-
eties of dimension 6g — 6 with polarization of type D, with D as in Proposition 3.3
and compatible with the G-action. As in the introduction we denote by

PI‘g77 . jo —> BD

the corresponding Prym map associating to the covering f the Prym variety Pr(f).
In order to extend this map to a proper map, we consider the compactification 7_2g,7
of R 7 consisting of admissible G-coverings of stable curves of genus g introduced
in [Abramovich et al. 2003].

Let X — S be a family of stable curves of arithmetic genus g. A family of
admissible G-covers of X over S is a finite morphism Z — X" such that

(1) the composition Z — X — S is a family of stable curves;

(2) every node of a fiber of Z — § maps to a node of the corresponding fiber of
X = S;
(3) Z2 — X is a principal G-bundle away from the nodes;

(4) if z is a node of index 7 in a fiber of Z — S and & and 5 are local coordinates
of the two branches near z, any element of the stabilizer Stabg (z) acts as

E.m) > (& p '),
where p is a primitive 7-th root of unity.

In the case of S = Spec C we just speak of an admissible G-cover. In this case
the ramification index at any node z over x equals the order of the stabilizer of z
and depends only on x. It is called the index of the G-cover Z — X at x. Since 7 is
a prime, the index of a node is either 1 or 7. Note that, for any admissible G-cover
Z — X, the curve Z is stable if and only if X is stable.
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As shown in [Abramovich et al. 2003] or [Arbarello et al. 2011, Chapter 16],
the moduli space 7_2g 7 of admissible G-covers of stable curves of genus g is a
natural compactification of R, 7. Clearly the coverings satisfying condition (x3)
are admissible and form an open subspace Rg 7 of Rg 7.

Theorem 5.1. The map Pry 7: R, 7— Bp extends to a proper map ls}g,7 : ﬁgj — Bp.

Proof. The proof is the same as the proof of [Faber 1988, Theorem 2.8] just
replacing 3-fold covers by 7-fold covers. So we will omit it. ([

6. Generic finiteness of Pr; 7

From now on we consider only the case g = 2, i.e., of G-covers of curves of
genus 2. So dimRy7 = dim M, = 3 and Bp is the moduli space of polarized
abelian varieties of type (1, 1, 1, 1, 1, 7) with G-action which is also of dimension 3.
Let[f: C—Cle R».7 be a general point and let the covering f be given by the
7-division point n € JC. The next lemma is a particular case of the results in [Lange
and Ortega 2011, p. 397-398] that we include here for the sake of completeness.

Lemma 6.1. (i) The cotangent space of Bp at the point Pry 7([ f : C—C 1) e Bp
is identified with the vector space @1-3:1 (Ho(a)c 1)@ HY(we ® n7_i)).

(i) The codifferential of the map Pry 7 : Ro7 — Bp at the point (f, n) is given by
the sum of the multiplication maps

3
@(H°<wc ®n)® H(wc ®n'™")) — H ().

Proof. (i) Consider the composed map Rg 7 —=5 NN Bp Z> Ap, where Ap denotes
the moduli space of abelian varieties with polarization of type D. The cotangent
space of the image of [ f : C — Clin Ap is by definition the cotangent at the Prym
variety P of f. It is well known that the cotangent space T at 0 is

Tio=H'(C.0p)” =P H(C.0c®1). ©-1)
i=1
According to [Welters 1983] the cotangent space of Ap at the point P can be
identified with the second symmetric product of H°(C, )~ . This gives

6 3
i, r =D S H (wc @ 1) @ @P(H (wc ®n) ® H(we @' 7). (6-2)
i=1 i=1
Since the map 7 : Bp — Ap is finite onto its image and the group G acts on
the cotangent space of Bp at the point, we conclude that this space can be identi-
fied with a 3-dimensional G-subspace of the G-space Tj{D’ p» Which is defined over
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the rationals. But there is only one such subspace, namely,
3
P(H @c@n)© H(wc®n’™).
i=1

This gives (i).

@i1) It is well known that the cotangent space of R, 7 at a point (C, ) without
automorphism is given by H O(a)é) and the codifferential of Pry 7 : Ry 7 — Ap at
(C, n) by the natural map SQ(HO(g, w§)”) —> Ho(w%). The assertion follows
immediately from Lemma 6.1(i) and equations (6-1) and (6-2). U

Theorem 6.2. The map I;rzj : 7~22,7 — Bp is surjective and hence of finite degree.

Proof. Since the extension ﬁm is proper according to Theorem 5.1, it suffices to
show that the map Pr» 7 is generically finite. Now Pr, 7 is generically finite as soon
as its differential at the generic point [ f : C — C] € Ry 7 is injective. Let f be
given by the 7-division point 7. According to Lemma 6.1, the codifferential of Pr; 7
at[f : C—C ] is given by (the sum of) the multiplication of sections

3
ey @ HNC, wc®@n)) @ H(C, wc ®@n'~7) — HO(C, wg).
j=1

Note that the surjectivity of wc,, is an open condition in R, 7. Since Rz is
irreducible and 732,7 is open and dense in 7@2,7, it suffices to show that the map
Wx,, is surjective at a point (X, n) in the compactification 7_32,7, even if Pry 7 is
not defined at (X, n). So if wy , is surjective at this point, it will be surjective at
a general point of R 7. Moreover, it suffices to show that ux , is injective, since
both sides of the map are of dimension 3.

Consider the curve

X=YUZ,

the union of two rational curves intersecting in 3 points g1, g2, g3 which we can
assume to be [1, 0], [0, 1], [1, 1], respectively. The line bundle nx = (ny, nz) on X
of degree 0 is uniquely determined by the gluing of the fiber over the nodes

.ci
OY\q,— l Oz\qi’

given by the multiplication by a nonzero constant ¢;. We may assume c3 = 1 and
since ny >~ Ox we have ¢] = ¢] = 1. Notice that wx,, = Oy(1) and wx, = Oz(1)
and the restrictions ny, nz are trivial line bundles.

From the exact sequence

0— 0z(—2) = wx @ L5 Oy (1) - 0
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we have hO(X, a)X®n§() =1fori=1,...,6. Moreover, since HO(Z, 0z(-2))=0,
the map B; induces an inclusion HO(X, wx®n§() — HO(Y,0y(1)) fori=1,...,6.

Therefore, to study the injectivity of wx ,, it is enough to check whether the pro-
jection of @;_, HO(X, wx®n' ) @ H(X, wx®n ') to HO(Y, Oy (1)@H (Y, Oy (1))
is contained in the kernel of the multiplication map

H(Y, Oy (1)) ® HO(Y, Oy (1)) —> HO(Y, Oy (2)).

We claim that the line bundle wx = (w|y, w|z) is uniquely determined and one
can choose the gluing ¢; at the nodes g; to be the multiplication by the same
constant. To see this, first notice that, since (X, wy) is a limit linear series of
canonical line bundles, the nodes of X are necessary Weierstrass points of X. Let
s3 € HO(X, wx(—2g3)) be a section giving a trivialization of wy and wz away
from g3. Fori =1, 2, we have

—1
Oy (g, 2> Ox g, ~> Oz(1)yg,

which implies that ¢; = ¢;. Similarly, by using a section in H %X, w x(—2¢2)) one
shows that ¢; = ¢3.

A section of wy,, ®n§, ~QOy(1)fori =1,2,31is of the form f;(x, y)=a;jx+b;y,
with a;, b; constants. Suppose that the sections f; are in the image of the inclusion

HY(X, wx ®@n'y) — H(Y, Oy(1)).

By evaluating the section at the points ¢g; and using the gluing conditions, one gets
a; = c’i —1andb; = cé — 1. One obtains a similar condition for the image of the
sections of HO(X, wx ® ny ') in H(Y, Oy(1)). Set j =7 —i. By multiplying the
corresponding sections of wyx ® né( and wx ® nﬁ( we have that an element in the
image of px , is of the form
(2 —c‘i — c{)x2 + (2— cé —cg)y2 — (2— c{ — cé —i—c{cé — c’i —cg —I—c’icé)xy.

Hence, after taking the sum of such sections for i = 1, 2, 3 we conclude that there is
a nontrivial element in the kernel of 1t x , if and only if there is a nontrivial solution
for the linear system Ax = 0 with

2—01—0? 2—clcg’—c?02 2—cz—cg
A= Z—C%—C? 2—c%c§—c?c% 2—c%—c§
2—c?—c‘11 2—c?c§—c‘]‘cg 2—03—63
Clearly, if ¢; =1 for some i or ¢ = ¢, the determinant of A vanishes. We compute

% det A= c? (c;—cg)—i-c? (cg—c§)+cf(c§—cz)+c% (cg—cg)+c%(02—c‘2‘)+cl (c‘z‘—c%).
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Suppose that ¢; # 1 and ¢ = c’f for some 2 < k < 6. Then a straightforward
computation shows that det A # 0 if and only if k =3 or k = 5.

In conclusion, we can find a limit linear series (X, nx) with 77;( ~ Oy, for suitable
values of the c;, such that the composition map in the commutative diagram

D HOX, 0y ®n) ® H(X, wx @ n’~1) — HO(X, 02)

H(Y, Oy (1)) ® HO(Y, Oy (1)) ————— H"(Y, Oy (2))

is an isomorphism. O

7. A complete fiber of ﬁ‘zﬂ

For a special point of Bp, consider a smooth curve E of genus 1. Then the kernel
of the addition map

X=X(E):=kerm:E"— E) with m(xy,....,x7)=x1 4+ +x7

is an abelian variety of dimension 6, isomorphic to E®. The kernel of the induced
polarization of the canonical principal polarization of E” is {(x, ..., x) :x € E[7]},
which consists of 72 elements. So the polarization on X induced by the canonical
polarization of E” is of type D = (1, 1, 1, 1, 1, 7). Since the symmetric group Sy
acts on E7 in the obvious way, X admits an automorphism of order 7. Hence
X with the induced polarization is an element of Bp. To be more precise, the
group &7 admits exactly 120 subgroups of order 7. Hence to every elliptic curve
there exist exactly 120 abelian varieties X as above with G-action. All of them are
isomorphic to each other, since the corresponding subgroups are conjugate to each
other according the Sylow theorems. We want to determine the complete preimage
ﬁrz_ ;(X ) of X. We need some lemmas. For simplicity we denote by Pr(f) the
Prym variety of a covering f in 732,7.

Lemma 7.1. Let f : C— Cbhea covering satisfying (xx) with g = 2 such that
Pr(f) >~ X. Then C contains a node of index 1.

Proof. Suppose that either C is smooth or all the nodes of C are of index 7. Then
the exact sequence (3-3) gives an isogeny j : Pr(f) — Pr( f) onto the Prym variety
of the normalization f of f. Actually, in the smooth case, j is an isomorphism
and, if there is a node of index 1, the kernel T[7] is positive dimensional. The
isomorphism Pr(f) = X implies that the kernel of j is of the form {(x, ..., x)}
with x € X[7]. Hence the action of the symmetric group S7 on X descends to a
nontrivial action on Pr( f ).

We can extend this action to JN by combining it with the identity on JN. Namely,
JN ~ (JN x Pr(f))/H, where H is constructed as follows. Let (n) C JN|[7]
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be the subgroup defining the covering f and let H; C JN[7] be its orthogonal
complement with respect to the Weil pairing. Then H = {(«, — f*«) : @ € H;}.
Since f*H; ={(x,...,x):x € E[7]} C Pr(f), we get an S7-action on JN which
is clearly nontrivial.

If C is smooth, then N ~ C. On the other hand, if all the nodes of C are of index 7,
then N consists of at least two components. In any case, for each component N;
of N we have

#Aut(JN;) > 1#8; = 2520.

Moreover, according to a classical theorem of Weil, Aut IV,- embeds into Aut J IV,-
with quotient of order < 2. So

#AutN; > L# Aut(JN).
On the other hand, N; is a smooth curve of genus < 8. So Hurwitz’s theorem implies
#Aut(N;) <84 (8 —1) =588.
Together, this gives a contradiction. ([

Lemma 7.2. Let f : C—>Chbhea covering satisfying (xx) such that C has a
component containing nodes of index 1 and 7. Then any node of index 1 is the
intersection with another component of C.

Proof. Suppose x and y are nodes of C in a component C; of index 1 and 7,
respectively. Then the preimage f~'(C;) is a component, since over y the map f
is totally ramified. Since f~!(x) consists of 7 nodes, the equality n; = ¢; implies
that x is the intersection of 2 components. (|

Theorem 7.3. Let X =ker(m : E’ — E) be a polarized abelian vartety as above.
The fiber Pr2 7(X ) consists of the following 4 types of elements of R27 (see
Figure 1).

i) C=E/p~gqand 5:|_|Z:1E,-/p,- ~ gi+1 with E; >~ E foralli and g3 =q and
we can enumerate in such a way that the preimages of p and q are p;, q; € E;.

(i) C = E U, E; consists of 2 elliptic curves intersecting in one point p. Then up
to exchanging E| and E, we have: C consists of an elliptic curve F\, which
is a 7-fold cover of Ey and 7 copies of Ey >~ E not intersecting each other and
intersecting F| each in one point.

(iii) C = EU, E; with E; elliptic and E/ rational with a node at q. Then E» ~ E
and f~Y(E») consists of 7 disjoint curves all isomorphic to E and f~'(E)
is a rational curve with one node lying 7:1 over E| and intersecting each
component of f~Y(E,) in a point over p.

(iv) C=E U, E> as in (iii) and C is an étale G-cover over C.
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We call the coverings of the theorem of type (i), (ii), (iii) and (iv), respectively.
Theorem 7.3 will be used in Proposition 7.5 to describe the complete fibers of the
Prym map over X (E).

Proof. There are 7 types of stable curves of genus 2. We determine the coverings
f:C—Cin Pr; ;(X ) in each case separately.

(1) There is no étale G-cover f : C — C of a smooth curve C of genus 2 such that
P =Pr(f)~ X. This is a direct consequence of Lemma 7.1.

(2) If C = E/p ~ q then the singular point of C is of index 1 and f : C—>Cisa
G-covering satisfying (s#x) such that P = Pr(f) >~ X. Then

7
= |Ei/(pi ~ qiv1)
i=1

with E; >~ E and we enumerate in such a way that the preimages of p and ¢ are
pi and g; with g3 = q;. In this case Pr(f) ~ X

Proof: Accordlng to Lemma 7.1 the node is necessarily of index 1 and thus the
map f : C — C is étale. The exact sequence (3-3) together with Corollary 34
gives an isomorphism P ~ R with R the Prym variety of the map f. Clearly we
can enumerate the components of N insuch a way that C is as above and R is the
kernel of the map m : X,_,E — E,i.e., R >~ X. We are in case (i) of the theorem.

(3) There is no rational curve C with 2 nodes admitting a G-cover f : C—C
satisfying (xx) such that P =Pr(f) ~ X

Proof: Suppose there is such a covering. By Lemmas 7.1 and 7.2 both nodes are of
index 1 and hence the map C — C is étale. Then all components of C are rational.
This implies that P ~ C*® is not an abelian variety, a contradiction.

(4) Let C = E; U, E; consist of 2 elliptic curves intersecting in one point and
let f: C—>Chbea covering satisfying () such that P = Pr(f) >~ X. Then, up
to exchanging E; and E,, we have that C consists of an elliptic curve Fij, which
is a 7-fold cover of E; and 7 copies of E, >~ E not intersecting each other and
intersecting F each in one point. So X = ker(m : E; — E»).

Proof: By Lemma 7.1 the node is of index 1 and the map f : C — C is étale. Since
there is no connected graph with 14 vertices and 7 edges, we are necessarily in
case (ii) of the theorem.

(5) Suppose C = E;| U, E; with components E elliptic and E; rational with a
node g and f : C—>Ca G-covering satisfying (k) such that P =Pr(f) >~ X. Then
E> ~ FE and either f : C — C is étale and connected or C consists of 7 components
all isomorphic to E and a rational component F, over E» totally ramified exactly
over g and intersecting each E; exactly in one point lying over p. So Pr(f) ~ X
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Proof: According to Lemma 7.1 at least one node of C is of index 1. Suppose first
that both nodes are of index 1. Then clearly f is étale and we are in case (iv) of
the theorem. If only one node is of index 1, then according to Lemma 7.2 g is of
index 7 and p of index 1. This gives case (iii) of the theorem.

(6) There is no curve C consisting of 2 rational components intersecting in one
point p admitting a G-cover f : C — C satisfying (*x) such that P =Pr(f) ~ X

Proof: According to Lemmas 7.1 and 7.2 the node p is of index 1 and the nodes
g1 and g of the rational components of C are of index 1 or 7. By the Hurwitz formula
all components of C are rational. This implies Pr( f) >~ C*S, contradicting ().

(7) If C is the union of 2 rational curves intersecting in 3 points, there is no cover
f : C — C satisfying (%) such that P =Pr(f) >~ X

Proof: By Lemma 7.1 at least one of the 3 nodes of C is of index 1. So C consists
of at least 8 components. But then the other nodes also are of index 1, because if
one node is of index 7, the curve C consists of 2 components only. Hence all 3
nodes are of index 1. But then all components of C are rational. So P = Pr(f)
cannot be an abelian variety, contradicting ().

Together, steps (1)—(7) prove the theorem. U

Corollary 7.4. Let E be a general elliptic curve. Then the fiber f’vr; ;(X (E))
consists of two irreducible components S| and S;. The component S| is a covering
over E whose points correspond to coverings of type (1), except for one point, which
corresponds to a covering of type (iv). The component S, is a finite covering of
the moduli space of elliptic curves, and every point corresponds to a covering of
type (ii), except for two points, one of which corresponds to a covering of type (iii)
and the other to a covering of type (iv). The components S and S, intersect at a
point corresponding to a covering of type (iv) (see Figure 1).

Proof. It is known that for 2 elliptic curves E| # E, we can have X (E1) ~ X (E»)
as abelian varieties, but not necessarily as polarized abelian varieties. Hence X (E)
determines E (which can be seen also from Theorem 7.3).

We claim that the coverings of type (iv) are contained in S; and S, whereas
the coverings of type (111) are contained in S, only: it is known that a curve C
degenerates to a curve C C’ of some other T type if and only if the dual graph of C o
can be contracted to the dual graph of C. On the other hand, the locus of curves
covering some curve of genus > 2 of some fixed degree is closed in the moduli
space of curves. Now considering the dual graphs of the curves C of the coverings
of the different types gives the assertion.

In the case of coverings of type (i) we have C = E/p; ~ p>. We can use the
translations of E to fix pj, and then p; is free, which gives the assertion, since
there are only finitely many étale coverings of C.
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@) (iii)
E
pi ~ qQ g E

| |
’;aqu/E Elg"/(_jpé/E

(i1) @iv)
Fi Fi
E
E |
E, b E E//‘IQ—%—/E

Figure 1. Admissible coverings on the fiber of X (E).

In case (ii) we have C = E| U, E;, where E| is an arbitrary elliptic curve and
E, >~ E. Since p may be fixed with an isomorphism of E and E», this gives the
isomorphism of l§r; ;(E ) with a finite covering of the moduli space of elliptic curves,
again since there are only finitely many coverings C of type (ii) of C.

Finally, in cases (iii) and (iv), the 3 points of the normalization of E; given
by p and the 2 preimages of the node, which we can assume to be 1, 0, and oo,
respectively, determine the curve C uniquely. For type (iii) the induced map on the
normalization of Fy is a 7:1 map & : P! — P! totally ramified at 2 points, which
we assume to be co and 0. So & can be expressed as a polynomial in one variable
of degree 7, with vanishing order 7 at 0 and such that (1) = 1, that is, h(x) = x".
Then the map 4, and hence the covering, is uniquely determined. For a covering of
type (iv) over C we consider 7 copies of P!, where the point 1 on every rational
component is identified to the point co of another rational component, and we attach
elliptic curves isomorphic to E, at each point 0. The number of étale coverings is



The Prym map of degree-7 cyclic coverings 791

the number of subgroups of order 7 in JE[7] 2 Z/7Z (the 7-torsion points in the
nodal curve E; are determined by a 7-th root of unity). So there is only one such
covering up to isomorphism. U

Varying the elliptic curve E, we obtain a one-dimensional locus £ C Bp consisting
of the polarized abelian varieties X (E) with G-action as above. Let S denote the
preimage of £ under the extended Prym map 13}2,7 : 7~22’7 — Bp. The next proposition
is a direct consequence of Corollary 7.4.

Proposition 7.5. The scheme S has dimension 2 and is the union of 2 closed
subschemes

S=85US,,

where S| parametrizes coverings of type (i) and (iv), and S, parametrizes cover-
ings of type (ii), (iii) and (iv). In particular, they intersect exactly in the points
parametrizing coverings of type (iv).

8. The codifferential on the boundary divisors

In this section we will give bases of the Prym differentials and an explicit description
of the codifferential of the Prym map.

Let f: C— Cbea covering corresponding to a point of S. We want to compute
the rank of the codifferential of the Prym map Pr, 7 : 7~€2,7 — Bp at the point
Lf: C — Cle 732,7. According to [Donagi and Smith 1981] this codifferential is
the map

P*: S2(H(C, wg) ") — HO(C, Qc ® we),

where Q¢ is the sheaf of Kihler differentials on C and SZ(H 0(6:, wg)_)G is the
cotangent space to Bp at the Prym variety of the covering f : C — C. Letting
J : Q¢ — wc denote the canonical map, we first compute the rank of the composed
map

S2(H(C, wg)7)" 25> H(C, Qc ® we) <> HO(C, o).

Suppose first that f is of type (i), (ii) or (iv). In these cases the covering f is
étale and hence given by a 7-division point n of JC. According to the analogue of
[Lange and Ortega 2011, Equation (3.4)] we have

6
HO(C,we)” =P H(C, wc ®1') (8-1)
i=1

and hence

3
S2(H(C.wc)) =@ (HC.0c @ 1)@ H(C.0c@1'™)). (82
i=1
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Using this, the above composed map is just the sum of the cup product map
3
¢ PHC 0c@n)@HC.0c®n)) — H(C.0}).,  (83)
i=1

whose rank we want to compute first.

We shall give a suitable basis for the space of Prym differentials. First we
consider a covering of type (i) constructed as follows. Let E be a smooth curve of
genus 1 and let ¢ # ¢’ be two fixed points of E. Then

C:=E/qg~q

is a stable curve of genus 2 with normalization n : E — C and node p :=n(gq) =n(q’).
Let f: C—>Chbea cychc étale covering with Galois group G = (o) >~ Z/7Z. The
normalization 71 : N — C consists of 7 components N; >~ E with o (N;) = Njy
fori =1,...,7 and Ng = N;. Let g; and ql. be the elements of N; corresponding
to ¢ and ¢'. Then 7i(q;) = 7i(g;,,) =: p; fori =1,...,7 with g; = g|. Clearly
O’(pi) = Pi+1 for all i.

Recall that w¢ is the subsheaf of n, (Oﬁ > (g + q; )) consisting of (local) sec-
tions ¢ which considered as sections of Oy » (g + ¢;) satisfy the condition

Resg, () + Resql_/ﬂ((p) =0

fori =1,...,7. Here we use the fact that wy = Og. Consider the following
elements of H (C, Ty (Oﬁ > (qi + ql./))), regarded as sections on N:

nonzero section of Oy, (g1 +¢|) vanishing at ¢; and ¢,
wy 1=
: 0 elsewhere,

= (o Y (w) fori=2,...,7

Note that w; is nonzero on N; vanishing at ¢; and g; and zero elsewhere.
Now we construct similar differentials for coverings of type (ii). Let

C=E U, E,

consist of 2 elliptic curves E; and E; mtersectmg transversally in one point p, and
let f: C —> Chbea covering of type (ii). So C consists of an elliptic curve Fi,
which is an étale cyclic cover of E; of degree 7 and 7 disjoint curves E!, .. ., EZ all
isomorphic to E». The curve E; intersects F; transversally in a point pi» such that
the group G permutes the curves E; and the pomts pi cyclically, i.e., a(E )=E, i+l
and o (p;) = Pi+1 with E2 = E1 and pg =

Letii: N — C denote the normahzatlon map Then N is the disjoint union of
the 8 elliptic curves Fi, Eé, cees E; We denote the point p; by the same letter
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when considered as a point of F| and Eé Consider the line bundle
L =Or (p1+---+p)UOg(pU---UOg(p7).

Then w¢ is the subsheaf of 71, (L) consisting of (local) sections ¢ which considered
as sections of L satisfy the condition

(Resp, )7 () + (Resp,) i (9) =0 (8-4)

fori =1,...,7. Consider the following sections of 7, (L), regarded as sections
on N:

{nonzero sections of O, (p1) and OEZI (p1) satisfying (8-4) at pq,
w1 =

0 elsewhere,

= (o Y (w) fori=2,...,7

Thus w; is nonzero on Fj(p;) U Eé(pi) vanishing at p; and zero elsewhere.
We construct the analogous differentials for the covering f of type (iv), which is
uniquely determined according to Proposition 7.5. So let

C=E U, E,

with E, elliptic and E; a rational curve with one node ¢ and let f : C — C be the
covering of type (iv). Then C consists of 14 components Fi, ..., F7 isomorphic
to P! with f| F, - F; = E; the normalization and E 1. E7 all isomorphic to E;
with f| E : E;, — E the 1som0rphlsm Then E; | intersects F; in the point p; lying
over p and no other component of C.If gi and g/ are the pomts of F; lying over ¢,
the F; and F; intersect transversally in the points ¢; and ¢/, fori =1,...,7,
where g; = g;. The group G permutes the components and points cychcally, ie.,
o (F1) = F;4+1 and similarly for E2, pi» qi and g/

The normalization 7i : N — C of the curve C is the disjoint union of the compo-
nents F; and E’2 We denote also the point p; by the same letter when considered
as a point of F; and Eé Consider the following line bundle on N:

7 7
L= |0r@i+a+pyul |0 (p)-
i=1 i=l

Then wg is the subsheaf of 71, (L) consisting of (local) sections ¢ which viewed as
sections of L satisfy the conditions

(Res ) F; () + (Resp ) i (9) =0, (Resy,) F (9) + (Resy )jFy (@) =0 (8-5)
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fori =1,...,7. Consider the following sections of 7, (L), regarded as sections
on N:
nonzero sections of wr, (¢1 +¢{ + p1) and (’)E1 (p1) satisfying (8-5)
W] = at p and vanishing at ¢; and ¢/,
0 elsewhere,
= (0 ) (w) fori=2,...,7.

Note that up to a multiplicative constant there is exactly one such section wy, since
W (@r, (g1 +q} + p1) =2 and KOy (p1)) = 1.

Finally, we consider covermgs of type (iii). Let C = E U, E>, as for the covering
of type (iv) above, and let f : C—Chbea covering of type (iii). So C consists of
a rational curve F; with a node r lying over the node g of C and 7 components
Eé, cee Eg all isomorphic to E,. Therl~ E’2 intersects Fj in the point p; lying over p
and intersects no other component of C. The group G acts on F; with only a fixed
point » and permutes the El2 and p; cyclically as above. We use the following
partial normalization 7 : N — Cof C:

Consider the following line bundle on N:

7

L =0 (pi+--+ppu|_|Oppo.
i=1

Since the canonical bundles of F; and Eé are trivial, it is clear that wg is the
subsheaf of 71, (L) consisting of (local) sections ¢ which regarded as sections of L
satisfy the relations

(Res )| (9) + (Res ) i () =0 (8-6)
fori =1,...,7. As before, define a section

nonzero sections of O, (p1 +- - -+ p7) and OE£ (p1)
W] = vanishing at py, ..., p7,

0 elsewhere,

of 7, (L), considered as a section of N, and define the sections w;, fori =2, ..., 7,
as in the previous cases. Note that up to a multiplicative constant there is exactly
one such section wj.

From now on, f : C — C willbe a covering of type (i)—(iv) as above. We fix a
primitive 7-th root of unity, for example, p := e?™1/7 and define fori =0, ...,6
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the section
7
Q,’ = Z ,Olj w;j.
j=1
Clearly €2; is a global section of L that defines a section of wg, which we denote
with the same symbol.

Lemma 8.1. 0%(Q;) = p'Q; fori =0, ..., 6. In particular, Q € H0(5, wF)t
and {Q, ..., Q) is a basis of H*(C, wF)”.

Proof. The first assertion follows from a simple calculation using the definition
of w;. So clearly 9 € H(C, wg)" and ; € H(C, wg)~ fori =1, ..., 6. Since
Qy, ..., Qs are in different eigenspaces of o, they are linearly independent and

since H 0(5 , wF)~ is of dimension 6, they form a basis. U

Remark 8.2. In cases (i), (ii) and (iv), H%(C, wc ® n’ ") is the eigenspace of o'
and €; is a generator fori =1, ...,6.

Proposition 8.3. The map
¢ : S2(H(C, wp)")¢ — HY(C, 0?)
is of rank 1.
Proof. We have to show that the kernel of ¢ is 2-dimensional. A basis of

SQ(HO(CN’, a)g)_)G is given by {Q1® Q¢, 2R L5, Q3@ Q4}). Let a, b, ¢ be complex
numbers with

P (a1 Qs+ bR + cQ3RQ) =0.

Define, fori =1, ...,7,
7
Vi = ij QWjti-1-
i=1

An easy but tedious computation gives

Q1 ® Qs = Y1 + p¥7 + p*We + p s + p*va + pO s + pC,
Qo ® Qs = Y1 + p¥a + oY1 + 23 + p W6 + 0 Y2 + p%ss,
Q3@ Qu = Y1+ p¥3 + p*Ys + p Y7 + p* P + 7Y + p .
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So we get
0=¢((@+b+)i+ @’ +bp> + oY + (ap’ + bp® +cp)yr3
+ (ap* +bp +cp*) s + (ap® +bp® + co) s
+ (ap? + bp* + cp®) W6 + (ap + bp* + cp®)yr7)
=(a+b+o) @+ +w?)

M=

+(alp+p°) +b(p* +p7) +c(p’ +pY) X wjwj

~
I

M=

+(a(p® +p°) + (0 + pM +c(p+p%) X wjwj2

~
I

M=

+(a(p’ +pH) +b(p+p) +c(p® +p7) 3 wjwj43.

~
I

This section is zero if and only if its restriction to any component is zero. Now the
restriction to NV; for all i gives

6
0=a+b+c+(6a+6b+6c)z,0j =—5a+b+c).
j=1
S0 p(a1Q R + bR Ns + c3®24) = 0 if and only if @ + b + ¢ = 0. Hence
the kernel of ¢ is of dimension 2, which proves the proposition. (]

Proposition 8.3 shows that the codifferential map along the divisors S; and S,
in Proposition 7.5 is not surjective. In fact, as we will see later, the kernel of ¢
coincides with the conormal bundle of the image of these divisors in Bp. In order
to compute the degree we will perform a blow-up along these divisors.

Let £ C Bp denote the one-dimensional locus consisting of the abelian varieties
which are of the form X = ker(m : E” — E) with m(xq, ..., x7) =x; +- -+ x7
for a given elliptic curve E. As we saw in Section 7, the induced polariza-
tion is of type D. Note that £ is a closed subset of Bp. The aim is to com-
pute the degree of Pr;, above a point X € £. We denote by S C 7%2,7 the
inverse image of £ under }3}2’7. According to Proposition 7.5, S is a divisor
consisting of 2 irreducible components in the boundary 732,7 \ R2,7. We have
S = 81 US,, where a general point of S; corresponds to the G-covers with
base an irreducible nodal curve of genus 1, and a point of S, corresponds to
a product of elliptic curves intersecting in a point. Moreover, for any fixed el-
liptic curve E, S; and S, intersect in the unique point given by the covering of
type (iv).

As in [Donagi and Smith 1981], let Bp be the blow-up of Bp along £ and
R~ 7%2,7 the blow-up of 7%2’7 along the divisor § = l’;rz_ 17(5 ). We then obtain the
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commutative diagrams

~ P ~
R —— Bp

ey

R2,7 —_— BD

5
_
P!-bundle

f;rzj
R

12
0 —— 0y
M —— )

in which & and £ are the exceptional loci.

Lemma 1.3.2 of [Donagi and Smith 1981] guarantees that the local degree of f’dr2,7
along a component of S equals the degree of the induced map on the exceptional
divisors 73|5i :S; — £ if the codifferential map P* is surjective on the respective
conormal bundles. Recall that the fibers of the conormal bundles at the point X are
given by

Nx e/5, = ker(Tx Bp — T €),

£ _ * -~ * )
C.m.5:/7 = Ker(T(c yRa7 = T 5 Si)

for i = 1,2. As in [Donagi and Smith 1981], by taking level structures on the
moduli spaces we can assume we are working on fine moduli spaces, which allows
us to identify the tangent space to S; at the G-admissible cover [C — C], where
C = E/(p ~ q), with the tangent space to M; at C. Thus the conormal bundle

(*C,T)),Sl/ﬁZJ can be identified with the conormal bundl_e NS,AO/MZ C HY(QcQwe),
where Ay is the divisor of irreducible nodal curves in M. Similarly, we can identify
the tangent space to S, at [5 — C], where C = E| U, E», with the tangent space
to M» at C. Thus (*C,n),Sz/ﬁz,v can be identified Withi\/g,m/ﬂz C H(Qc Q@ we),
where A is the divisor of reducible nodal curves in M.

Using the fact that X = Pr((,N‘, C) we can identify (Tx Ap)* =~ @1.6:1 Q;C and
§? (Ho(a a)c)_)G as in (8-2). Then for a covering (C, 1) the conormal bundles fit
in the commutative diagram

0 ——— Nje/p, — S2(H(C.wc)" ) —— T ——0

P* - l

0 . -
0 —— NG ) s/, —— HUC.Qc®wc) — TE )& — 0 G
HO®j)
HO(C, 0?)

in which n* is the conormal map, i = 1, 2 and j is induced by the canonical map
Q¢ — wc (see [Donagi and Smith 1981, 1V, 2.3.3]).
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Lemma 8.4. The kernel of H°(j) is one-dimensional.

Proof. As a map of sheaves, the canonical map j : Q¢ ® wc — w% has one-
dimensional kernel, namely, the one-dimensional torsion sheaf with support the
node of C (see [Donagi and Smith 1981, IV, 2.3.3]). On the other hand, the map
HY(j) is the composition of the pullback to the normalization with the push forward
to C. This implies that the kernel of H°(j) consists exactly of the sections of the
skyscraper sheaf supported at the node, and hence is one-dimensional. U

Proposition 8.5. For coverings of type (1)—(iv) the restricted codifferential map

n*:NX ep, = N’(C,n),Sf/”Rzn is surjective, fori =1, 2.

Proof. First notice that from the “local-global” exact sequence (see [Bardelli 1989])
we have

Ker H°( ) =N Cc H(Qc @ we).

C, Mo/ My
Therefore, Ker H°(j)  Im P*. Since dim Ker H°(j) =1 and, by Proposition 8.3,
dim Ker(H°(j) o P*) =2, we have dim Ker(P*) = 1. By diagram (8-7) this implies
that the kernel of n* is of dimension < 1. Since N, X.& /B is a vector space of
dimension 2 and N* a vector space of dimension 1, it follows that n* is

(C.0).Si/Raq
surjective. ([

9. Local degree of Pr; 7 over the boundary divisors

First we compute the local degree of the Prym map 13}2’7 along the divisor Sj.
Since the conormal map of Pr, 7 along S is surjective according to Proposition 8.5,
[Donagi and Smith 1981, I, Lemma 3. 2] 1mphes that the local degree along Sy s
given by the degree of the induced map P:S5;— € onthe exceptional divisor Si. Now
the polarized abelian variety X (E) is uniquely determined by the elliptic curve E,
according to its definition. Hence the curve £ can be identified with the moduli
space of elliptic curves, i.e., with the affine line. The exceptional divisor £ is then a
P!-bundle over £. On the other hand Sy is a divisor in Rz 7, SO S| 1 is isomorphic
to S;. Clearly P maps the fibers Pr (X (E)) 081 onto the fibers P! over the elliptic
curves E.

Now lg}_l(X (E))N §1 consists of coverings of type (i) and one covering of
type (iv), which we denote by C ™) The coverings of type (i) have as base a nodal
curve of the form C = E/ p ~ ¢ and we can assume that p =0, thus Pr- (X(E))ﬂSl
is parametrized by E itself (the point ¢ = 0 corresponds to the covering of type (iv)).
Hence the induced conormal map on the exceptional divisors P : S — & restricted
to the fiber over X (E) is a map ¢ : E — P!. Combining everything, we conclude
that the local degree of the Prym map along S; coincides with the degree of the
induced map ¢ : E — PL.

Proposition 9.1. The local degree of the Prym map 13}2,7 along Sy is 2.



The Prym map of degree-7 cyclic coverings 799

Proof. According to what we have written above, it is sufficient to show that
the map ¢ : E — P! induced by P is a double covering. We use again the
identification (8-2) (and its analogue for coverings of type (iii)). As in [Donagi
and Smith 1981], let x, y be local coordinates at 0 and ¢, and let dx, dy be the
corresponding differentials. If (a, b, ¢) € S? (H 0(C, a)g)*) are coordinates in the
basis of Lemma 8.1, then IP(Ker(HO(j) o P*)) ~ P! has coordinates [a, b] and
its dual is identified with P(Im ﬁﬁber). In order to describe the kernel of P*, we
look at the multiplication on the stalk over the node p = (¢ ~ 0). Around p the
line bundles ni are trivial; therefore, the element (a, b, ¢) € @?=1(0)C, » @wc,p)
(in coordinates a, b, ¢ € O, for a fixed basis of wc , @ wc p)is senttoa+b+c €
(¢ ® wc), under P. Thus the germ a + b + ¢ € O, is zero if it is in the kernel
of P*. In particular, the coefficient of dx dy must vanish. Set « = agdx, f =bodx,
Yy =codx, and let @ = a,dy, B =b,dy, y = c,dy be the local description of the
differentials. Then the coefficient of dx dy must satisfy

apay + boby + cocy = 0. (9-1)

Now, by looking at the dual picture, we consider P! = P(Ker P*)* C P?*. Let E be
embedded in P?* by the linear system |3-0|. The coordinate functions [a, b, c] € P?*
satisfy condition (9-1) for all ¢ € E. Then the points on the fiber over [a,, by, ¢,]
are points in E over the line passing through the origin 0 € E C P?* and ¢. Hence
the map E — P! corresponds to the restriction to E of the projection P>* — P!
from the origin, which is the double covering E — P! determined by the divisor
0+ g of E and thus of degree two. ([

We now turn our attention to the Prym map on S,. By the surjectivity of the
conormal map of Pr; 7 on 82 (Proposmon 8.5), the local degree along S, is computed
by the degree of the map P:5 — Eon the divisor S», which is a P! -bundle over £.
Given an elliptic curve E, the fiber of Pr (X (E)) intersected with the divisor S,
consists of coverings of type (ii), one covering of type (iii), denoted by C i and
one covering of type (iv), C,(Elv), which lies in the intersection with the divisor Sj.

Recall that the type (ii) coverings have base curve C = E| U E intersecting at
one point, which we can assume to be 0, and with E| an arbitrary elliptic curve.
The covering over C is the union of a degree-7 étale cyclic covering F; over E; and
7 elliptic curves E; attached to F| mapping each one of them isomorphically to E.
So the type (ii) coverings on the fiber over E are parametrized by pairs (E1, (1)),
where E is an elliptic curve and () C E| is a subgroup of order 7.

It is known that the parametrization space of the pairs (£, ()) is the modular
curve Yo(7) := ['g(7) \ H. The natural projection (E, n) +— E| defines a map
1o : Yo(7) — C. Moreover, the curve Yy (7) admits a compactification Xo(7) := Yo(7)
such that the map g extends to a map 7 : Xo(7) — P! (see [Silverman 1986]). The
genus of Xo(7) can be computed by the Hurwitz formula using the fact that 7 is of
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degree 8, and it is ramified over the points corresponding to elliptic curves with
j-invariant 0 and 123 (with ramification degree 4 on each fiber) and over oo, where
the inverse image consists of two cusps, one €tale and the other of ramification
index 7. The two cusps over oo represent the coverings Cg“) and C](;V) above X (E)
(see Remark 9.4). This gives that X((7) is of genus zero. Thus, we can identify
S NPr (X (E)) with Xo(7) ~ P.

Then, since §2 ~ S, the restriction of the conormal map P to a fiber over the
point [E] € £ isamap ¢ : P! — P!,

Proposition 9.2. The map m coincides with the map v : P! — P! of the fibers of
Sy — & over a point [E] € £.

Proof. Let o and o’ be the zero elements of E and E, respectively, with local
coordinates x and y, respectively. Set o« = a,dx, B = b,dx, y = c,dx, and
let « = aydy, B = bydy, v = cydy be the local description of elements of
(wc,p ® wc,p) around the node p = (0 ~ 0’). As in the proof of Proposition 9.1,
for an element (a, b, c) in the kernel of P*, the coefficient of dx dy must vanish,
1.e., it satisfies

aoly + bobo’ +cocy =0 9-2)

in a neighborhood of the node. Considering the dual map, one sees that the fiber
of P over a point [ay, by, ¢,] € P(Ker P*}* C P? with ¢, = —a, — b, corresponds
to the pairs (E1, (7)) such that the local functions a, b, c € O, take the values
@y, by, cy] around the o’ € E| with ¢,, = —a, — b,y and such that they verify (9-2).
This determines completely the triple [ay, by, cor], Which depends only on the
values at the node o’ € E; of the base curve. Note that a, b, ¢ are elements of the
local ring O, which determines the curve E uniquely. In fact, its quotient ring is the
direct product of the function fields of £ and E, which in turn determines the curves.
Therefore, the map y can be identified with the projection (Ey, (n)) — Ej. O

As an immediate consequence we have:
Corollary 9.3. The local degree of the Prym map }3}2,7 along the divisor S; is 8.

Using Proposition 9.1 and Corollary 9.3 we conclude that the degree of the Prym
map Pr, 7 is 10, which finishes the proof of Theorem 1.1

Remark 9.4. The moduli interpretation of X((7) \ Yo(7) is given by the Néron
polygons: one of the cusps represents a 1-gon, that is, a nodal cubic curve, corre-
sponding to the covering C (iii), and the other represents a 7-gon, that is, 7 copies
of P! with the point 0 of one attached to the point co of the other in a closed chain,
which corresponds to the covering Cgv) (see [Silverman 1994, IV, §8]).
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