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We study the geometry of unitary Shimura varieties without assuming the exis-
tence of an ordinary locus. We prove, by a simple argument, the existence of
canonical subgroups on a strict neighborhood of the µ-ordinary locus (with an
explicit bound). We then define the overconvergent modular forms (of classical
weight) as well as the relevant Hecke operators. Finally, we show how an analytic
continuation argument can be adapted to this case to prove a classicality theorem,
namely that an overconvergent modular form which is an eigenform for the Hecke
operators is classical under certain assumptions.
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Introduction

A modular form is defined as a global section of a certain sheaf on the modular
curve. To study congruences between modular forms, one is led to introduce new
objects, namely p-adic and overconvergent modular forms. These are sections of a
sheaf on the ordinary locus of the modular curve and on a strict neighborhood of
the ordinary locus, respectively. A lot of work has been done using these objects;
one can for example construct families of overconvergent modular forms.

It is possible to generalize the definition of p-adic and overconvergent modular
forms to other varieties, for example the Hilbert modular variety or the Siegel
variety. The natural definition of an overconvergent modular form is a section of a
certain sheaf on a strict neighborhood of the ordinary locus. In greater generality,
one can consider Shimura varieties with a nonempty ordinary locus.
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But for Shimura varieties without ordinary locus, this definition fails. Recall that,
for Shimura varieties of PEL type, the criterion for the existence of an ordinary
locus at p is that p splits completely in its reflex field. For Shimura varieties of PEL
type (C) (associated to symplectic groups), the reflex field is Q, so there is always an
ordinary locus. But, if one considers Shimura varieties of type (A) (associated to uni-
tary groups), then the reflex field may not be Q and the ordinary locus may be empty.

Let us look at an example. Let F be a CM-field with totally real subfield F0, and
consider the special fiber of the Shimura variety associated to a unitary group with
signature (aσ , bσ ) at each real place σ of F0. Suppose for simplicity that p is a
prime number inert in F0 that splits as π+π− in F . The choice of π+ gives an order
for the elements of the pair (aσ , bσ ) for each real place σ of F0. The existence of
the ordinary locus at p is then equivalent to the fact that there exist integers a and b
such that aσ = a and bσ = b for each real place σ . The structure of the p-torsion
of the abelian variety is then well known on the ordinary locus. In our setting,
the p-divisible group A[p∞] splits as A[(π+)∞] ⊕ A[(π−)∞], and A[(π−)∞] is
the dual of A[(π+)∞]. On the ordinary locus, the p-divisible group A[(π+)∞] is
an extension of a multiplicative part of height da and an étale part of height db
(d is the degree of F0 over Q). In particular, there exists a multiplicative subgroup
Ha ⊂ A[π+] of height da. Actually, this property characterizes the ordinary locus:
if there exists a multiplicative subgroup Ha of height ha, then the abelian variety
is ordinary at p. On the rigid space associated to the Shimura variety (i.e., the
generic fiber of its formal completion along its special fiber), one can define the
ordinary locus. There is still a multiplicative subgroup of A[π+] of height da
on this locus, and work of Fargues [2011] shows that this subgroup extends to a
canonical subgroup on a strict neighborhood of the ordinary locus.

If the (aσ ) are not equal to a certain integer a, then the ordinary locus is empty.
There is always a special locus in the special fiber of the Shimura variety, called
the µ-ordinary locus, but the situation is more involved. Suppose we are in the
same setting as before, and let us order the elements a1 ≤ a2 ≤ · · · ≤ ad . Then the
µ-ordinary locus is characterized by the fact that the p-divisible group A[(π+)∞]
has a filtration 0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xd+1 = A[(π+)∞] such that X i+1/X i is a
p-divisible group of height d(ai+1− ai ) with its structure explicitly described (by
convention we set a0 = 0 and ad+1 = ad + bd). The fact that A is µ-ordinary is
then also equivalent to the existence of subgroups 0⊂ Ha1 ⊂ · · · ⊂ Had ⊂ A[π+],
with Hai of height dai and the structure of Hai+1/Hai explicitly described.

If one looks at the rigid space of the Shimura variety, then one can define the
µ-ordinary locus. There are several canonical subgroups in A[π+] on this locus.
We lack a good theory for these canonical subgroups, which should be analogous
to the one given by Fargues [2011]. However, by simple arguments, one can prove
the following fact:
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Theorem. On a strict neighborhood of the µ-ordinary locus, there exist canonical
subgroups Ha1 ⊂· · ·⊂ Had in A[π+]. These subgroups are characterized by the fact
that their degree (in the sense of [Fargues 2010]) is maximal among the subgroups
of the same height of A[π+].

The proof is actually very simple: Let us consider XIw, the variety with Iwahori
level at p, and let f : XIw → X be the projection. The µ-ordinary locus is the
image under f of the locus where the subgroups Hai are of maximal degree. Let
0< ε < 1

2 , and consider the locus in XIw where the degree of Hai is bigger than the
maximal degree minus ε. The image under f of this locus is a strict neighborhood
of the µ-ordinary locus. The existence of canonical subgroups follows from the
definition. Their uniqueness is a simple computation using the properties of the
degree function (see Proposition 1.24).

If we consider the space XIw, then one can call the locus where the degree of
each Hai is maximal the µ-ordinary-multiplicative locus. It then makes sense to
define an overconvergent modular form as the section of a certain sheaf on a strict
neighborhood of the µ-ordinary-multiplicative locus.

The Hecke algebra at p acts both on the rigid space and on the space of modular
forms. In the case of the existence of the ordinary locus, there is one relevant Hecke
operator, parametrizing complements of the canonical subgroup. In the general
case, there will be as many relevant Hecke operators as the number of canonical
subgroups. We will denote by Up,ai these Hecke operators. One can show that these
operators increase the degrees of all the subgroups of A[π+], then act on the space
of overconvergent modular forms.

We can now state the main result of the paper, namely that an overconver-
gent modular form, which is an eigenform for the Hecke operators Up,ai , can
be analytically continued to the whole variety under a certain assumption, and
thus is classical. Let κ be a weight; explicitly, it is a collection of integers
(κi,1 ≥ · · · ≥ κi,ai , λi,a ≥ · · · ≥ λi,bi )1≤i≤d . Let S = {a1, . . . , ad}∩ [1, ad +bd −1].
The cardinality of S is exactly the number of canonical subgroups. Let us write
6i = { j : aj = ai } for all i .

Theorem 3.17. Let f be an overconvergent modular form of weight κ . Suppose
that f is an eigenform for the Hecke operators Up,ai , with eigenvalue αi for ai ∈ S,
and that we have the relations

ni + v(αi ) < inf
j∈6i

(κ j,aj + λ j,b j ).

Then f is classical.

Here ni is a constant depending on the variety. It actually comes from the
normalization factor of the Hecke operator Up,ai . This theorem is a classicality
result, analogous to the one proved by Coleman [1996] in the case of the modular
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curve. Actually, this result has also been proven by Buzzard [2003] and Kassaei
[2006] using an analytic continuation method, from which we take inspiration here.
Note that there has been extensive work on the classicality problem in the case
of the existence of the ordinary locus. We can cite the work of Sasaki [2010],
Johansson [2013], Tian and Xiao [2013] and Pilloni and Stroh [2011] in the case
of Hilbert varieties, and the work of the author with Pilloni and Stroh [Bijakowski
et al. 2016] for more general PEL Shimura varieties (see also [Bijakowski 2014]
for Shimura varieties with ramification).

In this introduction, we have assumed that p is inert in F0 and splits in F . The
group associated to the Shimura variety is then a linear group at p. If p is inert
in F , then the group is a unitary group at p. Everything we have said adapts to
that context: the description of the µ-ordinary locus, the existence of the canonical
subgroups, and the analytic continuation theorem. Note that the geometry is more
involved in that case; for example, to define Hecke operators, one has to deal with
subgroups of A[p2

].
Of course, the assumption that p is inert in F0 is for simplicity, so what we have

said can be formulated for any prime p unramified in F . In the writing of the paper,
we have tried to formulate propositions valid in both the linear and unitary cases as
much as possible, but of course we often had to treat the proofs separately.

Let us now talk briefly about the text. In Section 1, we introduce the varieties we
are dealing with, define the µ-ordinary locus and study the canonical subgroups. In
Section 2 we define the classical and overconvergent modular, as well as the Hecke
operators. In Section 3 we prove the analytic continuation result. For simplicity, we
suppose that the prime p is inert in Sections 2 and 3, and Section 4 briefly shows
how to handle the general case.

1. Shimura varieties of type (A)

1A. The moduli space.

1A1. Shimura datum. We will introduce the objects needed to define the Shimura
variety of unitary type we will work with. We refer to [Kottwitz 1992, Section 5]
for more details.

Let F0 be a totally real field of degree d, and F a CM-extension of F0. Let
(UQ, 〈 , 〉) be a nondegenerate hermitian F-module and G its automorphism group.
For any Q-algebra R, we have

G(R)=
{
(g, c)∈GLF (UQ⊗Q R)×R∗ : 〈gx, gy〉=c〈x, y〉 for all x, y∈UQ⊗Q R

}
.

Let τ1, . . . , τd be the embeddings of F0 into R, and let σi and σi be the two
embeddings of F into C extending τi . The choice of σi gives an isomorphism
F ⊗F0,τi R ' C. Let Ui = UQ⊗F0,τi R. We write (ai , bi ) for the signature of the
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antihermitian structure on Ui . Then GR is isomorphic to

G
( d∏

i=1

U(ai , bi )

)
,

where ai + bi is independent of i , and is equal to (1/2d) dimQ UQ. We’ll call this
quantity a+ b.

We also give ourselves a morphism of R-algebras h : C→ EndFUR such that
〈h(z)v,w〉 = 〈v, h(z̄)w〉 and (v,w) 7→ 〈v, h(i)w〉 is positive definite. This mor-
phism gives a complex structure on UR; let U 1,0

C
be the subspace of UC on which

h(z) acts by multiplication by z.
We then have U 1,0

C
'
∏d

i=1 Cai ⊕Cbi as F⊗QR-modules and F⊗Q R'
⊕d

i=1 C

(where the action of C on Cai ⊕Cbi is the standard action on the first factor and the
conjugated action on the second).

Let U be an OF -stable lattice of UQ, and assume that the pairing 〈 , 〉 induces a
pairing U ×U → Z which is perfect at p.

The ring OF is a free Z-module. Let α1, . . . , αt be a basis of this module and

detU 1,0 = f (X1, . . . , X t)= det
(
X1α1+ · · ·+ X tαt ;U

1,0
C
⊗C C[X1, . . . , X t ]

)
.

We can show that f is polynomial with algebraic coefficients. The number field E
generated by its coefficients is called the reflex field.

Remark 1.1. We chose for simplicity to work with a central algebra. One can
easily adapt the arguments here, replacing F by a simple algebra B with center F .

1A2. The Shimura variety. Let us now define the PEL Shimura variety of type (A)
associated to G. Let K be an extension of Qp containing the images of all the
embeddings F ↪→Qp. Assume that p is unramified in F . We fix an embedding
E ↪→ K , so that the coefficients of the polynomial detU 1,0 can be seen as elements
of OK . We also fix an integer N ≥ 3 prime to p.

Definition 1.2. Let X be the moduli space over OK whose S-points are the isomor-
phism classes of (A, λ, ι, η), where

• A→ S is an abelian scheme;

• λ : A→ At is a prime-to-p polarization;

• ι : OF → End A is compatible with complex conjugation and the Rosati
involution, and the polynomials detU 1,0 and detLie(A) are equal;

• η : A[N ] →U/NU is an OF -linear symplectic similitude, which lifts locally
for the étale topology to an OF -linear symplectic similitude

H1(A,A
p
f )→U ⊗Z A

p
f .
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The moduli space X is representable by a quasiprojective scheme over OK . We
will make a slight assumption on the variety we consider.

Hypothesis 1.3. We suppose that we are not in the case d = 1 and (a, b)= (1, 1).

This condition is technical, and will ensure that we can neglect the cusps in the
definition of the modular forms. The case we exclude corresponds essentially to
the modular curve, which is well known.

1A3. Iwahori level. Let π be a prime of F0 above p; we will call f the residual
degree and write q := p f . Since p is unramified in F , we have two possibilities
for the behavior of p in F :

• π splits as π+π− in F . We say that π is in case (L).

• π is inert in F . We say that π is in case (U).

The terminology (L) and (U) comes from the fact that the group G at π is a
linear or a unitary group, respectively. To define the Iwahori structure, we will
break into the two cases.

Definition 1.4. Let XIw,π be the moduli space of isomorphism classes of tuples
(A, λ, ι, η, H•), where

• (A, λ, ι, η) is a point of X ;

• 0⊂ H1 ⊂ · · · ⊂ Ha+b = A[π+], where each Hi is a subgroup of A[π+] which
is locally isomorphic for the étale topology to (OF/π

+)i in the case (L);

• 0⊂ H1 ⊂ · · · ⊂ Ha+b = A[π ], where each Hi is a subgroup of A[π ] which is
locally isomorphic for the étale topology to (OF/π)

i and such that Ha+b−i =

H⊥i in the case (U).

The moduli spaces XIw,π are representable by quasiprojective schemes over OK .
We also define the full Iwahori space by XIw = XIw,π1×X XIw,π2×X · · ·×X XIw,πg ,
where π1, . . . , πg are the primes of F0 above p and the maps XIw,πi → X are the
natural morphisms corresponding to forgetting the (Hi ).

Remark 1.5. In the case (L), the subgroups A[π+] and A[π−] are Cartier duals.
This comes from the compatibility between the complex conjugation and the Rosati
involution. Therefore, each of these groups is totally isotropic. A flag (H•) of A[π+]
gives naturally a flag (H⊥

•
) of A[π−]with H⊥i = (A[π

+
]/Hi )

D
⊂ A[π+]D= A[π−].

Choosing the prime π− instead of π+ would have given the same definition.

Now we will explicitly describe the determinant condition for the abelian
scheme A. We are still working with a prime π of F0 above p, and assume
it is of type (L). Let 6π be the decomposition group at π , i.e., the elements
σ ∈ Hom(F0,Qp) such that σ sends π into the maximal ideal of Qp. For every
σ ∈6π , there are two embeddings σ+ and σ− of F into Qp above σ ; the embedding
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σ+ sends π+ into the maximal ideal of Qp, and similarly for π−. To σ we have a
pair of integers (aσ , bσ ) and the choice of the embedding σ+ gives an order for the
two elements of the pair. Let A→ R be an abelian scheme over an OK -algebra R.
If we let ωπ := e∗�1

A[π∞], then we have ωπ = ω+π ⊕ω
−
π , where ω+π := e∗�1

A[(π+)∞].
The determinant condition for A then implies that

ω+π =
⊕
σ∈6π

Raσ

with OF acting on Raσ by σ+. Similarly, we have

ω−π =
⊕
σ∈6π

Rbσ

with OF acting on Rbσ by σ−.
Now suppose that π is of type (U). We still denote by 6π the decomposition

group at π of F0. For each σ ∈ 6π , there are two embeddings σ1 and σ2 of F
above σ ; the choice of σ1 gives an order for the elements of the pair (aσ , bσ ). Let
A→ R be an abelian scheme over an OK -algebra R. If we let ωπ := e∗�1

A[π∞],
then the determinant condition for A implies

ωπ =
⊕
σ∈6π

Raσ ⊕ Rbσ ,

where OF acts by σ1 on Raσ and by σ2 on Rbσ .

1B. The µ-ordinary locus. We will describe in this section the µ-ordinary locus
of the Shimura variety. Let us first introduce some notation.

Let L be an unramified extension of Qp of degree f0 and k a field of characteristic
p containing the residue field of L . Let D be the Galois group of L over Qp; there
is an isomorphism D' Z/ f0Z, where 1 is identified with the Frobenius σ of L . We
will write W (k) for the ring of Witt vectors of k. Let ε = (ετ )τ∈D be a sequence of
integers equal to 0 or 1. We define a Dieudonné module Mε in the following way:
it is a free W (k)-module of rank f0 and, if (eτ )τ∈D is a basis of this module, then
the Frobenius and Verschiebung are defined by

Feσ−1τ = pετ eτ and V eτ = p1−ετ eσ−1τ .

The module Mε is given an action of the ring of integers of L , namely OL acts on
W (k) · eτ by τ .

We’ll call BTε the p-divisible group over k corresponding to the Dieudonné
module Mε, and Hε the p-torsion of this p-divisible group.

1B1. Linear case. Now we come back to our Shimura variety. Consider first the
case (L); we are still considering a place π of F0 above π which splits as π =π+π−
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in F . If k is a field containing the residue field of OK and x = (A, λ, ι, η) is a
k-point of X , then whether the abelian variety A is µ-ordinary at π will depend on
the p-divisible group A[(π+)∞]. Recall that this p-divisible group has an action
of OF,π+ , the completion of OF at π+; this is an unramified extension of Qp of
degree f . If 6π denotes, as before, the decomposition group of π in F0, then there
is a bijection between 6π and the Galois group of OF,π+ and, for each σ ∈6π , we
have a pair of integers (aσ , bσ ). We put the elements (aσ ) in increasing order; we
then have a1 ≤ a2 ≤ · · · ≤ a f . For each integer 0≤ i ≤ f we define the sequence
εi = (εi, j )1≤ j≤ f by εi, j = 1 if j ≥ i + 1 and εi, j = 0 otherwise. We also set by
convention a0 = 0 and a f+1 = a+ b.

Definition 1.6. Let k be an algebraically closed field of characteristic p, and let
x = (A, λ, ι, η) be a k-point of X . Then x is µ-ordinary at π if there is an
isomorphism

A[(π+)∞] '
f∏

i=0

BTai+1−ai
εi

of p-divisible groups with OF,π+ action.

Note that the term on the right-hand side is explicitly

BTa1
(1,...,1)×BTa2−a1

(0,1,...,1)× · · ·×BTa f−a f−1
(0,...,0,1)×BTb f

(0,...,0) .

Let X0 denote the special fiber of X , and Xµ-π -ord
0 the µ-ordinary locus at the

place π . We have the following proposition, due to Wedhorn [1999, Theorem 1.6.2]:

Proposition 1.7. The µ-ordinary locus Xµ-π -ord
0 is open and dense in X0.

We also have the following characterization of the µ-ordinary locus:

Proposition 1.8 [Moonen 2004, Theorem 1.3.7]. Let k be an algebraically closed
field of characteristic p, and let x = (A, λ, ι, η) be a k-point of X. Then x is
µ-ordinary at π if and only if there is an isomorphism

A[π+] '
f∏

i=0

BTai+1−ai
εi

[π+]

of finite flat group schemes with OF,π+ action.

Since BTεi is multiplicative for i = 0, étale for i = f and bi-infinitesimal other-
wise, we have the following criterion for the existence of the ordinary locus at π :

Proposition 1.9. The µ-ordinary locus equals the ordinary locus (at the place π)
if and only if there exists an integer a such that aσ = a for all σ ∈6π .

This last condition is also equivalent to the fact that the local reflex field at π is
equal to Qp (see [Wedhorn 1999, Section 1.6] for more details).
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1B2. Unitary case. Let us now consider the case (U). Let k be a field containing
the residue field of OK , and let x = (A, λ, ι, η) be a k-point of X . Whether the
abelian variety A is µ-ordinary at π will depend on the p-divisible group A[π∞].
Recall that this p-divisible group has an action of OF,π , the completion of OF

at π ; this is an unramified extension of Qp of degree 2 f . Recall that 6π is the
decomposition group at π of F0 and it is of cardinality f . If σ ∈ 6π , there are
two embeddings σ1 and σ2 of F into Qp, and the choice of one of the two gives
elements aσ and bσ . We suppose that the choice is made so that aσ ≤ bσ ; we also
order the elements in 6π so that the sequence (aσ ) is increasing. We then have

a1 ≤ a2 ≤ · · · ≤ a f ≤ b f ≤ b f−1 ≤ · · · ≤ b1.

This gives an order on the embeddings of F into Qp. For each integer 0≤ i ≤ 2 f
we define the sequence εi = (εi, j )1≤ j≤2 f by εi, j = 1 if j ≥ i + 1 and εi, j = 0
otherwise. We define a sequence (αi )0≤i≤2 f+1 by α0 = 0, αi = ai for 1 ≤ i ≤ f ,
αi = b2 f+1−i for f + 1≤ i ≤ 2 f and α2 f+1 = a+ b.

Definition 1.10. Let k be an algebraically closed field of characteristic p, and
let x = (A, λ, ι, η) be a k-point of X . Then x is µ-ordinary at π if there is an
isomorphism

A[π∞] '
2 f∏
i=0

BTαi+1−αi
εi

of p-divisible groups with OF,π action.

Note that the term in the right-hand side is explicitly

BTa1
(1,...,1)×BTa2−a1

(0,1,...,1)× · · ·×BTa f−a f−1
(0,...,0,1,1...,1)

×BTb f−a f
(0,...,0,1...,1)×BTa f−a f−1

(0,...,0,0,1...,1)× · · ·×BTa1
(0,...,0) .

(We have used the fact that bi − bi−1 = ai−1 − ai , since the quantity aj + b j is
independent of j .)

Let X0 denote the special fiber of X , and Xµ-π -ord
0 the µ-ordinary locus. We have

the following proposition, due to Wedhorn [1999, Theorem 1.6.2]:

Proposition 1.11. The µ-ordinary locus Xµ-π -ord
0 is open and dense in X0.

We also have the following characterization of the µ-ordinary locus:

Proposition 1.12 [Moonen 2004, Theorem 1.3.7]. Let k be an algebraically closed
field of characteristic p, and let x = (A, λ, ι, η) be a k-point of X. Then x is
µ-ordinary at π if and only if there is an isomorphism

A[π ] '
2 f∏
i=0

BTαi+1−αi
εi

[π ]

of finite flat group schemes with OF,π action.
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Since BTεi is multiplicative for i = 0, étale for i = 2 f and bi-infinitesimal
otherwise, we have the following criterion for the existence of the ordinary locus
at π :

Proposition 1.13. The µ-ordinary locus equals the ordinary locus (at the place π )
if and only if aσ = bσ = 1

2(a+ b) for all σ ∈6π .

Again, this last condition is equivalent to the fact that the local reflex field at π
is equal to Qp.

We’ll need later to work with the rigid space associated to X . Let us call this
rigid space Xrig; it is the generic fiber of the formal completion of X along its
special fiber. We refer to [Berthelot 1996] for more details on rigid spaces. We have
a specialization map sp : Xrig→ X0, and we’ll write Xµ-π -ord

rig for the inverse image
of the µ-ordinary locus under the specialization map. We’ll also write XIw,rig for
the rigid space associated to XIw.

1C. Canonical subgroups.

1C1. Degrees and partial degrees. Before introducing the canonical subgroups on
the µ-ordinary locus, we’ll define the degree for a finite flat group scheme defined
over a finite extension of Qp, and the partial degrees for these endowed with an
action of the ring of integers of an unramified extension of Qp.

Definition 1.14. Let L be a finite extension of Qp and let G be a finite flat group
scheme of p-power order over OL . Let ωG be the conormal module along the unit
section. Then the degree of G is, by definition,

deg G := v(Fitt0 ωG),

where Fitt0 denotes the Fitting ideal, and the valuation of an ideal is defined by
v(x OL)= v(x), normalized by v(p)= 1.

We now state some properties of this function. We refer to [Fargues 2010,
Section 3] for more details.

Proposition 1.15. The degree function has the following properties:

• Let G be as before. Then, if G D denotes the Cartier dual of G, we have

deg G D
= ht G− deg G.

In particular, deg G ∈ [0, ht G].

• The degree function is additive: if we have an exact sequence

0→ G1→ G2→ G3→ 0

with Gi finite flat, then deg G2 = deg G1+ deg G3.
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• Let G and G ′ be two finite flat group schemes, and suppose that there exists
a morphism f : G → G ′ which is an isomorphism in generic fiber. Then
deg G ≤ deg G ′, and we have equality if and only if f is an isomorphism.

We deduce from the last property the following corollary:

Corollary 1.16. Let G be a finite flat group scheme of p-power order defined over
a finite extension of Qp. Suppose that H1 and H2 are two finite flat subgroups of G.
Then

deg H1+ deg H2 ≤ deg(H1+ H2)+ deg(H1 ∩ H2).

Proof. By dividing everything by H1∩H2, we are reduced to the case H1∩H2={0}.
The morphism H1× H2→ H1+ H2 is an isomorphism in generic fiber, thus by the
previous proposition we get

deg(H1× H2)≤ deg(H1+ H2).

But, since the degree function is additive, deg(H1× H2)= deg H1+ deg H2. �

Let G be as in the previous definition and suppose now that G has an action
of OM , where M is a finite unramified extension of Qp. Let 6 be the set of
embeddings of M into Qp. Then the module ωG has an action of OM and has the
decomposition

ωG =
⊕
σ∈6

ωG,σ ,

where OM acts on ωG,σ by σ .

Definition 1.17. The partial degree of G is defined for all σ ∈6 as

degσG = v(Fitt0 ωG,σ ).

Proposition 1.18. The partial degree functions have the following properties:

• We have deg G =
∑

σ∈6 degσG.

• Suppose that G has height [M :Qp]h. If G D denotes the Cartier dual of G,
we have, for all σ ∈6,

degσG D
= h− degσG.

In particular, degσG ∈ [0, h].

• The partial degree functions are additive: if we have an exact sequence

0→ G1→ G2→ G3→ 0

with Gi finite flat with an action of OM , then degσG2 = degσG1+degσG3 for
all σ ∈6.

We refer to [Bijakowski 2014, Section 1.1.5] for more details.
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Remark 1.19. If we are in the situation of the third point of Proposition 1.15, i.e., if
we have a morphism of finite flat group schemes f :G→G ′ that is an isomorphism
in generic fiber and if G and G ′ have an action of OM , then it is not true that the
partial degrees increase. Indeed, the functions that increase are linear combinations
of the partial degrees. For example, if [M :Qp] = 2, there are two partial degrees
deg1 and deg2, and the functions that increase are deg1+p deg2 and p deg1+ deg2.
See [Bijakowski 2014, Proposition 1.1.33] for more details.

Example 1.20. Let us apply what we have said to our Shimura variety. Let x =
(A, λ, ι, η) be an OL -point of X (where L is a finite extension of Qp) and suppose
that π is a place of F0 above p in case (L). Then A[π+] has an action of OF0,π .
Moreover, we have

degσ A[π+] = aσ

for all σ ∈ 6π . If H is an OF -stable subgroup of A[π+] of height f h, then
the orthogonal H⊥ is a subgroup of A[π−] of height f (a + b − h). We have
H⊥ ' (A[π+]/H)D , and thus

degσ H⊥ = (a+ b− h)− (aσ − degσ H)= bσ − h+ degσ H

for all σ ∈6π . We see that one has the inequalities

degσ H ≥ h− bσ and degσ H⊥ ≥ bσ − h

for all σ ∈6π .

Example 1.21. Suppose now that π is in case (U). Then the group scheme A[π ]
has an action of OF,π . Recall that if σ ∈6π is an embedding of F0 into Qp above π ,
then there are two embeddings σ1 and σ2 of F extending σ . With our previous
conventions, we have

degσ1
A[π ] = aσ and degσ2

A[π ] = bσ .

If H is an OF -stable subgroup of A[π ] of height 2 f h, then the orthogonal H⊥ is a
subgroup of A[π ] of height 2 f (a+ b− h). We have H⊥ ' (A[π ]/H)D,c, where
the superscript c means that the action of OF on (A[π ]/H)D,c is the conjugate of
the natural one. This comes from the compatibility between the Rosati involution
and the complex conjugation. Thus,

degσ1
H⊥ = aσ − h+ degσ2

H and degσ2
H⊥ = bσ − h+ degσ1

H

for all σ ∈6π . We see that one has the inequalities

degσ1
H ≥ h− bσ and degσ2

H ≥ h− aσ
for all σ ∈6π .
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1C2. Siegel variety. Let us now recall some facts for the canonical subgroup of
the Siegel variety.

Let g ≥ 1 be an integer and Ag the Siegel variety. There is a universal abelian
scheme A on Ag. There is also a Hasse invariant Ha on Ag. We quote the main
result obtained by Fargues [2011] on the canonical subgroup.

Proposition 1.22. Let A be an abelian scheme of dimension g defined over OL

(L is a finite extension of Qp). Suppose that the valuation w of the Hasse invariant
is strictly less than 1

2 . Then there is a canonical subgroup H ⊂ A[p], of height g,
totally isotropic, with

deg H = g−w.

Let Ag,rig be the rigid space associated to Ag. Then the ordinary locus of Ag,rig

is defined as the locus where the associated abelian scheme is ordinary; it is also
the locus where the Hasse invariant is invertible. The proposition says that, on a
strict neighborhood of the ordinary locus, there exists a canonical subgroup of high
degree in A[p]. We propose a simple reformulation of this property. We have the
following observation:

Proposition 1.23. Let A be an abelian scheme of dimension g defined over OL

(L is a finite extension of Qp). There exists at most one subgroup H of height g of
A[p] with

deg H > g− 1
2 .

Proof. Suppose not, and let H1 and H2 be two subgroups with deg Hi > g − 1
2 .

Then we have

2g− 1< deg H1+ deg H2 ≤ deg(H1+ H2)+ deg(H1 ∩ H2).

But deg(H1+ H2)≤ deg A[p] = g and, since H1 ∩ H2 is of height h ≤ g− 1, we
have deg(H1 ∩ H2)≤ g− 1. We get a contradiction. �

This can be used to prove the existence of the canonical subgroup in the following
way. Let A′g be the Siegel variety parametrizing a g-dimensional abelian scheme
with polarization and a subgroup H totally isotropic of height g. We have a
map f : A′g → Ag corresponding to forgetting H . If we let A′g,rig be the rigid
space associated to A′g, we still have a morphism f : A′g,rig → Ag,rig. Define
Xr = {x ∈ A′g,rig : deg H(x) ≥ g− r} for any rational r ; it is an admissible open
subset of A′g,rig. Then the ordinary locus of Ag,rig is f (X0), and it follows from
[Bijakowski et al. 2016, Proposition 4.1.7] that ( f (Xr ))r>0 forms a basis of strict
neighborhoods of the ordinary locus (the map f is finite étale, and the (Xr )r>0 are
strict neighborhoods of X0). The previous proposition shows that on f (Xr ) there is
exactly one subgroup of height g of degree greater than or equal to g− r for r < 1

2 ;
this is the canonical subgroup.
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1C3. Linear case. Now let’s get back to our Shimura varieties. Suppose we are in
case (L). Then we have the following proposition:

Proposition 1.24. Let L be a finite extension of Qp and x = (A, λ, ι, η) an OL -
point of X. Let 1 ≤ i ≤ f be an integer. Then there exists at most one subgroup
H ⊂ A[π+] that is stable by OF of height f ai such that

deg H >

f∑
j=1

min(aj , ai )−
1
2 .

Proof. Suppose not, and let H1 and H2 be two such subgroups. Let us denote by f h
the height of H1 ∩ H2; the height of H1+ H2 is then f (2ai − h). We have

deg H1+ deg H2 ≤ deg(H1+ H2)+ deg(H1 ∩ H2).

But

deg(H1+ H2)≤

f∑
j=1

min(aj , 2ai − h)≤
i∑

j=1

aj +

f∑
j=i+1

(2ai − h)

and

deg(H1 ∩ H2)≤

f∑
j=1

min(aj , h)≤
i−1∑
j=1

aj +

f∑
j=i

h.

We finally get

deg H1+ deg H2 ≤ 2
i−1∑
j=1

aj + 2
f∑

j=i+1

ai + ai + h ≤ 2
f∑

j=1

min(aj , ai )− 1

since h ≤ ai − 1, a contradiction. �

The proposition shows that there exists at most one subgroup of height f ai and
of big degree. The next proposition shows that if two such subgroups exist (with
different heights), then we automatically have an inclusion.

Proposition 1.25. Let i < j be two integers between 1 and f . Let x = (A, λ, ι, η)
be an OL -point of X , and suppose there exists, for l ∈{i, j}, a subgroup Hl⊂ A[π+]
that is stable by OF of height f al such that

deg Hl >

f∑
k=1

min(ak, al)−
1
2 .

Then we have Hi ⊂ Hj .
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Proof. Let f h denote the height of Hi ∩ Hj . We have the following inequalities:

deg(Hi + Hj )≤

f∑
k=1

min(ak, ai + aj − h)≤
j∑

k=1

ak +

f∑
k= j+1

(ai + aj − h),

deg(Hi ∩ Hj )≤

f∑
k=1

min(ak, h)≤
i−1∑
k=1

ak +

f∑
k=i

h.

We then get

deg Hi + deg Hj ≤ deg(Hi + Hj )+ deg(Hi ∩ Hj )

≤ 2
i−1∑
k=1

ak +

j∑
k=i

(ak + h)+
f∑

k= j+1

(ai + aj ).

If we do not have the inclusion Hi ⊂ Hj , then h ≤ ai − 1. We then get

deg Hi + deg Hj ≤

f∑
k=1

(min(ak, ai )+min(ak, aj ))− ( j − i + 1).

We get a contradiction with the hypothesis that Hi and Hj have big degrees. �

As a consequence, we directly get the existence of canonical subgroups for
µ-ordinary abelian schemes. Let s be the cardinality of {a1, . . . , a f }∩[1, a+b−1],
and denote by A1 < · · ·< As the different elements of this set.

Corollary 1.26. Let L be a finite extension of Qp, and let x= (A, λ, ι, η) be an OL -
point of X. Assume that x is µ-ordinary (i.e., the special fiber of A is µ-ordinary).
Then, for any integer 1 ≤ k ≤ s, there exists a unique subgroup Hk ⊂ A[π+] of
height f Ak , with

degσ Hk =min(aσ , Ak)

for all σ ∈6π .

Proof. We can work over Qp. Since A is µ-ordinary we have, by [Moonen 2004,
Proposition 2.1.9], a filtration

X0 = 0⊂ X1 ⊂ · · · ⊂ X f+1 = A[(π+)∞]

on A[(π+)∞] with X i p-divisible groups such that (X i+1/X i )× Fp ' BTai+1−ai
εi

for 0 ≤ i ≤ f . Let Yi = X i+1/X i for 0 ≤ i ≤ f . Then Yi is a p-divisible group
over the ring of integers of Qp. The module ωYi decomposes into

⊕
σ∈6π

ωYi ,σ ,
and each ωYi ,σ is free over the ring of integers of Qp. Recall that we have chosen
an ordering for the set 6π = {σ1, . . . , σf }. From the description of the special fiber
of Yi , one sees that ωYi ,σj is 0 if j ≤ i , and is free of rank ai+1−ai over the ring of
integers of Qp if j ≥ i+1. Thus, degσj

Yi [π
+
] is 0 if j ≤ i and ai+1−ai otherwise.
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Let Hi = X i [π
+
] for 0≤ i ≤ f ; it is a finite flat subgroup of A[π+] of height f ai .

Moreover, we have

degσj
Hi =

i∑
k=1

degσj
Hk/Hk−1 =

min(i, j)∑
k=1

(ak − ak−1)= amin(i, j) =min(ai , aj )

for all i and j between 1 and f . This gives the existence of the desired subgroups.
The uniqueness follows from the previous proposition. �

Remark 1.27. We also have the following description of the canonical subgroups
in the special fiber. Let L be a finite extension of Qp, and let x = (A, λ, ι, η) be a
µ-ordinary point of X defined over OL . Let As denote the special fiber of A; then
the Frobenius F acts on As[(π

+)∞], and we can form the subgroups

Ci := (π
+) f−i As[F f , (π+) f−i+1

]

for 1 ≤ i ≤ f . Then we have 0 ⊂ C1 ⊂ · · · ⊂ C f ⊂ As[π
+
], and the special

fiber of each of the canonical subgroups is equal to one of the Ci . More precisely,
we have Hj × k(L) = Cr( j) for 1 ≤ j ≤ s, with k(L) the residue field of L and
r( j)=min{l : al = A j }.

We can then define the relevant degree functions on XIw,π . For each integer j ,
define

d j =
∑
σ∈6π

min(aσ , aj ).

Let XIw,π,rig be the associated rigid space. We define the degree function Deg :
XIw,π,rig→

∏s
j=1[0, d j ] on this space by

Deg(A, λ, ι, η, H•) := (deg Haj )1≤ j≤s .

We also define the j-th degree function by Deg j (A, λ, ι, η, H•) := deg Haj for
1≤ j ≤ s.

Remark 1.28. The integers s and d j as well as the functions Deg and Deg j depend
on the place π . If the context is clear, we choose not to write the dependence on π
to lighten the notation.

We then have the following description of the µ-ordinary locus.

Proposition 1.29. The space Xµ-π -ord
rig ⊂ Xrig is exactly the image of

Deg−1({d1}× · · · × {ds})

under the map XIw,π,rig→ Xrig.
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Proof. If x is a µ-ordinary point, it then follows from the previous corollary
that there exist subgroups Hj of height faj with deg Hj = d j for all 1 ≤ j ≤ s.
Conversely, suppose that (A, λ, ι, η) is a point of Xrig, with A defined over the ring
of integers of an extension L of Qp, and that there exist subgroups Hj of height
faj with deg Hj = d j for all 1≤ j ≤ s. We want to show that A is µ-ordinary; it
suffices to show that A[π+] has a nice description. We have degσ Hj ≤min(aσ , aj )

for all σ ∈6π and, since d j =
∑

σ∈6π
min(aσ , aj ), this forces the last inequality

to be an equality. Define H0 = 0, Hs+1 = A[π+], and let H ′j be a complement of
Hj−1 in Hj for all 1≤ j ≤ s+1. This is possible if the field L is large enough. We
claim that, for 1≤ j ≤ s+ 1,

Hj ' H ′j × Hj−1.

Indeed we have a morphism Hj−1→ Hj/H ′j that is an isomorphism in generic fiber.
The degree of the image of Hj−1 in Hj/H ′j thus increases, but since the degree of
Hj−1 is maximal, it must be an equality. We deduce that deg Hj =deg H ′j+deg Hj−1

and that the morphism H ′j × Hj−1→ Hj is an isomorphism.
We finally get

A[π+] ' H ′1× H ′2× · · ·× H ′s+1.

But we can explicitly describe the groups H ′j . Indeed, for all 1 ≤ j ≤ s + 1
and σ ∈6π , we have (setting A0 = 0 and As+1 = a+ b)

degσ H ′j = degσ Hj − degσ Hj−1 =min(aσ , aj )−min(aσ , A j−1).

This quantity is 0 if aσ ≤ A j−1 and aj − A j−1 if aσ ≥ aj . Since the height
of H ′j is f (aj − A j−1), one can see that the special fiber of H ′j is isomorphic to
BTεs( j)[π

+
]

A j−A j−1 , where s( j) is the number of σ ∈ Dπ with aσ ≤ A j−1 (one can
see this by looking at the Dieudonné module associated to the special fiber of H ′j ,
for example). We then conclude that A is µ-ordinary by Proposition 1.8. �

1C4. Unitary case. Suppose now we are in case (U). Then we have the following
proposition:

Proposition 1.30. Let L be a finite extension of Qp and x = (A, λ, ι, η) an OL -
point of X. Let 1 ≤ i ≤ f be an integer. Then there exists at most one subgroup
H ⊂ A[π ] that is stable by OF of height 2 f ai such that

deg H >

2 f∑
j=1

min(αj , ai )−
1
2 .

Moreover, if such a subgroup exists, it is totally isotropic.

Proof. The proof of the first part of the proposition is exactly the same as in the
linear case (see Proposition 1.24). To prove that the subgroup is totally isotropic,
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we will use the same argument as in the proof of Proposition 1.25. We only need to
get a bound for the degree of H⊥. But we have H⊥ ' (A[π ]/H)D , so

deg H⊥ = 2 f bi − deg(A[π ]/H)

= deg H +
2 f∑
j=1

(bi −αj ) >

2 f∑
j=1

(bi −αj +min(αj , ai ))−
1
2 .

But bi −αj +min(αj , ai )=min(bi , ai +bi −αj ) and, since ai +bi is constant, we
have ai + bi −αj = α2 f+1−i . In conclusion, we get

deg H⊥ >
2 f∑
j=1

min(bi , αj )−
1
2 .

We conclude that H ⊂ H⊥ by applying the proof of Proposition 1.25 directly (note
that H⊥ is of height 2 f bi ). �

The proposition shows that there exists at most one subgroup of height 2 f ai and
of big degree. The next proposition shows that if two such subgroups exists (with
different heights), then we automatically have an inclusion.

Proposition 1.31. Let i < j be two integers between 1 and f . Let x = (A, λ, ι, η)
be an OL -point of X , and suppose there exists, for l ∈ {i, j}, a subgroup Hl ⊂ A[π ]
that is stable by OF of height 2 f al such that

deg Hl >

2 f∑
k=1

min(αk, al)−
1
2 .

Then Hi ⊂ Hj .

Proof. The proof is the same as in the linear case (see Proposition 1.25). �

As a consequence, we directly get the existence of canonical subgroups for
µ-ordinary abelian schemes. Let s be the cardinality of {a1, . . . , a f }∩

[
1, 1

2(a+b)
]
,

and denote by A1 < · · ·< As the different elements of this set.

Corollary 1.32. Let L be a finite extension of Qp and let x = (A, λ, ι, η) be an OL -
point of X. Assume that x is µ-ordinary (i.e., the special fiber of A is µ-ordinary).
Then, for any integer 1 ≤ k ≤ s, there exists a unique totally isotropic subgroup
Hk ⊂ A[π ] of height 2 f Ak , with

degσ Hk =min(ασ , Ak)

for all σ ∈6π .

Proof. The proof is similar to the linear case (see Corollary 1.26). �
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Remark 1.33. We also have the following description of the canonical subgroups
in the special fiber. Let L be a finite extension of Qp, and let x = (A, λ, ι, η) be a
µ-ordinary point of X defined over OL . Let As denote the special fiber of A; then
the Frobenius F acts on As[π

∞
], and we can form the subgroups

Ci := π
2 f−i As[F2 f , π2 f−i+1

]

for 1 ≤ i ≤ 2 f . Then we have 0 ⊂ C1 ⊂ · · · ⊂ C2 f ⊂ As[π ], and the special
fiber of each of the canonical subgroups is equal to one of the Ci . More precisely,
we have Hj × k(L) = Cr( j) for 1 ≤ j ≤ s, with k(L) the residue field of L and
r( j)=min{l : al = A j }. Note also that C⊥i = C2 f+1−i .

We can then define the relevant degree functions on XIw,π . For each integer k,
define

dk =

2 f∑
j=1

min(αj , Ak).

Let XIw,π,rig be the associated rigid space. We define the degree function Deg :
XIw,π,rig→

∏s
k=1[0, dk] on this space by

Deg(A, λ, ι, η, H•) := (deg HAk )1≤k≤s .

We also define the k-th degree function by Degk(A, λ, ι, η, H•) := deg HAk for
1≤ k ≤ s. We then have the following description of the µ-ordinary locus:

Proposition 1.34. The space Xµ-ord
rig ⊂ Xrig is exactly the image of

Deg−1({d1}× · · · × {ds})

under the map XIw,π,rig→ Xrig.

Proof. If x is a µ-ordinary point, it follows from the previous corollary that there
exist subgroups Hk of height 2 f Ak with deg Hk = dk for all 1≤ k ≤ s. Conversely,
suppose that (A, λ, ι, η) is a point of Xrig, with A defined over the ring of integers
of an extension L of Qp, and that there exist subgroups Hk of height 2 f Ak with
deg Hk = dk for all 1≤ k ≤ s. This implies that we have degσ Hk =min(ασ , Ak) for
all σ ∈ Dπ and 1≤ k ≤ s. We want to show that A is µ-ordinary; it suffices to show
that A[π ] has a nice description. Define H0=0, Hi = H⊥2s+1−i for s+1≤ i ≤2s+1,
and let H ′j be a complement of Hj−1 in Hj for all 1≤ j ≤ 2s+ 1. This is possible
if the field L is big enough. We claim that

Hj ' H ′j × Hj−1.

Indeed we have a morphism Hj−1→ Hj/H ′j that is an isomorphism in generic fiber.
The degree of the image of Hj−1 in Hj/H ′j thus increases, but since the degree of
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Hj−1 is maximal, it must be an equality. We deduce that deg Hj =deg H ′j+deg Hj−1

and that the morphism H ′j × Hj−1→ Hj is an isomorphism.
We finally get

A[π ] ' H ′1× H ′2× · · ·× H ′2s+1.

But we can explicitly describe the groups H ′j using the same proof as Proposition
1.29. We then conclude that A is µ-ordinary by Proposition 1.12. �

2. Modular forms and Hecke operators

2A. Modular forms. Let’s now define the modular forms for the Shimura variety X .
Let π be a place of F0 above p, and suppose it is in case (L). Then we define the
OF⊗OK -module Stπ by

Stπ := Oaσ
K ⊕ Obσ

K ,

where OF acts on Oaσ
K by σ+ and on Obσ

K by σ−. If π is in case (U), we define the
OF ⊗ OK -module Stπ by

Stπ := Oaσ
K ⊕ Obσ

K ,

where OF acts on Oaσ
K by σ1 and on Obσ

K by σ2. Finally, we define the OF⊗OK -
module St by

St=
⊕
π

Stπ ,

where π runs over the places of F0 above p. If R is an OK -algebra and (A, λ, ι, η)
is an R-point of X , then the R⊗OF -module e∗�1

A/R is isomorphic to St⊗OK R.
The sheaf ωA := e∗�1

A/X is then locally isomorphic to St⊗OK OX (it is a locally
free sheaf on OX ).

Define

T = IsomOF⊗OX (St⊗OX , ωA).

This is a torsor on X under the group, defined over OK ,

M =
∏
π∈P

∏
σ∈6π

GLaσ ×GLbσ ,

where P is the set of primes of F0 above π . Let BM be the upper Borel subgroup of
M , UM its unipotent radical, and TM its maximal torus. Let X (TM) be the character
group of TM and X (TM)

+ the cone of dominant weights for BM . If κ ∈ X (TM)
+,

we let κ ′ = −w0κ ∈ X (TM)
+, where w0 is the element of highest length in the

Weyl group of M relative to TM .
Let φ : T → X be the projection morphism.
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Definition 2.1. Let κ ∈ X (TM)
+. The sheaf of modular forms of weight κ is

ωκ = φ∗OT [κ
′
], where φ∗OT [κ

′
] is the subsheaf of φ∗OT , on which BM = TMUM

acts by κ ′ on TM and trivially on UM .

A modular form of weight κ on X with coefficients in an OL -algebra R is thus
a global section of ωκ , so an element of H 0(X ×OK R, ωκ). Using the projection
XIw→ X , we similarly define the sheaf ωκ on XIw, as well as the modular forms
on XIw.

2B. Overconvergent modular forms. For simplicity, we will now assume that there
is only one place π of F0 above p, that is to say that p is inert in F0. The case with
several places does not add any difficulty, and will be treated in Section 4.

We can then define the space of overconvergent modular forms. These will be
sections of the sheaf of modular forms defined over a strict neighborhood of the
µ-ordinary locus. Recall that we have defined in both cases a degree function

Deg : XIw,rig→

s∏
k=1

[0, dk].

Since there is only one place above p in F0, we have XIw = XIw,π .
We define the µ-ordinary-multiplicative locus as Deg−1({d1}× · · · × {ds}). By

Proposition 1.29 or Proposition 1.34, this locus lies in the µ-ordinary locus.

Definition 2.2. The space of overconvergent modular forms of weight κ is defined
as

M†
:= colimV H 0(V, ωκ),

where V runs over the strict neighborhoods of the µ-ordinary-multiplicative locus
in XIw,rig.

An overconvergent modular form is then defined over a space of the form

Deg−1([d1− ε, d1]× · · · × [ds − ε, ds])

for some ε > 0.

2C. Hecke operators. We now define the Hecke operators. These operators will
act both on the rigid space and on the space of modular forms. We will fix the
weight κ . Explicitly, κ is a collection of integers(

(κσ,1 ≥ · · · ≥ κσ,aσ ), (λσ,1 ≥ · · · ≥ λσ,bσ )
)
σ∈6π

.

We recall that we still assume that π is the only place of F0 above p. To simplify
the notation, we define κσ := κσ,aσ and λσ := λσ,bσ .
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2C1. Linear case. Assume that π is in case (L). Let 1≤ i ≤ a+b−1 be an integer,
and let Ci be the moduli space defined over K parameterizing (A, λ, ι, η, H•, L),
with (A, λ, ι, η, H•) a point of XIw and L = L0⊕L⊥0 a subgroup of A[π ], where L0

is an OF -stable subgroup of A[π+]with A[π+]= Hi⊕L0. We have two morphisms
p1, p2 : Ci → XIw×OK K . The morphism p1 corresponds to forgetting L , and the
morphism p2 is defined as p2(A, λ, ι, η, H•, L)= (A/L , λ′, ι′, η′, H ′

•
), with

• H ′j = (Hj + L0)/L0 if j ≤ i ;

• H ′j = ((π
+)−1(Hj ∩ L0))/L0 if j > i .

We take the polarization λ′ to be equal to p · λ, which is a prime-to-p polarization.
Let Can

i be the analytic space associated to Ci , and define Ci,rig := p−1
1 (XIw,rig).

The morphisms p1 and p2 give morphisms Ci,rig→ XIw,rig.

Definition 2.3. The i-th Hecke operator acting on the subsets of XIw,rig is defined
by

Uπ,i (S)= p2(p−1
1 (S)).

This operator preserves the admissible open subsets and quasicompact admissible
open subsets.

Let us denote by p : A→ A/L the universal isogeny over Ci . This induces an
isomorphism p∗ : ω(A/L)/X → ωA/X , and thus a morphism p∗(κ) : p∗2ω

κ
→ p∗1ω

κ .
For every admissible open U of XIw,rig, we form the composed morphism

Ũπ,i : H 0(Uπ,i (U), ωκ)→ H 0(p−1
1 (U), p∗2ω

κ)

p∗(κ)
−−→ H 0(p−1

1 (U), p∗1ω
κ)

Trp1−−→ H 0(U, ωκ).

Definition 2.4. The Hecke operator acting on modular forms is defined by Uπ,i =

(1/pNi )Ũπ,i with

Ni =
∑
σ∈6π

(
min(i, aσ )min(a+b− i, bσ )+max(aσ − i, 0)κσ +max(i−aσ , 0)λσ

)
.

We will also write

ni =
∑
σ∈6π

min(i, aσ )min(a+ b− i, bσ )

for the constant term of Ni , which is independent of the weight.
Let us explain briefly the meaning of the normalization factor Ni . The term

min(i, aσ )min(a+ b− i, bσ ) comes from the inseparability degree of the projec-
tion p1. The term max(aσ − i, 0)κσ + max(i − aσ , 0)λσ comes from the mor-
phism p∗(κ). Indeed, we have the following proposition:
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Proposition 2.5. Let M be a finite extension of Qp, let (A, λ, ι, η, H•) be an OM -
point of XIw and let L = L0⊕ L⊥0 be a subgroup of A[π ], where L0 is an OF -stable
subgroup of A[π+] with A[π+] = Hi ⊕ L0 in generic fiber. Then we have, for
all σ ∈6π ,

degσ L0 ≥ aσ − i and degσ L⊥0 ≥ i − aσ .

Proof. The group A[π+]/L0 is of height f i and has partial degree (aσ −degσ L0)σ .
Hence, aσ −degσ L0 ≤ i and degσ L0 ≥ aσ − i . We get the other equality by duality
(note that bσ − (a+ b− i)= i − aσ ). �

We have the following proposition concerning the behavior of the Hecke operator
regarding the degree function:

Proposition 2.6. Let x = (A, λ, ι, η, H•) be a point of XIw,rig, and y ∈ Uπ,i (x)
corresponding to a subgroup L ∈ A[π ] as before. Write y = (A/L , λ, ι, η, H ′

•
);

then we have
deg H ′j ≥ deg Hj

for all 1≤ j ≤ a+ b− 1. Moreover, we have

deg H ′i = deg A[π+] − deg L0.

If deg H ′i = deg Hi , then deg Hi ∈ Z.

Proof. For all 1≤ j ≤ i , the morphism Hj → H ′j is an isomorphism in the generic
fiber. Thus, deg H ′j ≥ deg Hj . If i < j ≤ a+ b− 1, we have

deg H ′j = deg((π+)−1(Hj ∩ L0))− deg L0.

Since deg((π+)−1 H)= deg A[π+] + deg H for every subgroup H of A[π+], we
get

deg H ′j = deg A[π+] + deg(Hj ∩ L0)− deg L0

= deg(Hj + L0)+ deg(Hj ∩ L0)− deg L0 ≥ deg Hj

from the properties of the degree function.
We have H ′i = (A[π

+
]/L0), hence the formula for the degree of H ′i . If deg H ′i =

deg Hi , then we have deg Hi + deg L0 = deg A[π+], and A[π+] = Hi × L0. Since
A[π+] is a BT1, so is Hi , and its degree is an integer. �

2C2. Unitary case. Assume now that π is in case (U). Let 1 ≤ i ≤ 1
2(a + b)

be an integer, and let Ci be the moduli space defined over K parameterizing
(A, λ, ι, η, H•, L), with (A, λ, ι, η, H•) a point of XIw, where

• L is an OF -stable, totally isotropic subgroup of A[π2
] such that A[π ] =

Hi ⊕ L[π ] = H⊥i ⊕πL if i < 1
2(a+ b);



866 Stéphane Bijakowski

• L is an OF -stable, totally isotropic subgroup of A[π ] such that A[π ] = Hi⊕L
if i = 1

2(a+ b).

We have two morphisms p1, p2 : Ci → XIw ×OK K . The morphism p1 corre-
sponds to forgetting L , and the morphism p2 is defined as p2(A, λ, ι, η, H•, L)=
(A/L , λ′, ι′, η′, H ′

•
), with

• H ′j = (Hj + L)/L if j ≤ i ;

• H ′j = (π
−1(Hj ∩ L)+ L)/L if i < j ≤ 1

2(a+ b).

We take the polarization λ′ to be equal to p · λ, which is a prime-to-p polarization.
Let Can

i be the analytic space associated to Ci , and define Ci,rig := p−1
1 (XIw,rig).

The morphisms p1 and p2 give morphisms Ci,rig→ XIw,rig.

Definition 2.7. The i-th Hecke operator acting on the subsets of XIw,rig is defined
by

Uπ,i (S)= p2(p−1
1 (S)).

This operator preserves the admissible open subsets and quasicompact admissible
open subsets.

Remark 2.8. The condition A[π ] = H⊥i ⊕πL is actually redundant with the condi-
tion A[π ] = Hi ⊕ L[π ]. Indeed, since L is totally isotropic, we have πL ⊂ L[π ]⊥

(we denote by L[π ]⊥ the orthogonal in A[π ] of L[π ]). Comparing the heights, we
see that we have the equality πL = L[π ]⊥.

Let us denote by p : A→ A/L the universal isogeny over Ci . This induces an
isomorphism p∗ : ω(A/L)/X → ωA/X , and thus a morphism p∗(κ) : p∗2ω

κ
→ p∗1ω

κ .
For every admissible open subset U of XIw,rig, we form the composed morphism

Ũπ,i : H 0(Uπ,i (U), ωκ)→ H 0(p−1
1 (U), p∗2ω

κ)

p∗(κ)
−−→ H 0(p−1

1 (U), p∗1ω
κ)

Trp1−−→ H 0(U, ωκ).

Definition 2.9. The Hecke operator acting on modular forms is defined by Uπ,i =

(1/pNi )Ũπ,i with

Ni =
∑
σ∈6π

(
(a+ b)min(i, aσ )+max(aσ − i, 0)κσ +max(bσ − aσ , bσ − i)λσ

)
if i < 1

2(a+ b), and

N(a+b)/2 =
∑
σ∈6π

( 1
2(a+ b)aσ + 1

2(bσ − aσ )λσ
)
.

We will also write
ni =

∑
σ∈6π

(a+ b)min(i, aσ )
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if i < 1
2(a+ b), and

n(a+b)/2 =
∑
σ∈6π

1
2(a+ b)aσ

for the constant term of Ni , which is independent of the weight.
Again, the reason for the normalization factor ni comes in two parts. The term

(a+ b)min(i, aσ ) comes from the inseparability degree of the projection p1. The
term max(aσ − i, 0)κσ +max(bσ −aσ , bσ − i)λσ comes from the morphism p∗(κ).
Indeed, we have the following proposition:

Proposition 2.10. Let M be a finite extension of Qp, let (A, λ, ι, η, H•) be an
OM -point of XIw and let L be a subgroup of A[π2

] as before. If i < 1
2(a + b),

we have

degσ1
L ≥ aσ − i and degσ2

L ≥max(bσ − i, bσ − aσ ).

If i = 1
2(a+ b), we have

degσ2
L ≥ 1

2(bσ − aσ ).

Proof. Suppose first that i < 1
2(a + b). The subgroup L being totally isotropic,

we get
degσ2

L = degσ1
L + bσ − aσ .

The group A[π ]/L[π ] is of height 2 f i , hence we have degσ1
A[π ]/L[π ]≤ i . We get

degσ1
L ≥ degσ1

L[π ] ≥ aσ − i.

We deduce that degσ2
L = degσ1

L + bσ − aσ ≥max(bσ − i, bσ − aσ ).
If i = 1

2(a+ b), then L is a maximal totally isotropic subgroup of A[π ]. Thus,
we have

degσ2
L = 1

2(bσ − aσ )+ degσ1
L ≥ 1

2(bσ − aσ ). �

We have the following proposition concerning the behavior of the Hecke operator
regarding the degree function:

Proposition 2.11. Let x = (A, λ, ι, η, H•) be a point of XIw,rig, and y ∈ Uπ,i (x)
corresponding to a subgroup L ∈ A[π2

] as before. Write y = (A/L , λ, ι, η, H ′
•
);

then we have
deg H ′j ≥ deg Hj

for all 1≤ j ≤ 1
2(a+ b). Moreover, if i < 1

2(a+ b), we have

deg H ′i = 2 f i − deg(L/L[π ]).

If deg H ′i = deg Hi , then deg Hi ∈ Z.
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If i = 1
2(a+ b), then

deg H ′(a+b)/2 = f (a+ b)− deg(L).

If deg H ′(a+b)/2 = deg H(a+b)/2, then d(a+b)/2− deg H(a+b)/2 ∈ 2Z.

Proof. Suppose first that i < 1
2(a+b). For each 1≤ j ≤ i , the morphism Hj → H ′j

is an isomorphism in the generic fiber. Thus, deg H ′j ≥ deg Hj . Suppose i < j ≤
1
2(a+ b). Then, observing that π−1(Hj ∩ L)∩ L = L[π ], we get

deg H ′j = deg(π−1(Hj ∩ L)+ L)− deg L

≥ deg(π−1(Hj ∩ L))− deg L[π ]

≥ deg A[π ] + deg(Hj ∩ L)− deg L[π ]

= deg(Hj + L[π ])+ deg(Hj ∩ L[π ])− deg L[π ]

≥ deg Hj

from the properties of the degree function.
Let us calculate the degree of H ′i . We have

deg H ′i = deg(A[π ] + L)/L

= deg(π−1L[π ]⊥)/L = deg A[π ] + deg L[π ]⊥− deg L

= 2 f i + deg L[π ] − deg L = 2 f i − deg(L/L[π ]).

If deg H ′i = deg Hi , then we have deg Hi + deg L[π ] = deg A[π ] and A[π ] =
Hi × L[π ]. Since A[π ] is a BT1, so is Hi , and its degree is an integer.

Suppose now that i = 1
2(a+b). The same argument as before shows that we still

have deg H ′j ≥ deg Hj for all 1≤ j ≤ 1
2(a+b). Since H ′(a+b)/2 = A[π ]/L , we have

deg H ′(a+b)/2 = deg A[π ] − deg L = f (a+ b)− deg L .

If we have the equality deg H ′(a+b)/2 = deg H(a+b)/2, then H(a+b)/2 is a BT1, and
all its partial degrees are integers. Since H(a+b)/2 is totally isotropic, we have the
relations

degσ2
H(a+b)/2 = degσ1

H(a+b)/2+
1
2(bσ − aσ )

for all σ ∈ 6π . If we write hσ = degσ1
H(a+b)/2, which is an integer under the

previous assumption, we have

d(a+b)/2− deg H(a+b)/2 =
∑
σ∈6π

(
aσ + 1

2(a+ b)− 2hσ − 1
2(bσ − aσ )

)
= 2

∑
σ∈6π

(aσ − hσ ) ∈ 2Z. �

We will also need the following useful lemma:
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Lemma 2.12. Let x = (A, λ, ι, η, H•) be a point of XIw,rig, and let L ∈ A[π2
] be

a totally isotropic subgroup as before, corresponding to a point of Uπ,i (x), with
i < 1

2(a+ b). We have the inequality

deg(L/L[π ])≤ 2 f i − deg A[π ] + deg L[π ].

Proof. The multiplication by π gives a morphism L/L[π ] → πL . But, L being
totally isotropic, we have the relation πL = L[π ]⊥. We thus get a morphism
L/L[π ] → L[π ]⊥, which is an isomorphism in generic fiber. Thus,

deg(L/L[π ])≤ deg L[π ]⊥ = 2 f i − deg A[π ] + deg L[π ]. �

3. A classicality result

We will now prove a control theorem, that is to say that an overconvergent modular
form is indeed classical under a certain assumption.

3A. Decomposition of the Hecke operators. Fix a rational ε > 0. We will fix
rationals εk ∈ {ε, dk} for 1 ≤ k ≤ s. Also fix an integer i between 1 and s such
that εi = ε. Since we have assumed that there is only one place π of F0 above p, we
will simply let 6 =6π . We define a partition of this set. First, we let, for 1≤ k ≤ s,

6k := {σ ∈6 : aσ = Ak}.

We will also let 60 := {σ ∈6 : aσ = 0} and 6s+1 := {σ ∈6 : aσ = a+b} (of course
6s+1 is always empty in case (U)). The sets (6k)0≤k≤s+1 form a partition of 6.

From the collection (εk)1≤k≤s , we define another partition of 6. The set S1 is
defined to be

S1 =60 ∪
⋃
k 6=i
εk=ε

6k ∪6s+1.

The complement is the set

S2 =6i ∪
⋃

k,εk=dk

6k .

Define

U0 := Deg−1([d1− ε1, d1]× · · · × [ds − εs, ds])=

s⋂
k=1

Deg−1
k [dk − εk, dk],

U1 :=
⋂
k 6=i

Deg−1
k [dk − εk, dk].

We will define a decomposition of the Hecke operator Uπ,Ai on subsets of U1.
Fix a rational α > 0, and define the integer t to be 1, except in the unitary case
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and if i = 1
2(a+ b), where we set t = 2. For simplicity, we will write Ui for Uπ,Ai .

Define
U := Deg−1

i ([0, di − t (1−α)])∩U1.

Theorem 3.1. Let N ≥ 1 and let β < ε be a positive rational. There exists a finite
ordered set MN and a decreasing sequence of admissible open subsets (Uk(N ))k∈MN

of U such that, for all k ≥ 0, we have a decomposition of the operator U N
i on

Uk(N )\Uk+1(N ) of the form

U N
i =

( N−1∐
j=0

U N−1− j
i ◦ T j

)
q TN ,

with T0 =U good
i,k,N ,

T j =
∐

k1∈MN−1,...,k j∈MN− j

U good
i,k j ,N U bad

i,k j−1,k j ,N . . .U
bad
i,k,k1,N for 0< j < N ,

and
TN =

∐
k1∈MN−1,...,kN−1∈M1

U bad
i,kN−1,N U bad

i,kN−2,kN−1,N . . .U
bad
i,k,k1,N

such that

• the images of U good
i, j,N for j ∈ Mk are in Deg−1

i (]di − t (1−β), di ]);

• the images of U bad
i,l,l ′,N for l ∈ Mk and l ′ ∈ Mk−1, and U bad

i,l,N for l ∈ M1 are in
Deg−1

i

(
[0, di − t (1−β)]

)
.

The idea is that the points in ]di − t (1 − β), di ] are “good” (because the
overconvergent modular form will be defined at these points), and the points in
Deg−1

i

(
[0, di − t (1− β)]

)
are “bad”. The decomposition in the theorem is then

made to ensure that all the operators have their image either in good points or in
bad points.

Let us describe this decomposition by looking at a point x ∈U . The set Ui ({x}) is
finite and has, say, N1 points in Deg−1

i

(
[0, di− t (1−β)]

)
and N2 in its complement

Deg−1
i

(
]di − t (1−β), di ]

)
. Thus, one can decompose the operator Ui over x as

Ui =U good
i,x qU bad

i,x

with U bad
i,x corresponding to the N1 points in Deg−1

i

(
[0, di− t (1−β)]

)
and U good

i,x to
the N2 other points. This is a decomposition of operators, meaning that the set
Ui ({x}) is the disjoint union of the sets U good

i,x ({x}) and U bad
i,x ({x}); moreover, the

operators U good
i,x and U bad

i,x induce morphisms H 0
(
Ui ({x}), ωκ

)
→ H 0({x}, ωκ) for

each weight κ , such that

Ui f =U good
i,x f +U bad

i,x f
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for all f ∈ H 0
(
Ui ({x}), ωκ

)
. These morphisms are defined in the same way as the

morphism Ui , with the same normalization factor. This gives the decomposition of
the theorem for N = 1 at the point x .

To get the decomposition for N = 2, one needs to study the operator U bad
i,x . Let

x1, . . . , xN1 be the elements of the set U bad
i,x ({x}). We can thus decompose the

operator U bad
i,x into

U bad
i,x =

N1∐
j=1

U bad
i,x, j ,

where U bad
i,x, j corresponds to the point x j . Then, for each 1≤ j ≤ N1, we have the

decomposition of the operator Ui at the point x j as U good
i,x j
qU bad

i,x j
. One then gets

the decomposition of U 2
i at the point x ,

U 2
i =Ui ◦U good

i,x q

N1∐
j=1

U good
i,x j
◦U bad

i,x, j q

N1∐
j=1

U bad
i,x j
◦U bad

i,x, j .

Repeating this argument, one gets the desired decomposition of the operator U N
i at

the point x . Of course, this decomposition does not have a meaning on the whole
open subset U because the morphisms used to define the different operators will
not be finite (the integer N1 depends on the point x). But, on an adequate subset,
this will be the case. That is why one has to construct the subsets (Uk(N ))k∈MN .
This construction and the proof of its properties have been done in [Bijakowski
et al. 2016, Theorem 4.4.1].

3B. Analytic continuation. Let f be a section of the sheaf ωκ on U0. We will show
that f can be extended to U1 under a certain condition. More precisely, suppose in
this section that f is an eigenform for the Hecke operator Ui with eigenvalue αi

and that
v(αi )+ n Ai < (1− 2 f ε) inf

σ∈S2
(κσ + λσ ).

The first step is to extend f to Deg−1
i (]di − t, di ])∩U1. We will use the following

proposition:

Proposition 3.2. Let 0< γ < 1 be a rational. Then there exists an integer N such
that

U N
i
(
Deg−1

i ([di − tγ, di ])∩U1
)
⊂ Deg−1

i ([di − ε, di ])∩U1.

Proof. The key point is that on Deg−1
i ([di − tγ, di ])∩U1 the operator Ui strictly

increases the degree function Degi . Since Deg−1
i ([di − tγ, di ]) ∩ U1 is a quasi-

compact open subset of XIw,rig, one can then apply the argument in [Pilloni 2011,
Proposition 2.5]. �

Corollary 3.3. The overconvergent form f extends to Deg−1
i (]di − t, di ])∩U1.
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Proof. Let 0 < γ < 1 be a rational. By the previous proposition, there exists an
integer N such that

U N
i
(
Deg−1

i ([di − tγ, di ])∩U1
)
⊂ Deg−1

i ([di − ε, di ])∩U1.

The quantity α−N
i U N

i f is thus defined on Deg−1
i ([di − tγ, di ])∩U1. This formula

allows us to extend f to Deg−1
i (]di − t, di ])∩U1. �

The second step is to define some series on U :=Deg−1
i

(
[0, di − t (1−α)]

)
∩U1

for some sufficiently small rational α. We will use the decomposition of the Hecke
operator Ui . First, we recall the definition of the norm of an operator. If U is an
open subset of XIw,rig, and T : H 0(T (U), ωκ)→ H 0(U, ωκ) is an operator, then
we define the norm of T as

‖T ‖ := inf
{
r > 0 : |T f |U ≤ r | f |T (U) for all f ∈ H 0(T (U), ωκ)

}
.

Theorem 3.4. Suppose that all the operators U bad
i introduced in Theorem 3.1 satisfy

the relation
‖α−1

i U bad
i ‖< 1.

Then it is possible to construct sections fN ∈ H 0(U, ωκ/pAN ) such that AN →∞.
Moreover, the functions fN can be glued together with the initial form f to give an
element of H 0(U1, ω

κ).

The construction of the series fN and the proof of the gluing process have been
done in [Bijakowski et al. 2016, Section 4.5]. Let us briefly describe the method.
We take an element β > 0 and consider the open subsets (Uk(N ))k∈MN constructed
in Theorem 3.1 for this element. Let KN be the largest element of MN ; neglecting
the bad points for the operator U N

i gives a function gKN ∈ H 0(UKN (N ), ω
κ) (we

refer to [Bijakowski et al. 2016, Definition 4.5.2] for the precise definition of the
function gKN ). Now take β ′<β, and again apply Theorem 3.1 for this other element:
we get open subsets (Uk(N )′)k∈MN . We consider the subset UKN−1(N )′\UKN (N )

′

and the decomposition of U N
i on it. Neglecting the bad points gives a function

gKN−1 ∈ H 0(UKN−1(N )′\UKN (N )
′, ωκ). One can then show that gKN and gKN−1

can be glued together to give a function modulo pAN , where AN is an explicit
constant. One thus gets a function fN ∈ H 0(UKN−1(N )′, ωκ/pAN ) (see [Bijakowski
et al. 2016, Proposition 4.5.6] for more details). Repeating this argument, one thus
extends the function fN to the whole U . The hypothesis on the operators implies
that the sequence (AN )N tends to infinity. A gluing lemma ([Bijakowski et al.
2016, Proposition 4.5.7], following [Kassaei 2006]) then ensures the existence of
a function f ∈ H 0(U, ωκ), which can be glued with the initial function f , thus
getting a section on U1.

We will now prove that, under the assumption made at the beginning of Section 3B,
the condition in the theorem is fulfilled, that is to say that the norm of the operators
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α−1
i U bad

i is strictly less than 1. We will split the discussion between the linear and
unitary cases.

3B1. Linear case. We recall that the integer t is equal to 1 in this case. Let M be
a finite extension of Qp, let x = (A, λ, ι, η, H•) be a point of U defined over OM ,
and let L = L0⊕ L⊥0 be a subgroup of A[π ], where L0 is an OF -stable subgroup
of A[π+] with A[π+] = HAi ⊕ L0 in generic fiber. Let us write A′ = A/L , and let
H ′Ai

be the image of HAi in A/L . Thus,

H ′Ai
= A[π+]/L0.

We suppose that the subgroup L corresponds to a bad point, that is to say that
deg H ′Ai

≤ di − 1+α for a certain rational α > 0. We write

degσ L0 =max(aσ − Ai , 0)+ lσ

for all σ ∈6. As is shown by Proposition 2.5, lσ is a positive rational for all σ . We
then have, for all σ ,

degσ H ′Ai
= aσ − degσ L0 =min(Ai , aσ )− lσ .

We deduce that deg H ′Ai
= di −

∑
σ∈6 lσ . The condition of being a bad point gives∑
σ∈6

lσ ≥ 1−α.

Actually, we can control some of the lσ . First, we prove the following technical
lemma:

Lemma 3.5. Let x = (A, λ, ι, η, H•) be a point as before and let H ⊂ A[π+]
be an OF -stable subgroup. If H is of height f Ak and deg H ≥ dk − ε, then
degσ H ≥min(aσ , Ak)− ε for all σ ∈6.

If H is of height f (a+b− Ak) and deg H ≤ deg A[π+]−dk+ε, then degσ H ≤
max(aσ − Ak, 0)+ ε for all σ ∈6.

Proof. Suppose that H is of height f Ak and deg H ≥ dk − ε. If degσ H <

min(aσ , Ak)− ε for some σ ∈6, then

deg H =
∑
σ ′∈6

degσ ′ H <min(aσ , Ak)− ε+
∑
σ ′ 6=σ

min(aσ ′, Ak)= dk − ε

and we get a contradiction.
If H is of height f (a+b−Ak) and deg H ≤deg A[π+]−dk+ε, then we can apply

the previous argument to A[π+]/H . We get degσ (A[π
+
]/H) ≥min(aσ , Ak)− ε

for all σ ∈6, and therefore degσ H ≤max(aσ − Ak, 0)+ ε. �

Now we prove a bound for some of the lσ .
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Lemma 3.6. If σ ∈ S1, we have lσ ≤ ε.

Proof. If σ ∈60∪6s+1, then lσ = 0. If not, σ ∈6k , with 1≤ k≤ s, k 6= i , and εk = ε.
Since x is a point of U , we have deg HAk ≥ dk − ε. Suppose first that k < i . Since
HAk and L0 are disjoint, the morphism HAk → H ′Ak

:= (HAk + L0)/L0 is an
isomorphism in the generic fiber. Thus, by the properties of the degree function,
deg H ′Ak

≥ deg HAk ≥ dk − ε. By Lemma 3.5, we get degσ H ′Ak
≥ Ak − ε. But we

also have degσ H ′Ak
≤ degσ H ′Ai

= min(Ai , aσ )− lσ = Ak − lσ . In conclusion, we
get lσ ≤ ε.

The case k > i can be treated by duality, considering the group A[π−]. We can
also give a direct argument. Let us denote the group L0/(L0 ∩ HAk ) by L ′k . Since
HAk and L0 generate A[π+], the morphism L ′k→ A[π+]/HAk is an isomorphism
in generic fiber, so we get deg L ′k ≤ deg(A[π+]/HAk ). But we have

deg(A[π+]/HAk )= deg A[π+] − deg HAk ≤ deg A[π+] − dk + ε.

From Lemma 3.5, we get degσ L ′k ≤ ε. Since L0 ∩ HAk is of height f (Ak − Ai ),
we have

lσ = degσ L0− (Ak − Ai )= degσ L ′k + degσ (L0 ∩ HAk )− (Ak − Ai )≤ ε. �

Remark 3.7. Actually, we can have more control on the lσ . Indeed, suppose that
there exists σ ∈ 6k ∩ S1. If k < i , then we have lσ ≤ ε for all σ ∈ 6j with j ≤ k.
If k > i , then we have lσ ≤ ε for all σ ∈6j with j ≥ k.

Putting together all the calculations made, we get the following result:

Proposition 3.8. We have ∑
σ∈S2

lσ ≥ 1−α− f ε.

Proof. If σ ∈ S1 we have lσ ≤ ε, and we also have
∑

σ∈6 lσ ≥ 1−α. Thus,∑
σ∈S2

lσ ≥ 1−α−
∑
σ∈S1

lσ ≥ 1−α− f ε. �

We can now prove the bound for the norm of the operator U bad
i .

Proposition 3.9. We have

‖α−1
i U bad

i ‖ ≤ pv(αi )+n Ai−(1−α−2 f ε) infσ∈S2 (κσ+λσ ).

Proof. The term pv(αi ) is the norm of the element α−1
i . Recall also the normalization

factor for the Hecke operator,

NAi = n Ai +

∑
σ∈6π

(
max(aσ − Ai , 0)κσ +max(Ai − aσ , 0)λσ

)
.
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The first term will come in the bound and the second term will be canceled out by
the bounds for the partial degrees of L0 and L⊥0 .

Indeed, let us calculate the norm of the morphism ωκA → ωκA/L . Let κ1 be
the weight defined by ((κσ , . . . , κσ ), (λσ , . . . , λσ ))σ∈6 and κ2 = κ − κ1. Thus,
ωκ = ωκ1 ⊗ωκ2 and ωκ1 is a line bundle. Since κ2 has nonnegative coefficients, the
morphism ω

κ2
A →ω

κ2
A/L has norm less than 1. It then suffices to study the morphism

ω
κ1
A → ω

κ1
A/L . But we have

ω
κ1
A =

⊗
σ∈6

(detω+A,σ )
κσ ⊗ (detω−A,σ )

λσ ,

where ω+A,σ is the submodule of ωA where OF acts on σ+, and similarly for ω−A,σ .
We recall that L = L0⊕ L⊥0 . The norm of the map ωκ1

A → ω
κ1
A/L is exactly pA, with

A =−
∑
σ∈6

(κσ degσ L0+ λσ degσ L⊥0 ).

But recall that degσ L0 =max(aσ − Ai , 0)+ lσ and that

degσ L⊥0 = Ai − aσ + degσ L0 =max(Ai − aσ , 0)+ lσ .
Thus,

A =−
∑
σ∈6

(
max(aσ − Ai , 0)κσ +max(Ai − aσ , 0)λσ + lσ (κσ + λσ )

)
=−(NAi − n Ai )+ B

with
B =−

∑
σ∈6

(lσ (κσ + λσ ))≤−
∑
σ∈S2

(lσ (κσ + λσ ))

≤− inf
σ∈S2

(κσ + λσ )
∑
σ∈S2

lσ ≤−(1−α− f ε) inf
σ∈S2

(κσ + λσ ).

Hence the bound for the operator α−1
i U bad

i follows, noting that 1 − α − f ε ≥
1−α− 2 f ε. �

Since we have made the assumption

v(αi )+ n Ai < (1− 2 f ε) inf
σ∈S2

(κσ + λσ ),

we see that, if α is small enough, the norm of the operator α−1
i U bad

i is strictly less
than 1.

Remark 3.10. Actually, we only needed the weaker hypothesis

v(αi )+ n Ai < (1− f ε) inf
σ∈S2

(κσ + λσ ),

but we used ours to have the same condition in both the linear and unitary cases.
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3B2. Unitary case. We now turn to the case (U). We first assume that i < 1
2(a+b),

so that the integer t is equal to 1. Let M be a finite extension of Qp, let x =
(A, λ, ι, η, H•) be a point of U defined over OM , and let L be a totally isotropic
OF -stable subgroup of A[π2

] such that A[π ] = Hi ⊕ L[π ]. Let A′ = A/L , and let
H ′Ai

be the image of HAi in A/L . Thus,

H ′Ai
= (A[π ] + L)/L .

We suppose that the subgroup L corresponds to a bad point, that is to say that
deg H ′Ai

≤ di − 1+α for a certain rational α > 0. We write

degσ1
L =max(aσ − Ai , 0)+ lσ ,

and
degσ2

L = bσ − aσ + degσ1
L =max(bσ − Ai , bσ − aσ )+ lσ

for all σ ∈6. As it is shown by Proposition 2.10, lσ is a positive rational for all σ .
We then have deg H ′Ai

= 2 f Ai − deg(L/L[π ]); therefore,

deg(L/L[π ])≥ 2 f Ai − di + 1−α.

We also have, by Lemma 2.12, deg(L/L[π ])≤ 2 f Ai−deg A[π ]+deg L[π ]. Thus,

deg L[π ] ≥ deg A[π ] − di + 1−α.

We conclude that

deg L ≥ 2 f Ai − 2di + deg A[π ] + 2(1−α).

By an explicit computation, one checks the equality

2 f Ai − 2di + deg A[π ] =
∑
σ∈6

(max(aσ − Ai , 0)+max(bσ − Ai , bσ − aσ )).

We conclude that the condition of being a bad point gives∑
σ∈6

lσ ≥ 1−α.

Actually, we can control some of the lσ . First, we prove the following technical
lemma:

Lemma 3.11. Let x = (A, λ, ι, η, H•) be a point as before, and let H ⊂ A[π ]
be an OF -stable subgroup. If H is of height 2 f Ak and deg H ≥ dk − ε, then
degσ1

H ≥min(aσ , Ak)− ε for all σ ∈6.
If H is of height 2 f (a+b− Ak) and deg H ≤ deg A[π ]−dk+ε, then degσ1

H ≤
max(aσ − Ak, 0)+ ε for all σ ∈6.
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Proof. Suppose that H is of height 2 f Ak and deg H ≥ dk − ε. If degσ1
H <

min(aσ , Ak)− ε for some σ ∈6, then

deg H =
∑
σ ′∈6

(degσ ′1 H + degσ ′2 H)

<min(aσ , Ak)− ε+ Ak +
∑
σ ′ 6=σ

(min(aσ ′, Ak)+ Ak)= dk − ε,

and we get a contradiction.
If H is of height 2 f (a+ b− Ak) and deg H ≤ deg A[π ]− dk + ε, then we can

apply the previous argument to A[π ]/H . We get degσ1
(A[π ]/H)≥min(aσ , Ak)−ε

for all σ ∈6, and therefore degσ1
H ≤max(aσ − Ak, 0)+ ε. �

Now we prove a bound for some of the lσ .

Lemma 3.12. If σ ∈ S1, we have lσ ≤ 2ε.

Proof. If σ ∈ 60 then lσ = 0. If not, σ ∈ 6k with 1 ≤ k ≤ s, k 6= i , and εk = ε.
Since x is a point of U , we have deg HAk ≥ dk − ε. Suppose first that k < i . Since
HAk and L[π ] are disjoint, the morphism HAk → H ′Ak

:= (HAk+ L[π ])/L[π ]
is an isomorphism in the generic fiber. Thus, by the properties of the degree
function, deg H ′Ak

≥ deg HAk ≥ dk − ε. By Lemma 3.11, we have degσ1
H ′Ak
≥

Ak − ε. But we also have degσ1
H ′Ak
≤ degσ1

A[π ]/L[π ] = aσ − degσ1
L[π ], and

therefore degσ1
L[π ]≤ ε. Next, we study H ′′Ak

:= (H ′Ak
+L/L[π ])/(L/L[π ]). Using

Lemma 3.11, we get

Ak − ε ≤ degσ1
HA′′k ≤ Ak − degσ1

L/L[π ].

Therefore, degσ1
(L/L[π ])≤ ε. In conclusion, we get lσ ≤ 2ε.

The case k > i cannot be treated by duality in this case. Let us denote the
group L[π ]/(L[π ] ∩ HAk ) by L ′k . Since HAk and L[π ] generate A[π ], the mor-
phism L ′k → A[π ]/HAk is an isomorphism in generic fiber, so we get deg L ′k ≤
deg(A[π ]/HAk ). But we have

deg(A[π ]/HAk )= deg A[π ] − deg HAk ≤ deg A[π ] − dk + ε.

Lemma 3.11 gives degσ1
L ′k ≤ ε. Since L[π ] ∩ HAk is of height 2 f (Ak − Ai ), we

have
degσ1

L[π ] = degσ1
L ′k + degσ1

L[π ] ∩ HAk ≤ ε+ Ak − Ai .

Now we study A′ := A/L[π ] and set H ′Ak
:=
(
π−1(HAk∩ L[π ])

)
/L[π ]. If H ′′Ak

is
the image of the morphism H ′Ak

→ A′[π ]/(L/L[π ]), then we get deg H ′′Ak
≥ dk−ε.

Lemma 3.11 gives

Ak − ε ≤ degσ1
H ′′Ak
≤ Ak − degσ1

(L/L[π ]).
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We deduce that degσ1
L/L[π ] ≤ ε. Finally, we have

lσ = degσ1
L − (Ak − Ai )≤ 2ε. �

Remark 3.13. Actually, we can have more control on the lσ . Indeed, suppose that
there exists σ ∈ 6k ∩ S1. If k < i , then we have lσ ≤ ε for all σ ∈ 6j with j ≤ k.
If k > i , then we have lσ ≤ ε for all σ ∈6j with j ≥ k.

Putting together all the calculations made, we get the following result:

Proposition 3.14. We have ∑
σ∈S2

lσ ≥ 1−α− 2 f ε.

Proof. If σ ∈ S1, we have lσ ≤ 2ε, and we also have
∑

σ∈6 lσ ≥ 1−α. Thus,∑
σ∈S2

lσ ≥ 1−α−
∑
σ∈S1

lσ ≥ 1−α− 2 f ε. �

We can now prove the bound for the norm of the operator U bad
i .

Proposition 3.15. We have

‖α−1
i U bad

i ‖ ≤ pv(αi )+n Ai−(1−α−2 f ε) infσ∈S2 (κσ+λσ ).

Proof. The proof is exactly the same as in the linear case. �

Since we have made the assumption

v(αi )+ n Ai < (1− 2 f ε) inf
σ∈S2

(κσ + λσ ),

we see that, if α is small enough, the norm of the operator α−1
i U bad

i is strictly less
than 1.

We now deal with the case i = 1
2(a + b); the integer t is now equal to 2.

The subgroup L is now a maximal totally isotropic subgroup of A[π ]. We write
degσ1

L = lσ , and we have degσ2
L = 1

2(bσ − aσ )+ lσ for all σ ∈6. Recall that

deg H ′(a+b)/2 = f (a+ b)− deg L =
∑
σ∈6

(
aσ + 1

2(a+ b)− 2lσ
)
,

so that
d(a+b)/2− deg H ′(a+b)/2 = 2

∑
σ∈6

lσ .

The condition of being a bad point gives∑
σ∈6

lσ ≥ 1−α

for a certain α > 0. The calculations are now exactly the same as previously, and
the bound obtained in Proposition 3.15 is still valid in the case i = 1

2(a+ b).
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3B3. Conclusion. We now recall the analytic continuation result we got, putting
together all the results of the past sections.

Recall that we have defined subsets

U0 := Deg−1([d1− ε1, d1]× · · · × [ds − εs, ds])=

s⋂
k=1

Deg−1
k [dk − εk, dk],

U1 :=
⋂
k 6=i

Deg−1
k [dk − εk, dk].

We also have defined a partition 6 = S1 q S2. The result of this section is thus
contained in the following theorem:

Theorem 3.16. Let κ be a weight and f a section of ωκ on U0. Suppose that f is
an eigenform for the Hecke operators Ui , with eigenvalues αi , for all 1≤ i ≤ s, and
that we have the relations

n Ai + v(αi ) < (1− 2 f ε) inf
σ∈S2

(κσ + λσ ).

Then f can be extended to a section of ωκ on U1.

3C. The classicality theorem. We recall that we have assumed that p is inert in F0.
We have defined integers (Ai )1≤i≤s , and to each of these integers corresponds a
canonical subgroup and a relevant Hecke operator. We also have a partition

6 =60q

s∐
j=1

6j q6s+1.

We can now state the classicality result.

Theorem 3.17. Let f be an overconvergent modular form of weight κ . Suppose
that f is an eigenform for the Hecke operators Uπ,Ai , with eigenvalues αi , and that

n Ai + v(αi ) < inf
σ∈6i

(κσ + λσ )

for 1≤ i ≤ s. Then f is classical.

Before giving the proof of the theorem, let us make the conditions explicit. In
the case (L), the conditions become

v(αi )+

f∑
j=1

min(aj , Ai )min(b j , Bi ) < inf
σ∈6i

(κσ + λσ ).

In the special case where all the (ai ) are distinct and different from 0 and a+b, we
have s = d conditions, which can be written

v(ασ )+
∑
σ ′∈6

min(aσ , aσ ′)min(bσ , bσ ′) < κσ + λσ ,

where ασ is the eigenvalue of Uπ,aσ .
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In the case (U), they become

v(αi )+

f∑
j=1

(a+ b)min(aj , Ai ) < inf
σ∈6i

(κσ + λσ )

if Ai <
1
2(a+ b), and

v(αi )+

f∑
j=1

1
2(a+ b)aj < inf

σ∈6i
(κσ + λσ )

if Ai =
1
2(a+ b).

In the special case where all the (ai ) are distinct and different from 0 and 1
2(a+b),

we have s = d conditions, which can be written

v(ασ )+
∑
σ ′∈6

(a+ b)min(aσ , aσ ′) < κσ + λσ ,

where ασ is the eigenvalue of Uπ,aσ .
Of course, in the case where the ordinary locus is nonempty, we find the same

conditions as in [Bijakowski et al. 2016]. In the case (L), the condition of ordinari-
ness is aσ = a, bσ = b for some pair (a, b) and for all σ ∈6. There is one relevant
Hecke operator, Uπ,a , and the classicality condition is

f ab+ v(α) < inf
σ∈6

(κσ + λσ ),

where α is the eigenvalue of Uπ,a .
In the case (U), the condition of ordinariness is

aσ = bσ = 1
2(a+ b)

for all σ ∈6. There is one relevant Hecke operator, Uπ,(a+b)/2, and the condition is

1
4 f (a+ b)2+ v(α) < inf

σ∈6
(κσ + λσ ),

where α is the eigenvalue of Uπ,(a+b)/2.

Remark 3.18. Since we need to use all the Hecke operators Uπ,Ai for the classicality
result, maybe the relevant operator is a product of these ones. For example, in the
linear case the operator

∏
σ Uπ,aσ parametrizes complements of (a lifting of) the

kernel of the f-th power of the Frobenius on the µ-ordinary locus.

3C1. Proof of the theorem. The overconvergent form f is a section of the sheaf ωκ

defined over

V0 :=

s⋂
i=1

Deg−1
i ([di − ε, di ])
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for some ε > 0. Of course, ε can be taken as small as we want. Let us write
Ki = infσ∈6i (κσ + λσ ) for all 1 ≤ i ≤ s. We put the elements (Ki )1≤i≤s in
decreasing order:

Ki1 ≥ Ki2 ≥ · · · ≥ Kis .

We will use the analytic continuation theorem successively for the operators
Ui1, . . . ,Uis , in that order.

We first consider the operator Ui1 (we recall that we let Ui :=Uπ,Ai ). We take all
the rationals εk to be equal to ε. In that case, S2 =6i1 . We can apply the analytic
continuation theorem if the condition

n Ai1
+ v(αi1) < (1− 2 f ε) inf

σ∈S2
(κσ + λσ )

is fulfilled. But infσ∈S2(κσ + λσ )= Ki1 and we have, by hypothesis,

n Ai1
+ v(αi1) < Ki1 .

If ε is small enough, then we can apply the theorem. We can thus extend f to

V1 :=
⋂
i 6=i1

Deg−1
i ([di − ε, di ]).

We then use the operator Ui2 . In this case, we take all the rationals εk to be equal
to ε, except εi1 = di1 . In that case, S2 = 6i1∪ 6i2 . We can apply the analytic
continuation theorem if the condition

n Ai2
+ v(αi2) < (1− 2 f ε) inf

σ∈S2
(κσ + λσ )

is fulfilled. But infσ∈S2(κσ +λσ )= inf(Ki1, Ki2)= Ki2 and we have, by hypothesis,

n Ai2
+ v(αi2) < Ki2 .

If ε is small enough, then we can apply the theorem. We extend f to

V2 :=
⋂

i /∈{i1,i2}

Deg−1
i ([di − ε, di ]).

Repeating this argument, we can extend the overconvergent form f to the whole
rigid variety XIw,rig. We conclude by applying a Koecher principle and a GAGA
theorem, which proves that the space

H 0(XIw,rig, ω
κ)

consists of classical modular forms. This will be done in the next section.
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3C2. Compactifications and Koecher’s principle. To complete the proof of the
theorem, we need to prove a Koecher principle and to introduce compactifications
of the Shimura variety.

Proposition 3.19. There exists a toroidal compactification X Iw of XIw defined
over OK . It is a proper scheme, and the sheaf ωκ extends to X Iw.

The construction of the compactification of X has been done in [Lan 2008], and
the one for XIw follows from [Lan 2015, Section 3] (see also [Bijakowski et al. 2016,
Section 5.1]). One can also construct the minimal compactification X∗Iw of XIw.
The Koecher principle states that, under a certain condition, the sections on XIw

automatically extend to the toroidal compactification. The next proposition follows
from [Lan 2015, Theorem 8.7] (see also [Bijakowski et al. 2016, Section 5.2]).

Proposition 3.20. Suppose that the codimension of the boundary of X∗Iw is greater
than 2. Then for any OK -algebra R the restriction map

H 0(X Iw× R, ωκ)→ H 0(XIw× R, ωκ)

is an isomorphism.

From this, we deduce a rigid Koecher principle (under the same dimension
assumption):

H 0(X Iw,rig, ω
κ)' H 0(XIw,rig, ω

κ),

where X Iw,rig is the rigid space associated to X Iw. Finally, since X Iw is proper, we
have a GAGA theorem.

Proposition 3.21. The analytification morphism

H 0(X Iw× K , ωκ)→ H 0(X Iw,rig, ω
κ)

is an isomorphism.

To conclude, we need to make explicit the dimension condition. We have the
following cases:

• If there exists σ such that aσbσ = 0, then the varieties X and XIw are compact
[Lan 2008, Remark 5.3.3.2].

• If this is not the case, the codimension of the boundary of X∗Iw is equal to
d(a + b− 1). Indeed, the dimension of the variety is equal to

∑
σ aσbσ . From

[Lan 2008, Theorem 7.2.4.1], there is a stratification of X∗Iw, and any top-dimen-
sional strata of the boundary is isomorphic to a Shimura variety with signatures
(aσ − 1, bσ − 1), hence has dimension

∑
σ (aσ − 1)(bσ − 1).

If d > 1 or a+ b ≥ 3, then the condition for the Koecher principle is fulfilled.

• If d = a = b = 1, we cannot apply the Koecher principle.
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Since we have excluded the third case by Hypothesis 1.3, it follows from what
has been said before that we have an isomorphism

H 0(X Iw× K , ωκ)' H 0(XIw,rig, ω
κ),

that is to say that the space H 0(XIw,rig, ω
κ) consists of classical modular forms. If

the variety is compact, this is only the GAGA theorem, and in the noncompact case
it is a combination of the rigid Koecher principle and the GAGA theorem. This
concludes the proof of the theorem.

In the exceptional remaining case, the variety is essentially a modular curve. To
prove the classicality theorem, one has to take the cusps into account in the series
constructed. We refer to [Kassaei 2006] for more details.

4. The case with several primes above p

In this section, we no longer assume that there is only one prime of F0 above p.
We will define the degree functions and the overconvergent modular forms, and
prove the classicality result.

Let P be the set of primes of F0 above p. We write P = {π1, . . . , πg}. Recall
that we have defined the Shimura variety of Iwahori level at p

XIw = XIw,π1 ×X XIw,π2 ×X · · · ×X XIw,πg .

We will denote by XIw,rig the rigid space associated to the scheme XIw. Let π be
an element of P . In the previous sections, we have defined an integer sπ , integers
Aπ,1 < · · ·< Aπ,sπ , other integers dπ,1, . . . , dπ,sπ , together with a degree function

Degπ : XIw,π,rig→

sπ∏
i=1

[0, dπ,i ].

We will define the degree function on XIw,rig by

Deg : XIw,rig→
∏
π∈P

sπ∏
i=1

[0, dπ,i ],

x 7→
(
Degπ (pπ (x))

)
π∈P .

Here pπ is the projection XIw,rig→ XIw,π,rig.
Let Xµ-ord-mult

Iw be the space Deg−1({dπ,i }). Let us fix a weight κ .

Definition 4.1. The space of overconvergent modular forms of weight κ is defined as

M†
:= colimV H 0(V, ωκ),

where V runs over the strict neighborhoods of Xµ-ord-mult
Iw in XIw,rig.
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We have defined Hecke operators Uπ,Aπ,1, . . . ,Uπ,Aπ,sπ . There is a slight ambi-
guity for the polarization λ′. If π is the only place above p, one can take p · λ,
which is a prime-to-p polarization. In general, λ′ is not well defined. Let x be a
totally positive element of OF such that vπ ′(x) equals 1 if π ′ = π , and 0 if π ′ is a
place of F0 above p different from π . Then one takes for λ′ the polarization x · λ.

These operators act both on classical and overconvergent modular forms. We
can finally state and prove the classicality theorem.

Theorem 4.2. Let f be an overconvergent modular form. Suppose that f is an
eigenform for the Hecke operators Uπ,Aπ,i , with eigenvalues απ,i . If we have the
relations

nπ,Aπ,i + v(απ,i ) < inf
σ∈6π,i

(κσ + λσ )

for all π ∈ P , 1≤ i ≤ sπ , then f is classical.

We recall that nπ,i is the constant term of the normalization factor for the Hecke
operator Uπ,i and that 6π,i = {σ ∈6π : aσ = Aπ,i }.

Proof. We will use for each place π the analytic continuation theorem we got in the
previous section to extend the modular form to the whole rigid variety, and deduce
its classicality. Luckily, the order of the places π is not important here.

We start with an overconvergent form f . It is a section of ωκ defined on a set of
the form

Deg−1
( ∏
π∈P

sπ∏
i=1

[dπ,i − ε, dπ,i ]
)
.

First, we consider the place π1. Using the Hecke operators and the relations satisfied
by the eigenvalues, by the previous section one can extend f to

Deg−1
( sπ1∏

i=1

[0, dπ1,i ]×
∏
π 6=π1

sπ∏
i=1

[dπ,i − ε, dπ,i ]
)
.

Using this argument successively with the different places, one can extend f to the
whole rigid variety XIw,rig. Using a Koecher principle (if the variety is not compact)
and a GAGA theorem as in Section 3C2, one can prove that f is a classical modular
form. �
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