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Let X be a smooth projective surface of irregularity 0. The Hilbert scheme X [n]

of n points on X parametrizes zero-dimensional subschemes of X of length n. We
discuss general methods for studying the cone of ample divisors on X [n]. We then
use these techniques to compute the cone of ample divisors on X [n] for several
surfaces where the cone was previously unknown. Our examples include families
of surfaces of general type and del Pezzo surfaces of degree 1. The methods rely
on Bridgeland stability and the positivity lemma of Bayer and Macrì.
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1. Introduction

If X is a projective variety, the cone Amp(X)⊂ N 1(X) of ample divisors controls
the various projective embeddings of X . It is one of the most important invariants
of X , and carries detailed information about the geometry of X . Its closure is
the nef cone Nef(X), which is dual to the Mori cone of curves (see for example
[Lazarsfeld 2004]). In this paper, we will study the nef cone of the Hilbert scheme
of points X [n], where X is a smooth projective surface over C.

Nef divisors on Hilbert schemes of points on surfaces X [n] are sometimes easy
to construct by classical methods. If L is an (n − 1)-very ample line bundle
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on X , then for any Z ∈ X [n] we have an inclusion H 0(L ⊗ IZ )→ H 0(L) which
defines a morphism from X [n] to the Grassmannian G(h0(L)− n, h0(L)). The
pullback of an ample divisor on the Grassmannian is nef on X [n]. It is frequently
possible to construct extremal nef divisors by this method. For example, this
method completely computes the nef cone of X [n] when X is a del Pezzo surface of
degree ≥ 2 or a Hirzebruch surface (see [Arcara et al. 2013; Bertram and Coskun
2013]). Unfortunately, this approach to computing the nef cone is insufficient in
general. At the very least, to study nef cones of more interesting surfaces it would
be necessary to study an analog of k-very ampleness for higher rank vector bundles,
which is considerably more challenging than line bundles.

More recently, many nef cones have been computed by making use of Bridgeland
stability conditions and the positivity lemma of Bayer and Macrì (see [Bridgeland
2007; 2008; Arcara and Bertram 2013; Bayer and Macrì 2014b] for background
on these topics, which will be reviewed in Section 2). Let v = ch(IZ ) ∈ K0(X),
where Z ∈ X [n]. In the stability manifold Stab(X) for X there is an open Gieseker
chamber C such that if σ ∈ C then Mσ(v)∼= X [n], where Mσ(v) is the moduli space
of σ -semistable objects with invariants v. The positivity lemma associates to any
σ ∈ C a nef divisor on X [n]. Stability conditions in the boundary ∂C frequently
give rise to extremal nef divisors. The positivity lemma also classifies the curves
orthogonal to a nef divisor constructed in this way, and so gives a tool for checking
extremality.

The stability manifold is rather large in general, so computation of the full
Gieseker chamber can be unwieldy. We deal with this problem by focusing on
a small slice of the stability manifold parametrized by a half-plane. Up to scale,
the corresponding divisors in N 1(X [n]) form an affine ray. The nef cone Nef(X [n])
is spanned by a codimension-1 subcone identified with Nef(X) and other more
interesting classes which are positive on curves contracted by the Hilbert–Chow
morphism. Since Nef(X [n]) is convex, we can study Nef(X [n]) by looking at
positivity properties of divisors along rays in N 1(X [n]) starting from a class in
Amp(X) ⊂ Nef(X [n]). The positivity lemma gives us an effective criterion for
testing when divisors along the ray are nef.

The slices of the stability manifold that we consider are given by a pair of divisors
(H, D) on X with H ample and −D effective. The following is a weak version of
one of our main theorems.

Theorem 1.1. Let X be a smooth projective surface. If n � 0, then there is an
extremal nef divisor on X [n] coming from the (H, D)-slice. It can be explicitly
computed if both the intersection pairing on Pic(X) and the set of effective classes
in Pic(X) are known. An orthogonal curve class is given by n points moving in a g1

n
on a curve of a particular class.
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See Section 3, especially Corollary 3.7 and Theorem 3.11, for more explicit
statements. Stronger statements can also be shown under strong assumptions on
Pic(X); for example, we study the Picard rank 1 case in detail in Section 4. Recall
that if X is a surface of irregularity q := H 1(OX ) = 0, then N 1(X [n]) is spanned
by the divisor B of nonreduced schemes and divisors L [n] induced by divisors
L ∈ Pic(X); see Section 2A for details.

Theorem 1.2. Let X be a smooth projective surface with Pic X ∼= ZH , where H is
an ample divisor. Let a > 0 be the smallest integer such that aH is effective. If

n ≥max{a2 H 2, pa(aH)+ 1},

then Nef(X [n]) is spanned by the divisor H [n] and the divisor

1
2

K [n]X +

(a
2
+

n
aH 2

)
H [n]− 1

2
B. (∗)

An orthogonal curve class is given by letting n points move in a g1
n on a curve in X

of class aH.

Note that in the Picard rank 1 case the divisor class (∗) is frequently of the form
λH [n] − 1

2 B for a noninteger number λ ∈ Q. Any divisor constructed from an
(n− 1)-very ample line bundle will be of the form λH [n]− 1

2 B with λ ∈ Z, so in
general the edge of the nef cone cannot be obtained from line bundles in this way.

The required lower bound on n in Theorem 1.2 can be improved in specific
examples where special linear series on hyperplane sections are better understood.

Theorem 1.3. Let X be one of the following surfaces:

(1) a very general hypersurface in P3 of degree d ≥ 4, or

(2) a very general degree-d cyclic branched cover of P2 of general type.

In either case, Pic(X)∼= ZH with H effective. Suppose n ≥ d − 1 in the first case,
and n ≥ d in the second case. Then Nef(X [n]) is spanned by H [n] and the divisor
class (∗) with a = 1.

Finally, in Section 5 we compute the nef cone of X [n] where X is a smooth
del Pezzo surface of degree 1 and n ≥ 2 is arbitrary. This computation was an
open problem posed by Bertram and Coskun [2013]; they noted that the method
of k-very ample line bundles would not be sufficient to prove the expected answer.
Since X has Picard rank 9, this computation makes full use of the general methods
developed in Section 3. If C ⊂ X is a reduced, irreducible curve which admits a g1

n ,
we write C[n] for the curve in the Hilbert scheme X [n] given by letting n points
move in a g1

n on C .

Theorem 1.4. Let X be a smooth del Pezzo surface of degree 1. The Mori cone of
curves NE(X [n]) is spanned by the 240 classes E[n] given by (−1)-curves E ⊂ X ,
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the class of a curve contracted by the Hilbert–Chow morphism, and the class F[n],
where F ∈ |−K X | is an anticanonical curve. The nef cone is determined by duality.

Many previous authors have used Bridgeland stability conditions to study nef
cones and wall-crossing for Hilbert schemes X [n] and moduli spaces of sheaves
MH(v) for various classes of surfaces. For instance, the program was studied for P2

in [Arcara et al. 2013; Coskun and Huizenga 2016; Bertram et al. 2014; Li and
Zhao 2013], Hirzebruch and del Pezzo surfaces in [Bertram and Coskun 2013],
abelian surfaces in [Yanagida and Yoshioka 2014; Maciocia and Meachan 2013],
K3 surfaces in [Bayer and Macrì 2014b; 2014a; Hassett and Tschinkel 2010], and
Enriques surfaces in [Nuer 2014]. Our results unify several of these approaches.
Additionally, nef cones were classically studied in the context of k-very ample line
bundles in papers such as [Ellingsrud et al. 2001; Beltrametti and Sommese 1991;
Beltrametti et al. 1989; Catanese and Göttsche 1990].

2. Preliminaries

Throughout the paper, we let X be a smooth projective surface over C.

2A. Divisors and curves on X [n]. For simplicity we assume that X has irregularity
q = h1(OX )= 0 in this subsection. By work of Fogarty [1968], the Hilbert scheme
X [n] is a smooth projective variety of dimension 2n which resolves the singularities
in the symmetric product X (n) via the Hilbert–Chow morphism X [n]→ X (n). A line
bundle L on X induces the Sn-equivariant line bundle L�n on Xn which descends
to a line bundle L(n) on the symmetric product X (n). The pullback of L(n) by the
Hilbert–Chow morphism X [n]→ X (n) defines a line bundle on X [n] which we will
denote by L [n]. Intuitively, if L ∼= OX (D) for a reduced effective divisor D ⊂ X ,
then L [n] can be represented by the divisor D[n] of schemes Z ⊂ X which meet D.

Fogarty shows that

Pic(X [n])∼= Pic(X)⊕Z(B/2),

where Pic(X) ⊂ Pic(X [n]) is embedded by L 7→ L [n] and B is the locus of non-
reduced schemes, i.e., the exceptional divisor of the Hilbert–Chow morphism
[Fogarty 1973]. Tensoring by the real numbers, the Néron–Severi space N 1(X [n])
is therefore spanned by N 1(X) and B.

There are also curve classes in X [n] induced by curves in X . Two different
constructions are immediate. Let C ⊂ X be a reduced and irreducible curve.

(1) There is a curve C̃[n] in X [n] given by fixing n − 1 general points of X and
letting an n-th point move along C .

(2) If C admits a g1
n , i.e., a degree-n map to P1, then the fibers of C→ P1 give a

rational curve P1
→ X [n]. We write C[n] for this class.
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These constructions preserve intersection numbers, in the sense that if D ⊂ X is a
divisor and C ⊂ X is a curve then

D[n] · C̃[n] = D[n] ·C[n] = D ·C.

Part of the nef cone Nef(X [n]) is easily described in terms of the nef cone of X .
If D is an ample divisor, then D(n) is ample so D[n] is nef. In the limit, we find that
if D is nef then D[n] is nef. Conversely, if D is not nef then there is an irreducible
curve C with D ·C < 0, so D[n] · C̃[n] < 0 and D[n] is not nef. Under the Fogarty
isomorphism,

Nef(X [n])∩ N 1(X)= Nef(X).

The hyperplane N 1(X) ⊂ N 1(X [n]) is orthogonal to any curve contracted by the
Hilbert–Chow morphism, so all the divisors in Nef(X)⊂ Nef(X [n]) are extremal.
Since B is the exceptional locus of the Hilbert–Chow morphism, we see that any
nef class must have nonpositive coefficient of B. After scaling, then, we see that
computation of the cone Nef(X [n]) reduces to describing the nef classes of the form
L [n]− 1

2 B lying outside Nef(X)⊂ Nef(X [n]).

2B. Bridgeland stability conditions. We now recall some basic definitions and
properties of Bridgeland stability conditions. We fix a polarization H ∈ Pic(X)R.
For any divisor D ∈ Pic(X)R, the twisted Chern character chD

= e−D ch can be
expanded as

chD
0 = ch0, chD

1 = ch1−D ch0, chD
2 = ch2−D·ch1+

1
2 D2 ch0 .

Recall that a Bridgeland stability condition is a pair σ = (Z ,A) for which
Z : K0(X)→ C is an additive homomorphism and A ⊂ Db(X) is the heart of a
bounded t-structure. In particular, A is an abelian category. Moreover, Z maps any
nontrivial object in A to the upper half-plane or the negative real line. The σ -slope
function is defined by

νσ =−
<Z
=Z

,

and σ -(semi)stability of objects of A is defined in terms of this slope function.
More technical requirements are the existence of Harder–Narasimhan filtrations
and the support property. We recommend [Bridgeland 2007] for a more precise
definition. The support property is well explained in Appendix A of [Bayer et al.
2014].

In the case of surfaces, Bridgeland [2008] and Arcara and Bertram [2013] showed
how to construct Bridgeland stability conditions in a slice corresponding to a choice
of an ample divisor H ∈ Pic(X)R and arbitrary twisting divisor D ∈ Pic(X)R. The
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classical Mumford slope function for twisted Chern characters is defined by

µH,D =
H ·chD

1

H 2 chD
0
,

where torsion sheaves are interpreted as having positive infinite slope. Given a real
number β ∈ R, there are two categories defined as

Tβ = {E ∈ Coh(X) : any quotient E � G satisfies µH,D(G) > β},

Fβ = {E ∈ Coh(X) : any subsheaf F ↪→ E satisfies µH,D(F)≤ β}.

A new heart of a bounded t-structure is defined as the extension closure Aβ :=
〈Fβ[1], Tβ〉. We fix an additional positive real number α and define the homomor-
phism as

Zβ,α =− chD+βH
2 +

1
2α

2 H 2 chD+βH
0 + i H ·chD+βH

1 .

The pair σβ,α := (Zβ,α,Aβ) is then a Bridgeland stability condition. The (H, D)-
slice of stability conditions is the family of stability conditions

{σβ,α : β, α ∈ R, α > 0}

parametrized by the (β, α) upper half-plane.

Definition 2.1. Fix a set of invariants v ∈ K0(X).

(1) Let w ∈ K0(X) be a vector such that v and w do not have the same σβ,α-slope
everywhere in the (H, D)-slice. The numerical wall for v given by w is the
set of points (β, α) where v and w have the same σβ,α-slope.

(2) A numerical wall for v given by a vector w as above is a wall (or actual wall) if
there is a point (β, α) on the wall and an exact sequence 0→ F→ E→G→ 0
in Aβ , where ch F =w, ch E =v, and F , E , and G are σβ,α-semistable objects
(of the same σβ,α-slope).

We write Knum(X) for the numerical Grothendieck group of classes in K0(X)
modulo numerical equivalence. Note that numerical walls for v ∈ K0(X) only
depend on the numerical class of v, while actual walls a priori depend on c1(v) ∈

Pic(X). The structure of walls in a slice is heavily restricted by Bertram’s nested
wall theorem. This was first observed for Picard rank 1 with D = 0, but the proof
immediately generalizes by replacing ch by chD everywhere.

Theorem 2.2 [Maciocia 2014]. Let v ∈ K0(X).

(1) Numerical walls for v can either be semicircles with center on the β-axis or
the unique vertical line given by β = µH,D(v). Moreover, the apex of each
semicircle lies on the hyperbola <Zβ,α(v)= 0.
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(2) Numerical walls for v are disjoint, and the semicircular walls on either side of
the vertical wall are nested.

(3) If W1 and W2 are two semicircular numerical walls left of the vertical wall
with centers (sW1

, 0) and (sW2
, 0), then W2 is nested inside W1 if and only if

sW1
< sW2

.

(4) Suppose 0→ F→ E→G→ 0 is an exact sequence destabilizing an object E
with ch(E)= v at a point (β, α) on a numerical wall W , in the sense that all
three objects have the same σβ,α-slope and this is an exact sequence in Aβ .
Then it is an exact sequence of objects in Aβ ′ with the same σβ ′,α′-slope for all
(β ′, α′) ∈W . That is, E is destabilized along the entire wall.

2C. Slope and discriminant. The explicit geometry of walls is frequently best
understood in terms of slopes and discriminants; the formulas presented here
previously appeared in [Coskun and Huizenga 2014] in the context of P2. When
the rank is nonzero, we define

1H,D =
1
2µ

2
H,D −

chD
2

H 2 chD
0
.

The Bogomolov inequality gives 1H,D(E)≥ 0 whenever E is an (H, D)-twisted
Gieseker semistable sheaf. Observe that 1H,D+βH = 1H,D for every β ∈ R. A
straightforward calculation shows that for vectors of nonzero rank the slope function
for the stability condition σβ,α in the (H, D)-slice is given by

νσβ,α =
(µH,D −β)

2
−α2
− 21H,D

(µH,D −β)
. (1)

Suppose v,w are two classes with positive rank, and let their slopes and discrim-
inants be µH,D,1H,D and µ′H,D,1

′

H,D , respectively. The numerical wall W in the
(H, D)-slice where v and w have the same slope is computed as follows.
• If µH,D = µ′H,D and 1H,D = 1′H,D, then v and w have the same slope

everywhere in the slice, so there is no numerical wall.

• If µH,D = µ
′

H,D and 1H,D 6=1
′

H,D , then W is the vertical wall β = µH,D .

• If µH,D 6= µ
′

H,D , then (1) implies W is the semicircle with center (sW , 0) and
radius ρW , where

sW =
1
2(µH,D +µ

′

H,D)−
1H,D −1

′

H,D

µH,D −µ
′

H,D
, (2)

ρ2
W = (sW −µH,D)

2
− 21H,D, (3)

provided that the expression defining ρ2
W is positive; if it is negative then the

wall is empty.
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Notice that if 1H,D(v) ≥ 0 then numerical walls for v left of the vertical wall
accumulate at the point (

µH,D(v)−
√

21H,D(v), 0
)

(4)

as their radii go to 0.

2D. Nef divisors and the positivity lemma. In this section, we describe the posi-
tivity lemma of Bayer and Macrì. Let σ = (Z ,A) be a stability condition on X ,
v∈ Knum(X) and S a proper algebraic space of finite type over C. Let E ∈Db(X×S)
be a flat family of σ -semistable objects of class v, i.e., for every C-point p ∈ S,
the derived restriction E|π−1

S ({p}) is σ -semistable of class v. Then Bayer and Macrì
define a numerical divisor class Dσ,E ∈ N 1(S) on the space S by assigning its
intersection with any projective integral curve C ⊂ S:

Dσ,E ·C = =
(
−

Z((pX )∗E|C×X )

Z(v)

)
.

The positivity lemma shows that this divisor inherits positivity properties from the
homomorphism Z , and classifies the curve classes orthogonal to the divisor. Recall
that two σ -semistable objects are S-equivalent with respect to σ if their sets of
Jordan–Hölder factors are the same.

Theorem 2.3 (positivity lemma [Bayer and Macrì 2014b, Lemma 3.3]). The divisor
Dσ,E ∈ N 1(S) is nef. Moreover, if C ⊂ S is a projective integral curve then
Dσ,E ·C = 0 if and only if two general objects parametrized by C are S-equivalent
with respect to σ .

Our primary use of the positivity lemma is to attempt to construct extremal
nef divisors on Hilbert schemes of points. Thus it is important to recover Hilbert
schemes of points as Bridgeland moduli spaces. Recall that a torsion-free coherent
sheaf E is (H, D)-twisted Gieseker semistable if for every F ⊂ E we have

χ
(
F ⊗OX (m H − D)

)
rk(F)

≤
χ
(
E ⊗OX (m H − D)

)
rk(E)

for all m� 0, where the Euler characteristic is computed formally via Riemann–
Roch; see [Matsuki and Wentworth 1997]. For any class v ∈ K0(X), there are
projective moduli spaces MH,D(v) of S-equivalence classes of (H, D)-twisted
Gieseker semistable sheaves with class v. If v = (1, 0,−n) is the Chern character
of an ideal sheaf of n points then MH,D(v)= X [n]. Note that if the irregularity of X
is nonzero, then it is crucial to fix the determinant.

Fix an (H, D)-slice in the stability manifold, and fix a vector v ∈ K0(X) with
positive rank. If β lies to the left of the vertical wall β = µH,D(v) for v, then for
α� 0 the moduli space coincides with a twisted Gieseker moduli space.
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Proposition 2.4 (the large volume limit [Bridgeland 2008; Maciocia 2014]). Fix
divisors (H, D) giving a slice in Stab(X). Let v ∈ K0(X) be a vector with positive
rank, and let β ∈ R be such that µH,D(v) > β. If E ∈Aβ has ch(E)= v then E is
σβ,α-semistable for all α� 0 if and only if E is an

(
H, D− 1

2 K X
)
-twisted Gieseker

semistable sheaf.
Moreover, in the quadrant of the (H, D)-slice left of the vertical wall there is a

largest semicircular wall for v, called the Gieseker wall. For all (β, α) between
this wall and the vertical wall, the moduli space Mσβ,α (v) coincides with the moduli
space MH,D−K X/2(v) of

(
H, D− 1

2 K X
)
-twisted Gieseker semistable sheaves.

We use these results as follows. Let v = (1, 0,−n) ∈ K0(X) be the vector for
the Hilbert scheme X [n], and let σ+ be a stability condition in the (H, D)-slice
lying above the Gieseker wall, so that Mσ+(v)

∼= X [n]. Let E/(X × X [n]) be the
universal ideal sheaf, and let σ0 be a stability condition on the Gieseker wall. By
the definition of the Gieseker wall, E is a family of σ0-semistable objects, so there
is an induced nef divisor Dσ0,E on X [n]. Furthermore, curves orthogonal to Dσ0,E
are understood in terms of destabilizing sequences along the wall, so it is possible
to test for extremality.

3. Gieseker walls and the nef cone

Fix an ample divisor H ∈ Pic(X) with H 2
= d and an antieffective divisor D. In

this section we study the nef divisor arising from the Gieseker wall (i.e., the largest
wall where some ideal sheaf is destabilized) in the slice of the stability manifold
given by the pair (H, D). We first compute the Gieseker wall, and then investigate
when the corresponding nef divisor is in fact extremal.

3A. Bounding higher rank walls. The main difficulty in computing extremal rays
of the nef cone is to show that a destabilizing subobject along the Gieseker wall
is a line bundle, and not some higher rank sheaf. We first prove a lemma which
generalizes Proposition 8.3 of [Coskun and Huizenga 2016] from X = P2 to an
arbitrary surface. We prove the result in slightly more generality than we will need
here as we expect it to be useful in future work.

Lemma 3.1. Let σ0 be a stability condition in the (H, D)-slice, and suppose

0→ F→ E→ G→ 0

is an exact sequence of σ0-semistable objects of the same σ0-slope, where E is
an (H, D)-twisted Gieseker semistable torsion-free sheaf. If the map F → E of
sheaves is not injective, then the radius ρW of the wall W defined by this sequence
satisfies

ρ2
W ≤

(min{rk(F)−1, rk(E)})2

2 rk(F)
1H,D(E).
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Proof. The proof is similar to the proof in [Coskun and Huizenga 2016] given in the
case of P2; we present it for completeness. The object F is a torsion-free sheaf by
the standard cohomology sequence and the fact that the heart of the t-structure in the
slice we are working in consists of objects which only have nonzero cohomology
sheaves in degrees 0 and −1. The exact sequence along W gives an exact sequence

0→ K → F→ E→ C→ 0

of sheaves of ranks k, f, e, c, respectively. By assumption, k, f, e > 0. Let (sW , 0)
be the center of W . As F is in the category Tβ whenever (β, α) is on W , we find
that µH,D(F)≥ sW + ρW , so

d f (sW + ρW )≤ d f µH,D(F)= chD
1 (F)·H = (chD

1 (K )+ chD
1 (E)− chD

1 (C))·H

= dkµH,D(K )+ deµH,D(E)− chD
1 (C)·H.

Similarly, K ∈ Fβ along W , so µH,D(K )≤ sW − ρW and

d f (sW + ρW )≤ dk(sW − ρW )+ deµH,D(E)− chD
1 (C)·H,

which gives

d(k+ f )ρW ≤ d(k− f )sW + deµH,D(E)− chD
1 (C)·H. (5)

We now wish to eliminate the term chD
1 (C)·H in inequality (5). If C is either 0 or

torsion, then chD
1 (C)·H ≥ 0 and −e = k− f , and we deduce

(k+ f )ρW ≤ (k− f )(sW −µH,D(E)). (6)

Suppose instead that C is not torsion. Since C is a quotient of the semistable sheaf E ,
we have µH,D(C) ≥ µH,D(E), so chD

1 (C) ·H = dcµH,D(C) ≥ dcµH,D(E). As
k− f = c− e, we find that inequality (6) also holds in this case.

Both sides of inequality (6) are positive, so squaring both sides gives

(k+ f )2ρ2
W ≤ (k− f )2(sW −µH,D(E))

2.

Formula (3) for ρ2
W shows this is equivalent to

(k+ f )2ρ2
W ≤ (k− f )2(ρ2

W + 21H,D(E)),

from which we obtain

ρ2
W ≤

(k− f )2

2k f
1H,D(E).

Since k = f − e+ c, we see that k ≥max{1, f − e}. By taking derivatives in k, we
see that (k− f )2/(2k f ) is decreasing for k+ f > 0, and so the maximum possible
value of the right-hand side must occur when k =max{1, f − e}. The denominator
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will be at least 2 f in this case, and the numerator is min{( f − 1)2, e2
}. The result

follows. �

For our present work we will only need the next consequence of Lemma 3.1,
which follows immediately from computing 1H,D(IZ ).

Corollary 3.2. With the hypotheses of Lemma 3.1, if E is an ideal sheaf IZ ∈ X [n]

and F has rank at least 2, then the radius of the corresponding wall satisfies

ρ2
W ≤

2nd + (H ·D)2− d D2

8d2 := %H,D,n.

The number %H,D,n therefore bounds the squares of the radii of higher rank walls
for X [n].

3B. Rank-1 walls and critical divisors. In the cases where we compute the Gieseker
wall, the ideal sheaf that is destabilized along the wall will be destabilized by a
rank-1 subobject. We first compute the numerical walls given by rank-1 subobjects.

Lemma 3.3. Consider a rank-1 torsion-free sheaf F = IZ ′(−L), where Z ′ is a
zero-dimensional scheme of length w and L is an effective divisor. In the (H, D)-
slice, the numerical wall W for X [n] where F has the same slope as an ideal IZ of
n points has center (sW , 0) given by

sW =−
2(n−w)+ L2

+ 2(D · L)
2(H · L)

.

Proof. This is an immediate consequence of (2) for the center of a wall. �

Recalling that walls for X [n] left of the vertical wall get larger as their centers
decrease, we deduce the following consequence.

Lemma 3.4. If the Gieseker wall in the (H, D)-slice is given by a rank-1 subobject,
then it is a line bundle OX (−L) for some effective divisor L.

Proof. Suppose some IZ ∈ X [n] is destabilized along the Gieseker wall W by a
sheaf of the form IZ ′(−L), where Z ′ is a nonempty zero-dimensional scheme and
L is effective. By Lemma 3.3, the numerical wall W ′ given by OX (−L) is strictly
larger than W . Since OX (−L) has the same µH,D-slope as IZ ′(−L), which is in
the categories along W , we find that OX (−L) is in at least some of the categories
along W ′. But then W ′ is an actual wall, since any ideal sheaf IZ where Z lies
on a curve C ∈ |L| is destabilized along it. This contradicts the fact that W is the
Gieseker wall. �

Less trivially, there is a further minimality condition automatically satisfied by a
line bundle OX (−L) which gives the Gieseker wall. We define the set of critical
effective divisors with respect to H and D by

CrDiv(H, D)= {−D} ∪ {L ∈ Pic(X) effective : H · L < H ·(−D)}.
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By [Hartshorne 1977, Exercise V.1.11], the set CrDiv(H, D)/∼ of critical divisors
modulo numerical equivalence is finite. Therefore, the set of numerical walls for
X [n] given by line bundles OX (−L) with L ∈ CrDiv(H, D) is also finite. Note that
the inequality H ·L < H ·(−D) is equivalent to the inequality µH,D(OX (−L)) > 0.
The next proposition demonstrates the importance of critical divisors.

Proposition 3.5. Assume 2n > D2, and suppose the subobject giving the Gieseker
wall for X [n] in the (H, D)-slice is a line bundle. Then the Gieseker wall is computed
by OX (−L), where L ∈ CrDiv(H, D) is chosen so that the numerical wall given by
OX (−L) is as large as possible.

Proof. First, consider the numerical wall W given by OX (D). By Lemma 3.3, the
center (sW , 0) has

sW =
2n− D2

2(H ·D)
< 0, (7)

since 2n > D2 and D is antieffective. Since µH,D(OX (D))=1H,D(OX (D))= 0,
formula (3) for the radius of W gives ρ2

W = s2
W . In particular, W is nonempty, and

OX (D) lies in at least some of the categories along W . Since D is antieffective,
there are exact sequences of the form

0→OX (D)→ IZ → IZ⊂C → 0,

where C ∈ |−D| and Z ⊂ C is a collection of n points. If no actual wall is larger
than W , it follows that W is an actual wall and it is the Gieseker wall.

Suppose the Gieseker wall is larger than W and computed by a line bundle
OX (−L) with L effective. Since W passes through the origin in the (β, α)-
plane, OX (−L) must lie in the category T0. Therefore µH,D(OX (−L)) > 0, and
L ∈ CrDiv(H, D).

Conversely, suppose L ∈ CrDiv(H, D) is chosen to maximize the wall W ′

given by OX (−L). Then no actual wall is larger than W ′. Since sW < 0 and
µH,D(OX (−L)) ≥ 0, we find that OX (−L) is in at least some of the categories
along W , and hence in at least some of the categories along W ′. We conclude that
W ′ is an actual wall, and therefore that it is the Gieseker wall. �

Combining Corollary 3.2 and Proposition 3.5 gives our primary tool to compute
the Gieseker wall.

Theorem 3.6. Assume 2n > D2, and let L ∈ CrDiv(H, D) be a critical divisor
such that the wall for X [n] given by OX (−L) is as large as possible. If this wall has
radius ρ satisfying ρ2

≥ %H,D,n , then it is the Gieseker wall.
Conversely, if the Gieseker wall has radius satisfying ρ2

≥ %H,D,n then it is
obtained in this way.
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While the theorem is our sharpest result, it is useful to lose some generality to
get a more explicit version. Since −D ∈ CrDiv(H, D), if the wall given by OX (D)
satisfies ρ2

≥ %H,D,n then the Gieseker wall is computed by Theorem 3.6. This
allows us to compute the Gieseker wall so long as n is large enough, depending
only on the intersection numbers of H and D.

Corollary 3.7. Let

ηH,D :=
(H ·D)2+ d D2

2d
.

If n ≥ ηH,D then the Gieseker wall is the largest wall given by a critical divisor.
Furthermore, if n > ηH,D then every IZ destabilized along the Gieseker wall fits

into an exact sequence

0→OX (−C)→ IZ → IZ⊂C → 0

for some curve C ∈ |L|, where L is a critical divisor computing the Gieseker wall.
If the critical divisor computing the Gieseker wall is unique, then OX (−C) and
IZ⊂C are the Jordan–Hölder factors of any IZ destabilized along the Gieseker wall.

Proof. Observe that the inequality n ≥ ηH,D automatically implies the inequality
2n > D2 needed to apply Theorem 3.6.

Let W be the wall for X [n] in the (H, D)-slice corresponding to OX (D). The
center (sW , 0) of W was computed in (7), and ρ2

W = s2
W . We find that ρ2

W ≥ %H,D,n
holds when n ≥ ηH,D , with strict inequality when n > ηH,D .

When n > ηH,D there can be no higher-rank destabilizing subobject of an IZ

destabilized along the Gieseker wall, so there is an exact sequence as claimed.
Furthermore, if there is only one critical divisor computing the wall, then there is a
unique destabilizing subobject along the wall, so the Jordan–Hölder filtration has
length two. �

3C. Classes of divisors. In this subsection we give an elementary computation
of the class of the divisor corresponding to a wall in a given slice of the stability
manifold. Similar results have been obtained by Liu [2015], but the result is critical
to our discussion so we include the proof. See [Bayer and Macrì 2014b, §4] for
more details on the definitions and results we use here.

Throughout this subsection, let v ∈ K0(X) be a vector such that the moduli
space MH,D(v) of (H, D)-Gieseker semistable sheaves admits a (quasi-)universal
family E which is unique up to equivalence (Hilbert schemes X [n] are examples
of such spaces). We also let σ = (Z ,A) be a stability condition in the closure
of the Gieseker chamber for v in the (H, D)-slice. Then there is a well-defined
corresponding divisor Dσ ∈ N 1(MH,D−K X/2(v)) which is independent of the choice
of E .
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Let (v,w)=χ(v·w) be the Euler pairing on Knum(X)R, and write v⊥⊂Knum(X)R
for the orthogonal complement with respect to this pairing. The correspondence
between stability conditions and divisor classes is understood in terms of the
Donaldson homomorphism

λ : v⊥→ N 1(MH,D−K X/2(v)).

Since the Euler pairing is nondegenerate, there is a unique vector wσ ∈ v⊥ such that

=

(
−

Z(w′)
Z(v)

)
= (w′,wσ ),

for all w′ ∈ Knum(X)R. Bayer and Macrì show that Dσ = λ(wσ ). In what follows,
we write vectors in Knum(X)R as (ch0, ch1, ch2).

Proposition 3.8. With the above assumptions, suppose σ lies on a numerical
wall W in the (H, D)-slice with center (sW , 0). Then wσ is a multiple of(

−1,− 1
2 K X + sW H + D,m

)
∈ v⊥,

where m is determined by the requirement wσ ∈ v⊥.
In particular, if X has irregularity 0 and v = (1, 0,−n) is the vector for X [n],

then the divisor Dσ is a multiple of

1
2 K [n]X − sW H [n]− D[n]− 1

2 B.

Remark 3.9. Suppose X has irregularity 0. Up to scale, the divisors induced by
stability conditions in the (H, D)-slice give a ray in N 1(X [n]) emanating from the
class H [n] ∈ Nef(X)⊂ Nef(X [n]). The particular ray is determined by the choice
of the twisting divisor D.

Proof of Proposition 3.8. Since σ is in the (H, D)-slice, write σ = σβ,α and
(Z ,A)= (Zβ,α,Aβ) for short. Put z=−1/Z(v)= u+ iv. We evaluate the identity

=(zZ(w′))= (w′,wσ )

defining wσ on various classes w′ to compute wσ .
Write the Chern character wσ = (r,C, d). Then

−v = =(zZ(0, 0, 1))= ((0, 0, 1),wσ )= r,

so r =−v. Next, for any curve class C ′,

(u+βv)(C ′ ·H)+ v(C ′ ·D)= =(zZ(0,C ′, 0))

= ((0,C ′, 0),wσ )= χ(0,−vC ′,C ′ ·C).
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By Riemann–Roch and adjunction,

χ(0,−vC ′,C ′ ·C)=−v
((
−

1
v
(C ′ ·C)+ 1

2
(C ′)2

)
−

1
2
(C ′)2− 1

2
(C ′ ·K X )

)
= C ′ ·C + v

2
(K X ·C ′),

so
C ′ ·C = (u+βv)(C ′ ·H)+ v(C ′ ·D)− v

2
(C ′ ·K X )

for every class C ′. Thus for any class C ′ with C ′ · H = 0, we have C ′ · C =
v(C ′ ·D)− 1

2v(C
′
·K X ); it follows that there is some number a with

C =−v
2

K X + aH + vD.

Considering C = H shows that a = u+βv. Therefore,

wσ =

(
−v,−

v

2
K X + (u+βv)H,m

)
,

where m is chosen such that wσ ∈ v⊥.
Finally, a straightforward calculation shows that

u
v
+β = νσ (v)+β = sW

holds for all (β, α) along W . The follow-up statement for Hilbert schemes follows
by computing the Donaldson homomorphism. �

3D. Dual curves. Suppose Dσ0 is the nef divisor corresponding to the Gieseker
wall for X [n] in the (H, D)-slice. Showing that Dσ0 is an extremal nef divisor
amounts to showing that there is some curve γ ⊂ X [n] with Dσ0 ·γ = 0. By the
positivity lemma, this happens when γ parametrizes objects of X [n] which are
generically S-equivalent with respect to σ0.

In every case where we computed the Gieseker wall, the wall can be given by a
destabilizing subobject which is a line bundle OX (−C) with C an effective curve.
If Z is a length-n subscheme of C , then there is a destabilizing sequence

0→OX (−C)→ IZ → IZ⊂C → 0.

If ext1(IZ⊂C ,OX (−C))≥ 2, then curves of objects of X [n] which are generically
S-equivalent with respect to σ0 are obtained by varying the extension class. We
obtain the following general result.

Lemma 3.10. Suppose the Gieseker wall for X [n] in the (H, D)-slice is computed
by the subobject OX (−C), where C is an effective curve class of arithmetic genus
pa(C). If n ≥ pa(C)+ 1, then the corresponding nef divisor Dσ0 is extremal.



922 B. Bolognese, J. Huizenga, Y. Lin, E. Riedl, B. Schmidt, M. Woolf and X. Zhao

Proof. Bilinearity of the Euler characteristic χ(·,·) and Serre duality show that

χ(IZ⊂C ,OX (−C))= pa(C)− 1− n.

Therefore, once n ≥ pa(C)+ 1 we will have χ(IZ⊂C ,OX (−C))≤−2, and curves
orthogonal to Dσ0 can be constructed by varying the extension class. �

Combining Lemma 3.10 with our previous results on the computation of the
Gieseker wall gives us the following asymptotic result.

Theorem 3.11. Fix a slice (H, D) for Stab(X). There is some L ∈ CrDiv(H, D)
such that for all n� 0 the Gieseker wall is computed by OX (−L). Furthermore,
the corresponding nef divisor is extremal.

Proof. Recall that the set CrDiv(H, D)/∼ of critical divisors modulo numerical
equivalence is finite; say {L1, . . . , Lm} is a set of representatives. For 1≤ i ≤ m,
let (si (n), 0) be the center of the wall OX (−L i ) for X [n]. Then si (n) is a linear
function of n by Lemma 3.3, so there is some i with si (n)≤ s j (n) for all 1≤ j ≤m
and n� 0. Then by Corollary 3.7 the Gieseker wall is given by OX (−L i ). Again
increasing n if necessary, the divisor Dσ0 corresponding to the Gieseker wall is
extremal by Lemma 3.10. �

Remark 3.12. The requirement n ≥ pa(C)+ 1 in Lemma 3.10 is not typically
sharp. For example, if |C | contains a smooth curve we may as well assume C is
smooth. Then IZ⊂C is a line bundle on C , and

Ext1(IZ⊂C ,OX (−C))∼= H 0(OC(Z)).

Thus a g1
n on C gives a curve which is orthogonal to Dσ0 . The following fact from

Brill–Noether theory therefore provides curves on X [n] for smaller values on n.

Lemma 3.13 [Arbarello et al. 1985]. If C is smooth of genus g, then it has a g1
n for

any n ≥ d(g+ 2)/2e.

For specific surfaces, some curves in |C | may have highly special linear series
giving better constructions of curves on X [n].

4. Picard rank 1 examples

For the rest of the paper, we will apply the methods of Section 3 to compute
Nef(X [n]) for several interesting surfaces X . These applications form the heart of
the paper.

4A. Picard rank 1 in general. Suppose Pic(X)∼= ZH for some ample divisor H .
If we choose D =−aH , where a > 0 is the smallest positive integer such that aH
is effective, then CrDiv(H, D)= {−D}.



Nef cones of Hilbert schemes of points on surfaces 923

Lemma 4.1. Suppose Pic(X) = ZH and aH is the minimal effective class. If
n ≥ (aH)2 = a2d , then the Gieseker wall for X [n] is the wall given by OX (−aH).

Proof. Apply Corollary 3.7 with D =−aH . �

Note that when n>a2d , additional information about the Jordan–Hölder filtration
can be obtained as in Corollary 3.7. We use formula (7) to see that the wall W
given by OX (−aH) has center (sW , 0) with

sW =
a
2
−

n
ad
.

Combining Lemmas 4.1 and 3.10 with Proposition 3.8, we have proved the following
general result.

Theorem 4.2. Suppose Pic X ∼= ZH and aH is the minimal effective class. If
n ≥ a2d then the divisor

1
2

K [n]X +

(a
2
+

n
ad

)
H [n]− 1

2
B (8)

is nef. Additionally, if n ≥ pa(aH)+ 1 then this divisor is extremal, so Nef(X [n]) is
spanned by this divisor and H [n]. An orthogonal curve is given by letting n points
move in a g1

n on a curve of class aH.

Remark 4.3. If Pic(X)=ZH and H is already effective, then a different argument
computes the Gieseker wall so long as 2n > d , improving the bound in Lemma 4.1.
However, fine information about the Jordan–Hölder filtration of a destabilized ideal
sheaf is not obtained. In fact, if n ≤ d then the destabilizing behavior can be
complicated. For instance, a scheme Z contained in the complete intersection of
two curves of class H will admit an interesting map from OX (−H)⊕2.

Proposition 4.4. Suppose Pic X = ZH and H is effective. If 2n > d, then the
Gieseker wall for X [n] in the (H,−H)-slice is the wall given by OX (−H). Thus
the divisor (8) with a = 1 is nef.

Proof. Let W be the numerical wall given by OX (−H). If no actual wall is larger
than W then, by the proof of Proposition 3.5, W is an actual wall, and hence the
Gieseker wall. If there is a destabilizing sequence

0→ F→ IZ → G→ 0

giving a wall W ′ larger than W , then F,G ∈A0 since W passes through the origin
in the (β, α)-plane. Fix α > 0 such that (0, α) lies on W ′. We have

H ·ch−H
1 (F)= =Z0,α(F)≥ 0 and H ·ch−H

1 (G)= =Z0,α(G)≥ 0.

Since d is the smallest intersection number of H with an integral divisor and

d = =Z0,α(IZ )= =Z0,α(F)+=Z0,α(G),
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we conclude that either =Z0,α(F) = 0 or =Z0,α(G) = 0. Thus either F or G has
infinite σ0,α-slope, contradicting the fact that (0, α) is on W ′. �

We now further relax the lower bound on n needed to guarantee the existence of
orthogonal curve classes in special cases.

4B. Surfaces in P3. By the Noether–Lefschetz theorem, a very general surface
X ⊂P3 of degree d ≥ 4 is smooth of Picard rank 1 and irregularity 0. Let H be the
hyperplane class and put D =−H . We have K X = (d − 4)H , so Proposition 4.4
shows that if 2n > d then the divisor(d

2
−

3
2
+

n
d

)
H [n]− 1

2
B

is nef. If C is any smooth hyperplane section then the projection from a point on C
gives a map of degree d − 1 to P1, so C carries a g1

n for any n ≥ d − 1. We have
proved the following result.

Proposition 4.5. Let X be a smooth degree-d hypersurface in P3 with Picard rank 1.
The divisor (d

2
−

3
2
+

n
d

)
H [n]− 1

2
B

on X [n] is nef if 2n > d. If n ≥ d − 1, then it is extremal, and together with H [n] it
spans Nef(X [n]).

Remark 4.6. The behavior of Nef(X [n]) for smaller n in Proposition 4.5 is more
mysterious. Even the cases d = 5 and n = 2, 3 are interesting.

Remark 4.7. The case d = 4 of Proposition 4.5 recovers a special case of [Bayer
and Macrì 2014b, Proposition 10.3] for K3 surfaces. The case d = 1 recovers the
computation of the nef cone of P2[n] [Arcara et al. 2013].

4C. Branched covers of P2. Next we consider cyclic branched covers of P2. Let
X be a very general cyclic degree-d cover of P2, branched along a degree-e curve.
Note that this means that d necessarily divides e. We can view these covers as
hypersurfaces in a weighted projective space, which gives us a Noether–Lefschetz
type theorem: Pic X = ZH , generated by the pullback H of the hyperplane class
on P2, provided that X has positive geometric genus. The canonical bundle of X is

K X =−3H + e
(d−1

d

)
H =

(e(d−1)
d
− 3

)
H.

Then X will have positive geometric genus if e ≥ 3d/(d − 1).
Setting D =−H , we see that if 2n > d then the divisor class(e(d−1)

2d
− 1+ n

d

)
H [n]− 1

2
B
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is nef by Proposition 4.4. The preimage of a line is a curve of class H , and it carries
a g1

d given by the map to P2. Therefore, the above divisor is extremal once n ≥ d .

Proposition 4.8. Let X be a very general degree-d cyclic cover of P2 ramified
along a degree-e curve, where d divides e and e ≥ 3d/(d − 1). The divisor(e(d−1)

2d
− 1+ n

d

)
H [n]− 1

2
B

on X [n] is nef if 2n > d. For n ≥ d , this class is extremal, and together with H [n] it
spans Nef(X [n]).

5. Del Pezzo surfaces of degree 1

Bertram and Coskun [2013] studied the birational geometry of X [n] when X is
a minimal rational surface or a del Pezzo surface. In particular, they completely
computed the nef cones of all these Hilbert schemes except in the case of a del Pezzo
surface of degree 1. The constructions they gave were classical: they produced nef
divisors from k-very ample line bundles, and dual curves by letting collections of
points move in linear pencils on special curves.

In this section, we will compute the nef cone of X [n], where X is a smooth del
Pezzo surface of degree 1. Then X ∼= Blp1,...,p8 P2 for distinct points p1, . . . , p8

with the property that−K X is ample (see [Manin 1974, Theorem 24.4] or [Beauville
1996, Exercise V.21.1]). This application exhibits the full strength of the methods
of Section 3.

5A. Notation and statement of results. Let H be the class of a line and let the 8
exceptional divisors over the pi be E1, . . . , E8, so Pic(X)∼=ZH⊕ZE1⊕· · ·⊕ZE8

and K X =−3H +
∑

i Ei . Recall that a (−1)-curve on X is a smooth rational curve
of self-intersection −1. It is simplest to describe the dual cone of effective curves.
We recommend reviewing Section 2A for notation.

Theorem 5.1. The cone of curves NE(X [n]) is spanned by all the classes E[n]
given by (−1)-curves E ⊂ X , the class of a curve contracted by the Hilbert–Chow
morphism, and the class F[n], where F ∈ |−K X | is an anticanonical curve.

The 240 (−1)-curves E on X are well-known. The possible classes are

(0; 1), (1; 12), (2; 15), (3; 2, 16), (4; 23, 15), (5; 26, 12), (6; 3, 27),

where, e.g., (4; 23, 15) denotes any class equivalent to

4H − 2E1− 2E2− 2E3− E4− E5− E6− E7− E8

under the natural action of S8 on Pic(X). The cone of curves NE(X) is spanned by
the classes of the (−1)-curves. The Weyl group action on Pic(X) acts transitively
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on (−1)-curve classes. It also acts transitively on systems of 8 pairwise disjoint
(−1)-curves; dually, it acts transitively on the extremal rays of the nef cone Nef(X).
We refer the reader to [Manin 1974, §26] for details.

Consider the divisor class (n− 1)(−K X )
[n]
−

1
2 B. If E is any (−1)-curve on X ,

then −K X ·E = 1, so

E[n] ·
(
(n− 1)(−K X )

[n]
−

1
2 B
)
= (n− 1)(−K X ·E)− (n− 1)= 0.

Let 3 ⊂ N 1(X [n]) be the cone spanned by divisors which are nonnegative on all
classes E[n] and curves contracted by the Hilbert–Chow morphism. It follows that
3⊃ Nef(X [n]) is spanned by Nef(X)⊂ Nef(X [n]) and the single additional class
(n− 1)(−K X )

[n]
−

1
2 B.

However, Nef(X [n])⊂3 is a proper subcone. Indeed, if F ∈ |−K X | is an anti-
canonical curve then by Riemann–Hurwitz F[n]·B= 2n, so F[n]·

(
(n−1)(−K X )

[n]
−

1
2 B
)
=−1. Let 3′ ⊂3 be the subcone of F[n]-nonnegative divisors. Taking duals,

we see that Theorem 5.1 is equivalent to the next result.

Theorem 5.2. The nef cone of X [n] is 3′.

To prove Theorem 5.2, we must show that all the extremal rays of 3′ are actually
nef. Suppose N ∈Nef(X) spans an extremal ray of Nef(X). Then the cone spanned
by N [n] and (n−1)(−K X )

[n]
−

1
2 B contains a single ray of F[n]-orthogonal divisors,

and this ray is an extremal ray of 3′. Conversely, due to our description of the
cone3, the extremal rays of3′ which are not in Nef(X) are all obtained in this way.

5B. Choosing a slice. More concretely, making use of the Weyl group action we
may as well assume our extremal nef class N ∈Nef(X) is H−E1. The corresponding
F[n]-orthogonal ray described in the previous paragraph is spanned by

(n− 1)(−K X )
[n]
+

1
2(H

[n]
− E [n]1 )− 1

2 B; (9)

our job is to show that this class is nef. We will prove this by exhibiting this divisor
as the nef divisor on X [n] corresponding to the Gieseker wall for a suitable choice
of slice of Stab(X).

To apply the methods of Section 3, it is convenient to choose our polarization to be

P =
(
n− 3

2

)
(−K X )+

1
2(H − E1)

(which depends on n!) and our antieffective class to be D = K X . Observe that P is
ample since it is the sum of an ample and a nef class. If we show that the Gieseker
wall W in the (P, K X )-slice has center (sW , 0) = (−1, 0), then Proposition 3.8
implies the divisor class (9) is nef.
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5C. Critical divisors. Our plan is to apply Corollary 3.7 to compute the Gieseker
wall in the (P, K X )-slice. We must first identify the set CrDiv(P, K X ) of critical
divisors.

Lemma 5.3. If n>2, then the set CrDiv(P, K X ) consists of−K X and the classes L
of (−1)-curves on X with L ·(H − E1)≤ 1.

When n = 2, the above classes are still critical. Additionally, the class H − E1 is
critical, as is any sum of two (−1)-curves L1, L2 with L i ·(H − E1)= 0.

Proof. Write 2P = A+ N , where A = (2n− 3)(−K X ) is ample and N = H − E1

is nef. Then A · (−K X ) = 2n− 3 and N · (−K X ) = 2, so an effective curve class
L 6= −K X is in CrDiv(P, K X ) if and only if L ·(2P) < 2n− 1.

First suppose n> 2, and let L ∈CrDiv(P, K X ). If L·(−K X )≥ 2, then L·(2P)≥
4n− 6> 2n− 1, so L is not critical. Therefore, L ·(−K X )= 1. Thus any curve of
class L is reduced and irreducible. By the Hodge index theorem,

L2
= L2
·(−K X )

2
≤ (L ·(−K X ))

2
= 1,

with equality if and only if L =−K X . If the inequality is strict, then by adjunction
we must have L2

=−1 and L is a (−1)-curve. Since L ·(2P) < 2n− 1, we further
have L ·N ≤ 1.

Suppose instead that n = 2 and L ∈ CrDiv(P, K X ). The cases L · (2P) ≤ 1
and L ·(2P)≥ 3 follow as in the previous case. The only other possibility is that
L · (−K X ) = 2 and L ·N = 0. Since L ·N = 0, the curve L is a sum of curves in
fibers of the projection X→ P1 given by |N |. This easily implies the result. �

The next application of Corollary 3.7 completes the proof of Theorems 5.1
and 5.2.

Proposition 5.4. The Gieseker wall for X [n] in the (P, K X )-slice has center (−1, 0),
and is given by the subobject OX (K X ). It coincides with the wall given by OX (−L),
where L is any (−1)-curve with L ·(H − E1)= 0.

Proof. By (7), the center of the wall for OX (K X ) is (sW , 0) with

sW =
2n− K 2

X

(2P)·K X
=−1.

A straightforward computation shows ηP,K X
< n for all n ≥ 2. Therefore, by

Corollary 3.7, the Gieseker wall is computed by a critical divisor.
We only need to verify that no other critical divisor gives a larger wall. Let

L ∈ CrDiv(P, K X ). By Lemma 3.3, the center of the wall given by OX (−L) lies
at the point (sL , 0), where

sL =−
2n+ L2

+ 2(K X · L)
(2P)· L

.
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If L is a (−1)-curve, then

sL =−
2n− 3
(2P)· L

=−
2n− 3

2n− 3+ L ·(H − E1)
≥−1,

with equality if and only if L ·(H − E1)= 0. This proves the result if n > 2.
To complete the proof when n = 2, we only need to consider the additional

critical classes mentioned in Lemma 5.3. For every such L ∈ CrDiv(P, K X ) we
have L ·K X =−2 and L2

≤ 0. Thus sL ≥ 0 for every such divisor. �
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