
Algebra &
Number
Theory

msp

Volume 10

2016
No. 4

Interpolation for restricted tangent bundles of
general curves

Eric Larson



msp
ALGEBRA AND NUMBER THEORY 10:4 (2016)

dx.doi.org/10.2140/ant.2016.10.931

Interpolation for restricted tangent bundles
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Eric Larson

Let q1, q2, . . . , qn ∈Pr be a general collection of points, and (C, p1, p2, . . . , pn)

a general marked curve of genus g. We determine when there exists a nondegener-
ate degree-d map f :C→Pr such that f (pi )= qi for all i . This is a consequence
of our main theorem, which states that the restricted tangent bundle f ∗TPr of a
general curve of genus g, equipped with a general degree-d map f to Pr, satisfies
the property of interpolation, i.e., that for a general effective divisor D of any
degree on C , either H 0( f ∗TPr (−D)) = 0 or H 1( f ∗TPr (−D)) = 0. We also
prove an analogous theorem for the twist f ∗TPr (−1).

1. Introduction

The goal of this paper is to answer the following basic question about incidence
conditions for curves.

Question 1.1. Fix a general marked curve (C, p1, p2, . . . , pn) of genus g, and n
general points q1, q2, . . . , qn ∈Pr . When does there exist a nondegenerate degree-d
map f : C→ Pr so that f (pi )= qi for all i?

(An analogous question when (C, p1, p2, . . . , pn) is allowed to vary in mod-
uli was recently answered in [Atanasov et al. 2016] for curves with nonspecial
hyperplane section.)

In order for there to exist any nondegenerate degree-d maps f : C → Pr, the
Brill–Noether theorem [Griffiths and Harris 1980] states that the Brill–Noether
number

ρ(d, g, r) := (r + 1)d − rg− r(r + 1)

must be nonnegative; so we assume this is the case for the remainder of the paper.
In this case, writing Mapd(C,Pr ) for the space of nondegenerate degree-d maps
C→ Pr, the Brill–Noether theorem additionally gives

dim Mapd(C,Pr )= ρ(d, g, r)+ dim Aut Pr
= (r + 1)d − rg+ r.
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Thus, the answer to our main question can only be positive when

(r + 1)d − rg+ r − rn ≥ 0. (1)

Our main theorem will imply (as an immediate consequence) that, conversely, the
answer to our main question is positive when the above inequality holds. To state
the main theorem, we first need to make a definition.

Definition 1.2. We say that a vector bundle E on a curve C satisfies interpolation
if it is nonspecial (i.e., H 1(E) = 0), and for a general effective divisor D of any
degree d ≥ 0, either

H 0(E(−D))= 0 or H 1(E(−D))= 0.

For C reducible, we require that the above holds for an effective divisor D which
is general in some (not every) component of Symd C (for each d ≥ 0).

With this notation, we state our main result.

Theorem 1.3. Let C be a general curve of genus g, equipped with a general
nondegenerate map f : C→ Pr of degree d. Then f ∗TPr satisfies interpolation.

To see that this theorem implies a positive answer to the main question subject
to the inequality (1), we first note that by basic deformation theory, the map
Mapd(C,Pr )→ (Pr )n , defined via f 7→ ( f (pi ))

n
i=1, is smooth at f provided that

H 1( f ∗TPr (−p1−· · ·−pn))=0. Note that the left-hand side of (1) equals χ( f ∗TPr ).
Consequently, it suffices to show, for C a general curve of genus g, equipped with a
general nondegenerate map f :C→Pr, that H 1( f ∗TPr (−p1−· · ·− pn)) vanishes
whenever χ( f ∗TPr (−p1 − · · · − pn)) ≥ 0. But this is immediate provided that
f ∗TPr satisfies interpolation. We have thus shown the following corollary of our
main theorem.

Corollary 1.4. Fix a general marked curve (C, p1, p2, . . . , pn) of genus g, and
n general points q1, q2, . . . , qn ∈ Pr. There exists a nondegenerate degree-d map
f : C→ Pr such that f (pi )= qi for all i if and only if ρ(d, g, r)≥ 0 and

(r + 1)d − rg+ r − rn ≥ 0.

Additionally, we prove a similar theorem for the twist of the tangent bundle;
this answers a similar question, where d of the n points are constrained to lie on a
hyperplane.

Theorem 1.5. Let C be a general curve of genus g, equipped with a general
nondegenerate map f :C→Pr of degree d. Then f ∗TPr (−1) satisfies interpolation
if and only if

d − rg− 1≥ 0.
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To see the “only if” direction, first note that since C is nondegenerate, the restric-
tion map H 0(TPr (−1))→ H 0( f ∗TPr (−1)) is injective, so dim H 0( f ∗TPr (−1))≥
dim H 0(TPr (−1))=r+1. If d−rg−1<0, then χ( f ∗TPr (−1))=d−rg+r<r+1;
consequently H 1( f ∗TPr (−1)) 6=0, so f ∗TPr (−1) does not satisfy interpolation. For
the remainder of the paper, we will therefore assume d−rg−1≥ 0 in Theorem 1.5.
As before, Theorem 1.5 gives the “if” direction of the next result.

Corollary 1.6. Fix a general marked curve (C, p1, p2, . . . , pn) of genus g, and
n points q1, q2, . . . , qn ∈ Pr, which are general subject to the constraint that
q1, q2, . . . , qd lie on a hyperplane H ( for d ≤ n). There exists a nondegenerate
degree-d map f :C→Pr such that f (pi )= qi for all i if and only if ρ(d, g, r)≥ 0
and

(r + 1)d − rg+ r − rn ≥ 0 and d − rg− 1≥ 0.

For the “only if” direction, we first compute the dimension of the space of
degree-d maps Mapd

(
(C, p1 ∪ p2 ∪ · · · ∪ pd), (P

r , H)
)
, from C to Pr, which send

p1∪ p2∪· · ·∪ pd to H . Choose coordinates [x1 : x2 : · · · : xr+1] on Pr so H is given
by xr+1 = 0. Then any such map is given by r + 1 sections [s1 : s2 : · · · : sr : 1] of
OC(p1+p2+· · ·+pd), where we write sr+1=1∈H 0(OC)⊂H 0(OC(p1+· · ·+pd))

for the constant section. By taking the sections s1, s2, . . . , sr , we have identified
Mapd

(
(C, p1∪p2∪· · ·∪pd), (P

r , H)
)

as an open subset of H 0(OC(p1+· · ·+pd))
r ,

so its dimension is r(d+1−g). Therefore, in order for f 7→ ( f (pi ))
n
i=1 to dominate

H d
× (Pr )n−d , we must also have

r(d + 1− g)≥ (r − 1)d + r(n− d) ⇐⇒ (r + 1)d − rg+ r − rn ≥ 0.

In addition, f 7→ ( f (pi ))
d
i=1 must dominate H d . But the fibers of this map have

a free action of the (r + 1)-dimensional group StabH (Aut Pr ); we must therefore
also have

r(d + 1− g)≥ (r − 1)d + (r + 1) ⇐⇒ d − rg− 1≥ 0.

Remark 1.7. For k ≥ 2, the bundles f ∗TPr (−k) almost never satisfy interpolation.
Namely, in the setting of Theorem 1.3, the bundle f ∗TPr (−2) satisfies interpolation
if and only if either (g, r) = (0, 1) or (d, g, r) = (2, 0, 2); and f ∗TPr (−k) never
satisfies interpolation for k ≥ 3.

For r = 1, this can be seen by observing that f ∗TP1(−k)'OC(2− k) is a line
bundle, so it satisfies interpolation if and only if it is nonspecial (see Proposition 4.7
of [Atanasov et al. 2016]); as k ≥ 2, this only happens if k = 2 and C is rational
(g = 0).

In general, if f ∗TPr (−k) satisfies interpolation,

χ( f ∗TPr (−k))= (r + 1)d − rg+ r − krd ≥ 0.
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When r ≥ 2 and k ≥ 2, this is only satisfied for (d, g, r, k)= (2, 0, 2, 2); conversely,
one may easily check that f ∗TP2(−2) satisfies interpolation for f : P1

→ P2 a
general degree-2 map (for instance by combining Theorem 1.3 with Proposition 4.12
of [Atanasov et al. 2016]).

The remainder of the paper will be devoted to the proof of Theorem 1.3 and
Theorem 1.5 using inductive degeneration. In Section 2, we begin by explaining
how to use degeneration to approach the main theorems, and how to work with
the condition of interpolation on reducible curves. Then in Section 3, we prove
the main theorems for rational curves by inductively degenerating the curve C to a
union D ∪ L , where L is a 1-secant line to D. Finally in Section 4, we prove the
main theorems for arbitrary genus by degenerating the curve C to a union D ∪ R,
where R is a rational normal curve meeting D at 1≤ s ≤ r + 2 points.

2. Preliminaries

Lemma 2.1. The locus of f : C → Pr in Mg(P
r , d) for which f ∗TPr satisfies

interpolation is open, and likewise for f ∗TPr (−1). Moreover, every component of
these loci dominates Mg.

In particular, to prove Theorem 1.3 (respectively, Theorem 1.5) for curves of
degree d and genus g, it suffices to exhibit one, possibly singular, nondegenerate
f : C→ Pr of degree d and genus g, for which f ∗TPr (respectively, f ∗TPr (−1))
satisfies interpolation.

Proof. Since the vanishing of cohomology groups is an open condition, it follows
that interpolation is an open condition as well. (For a more careful proof, see
Theorem 5.8 of [Atanasov 2014].)

If f ∗TPr (respectively, f ∗TPr (−1)) satisfies interpolation, then in particular
H 1( f ∗TPr ) = 0 (respectively, H 1( f ∗TPr (−1)) = 0). Since H 1( f ∗TPr (−1)) = 0
implies H 1( f ∗TPr )= 0, we know either way that H 1( f ∗TPr )= 0. This completes
the proof as the obstruction to smoothness of Mg(P

r , d)→ Mg lies in H 1( f ∗TPr ).
�

In order to work with reducible curves, it will be helpful to introduce the following
somewhat more general variant on interpolation.

Definition 2.2. Let E be a rank n vector bundle over a curve C . We say that a
subspace of sections V ⊆ H 0(E) satisfies interpolation if E is nonspecial and, for
every d ≥ 0, there exists an effective Cartier divisor D of degree d such that

dim
(
V ∩ H 0(E(−D))

)
=max{0, dim V − dn}.

We now state for the reader the elementary properties of interpolation that we
shall need.
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Lemma 2.3 [Atanasov et al. 2016, Proposition 4.5]. A vector bundle E satisfies
interpolation if and only if its full space of sections V = H 0(E)⊆ H 0(E) satisfies
interpolation.

Proof sketch. The result follows by examining the long exact sequence

0→ H 0(E(−D))→ H 0(E)→ H 0(E|D)→ H 1(E(−D))→ H 1(E)= 0.

A complete proof is given at the location cited; see also Definition 4.1 in the same
reference. �

Lemma 2.4 [Atanasov et al. 2016, Proposition 8.1]. Let E be a vector bundle on
a reducible curve X ∪ Y, and D be an effective divisor on X disjoint from X ∩ Y.
Assume that

H 0(E|X (−D− X ∩ Y ))= 0.
Let

evX : H
0(E|X )→ H 0(E|X∩Y ), evY : H

0(E|Y )→ H 0(E|X∩Y )

denote the natural evaluation morphisms. Then E satisfies interpolation provided

V = ev−1
Y

(
evX

(
H 0(E|X (−D))

))
⊆ H 0(E|Y )

satisfies interpolation and has dimension χ(E|Y )+χ(E|X (−D− X ∩ Y )).

Proof sketch. As H 0(E|X (−D− X ∩Y ))= 0, restriction to Y gives an isomorphism
H 0(E(−D)) ' V. Also, the final dimension statement implies H 1(E(−D)) = 0.
Therefore E(−D), and hence E , satisfies interpolation. �

Lemma 2.5 [Atanasov 2014, Theorem 8.1 and Section 3]. Let E be a vector bun-
dle on an irreducible curve C , and p ∈ Csm be a general point. If E satisfies
interpolation, and 3⊆ E|p is a general subspace of any dimension, then

{σ ∈ H 0(E) : σ |p ∈3} ⊆ H 0(E)

satisfies interpolation and has dimension max{0, χ(E)− codim3}.

Proof sketch. Let n = rk E , and D be a general effective divisor of any degree d ≥ 0.
Since E satisfies interpolation,

dim H 0(E(−D))=max{0, χ(E)− dn},

dim H 0(E(−D− p))=max{0, χ(E)− dn− n}.

These inequalities imply the restriction map H 0(E(−D))→ E|p is either injec-
tive or surjective, which (since 3 is general) in turn implies the composition
H 0(E(−D))→ E|p→ E|p/3 is either injective or surjective. Together with the
first of the above equalities, this implies

dim{σ ∈ H 0(E(−D)) : σ |p ∈3} =max{0, χ(E)− codim3− dn}. �
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3. Rational curves

In this section, we prove Theorem 1.3 in the case g = 0.

Proposition 3.1. Let L ⊆ Pr be a line. Then TPr |L ' OL(2)⊕OL(1)r−1, where
the OL(2) summand comes from the inclusion TL ↪→ TPr |L ; in particular, TPr |L

and TPr |L(−1) satisfy interpolation.

Proof. The first assertion follows from the exact sequence

0→ TL 'OL(2)→ TPr |L → NL/Pr 'OL(1)r−1
→ 0.

(We have NL/Pr ' OL(1)r−1 since L is the complete intersection of r − 1 hyper-
planes.)

The second assertion follows from the first by inspection (or alternatively using
Proposition 3.11 of [Atanasov 2014]). �

Proposition 3.2. Let f :P1
→Pr be a general degree-d map (allowed to be degen-

erate if d < r ). Then f ∗TPr (−1), and consequently f ∗TPr , satisfies interpolation.

Proof. To show f ∗TPr (−1) satisfies interpolation, we argue by induction on the
degree d of f ; the base case d= 1 is given by Proposition 3.1. For the inductive step
d ≥ 2, we degenerate f :P1

→Pr to a map g : D∪p L→Pr from a two-component
reducible rational curve; write gD = g|D and gL = g|L . Assume that deg gD = d−1
and deg gL = 1. By Lemma 2.1, it suffices to show g∗TPr (−1) satisfies interpolation.
Write

evD : H
0(g∗DTPr (−1))→ H 0(TPr (−1)|p),

evL : H
0(g∗L TPr (−1))→ H 0(TPr (−1)|p)

for the natural evaluation morphisms. Pick a point x ∈ L r p. Then by Lemma 2.4,
it suffices to show that

V = ev−1
D

(
evL

(
H 0(g∗L TPr (−1)(−x))

))
⊆ H 0(g∗DTPr (−1))

satisfies interpolation and has dimension

χ(g∗DTPr (−1))+χ(g∗L TPr (−1)(−x − p))= χ(g∗DTPr (−1))− (r − 1).

Using the description of g∗L TPr from Proposition 3.1,

V = {σ ∈ H 0(g∗DTPr (−1)) : σ |p ∈ TL(−1)|p}.

Since TL(−1)|p⊆TPr (−1)|p is a general subspace of codimension r−1, Lemma 2.5
implies V satisfies interpolation and has dimension max{0, χ(g∗DTPr (−1))−(r−1)}.
It thus suffices to note that

χ(g∗DTPr (−1))− (r − 1)= d + 1≥ 0.
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By inspection (or alternatively using Proposition 4.11 of [Atanasov et al. 2016]),
interpolation for f ∗TPr (−1) implies interpolation for f ∗TPr . �

4. Curves of higher genus

Lemma 4.1. Let E be a vector bundle of rank n on a reducible nodal curve X ∪ Y,
such that X ∩ Y is a general collection of k points on X (relative to E|X ). Suppose
that E|X and E|Y satisfy interpolation. If χ(E|X ) ≡ 0 mod n and χ(E|X ) ≥ nk,
then E satisfies interpolation.

Proof. Let D be a general divisor on X (in particular disjoint from X ∩Y ) of degree
(χ(E|X )− nk)/n. Write

evX : H
0(E|X )→ H 0(E|X∩Y ), evY : H

0(E|Y )→ H 0(E|X∩Y )

for the natural evaluation morphisms, and let

V = ev−1
Y

(
evX

(
H 0(E|X (−D))

))
⊆ H 0(E|Y ).

Since E|X satisfies interpolation and χ(E|X (−D))= nk, we conclude evX is an
isomorphism when restricted to H 0(E|X (−D)). In particular,

H 0(E|X (−D− X ∩ Y ))= 0,

and V = H 0(E|Y ) is the full space of sections. Because E|Y satisfies interpolation,
we conclude V satisfies interpolation and has dimension

χ(E|Y )= χ(E|Y )+χ(E|X (−D− X ∩ Y )).

This implies, via Lemma 2.4, that E satisfies interpolation. �

Proof of Theorem 1.3. We argue by induction on g; the base case g = 0 is given by
Proposition 3.2. For the inductive step g ≥ 1, we let

(s, g′, d ′)=
{
(r + 2, g− r − 1, d − r) if g ≥ r + 1,
(g+ 1, 0, d − r) otherwise.

By construction, g′ ≥ 0 and 1≤ s ≤ r +2. Moreover, since ρ(d, g, r)≥ 0, we have
either ρ(d ′, g′, r)≥ 0, or g′ = 0 and d ′ ≥ 1; and in the second case d ′ ≥ s− 1.

We now degenerate f :C→Pr to a map g :D∪0P1
→Pr from a two-component

reducible curve; write gD = g|D and g
P1 = g|

P1 . By the above, we may take D to
be a general curve of genus g′, and 0 a collection of s points general on both D
and P1. We also take gD and g

P1 to be general maps of degrees d ′ and r respectively
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(composing with an automorphism of Pr so that gD(0)= g
P1(0)— which exists

since Aut Pr acts (r + 2)-transitively on points in linear general position; note that
s ≤ r + 2, and g

P1 is nondegenerate, while gD spans at least a Pmin(r,s−1)). By
Lemma 2.1, it suffices to show g∗TPr satisfies interpolation.

By induction (and direct application of Proposition 3.2 in the case g′ = 0 and
d ′ ≥ 1), we know g∗DTPr and g∗

P1 TPr satisfy interpolation. Moreover, χ(g∗
P1 TPr )=

r(r + 2) is a multiple of r which is at least rs. Lemma 4.1 thus yields the desired
conclusion. �

Proof of Theorem 1.5. We argue by induction on g; the base case g = 0 is given
by Proposition 3.2. For the inductive step g ≥ 1, we write g′ = g − 1 ≥ 0 and
d ′ = d − r . Since d − rg− 1 ≥ 0, we have d ′− rg′− 1 ≥ 0. This in turn implies
either ρ(d ′, g′, r)≥ 0, or g′ = 0 and d ′ ≥ 1.

We now degenerate f :C→Pr to a map g :D∪0P1
→Pr from a two-component

reducible curve; write gD = g|D and g
P1 = g|

P1 . By the above, we may take D to
be a general curve of genus g′, and 0 a collection of 2 points general on both D
and P1. We also take gD and g

P1 to be general maps of degrees d ′ and r respectively
(composing with an automorphism of Pr so that gD(0)= g

P1(0)— which exists
since Aut Pr acts 2-transitively). By Lemma 2.1, it suffices to show g∗TPr (−1)
satisfies interpolation.

By induction (and direct application of Proposition 3.2 in the case g′ = 0 and
d ′ ≥ 1), we know g∗DTPr (−1) and g∗

P1 TPr (−1) satisfy interpolation. Moreover,
χ(g∗

P1 TPr (−1))= 2r . Lemma 4.1 thus yields the desired conclusion. �
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