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Conjugacy classes
of special automorphisms of

the affine spaces
Jérémy Blanc

In the group of polynomial automorphisms of the plane, the conjugacy class
of an element is closed if and only if the element is diagonalisable. In this
article, we show that this does not hold for the group of special automorphisms,
giving a first step in the direction of showing that this group is not simple, as an
infinite-dimensional algebraic group.

1. Introduction

In this article, k will always denote an algebraically closed field. The conjugacy
classes of the algebraic groups GL(n, k) and SL(n, k) are well known. In particular,
the following observation is classical:

An element is diagonalisable if and only if its conjugacy class is Zariski-closed.
As observed in [Furter and Maubach 2010], the same holds for the group Aut(A2

C
)

of complex polynomial automorphisms of the affine plane. Here, the topology cor-
responds to the topology of Aut(An

k) induced by families parametrised by algebraic
varieties A, called morphisms A→ Aut(An

k) and corresponding to elements of
Aut(An

k[A]) (see Section 2A).
In fact, there is one easy direction in the result of [Furter and Maubach 2010],

which corresponds to showing that if the conjugacy class is closed, then the element
is diagonalisable. This works over any algebraically closed field k and follows from
the following observation: If f ∈ Aut(An

k) is an element that fixes the origin, the
conjugation of f by

(x1, . . . , xn) 7−→

(
1
t

x1, . . . ,
1
t

xn

)
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tional Geometry” PP00P2_153026 /1 and by the French National Research Agency Grant “BirPol”,
ANR-11-JS01-004-01.
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yields an element of Aut(An
k(t)) whose value at t = 0 is the linear part of f , which

is an element of GL(n, k). Moreover elements of Aut(A2
k) which do not have fixed

points are easy to handle (these are conjugate to (x1, x2) 7→ (x1+ 1, ax2+ P(x2))

for some polynomial P ∈ k[x2] and a ∈ k∗).
In this article, we focus on the closed normal subgroup SAut(An

k) of Aut(An
k) of

elements of Jacobian 1. We will show that the conjugacy classes of the two groups
SAut(An

k) and Aut(An
k) have a very different behaviour.

We say that an element f ∈ Aut(An
k) is dynamically regular if the extensions of

f and f −1 to Pn
k have disjoint indeterminacy loci (see Section 2B). We will also say

that f is algebraic if {deg( f n)}n∈N is bounded. The dynamically regular elements
are never algebraic, and in dimension 2, nonalgebraic elements are conjugate to
dynamically regular elements (see Remark 4.3).

The first result that we obtain is to show that there is no degeneration of conjugates
of dynamically regular elements in SAut(An

k), contrary to the case of Aut(An
k).

Theorem 1.1. Let f ∈ SAut(An
k) be a dynamically regular element.

(1) If α ∈ SAut(An
k((t))) is such that α f α−1 has a value at t = 0, then this value is

conjugate to f by α(0) in SAut(An
k) (in particular α is defined at t = 0).

(2) For each integer d, the set {g f g−1
| g ∈ SAut(An

k), deg(g)≤ d} is closed.

(3) If n = 2, the conjugacy class of f in SAut(An
k) is closed.

(4) If k is uncountable, the following holds: for each morphism A→ SAut(An
k),

where A is an algebraic variety, the preimage of the conjugacy class of f
contains the closure of each locally closed subset B ⊂ A that it contains.

Remark 1.2. The proof of this result is given in Section 3. As we will show, part
(1) implies the others.

In the notation of [Furter and Kraft ≥ 2016], assertion (4) can be reinterpreted
by saying that the conjugacy class C( f ) of a dynamically regular element f is
weakly closed in SAut(An

k).

In dimension 2, an easy consequence of Theorem 1.1 and of the Jung–van der
Kulk theorem is the fact the conjugacy class of nonalgebraic elements of SAut(A2

k)

is in fact closed, contrary to the case of Aut(A2
k). In fact, we can be much more

precise: we describe in Section 4 the conjugacy classes of elements in SAut(A2
k),

and decide which ones are closed. In particular, we obtain the following complete
description.

Theorem 1.3. Let f ∈ SAut(A2
k). Then:

(1) If f is diagonalisable, its conjugacy class is closed.
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(2) If f is algebraic but not diagonalisable, its conjugacy class is not closed. More
precisely, there exists an element F ∈ SAut(A2

k[t]) such that for each t 6= 0,
F(t) ∈ SAut(A2

K ) is conjugate to f , and F(0) ∈ SAut(A2
k) is diagonalisable.

(3) If f is not algebraic, its conjugacy class is closed.

Remark 1.4. Since the set SAut(A2
k)alg of algebraic elements of SAut(A2

k) is closed
(Corollary 4.4), we can decompose SAut(A2

k) as an infinite union of disjoint closed
sets, one being SAut(A2

k)alg and the others being conjugacy classes of nonalgebraic
elements. The group SAut(A2

k) is however irreducible, by the simple observation
made above.

Remark 1.5. Note that these results show that the group SAut(A2
k) is more rigid

than the group Aut(A2
k), in the sense that there are less possible degenerations of

conjugates.
One can check, using the conjugations around fixed points as above, that every

normal closed subgroup of Aut(A2
k) is either trivial, SAut(A2

k) or Aut(A2
k). The

interesting question is then to know whether SAut(A2
k) contains nontrivial closed

normal subgroups (by [Furter and Lamy 2010], it contains many nontrivial normal
subgroups which contain only nonalgebraic elements, and the identity).

The fact that the conjugacy classes of nonalgebraic elements are closed suggests
that SAut(A2

k) could contain nontrivial closed normal subgroups. This text can then
be viewed as a first step towards the study of the simplicity of SAut(An

k), viewed
as an infinite-dimensional algebraic group (ind-group). In [Shafarevich 1966], it is
claimed that this one is simple, but the proof contains serious gaps.

2. Preliminaries

As we said, in the sequel k will always be an algebraically closed field. We will
sometimes also work on a general field (most of the time with an extension of k),
and will denote it by K .

In this section, we introduce the terminology and give some basic results (most
of them classical, maybe in alternate formulations) on the topology of Aut(An

k)

(Section 2A), the relation between the iterations of a map and the indeterminacy
sets at infinity (Section 2B) and the families of automorphisms parametrised by
formal series (Section 2C), that we will need in Sections 3 and 4.

2A. Topology on Aut(An
k).

Notation 2.1. Let R be any commutative unitary ring.

(1) We denote by End(An
R) the set of algebraic endomorphisms of An

R . An element
f ∈ End(An

R) is given by

f : (x1, . . . , xn) 7−→ ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
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for some polynomials f1, . . . , fn ∈ R[x1, . . . , xn]. The degree of f is by definition
the maximal degree of the fi , and we will use the notation

f = ( f1, . . . , fn).

This corresponds to a natural bijection End(An
R)→ (R[x1, . . . , xn])

n .

(2) The group Aut(An
R) is equal to the group of automorphisms of An

R , i.e., to the
elements of End(An

R) that admit an inverse in this set.

(3) For each f ∈ End(An
R), we denote by

Jac( f )= det
(
∂ fi

x j

)n

i, j=1
∈ R[x1, . . . , xn]

the Jacobian of f , and denote by SAut(An
R), the normal subgroup of Aut(An

R) given
by { f ∈ Aut(An

R) | Jac( f )= 1}.

(4) We denote by End(An
R)≤d and Aut(An

R)≤d the subsets of End(An
R) and Aut(An

R)

respectively, given by elements of degree ≤ d .

Example 2.2. For each p1 ∈ R[x1], p2 ∈ R[x1, x2], . . . , pn−1 ∈ R[x1, . . . , xn−1]

and a1, . . . , an ∈ R∗ the element

(a1x1, a2x2+ p1, a3x3+ p2, . . . , anxn + pn−1)

belongs to Aut(An
R). Such elements are usually called triangular, or de Jonquières.

Remark 2.3. Suppose that R is a field K . Extending the scalars to an algebraically
closed field, we observe that the Jacobian matrix of every element of Aut(An

K ) is
invertible everywhere, so Jac( f ) ∈ K ∗. In particular,

Aut(An
K )⊂ { f ∈ End(An

K ) | Jac( f ) ∈ K ∗},

and the equality, when K is of characteristic zero, is the classical Jacobian conjecture,
open for any n ≥ 2.

If Z is an algebraic variety defined over k, where k is algebraically closed as
before, there is a natural way to endow the group Bir(Z) of birational transformations
of Z with a topology (see for example [Demazure 1970; Serre 2010; Blanc 2010;
Blanc and Furter 2013]). When restricted to the subgroup Aut(Z) of automorphisms,
we obtain the following:

Definition 2.4. Let A, Z be two algebraic varieties defined over k. We say that a
morphism f : A→ Aut(Z) is a map given by an A-automorphism of A× Z .

The Zariski topology on Aut(Z) is defined as follows: a set F ⊂Aut(Z) is closed
if and only if f −1(F)⊂ A is closed for any algebraic variety A and any morphism
f : A→ Aut(Z).
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Remark 2.5. When the group Aut(Z) has a natural structure of an algebraic group
(for example when Z = Pn), the topology defined above agrees with the classi-
cal topology of the algebraic group, and morphisms A→ Aut(Z) correspond to
morphisms of algebraic varieties.

However, in general the group Aut(Z) is too big to be an algebraic variety, for
instance for Z = An , n ≥ 2 (see Example 2.2).

We will observe (in Lemma 2.7 below) that this topology, when restricted to
Aut(An

k), gives the one introduced by Shafarevich in [Shafarevich 1966], i.e., the
inductive limit topology given by the inclusion of affine algebraic varieties

Aff(An
k)= Aut(An

k)≤1 ⊂ Aut(An
k)≤2 ⊂ Aut(An

k)≤3 ⊂ · · ·

and corresponds in fact to an infinite-dimensional algebraic group. In order to do
this, we recall how one obtains natural structures of affine varieties for Aut(An

k)≤d

and SAut(An
k)≤d .

Lemma 2.6. Let us fix some integers d, n ≥ 1, and see End(An
k)≤d as an affine

space, via the bijection End(An
k)→ (k[x1, . . . , xn]≤d)

n . Then, the following hold:

(1) Jk∗ = { f ∈ End(An
k)≤d | Jac( f ) ∈ k∗} is locally closed in End(An

k)≤d , and
inherits from it the structure of an affine variety.

(2) J1 = { f ∈ End(An
k)≤d | Jac( f )= 1} is closed in End(An

k)≤d .

(3) Aut(An
k)≤d is a closed subset of Jk∗ .

(4) SAut(An
k)≤d is a closed subset of J1.

Proof. The Jacobian being a morphism End(An
k)≤d → k[x1, . . . , xn]≤n(d−1), the

sets
Jk = { f ∈ End(An

k)≤d | Jac( f ) ∈ k} and J1

are closed in End(An
k)≤d and are thus affine algebraic varieties. Since J0 =

{ f ∈ End(An
k)≤d | Jac( f )= 0} is given by one equation in Jk, the set Jk∗ = Jk \ J0

is affine (and locally closed in End(An
k)≤d ). This yields assertions (1) and (2).

In order to show (3) and (4), we define Wd to be the set of nonzero (n+1)-tuples
(h0, . . . , hn) of homogeneous polynomials hi ∈ k[x0, . . . , xn] of degree d, where
h0 = µxd

0 , µ ∈ k, up to linear equivalence: (h0, . . . , hn)∼ (λh0, . . . , λhn) for any
λ∈k∗. The equivalence class of (h0, . . . , hn)will be denoted by [h0 : · · · :hn]. Since
the set of homogeneous polynomials of degree d in n+ 1 variables is a k-vector
space, this gives to Wd a canonical projective space structure. We then denote by
Bd ⊂Wd the hyperplane given by h0 = 0 and obtain a canonical isomorphism of
affine spaces

Wd \ Bd −→
∼ End(An

k)≤d ,

[xd
0 : h1 : · · · : hn] 7−→ (h1(1, x1, . . . , xn), . . . , hn(1, x1, . . . , xn)).
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We denote by Y ⊆ Wdn−1 × (Wd \ Bd) the set consisting of elements (g, f ),
such that h := (g0( f0, . . . , fn), . . . , gn( f0, . . . , fn)) is a multiple (maybe 0) of
the identity, i.e., hi x j = h j xi for all i, j . The description of Y shows that it is
closed in Wdn−1 × (Wd \ Bd). Since Wdn−1 is a complete variety, the projection
p2 : Wdn−1 × (Wd \ Bd)→ (Wd \ Bd) is a Zariski-closed morphism, so p2(Y ) is
closed in (Wd \ Bd)' End(An

k)≤d .
In order to show (3) and (4), we only need to show that p2(Y )∩ Jk∗ =Aut(An

k)≤d ,
which implies that p2(Y )∩ J1 = SAut(An

k)≤d . We then show both inclusions.

(i) If f ∈Aut(An
k)≤d , there exists g ∈Aut(An

k)≤dn−1 such that g◦ f = id ([Bass et al.
1982, Theorem 1.5, page 292]). In consequence, we obtain (g, f )∈Y , so f ∈ p2(Y ).
The fact that f belongs to Jk∗ is given by Remark 2.3, so Aut(An

k)≤d ⊆ p2(Y )∩ Jk∗ .

(ii) Let (g, f ) ∈ Y , with f ∈ Jk∗ . By definition of Y , the element (g0( f0, . . . , fn),
. . ., gn( f0, . . . , fn)) is a multiple of the identity. There exists some j such that
g j 6= 0. The fact that f ∈ Jk∗ implies that f : An

k → An
k is dominant. Hence,

g j ( f0(1, x0, . . . , xn), . . . , fn(1, x0, . . . , xn)) is not equal to zero. This implies that
g ∈ End(An−1)≤dn−1 and that g ◦ f = id. Hence, f ∈ Aut(An

k)≤d . This yields
p2(Y )∩ Jk∗ ⊆ Aut(An

k)≤d . �

Lemma 2.7. Let us fix some integers d, n≥ 1, and see Aut(An
k)≤d and SAut(An

k)≤d

as affine varieties, via their inclusion in End(An
k)≤d ' (k[x1, . . . , xn]≤d)

n (see
Lemma 2.6). Then, the following hold:

(1) Morphisms A→ Aut(An
k) correspond to elements of Aut(An

k[A]).

(2) For each k-algebraic variety A, the morphisms A→ Aut(An
k) that have image

in Aut(An
k)≤d correspond to morphisms of algebraic varieties A→Aut(An

k)≤d .

(3) The set Aut(An
k)≤d is closed in Aut(An

k), and the restriction of the topology of
Aut(An

k) on it yields the topology of its algebraic variety structure.

(4) A subset of Aut(An
k) is closed if and only if its intersection with Aut(An

k)≤d is
closed, for each integer d ≥ 1.

Moreover, everything works the same replacing Aut with SAut.

Proof. We do the proof with Aut, the same proof works replacing Aut with SAut.
The map

End(An
k)≤d ×An

k −→ End(An
k)≤d ×An

k, ( f, x) 7−→ ( f, f (x))

is a morphism of algebraic varieties, so every morphism of algebraic varieties
A → Aut(An

k)≤d yields an A-automorphism of A × An
k, and thus a morphism

A→ Aut(An
k) with image in Aut(An

k)≤d .
Conversely, let f : A→Aut(An

k) be a morphism. By definition, this is given by an
A-automorphism of A×An

k. Composing with the projection A×An
k→An

k and then
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with the function xi on An
k, we obtain an element fi ∈ k[A×An

k]= k[A][x1, . . . , xn].
Hence, ( f1, . . . , fn) is an element of Aut(An

k[A]). Such an element yields a mor-
phism of algebraic varieties A→ End(An

k)≤m for some m ∈ N, having image in
Aut(An

k). This yields (1) and (2). Assertion (3) also follows, after observing that
the preimage of Aut(An

k)≤i is a closed subset of A, for each i ≥ 0.
It remains to show (4). Let Y ⊂ Aut(An

k) be any subset. If Y is closed in
Aut(An

k), then Y ∩Aut(An
k)≤d is closed (in Aut(An

k) or Aut(An
k)≤d ) for each d, by

(3). Suppose conversely that Y ∩Aut(An
k)≤d is closed for each d . In order to show

that Y is closed in Aut(An
k), we take any morphism A→ Aut(An

k), and show that
the preimage of Y is closed. As we observed before, we can see this morphism as a
morphism of algebraic varieties A→Aut(An

k)≤m for some m. Since Y∩Aut(An
k)≤m

is closed, the preimage of Y is closed. �

2B. Dynamical properties and the behaviour at infinity. In the sequel, we fix a
canonical open embedding An

k→ Pn
k given by

(x1, . . . , xn) 7−→ [1 : x1 : · · · : xn]

and denote by H∞ ⊂ Pn
k the complement H∞ = Pn

k \An
k, which is a hyperplane.

Once this is fixed, we have a canonical extension of any element of End(An
k) to a

rational map Pn
k 99K Pn

k. In particular, this yields inclusions

Aut(An
k)−→ Bir(An

k)
'
−→ Bir(Pn

k).

The automorphisms of degree 1 (affine automorphisms) correspond to those which
extend to elements of Aut(Pn

k). The others extend to birational maps which are not
automorphisms, and we can associate to them two sets, which are classical objects
in dynamics (see for example [Sibony 1999; Guedj and Sibony 2002; Bisi 2008]):

Definition 2.8. For each f ∈ Aut(An
k) of degree ≥ 2, we define If ⊂ Pn

k to be the
indeterminacy locus of the extension of f to Pn

k, and X f ⊂ Pn
k to be the image of

H∞\(If ).

In order to see the sets If , X f explicitly, we use the following definition.

Definition 2.9. If f = ( f1, . . . , fn) ∈ Aut(An
k) is an element of degree d and ai is

the homogeneous part of fi of degree d , for i = 1, . . . , n, we say that (a1, . . . , an)∈

End(An
k) is the highest homogeneous part of f .

Remark 2.10. If (a1, . . . , an) is the highest homogeneous part of f ∈ Aut(An
k),

the set If ⊂ Pn
k is given by

x0 = 0, a1 = · · · = an = 0,

and is a proper closed subset of the hyperplane at infinity H∞ (given by x0 = 0).
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Moreover, the set X f is equal to

{[0 : a1(x1, . . . , xn) : · · · : an(x1, . . . , xn)] | [0 : x1 : · · · : xn] ∈ H∞\If }.

Remark 2.11 (regular terminology). In dynamics, the elements f ∈ Aut(An
k) such

that If ∩ If −1 = ∅ are called “regular” and elements such that X f ∩ If = ∅ are
called “weakly regular” in [Guedj and Sibony 2002] or “quasiregular” in [Bisi
2008]. The use of this terminology in algebraic geometry can be confusing, because
of the common use of the word regular for maps (in fact all elements of Aut(An

k)

are morphisms, hence biregular). This is why we will say “dynamically regular” if
If ∩ If −1 =∅; we will not use the words “quasiregular” or “weakly regular”.

Remark 2.12. Fixing the degree d, we obtain an algebraic variety Aut(An
k)d . It

follows from the definition that the set of dynamically regular elements of Aut(An
k)d

is an open subset (in general not dense). However, the set of dynamically regular
elements of Aut(An

k)≤d (and thus of Aut(An
k)) is not open in general. For n = 2,

this can be seen by taking for example

f = (−x2, x1+ x2
2) ∈ SAut(A2

k), α = (x1+ t x2
2 , x2) ∈ SAut(A2

k[t]),

and considering the family β=α f α−1
∈SAut(A2

k[t]). Then, β(t) is not dynamically
regular for t ∈ k∗ but β(0)= f is dynamically regular.

Remark 2.13. If n = 2, we find X f = If −1 . Indeed, the extension of an element
f ∈ Aut(A2

k) of degree > 1 is an element of Bir(P2
k) which contracts the line at

infinity onto one point X f . The inverse of this birational map is then defined at any
other point of H∞, so we find X f = If −1 .

We now show that the degree of a composition is determined by the sets If and
X f defined above. The following results are classical in the world of dynamics, we
recall the easy proofs for self-containedness.

Lemma 2.14. Let f, g ∈ Aut(An
k) be of degree ≥ 2. Then, the following are

equivalent:

(1) deg(g f )= deg(g) · deg( f ).

(2) The set X f is not contained in Ig.

Moreover, if both conditions hold, then Xg f ⊂ Xg.

Proof. Denoting by (a1, . . . , an) and (b1, . . . , bn) the highest homogeneous parts
of f and g respectively, the equality deg(g f )= deg(g) ·deg( f ) is equivalent to the
fact that one of the polynomials

b1(a1, . . . , an), . . . , bn(a1, . . . , an)

is not equal to zero.
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By definition, the sets Ig, X f ⊂ H∞ are given respectively by

Ig = {[0 : y1 : · · · : yn] ∈ H∞ | b1(y1, . . . , yn)= · · · = bn(y1, . . . , yn)= 0},

X f = {[0 : a1(y1, . . . , yn) : · · · : an(y1, . . . , yn)] | [0 : y1 : · · · : yn] ∈ H∞\If }.

If X f 6⊂ Ig, then there exists a point [0 : y1 : · · · : yn] ∈ H∞\ If such that
[0 : a1(y1, . . . , yn) : · · · : an(y1, . . . , yn)] /∈ Ig, which corresponds to the existence
of an index i ∈ {1, . . . , n} such that bi (a1(y1, . . . , yn), . . . , an(y1, . . . , yn)) 6= 0. In
particular, the polynomial bi (a1, . . . , an) is not zero, so deg(g f )= deg(g) deg( f ).

Conversely, if bi (a1, . . . , an) is a nonzero polynomial, the open subset Ui ⊂ H∞
corresponding to the nonvanishing of this polynomial is nonempty. Intersecting this
open set with H∞\If yields a nonempty open subset of points in H∞ which have
image in X f and not in Ig.

Now that the equivalence between (1) and (2) is shown, we show that these
imply that Xg f ⊂ Xg. Since deg(g f )= deg(g) deg( f ), the homogeneous part of
highest degree of g f is (b1(a1, . . . , an), . . . , bn(a1, . . . , an)). This implies that the
points of Xg f are in the image by g (or more precisely of its extension to Pn

k) of
the set X f \ Ig, and thus lie in Xg. �

Corollary 2.15. Let f, g ∈ Aut(An
k) be of degree ≥ 2. Then, the following hold:

(1) X f ⊂ If −1 .

(2) If Ig ∩ If −1 =∅, then deg(g f )= deg(g) · deg( f ).

(3) X f 6⊂ If ⇔ deg( f 2)= deg( f )2.

Proof. Since deg( f −1 f ) < deg( f −1) deg( f ), part (1) follows from Lemma 2.14.
If Ig ∩ If −1 = ∅, then X f 6⊂ Ig by (1), so the equality deg(g f ) = deg(g) deg( f )
follows again from Lemma 2.14. Part (3) corresponds to Lemma 2.14, in the case
f = g. �

Corollary 2.16. If f ∈ Aut(An
k) is an element such that X f ∩ If =∅, then

deg( f m)= deg( f )m and X f m ⊂ X f

for each m ≥ 1.

Proof. We prove the result by induction on m, the case m = 1 being obvious.
For m ≥ 2, we use the facts that X f ∩ If = ∅ and X f m−1 ⊂ X f , which imply
that X f m−1 6⊂ If . Applying Lemma 2.14 to the composition f ◦ f m−1, we obtain
that deg( f m) = deg( f m−1) deg( f ), which is equal to deg( f )m by the induction
hypothesis, and also that X f m ⊂ X f . �

Restricting to dimension 2, we obtain the following result.

Corollary 2.17. Let f ∈ Aut(A2
k) be of degree ≥ 1. The following are equivalent:

(1) If 6= If −1 ;
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(2) If ∩ If −1 =∅;

(3) deg( f 2)= deg( f )2;

(4) deg( f m)= deg( f )m for each m ≥ 1.

Proof. As we are in dimension 2, we have X f = If −1 and X f −1 = If , which are two
points of H∞, which can be distinct or not (see Remark 2.13).

The equality deg( f 2)= deg( f )2 is equivalent to X f 6⊂ If (Corollary 2.15), which
is here equivalent to If −1 6= If or If −1∩If =∅. Hence, (1), (2), and (3) are equivalent,
and of course implied by (4). It remains to see that (2) corresponds to X f ∩ If =∅,
which implies that deg( f m)= deg( f )m for each m ≥ 1 by Corollary 2.16. �

Remark 2.18. The most interesting implication of this corollary is (3)⇒ (4), i.e.,
that deg( f 2)= deg( f )2 implies that deg( f m)= deg( f )m for m ≥ 1, a fact already
observed by Jean-Philippe Furter [1999] (at least when char(k)= 0).

Looking at the proof, this result has no reason to be true in dimension n ≥ 3, and
is in fact false on the easiest nontrivial example, that we describe now.

Example 2.19. Let f = (x1 + x2
2 , x2 + x2

3 , x3) ∈ SAut(A3
k), which has highest

homogeneous part a = (x2
2 , x2

3 , 0) ∈ End(A3
k). Then,

If = [0 : 1 : 0 : 0], X f = {[0 : x1 : x2 : 0] | [x1 : x2] ∈ P1
}.

Since X f 6⊂ If , we have deg( f 2) = deg( f )2 = 4 and X f 2 ⊂ X f . More precisely,
the homogeneous part of f 2 is a2

= (x4
3 , 0, 0), so

If 2 = If = X f 2 = [0 : 1 : 0 : 0].

In particular, X f 2 ⊂ If , so deg( f 3) < deg( f 2) · deg( f ).
In fact, one easily checks with the formulas that deg( f n) ≤ 4 for each n, and

that deg( f n)= 4 for each n ≥ 2 if char(k)= 0. Indeed

f n
=
(
x1+ nx2

2 + n(n− 1)x2x2
3 +

(∑n−1
i=1 i2

)
x4

3 , x2+ nx2
3 , x3

)
,

for each n ≥ 0.

2C. Families of automorphisms and valuations. In the sequel, we will study fam-
ilies of elements of Aut(An

k), which correspond to elements of Aut(An
k((t))).

It is then natural to use the valuation

ν : k((t))[x1, . . . , xn] → Z∪ {−∞}

associated to t . We define precisely this valuation here, as we will use it often
afterwards.
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Definition 2.20. Every element f ∈ k((t))[x1, . . . , xn] \ {0} can be written as

f =
∞∑

k=m

ak tk

where m ∈ Z, ai ∈ k[x1, . . . , xn] for i ≥ m, and am 6= 0. We then define ν( f )= m.
Choosing ν(0)=−∞, we obtain a valuation

ν : k((t))[x1, . . . , xn] −→ Z∪ {−∞}.

(1) If ν( f )= 0, we define f (0)= a0.

(2) If ν( f ) > 0, we define f (0)= 0.

(3) If ν( f ) < 0, we say that f has a pole at t = 0 and that f (0) is not defined.

Definition 2.21. Let f = ( f1, . . . , fn) ∈ Aut(An
k((t))). We define

ν( f )=min{ν( fi ) | i = 1, . . . , n}.

(1) If ν( f )≥ 0, we say that f is defined at the origin (or has a value), and define

f (0)= ( f1(0), . . . , fn(0)),

to be its value, which is an element of End(An
k).

(2) If ν( f ) < 0, we say that f has a pole at t = 0, and say that f (0) is not defined.

Remark 2.22. In the above definition, it is possible that the element f (0) is defined,
but does not belong to Aut(An

k). This is for example the case when one of the
components becomes 0, or for f = (t x1 + x2, x2, . . . , xn). This phenomenon is
however impossible for SAut(An

k), as the following result shows.

Lemma 2.23. Let α ∈ SAut(An
k((t))) be an element which has no pole at t = 0.

Then, α−1 has no pole at t = 0, and replacing t with 0 yields two automorphisms
β, γ ∈ SAut(An

k),
β = α(0), γ = α−1(0),

such that βγ = id.

Proof. Since α has no pole at t = 0, it sends (0, . . . , 0) ∈ An
k((t)) onto an element

having coordinates in k[[t]]. We can thus replace α by its composition with a
translation and assume that α (and thus α−1) fixes the origin. Its linear part is then
equal to an element of SL(n, k[[t]]), whose inverse also belongs to SL(n, k[[t]]).
Replacing with the composition by this inverse, we can assume that α has a trivial
linear part. We denote by m the ideal of k((t))[x1, . . . , xn] generated by the xi , and
can then write

α = ( f1, . . . , fn)
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for some f1, . . . , fn ∈ k[[t]][x1, . . . , xn], fi ≡ xi (mod m2). We write then

α−1
=

(
x1+

d∑
i=2

gi,1, . . . , xn +

d2∑
i=2

gi,n

)
where the gi, j ∈ k((t))[x1, . . . , xn] are homogeneous polynomials of degree i and
d2 is the degree of g. Assume for contradiction that one of the gk, j does not belong
to k[[t]][x1, . . . , xn], and choose k to be minimal for this. Then, the j -th coordinate
of α−1

◦α is equal to

x j = f j +

d2∑
i=2

gi, j ( f1, . . . , fn),

which implies that
∑d

i=k gi, j ( f1, . . . , fn) ∈ k[[t]][x1, . . . , xn]. But the part of de-
gree k of this sum is in fact equal to gi, j (x1, . . . , xn), which does not belong to
k[[t]][x1, . . . , xn].

We have proved that α−1 does not have any pole at the origin. We then denote by
d1, d2 the degrees of α and α−1 (which are the maximal degree of their components),
and denote by Enddi the set of endomorphisms of An of degree ≤ di , which is
naturally isomorphic to an affine space. Observe that (α, α−1) corresponds to a
k((t))-point of the algebraic variety

{( f, g) ∈ Endd1 ×Endd1 | f ◦ g = id}.

Since neither α neither α−1 has a pole at t = 0, all coefficients are defined at the
origin. Replacing t with 0 gives then the result. �

Remark 2.24. The result of Lemma 2.23 can also be obtained from the fact that
each SAut(An

k)≤d is closed in End(An
k)≤d (Lemma 2.6).

We will apply a classical valuative result (Lemma 2.25 below), and recall the
argument of the proof, given in [Furter 2009, §1.2] (the version that we need here
is slightly more general, but the proof is analogous).

Lemma 2.25. Let Y, Z be two quasiprojective k-algebraic varieties, let ϕ : Y → Z
be a morphism and let z ∈ Z be a (closed) point of Z. The following assertions are
equivalent:

(1) The point z belongs to the closure ϕ(Y ) of the image.

(2) There is an irreducible k-curve 0, a smooth closed point p ∈ 0 and a rational
map ι : 0 99K Y such that ϕ ◦ ι : 0 99K Z is defined at p and sends it onto z.

(3) There is a k((t))-point y ∈ Y (k((t))) such that ϕ(y) ∈ Z(k((t))) has no pole at
t = 0 and ϕ(y)(0)= z.
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Proof. (1)⇒ (2): Replacing Y with one of its irreducible components, we can
assume that Y is irreducible. Putting Z into a projective variety, we can assume that
Z is projective. Then, replacing Z with ϕ(Y ) we can assume that ϕ is dominant.
Since ϕ(Y ) is an irreducible constructible subset of Z , it contains a dense open
subset U of Z . If Z is a point, then ϕ(Y ) = Z , in which case (2) is obvious, so
we can assume that dim Z ≥ 1, and can take a closed irreducible curve C ⊂ Z
containing z and meeting U (through every two points passes at least one irreducible
closed curve, see [Mumford 1970, §II.6, Lemma, page 56]).

We then denote by Y ′ ⊂ Y an irreducible component of ϕ−1(C) such that the
restriction of ϕ yields a dominant morphism Y ′ → C . We choose two points
p1, p2 ∈ Y ′ such that ϕ(p1) 6= ϕ(p2) and take an irreducible curve 00 ⊂ Y ′ passing
through p1, p2 (using again the lemma from [Mumford 1970]). The restriction of
ϕ to 00 yields a dominant morphism 00→ C . We can take an open embedding
ν : 00→ 00, where 00 is an irreducible projective, and denote by η : 0→ 00 the
normalisation. Then, ϕ◦ν−1

◦η yields a rational map 0 99KC , which is a surjective
morphism. It remains to choose for ι : 0 99K 00 ⊂ Y ′ ⊂ Y the rational map ν−1

◦ η.
(2)⇒ (3): The rational maps 0 99K Y → Z correspond to field homomorphisms

k(Z)→ k(Y )→ k(0), sending the local ring Oz,Z to Op,0.
Denote by Ô p,0 the completion of Op,0, with respect to its maximal ideal.

Because Op,0 is a Noetherian regular local ring of dimension 1 with residue field k,
its completion is a complete Noetherian regular local ring with the same properties,
and by the Cohen theorem, it must be isomorphic to a ring of formal power series.
The dimension being 1, one has a k-isomorphism Ô p,0 ' k[[t]], which induces a
field homomorphism k(0)→ k((t)).

The composition k(Y )→ k(0)→ k((t)) corresponds to the k((t))-point y that we
want, and its image corresponds to the composition k(Z)→ k(Y )→ k(0)→ k((t)).
(3) ⇒ (1): View Z as a locally closed subset of Pn and take a polynomial

equation F ∈ k[x0, . . . , xn] that vanishes on ϕ(Y ). Since ϕ(y) is a k((t))-point of
ϕ(Y ), we have F(ϕ(y))= 0. Replacing t with 0 we obtain F(z)= 0. This shows
that z belongs to the closure of Z . �

Corollary 2.26. Let f ∈ SAut(An
k), let d ≥ 1 be an integer and let Y be the k-

algebraic variety SAut(An
k)≤d . The following assertions are equivalent:

(1) The set {g f g−1
| g ∈ Y } is closed in SAut(An

k).

(2) If 0 is an irreducible k-curve 0 and ι : 0 99K Y is a rational map such that
ϕ ◦ ι : 0 99K Z is defined at a smooth point p ∈ 0, the image of p belongs to
{g f g−1

| g ∈ Y }.

(3) If ϕ ∈ Y (k((t))) is an element that has poles at t = 0 and h = ϕ f ϕ−1 has no
poles at t = 0, then h(0) belongs to {g f g−1

| g ∈ Y }.
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Proof. The degree of the inverse of an element g ∈ Y is at most dn−1 (see [Bass et al.
1982, Theorem 1.5, page 292]). Hence, the map Y → SAut(An

k) that sends g onto
g f g−1 corresponds to a morphism of algebraic varieties ϕ : Y → SAut(An

k)≤m for
some m. The result follows then from Lemma 2.25 applied to ϕ, and Lemma 2.7. �

3. Conjugacy classes of dynamically regular automorphisms of An
k

3A. Image at infinity of elements of Aut(An
k((t))). In Section 2B, we explained

how the set X f ⊂ H∞ is defined, for each element f ∈ Aut(An
k), by extending the

map to Pn
k and looking at the image of the hyperplane H∞ at infinity.

We now associate similarly a subset Xα ⊂ H∞ to an element α ∈ Aut(An
k((t)))

which has a pole at t = 0, by taking the limit of the image of α(t), when t goes
towards 0. The formal definition of Xα is the following:

Definition 3.1. Let α ∈ Aut(An
k((t))) be an element of valuation ν(α) = −m < 0,

that we write

α =

(
1
tm α1, . . . ,

1
tm αn

)
,

where α1, . . . , αn ∈ k[[t]][x1, . . . , xn] are such that

α̃ = (α1(0), . . . , αn(0))= (α̃1, . . . , α̃n) ∈ End(An
k) \ {0}.

We then define

Xα={[0 : α̃1(y1, . . . , yn) : · · · : α̃n(y1, . . . , yn)] |(y1, . . . , yn)∈An
k\α̃
−1({0})}⊂H∞.

This definition can be geometrically understood:

Remark 3.2. In the above definition, α is not defined at t = 0, but extending α to
Pn we obtain the element of Bir(Pn

k((t))) given by

[x0 : · · · : xn] 99K [tm xd
0 : F1(x0, . . . , xn, t) : · · · : Fn(x0, . . . , xn, t)],

where d is the degree of α and each Fi (x0, . . . , xn, t) ∈ k[[t]][x0, . . . , xn] is the ho-
mogenisation of αi . This corresponds to a family of rational maps of Pn

k parametrised
by t , which has a value at t = 0, corresponding to

[x0 : · · · : xn] 99K [0 : F1(x0, . . . , xn, 0) : · · · : Fn(x0, . . . , xn, 0)].

The set Xα ⊂ H∞ is then the image of this map by points of An
k which are well-

defined under this map.
Writing such a point as [1 : x1 : · · · : xn], its image by the extension of α is

[tm
: F1(1, . . . , xn, t) : · · · : Fn(1, . . . , xn, t)]

= [tm
: α1(x1, . . . , xn, t) : · · · : αn(x1, . . . , xn, t)]
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and corresponds to a curve in Pn whose point, when t = 0, belongs to Xα.
The set Xα corresponds then to the limit, viewed in Pn

k, of the image of points
of An

k under α(t) when t goes towards 0.

Proposition 3.3. Let f ∈ SAut(An
k) be an element of degree d > 1, and let α ∈

SAut(An
k((t))) be an element that has a pole at t = 0. If

Xα 6⊂ If ,

then α−1 f α has a pole at t = 0.

Proof. We write
f = ( f1, . . . , fn)

for some f1, . . . , fn ∈ k[x1, . . . , xn] and denote by (a1, . . . , an) the highest homo-
geneous part of f (which is of degree d). In particular, the indeterminacy locus
If ⊂ Pn

k of the extension of f to Pn
k is given by

x0 = 0, a1 = · · · = an = 0.

Because α has a pole at t = 0, we have ν(α) = −m < 0 and can write α =
(t−mα1, . . . , t−mαn), where α1, . . . , αn ∈ k[[t]][x1, . . . , xn] are such that

α̃ = (α1(0), . . . , αn(0))= (α̃1, . . . , α̃n) ∈ End(An
k) \ {0},

and so the subset Xα ⊂ H∞ is described by

Xα = {[0 : α̃1(y1, . . . , yn) : · · · : α̃n(y1, . . . , yn)] | (y1, . . . , yn) ∈ An
k \ α̃

−1({0})}.

The fact that Xα is not included in If yields a point (y1, . . . , yn) ∈An
k \ α̃

−1({0})
and an integer i ∈ {1, . . . , n} such that

ai (α̃1(y1, . . . , yn), . . . , α̃n(y1, . . . , yn)) 6= 0.

In particular, we have

ai (α̃1, . . . , α̃n)= ai (α1(0), . . . , αn(0)) ∈ k[x1, . . . , xn] \ {0}.

Thus ai (t−mα1, . . . , t−mαn) = t−mdai (α1, . . . , αn) has valuation −md, and
hence f α has also valuation −md .

It remains to show that this implies that β = α−1 f α has a pole at t = 0. Indeed,
if β had no pole, we would have ν(αβ)≥ ν(α)=−m, which is impossible since
f α = αβ and ν( f α)=−md. �

Corollary 3.4. Let f ∈ SAut(An
k) be a dynamically regular element.

(1) If α ∈ SAut(An
k((t))) is such that g = α−1 f α has no pole at t = 0, then α and

α−1 have no pole at t = 0. In particular, g(0) is an element of SAut(A2
k) that

is conjugate to f .



954 Jérémy Blanc

(2) For each d ≥ 1, the set {g f g−1
| g ∈ SAut(An

k)≤d} is closed in SAut(An
k).

Proof. (1) We suppose that α has a pole at t = 0, which is equivalent to the fact
that α−1 has a pole at t = 0 (Lemma 2.23), and show that α−1 f α has a pole at
t = 0. If Xα 6⊂ If , this is given by Proposition 3.3. Otherwise, we have Xα 6⊂ If −1 ,
(because If ∩ If −1 = ∅ by hypothesis) and apply the proposition to f −1. This
implies that α f −1α−1 has a pole at t = 0. Hence, α f α−1 has also a pole at t = 0
by Lemma 2.23.

(2) This follows from (1) and Corollary 2.26. �

We obtain thus the following two results.

Proposition 3.5. Let f ∈ SAut(An
k) be a dynamically regular element having the

following property: there exists a function τ : N→ N such that for each conjugate
g ∈ SAut(An

k) of f , there exists h ∈ SAut(An
k) of degree ≤ τ(deg(g)) such that

g = h f h−1.
Then, the conjugacy class of f in SAut(An

k) is closed.

Proof. Let us denote by C ⊂ SAut(An
k) the conjugacy class of f in SAut(An

k). Note
that C is closed (in SAut(An

k)) if and only if

Cd = {g ∈ C | deg(g)≤ d}

is closed in SAut(An
k)≤d for each d ∈ N.

By Corollary 3.4, the set

C ′d = {h f h−1
| h ∈ SAut(An

k)≤d}

is closed in SAut(An
k) for each d .

By hypothesis, we have Cd ⊂ C ′τ(d) for each d ∈ N, which implies that

Cd = C ′τ(d) ∩SAut(An
k)≤d

is closed in SAut(An
k)≤d for each d . �

The additional hypothesis of Proposition 3.5 is fulfilled for all dynamically regular
elements of SAut(A2

k), so we obtain that the conjugacy classes of all dynamically
regular elements of SAut(A2

k) are closed:

Proposition 3.6. Let f ∈ SAut(A2
k) be a dynamically regular element. Then:

(1) If g ∈ SAut(A2
k) is conjugate to f , there exists h ∈ SAut(A2

k), such that

g = h f h−1 and deg(h)2 ≤ deg(g).
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(2) The conjugacy class of f in SAut(A2
k) is closed.

Remark 3.7. The bound of (1) also exists for Bir(A2
k), but is much higher [Blanc

and Cantat 2016].

Proof. Proposition 3.5 yields (1)⇒ (2), so we only need to prove (1).
Recall that, for each g ∈ Aut(A2

k) of degree greater than one, Ig = Xg−1 consists
of one point (Remark 2.13).

Let g = h f h−1 be an element of degree d . Replacing h with h f l , l ∈ Z, we can
assume that

deg(h)≤ deg(h f l), for each l ∈ Z.

We can also assume that deg(h)≥2. This implies, since deg(h)<deg(h f ) deg( f −1),
that If = X f −1= Ih f (Lemma 2.14). Similarly, we have deg(h)<deg(h f −1) deg( f ),
so If −1 = X f = Ih f −1 .

Because the two points If , If −1 ∈ H∞ are distinct, we have Ih 6= If or Ih 6= If −1 . If
Ih 6= If = Ih f , we have deg(h f h−1)=deg(h f ) deg(h−1)≥deg(h) deg(h−1). If Ih 6=

If −1 = Ih f −1 , we have deg(h f −1h−1)= deg(h f −1) deg(h−1)≥ deg(h) deg(h−1).
The degree of an element of Aut(A2

k) and its inverse being the same, we find
deg(g)≥ deg(h)2. �

Proof of Theorem 1.1. Part (1) and (2) correspond to the statements of Corollary 3.4.
Part (3) is provided by Proposition 3.6.

It remains to show (4). For each d ∈ N, the set

Cd = {g f g−1
| g ∈ SAut(An

k)≤d}

is closed in SAut(An
k), and the conjugacy class of f is the infinite union C =

⋃
d Cd .

Let A be an algebraic variety, F : A→ SAut(An
k) be a morphism, and let B ⊂ A

be a locally closed subset which is contained in F−1(C). Writing Bd = F−1(Cd),
the set Bd is closed in B for each d and B =

⋃
d Bd . Since k is uncountable and

Bd ⊂ Bd+1 for each d , we obtain B= Bm for some integer m. Hence, B is contained
in F−1(Cm), which is closed in A, so the closure of B in A is also contained in
F−1(Cm), and thus in F−1(C). �

4. Conjugacy classes of elements in SAut(A2
K )

4A. Overview of the Jung–van der Kulk theorem and its applications. For each
field K , the Jung–van der Kulk theorem [Jung 1942; van der Kulk 1953] asserts
that the group Aut(A2

K ) is generated by the groups

Aff(A2
K )=

{
(ax1+ bx2+ e, cx1+ dx2+ f )

∣∣∣ (a b
c d

)
∈ GL(2, K ), e, f ∈ K

}
,

J(A2
K )= {(ax1+ P(x2), bx2+ c) | a, b ∈ K ∗, c ∈ K, P ∈ K [x2]}.
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Multiplying the decomposition of an element of SAut(A2
K ) with homotheties we

can assume that each one has determinant 1. This implies that the group SAut(A2
K )

is generated by the groups

SAff(A2
K )=

{
(ax1+ bx2+ e, cx1+ dx2+ f )

∣∣∣ (a b
c d

)
∈ SL(2, K ), e, f ∈ K

}
,

SJ(A2
K )= {(ax1+ P(x2), a−1x2+ c) | a ∈ K ∗, c ∈ K , P ∈ K [x2]}.

The Jung–van der Kulk theorem implies that we have an amalgamated product
structure on SAut(A2

K ). It also yields the following classical result. We recall here
the simple proof.

Lemma 4.1. Every element f ∈ SAut(A2
K ) is conjugate either to an element of

SJ(A2
K ) or to an element of the form

f = am jm · · · a1 j1,

where m ≥ 1 and each ai ∈ SAff(A2
K ) \SJ(A2

K ) and each ji ∈ SJ(A2
K ) \SAff(A2

K ).

Proof. We write f as a product of elements of A = SAff(A2
K ) and J = SJ(A2

K ):

f = am jmam−1 · · · a1 j1a0,

where each ai ∈ A and each ji ∈ J . By merging elements we can moreover assume
that ji 6∈ A for i = 1, . . . ,m, and that ai 6∈ J for i = 1, . . . ,m− 1.

Suppose first that m = 0, which implies that f = a0 ∈ A, so it extends to an
element of Aut(P2

K ). The action at infinity has a fixed point, and conjugating by
an element of SL(2, K ), we can assume that this point corresponds to [0 : 1 : 0],
which implies that f preserves the pencil of lines through the point, so f ∈ J .

Suppose now that m ≥ 1, which implies that j1 ∈ J \ A. We conjugate f by a0

and assume that a0 = id. If m = 1 and am = a1 ∈ J , then f ∈ J . If m ≥ 2 and
am ∈ J , we conjugate by j1 and decrease m by 1. This reduces to the case m ≥ 1,
a1 = id, am 6∈ J . �

Remark 4.2. Elements of the form f = am jm · · · a1 j1, where m ≥ 1 and each
ai ∈ SAff(A2

K )\SJ(A2
K ) and each ji ∈ SJ(A2

K )\SAff(A2
K ) are usually called Hénon

automorphisms. Note that each element ji satisfies X ji = Iji = [0 : 1 : 0], and that
each ai extends to an automorphism of P2

K that moves [0 : 1 : 0]. By Lemma 2.14,
this implies that

deg( f )=
m∏

i=1

deg( ji ), If = [0 : 1 : 0], X f = If −1 = am([0 : 1 : 0]).

In particular, If ∩ If −1 =∅, deg( f ) > 1 and deg( f m)= deg( f )m for each m ≥ 1
(Corollary 2.17). Moreover, the conjugacy class of f in SAut(A2

K
) is closed, where

K is the algebraic closure of K (Proposition 3.6).
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Remark 4.3. Elements of SJ(A2
K ) are algebraic since they are contained in an

algebraic subgroup of Aut(A2
K ) (or equivalently have a bounded degree sequence).

Hénon automorphisms are not algebraic as their degree sequence is not bounded.
Hence, Lemma 4.1 corresponds to saying that nonalgebraic elements are conjugate
to Hénon automorphisms, and algebraic automorphisms to elements of SJ(A2

K ).

The following corollary follows from Lemma 4.1, and also holds (with the same
proof) for Aut(A2

k). This was already observed in [Furter 1999].

Corollary 4.4. (1) An element f ∈ SAut(A2
k) is algebraic if and only if

deg( f 2)≤ deg( f ).

(2) The subset SAut(A2
k)alg of algebraic elements of SAut(A2

k) is closed.

Proof. (1)(a) If f is algebraic it is conjugate to an element j ∈ SJ(A2
K ) (Lemma 4.1,

or more precisely Remark 4.3). We can thus write f =α−1 jα where α ∈SAut(A2
K ).

Then α= a1 j1 · · · , where each ai ∈ SAff(A2
K )\SJ(A2

K ) and each ji ∈ SJ(A2
K ) (if α

starts with an element of SJ(A2
K ) \ SAff(A2

K ) we can merge this element with j).
If j /∈ SAff(A2

K ), then deg( f )=
∏

deg( ji )2 deg( j)= deg(α−1) deg( j) deg(α) (see
Remark 4.2) and thus

deg( f 2)= deg(α−1 j2α)≤ deg(α−1) deg( j2) deg(α)≤ deg( f ),

since deg( j2) ≤ deg( j). If j ∈ SAff(A2
K )∩ SJ(A2

K ), then we can replace j with
a−1

1 ja1 and continue like this to obtain either the previous case or f = α−1aα,
where a ∈ SAff(A2

K ), α = j1a1 · · · , each ai ∈ SAff(A2
K ) \ SJ(A2

K ) and each ji ∈
SJ(A2

K ) \SAff(A2
K ). We obtain similarly deg( f 2)≤ deg( f ).

(1)(b) If f is not algebraic, then f is conjugate to a Hénon map h = am jm · · · a1 j1,
where each ai ∈ SAff(A2

K )\SJ(A2
K ) and each ji ∈ SJ(A2

K )\SAff(A2
K ) (Lemma 4.1,

or more precisely Remark 4.3). Writing f = α−1hα, where α ∈ SAut(A2
K ), we can

write as before α as a product of elements of SAff(A2
K ) and SJ(A2

K ), replace h if α
starts with an element j ′1 ∈ SJ(A2

K ) such that j1 j ′1 ∈ SAff(A2
K ) or if it starts with an

element a′1 ∈ SAff(A2
K ) such that (a′1)

−1αm ∈ SJ(A2
K ) and finish with a simplified

writing where we can directly read that deg( f 2) > deg( f ).

(2) It follows from (1) that the set of algebraic elements of SAut(A2
K )≤d is closed

for each d ≥ 1, which implies the second assertion. �

4B. Conjugacy classes of elements of SJ(A2
K ). It is easy to decide whether two

Hénon automorphisms are conjugate, using the amalgamated product structure. The
writing of such an element is unique up to cycling permutation of the elements and
up to inserting elements of SJ(A2

K )∩ SAff(A2
K ). The classification of conjugacy

classes of SAut(A2
K ) thus reduces to the study of elements of SJ(A2

K ).
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Lemma 4.5. Let f ∈ SJ(A2
K ) be some element. After conjugation in this group, the

element belongs to one of the following families:

(i) (ax1, a−1x2), a ∈ K \ {0, 1},
(ii) (x1+ P(x2), x2), P ∈ K [x2],

(iii) (ζ x1+ xm−1
2 P(xm

2 ), ζ
−1x2), ζ ∈ K \ {0, 1}, P ∈ K [x2] \ {0},

ζ a primitive m-th root of unity,

(iv)
{
(x1, x2+ 1),
(x1+ x p−1

2 P(x p
2 ), x2+ 1),

char(K )= 0,
P ∈ K [x2], char(K )= p.

Proof. An element f ∈ SJ(A2
K ) is equal to (ax1 + P(x2), a−1x2 + c) for some

a ∈ K ∗, c ∈ K , P ∈ K [x2].
If a 6= 1, we conjugate by (x1, x2 + ac/(1− a)) and can assume that c = 0.

Conjugating by (x1− λxn
2 , x2) yields (ax1+ P(x2)+ λ(a − a−n)xn

2 , a−1x2). We
can then kill the coefficient of degree n of P , if a 6= a−n . This gives (i) or (iii).

If a = 1 and c= 0, we get (ii). If a = 1 and c 6= 0, we conjugate by (cx1, c−1x2)

and can assume that c = 1. Conjugating (x1+ P(x2), x2+ 1) by (x1− λxn+1
2 , x2)

yields (x1+ P(x2)+λ(x
n+1
2 −(x2+1)n+1), x2+1). We can thus kill the coefficient

of degree n if n+ 1 is not a multiple of char(K ). This gives (iv). �

The most complicated case corresponds to family (iv), in the case of a field of
characteristic p > 0. In order to describe the conjugacy classes in this family, we
will need the following lemma.

Lemma 4.6. Let K be a field of characteristic p>0. Let V ⊂K [x] be the subvector
space given by

V = {x p−1 P(x p) | P ∈ K [x]},

and let δ, N be the following K -linear maps

δ : K [x] −→ K [x], F(x) 7−→ F(x + 1)− F(x),

N : K [x] −→ K [x], F(x) 7−→ F(x)+ F(x + 1)+ · · ·+ F(x + p− 1).

Then, Im(δ)= Ker(N ) and K [x] = V ⊕ Im(δ)= V ⊕Ker(N ).

Proof. (1) We first show that V + Im(δ)= K [x]. This is the same argument as in
Lemma 4.5(iv). We take any polynomial P(x)=

∑l
j=1 a j x j

∈ K [x]. If P 6∈ V , we
can define m to be the biggest integer such that am 6= 0 and m + 1 6≡ 0 (mod p).
Replacing P with P̃(x)= P(x)−δ(am xm+1/(m+1)), we kill the coefficient of xm .
Continuing this process until all coefficients ai with i + 1 6≡ 0 (mod p) are zero,
we obtain an element of V .
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(2) We now show that Ker(N )∩V = {0}. Let F(x)=
∑n

i=1 ai x i p−1 be an element
of V , and assume that an 6= 0. Since

N (F(x))=
n∑

i=1

ai

( p−1∑
k=0

(x + k)i p−1
)
,

the coefficient of xnp−p of N (F(x)) is equal to

an

( np−1
np− p

) p−1∑
k=0

k p−1
= an

( np−1
np− p

)
(p− 1) ∈ K ∗.

This shows that F /∈ Ker(N ). Hence V ∩Ker(N )= {0}.

(3) The inclusion Im(δ)⊂ Ker(N ) follows from the definition of δ and N , so we
obtain V ∩ Im(δ)= {0} by (2). Moreover, since Ker(N ) is contained in Im(δ)⊕ V
(by (1)) and Ker(N )∩ V = {0}, we have Im(δ)= Ker(N ). �

Remark 4.7. The equality Ker(N ) ∩ V = {0} of Lemma 4.6 corresponds to the
fact that an element of the form

(x1+ x p−1
2 P(x p

2 ), x2+ 1),

where P ∈ K [x2], char(K ) = p (family (iv)) is of order p if and only if P = 0.
Indeed,

(x1+ Q(x2), x2+ 1)p
= (x1+ Q(x2)+ · · ·+ Q(x2+ p− 1), x2),

for each Q ∈ K [x2].

We will also need the following lemma, which is a direct consequence of the
amalgamated product structure of SAut(A2

K ).

Lemma 4.8. Let f ∈ SJ(A2
K ), which is not conjugate to (ax1, a−1x2), a ∈ K ∗ or to

(x1+1, x2) or (x1, x2+1) in the group SJ(A2
K ). Then, f is conjugate to an element

of g ∈ SJ(A2
K ) in the group SAut(A2

K ) if and only if it is conjugate to g in SJ(A2
K ).

Proof. We suppose that g = α f α−1
∈ SJ(A2

K ), for some α ∈ SAut(A2
K ) \ SJ(A2

K ).
We can write α as

α = jm+1am jm · · · j2a1 j1,

where m ≥ 1, each ji ∈ SJ(A2
K ), each ai ∈ SAff(A2

K ), and such that ai 6∈ SJ(A2
K )

for i = 1, . . . ,m, ji /∈ SAff(A2
K ) for i = 2, . . . ,m−1. Since α f α−1

∈ SJ(A2
K ), the

element j1 f j−1
1 belongs to SAff(A2

K )∩SJ(A2
K ), and the same holds for the element

a1 j1 f j−1
1 a−1

1 .
The fact that f1 = j1 f j−1

1 and f2 = a1 j1 f j−1
1 a−1

1 belong to SAff(A2
K )∩SJ(A2

K )

corresponds to the fact that both extend to automorphisms of P2
K that fix the point

[0 : 1 : 0] at infinity. However, a1 ∈ SAff(A2
K ) \ SJ(A2

K ) so it extends to an
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automorphism of P2
K , whose action at the infinity moves the point [0 : 1 : 0]. This

implies that f1 fixes at least two points at infinity. Conjugating by an element of
SAff(A2

K )∩ SJ(A2
K ) we can assume that these points are [0 : 1 : 0] and [0 : 0 : 1].

This implies that f1 = (ax1 + b, a−1x2 + c), for some (a, b, c) ∈ K ∗ × K 2. It
remains to see that f1 is conjugate to (ax1, a−1x2), (x1+ 1, x2) or (x1, x2+ 1), in
the group SJ(A2

K ). This is a straight-forward calculation, already done in the proof
of Lemma 4.5. �

Proposition 4.9 (Conjugacy classes of algebraic elements in SAut(A2
K )). Every

algebraic element of SAut(A2
K ) is conjugate to one of the families (i)–(iv) of

Lemma 4.5.
Apart from (x1, x2+ 1), which is conjugate to (x1+ 1, x2), no two elements of

distinct families are conjugate in SAut(A2
K ). Moreover, the conjugacy classes in

SAut(A2
K ) within the families are as follows:

(i) (ax1, a−1x1)∼ (bx1, b−1x2)⇐⇒ a = b±1.

(ii) (x1 + P(x2), x2) ∼ (x1 + Q(x2), x2) ⇐⇒ Q(x2) = a P(ax2 + b) for some
(a, b) ∈ K ∗× K .

(iii) (ζ x1 + xm−1
2 P(xm

2 ), ζ
−1x2) is conjugate to (ζ x1 + xm−1

2 am P(axm
2 ), ζ

−1x2)

for each a ∈ K ∗, but not to any other element of family (iii).

(iv) Two elements

f = (x1+ x p−1
2 P(x p

2 ), x2+ 1), g = (x1+ x p−1
2 Q(x p

2 ), x2+ 1),

where P, Q ∈ K [x2], are conjugate if and only their p-th powers,

f p
= (x1+ P̃(x2), x2), g p

= (x1+ Q̃(x2), x2),

where P̃, Q̃ ∈ K [x2], satisfy Q̃(x2)= P̃(x2+ c) for some c ∈ K .

Proof. The first assertion follows from Lemma 4.1 (see Remark 4.3). It remains
to describe the conjugacy classes in the families (i)–(iv). We first observe that
if α ∈ SL(2, K ) is conjugate by ν ∈ SAut(A2

K ) to an element β ∈ SAut(A2
K )

that fixes the origin, the derivative of the equation αν = νβ at the origin yields
αDν(0) = Dν(0)Dβ(0), so the derivative of β at the origin is conjugate to α in
SL(2, K ). This shows that the families (i) and (ii) are disjoint, and gives the
conjugacy classes in (i).

We now observe that two elements f = (x1+P(x2), x2) and (x1+Q(x2), x2) are
conjugate in SAut(A2

K ) if and only if they are conjugate in SJ(A2
K ). This is given by

Lemma 4.8, if f or g is not conjugate to (x1+ 1, x2) or (x1, x2) in SJ(A2
K ), and is

trivial in the remaining cases (when both f and g are conjugate to one of these two
elements). It remains to observe that the conjugation of f = (x1+ P(x2), x2) by
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(ax1+ R(x2), a−1(x2− b)) yields (x1+ a P(ax2+ b), x2) to obtain the conjugacy
classes in (ii).

An element f = (ζ x1+ xm−1
2 P(xm

2 ), ζ
−1x2) in family (iii) satisfies

f m
= (x1+mxm−1

2 P(xm
2 ), x2) 6= (x1, x2).

Since f m belongs to family (ii), f m (and thus f ) is not conjugate to an element
of family (i). Moreover, f is not conjugate to an element of family (ii) because
ζ−1
∈ K \{0, 1} is an eigenvalue of the action of f ∗ on K [x1, x2]. By Lemma 4.8, f

is conjugate to another element g of family (iii) in SAut(A2
K ) if and only if this con-

jugation holds in SJ(A2
K ). Looking at the second coordinate, we have to conjugate

by α= (ax1+R(x2), a−1x2). This implies that g= (ζ x1+xm−1
2 Q(xm

2 ), ζ
−1x2) for

some polynomial Q. Looking at gm
= α f mα−1

= (x1+mam xm−1
2 P((ax2)

m), x2),
we obtain Q(xm

2 )= am P((ax2)
m). This yields a necessary condition on Q, which

is also sufficient, by choosing R = 0.
It remains to study the last class (iv). The element (x1, x2+ 1) is conjugate to

(x1+ 1, x2) by (x2,−x1). If char(K )= 0, there is no other element in the family.
So we assume that char(K )= p > 0, and consider f = (x1+ x p−1

2 P(x p
2 ), x2+ 1),

for some polynomial P ∈ K [x2] \ {0}. Because the action of f ∗ on K [x1, x2] has
only eigenvalues equal to 1, f is not conjugate to any element of family (i) or (iii).
Moreover, the fact that P 6= 0 implies that f p is not the identity (see Remark 4.7).
Hence, f is not conjugate to an element of family (ii).

We then take g = (x1+ x p−1
2 Q(x p

2 ), x2+ 1), for some Q ∈ K [x2], write

f p
= (x1+ P̃(x2), x2), g p

= (x1+ Q̃(x2), x2),

for some P̃, Q̃ ∈ K [x2], and show that f and g are conjugate if and only if
Q̃(x2)= P̃(x2+ c) for some c ∈ K . This will conclude the proof.

Suppose first that f is conjugate to g. Lemma 4.8 yields the existence of
α ∈ SJ(A2

K ) such that α f α−1
= g. Looking at the second coordinate, we see

that α = (x1 + R(x2), x2 − c) for some R ∈ K [x2], c ∈ K . Then, α f pα−1
=

(x1+ P̃(x2+ c), x2), which implies that Q̃(x2)= P̃(x2+ c) as we wanted.
Conversely, suppose that Q̃(x2)= P̃(x2+c) for some c ∈ K . We conjugate then

g with (x1, x2+ c); this changes maybe the polynomial Q, and replaces Q̃ with P̃ .
Hence, we can assume that f p

= g p. This corresponds to the equality

N (x p−1
2 P(x p

2 ))= N (x p−1
2 Q(x p

2 )),

where N : K [x2] → K [x2] is the K -linear map that sends f (x2) to f (x2) +

f (x2+1)+· · ·+ f (x2+ p−1). The element x p−1
2 Q(x p

2 )−x p−1
2 P(x p

2 ) is an element
of the kernel of N , and is thus equal to R(x2+ 1)− R(x2) for some polynomial
R ∈ K [x2] (Lemma 4.6). This corresponds to the fact that f is conjugate to g by
α = (x1+ R(x2), x2). �
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4C. Degenerations between the four families of conjugacy classes. In the re-
maining part of the article, we show that every algebraic element of SAut(A2

K )

admits a degeneration of conjugates towards a diagonalisable element.

4C1. From family (ii) and (iii) to family (i). These are the easiest degenerations.
Taking any f ∈ SAut(A2

K ) that belongs to family (ii) or (iii), and conjugating by
diagonal elements of SAut(A2

K (t)) we obtain elements of SAut(A2
K [t]) which yield

families of conjugates of f that converge towards an element of family (i). Indeed,
we have

(t x1, t−1x2)(x1+ P(x2), x2)(t
−1x1, t x2)= (x1+ t P(x2), x2),

(t x1, t−1x2) f (t−1x1, t x2)= (ζ x1+ tm xm−1
2 P(t xm

2 ), ζ
−1x2).

In particular, there is a diagonalisable element in the closure of the conjugacy
class of any element of families (ii) and (iii), and thus of any algebraic element of
SAut(A2

K ), if char(K )= 0.

4C2. Family (iv). The last family, when char(K )= p > 0, is the most interesting.
The elements of this family are of the form (x1+Q(x2), x2+1), for some polynomial
Q ∈ K [x2]. Diagonal conjugations by (t x1, t−1x2) or (t−1x1, t x2) yield elements
of SAut(A2

K [t±1
]
) which do not have a value at t = 0.

In the following proposition, we provide two explicit degenerations, typical to
positive characteristic, to either (x1, x2+ 1) or the identity.

Proposition 4.10. Assume that char(K )= p > 0 and let

f = (x1+ Q(x2), x2+ 1)

for some polynomial Q ∈ K [x2].
Then, there are two elements F1, F2 ∈ SAut(A2

K [t]), which are conjugate to f in
SAut(A2

K [t±1]
), and have the following properties:

(1) For each t ∈ K \{0}, F1(t),F2(t)∈SAut(A2
K ) are conjugate to f in SAut(A2

K ).

(2) F1(0)= (x1, x2+ 1), F2(0)= (x1, x2).

Proof. If Q = 0, we can choose F1(t)= f and F2(t) to be the conjugation of f by
(t−1x1, t x2) ∈ SAut(A2

K [t±1]
).

We can thus assume that Q 6= 0, denote by d ≥ 0 the degree of Q and by µ ∈ K ∗

the coefficient of degree d . We then choose some integer a≥ 1 such that q= pa > d ,
write λ= 1/µq

∈ K ∗, and define

α =

(
x1

td , td x2+ λxq
1 +

1
t

)
∈ SAut(A2

K [t,t−1]
).
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A direct computation yields

α−1 f α

=

(
x1+td Q

(
td x2+λxq

1+
1
t

)
, x2+

1
td+

λxq
1

td −
λ

td

(
x1+td Q

(
td x2+λxq

1+
1
t

))q)
.

The definition of d and µ implies that we can write

Q
(

td x2+ λxq
1 +

1
t

)
=
µ

td +
P

td−1 ,

for some P ∈ K [x1, x2, t]. This yields (remembering that λµq
= 1), the following

equality

α−1 f α=
(

x1+µ+ t P, x2+
1
td −

λ

td (µ+ t P)q
)
=
(
x1+µ+ t P, x2−λtq−d Pq).

Because q > d, the value of this element of SAut(A2
K [t]) at t = 0 is (x1+µ, x2).

Conjugating α−1 f α with (−µx2, µ
−1x1) yields thus F1.

To get F2, we recall that (t x1, t−1x2)(x1 +µ, x2)(t
−1x1, t x2) = (x1 + tµ, x2).

We are then tempted to use (t x1, t−1x2)α
−1 f α(t−1x1, t x2), but this element has in

general no value at t = 0. We then choose m > 0 and define β to be

β =

(
x1

tmd , tmd x2+ λxq
1 +

1
tm

)
∈ SAut(A2

K [t,t−1]
).

Since β is obtained from α by replacing t with tm , we obtain

β−1 fβ =
(
x1+µ+ tm P(x1, x2, tm), x2− λtm(q−d)P(x1, x2, tm)q

)
.

We can now define F2(t)= (t x1, t−1x2)β
−1 fβ(t−1x1, t x2), which is equal to

F2(t)=
(
x1+ tµ+ tm+1 P(t−1x1, t x2, tm), x2− λtm(q−d)−1 P(t−1x1, t x2, tm)q

)
.

Choosing m big enough, F2 is defined at t = 0 and F2(t)= (x1, x2). �

4D. The diagonalisable elements. In order to finish the proof of Theorem 1.3 it
remains to show that the conjugacy classes of diagonalisable elements is closed.
This was shown in [Furter and Maubach 2010], for the group Aut(A2

C
), but with

transcendental methods. In the case of SAut(A2
k), we can however give a simple

proof, that works for any algebraically closed field k.
The proof uses the following result, which follows from the amalgamated struc-

ture product.

Lemma 4.11. Let K be any field, let µ ∈ K ∗, f = (µx1, µ
−1x2) ∈ SAut(A2

K ), and
g ∈ SAut(A2

K ) be a conjugate of f in this group. Then, there exists α ∈ SAut(A2
K )

such that
g = α−1 f α and degα ≤ deg g.
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Proof. We write g = α−1 f α for some α ∈ SAut(A2
K ), and write α as a product of

elements of SAff(A2
K ) and SJ(A2

K ), in a reduced way (no two consecutive elements
belong to the same group). Note that f is conjugate to f −1 by (x2,−x1), so we
can easily exchange f with f −1 if needed.

If α starts with an element a ∈ SAff(A2
K ), then a′ = a−1 ja ∈ SAff(A2

K ). If a′

does not belong to SJ(A2
K ), then deg(g)= deg(α) deg(α−1)= deg(α)2 (the degree

is the product of the Jonquières elements that occur, see Remark 4.2). If a′ belongs
to SJ(A2

K ), then it is conjugate to f or f −1 in SJ(A2
K ) (Proposition 4.9), and we

can thus replace a with an element of SJ(A2
K ) and either decrease the length of α

or it reduces to the case α ∈ SJ(A2
K ).

Suppose now that α starts with an element j ∈ SJ(A2
K ). Replacing j with

ρ j , where ρ is diagonal, we can assume that j = (x1+ P(x2), x2+ c), for some
P ∈ K [x2] and c ∈ K , we thus obtain

j ′= j−1 f j =
(
µx1+P(x2)µ−P(x2+c(µ−1

−1)), µ−1x2+c(µ−1
−1)

)
∈SJ(A2

K ).

We have therefore deg(P(x2))≥ P(x2)µ−P(x2+c(µ−1
−1)), and if equality does

not hold we can kill the highest coefficient of P without changing j ′ = j−1 f j . We
reduce then to the case where deg j ′ = deg j . If this degree is 1, then j ∈ SAff(A2

K )

and we can reduce the length of α, or obtain deg(α)=1. The remaining case is when
deg j ′ = deg j . The result is then obtained if α = j . Otherwise, α = ja1 j1 · · · is a
reduced writing, as well as g= · · · j−1

1 a−1
1 j ′a1 j1 · · · . We again find deg g ≥ degα.

�

Proposition 4.12. Let µ ∈ k∗, f = (µx1, µ
−1x2) ∈ SAut(A2

k) and d ≥ 1. The set

C( f )= {g f g−1
| g ∈ Aut(A2

k)} = {g f g−1
| g ∈ SAut(A2

k)}

is closed in SAut(A2
k).

Proof. The equality between the two sets is obvious: if g ∈ Aut(A2
k), we have

g′ = gτ ∈ SAut(A2
k) for some diagonal τ ∈Aut(A2

k), so g f g−1
= g′ f g′−1. We can

moreover assume that µ 6= 1, otherwise the result is trivial. We fix some integer
d ≥ 1, write Z = SAut(A2

k)≤d and we will show that C( f )∩ Z is closed in Z (this
gives the result by Lemma 2.7).

We consider the morphism of algebraic varieties Z → Aut(A2
k)≤d2 given by

g 7→ g f g−1 and denote by Y ⊂ SAut(A2
k)≤d the preimage of Z . This gives rise to

a morphism ϕ : Y → Z , whose image is equal to C( f )∩ Z by Lemma 4.11. By
Corollary 2.26, it suffices to take an irreducible k-curve 0, a rational map ι : 0 99KY
such that ϕ̂ = ϕ ◦ ι : 0 99K Z is defined at a smooth point p ∈ 0, and to show that
the image g = ϕ̂(p) ∈ Z belongs to C( f ).

Note that ι corresponds to an element α ∈ Aut(A2
k(0)), and that ϕ̂ corresponds

to the element α f α−1
∈ Aut(A2

k(0)), which is defined at p and whose value at p
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corresponds to g. Since the set of algebraic elements is closed (Corollary 4.4),
the element g is conjugate to an element of SJ(A2

k) (Remark 4.3). Looking at
the actions on k(0)[x1, x2], we find that f ∗(x1) = µx1 so (α f α−1)∗(v) = µv,
where v = (α−1)∗(x1) ∈ k(0)[x1, x2]. Replacing v with λv, where λ ∈ k(0),
does not change the equation (α f α−1)∗(v) = µv. We can therefore assume that
α ∈ Op(0)[x1, x2] and that its value at p is not zero. This shows that µ is also
an eigenvalue of g∗. By Lemma 4.5, g is conjugate in SJ(A2

k) to (νx1, ν
−1x2), for

some ν ∈ k \ {0, 1}, or to (ζ x1+ xm−1
2 P(xm

2 ), ζ
−1x2) for some primitive m-th root

of unity ζ , and P ∈ k[x2] \ {0}, and µ belongs to the subgroup of (k∗, · ) generated
by ν or by ζ , respectively. Let us observe that the second case is not possible.
Indeed, otherwise we would have f m

= id, so (α f α−1)m = id and thus gm
= id,

which is not the case since P 6= 0. We can thus assume, after composing α with an
element of SAut(A2

k), that g = (νx1, ν
−1x2) for some ν ∈ k \ {0, 1}.

Denote by U ⊂0 the dense open subset where ι is defined and where 0 is smooth.
Replacing 0 with U ∪ {p}, we can assume that U = 0 \ {p} (if p ∈U , the result
is obvious), and thus that ϕ̂ is a morphism ϕ̂ : 0→ Z . Denote by κ : 0 99K A2

k
the rational map given by κ(u)= ι(u)(0, 0), when u ∈U (the image of the origin
of A2

k).
We now prove that κ is defined at p. To do this, we define F ⊂ 0×A2

k to be
the closed set F = {(c, (x1, x2)) | ϕ̂(c)(x1, x2) = (x1, x2)}. Since F is given by
only two equations, each irreducible component of F has dimension at least 1. The
intersection of F with u×A2

k yields one point, for each u ∈ 0, hence the projection
to 0 yields an isomorphism π : F→ 0 (because 0 is smooth). The rational map
0 99K F given by u 7→ (u, κ(u)) corresponds to the identity, and is thus defined
at p.

The map (x1, x2) 7→ (x1, x2) + κ(u) corresponds therefore to an element of
Aut(A2

O(0)), and replacing α with its composition by this one, we can assume
that α fixes the origin. We obtain thus that the derivative of α f α−1 at the origin
is conjugate to f by an element of SL(2, k), for each u ∈ U , so its eigenvalues
are µ and µ−1, for any point of U . At the point p, we obtain g = (νx1, ν

−1x2),
which implies that ν = µ±1, so that g and f are conjugate in SAut(A2

k) as we
wanted. �

Proof of Theorem 1.3. By Lemma 4.1 and Remarks 4.2 and 4.3, an algebraic element
of SAut(A2

k) is conjugate to an element of SJ(A2
k) and a nonalgebraic element is

conjugate to a Hénon automorphism, which is dynamically regular. In the latter
case, the conjugacy class is closed by Theorem 1.1; this gives (3).

By Proposition 4.12, if f ∈ SAut(A2
k) is diagonalisable, its conjugacy class is

closed.
If f ∈ SAut(A2

k) is algebraic but not diagonalisable, it is conjugate to an element
of the families (ii), (iii) or (iv) of Lemma 4.5. The existence of the degeneration
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stated in (2) is given in Section 4C1 for families (ii), (iii) and in Proposition 4.10
for family (iv). �
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Inversion of adjunction for
rational and Du Bois pairs

Sándor J. Kovács and Karl Schwede

We prove several results about the behavior of Du Bois singularities and Du Bois
pairs in families. Some of these generalize existing statements about Du Bois
singularities to the pair setting while others are new even in the nonpair setting.
We also prove a new inversion of adjunction result for Du Bois and rational pairs.
In the nonpair setting this asserts that if a family over a smooth base has a special
fiber X0 with Du Bois singularities and the general fiber has rational singularities,
then the total space has rational singularities near X0.

1. Introduction

Rational singularities have been the gold standard for “mild” singularities in al-
gebraic geometry for several decades. Whenever a new class of varieties with
singularities is discovered, the first question usually asked is whether or not the
new varieties have rational singularities. A key reason for this is that varieties
with rational singularities behave cohomologically as if they were smooth. How-
ever, for many purposes rational singularities are not broad enough. For instance,
nodes are not rational singularities, and more generally, singularities appearing on
stable varieties, that is, mild degenerations of smooth ones that are necessary to
consider in order to compactify moduli spaces, are not always rational. The class of
Du Bois (or DB) singularities is slightly more inclusive than rational singularities.
Du Bois singularities behave cohomologically as if they had simple normal crossing
singularities (i.e., a higher-dimensional version of nodes).

Recently, Kollár [2013] and Kovács [2011a] introduced the notions of rational
and Du Bois pairs (X, D) for a normal variety X and a reduced divisor D ⊆ X .
These notions are philosophically distinct from the singularities considered typi-
cally in the minimal model program since (X, D) having rational (respectively Du
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Bois) singularities does not generally imply that the ambient space X has rational
(respectively Du Bois) singularities [Kollár 2013, Remark 2.81(2)] (respectively
Examples 2.10, 2.14, and [Graf and Kovács 2014]). Instead the singularities of
(X, D) measure the connection between the singularities of X and D (a notion
obviously connected with problems related to inversion of adjunction). Furthermore,
like Du Bois singularities, if (X, Z) is a Du Bois pair then the ideal sheaf of Z
satisfies various Kodaira-type vanishing theorems, an observation which we hope
will be useful in the future.

Even though a priori rational and Du Bois singularities are not part of the class
one usually associates with the minimal model program, these singularities play
important roles in both the minimal model program and moduli theory via the fact
that (semi)log canonical singularities are Du Bois [Kovács et al. 2010; Kollár and
Kovács 2010]. In addition, Du Bois singularities have played important roles in
various other contexts recently. They are arguably the largest class of singularities
for which we know that Kodaira vanishing holds [Patakfalvi 2015], they appear
in proofs of extension and other vanishing theorems [Greb et al. 2011], positivity
theorems [Schumacher 2012], categorical resolutions [Lunts 2012], log canonical
compactifications [Hacon and Xu 2013] and many other results more directly related
to the minimal model program.

It is now a basic tenet of the minimal model program that the right way to study
singularities is via pairs; see [Kollár 1997; 2013]. This allows for more freedom in
applications and makes inductive arguments easier. The same is true for rational and
Du Bois singularities. The introduction of Du Bois pairs streamlined some existing
proofs (see [Kollár 2013, Chapter 6]) and extended the realm of applications.

In this paper we extend several recent results on Du Bois singularities to the
context of Du Bois pairs, notably the recent results on deformations of Du Bois singu-
larities found in [Kovács and Schwede 2011a] and the requisite injectivity theorem,
a result of Kollár and Kovács on the behavior of depth in Du Bois families, and the
characterization of Cohen–Macaulay Du Bois singularities of [Kovács et al. 2010].

Furthermore, we prove a new inversion of adjunction statement for rational and
Du Bois pairs. This statement is new even in the nonpair setting. Roughly speaking,
in the nonpair setting it says that if f : X→ B is a family over a smooth base such
that the general fiber has rational singularities and the special fiber has Du Bois
singularities, then X has rational singularities in a neighborhood of the special fiber.
See Theorem E below for the general statement.

We state each of these theorems below. We begin with the deformation statement.

Theorem A (Theorem 4.2). Let X be a reduced scheme essentially of finite type
over C, Z ⊆ X a reduced subscheme and H a reduced effective Cartier divisor
on X that does not contain any component of Z. If (H, Z ∩ H) is a Du Bois pair,
then (X, Z) is a Du Bois pair near H.
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Just as in the nonpair setting, to prove this we first show an injectivity theorem.

Theorem B (Theorem 3.2). Let X be a reduced scheme over C and Z ⊆ X a
reduced subscheme. Then the natural map

8 j
: Ext j

OX
(�0

X,Z , ω
•

X ) ↪→ Ext j
OX
(IZ , ω

•

X )

is injective for every j ∈ Z .

Here Ext j
OX
( , ω•X ) is shorthand to denote h j(R HomOX

( , ω•X )).
We also generalize some of the results of [Kollár and Kovács 2010] for families

to the context of Du Bois pairs.

Theorem C (Corollary 5.6). Let f : (X, Z) → B be a flat projective family
with OZ ,IZ flat over B as well. Assume that all the fiber pairs (Xb, Zb) are
Du Bois. Assume also that B is connected and the generic fibers (IZ )gen are
Cohen–Macaulay. Then all the fibers (IZ )b are Cohen–Macaulay.

We have a multiplier ideal/module like characterization of Du Bois pairs.

Theorem D (Theorem 6.3). Let X be a normal variety and Z ⊆ X a divisor.
Further, let π : X̃→ X be a log resolution of (X, Z) with E = π−1(Z)red∨ exc(π).
If IZ is Cohen–Macaulay then (X, Z) is Du Bois if and only if

π∗ωX̃ (E)' ωX (Z).

All of the results above are used in the proof of our inversion of adjunction result.

Theorem E (Theorem 7.1). Let f : X → B be a flat projective geometrically
integral family over a smooth connected base B with dim B ≥ 1, H = f −1(0) the
special fiber, and D a reduced codimension-1 subscheme of X which is flat over B.
Assume that (H, D|H ) is a Du Bois pair and that (X \ H, D \ H) is a rational pair.
Then (X, D) is a rational pair.

This last result is new even in the case D = 0; see Corollary 7.8. In the special
case when X \ H is smooth and D = 0, Theorem E follows from [Schwede 2007,
Theorem 5.1].

Statements similar to Theorem E have been proved in many related situations.
For instance, assume D = 0, X \ H is canonical and H is semi–log canonical.
Then it follows from inversion of adjunction that X has canonical singularities,
see [Kollár and Shepherd-Barron 1988, Theorem 5.1; Karu 2000, Theorem 2.5;
Kawakita 2007]. A nonexhaustive list of some other related results includes [Fedder
and Watanabe 1989, Proposition 2.13; Schwede 2009; Hacon 2014; Erickson 2014].
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2. Definitions and basic properties

2A. Rational pairs. First we recall the notion of rational pairs defined by Kollár
and Kovács, as described in [Kollár 2013, Chapter 2]. Note that a similar notion
was defined by Schwede and Takagi [2008]. The two notions are closely related,
but different. Their relationship is similar to how dlt singularities compare to klt
singularities. Here we will discuss the former notion which in the dlt versus klt
analogy corresponds to dlt.

In this subsection we work over an algebraically closed field k, although in the
rest of the paper we restrict to working over the complex numbers.

Definition 2.1. Let X be a normal variety and D⊆ X an integral Weil divisor on X .
A log resolution (Y, DY )−→

π (X, D) is a resolution of singularities such that DY

is the strict transform of D, and such that (DY )red ∪ exc(π) is a simple normal
crossing divisor.

Definition 2.2. A reduced pair (X, D) consists of a normal variety X and a reduced
divisor D on X . For the definition of an snc pair, the strata of an snc pair and other
normal crossing conditions please refer to [Kollár 2013, Definition 1.7].

One frequently wants log resolutions that do not blow up unnecessary centers.
One good way to achieve this is with a thrifty resolution.

Definition 2.3 (thrifty resolution [Kollár 2013, Definition 2.79]). Let (X, D) be a
reduced pair. A thrifty resolution of (X, D) is a resolution π : Y → X such that:

(a) DY = π
−1
∗

D is a simple normal crossing divisor.

(b) π is an isomorphism over the generic point of every stratum of the snc locus
of (X, D) and π is an isomorphism at the generic point of every stratum
of (Y,DY ).

Item (b) can also be replaced by:

(b′) The exceptional set E of π does not contain any stratum of (Y, DY ) and π(E)
does not contain any stratum of the simple normal crossing locus of (X, D).

We can now define rational pairs [Kollár 2013, Section 2.5].

Definition 2.4 (rational pairs). A reduced pair (X, D) is called a rational pair if
there exists a thrifty resolution π : (Y, DY )→ (X, D) such that:

(i) OX (−D)' π∗OY (−DY ).

(ii) R iπ∗OY (−DY )= 0 for all i > 0.

(iii) R iπ∗ωY (DY )= 0 for all i > 0.
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If (X, D) is a rational pair, and is in characteristic zero, then every thrifty
resolution satisfies the properties (i), (ii), (iii) above [Kollár 2013, Corollary 2.86].
Even better though, property (iii) always holds in characteristic zero, as we point
out below, whether or not (X, D) is a rational pair.

Theorem 2.5. Assume that char k = 0, and let (X, D) be a reduced pair and
π : (Y, DY )→ (X, D) a thrifty resolution. Then R iπ∗ωY (DY )= 0 for all i > 0.

Proof. This follows from [Kollár 2013, Theorem 10.39]. �

Alternatively, one can prove Theorem 2.5 directly:

Claim 2.6. Let π : E → D be a proper birational map between reduced equidi-
mensional C-schemes of finite type such that E is a simple normal crossing divisor
in some smooth ambient space. Assume that π is birational onto its image when
restricted to every strata of E (in particular, also each irreducible component of E).
Then R iπ∗ωE = 0 for i > 0.

Proof. We proceed by induction on dim D and the number of irreducible components
of E , and note that the base case is simply Grauert–Riemenschneider vanishing
[Grauert and Riemenschneider 1970]. Write E = E0∪E ′, where E0 is an irreducible
component of E and E ′ denotes the remaining irreducible components. We have a
short exact sequence

0→ OE → OE0 ⊕OE ′→ OE0∩E ′→ 0.

Dualizing we obtain

0→ ωE0 ⊕ωE ′→ ωE → ωE0∩E ′→ 0.

The intersection E0 ∩ E ′ is a simple normal crossing divisor in the smooth ambient
space E0. It is also a union of strata of E and hence π is still birational when
restricted to each strata of E ′ ∩ E0. Applying R iπ∗ and the inductive hypothesis
to E0, E ′ and E0 ∩ E ′ proves the claim. �

Alternative proof of Theorem 2.5. Push forward the short exact sequence

0→ ωY → ωY (DY )→ ωDY → 0

via π and apply the claim to ωDY and ωY . Note that the thrifty resolution hypothesis
guarantees that π is birational when restricted to any strata of DY (since it is an
isomorphism at the generic point of each strata). �

This gives us the following criterion.

Proposition 2.7. Let (X, D) be a reduced pair and π : (Y, DY )→ (X, D) a thrifty
resolution. Then (X, D) is a rational pair if and only if

R Hom •OX
(OX (−D), ω•X )' R π∗ωY (DY )[dim X ] ' π∗ωY (DY )[dim X ]
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for some thrifty resolution. Furthermore, in characteristic zero the second isomor-
phism is automatic.

Proof. Observe that the conditions (i) and (ii) of Definition 2.4 are equivalent to
the isomorphism R π∗OY (−DY )' OX (−D). Applying Grothendieck duality and
condition (iii) to this isomorphism yields the statement. The characteristic zero
statement is simply Theorem 2.5. �

2B. Notation. Throughout the rest of this paper, all schemes will be assumed to be
Noetherian separated schemes and essentially1 of finite type over C. Given divisors
D =

∑
ai Di and D′ =

∑
bi Di on a normal variety (possibly allowing ai , b j to be

zero), we define

D∨ D′ =
∑

max(ai , bi )Di and D∧ D′ =
∑

min(ai , bi )Di .

Of course, if D and D′ have no common components then D∨ D′ = D+ D′ and
D ∧ D′ = 0. On a scheme X essentially of finite type over C, we use D( ) =

R Hom •OX
( , ω•X ) to denote the Grothendieck duality functor.

2C. Du Bois pairs. The notion of Du Bois singularities is becoming more and
more part of basic knowledge in higher-dimensional geometry. In particular, for
the notion of the Deligne–Du Bois complex of a scheme of finite type over C and
its degree zero associated graded complex, denoted by �0

X , we refer the reader to
[Kollár 2013, Section 6.1].

In contrast, the notion of Du Bois pairs is relatively new and so here we discuss
some of its basic properties.

Given a (possibly nonreduced) subscheme Z ⊆ X one has an induced map
in Db

coh(X),
�0

X →�0
Z ,

noting that by definition �0
Z =�

0
Zred

. Then �0
X,Z is defined to be the object in the

derived category making the following an exact triangle:

�0
X,Z →�0

X →�0
Z
+1
−→ . (2.7.1)

If IZ is the ideal sheaf of Z , then it is easy to see that there is a natural map
IZ →�0

X,Z [Kovács 2011a, Section 3.D].

Definition 2.8 [Kovács 2011a, Definition 3.13]. We say that (X, Z) is a Du Bois
pair (or simply a DB pair) if the above map IZ →�0

X,Z is a quasi-isomorphism.

In the original definition of a Du Bois pair in [Kovács 2011a] it was assumed
that Z is reduced. As it turns out, this is not a necessary hypothesis.

1that is, a localization of a finite type scheme
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Lemma 2.9. If (X, Z) is a Du Bois pair and X is reduced, then Z is reduced.

Proof. Note that �0
Z = �

0
Zred

and so �0
X,Z ' �

0
X,Zred

. On the other hand, we also
have an exact sequence,

0 // h0(�0
X,Z )

'

��

// h0(�0
X )

'

��

// h0(�0
Z )

'

��

0 // IIm(ZSN
red)⊆XSN // OXSN // OZSN

red

where XSN, ZSN
red are the seminormalizations of X and Zred respectively, and the

right two isomorphisms come from [Saito 2000]. Note that the scheme-theoretic
image of ZSN

red in XSN is reduced. The fact that the left-most vertical map is an
isomorphism implies that h0(�0

X,Z ) is a radical ideal in OXSN . Since (X, Z) is
Du Bois, we see that h0(�0

X,Z ) = IZ⊆X and hence IZ⊆X is radical in OXSN and
hence also in OX = OX red as desired. �

Frequently we will take the Grothendieck dual of �0
X,Z . Hence, following the

notation of [Kovács and Schwede 2011a], we will write

ω•X,Z := R Hom •OX
(�0

X,Z , ω
•

X ). (2.9.1)

The reader is referred to [Kollár 2013, Section 6.1] for basic properties of Du Bois
pairs. As mentioned in the introduction, this notion of pairs is somewhat different
in flavor from the definition of (X, Z) being log canonical or log terminal. Being
a Du Bois pair is more a statement about the relationship between X and Z , not
an absolute statement about the singularities of X or Z separately. In particular,
Examples 2.10 and 2.14 show that (X, Z) being Du Bois does not imply that X is
Du Bois.

Example 2.10 (Du Bois pair whose ambient space is not Du Bois). Let R denote
the pullback of the diagram

k[x] ' k[x, y]/〈y〉 k[x, y]oo

k[x2, x3
]

OO

Roo

OO

where the nondotted arrows are induced in the obvious ways. It is easy to see that
R = k[x2, x3, y, yx]. By construction X = Spec R is not Du Bois since it is not
seminormal. However, we claim that the pair (Spec R, V (〈y, yx〉R)) is Du Bois.
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Consider the following diagram:

0 // 〈y, yx〉R

α

��

// R //

β

��

k[x2, x3
]

γ

��

// 0

0 // 〈y〉k[x,y] // k[x, y] // k[x] // 0

The maps labeled β and γ are the seminormalizations but α is an isomorphism.
On the other hand, we know that �0

X =�
0
X sn in general since they have the same

hyperresolution. Therefore, up to harmless identification of modules with sheaves
on an affine scheme, we see �0

Spec R ' k[x, y] and �0
Spec k[x2,x3]

' k[x] and so

〈y, yx〉R = 〈y〉k[x,y] '�0
Spec R,V (〈y,yx〉R).

This proves that (Spec R, V (〈y, yx〉R)) is Du Bois and completes the example.

Next we will give an example of a normal Du Bois pair whose ambient space is
not Du Bois. To this end we will use a criterion for a cone being a Du Bois pair. In
order to do that we need to recall a definition [Kollár 2013, III.3.8].

Let X be a projective scheme and L an ample line bundle on X . We will need
the spectrum of the section ring of L ,

Ca(X,L ) := Speck

⊕
p≥0

H 0(X,L p),

which is also called the (generalized) ample cone over X with conormal bundle L .
If no confusion is likely, in particular when L is fixed, we will use the shorthand
of C X := Ca(X,L ). Notice that for a subscheme Z ⊆ X there is a natural map
ι : Ca(Z ,L |Z )→ Ca(X,L ) which is a closed embedding away from the vertex
P ∈ C X . By a slight abuse of notation we will also use (C X,C Z) to denote the
pair

(
Ca(X,L ), ι(Ca(Z ,L |Z ))

)
.

Now we are ready to state the needed Du Bois criterion.

Proposition 2.11 ([Graf and Kovács 2014], cf. [Ma 2015]). Let X be a smooth
projective variety, Z ⊂ X an snc divisor (possibly the empty set), and L an ample
line bundle on X. Then (C X,C Z) is a Du Bois pair if and only if

H i (X,L m(−Z))= 0

for all i,m > 0.

Proof. If Z = ∅, this follows from [Ma 2015, Theorem 4.4]. The general case
works similarly. For a direct proof see [Graf and Kovács 2014, Theorem 2.5]. �

While the above is sufficient for our purposes, we also obtained independently a
slightly different statement using similar methods.
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Lemma 2.12 (Du Bois pairs for graded rings). Let X be a projective variety with
Du Bois singularities, L an ample line bundle and D a reduced connected divisor
on X. Assume that D also has only Du Bois singularities. Form the corresponding
section ring S=

⊕
i≥0 0(X,L

i ) and I =
⊕

i≥0 0(X,OX (−D)⊗L i ). Fix m= S+
to be the irrelevant ideal. Set Y = C X = Spec S and Z = C D = Spec(S/I ). If

H 1(X,OX (−D)⊗L i )= 0 (2.12.1)

for i ≥ 0 so that S/I '
⊕

i≥0 0(D,L
i
|D), then for all i ≥ 1 we have

hi(�0
Y,Z )' [H

i+1
m (I )]>0.

Again under hypothesis (2.12.1), we see immediately that (Y, Z) is Du Bois if and
only if [H i

m(I )]>0 = 0 for every i > 0.

Proof. First observe that both Y and Z are seminormal since they are saturated
section rings over seminormal schemes. L. Ma [2015, Equation (4.4.4) in the proof
of Theorem 4.4] showed that

hi(�0
Y )' [H

i+1
m (S)]>0 (2.12.2)

for i > 0. Likewise hi(�0
Z ) = [H

i+1
m (S/I )]>0 for i > 0. Now we analyze

hi+ j(R 0m(�
0
Y )) via a spectral sequence. Since Y is Du Bois outside of the origin

V(m), we see that h j(�0
Y ) is supported only at the origin for j > 0. It follows that

the E2-page of the spectral sequence

H i
m(h

j(�0
Y ))⇒ hi+ j(R 0m(�

0
Y ))

looks like

· · · · · · · · · · · · · · · · · ·

h3(�0
Y ) 0 0 0 0 · · ·

h2(�0
Y ) 0 0 0 0 · · ·

h1(�0
Y )

**

0 0 0 0 · · ·

0 H 1
m(S) H 2

m(S) H 3
m(S) H 4

m(S) · · ·

Here we are using the fact that S is seminormal, and so h0(�0
Y ) = S. It is not

difficult to see that the unique nonzero map of the (i − 1)-st page of this spectral
sequence induces the isomorphism of (2.12.2), and so those unique nonzero maps
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are injective. Thus the spectral sequence contains the data of a long exact sequence

0→ H 1
m(S)� H1

m(�
0
Y )→ h1(�0

Y ) ↪→ H 2
m(S)� H2

m(�
0
Y )→ h2(�0

Y ) ↪→ H 3
m(S)� · · · .

Hence Hi
m(�

0
Y )=[H

i
m(S)]≤0 for i ≥ 2 and H1

m(�
0
Y )' H 1

m(S). Likewise Hi
m(�

0
Z )=

[H i
m(S/I )]≤0 for i ≥ 2 and H1

m(�
0
Z )' H 1

m(S/I ). Furthermore, since Y and Z are
seminormal we see that h0(�0

X,Z )= I and so the same spectral sequence argument
implies that we have a long exact sequence

0→H 1
m(I )�H1

m(�
0
Y,Z )→h1(�0

Y,Z )→H 2
m(I )�H2

m(�
0
Y,Z )→h2(�0

Y,Z )→H 3
m(I )� · · · .

We still have the labeled surjectivities by the Matlis dual of Theorem 3.2, which
we will prove later (we assume it for now). Thus it is enough to see that the maps
above make the identification Hi

m(�
0
Y,Z )= [H

i
m(I )]≤0 for i ≥ 2.

We consider the diagram with distinguished triangles as rows

I

��

// S

��

// S/I

��

+1
//

�0
Y,Z

// �0
Y

// �0
Z

+1
//

We will apply the functor R 0m( ) and take cohomology i ≥ 1 to obtain

H i
m(S)

α

��

// H i
m(S/I )

β

��

// H i+1
m (I )

γ

��

// H i+1
m (S)

δ

��

// H i+1
m (S/I )

ε

��

Hi
m(�

0
Y )

// Hi
m(�

0
Z )

// Hi+1
m (�0

Y,Z )
// Hi+1

m (�0
Y )

// Hi+1
m (�0

Z )

[H i
m(S)]≤0 [H i

m(S/I )]≤0 [H i+1
m (S)]≤0 [H i+1

m (S/I )]≤0

Note that γ is the map we already identified as surjective above. It is easy to see that
the vertical maps α, β, δ, and ε are the projections and so [α]≤0, [β]≤0, [δ]≤0, and
[ε]≤0 are isomorphisms. Thus [γ ]≤0 is also an isomorphism. But from the second
row we see that Hi

m(�
0
Y,Z ) is of nonpositive degree so that Hi

m(�
0
Y,Z )= [H

i
m(I )]≤0

for i ≥ 2. �

Remark 2.13. It would be natural to try to prove a common generalization of the
(independently obtained) Proposition 2.11 and Lemma 2.12.

Example 2.14 (a normal Du Bois pair whose ambient space is not Du Bois). Let
W be an arbitrary smooth canonically polarized variety, that is, W is smooth
and projective and ωW is ample. Further let n > 1, and set X = W × Pn and
L = π∗1ωW ⊗π

∗

2 OPn (1). Finally, let K ⊆ Pn be a smooth hypersurface of degree
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n+ 1, that is, OPn (K )' ω−1
Pn , and let Z =W × K . We claim that, using the above

notation, (C X,C Z) is a Du Bois pair, while C X itself is not. Note also that by
construction C X is normal.

Consider H1(X,OX (−Z)⊗L j ) for j ≥ 0 and observe that

OX (−Z)⊗L j
=π∗2 OPn(−n−1)⊗π∗1ω

j
W⊗π

∗

2 OPn ( j)=π∗1ω
j
W⊗π

∗

2 OPn ( j−n−1).

Now H1(Pn,OPn ( j − n− 1))= 0 for all j ≥ 0 and H 0(Pn,OPn ( j − n− 1))= 0
for j ≤ n. But if j > n ≥ 1, then H1(W, ω j

W )= 0 by Kodaira vanishing and so it
follows by the Künneth formula that H1(X,OX (−Z)⊗L j )= 0 for all j ≥ 0, so
the hypotheses of Lemma 2.12 are satisfied.

Let r = dim W and consider H r(X,L ). By the Künneth formula

H r(X,L )⊇ H r(W, ωW )⊗ H 0(Pn,OPn (1)) 6= 0,

and hence by Proposition 2.11 C X is not Du Bois.
On the other hand we have that

L (−Z)' π∗1ωW ⊗π
∗

2 OPn (1− n− 1)' ωX ⊗π
∗

2 OPn (1). (2.14.1)

Now observe that Hq(Pn,OPn (1− n − 1)) = 0 for all q ≥ 0, so, again by the
Künneth formula, it follows that H i(X,L (−Z))= 0 for all i > 0.

In order to conclude that (C X,C Z) is a Du Bois pair we need that

H i(X,L m(−Z))= 0 for all i,m > 0.

We just showed that H i(X,L (−Z)) = 0 for all i > 0, which handles the m = 1
case. If m > 1 then M :=L m−1

⊗π∗2 OPn (1) is ample on X and by (2.14.1) and
Kodaira vanishing we have that

H i(X,L m(−Z))= H i(X,L (−Z)⊗L m−1)' H i(X, ωX ⊗M )= 0,

and hence it follows from Proposition 2.11 that (C X,C Z) is indeed a Du Bois pair.

We will find the following lemma useful; cf. [Esnault 1990; Schwede 2007].

Lemma 2.15. Assume that (X, Z) is a pair with Z ⊆ X reduced schemes. Assume
further that X ⊆ Y where Y is smooth. Let π : Ỹ → Y be a log resolution of
both X and Z in Y and set X and Z to be the reduced preimages of X and Z in Ỹ
respectively. Then

�0
X,Z ' R π∗IZ⊆X ,

where IZ⊆X is the ideal of Z in X.
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Proof. Consider the diagram

�0
X,Z

α

��

// �0
X

β

��

// �0
Z

γ

��

+1
//

R π∗�0
X ,Z

// R π∗�0
X

// R π∗�0
Z

+1
//

R π∗IZ⊆X
// R π∗OX

// R π∗OZ
+1
//

The vertical arrows β and γ are quasi-isomorphisms by [Kovács and Schwede
2011b, Theorem 6.4] (also see [Schwede 2007, Theorem 4.3]) since X and Z are
snc and hence Du Bois. The second row of equalities also follows since X and Z are
Du Bois. Then α is a quasi-isomorphism as well and hence the lemma follows. �

There are some situations when a pair being Du Bois implies that the ambient
space is also Du Bois. It is proved in [Graf and Kovács 2014] that this happens if
X is Gorenstein, but that X being Q-Gorenstein is not sufficient. Another simple
situation in which this holds is the following.

Lemma 2.16. Let X be a reduced C-scheme essentially of finite type and H a
Cartier divisor. If (X, H) is a Du Bois pair then X (and hence H ) is also Du Bois.

Proof. The statement is local and so we may assume that X = Spec R is affine.
We know that OX (−H)→ �0

X,H is a quasi-isomorphism and thus so is OX →

�0
X,H ⊗OX (H). We will show that this map factors through OX →�0

X , which will
complete the proof by [Kovács 1999, Theorem 2.3].

Embed X ⊆ Y as a smooth scheme and let π : Ỹ → Y be a simultaneous log
resolution of (Y, X) and (Y, H) with X , H the reduced total transforms of X and H
respectively. Then�0

X,H =R π∗IH⊆X by Lemma 2.15. Fix X ′ to be the components
of X which are not also components of H and we see that IH⊆X ' OX ′(−H |X ′).
Thus

�0
X,H ⊗OX (H)' R π∗OX ′((π

∗H − H)|X ′).

Since π∗H − H is effective, we obtain a map

�0
X ' R π∗OX → R π∗OX ′→ R π∗OX ′((π

∗H − H)|X ′)'�0
X,H ⊗OX (H).

This map obviously factors the quasi-isomorphism OX→�0
X,H⊗OX (H) and hence

the proof is complete. �

We recall properties of �0
X,Z that we will need later.

Lemma 2.17. Let X be a scheme over C with Z ⊆ X a closed subscheme and
j :U = X \ Z ↪→ X the complement of Z. Then:
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(a) If in addition X is proper, then H i(X,IZ )→ Hi(X, �0
X,Z ) is surjective for

all i ∈ Z [Kovács 2011a, Corollary 4.2; Kollár 2013, Theorem 6.22].

(b) If H is a general member of a basepoint-free linear system, then �0
X,Z ⊗OH '

�0
H,H∩Z [Kovács 2011a, Proposition 3.18; Kollár 2013, Theorem 6.5(6)].

(c) If X =U ∪V is a decomposition into closed subschemes and Z ⊆ X is another
closed subscheme, then we have a distinguished triangle

�0
U∪V,Z →�0

U,Z∩U ⊕�
0
V,Z∩V →�0

U∩V,Z∩U∩V
+1
−→

(cf. [Kollár 2013, Theorem 6.5(11)]).

(d) Let X =U ∪ V be a decomposition of X into closed subschemes. Then

�0
U∪V,V '�

0
U,U∩V

(cf. [Kovács 2011a, Proposition 3.19; Kollár 2013, Theorem 6.17]).

Proof. Parts (a) and (b) follow from the references in their statements. For (c), the
included reference only states the triangle in the case that Z = ∅. However, our
more general version follows easily from the diagram

�0
U∪V,Z

��

// �0
U,Z∩U ⊕�

0
V,Z∩V

��

// �0
U∩V,Z∩U∩V

��

+1
//

�0
U∪V

��

// �0
U ⊕�

0
V

��

// �0
U∩V

��

+1
//

�0
Z

+1
��

// �0
Z∩U ⊕�

0
Z∩V

+1
��

// �0
Z∩U∩V

+1
��

+1
//

and the 9-lemma in triangulated categories [Kovács 2013, B.1].
For (d), consider the distinguished triangle

�0
U∪V

// �0
U ⊕�

0
V

// �0
U∩V

+1
//

of part (c) with Z =∅. Then [Kollár and Kovács 2010, Lemma 2.1] implies that
the left vertical arrow of the following diagram is an isomorphism:

�0
U∪V,V

//

'

��

�0
U∪V

��

// �0
V

+1
//

��

�0
U,U∩V

// �0
U

// �0
U∩V

+1
//
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For more details see the proofs in the references and replace �× with �0. �

The next lemma constructs a natural exact triangle for Du Bois pairs.

Lemma 2.18. Let X be a scheme and W, Z ⊆ X subschemes. Then there is a
distinguished triangle

�0
X,W∪Z →�0

X,Z →�0
W,Z∩W

+1
−→ .

In particular, because there is also a short exact sequence

0→IW∪Z⊆X →IZ⊆X →IZ∩W⊆W → 0,

if any two of {(X,W ∪ Z), (X, Z), (W, Z ∩W )} are Du Bois, so is the third.

Proof. We begin with a diagram of distinguished triangles as columns and rows
(see [Kollár 2013, Theorem 6.5.11; Kovács 2013, Theorem B1]):

�0
X,W∪Z

//

��

�0
X,Z ⊕�

0
X,W

��

−
// �0

X,Z∩W

��

+1
//

�0
X

��

id⊕ id
// �0

X ⊕�
0
X

��

−
// �0

X

��

+1
//

�0
W∪Z

// �0
Z ⊕�

0
W

−
// �0

Z∩W
+1
//

The horizontal maps in the second column of this diagram are each obtained by
subtracting the canonical maps on each factor of the direct sum, hence the minus
signs. The octahedral axiom implies that there exists a diagram of distinguished
triangles,

�0
X,W∪Z

��

// �0
X,Z

��

// K •

∼

��

+1
//

�0
X,W

// �0
X,Z∩W

// K •
+1
//

We need to identify K •. Notice that the bottom row also fits into another diagram
of distinguished triangles (see [Kovács 2013, Theorem B1]):
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�0
X,W

//

��

�0
X,Z∩W

//

��

K •
+1

//

��

�0
X

∼
//

��

�0
X

//

��

0
+1

//

��

�0
W

//

+1
��

�0
Z∩W

//

��

+1
��

�0
W,Z∩W [1]

+1
��

+1
//

Hence K • '�0
W,Z∩W and the lemma follows. �

Finally, note that being Du Bois is a direct generalization of being rational for
pairs (see also Kollár 2013, Corollary 6.25).

Theorem 2.19 [Kovács 2011a, Corollary 5.6]. If (X, D) is a rational pair then
(X, D) is also a Du Bois pair.

3. An injectivity theorem

A key ingredient of the proof that Du Bois singularities are deformation invariant
was an injectivity theorem [Kovács and Schwede 2011a, Theorem 3.3]. In this
section, we generalize that result to the context of pairs.

Lemma 3.1 (cf. [Kovács and Schwede 2011a, Lemma 3.1]). Let X be a reduced
scheme, Z ⊆ X a reduced subscheme and L a semiample line bundle. Let s ∈L n

be a general global section for some n� 0 and take the n-th root of this section (as
in [Kollár and Mori 1998, Definition 2.50]):

η : Y = Spec
n−1⊕
i=0

L −i
→ X.

Set W = η−1(Z) (with the induced scheme structure). Note that the restriction
satisfies η|W :W = Spec

⊕n−1
i=0 L −i

|Z → Z. Then as before, writing η∗ = R η∗,

η∗�
0
Y,W '�

0
X,Z ⊗ η∗OY '

n−1⊕
i=0

(�0
X,Z ⊗L −i ),

and this direct sum is compatible with the decomposition η∗OY =
⊕n−1

i=0 L −i .

Proof. Although not explicitly stated, it is easy to see that [Kovács and Schwede
2011a, Lemma 3.1] is functorial in that it is compatible with the map Z→ X . Then
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by applying Lemma 2.17(b), the result follows from the diagram

η∗�
0
Y,W

// η∗�
0
Y

// η∗�
0
W

+1
//

�0
X,Z ⊗ η∗OY

OO

// �0
X ⊗ η∗OY

'

OO

// �0
Z ⊗ η∗OY '�

0
Z ⊗OZ η∗OZ

'

OO OO

+1
// �

Setting ω•X,Z =R Hom •OX
(�0

X,Z , ω
•

X ) as in (2.9.1), we easily obtain the following.

Theorem 3.2. Let X be a reduced scheme over C and Z ⊆ X a reduced subscheme.
Then the natural map

8 j
: h j(ω•X,Z ) ↪→ h j(R HomOX (IZ , ω

•

X ))

is injective for every j ∈ Z.

Proof. The proof is essentially the same as in [Kovács and Schwede 2011a, Theo-
rem 3.3] so we only sketch it briefly. First, since the question is local and compatible
with restricting to an open subset, we may assume that X is projective with ample
line bundle L . It follows from taking a cyclic cover with respect to a general
section of L n , for n� 0, and applying Lemmas 2.17(a) and 3.1 that

H j
(

X,IZ ⊗

n−1⊕
i=0

L −i
)
→ H j

(
X, �0

X,Z ⊗

n−1⊕
i=0

L −i
)

surjects for all j ≥ 0. Therefore H j (X,IZ⊗L −i )→H j (X, �0
X,Z⊗L −i ) surjects

for all i, j ≥ 0.
By an application of Serre–Grothendieck duality we obtain an injection

H j (X, ω•X,Z ⊗L i ) ↪→ H j (X,R Hom •OX
(IZ , ω

•

X )⊗L i ) (3.2.1)

for all i, j ≥ 0. But for i � 0, by Serre vanishing, we obtain that

H 0(X, h j(ω•X,Z )⊗L i ) ↪→ H 0(X, h j(R Hom •OX
(IZ , ω

•

X ))⊗L i ) (3.2.2)

is injective as well (since the spectral sequence computing (3.2.1) degenerates).
On the other hand, if h j(ω•X,Z )→ h j(R Hom •OX

(I , ω•X )) is not injective, then for
some i � 0 neither is (3.2.2). �

4. Deformation of Du Bois pairs

In [Kovács and Schwede 2011a, Corollary 4.2], we showed the following result:
Let f : X → B be a flat proper family over a smooth curve B with a fiber X0,
0∈ B, having Du Bois singularities. Then there is an open neighborhood 0∈U ⊆ B
such that the fibers Xu have Du Bois singularities for u ∈ U . In this section, we
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generalize this result to Du Bois pairs. We mimic our previous approach as much
as possible.

First we need a lemma, which is presumably well known but for which we know
no reference.

Lemma 4.1. Let X be a reduced scheme and Z ⊆ X a reduced subscheme with ideal
sheaf IZ . Further, let H⊆ X be an effective Cartier divisor with ideal sheaf IH

such that H does not contain any irreducible components of either X or Z. Then

IH ∩IZ =IH ·IZ .

Proof. This is left as an exercise to the reader. Earlier versions of this paper, which
are available on the arXiv, also contain a detailed proof. �

Now we prove that if a special fiber supports a Du Bois pair, so does the total
space near that fiber. Recall that effective Cartier divisors on a possibly nonnormal
scheme are simply subschemes locally defined by a single non-zero-divisor near
every point.

Theorem 4.2. Let X be a reduced scheme essentially of finite type over C, Z ⊆ X
a reduced subscheme and H a reduced effective Cartier divisor on X that does
not contain any component of Z. If (H, Z ∩ H) is a Du Bois pair, then (X, Z)
is a Du Bois pair near H. It then follows (from Lemma 2.18) that (X, Z ∪ H) is
Du Bois near H.

Proof. We follow very closely the proofs of [Kovács 2000, Theorem 3.2] and
[Kovács and Schwede 2011a, Theorem 4.1], which are based on [Elkik 1978].
Choose a closed point q of X contained within H . It is sufficient to prove that
(X, Z) is Du Bois at q. Let R denote the stalk OX,q and replace X by Spec R.
Choose f ∈ R to denote a defining equation of H in R. Consider the following
diagram, whose rows are distinguished triangles in Db

coh(X):

IZ

��

× f
// IZ

��

// IZ/( f · IZ )

ρ

��

'

��

+1
//

�0
X,Z × f

// �0
X,Z

// A•

τ

��

+1
//

�0
H,Z∩H

(4.2.1)

where A• is the term completing the second row to a distinguished triangle. We
claim we have a map τ as above such that τ ◦ ρ is a quasi-isomorphism. Certainly
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we have a diagram with distinguished triangles for rows and columns

�0
X,Z

��

× f
// �0

X,Z

��

// A•

τ

..

��

+1
//

�0
H,Z∩H

��

�0
X

��

× f
// �0

X

��

// B•

��

+1
//

κ

// �0
H

��

�0
Z

× f
//

+1

��

�0
Z

//

+1

��

C•
+1
//

+1

��

µ .. �0
Z∩H

+1
��

and the existence of τ follows immediately from the existence of κ and µ, whose
existence follows from the proof of [Kovács and Schwede 2011a, Theorem 4.1].
Note that the assumptions imply that H |Z = H ∩ Z is a Cartier divisor on Z , so
we may indeed use [Kovács and Schwede 2011a, Theorem 4.1] for both X and Z .
Since IZ/( f · IZ ) = IZ/(( f ) ∩ IZ ) by Lemma 4.1 and because (H, Z ∩ H) is a
Du Bois pair, we see τ ◦ ρ is an isomorphism as claimed.

Next we apply the Grothendieck duality functor D( )= R Hom•R( , ω•R) to
(4.2.1) and take cohomology, using ki( ) as shorthand to denote hi(D( )):

· · · oo ki(IZ )
OO

8i

?�

ki(IZ )
× f
oo

OO

8i

?�

oo
δi ki(IZ/( f · IZ ))

OOOO

γi

oo
αi ki−1(IZ )

OO

8i−1

?�

oo
× f

ki−1(IZ )
OO

8i−1

?�

· · ·oo

· · · oo hi(ω•X,Z )
oo
× f

hi(ω•X,Z )
oo ki(A•) oo

βi
hi−1(ω•X,Z )

oo
× f

hi−1(ω•X,Z ) · · ·oo

where the 8• are injective by Theorem 3.2 and γi , which was obtained from ρ, is
surjective since τ ◦ ρ is an isomorphism.

The proof now follows exactly as for the main theorem of [Kovács and Schwede
2011a], or dually of [Kovács 2000, Theorem 3.2]. Fix z ∈ hi−1(D(IZ )). Pick
w ∈ hi(D(A•)) such that αi (z) = γi (w). Since δi (αi (z)) = 0 and 8i is injective,
it follows that there exists a u ∈ hi−1(ω•X,Z ) such that βi (u) = w. Therefore,
αi (8

i−1(u))= αi (z) and so

z−8i−1(u) ∈ f · hi−1(D(IZ )). (4.2.2)

Now, fix Ei−1 to be the cokernel of 8i−1 and set z̄ ∈ Ei−1 to be the image
of z. Equation (4.2.2) then guarantees that z̄ ∈ f · Ei−1. The multiplication map
Ei−1−−→

× f Ei−1 is then surjective and so Nakayama’s lemma guarantees that 8i−1 is
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also surjective. Therefore ω•X,Z → D(IZ ) is a quasi-isomorphism, which implies
that (X, Z) is a Du Bois pair. �

Corollary 4.3. Let f : X → B be a flat proper family of varieties over a smooth
one-dimensional scheme, B being essentially of finite type over C ( for instance, a
smooth curve). Further, let Z ⊆ X be a subscheme such that no component of Z is
contained in any component of any fiber of f and b ∈ B a closed point such that
(Xb, Zb) is a Du Bois pair. Then there exists a neighborhood b ∈U ⊆ B such that

(a) (X, Z) is Du Bois over U , and

(b) the fibers (Xu, Zu) are Du Bois for all u ∈U.

Proof. The non-Du Bois locus T of (X, Z) is closed, and since f is proper, f (T )
is also closed. Hence (a) follows from Theorem 4.2 and by replacing B with an
open set, we may assume that (X, Z) is Du Bois. Then the Bertini-type theorem
Lemma 2.17(b) implies that (b) follows after possibly shrinking U . �

Corollary 4.4. Let f : X → B be a flat proper family of varieties over a smooth
scheme B essentially of finite type over C. Further let Z ⊆ X be a subscheme which
is also flat over B and b ∈ B a closed point such that (Xb, Zb) is a Du Bois pair.
Then there exists a neighborhood U ⊆ B, b ∈U , such that (X, Z) is Du Bois over U.

Proof. We may assume that B is affine and let d = dim B. We first show that
(X, Z) itself is Du Bois in a neighborhood of (Xb, Zb). Let H1, . . . , Hd be general
smooth subschemes going through b whose local defining equations generate the
maximal ideal of b (i.e., locally analytically they are coordinate hyperplanes).
The pair (Xb, Zb) = (X H1∩H2∩···∩Hd , Z H1∩H2∩···∩Hd ) is Du Bois by assumption,
hence since Xb = X H1∩···∩Hd is a hypersurface in X H2∩···∩Hd it follows that the
pair (X H2∩···∩Hd , Z H2∩···∩Hd ) is Du Bois in a neighborhood of Xb, by Corollary 4.3.
Let W1 denote the non-Du Bois locus of (X H2∩···∩Hd , Z H2∩···∩Hd ). Since W1 is
closed and f is proper, we see that f (W1) is closed in H2 ∩ · · · ∩ Hd and doesn’t
contain b. Shrinking B if necessary, we may assume that W1 is empty. Next
observe that H2 ∩ · · · ∩ Hd is a hypersurface in H3 ∩ · · · ∩ Hd and so again we
see that (X H3∩···∩Hd , Z H3∩···∩Hd ) is Du Bois in a neighborhood of X H2∩···∩Hd by
Corollary 4.3. Set W2 to be the non-Du Bois locus of (X H3∩···∩Hd , Z H3∩···∩Hd ) and
note that f (W2) does not intersect H2 ∩ · · · ∩ Hd . We shrink B again if necessary
so that W2 =∅. Iterating this procedure proves the statement. �

In order to extend Corollary 4.3(b) to families over arbitrary-dimensional bases
we need the following lemma.

Lemma 4.5. Let f : X → B be a flat proper family of varieties over a scheme B
essentially of finite type over C. Further, let Z ⊆ X be a subscheme which is also
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flat over B and assume that (X, Z) is a Du Bois pair. Then

V = {b ∈ B | (Xb, Zb) is a Du Bois pair}

is a constructible set in B. Furthermore, if B is smooth, then V is open.

Proof. We use induction on the dimension of B.
Let π : B ′→ B be a resolution of singularities and consider the base change

f ′ : X ′= X B ′→B ′, assumed to be a flat proper family over B ′ and with Z ′= Z B ′⊆ X ′

a subscheme that is flat over B ′. Notice that all the fibers of f ′ : X ′→ B ′ appear as
fibers of f : X→ B (up to harmless field extension), so b′ ∈ V ′ = π−1(V )⊆ B ′ if
and only if the fiber (X ′b′, Z ′b′) is a Du Bois pair. It follows from Corollary 4.4 that
by replacing B ′ with an open subset we may assume that (X ′, Z ′) is a Du Bois pair.
It also follows that it is enough to prove the statement over a smooth irreducible base.
Indeed, that implies that V ′ is open in B ′ and hence V = f (V ′) is constructible.

To simplify notation we will replace B with B ′ and assume that B is smooth and
irreducible, but use the inductive hypothesis without these additional assumptions.

The Bertini-type statement Lemma 2.17(b) implies that, if V 6= ∅, there is a
dense open subset U ⊆ B contained in V . The case dim B = 1 follows immediately
via the fact that in a curve any set containing a dense open set is itself open.

In general, it follows that dim(B \ U ) < dim B so by induction V \ U is a
constructible set in B \U and hence V is constructible in B. In the case of a smooth
base Corollary 4.4 implies that V is stable under generalization and since we have
just proved that it is constructible it follows that it is open. �

Corollary 4.6. Let f : X → B be a flat proper family of varieties over a smooth
scheme B essentially of finite type over C. Further let Z ⊆ X be a subscheme which
is also flat over B and b ∈ B a closed point such that (Xb, Zb) is a Du Bois pair.
Then there exists a neighborhood U ⊆ B, b ∈U , such that (Xu, Zu) is a Du Bois
pair for all u ∈U.

Proof. Observe that the non-Du Bois locus W of (X, Z) is closed in X and since f
is proper, f (W ) is also closed in B. Note that f (W ) does not contain b so it also
does not contain the generic point of B. Hence by replacing B by a neighborhood
U ⊆ B of b ∈ B, we may assume that (X, Z) is Du Bois. Then the statement
follows from Lemma 4.5. �

Remark 4.7. One can recover special cases of inversion of adjunction for log
canonicity [Kawakita 2007] easily from Theorem 4.2. For instance, let (X, D+H)
be a pair with K X , D and H Cartier and assume that (H, D|H ) is slc or equiva-
lently Du Bois [Kollár 2013]. Then (X, D+ H) is Du Bois or equivalently lc by
Theorem 4.2.
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5. Generalizing the Kollár–Kovács result to pairs

We recall Theorem 7.12 of [Kollár and Kovács 2010]. Let f : X → B be a flat
projective family of varieties with Du Bois singularities. Then if B is connected
and the general fiber is Cohen–Macaulay, then all the fibers are Cohen–Macaulay.

We would like to generalize this to the context of Du Bois pairs, at least in
the case when Z is a divisor. We recommend the reader have a copy of [Kollár
and Kovács 2010] available when reading this section as we refer to a number of
lemmas therein. We begin by generalizing a result of Du Bois and Jarraud to pairs;
cf. [Du Bois and Jarraud 1974; Du Bois 1981, théorème 4.6].

Theorem 5.1. Let f : X→ B be a flat proper morphism between schemes of finite
type over C. Assume that B is smooth and let Z ⊆ X be a subscheme that is flat
over B. Further assume that the geometric fibers (Xb, Zb)→ b are Du Bois. Then
for all i , R i f∗IZ is locally free of finite rank and compatible with base change; in
other words (R i f∗IZ )T ' R i f∗IZT for any morphism T → B.

Proof. For some b ∈ B, let m be the maximal ideal of OB,b and S = Sn =

Spec OB,b/m
n+1 for n ∈ N. Further, let IZb and IZS denote the ideal sheaves

of Zb in Xb and ZS in X S , respectively. Consider the commutative diagram

H i
c ((X S \ ZS)

an,C)

α

((

λ

��

H i (X S,IZS )

β

ww

ν

��

H i (X an
S ,IZS )

µ

��

H i
c ((Xb \ Zb)

an,C)

γ
((

H i (Xb,IZb)

δww

H i (X an
b ,IZb)

Observe that λ is an isomorphism since X S and Xb have the same support. By
[Kovács 2011a, Theorem 4.1], cf. [Kollár 2013, Theorem 6.8], γ is surjective, so
γ ◦ λ= µ ◦α is surjective and hence µ is surjective. By Serre’s GAGA principle
[Serre 1956], β and δ are isomorphisms and hence ν is surjective. Finally, the
statement follows by cohomology and base change [Grothendieck 1963, §7.7]. �

Next we prove the analogue of the main flatness and base change result of Kollár
and Kovács [2010, Theorem 7.9] for Du Bois pairs.

Theorem 5.2. Let f : X → B be a flat projective morphism between schemes of
finite type over C, and assume that B is smooth. Let Z ⊆ X be a closed subscheme
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that is flat over B and L a relatively ample line bundle on X. Assume (X, Z) is
Du Bois. Then:

(a) The sheaves h−i (R Hom •OX
(IZ , ω

•

f )) are flat over B for all i .

(b) The sheaves f∗
(
h−i (R Hom •OX

(IZ , ω
•

f ))⊗L q
)

are locally free and compati-
ble with arbitrary base change for all i > 0 and q � 0.

(c) For any base change ϑ : T → B and for all i > 0,(
h−i (R Hom •OX

(IZ , ω
•

f ))
)

T ' h−i (R Hom •OXT
(IZT , ω

•

fT
)).

Proof. We follow the proof of [Kollár and Kovács 2010, Theorem 7.9]. We may
assume that B = Spec R is affine and hence that L m is globally generated for
m� 0. For such an m� 0, choose a general section σ ∈ H 0(X,L m) and consider
the cyclic cover induced by σ :

A =

m−1⊕
j=0

L − j
'

m−1⊕
j=0

L − j t j/(tm
− σ).

Set h : Y = SpecX A → X , and ZY = h−1 Z with the induced reduced scheme
structure. Then the geometric fibers of the composition (Y, ZY )→ B are also
Du Bois by [Kollár 2013, Corollary 6.21]. Note that by construction IZY =⊕m−1

j=0 IZ ⊗L − j. Hence R i h∗IZY is locally free of finite rank and compatible
with arbitrary base change by Theorem 5.1. It follows that the summands of these
modules, the R i f∗(IZ ⊗L − j ), are also locally free and compatible with base
change. Since we may choose m arbitrarily large, this holds for all j ∈ N. It
follows immediately that HomOB (R i f∗(IZ ⊗L − j ),OB) is also locally free and
compatible with base change.

By Grothendieck duality and [Kollár and Kovács 2010, Lemma 7.3] (see the
proof of Lemma 7.2 in that paper follows that

HomOB (R
i f∗(IZ ⊗L −q),OB)' f∗h−i (R Hom •OX

(IZ , ω
•

f ⊗L q))

' f∗
(
h−i (R Hom •OX

(IZ , ω
•

f )⊗L q)
)

and hence (b) is proven. Just as in [Kollár and Kovács 2010, Theorem 7.9],
(a) follows from (b) by an argument similar to [Hartshorne 1977, Chapter III,
Theorem 9.9].

Finally we prove (c). Since f : X → B is projective and B is affine, we may
factor f as X−→i Pn

B −→
π B. It then suffices to show that

%−i
:
(
h−i (R Hom •OPn

B
(IZ , ωπ [n]))

)
T → h−i (R Hom •OPn

T
(IZT , ωπ [n]))
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is an isomorphism. As in [Kollár and Kovács 2010, Theorem 7.9], we proceed by
descending induction on i (the base case where i � 0 is obvious). We observe that
IZ is flat since so are OX and OZ and assume that %−(i+1) is an isomorphism by
induction. Since h−i

(
R Hom •OPn

B
(IZ , ωπ [n])

)
is flat, by (a), we may apply [Altman

and Kleiman 1980, Theorem 1.9], which completes the proof. �

The following is the analog of [Kollár and Kovács 2010, Theorem 7.11] for pairs.

Theorem 5.3. Let f : X → B be a flat projective morphism between schemes of
finite type over C. Assume that B is smooth and let Z ⊆ X be a subscheme that is
flat over B. Let x ∈ X be a closed point and let b = f (x). Then IZb ⊆ OXb is Sk at
x if and only if (

h−i (R Hom •OX
(IZ , ω

•

f ))
)

y = 0 (5.3.1)

for i <min(k+dim {y}, dimx X) and for all y ∈ Xb such that x ∈ {y}. In particular,
IZb is Sk if and only if (5.3.1) holds for i <min(k+ dim {y}, dimx X) and for all
y ∈ Xb (not restricted to closed points).

First we prove a lemma.

Lemma 5.4. Let X be a scheme that admits a dualizing complex ω•X . Let x ∈ X
and let F be a coherent sheaf on X. Then F is Sk at x ∈ X if and only if(

h−i (R Hom •OX
(F , ω•X ))

)
y = 0

for i <min(k, dim Fy)+ dim {y} and for all y ∈ X such that x ∈ {y}.

Proof. This is a consequence of local duality [Hartshorne 1966] and the cohomo-
logical criterion for depth; see for instance [Kovács 2011b, Proposition 3.2]. �

Proof of Theorem 5.3. By the lemma, IZb ⊆ OXb is Sk at x if and only if(
h−i (R Hom •OXb

(IZb , ω
•

Xb
))
)

y = 0

for i <min(k, dim(IZb)y)+dim {y}=min(k+dim {y}, dimx X) and for all y ∈ Xb

such that x ∈ {y}. By Theorem 5.2,(
h−i (R Hom •OXb

(IZb , ω
•

Xb
))
)

y '
((

h−i (R Hom •OX
(IZ , ω

•

f ))
)
b

)
y

'
((

h−i (R Hom •OX
(IZ , ω

•

f ))
)

y

)
b.

But notice that the right side is zero if and only if
(
h−i (R Hom •OX

(IZ , ω
•

f ))
)

y is
zero by Nakayama’s lemma. This implies the desired statement. �

Finally, we describe how the Sk condition behaves for pairs in families where
the fibers are Du Bois.
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Theorem 5.5. Let f : (X, Z)→ B be a flat projective family with OZ (and hence
IZ ) flat over B as well. Assume that all the fiber pairs (Xb, Zb) are Du Bois.
Assume also that B is connected and the generic fibers (IZ )gen are Sk . Then all the
fibers (IZ )b are Sk .

Proof. By working with one component of B at a time, we may assume that B is
irreducible and hence that X is equidimensional. If (IZ )b'IZb (by flatness of OZ )
is not Sk at some point y ∈ Xb, then by Theorem 5.3, h−i (R Hom •OX

(IZ , ω
•

f )) 6= 0
near y for some i < min(k + dim {y}, dim X). Fix an irreducible component
W ⊆ supp

(
h−i (R Hom •OX

(IZ , ω
•

f ))
)

and observe that dim Wb is constant for b ∈ B
since h−i (R Hom •OX

(IZ , ω
•

f )) is flat by Theorem 5.2(a). However, in that case it
follows that h−i (R Hom •OX

(IZ , ω
•

f )) is nonzero near some point η ∈ Xgen such that
dim {η} = dim {y}, which contradicts the assumption that the generic fiber is Sk by
Theorem 5.3. �

Corollary 5.6. Let f : (X, Z)→ B be a flat projective family with OZ (and hence
IZ ) flat over B as well. Assume that all the fiber pairs (Xb, Zb) are Du Bois. As-
sume also that B is connected and the generic fibers (IZ )gen are Cohen–Macaulay.
Then all the fibers (IZ )b are Cohen–Macaulay. �

At this point it is natural to ask the next question.

Question 5.7. Assume that (X, Z) is a pair and that H ⊆ X is a Cartier divisor
such that (H, Z ∩ H) is a Du Bois pair. If IZ |X\H is Cohen–Macaulay, does it
follow that IZ is Cohen–Macaulay?

In the case that Z = ∅, the analogous result holds in characteristic p > 0 for
F-injective singularities by [Horiuchi et al. 2014, Appendix by K. Schwede and
A. K. Singh].

6. Generalizing Kovács–Schwede–Smith to pairs

The goal of this section is to prove the analog of the main result of [Kovács et al.
2010] for pairs (X, Z).

Lemma 6.1. Let X be a normal d-dimensional variety, Z ( X a reduced closed
subscheme and 6 ( X a codimension ≥ 2 subset containing the singular locus of X.
Let π : X̃→ X be a log resolution of (X, 6 ∪ Z) with E = π−1(6 ∪ Z)red. Then

(a) �0
X,6∪Z ' R π∗OX̃ (−E), and

(b) h−d(ω•X,Z )' π∗ωX̃ (E).

Proof. First we claim that both R π∗OX̃ (−E) and π∗ωX̃ (E) are independent of
the choice of π . This was proved for R π∗OX̃ (−E) on pages 67–68 in the proof
of [Kovács and Schwede 2011b, Theorem 6.4] and for π∗ωX̃ (E) in [Kovács et al.
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2010, Lemma 3.12]. Therefore we are free to choose π and hence we may assume
that it is an isomorphism outside of 6 ∪ Z . We have the distinguished triangle

�0
X

//

'

��

R π∗�0
X̃
⊕�0

6∪Z

'

��

// R π∗�0
E

'

��

+1
//

�0
X

// R π∗OX̃ ⊕�
0
6∪Z

// R π∗OE
+1
//

The isomorphisms follow since X̃ and E are Du Bois. In the next diagram the first
two rows are distinguished triangles by definition; see (2.7.1). The third row is
simply the pushforward of a natural short exact sequence from X̃ . The previous
diagram and [Kollár and Kovács 2010, Lemma 2.1] (or simply the octahedral axiom)
imply that α below is an isomorphism. The other two isomorphisms again follow
since X̃ and E are Du Bois. Note that the columns are not exact.

�0
X,6∪Z

//

' α

��

�0
X

//

��

�0
6∪Z

��

+1
//

R π∗�0
X̃ ,E

//

��

R π∗�0
X̃

//

'

��

R π∗�0
E
+1
//

'

��

R π∗OX̃ (−E) // R π∗OX̃
// R π∗OE

+1
//

It follows that the dotted arrow, and hence its composition with α, are also isomor-
phisms. This proves (a).

In order to prove (b), consider the map �0
X,6∪Z →�0

X,Z obtained in

�0
X,6∪Z

��

// �0
X

// �0
6∪Z

+1
//

��

�0
X,Z

// �0
X

// �0
Z

+1
//

Now we have a distinguished triangle

�0
X,6∪Z →�0

X,Z → C •
+1
−→ . (6.1.1)

Claim 6.2. With the above notation, 0= h−d(D(C •))= h−d+1(D(C •)).

Proof of claim. Consider the following diagram with distinguished triangles as rows
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and columns:

�0
6∪Z [−1]

��

// �0
Z [−1]

��

// �0
6∪Z ,Z

+1
//

�0
X,6∪Z

��

// �0
X,Z

��

// C •
+1

//

�0
X

+1
��

�0
X

+1
��

It follows from [Kovács 2013, Theorem B.1] that C • '�0
6∪Z ,Z . On the other hand,

by Lemma 2.17(d), �0
6∪Z ,Z '�

0
6,6∩Z and hence C • '�0

6,6∩Z .
Next recall that by Theorem 3.2 there exists a natural injective map

h− j(D(�0
6,6∩Z )

)
↪→ h− j(R Hom •O6 (I(6∩Z)⊆6, ω

•

6)
)
. (6.2.1)

Since dim6≤ d−2, the right hand side of (6.2.1) is zero for j ≥ d−1, establishing
the claim. �

Grothendieck duality and part (a) imply that h−d(ω•X,6∪Z ) ' π∗ωX̃ (E) and it
follows from Claim 6.2 that h−d(ω•X,6∪Z ) ' h−d(ω•X,Z ), which in turn implies
part (b). �

Theorem 6.3. Let X be a normal variety and Z ⊆ X a divisor. Let π : X̃→ X be a
log resolution of (X, Z) with E = π−1(Z)red ∨ exc(π). If IZ is Cohen–Macaulay,
then (X, Z) is Du Bois if and only if

π∗ωX̃ (E)' ωX (Z).

Proof. Since IZ is Cohen–Macaulay, R Hom •OX
(IZ ,ω

•

X )'HomOX(IZ ,ωX )[dim X]
by the local dual of the local cohomology criterion for Cohen–Macaulayness.
Because the map

ω•X,Z → R Hom •OX
(IZ , ω

•

X ) (6.3.1)

is injective on cohomology by Theorem 3.2, it follows that hi (ω•X,Z ) = 0 for
i 6= − dim X and hence (X, Z) is Du Bois if and only if

h− dim X (ω•X,Z )→HomOX(IZ , ωX )' ωX (Z)

is an isomorphism. But h− dim X (ω•X,Z )'π∗ωX̃ (E) by Lemma 6.1, so the statement
follows. �
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7. An inversion of adjunction for rational and Du Bois pairs

In this final section of the paper, we will prove the following theorem.

Theorem 7.1. Let f : X → B be a flat projective family with geometrically inte-
gral fibers over a smooth connected base B, A ⊆ B a smooth closed subscheme
containing no component of B and H = f −1(A) = X ×B A (with the induced
scheme-theoretic structure). Let D be a reduced codimension-1 subscheme of X
which is flat over B. Assume that for every s ∈ A, (Xs, Ds) is Du Bois and that
(X \ H, D \ H) is a rational pair. Then (X, D) is a rational pair.

Remark 7.2. In the introduction, A was assumed to be a closed point. This version
is more general and more convenient for our proof.

Remark 7.3. The assumptions also imply the following auxiliary conditions:

(a) Since X → B has geometrically integral fibers and H is obtained by base
change with a smooth subscheme, H is reduced.

(b) ID is flat over B and no component of D contains a fiber of f. In particular
D and H have no common components.

(c) As for any s ∈ A, Hs = Xs , it follows that (H, D ∩ H) is Du Bois by
Corollary 4.4.

(d) X \ H is normal by the definition of a rational pair.

Before embarking on proving the theorem, we will first prove several lemmas
that show that our situation is simpler than it might first appear.

First we show that we may assume that A is a divisor in B.

Lemma 7.4. In order to prove Theorem 7.1 it is sufficient to assume that A is a
smooth Cartier divisor in B.

Proof. The statement is local over the base so we may assume that B is affine.
Additionally, since we only need to work in a neighborhood of a point a∈ A, we may
assume that (X, D) is Du Bois and all the fibers (Xb, Db) for all b ∈ B are Du Bois
by Corollaries 4.4 and 4.6. Choose a general hypersurface G containing A and note
that since A is smooth we may assume that G is smooth. Then the hypotheses of
the theorem are satisfied for G replacing A as well since X \ f −1(G)⊆ X \ f −1(A)
and since we already assumed that all the fibers (Xb, Db) over all points b ∈ B
were Du Bois. �

From this point forward, we will assume that B is a smooth affine scheme, A is
a smooth hypersurface in B and H = f ∗A.

Lemma 7.5. Under the assumptions of Theorem 7.1, X is normal and thus D is
also a divisor.



996 Sándor J. Kovács and Karl Schwede

Proof. Since H is reduced, every point η ∈ H has depth at least min(1, dim OH,η).
Because f : X→ B is flat, the local defining equation of H is a regular element in
OX , so any point η ∈ X that lies in H has depth at least min(2, dim OX,η). Since
X \ H is normal it is S2 and so X is S2 everywhere. Finally observe that H is
reduced, hence generically regular and X \ H is R1. As H is Cartier, this implies
that X is also R1 and therefore normal. �

Now observe that the fact that (H, D ∩ H) is Du Bois (see Remark 7.3(b)) says
something about the structure of D on X .

Lemma 7.6. With notation as in Theorem 7.1, no stratum of the snc locus of (X, D)
can be contained inside H.

Proof. Assume to the contrary that there exists a stratum Z of the snc locus of
(X, D) contained in H . Let η be the generic point of Z . By assumption η ∈ H
and (X, D) is snc at η, so OX,η is a regular ring. Let n = dim OX,η. Replace X by
Spec OX,η and H and D by their pullbacks to this local scheme (in this step we lose
projectivity, but we will not need that for now). Note that D is now Cartier and in
fact snc. Furthermore D+ H has n+ 1 irreducible components containing η, so
(X, D+H) cannot be Du Bois (or equivalently log canonical since X is Gorenstein).
But as we observed, (H, D∩ H) is a Du Bois pair. Then by Theorem 4.2 again we
see that (X, D+ H) is Du Bois as well. This is a contradiction. �

Next we setup the notation for the proof of Theorem 7.1. Let 6 denote the
non-snc locus of (X, D). Observe that as X is normal and D is a reduced divisor
by Lemma 7.5, we have that codimX (6)≥ 2.

Additionally assume that π : Y → X is a log resolution of (X, D ∪ H ∪6) that
simultaneously gives a thrifty resolution of (X, D). To see that such a π exists,
first take a thrifty resolution (U, DU ) of (X, D) and then perform a log resolution
of the scheme-theoretic preimages of H and 6 on U (while keeping the strict
transform DU snc). The result can be assumed to be a thrifty resolution of (X, D)
since the preimages of6 and H do not contain any strata of (U, DU ) by Lemma 7.6.

Set H and D to be the reduced total transforms of H and D respectively, set DY

to be the strict transform of D and set E to be (π−1(6))red.

Proof of Theorem 7.1. Clearly (X, D) is a Du Bois pair and all the fibers (Xb, Db)

are Du Bois by Corollaries 4.4 and 4.6 (possibly after shrinking the base B around
A). By Corollary 5.6, we know that OX (−D) is Cohen–Macaulay. Thus by the
local dual version of the local cohomological criterion for Cohen–Macaulayness,
R Hom •OX

(OX (−D), ω•X ) has cohomology only in one term. In particular,

R Hom •OX
(OX (−D), ω•X )'HomOX(OX (−D), ωX )[dim X ]

' ωX (D)[dim X ]. (7.6.1)
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Therefore by Proposition 2.7 it suffices to show that ωX (D)' π∗ωY (DY ).
Next observe that (H, D|H ) is a Du Bois pair by Corollary 4.4 and hence by

Lemma 2.18 we see that (X, D ∪ H)= (X, D+ H) is a Du Bois pair.

Claim 7.7. With notation as above, π∗ωY (DY ∨ H ∨ E)' π∗ωY (DY + H).

Note that DY + H = DY ∨ H since the divisors have no common components.

Proof of claim. The containment ⊇ is obvious since D and H do not share a
component (see Remark 7.3(a)), so choose f ∈ π∗ωY (DY ∨ H ∨ E). We observe
that

divY ( f )+ KY + DY ∨ H ∨ E = divY ( f )+ KY + DY + H ∨ E ≥ 0.

Working on U =Y \H =π−1(X \H) we see that divU ( f )+KU+DY |U+E |U ≥ 0.
But since (X \ H, D \ H) is a rational pair,

π∗ωU (DY |U )= π∗ωU (DY |U + E)= ωX\H (D|X\H ),

so divU ( f )+ KU + DY |U + E |U ≥ 0 is equivalent to divU ( f )+ KU + DY |U ≥ 0.
Because the components of E that lie over H are also components of H , it follows
that divY ( f )+ KY + DY + H ≥ 0, proving the claim. �

By Lemma 6.1 we see that h− dim X (ω•X,D+H ) ' π∗ωY (DY ∨ H ∨ E), which
agrees with π∗ωY (DY + H) by the claim. Since (X, D + H) is a Du Bois pair,
h− dim X (ω•X,D+H )' ωX (D+ H) and so in conclusion we have that

ωX (D+ H)' π∗ωY (DY + H).

Twisting both sides by −H and using the projection formula we see that

ωX (D)' π∗ωY (DY − (π
∗H − H))⊆ π∗ωY (DY ),

since π∗H − H is effective. But π∗ωY (DY )⊆ ωX (D) for any normal pair (X, D)
and so ωX (D)' π∗ωY (DY ) as desired. �

Setting D = 0 we obtain the following.

Corollary 7.8. Let f : X → B be a flat projective family over a smooth base B
and H = f −1(0) a special fiber. Assume that H has Du Bois singularities and that
X \ H has rational singularities. Then X has rational singularities.

There is a variant of our inversion of adjunction theorem that we would also like
to prove (even in the D = 0 case).

Conjecture 7.9. Assume (X, D) is a pair with D a reduced Weil divisor. Further
assume that H is a Cartier divisor on X , not having any components in common
with D, such that (H, D∩H) is Du Bois and such that (X \H, D \H) is a rational
pair. Then (X, D) is a rational pair.
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The only place where our proof above does not work in this situation is when
we prove that OX (−D) is Cohen–Macaulay. In particular, to accomplish this
generalization, we would simply need a version of Corollary 5.6 that is not tied
to a projective or proper family. What is missing is exactly a positive answer to
Question 5.7.
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Hochschild cohomology commutes
with adic completion

Liran Shaul

For a flat commutative k-algebra A such that the enveloping algebra A ⊗k A
is noetherian, given a finitely generated bimodule M, we show that the adic
completion of the Hochschild cohomology module HHn(A/k,M) is naturally
isomorphic to HHn( Â/k, M̂). To show this, we make a detailed study of de-
rived completion as a functor D(Mod A)→ D(Mod Â) over a nonnoetherian
ring A, prove a flat base change result for weakly proregular ideals, and prove
that Hochschild cohomology and analytic Hochschild cohomology of complete
noetherian local rings are isomorphic, answering a question of Buchweitz and
Flenner. Our results make it possible for the first time to compute the Hochschild
cohomology of k[[t1, . . . , tn]] over any noetherian ring k, and open the door for a
theory of Hochschild cohomology over formal schemes.
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Hochschild, Kostant and Rosenberg. See [Ionescu 2001] for a survey of the use of
Hochschild cohomology in commutative algebra.

The aim of this paper is to initiate the study of Hochschild cohomology in the
category of adic rings. Adic rings, the affine pieces of the theory of formal schemes,
are by definition commutative noetherian rings A which are a-adically complete
with respect to some ideal a⊆ A. In the survey just cited, Ionescu states:

In our survey no results about Hochschild cohomology of a topological
algebra w[ere] mentioned. This is because this kind of results is missing
completely.

As far as we know, little has changed regarding this statement since then. One of
the main difficulties in developing such a theory can be already observed in the
most simple example of an adic ring: Let k be a field of characteristic 0, and let
A = k[[t]]. The construction of Hochschild cohomology involves the enveloping
algebra of A. But even in this simple case, the enveloping algebra k[[t]] ⊗k k[[t]]
is a nonnoetherian ring of infinite Krull dimension, so it is very difficult to do
homological algebra over it. Passing to the completion of this enveloping algebra,
one obtains the much more manageable completed tensor product

k[[t]] ⊗̂k k[[t]] ∼= k[[t1, t2]].

However, from a homological point of view, this step is highly nontrivial, as
it involves the ring map from k[[t]] ⊗k k[[t]] to its completion. Completions of
nonnoetherian rings are in general poorly behaved (for instance, they need not
be flat). In this paper we develop the homological tools needed to overcome this
difficulty, and use them to study the Hochschild cohomology of such adic algebras.

Here is a more detailed description of the content of this paper. First, in Section 1
we review some preliminaries on Hochschild cohomology and about the derived
torsion and derived completion functors. In particular, we recall the notion of a
weakly proregular ideal in a commutative ring. Weak proregularity is the right
condition in order for the derived torsion and derived completion functors to possess
good behavior.

In Section 2, we prove that in most enveloping algebras of adic rings occurring
in nature, the ideal of definition of the adic topology is weakly proregular. This
result also has interesting implications in derived algebraic geometry of formal
schemes. See Corollary 2.9.

Given a (not necessarily noetherian) ring A and a weakly proregular ideal a⊆ A,
we study in Section 3 the derived functors of the functors

0̂a(M) := lim
−−→

HomA(A/an,M) :Mod A→Mod Â
and

3̂a(M) := lim
←−−

A/an
⊗A M :Mod A→Mod Â,
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where Â is the a-adic completion of A. To cope with the possible lack of flatness of
the completion map A→ Â, we use DG-homological algebra techniques. From the
results of this section, we deduce the following generalized Greenlees–May duality:

Corollary 3.9. Let A be a commutative ring, let a ⊆ A be a weakly proregular
ideal, and let M, N ∈ D(Mod A). Then there are isomorphisms

L3̂a(R HomA(M, N ))∼= R HomA(R0̂a(M), N )∼= R HomA(M,L3̂a(N ))

of functors
D(Mod A)×D(Mod A)→ D(Mod Â).

Using the results of Sections 2 and 3, the main results of this paper are obtained
in Section 4. First, in Theorem 4.1 we provide formulas which describe the effect
of applying the derived completion functor to the Hochschild cohomology complex
of a not necessarily adic algebra. The next major result reduces the problem
of computing the Hochschild cohomology of an adic algebra to a problem over
noetherian rings:

Corollary 4.3. Let k be a commutative ring, and let A be a flat noetherian k-
algebra. Assume a ⊆ A is an ideal, such that A is a-adically complete, and such
that A/a is essentially of finite type over k. Let I := a⊗k A + A⊗k a, and set
A⊗̂k A :=3I (A⊗k A). Then for any M ∈Mod A⊗k A which is I-adically complete
(for example, any a-adically complete A-module, or more particularly, any finitely
generated A-module), there is a functorial isomorphism

R HomA⊗k A(A,M)∼= R HomA⊗̂k A(A,M)

in D(Mod A), and the ring A ⊗̂k A is noetherian.

Using the results of [Buchweitz and Flenner 2006], as a corollary of this result,
we are able to prove in Corollary 4.5 that Hochschild cohomology and analytic
Hochschild cohomology of complete noetherian local algebras coincide, answering
a question of Buchweitz and Flenner. Finally, Section 4 ends with a theorem which
proves the result mentioned in the title of the paper. More precisely, we show:

Theorem 4.13. Let k be a commutative ring, and let A be a flat noetherian
k-algebra such that A ⊗k A is noetherian. Let a ⊆ A be an ideal, and let M
be a finitely generated (A⊗k A)-module. Then for any n ∈N, there is a functorial
isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Extn

Â⊗k Â
( Â, M̂).

If , moreover, either

(1) k is a field, or
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(2) A is projective over k, a is a maximal ideal, and M is a finitely generated
A-module,

then there is also a functorial isomorphism

3a(HHn(A/k,M))∼= HHn( Â/k, M̂).

In the short and final Section 5, we briefly discuss analogous results for Hochschild
homology.

Warning. Contrary to the convention in many papers in the field, unless stated
otherwise, we do not assume that rings are noetherian.

1. Preliminaries on completion, torsion and Hochschild cohomology

Given a commutative ring A, we denote by Mod A the abelian category of A-modules,
and by D(Mod A) its (unbounded) derived category. If A is noetherian, we will
denote by Df(Mod A) the triangulated subcategory made of complexes with finitely
generated cohomologies. We will freely use resolutions of unbounded complexes,
following [Spaltenstein 1988].

Completion and torsion. References for the material in this section are [Alonso Tar-
río et al. 1997; 1999; Greenlees and May 1992; Porta et al. 2014b; 2015; Schenzel
2003; Simon 1990; Yekutieli 2011]. See [Porta et al. 2014b, Remark 7.14] for a
brief discussion on the history of this material. Let A be a commutative ring, and let
a⊆ A be a finitely generated ideal. The a-torsion functor 0a(−) :Mod A→Mod A
is defined by

0a(M) := lim
−−→

HomA(A/an,M).

This functor is a left exact additive functor. We denote its (total) right derived functor
by R0a : D(Mod A)→ D(Mod A). It is computed using K-injective resolutions.
See [Brodmann and Sharp 2013] for a detailed study of the a-torsion functor and
its derived functor in the noetherian case. More important in this paper is the a-adic
completion functor, defined by

3a(−) :Mod A→Mod A, 3a(M) := lim
←−−

A/an
⊗A M.

This functor is additive, but in general is neither left exact nor right exact (even when
A is noetherian; see [Yekutieli 2011, Example 3.20]). It does however preserve
surjections. We denote by L3a : D(Mod A)→ D(Mod A) its left derived functor.
By [Alonso Tarrío et al. 1997, Section 1], it can be computed using K-flat resolutions.
Both of the functors 0a(−), 3a(−) are idempotent [Yekutieli 2011, Corollary 3.6].

For any ring A, the A-module3a(A) has the structure of a commutative A-algebra,
called the completion of A. If A is noetherian then 3a(A) is flat over A, but if A
is not noetherian this does not always holds. For example, if A is any countable
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ring which is not coherent, then the completion map A[x] → A[[x]] is not flat
[Stacks 2005–, Tag 0AL8]. The ring 3a(A) is noetherian if and only if the ring
A/a is noetherian [Stacks 2005–, Tag 05GH]. If A is noetherian and M is a
finitely generated A-module, then there is an isomorphism of functors 3a(M)∼=
3a(A) ⊗A M, so in particular in that case, 3a(−) is exact on the category of
finitely generated A-modules [Stacks 2005–, Tag 00MB]. We will sometimes denote
by Â the A-algebra 3a(A) and by M̂ the A-module 3a(M). For any ring A, the
A-modules 0a(M) and 3a(M) carry naturally the structure of Â-modules, and so
one may view the a-torsion and a-completion functors as functors Mod A→Mod Â.
Section 3 is dedicated to a study of the functors obtained from this observation.

Given a ring A, and an element a∈ A, the infinite dual Koszul complex associated
to it is

K∨
∞
(A; (a)) :=

(
· · · → 0→ A→ A[a−1

] → 0→ · · ·
)

concentrated in degrees 0, 1. If (a1, . . . , an) is a finite sequence of elements in A,
then the infinite dual Koszul complex associated to it is

K∨
∞
(A; (a1, . . . , an)) := K∨

∞
(A; (a1))⊗A · · · ⊗A K∨

∞
(A; (an)).

It is a bounded complex of flat A-modules. Given an ideal a ⊆ A, and a finite
sequence a of elements of A that generate a, by [Porta et al. 2014b, Corollary 4.26],
there is a morphism of functors

R0a(−)→ K∨
∞
(A; a)⊗A−.

The sequence a is called weakly proregular if this morphism is an isomorphism of
functors. This notion is actually independent of a, and depends only on the ideal a
generated by it [Schenzel 2003, Lemma 3.3]. Hence, we say a finitely generated
ideal a is weakly proregular if some (or, equivalently, any) finite sequence that
generates it is weakly proregular. In a noetherian ring, any ideal and any finite
sequence are weakly proregular, but there are examples of finitely generated (even
principal) ideals in nonnoetherian rings which are not weakly proregular.

Given a ring A and a finite sequence a of elements of A, the infinite dual Koszul
complex has an explicit free resolution, called the telescope complex and denoted
by Tel(A; a). This resolution is a bounded complex of countably generated free
A-modules [Porta et al. 2014b, Lemma 5.7]. In particular, if the ideal a generated
by a is weakly proregular, then there is also an isomorphism of functors

R0a(−)∼= Tel(A; a)⊗A−.

Moreover, in this case, by [Porta et al. 2014b, Corollary 5.25], there is also an
isomorphism of functors

L3a(−)∼= HomA(Tel(A; a),−).
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It follows that if A is a commutative ring, and a is a weakly proregular ideal, then
both of the functors R0a, L3a have finite cohomological dimension, and there is a
bifunctorial isomorphism, the Greenlees–May duality,

R HomA(R0a(M), N )∼= R HomA(M,L3a(N ))

for any M, N ∈ D(Mod A).
Both the infinite dual Koszul complex and the telescope complex enjoy the

following base change property: if A is a ring, a is a finite sequence of elements in A,
A → B is a ring map, and b is the image of a under this map, then there are
isomorphisms

K∨
∞
(A; a)⊗A B ∼= K∨

∞
(B; b), Tel(A; a)⊗A B ∼= Tel(B; b)

of complexes of B-modules.
For any complex M ∈ D(Mod A), there are canonical maps

R0a(M)→ M, (1.1)
and

M→ L3a(M). (1.2)

The complex M is called cohomologically a-torsion (resp. cohomologically a-
adically complete) if the map (1.1) (resp. (1.2)) is an isomorphism. If a is weakly
proregular then the functors R0a and L3a are idempotent [Porta et al. 2014b,
Corollary 4.30, Proposition 7.10] and it follows that in this case the collection of all
cohomologically a-torsion (resp. cohomologically a-adically complete) complexes
is a triangulated subcategory of D(Mod A) which is equal to the essential image of
the functor R0a (resp. L3a). Moreover, by [Porta et al. 2014b, Theorem 7.11], in
this case these categories are equivalent (the Matlis–Greenlees–May equivalence).

Hochschild cohomology. Let k be a commutative ring, and let A be a commutative
k-algebra. We let

A⊗
n
k := A⊗k · · · ⊗k A︸ ︷︷ ︸

n

,

and denote by B the bar resolution

· · · → A⊗
n
k → · · · → A⊗

2
k → A→ 0.

Given an A-bimodule M, the n-th Hochschild cohomology module of A over k
with coefficients in M is given by

HHn(A/k,M) := H n HomA⊗k A(B,M).

See [Cartan and Eilenberg 1956, Chapter IX], [Loday 1998, Chapter 1] and [Weibel
1994, Chapter 9] for more details on this classical construction. If A is projective
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(resp. flat) over k, then B is a projective (resp. flat) resolution of A over the
enveloping algebra A⊗k A. Hence, in the projective case, the natural map

HHn(A/k,M)→ ExtnA⊗k A(A,M)

is an isomorphism. When A is only flat over k, but not necessarily projective, this
map might fail in general to be an isomorphism. Nevertheless, the modules on the
right-hand side are interesting on their own, and are sometimes referred to in the
literature as the derived Hochschild (or Shukla) cohomology modules of A over k.
In this paper we will focus mostly on these modules1 and, a bit more generally, on
the complex R HomA⊗k A(A,M). Somewhat imprecisely, we will refer to

R HomA⊗k A(A,M)

as the Hochschild complex of A with coefficients in M even when A is only flat
over k. We will however use the notation HHn(A/k,M) to denote only the classical
Hochschild cohomology modules.

2. Weak proregularity and flat base change

Let k be a base commutative ring, and let A, B be two flat k-algebras. Assume
that A and B are equipped with adic topologies, generated by finitely generated
ideals a⊆ A and b⊆ B. In that case, the tensor product A⊗k B is also naturally
equipped with an adic topology. It is generated by the finitely generated ideal
a⊗k B + A⊗k b⊆ A⊗k B. The aim of this section is to discuss the question of
when this ideal is weakly proregular. We allow A to be different from B, although
we will only use the case A = B in the rest of the paper.

Recall that a ring k is called absolutely flat (or Von Neumann regular) if every
k-module is flat. Over such rings, the above question is easy:

Proposition 2.1. Let k be an absolutely flat ring. Let A, B be two k-algebras, and
let a⊆ A and b⊆ B be weakly proregular ideals. Then the ideal

a⊗k B+ A⊗k b⊆ A⊗k B

is weakly proregular.

Proof. In the case where k is a field, and A and B are noetherian and complete with
respect to the adic topology, this is shown in [Porta et al. 2014b, Example 4.35],
and the proof there remains true under the above assumptions. �

Remark 2.2. Assume A is a ring, a⊆ A is a weakly proregular ideal, B is a flat
A-algebra, and b= a · B. Then by [Alonso Tarrío et al. 1997, Example 3.0(B)], the
ideal b is also weakly proregular.

1See, however, Corollary 4.5 and Theorem 4.13 where even in the possible absence of projectivity
we will discuss classical Hochschild cohomology.
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Recall that if A is a noetherian ring, with a⊆ A an ideal, and if I is an injective
A-module, then 0a(I ) is also an injective A-module (for example, by [Hartshorne
1977, Lemma 3.2]). We now state and prove a weaker form of this fact in the case
when A is not necessarily noetherian, but 3a(A) is.

If A is a ring, with a ⊆ A a finitely generated ideal, and if M is an A-module,
then M is called a-flasque if, for each k > 0, we have Hk

a(M)= 0, where Hk
a(M) :=

Hk(R0a(M)). Any injective module is a-flasque. If M is a-flasque, then the
canonical morphism 0a(M)→ R0a(M) is an isomorphism. By [Brodmann and
Sharp 2013, Theorem 3.4.10], the direct limit of a-flasque modules is a-flasque.

Lemma 2.3. Let A be a ring, and let a, b ⊆ A be two finitely generated ideals.
Suppose that the ring Â =3a(A) is noetherian. Let b̂= b Â. Then for any injective
A-module I, the Â-module 0̂a I is b̂-flasque.

Proof. Let Aj = A/a j+1. Since a is finitely generated, there is an isomorphism
Aj ∼= Â/(a Â) j+1. Note that, by assumption, Aj is noetherian. Let b̂j be the image
of b̂ in Aj . Let Ij = HomA(Aj , I ). Then 0̂a I = lim

−−→
Ij , so it is enough to show that

Ij is b̂-flasque. Note also that Ij is an injective Aj -module. Let k > 0, let b̂ be a
finite sequence generating b̂, and let bj be its image in Aj . Since Â is noetherian,
b̂ is weakly proregular, so that

H k
b̂
(Ij )∼= H k(K∨

∞
( Â; b̂)⊗ Â Ij

)
∼= H k(K∨

∞
(Aj ; bj )⊗Aj Ij

)
∼= H k

b̂j
(Ij ),

where the last isomorphism follows from the fact that Aj is noetherian, so that b̂j is
weakly proregular. Since Ij is injective over Aj , it follows that H k

b̂j
(Ij )= 0 for all

k > 0, which proves the claim. �

Proposition 2.4. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal such that 3a(A) is noetherian. Let b⊆ A be an ideal containing a. Then b is
also weakly proregular.

Proof. We keep the notation of Lemma 2.3. It is clear that A/b is noetherian. Let a
be a finite sequence generating a, and let b be a finite sequence generating b. Let I be
an injective A-module. By [Schenzel 2003, Theorem 1.1], it is enough to show that

H k(Tel(A; b)⊗A I )= 0

for all k 6= 0.
Since a⊆b, the ideal generated by the concatenated sequence (a, b) is equal to the

ideal generated by b, so there is a homotopy equivalence Tel(A; (a, b))∼=Tel(A; b).
Hence, there is an isomorphism

Tel(A; b)⊗A I ∼= Tel(A; (a, b))⊗A I ∼= Tel(A; b)⊗A Tel(A; a)⊗A I
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in D(Mod A). Since a is a weakly proregular sequence, I is an injective A-module,
and Tel(A; b) is a bounded complex of flat modules, the latter is isomorphic in
D(Mod A) to

Tel(A; b)⊗A 0a I.

Thus, it is enough to show that all the cohomologies (except the zeroth) of the
complex of A-modules Tel(A; b)⊗A 0a I vanish. Let

Rest Â/A : D(Mod Â)→ D(Mod A)

be the forgetful functor, and let b̂ be the image of the sequence b in Â. Consider
the complex

Tel( Â; b̂)⊗ Â 0̂a I ∈ D(Mod Â).

We claim that

Rest Â/A

(
Tel( Â; b̂)⊗ Â 0̂a I

)
= Tel(A; b)⊗A 0a I. (2.5)

Indeed, by the base change property of the telescope complex, we have an isomor-
phism

Tel( Â; b̂)⊗ Â 0̂a I ∼= Tel(A; b)⊗A 0̂a I

of complexes in D(Mod Â). So using the fact that

Rest Â/A(0̂a I )= 0a I

we obtain (2.5). Since for a complex M ∈ D(Mod Â) we have

H k(M)= 0 if and only if H k(Rest Â/A(M)
)
= 0,

it is enough to show that H k
(
Tel( Â; b̂) ⊗ Â 0̂a I

)
= 0 for all k 6= 0. By weak

proregularity of the sequence b̂, there is an isomorphism

Tel( Â; b̂)⊗ Â 0̂a I ∼= R0b̂0̂a I

in D(Mod Â). By Lemma 2.3, this is isomorphic in D(Mod Â) to 0b̂0̂a I . Since this
complex is clearly concentrated in degree zero, it follows that all of its cohomologies
except the zeroth vanish, which proves the result. �

Here is the main result of this section:

Theorem 2.6. Let k be a commutative ring, let A be a flat noetherian k-algebra,
and let a⊆ A be an ideal such that A/a is essentially of finite type over k. Let B be
a flat noetherian k-algebra, and let b⊆ B be an ideal. Then the ideal

I := a⊗k B+ A⊗k b⊆ A⊗k B

is weakly proregular.
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Proof. According to Remark 2.2, the ideal I1 := a⊗k B ⊆ A ⊗k B is weakly
proregular. Since B is flat over k, we have (A ⊗k B)/I1 ∼= A/a ⊗k B, and as
A/a is essentially of finite type over k, it follows that (A⊗k B)/I1 is noetherian.
Hence, 3I1(A ⊗k B) is also noetherian. Since I1 ⊆ I, the result follows from
Proposition 2.4. �

Remark 2.7. The assumption that A is noetherian in the above result can be relaxed:
it is enough to assume that a is weakly proregular. It is an open problem to the
author if the above result remains true without the assumption that A/a is essentially
of finite type over k (as in Proposition 2.1).

Remark 2.8. Let k be a commutative ring, and let A, B be two commutative
noetherian k-algebras which are adically complete with respect to ideals a ⊆ A,
b⊆ B. In this situation, Grothendieck and Dieudonné [1960, Section 10.7] defined
the fiber product of the two affine formal schemes Spf A, Spf B over k to be the
formal spectrum of the ring 3a⊗k B+A⊗kb(A⊗k B).

Now, we switch to the point of view of derived algebraic geometry, and assume
that A and B are flat over k. Forgetting the adic structure on A, B, the flatness
assumption ensures that, in this situation, the usual fiber product Spec(A⊗k B)
of the schemes Spec(A) and Spec(B) coincides with their derived fiber product.
Returning to the adic situation, Lurie defined [2011, Section 4.2] a notion of a
derived completion of an (E∞) ring, and showed [2011, Section 4.3] that if the ring
is noetherian then its derived completion coincides with its ordinary completion.
Recently, using our [Porta et al. 2014a, Theorem 4.2], it was shown in [Braunling
et al. 2015, Proposition 5.4] that if R is any commutative ring, and if I ⊆ R is
a weakly proregular ideal, then the derived I-completion of R coincides with its
ordinary I-adic completion. Hence, the results of this section imply the following:

Corollary 2.9. Let k be a commutative ring, and let A, B be noetherian flat
k-algebras which are adically complete with respect to ideals a ⊆ A, b ⊆ B.
Assume further that either k is an absolutely flat ring (e.g., a field) or that A/a is
essentially of finite type over k. Then the derived fiber product of the formal schemes
Spf A, Spf B over k is equal to the formal spectrum of 3a⊗k B+A⊗kb(A⊗k B).

3. The functors R0̂a, L3̂a

Let A be a commutative ring, let a ⊆ A be a finitely generated ideal, and let Â
be the a-adic completion of A. For any A-module M, the A-modules 0a(M) and
3a(M) carry naturally Â-module structures, and one obtains additive functors
0̂a, 3̂a : Mod A→ Mod Â, defined by the same formulas as 0a and 3a. These
functors have derived functors R0̂a,L3̂a : D(Mod A)→ D(Mod Â), calculated
using K-injective and K-flat resolutions, respectively. This section is dedicated to a
study of these functors.
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Keeping an eye towards the main goal of this text, we must avoid assuming that
A is noetherian. Hence, we do not know if the completion map A→ Â is flat. We
overcome this issue by using DG-algebras, which will be assumed to be (graded-)
commutative. We refer the reader to [Avramov 1998; Keller 1994; Mac Lane 1963;
Yekutieli 2016] for information about DG-algebras and their derived categories.
For a DG-algebra A, we denote by DGMod A the category of DG-modules over A,
and by D(DGMod A) the derived category over A.

We shall need the following well known result from DG-homological algebra:

Proposition 3.1. Let A→ B be a quasiisomorphism between two commutative
DG-algebras, and let

RestB/A : D(DGMod B)→ D(DGMod A)

be the forgetful functor.

(1) There is an isomorphism

1D(DGMod B) ∼= B⊗L
A RestB/A(−)

of functors D(DGMod B)→ D(DGMod B).

(2) There is an isomorphism

1D(DGMod B) ∼= R HomA(B,RestB/A(−))

of functors D(DGMod B)→ D(DGMod B).

Proof. Part (1) follows immediately from [Stacks 2005–, Tag 09S6], or [Yekutieli
2016, Proposition 2.5(1)], while part (2) follows immediately from [Shaul 2016,
Lemma 2.2], or [Yekutieli 2016, Proposition 2.5(2)]. �

As far as we know, the next results are new even in the case where A is noetherian.
In the noetherian case, one does not need DG-algebras in the proof of the next result.

Theorem 3.2. Let A be a commutative ring, let a⊆ A be a finitely generated ideal,
and let a be a finite sequence that generates a. Assume that a is weakly proregular.
Then there is an isomorphism of functors

R0̂a(−)∼= Â⊗L
A (K

∨

∞
(A; a)⊗A−).

Proof. Set Â := 3a(A). Consider the completion map A→ Â. Since A is not
necessarily noetherian, this map might fail to be flat, so let A f

→ Ã g
→ Â be a K-flat

DG-algebra resolution of A → Â. That is, f : A → Ã is a K-flat DG-algebra
map, g : Ã→ Â is a quasiisomorphism of DG-algebras, and g ◦ f is equal to the
completion map A→ Â. We denote by

Rest Â/ Ã :D(Mod Â)→D(DGMod Ã) and Rest Ã/A :D(DGMod Ã)→D(Mod A)
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the corresponding forgetful functors. Set

R0̃a(−) := Rest Â/ Ã ◦R0̂a(−) : D(Mod A)→ D(DGMod Ã).

Let M ∈D(Mod A). Let P→M be a K-flat resolution of M, and let M→ I be a K-
injective resolution of M. The map f : A→ Ã induces a map 1P⊗A f : P→ P⊗A Ã.
Let P ⊗A Ã→ J be a K-injective resolution of P ⊗A Ã over Ã. Because f is
flat, J is also a K-injective resolution of P ⊗A Ã over A. There is a unique map
φ : I → J in K(Mod A), which makes the diagram

P
1P⊗A f

//

��

P ⊗A Ã

��

I
φ

// J

(3.3)

commutative, and it induces a map 0a(φ) : 0a(I )→ 0a(J ). Our goal is to show
that 0a(φ) is a quasiisomorphism. The morphism of functors

α(−) : 0a(−)→ K∨
∞
(A; a)⊗A−

that was constructed in [Porta et al. 2014b, Equation (4.19)], and the map φ induce
the commutative diagram

0a(I )
0a(φ)

//

αI
��

0a(J )

αJ
��

K∨
∞
(A; a)⊗A I

1⊗Aφ
// K∨
∞
(A; a)⊗A J

(3.4)

Because a is weakly proregular, the two vertical maps are quasiisomorphisms. We
claim that the bottom horizontal map is also a quasiisomorphism. To see this,
consider the following commutative diagram in K(Mod A):

K∨
∞
(A; a)⊗A I 1

// K∨
∞
(A; a)⊗A J

K∨
∞
(A; a)⊗A P

2

OO

3
// K∨
∞
(A; a)⊗A P ⊗A Ã

4

OO

Tel(A; a)⊗A P 5
//

6

OO

7
��

Tel(A; a)⊗A P ⊗A Ã

8

OO

9
��

Tel(A; a)⊗A P ⊗A HomA(Tel(A; a), A) 10
// Tel(A; a)⊗A P ⊗A Â
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The top square in this diagram is induced from the square (3.3), the middle square
is induced from the quasiisomorphism

Tel(A; a)→ K∨
∞
(A; a),

and the bottom square is induced from the commutative diagram [Porta et al. 2014b,
Equation (5.26)]. By [Porta et al. 2014b, Corollary 5.23], HomA(Tel(A; a), A)→ Â
is a quasiisomorphism. Since Tel(A; a) and P are both K-flat, it follows that (10)
is a quasiisomorphism. K-flatness of P also implies that (9) is a quasiisomor-
phism. The map (7), which is induced by the map A→ HomA(Tel(A; a), A) is a
quasiisomorphism by [Alonso Tarrío et al. 1997, Corollary after Theorem (0.3)*]
(or the proof of [Porta et al. 2014b, Lemma 7.6]). Hence, the map (5) is also a
quasiisomorphism. It is clear that (6) and (8) are quasiisomorphisms, so that (3) is
also a quasiisomorphism. As (2) and (4) are also quasiisomorphisms, we deduce
that (1) is a quasiisomorphism. Returning to the commutative diagram (3.4), we
deduce that the map

0a(φ) : 0a(I )→ 0a(J )

is a quasiisomorphism.
There are functorial isomorphisms in D(DGMod Ã):

R0̃a(M)= Rest Â/ Ã(R0̂a(M))
∼= Rest Â/ Ã(0̂a(I )).

Since the map 0a(φ) : 0a(I )→ 0a(J ) is a quasiisomorphism, it follows that

Rest Â/ Ã(0̂a(φ)) : Rest Â/ Ã(0̂a(I ))→ Rest Â/ Ã(0̂a(J ))

is also a quasiisomorphism. The DG Ã-module Rest Â/ Ã(0̂a(J )) is a sub-DG-module
of J, and the inclusion map induces a map

Rest Â/ Ã(0̂a(J ))→ K∨
∞
(A; a)⊗A J. (3.5)

Applying the forgetful functor Rest Ã/A to the map in (3.5) yields the quasiisomor-
phism

0a(J )∼= K∨
∞
(A; a)⊗A J,

so that the map in (3.5) is also a quasiisomorphism. Hence,

R0̃a(M)∼= K∨
∞
(A; a)⊗A J ∼= K∨

∞
(A; a)⊗A M ⊗A Ã.

By Proposition 3.1, there is an isomorphism of functors

1D(DGMod Â)
∼= Â⊗L

Ã
Rest Â/ Ã(−).

Hence,
R0̂a(−)∼= Â⊗L

Ã
R0̃a(−),
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which implies that

R0̂a(M)∼= Â⊗L
A (K

∨

∞
(A; a)⊗A M). �

Dually, we have the next result for the L3̂a functor. Note however that, in this
case, even if A is noetherian, we have to use DG-algebra resolutions, because Â is
almost never projective over A (see, for example, [Buchweitz and Flenner 2006,
Theorem 2.1]).

Theorem 3.6. Let A be a commutative ring, let a⊆ A be a finitely generated ideal,
and let a be a finite sequence that generates a. Assume that a is weakly proregular.
Then there is an isomorphism of functors

L3̂a(−)∼= R HomA( Â⊗A Tel(A; a),−).

Proof. We use notation as in the proof of Theorem 3.2. Let A f
→ Ã g

→ Â be a
K-projective DG-algebra resolution of A→ Â, and set

L3̃a(−) := Rest Â/ Ã ◦L3̂a(−) : D(Mod A)→ D(DGMod Ã).

Let M ∈D(Mod A). Let P→M be a K-projective resolution, and let M→ I be a K-
injective resolution. The map f : A→ Ã induces a map HomA( f,1) :HomA( Ã, I )→I.
Let Q→HomA( Ã, I ) be a K-projective resolution of HomA( Ã, I ) over Ã. There is
a unique map φ : Q→ P in K(Mod A) making the diagram

HomA( Ã, I )
HomA( f,1)

// I

Q

OO

φ
// P

OO

(3.7)

commutative. The morphism of functors

β(−) : HomA(Tel(A; a),−)→3a(−)

that was constructed in [Porta et al. 2014b, Definition 5.16] and the map φ : Q→ P
induce a commutative diagram

3a(Q)
3a(φ)

// 3a(P)

HomA(Tel(A; a), Q)

βQ

OO

HomA(1,φ)
// HomA(Tel(A; a), P)

βP

OO

(3.8)

and, because of weak proregularity of a, the two vertical maps in this diagram are
quasiisomorphisms. We will show that the bottom horizontal map is also a quasi-
isomorphism, which will imply that the top horizontal map is a quasiisomorphism.
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To see this, consider the commutative diagram

HomA(T, Q) 1
//

2
��

HomA(T, P)

3
��

HomA(T,HomA( Ã, I )) 4
// HomA(Tel(A; a), I )

HomA(T,HomA( Â, I ))

5

OO

6
// HomA(T,HomA(HomA(T, A), I ))

7

OO

in K(Mod A), where we have set T := Tel(A; a). The top square of this diagram is
induced from the square (3.7), while the bottom square is induced from the com-
mutative diagram of [Porta et al. 2014b, Equation (5.26)]. Weak proregularity of a
implies that the map (6) is a quasiisomorphism. The fact that I is K-injective and that
Tel(A; a) is K-projective implies that (5) is a quasiisomorphism. The hom-tensor
adjunction and [Alonso Tarrío et al. 1997, Corollary after Theorem (0.3)*] (or the
proof of [Porta et al. 2014b, Lemma 7.6]) shows that (7) is also a quasiisomorphism.
Hence, (4) is a quasiisomorphism. As (2) and (3) are clearly quasiisomorphisms, we
deduce that (1) is a quasiisomorphism. Returning to the commutative diagram (3.8),
we deduce that the map

3a(φ) :3a(Q)→3a(P)

is a quasiisomorphism.
There are functorial isomorphisms

L3̃a(M)= Rest Â/ Ã(L3̂a(M))∼= Rest Â/ Ã(3̂a(P))

in D(DGMod Ã), and since the map3a(φ) :3a(Q)→3a(P) is a quasiisomorphism,
it follows that the map

Rest Â/ Ã(3̂a(φ)) : Rest Â/ Ã(3̂a(Q))→ Rest Â/ Ã(3̂a(P))

is also a quasiisomorphism. By [Porta et al. 2014b, Corollary 5.23], there is an
A-linear quasiisomorphism

βQ : HomA(Tel(A; a), Q)→3a(Q),

and it is easy to verify that the same construction gives rise to an Ã-linear quasi-
isomorphism

HomA(Tel(A; a), Q)→ Rest Â/ Ã(3̂a(Q)).
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Hence, there are isomorphisms of functors

L3̃a(M)∼= HomA(Tel(A; a), Q)
∼= HomA(Tel(A; a),HomA( Ã, I ))
∼= R HomA(Tel(A; a)⊗A Ã,M).

By Proposition 3.1, there is an isomorphism of functors

1D(DGMod Â)
∼= R Hom Ã( Â,Rest Â/ Ã(−)).

Hence,
L3̂a(−)∼= R Hom Ã( Â,L3̃a(−)),

which implies that

L3̂a(M)∼= R HomA(Tel(A; a)⊗A Â,M). �

Corollary 3.9. Let A be a commutative ring, let a ⊆ A be a weakly proregular
ideal, and let M, N ∈ D(Mod A). Then there are isomorphisms

L3̂a(R HomA(M, N ))∼= R HomA(R0̂a(M), N )∼= R HomA(M,L3̂a(N ))

of functors
D(Mod A)×D(Mod A)→ D(Mod Â).

Proof. Let a be a finite sequence that generates a. The hom-tensor adjunction
and the quasiisomorphism K∨

∞
(A; a)∼= Tel(A; a) show that there are bifunctorial

isomorphisms

R HomA
(
Tel(A; a)⊗A Â,R HomA(M, N )

)
∼=R HomA

(
K∨
∞
(A; a)⊗A Â⊗L

A M, N
)

and

R HomA
(
K∨
∞
(A; a)⊗A Â⊗L

A M, N
)
∼=R HomA

(
M,R HomA

(
Tel(A; a)⊗A Â, N

))
,

so the result follows from Theorems 3.2 and 3.6. �

Remark 3.10. If A = Â, then the above corollary collapses to the Greenlees–May
duality (see [Alonso Tarrío et al. 1997, Theorem (0.3)], or [Porta et al. 2014b,
Theorem 7.12]).

The next two corollaries will be applied in the next section to study relations
between the derived completion functor and Hochschild cohomology.

Corollary 3.11. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal. Given a ring map Â → B, and a complex M ∈ D(Mod B), there is an
isomorphism

R HomA(M,L3a(−))∼= R Hom Â(M,L3̂a(−))
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of functors

D(Mod A)→ D(Mod B).

Proof. Let a be a finite sequence that generates a. Let N ∈ D(Mod A). By
Theorem 3.6, there is an isomorphism of functors

R Hom Â(M,L3̂a(N ))∼= R Hom Â

(
M,R HomA

(
Tel(A; a)⊗A Â, N

))
.

Applying the hom-tensor adjunction twice, we get an isomorphism

R Hom Â

(
M,R HomA

(
Tel(A; a)⊗A Â, N

))
∼=R HomA

(
M,HomA(Tel(A; a), N )

)
,

which proves the claim. �

Corollary 3.12. Let A be a commutative ring, and let B be a commutative A-algebra.
Let a ⊆ A be a weakly proregular ideal, let b = a · B, and assume that b is also
weakly proregular. Then there is an isomorphism

L3̂bR HomA(B,−)∼= R HomA(B̂,L3a(−))

of functors

D(Mod A)→ D(Mod B̂),

where B̂ :=3b(B).

Proof. Let a be a finite sequence that generates a, and let b be its image in B. By
Theorem 3.6, given M ∈ D(Mod A), there is a functorial isomorphism

L3̂bR HomA(B,M)∼= R HomB
(
B̂⊗B Tel(B; b),R HomA(B,M)

)
,

so, by the derived hom-tensor adjunction,

L3̂bR HomA(B,M)∼= R HomA
(
B̂⊗B Tel(B; b),M

)
.

By the base change property of the telescope complex, we have

Tel(B; b)∼= B⊗A Tel(A; a),

so that

L3̂bR HomA(B,M)∼= R HomA
(
B̂⊗A Tel(A; a),M

)
.

Hence, using adjunction again, and the fact that a is weakly proregular, we obtain
the result. �

Dually to these two corollaries, we have the following results which will apply
to the study of Hochschild homology. We omit the very similar proofs.
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Corollary 3.13. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal. Given a ring map Â → B, and a complex M ∈ D(Mod B), there is an
isomorphism

M ⊗L
A R0a(−)∼= M ⊗L

Â
R0̂a(−)

of functors
D(Mod A)→ D(Mod B).

Corollary 3.14. Let A be a commutative ring, and let B be a commutative A-algebra.
Let a ⊆ A be a weakly proregular ideal, let b = a · B, and assume that b is also
weakly proregular. Then there is an isomorphism

R0̂b(B⊗L
A−)
∼= B̂⊗L

A R0a(−))

of functors
D(Mod A)→ D(Mod B̂),

where B̂ :=3b(B).

4. Hochschild cohomology and derived completion

We now turn to the main theme of this paper: relations between adic completion
(and its derived functor) and Hochschild cohomology. The results of this section
rely heavily on the tools developed in the previous sections.

Our first result describes the effect of applying the derived completion functor to
the Hochschild cohomology complex in a rather general situation. We will later
specialize further to obtain more explicit results.

Theorem 4.1. Let k be a commutative ring, let A be a flat noetherian k-algebra,
and let a⊆ A be an ideal. Assume further that at least one of the following holds:

(1) The ring k is an absolutely flat ring (e.g., a field).

(2) The ring A/a is essentially of finite type over k.

(3) The ideal I := a⊗k A+ A⊗k a⊆ A⊗k A is weakly proregular.

Set Â :=3a(A) and A ⊗̂k A :=3I (A⊗k A). Then there are isomorphisms

L3̂aR HomA⊗k A(A,−)∼= R HomA⊗k A( Â,L3I (−))∼= R HomA⊗̂k A( Â,L3̂I (−))

of functors
D(Mod A⊗k A)→ D(Mod Â).

Proof. If k is absolutely flat, then I is weakly proregular by Proposition 2.1, while if
A/a is essentially of finite type over k, then I is weakly proregular by Theorem 2.6.
Since the image of I in A is equal to a, and since A being noetherian implies that
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a is weakly proregular, given M ∈ D(Mod A⊗k A), by Corollary 3.12, there is a
functorial isomorphism

L3̂aR HomA⊗k A(A,M)∼= R HomA⊗k A( Â,L3I (M)).

Note that, considered as an (A⊗k A)-module, the I-adic completion of A is equal
to Â. Hence, we may apply Corollary 3.11, and deduce that there is a functorial
isomorphism

R HomA⊗k A( Â,L3I (M))∼= R HomA⊗̂k A( Â,L3̂I (M))

in D(Mod Â). This proves the result. �

The next lemma might seem trivial at first glance. However, the possible lack of
flatness of the completion map makes it a little more difficult.

Lemma 4.2. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal. Assume that Â :=3a(A) is noetherian, and let M ∈Mod Â be an a-adically
complete Â-module. Let

Rest Â/A : D(Mod Â)→ D(Mod A)

be the forgetful functor. Then there is a functorial isomorphism

L3a(Rest Â/A(M))
∼= Rest Â/A(M)

in D(Mod A), and a functorial isomorphism

L3̂a(Rest Â/A(M))
∼= M

in D(Mod Â).

Proof. Let a be a finite sequence that generates a, and let â be its image in Â. Since
Â is noetherian and M is a-adically complete, it follows from [Porta et al. 2015,
Theorem 1.21] that M is cohomologically a Â-adically complete, so there is an
isomorphism

M ∼= R Hom Â(Tel( Â; â),M).

The base change property of the telescope complex implies that Tel(A; a)⊗A Â ∼=
Tel( Â; â). Using this fact and the hom-tensor adjunction, we deduce that

Rest Â/A(M)
∼= R HomA

(
Tel(A; a),Rest Â/A(M)

)
,

so that
L3a

(
Rest Â/A(M)

)
∼= Rest Â/A(M).

Note that

Rest Â/A

(
L3̂a

(
Rest Â/A(M)

))
∼= L3a

(
Rest Â/A(M)

)
∼= Rest Â/A(M).
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Hence, the complex of Â-modules

L3̂a

(
Rest Â/A(M)

)
is concentrated in degree 0. Letting P→ Rest Â/A(M) be a projective resolution,
we deduce that the map

3̂a(P)→ 3̂a

(
Rest Â/A(M)

)
∼= M

is an Â-linear quasiisomorphism, so the result follows from the fact that

L3̂a

(
Rest Â/A(M)

)
∼= 3̂a(P). �

Using this lemma, and as a first corollary of Theorem 4.1, we obtain the next
result which reduces the problem of computing the Hochschild cohomology of an
adically complete ring to a problem over noetherian rings.

Corollary 4.3. Let k be a commutative ring, and let A be a flat noetherian k-algebra.
Assume a ⊆ A is an ideal such that A is a-adically complete, and such that
A/a is essentially of finite type over k. Let I = a ⊗k A + A ⊗k a, and set
A ⊗̂k A := 3I (A ⊗k A). Then for any M ∈ Mod A ⊗k A which is I-adically
complete (for example, any a-adically complete A-module, or, more particularly,
any finitely generated A-module), there is a functorial isomorphism

R HomA⊗k A(A,M)∼= R HomA⊗̂k A(A,M)

in D(Mod A), and the ring A ⊗̂k A is noetherian.

Proof. That A⊗̂k A is noetherian follows from the fact that (A⊗k A)/I ∼= A/a⊗k A/a
is noetherian, and I is finitely generated. Since A = Â, according to Theorem 4.1,
there is a functorial isomorphism

R HomA⊗k A(A,L3I (M))∼= R HomA⊗̂k A(A,L3̂I (M)).

By Lemma 4.2, we have

L3I (M)∼= M in D(Mod A⊗k A)
and

L3̂I (M)∼= M in D(Mod A ⊗̂k A).

Using these two facts, we obtain the functorial isomorphism

R HomA⊗k A(A,M)∼= R HomA⊗̂k A(A,M). �

Remark 4.4. In [Buchweitz and Flenner 2006, Section 3, page 113], the authors
defined the analytic Hochschild cohomology and discussed its relation to ordinary
Hochschild cohomology. The setup there is as follows: (A,mA) and (B,mB) are
two complete noetherian local rings, and there is a flat local map A→ B such that
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the induced map A/mA→ B/mB is an isomorphism. In this situation, the authors
defined the analytic bar resolution B̂ by replacing B⊗

n
A with its completion with

respect to the maximal ideal ker(B⊗
n
A → B/mB) in the ordinary bar resolution.

Using this complex, the authors defined the analytic Hochschild cohomology by

ĤHn(B/A,M) := H n HomB⊗̂A B(B̂,M),

observed that there is a canonical map

ĤHn(B/A,M)→ HHn(B/A,M),

and asked if these modules are isomorphic. Using Corollary 4.3 and the results
of [Buchweitz and Flenner 2006], we may now obtain a positive answer to this
question:

Corollary 4.5. Let (A,mA)→ (B,mB) be a flat local homomorphism of complete
noetherian local rings such that the induced map of residue fields A/mA→ B/mB

is an isomorphism. Then for any mB-adically complete B-module M (in particular,
for any finitely generated B-module M), there is a natural B-module isomorphism

ĤHn(B/A,M)∼= HHn(B/A,M).

Proof. Note that M is ker(B⊗A B→ B/mB)-adically complete, so by [Buchweitz
and Flenner 2006, Proposition 3.1], the natural map

HHn(B/A,M)→ ExtnB⊗A B(B,M)

is an isomorphism. Similarly, by [Buchweitz and Flenner 2006, Proposition 3.2],
the natural map

ĤHn(B/A,M)→ ExtnB⊗̂A B(B,M)

is an isomorphism. Finally, by Corollary 4.3, there is a natural isomorphism

ExtnB⊗A B(B,M)∼= ExtnB⊗̂A B(B,M),

so the result follows. �

Our next goal is to give the complex appearing in Theorem 4.1 a description in
terms of the Hochschild complex of the ring Â. First we need a lemma.

Lemma 4.6. Let k be a commutative ring, let A be a flat noetherian k-algebra, and
let a⊆ A be an ideal. Let

I := a⊗k A+ A⊗k a⊆ A⊗k A,

let â := a ·3a(A), and let

J = â⊗k Â+ Â⊗k â= I · ( Â⊗k Â)⊆ Â⊗k Â.
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If τA : A→ Â is the completion map, then the ring map

3I (τA⊗k τA) :3I (A⊗k A)→3J ( Â⊗k Â)

is an isomorphism.

Proof. Notice that for each n we have

I n
=

n∑
i=0

ai
⊗ an−i ,

where we have set a0
= A. Hence,

a2n
⊗k A+ A⊗k a

2n
⊆ I 2n

⊆ an
⊗k A+ A⊗k a

n.

It follows that the two sequences of ideals {I n
} and {an

⊗k A+ A⊗k a
n
} are cofinal

in each other, so that

lim
←−−
(A⊗k A)/I n ∼= lim

←−−
(A⊗k A)/(an

⊗k A+ A⊗k a
n)∼= lim

←−−
A/an

⊗k A/an.

Since A is noetherian, Â is flat over A, so it is also flat over k. Hence, in the exact
same manner,

lim
←−−
( Â⊗k Â)/J n ∼= lim

←−−
Â/(â)n ⊗k A/(â)n.

Hence, the result follows from the fact that Â/(â)n∼= A/an, and from the observation
that the maps 3I (τA⊗k τA) and

lim
←−−
((τA⊗k τA)/(a

n
⊗k A+ A⊗k a

n))

are equal. �

Remark 4.7. In the notation of the above lemma, note that composing the comple-
tion map

Â⊗k Â→3J ( Â⊗k Â)

with the isomorphism

3J ( Â⊗k Â)→3I (A⊗k A)

we obtain a ring map
Â⊗k Â→3I (A⊗k A).

Using this map, given M ∈Mod(A⊗k A), we will be able to regard

3̂I (M) ∈Mod(3I (A⊗k A))

as an ( Â⊗k Â)-module which is J-adically complete.
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We may now refine Theorem 4.1, and present the derived completion of the
Hochschild cohomology complex as a Hochschild cohomology complex over the
completion:

Theorem 4.8. Let k be a commutative ring, and let A be a flat noetherian k-algebra
such that A⊗k A is noetherian. Let a ⊆ A be an ideal, and let M be a finitely
generated (A⊗k A)-module. Set

I := a⊗k A+ A⊗k a⊆ A⊗k A.

Then there is a functorial isomorphism

L3̂a(R HomA⊗k A(A,M))∼= R Hom Â⊗k Â( Â, M̂)

in D(Mod Â), where Â := 3̂a(A) and M̂ := 3̂I (M).

Proof. Set A ⊗̂k A :=3I (A⊗k A). By assumption, A⊗k A is noetherian, so I is
weakly proregular. According to Theorem 4.1, there is a functorial isomorphism

L3̂a(R HomA⊗k A(A,M))∼= R HomA⊗̂k A( Â,L3̂I (M)). (4.9)

Because A⊗k A is noetherian and M is a finitely generated module, it follows that

L3̂I (M)∼= 3̂I (M)= M̂

in D(Mod A ⊗̂k A). Hence, by Lemma 4.6, there is a functorial isomorphism

R HomA⊗̂k A( Â, M̂)∼= R Hom Â⊗̂k Â( Â, M̂) (4.10)

in D(Mod Â). Let â := a · Â ⊆ Â. Since A is noetherian, the map A → Â is
flat, so the map A⊗k A→ Â⊗k Â is also flat. Hence, by Remark 2.2, the ideal
J := I · ( Â⊗k Â)= â⊗k Â+ Â⊗k â is weakly proregular.

Because A⊗k A is noetherian, its completion 3I (A⊗k A) is also noetherian, so,
again by Lemma 4.6, the ring 3J ( Â⊗k Â) is noetherian. Hence, by Lemma 4.2,
L3J (M̂) ∼= L3̂J (M̂) ∼= M̂ . Applying Theorem 4.1 to the ring Â, we have a
functorial isomorphism

R Hom Â⊗k Â( Â,L3J (M))∼= R Hom Â⊗̂k Â( Â,L3̂J (M)).

Composing this isomorphism with the isomorphisms of (4.9) and (4.10), we obtain
the result. �

Our final goal in this section is to show that when taking cohomology in the
above theorem, derived completion may be replaced with ordinary completion. The
next simple lemma is needed for the proof of Proposition 4.12.
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Lemma 4.11. Let A be a noetherian ring, let P be a bounded complex of free
A-modules, and let M be a finitely generated A-module. Then the canonical map

HomA(P, A)⊗A M→ HomA(P,M)

is an isomorphism of complexes.

Proof. It is enough to show this in the case where P is a single free A-module. In
that case, note that HomA(P, A) is a direct product of copies of A, and since A is
noetherian this is a flat A-module. Thus, both of the functors HomA(P, A)⊗A−

and HomA(P,−) are exact, and if M is a finitely generated free A-module, then the
canonical map HomA(P, A)⊗A M→ HomA(P,M) is obviously an isomorphism.
Hence, the result of the lemma follows from the standard finite presentation trick. �

In the case where M is bounded above, the next proposition is [Frankild 2003,
Proposition 2.7]. We, however, wish to apply this result to the Hochschild complex
which is bounded below, so we give a proof that works for complexes without any
boundedness condition.

Proposition 4.12. Let A be a noetherian ring, and let a ⊆ A be an ideal. Then
there is an isomorphism

L3a(M)∼= Â⊗A M

of functors
Df(Mod A)→ D(Mod A).

Proof. There is a sequence of morphisms of functors

Â⊗A M ∼= HomA(Tel(A; a), A)⊗A M→ HomA(Tel(A; a),M)∼= L3a(M).

Because A is assumed to be noetherian, Â is flat over A. Hence, both L3a(−)

and −⊗A Â are functors of finite cohomological dimension. Thus, by [Hartshorne
1966, Proposition I.7.1], it is enough to show that the above morphism is an
isomorphism in the case where M is a finitely generated A-module, and this follows
from Lemma 4.11. �

Here is the result promised in the title of this paper:

Theorem 4.13. Let k be a commutative ring, and let A be a flat noetherian
k-algebra such that A ⊗k A is noetherian. Let a ⊆ A be an ideal, and let M
be a finitely generated (A⊗k A)-module. Then for any n ∈N, there is a functorial
isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Extn

Â⊗k Â
( Â, M̂).

If , moreover, either

(1) k is a field, or
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(2) A is projective over k, a is a maximal ideal, and M is a finitely generated
A-module,

then there is also a functorial isomorphism

3a(HHn(A/k,M)
)
∼= HHn( Â/k, M̂).

Proof. The assumptions of the theorem ensure that

R HomA⊗k A(A,M) ∈ Df(Mod A),

so since A is noetherian, we have a functorial isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Â⊗A H n(R HomA⊗k A(A,M)).

Flatness of Â over A implies (for example, by [Porta et al. 2014b, Corollary 2.12])
that there is a natural isomorphism

Â⊗A H n(R HomA⊗k A(A,M))∼= H n( Â⊗A R HomA⊗k A(A,M)).

Hence, by Proposition 4.12, it is enough to compute the n-th cohomology of the
complex

L3a(R HomA⊗k A(A,M)).

Letting
Rest Â/A : D(Mod Â)→ D(Mod A)

be the forgetful functor, the above complex is equal to

Rest Â/A ◦L3̂a(R HomA⊗k A(A,M)).

By Theorem 4.8, there is a functorial isomorphism

L3̂aR HomA⊗k A(A,M)∼= R Hom Â⊗k Â( Â, M̂)

in D(Mod Â), so applying the forgetful functor we obtain an A-linear natural
isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Extn

Â⊗k Â
( Â, M̂).

(Actually, any A-linear map between Â-modules is automatically Â-linear, so this
isomorphism is even an isomorphism of Â-modules.) This establishes the first claim
of the theorem. If k is a field then the second claim obviously follows from the first
one. Assume now that A is projective over k, that a is a maximal ideal, and that M
is a finitely generated A-module. Let φ be the composition of the diagonal map
Â⊗k Â→ Â with the map Â→ Â/a Â. Then m = ker(φ)⊆ Â⊗k Â is a maximal
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ideal, and the image of m in Â is equal to a Â. Hence M̂ is m-adically complete, so
by [Buchweitz and Flenner 2006, Proposition 3.1] the canonical map

HHn( Â/k, M̂)→ Extn
Â⊗k Â

( Â, M̂)

is an isomorphism. This proves the second claim. �

The above result allows us to compute the Hochschild cohomology of power
series rings, which is new as far as we know.

Example 4.14. Let k be a noetherian ring. Let A=k[x1, . . . , xn], a= (x1, . . . , xn),
and M = A. Note that A is projective over k, and that 3a(A) = k[[x1, . . . , xn]].
Hence, by the above theorem, we have

Exti
Â⊗k Â

( Â, Â)∼=3a

(
HHi (k[x1, . . . , xn]/k, k[x1, . . . , xn])

)
.

By the Hochschild–Kostant–Rosenberg theorem, the right-hand side is equal to

3a ∧
i (k[x1, . . . , xn]

n),

so we have an isomorphism

Exti
Â⊗k Â

( Â, Â)∼= ∧i (k[[x1, . . . , xn]]
n).

If, moreover, k is a field, we obtain that

HHi (k[[x1, . . . , xn]]/k, k[[x1, . . . , xn]])∼= ∧
i (k[[x1, . . . , xn]]

n).

We remark that one can also use Corollary 4.3 to make this calculation.

Example 4.15. Let A be a noetherian ring, and let a ⊆ A be an ideal. Then, by
Theorem 4.8, we have

R Hom Â⊗A Â( Â, Â)∼= L3̂aR HomA(A, A)= Â.

Assume now that a is a maximal ideal. Then, by Theorem 4.13,

HHn( Â/A, Â)= 0

for all n 6= 0, and HH0( Â/A, Â)= Â. Specializing to the case where A = Z, and
a = (p) for some prime number p, we have computed the absolute Hochschild
cohomology of the ring of p-adic integers Zp.

Remark 4.16. The above examples are both particular cases of an adic Hochschild–
Kostant–Rosenberg theorem which applies for any formally smooth adic alge-
bra A such that A/a is essentially of finite type over k. This can be shown
using Corollary 4.3 and by studying the local structure of the completed diagonal
ker(A ⊗̂k A→ A). A full proof of this will appear elsewhere.
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5. Hochschild homology and derived torsion

In this short and final section we discuss relations between Hochschild homology
and the derived torsion functor.

Theorem 5.1. Let k be a commutative ring, let A be a flat noetherian k-algebra,
and let a⊆ A be an ideal. Assume further that at least one of the following holds:

(1) The ring k is an absolutely flat ring (e.g., a field).

(2) A/a is essentially of finite type over k.

(3) The ideal I := a⊗k A+ A⊗k a⊆ A⊗k A is weakly proregular.

Set Â :=3a(A) and A ⊗̂k A :=3I (A⊗k A). Then there are isomorphisms

R0̂a
(

A⊗L
A⊗k A−

)
∼= Â⊗L

A⊗k A R0I (−)∼= Â⊗L
A⊗̂k A R0̂I (−)

of functors
D(Mod A⊗k A)→ D(Mod Â).

Proof. As in the proof of Theorem 4.1, the first two conditions imply the third one,
so we may assume I is weakly proregular. The first isomorphism then follows from
Corollary 3.14, while the second isomorphism follows from Corollary 3.13. �

Remark 5.2. In view of Theorem 4.13, it is natural to ask if Hochschild homology
also commutes with adic completion. Here, the answer is false, even in simple
situations. Indeed, let k be a field of characteristic 0, let A = k[x], and let a= (x).
Then

HH1(A/k, A)∼= A,

so that 3a(HH1(A/k, A))∼= k[[x]]. On the other hand, HH1( Â/k, Â)∼=�1
k[[x]]/k is

an infinitely generated k[[x]]-module.

Remark 5.3. As an alternative to the badly behaved Hochschild homology of
commutative adic algebras, Hübl [1989] developed a theory of adic Hochschild
homology by studying the cohomologies of the functor

A⊗L
A⊗̂k A− .

As our Corollary 4.3 shows, in the case of Hochschild cohomology, usual Hochschild
cohomology coincides with adic Hochschild cohomology, but by the previous
remark we see that for Hochschild homology this is not the case.
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Univ. Ovidius Constanţa Ser. Mat. 9:2 (2001), 87–96. MR 2075931 Zbl 1090.13502

[Keller 1994] B. Keller, “Deriving DG categories”, Ann. Sci. École Norm. Sup. (4) 27:1 (1994),
63–102. MR 1258406 Zbl 0799.18007

[Loday 1998] J.-L. Loday, Cyclic homology, 2nd ed., Grundlehren der Mathematischen Wissenschaften
301, Springer, Berlin, 1998. MR 1600246 Zbl 0885.18007

[Lurie 2011] J. Lurie, “Derived algebraic geometry, XII: Proper morphisms, completions, and
the Grothendieck existence theorem”, preprint, 2011, http://www.math.harvard.edu/~lurie/papers/
DAG-XII.pdf.

http://www.numdam.org/numdam-bin/fitem?id=ASENS_1997_4_30_1_1_0
http://www.numdam.org/numdam-bin/fitem?id=ASENS_1997_4_30_1_1_0
http://msp.org/idx/mr/1422312
http://msp.org/idx/zbl/0894.14002
http://www.ams.org/books/conm/244/01
http://www.ams.org/books/conm/244/01
http://dx.doi.org/10.1090/S0002-9939-02-06558-9
http://msp.org/idx/mr/1716706
http://msp.org/idx/zbl/0927.00024
http://dx.doi.org/10.1007/978-3-0346-0329-4_1
http://msp.org/idx/mr/1648664
http://msp.org/idx/zbl/0934.13008
http://msp.org/idx/arx/1410.3451v2
http://dx.doi.org/10.1017/CBO9780511629204
http://dx.doi.org/10.1017/CBO9780511629204
http://msp.org/idx/mr/3014449
http://msp.org/idx/zbl/1263.13014
http://dx.doi.org/10.1007/s00229-005-0608-8
http://msp.org/idx/mr/2194381
http://msp.org/idx/zbl/1084.13005
https://archive.org/details/homologicalalgeb033541mbp
http://msp.org/idx/mr/0077480
http://msp.org/idx/zbl/0075.24305
http://dx.doi.org/10.1006/jabr.1993.1035
http://msp.org/idx/mr/1992028
http://msp.org/idx/zbl/1020.13003
http://dx.doi.org/10.1016/0021-8693(92)90026-I
http://dx.doi.org/10.1016/0021-8693(92)90026-I
http://msp.org/idx/mr/1172439
http://msp.org/idx/zbl/0774.18007
http://www.numdam.org/numdam-bin/fitem?id=PMIHES_1960__4__5_0
http://www.numdam.org/numdam-bin/fitem?id=PMIHES_1960__4__5_0
http://msp.org/idx/mr/0217083
http://msp.org/idx/zbl/0118.36206
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN496067613
http://msp.org/idx/mr/0222093
http://msp.org/idx/zbl/0212.26101
http://dx.doi.org/10.1007/978-1-4757-3849-0
http://msp.org/idx/mr/0463157
http://msp.org/idx/zbl/0367.14001
http://dx.doi.org/10.2307/1969145
http://msp.org/idx/mr/0011076
http://msp.org/idx/zbl/0063.02029
http://dx.doi.org/10.1007/BFb0098406
http://msp.org/idx/mr/995670
http://msp.org/idx/zbl/0675.13019
http://www.emis.de/journals/ASUO/mathematics/pdf2/ionescu.pdf
http://msp.org/idx/mr/2075931
http://msp.org/idx/zbl/1090.13502
http://www.numdam.org/item?id=ASENS_1994_4_27_1_63_0
http://msp.org/idx/mr/1258406
http://msp.org/idx/zbl/0799.18007
http://dx.doi.org/10.1007/978-3-662-11389-9
http://msp.org/idx/mr/1600246
http://msp.org/idx/zbl/0885.18007
http://www.math.harvard.edu/~lurie/papers/DAG-XII.pdf
http://www.math.harvard.edu/~lurie/papers/DAG-XII.pdf


Hochschild cohomology commutes with adic completion 1029

[Mac Lane 1963] S. Mac Lane, Homology, Grundlehren der Mathematischen Wissenschaften 114,
Springer, Berlin, 1963. Reprinted in Classics in Mathematics, 1995. MR 0156879 Zbl 0133.26502

[Porta et al. 2014a] M. Porta, L. Shaul, and A. Yekutieli, “Completion by derived double centralizer”,
Algebr. Represent. Theory 17:2 (2014), 481–494. MR 3181733 Zbl 06306474

[Porta et al. 2014b] M. Porta, L. Shaul, and A. Yekutieli, “On the homology of completion and
torsion”, Algebr. Represent. Theory 17:1 (2014), 31–67. MR 3160712 Zbl 06306453

[Porta et al. 2015] M. Porta, L. Shaul, and A. Yekutieli, “Cohomologically cofinite complexes”,
Comm. Algebra 43:2 (2015), 597–615. MR 3274024 Zbl 06422500

[Schenzel 2003] P. Schenzel, “Proregular sequences, local cohomology, and completion”, Math.
Scand. 92:2 (2003), 161–180. MR 1973941 Zbl 1023.13011

[Shaul 2016] L. Shaul, “Tensor product of dualizing complexes over a field”, preprint, 2016. To
appear in J. Commut. Algebra. arXiv 1412.3759v2

[Simon 1990] A.-M. Simon, “Some homological properties of complete modules”, Math. Proc.
Cambridge Philos. Soc. 108:2 (1990), 231–246. MR 1074711 Zbl 0719.13007

[Spaltenstein 1988] N. Spaltenstein, “Resolutions of unbounded complexes”, Compositio Math. 65:2
(1988), 121–154. MR 932640 Zbl 0636.18006

[Stacks 2005–] “The Stacks Project”, electronic reference, 2005–, http://stacks.math.columbia.edu.

[Weibel 1994] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced
Mathematics 38, Cambridge University Press, 1994. MR 1269324 Zbl 0797.18001

[Yekutieli 2011] A. Yekutieli, “On flatness and completion for infinitely generated modules over
Noetherian rings”, Comm. Algebra 39:11 (2011), 4221–4245. MR 2855123 Zbl 1263.13028

[Yekutieli 2016] A. Yekutieli, “The squaring operation for commutative DG rings”, J. Algebra 449
(2016), 50–107. MR 3448166

Communicated by Hubert Flenner
Received 2015-05-23 Revised 2016-03-04 Accepted 2016-05-16

Liran.Shaul@uantwerpen.be Departement Wiskunde-Informatica, Universiteit Antwerpen,
Middelheim Campus, Middelheimlaan 1, 2020 Antwerp,
Belgium

mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-3-642-62029-4
http://msp.org/idx/mr/0156879
http://msp.org/idx/zbl/0133.26502
http://dx.doi.org/10.1007/s10468-013-9405-3
http://msp.org/idx/mr/3181733
http://msp.org/idx/zbl/06306474
http://dx.doi.org/10.1007/s10468-012-9385-8
http://dx.doi.org/10.1007/s10468-012-9385-8
http://msp.org/idx/mr/3160712
http://msp.org/idx/zbl/06306453
http://dx.doi.org/10.1080/00927872.2013.822506
http://msp.org/idx/mr/3274024
http://msp.org/idx/zbl/06422500
http://www.mscand.dk/article/view/14399
http://msp.org/idx/mr/1973941
http://msp.org/idx/zbl/1023.13011
http://msp.org/idx/arx/1412.3759v2
http://dx.doi.org/10.1017/S0305004100069103
http://msp.org/idx/mr/1074711
http://msp.org/idx/zbl/0719.13007
http://www.numdam.org/item?id=CM_1988__65_2_121_0
http://msp.org/idx/mr/932640
http://msp.org/idx/zbl/0636.18006
http://stacks.math.columbia.edu
http://dx.doi.org/10.1017/CBO9781139644136
http://msp.org/idx/mr/1269324
http://msp.org/idx/zbl/0797.18001
http://dx.doi.org/10.1080/00927872.2010.522159
http://dx.doi.org/10.1080/00927872.2010.522159
http://msp.org/idx/mr/2855123
http://msp.org/idx/zbl/1263.13028
http://dx.doi.org/10.1016/j.jalgebra.2015.09.038
http://msp.org/idx/mr/3448166
mailto:Liran.Shaul@uantwerpen.be
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 10:5 (2016)

dx.doi.org/10.2140/ant.2016.10.1031

Bifurcations, intersections, and heights
Laura DeMarco

We prove the equivalence of dynamical stability, preperiodicity, and canonical
height 0, for algebraic families of rational maps ft : P

1(C)→ P1(C), param-
eterized by t in a quasiprojective complex variety. We use this to prove one
implication in the if-and-only-if statement of a certain conjecture on unlikely
intersections in the moduli space of rational maps (see “Special curves and
postcritically finite polynomials”, Forum Math. Pi 1 (2013), e3). We present the
conjecture here in a more general form.

1. Introduction

Let f : V × P1(C)→ P1(C) be an algebraic family of rational maps of degree
d ≥ 2. That is, V is an irreducible quasiprojective complex variety, and f is a
morphism such that ft := f (t, · ) : P1

→ P1 has degree d for all t ∈ V. Fix a
morphism a : V →P1, which we view as a marked point on P1. When V is a curve,
we will alternatively view f as a rational function defined over the function field
k = C(V ), with a ∈ P1(k). In this article, we study the relation between dynamical
stability of the pair ( f, a), preperiodicity of the point a, and the canonical height
of a (defined over the field k). In the final section, we present the general form of a
conjecture on density of “special points” in this setting of dynamics on P1 (which
includes as a special case some known statements about points on elliptic curves) —
see Conjecture 6.1; compare [Baker and DeMarco 2013, Conjecture 1.10]. We
finish the article with the proof of one part of the conjecture, as an application of
this study of stability in algebraic families.

Stability. The pair ( f, a) is said to be stable if the sequence of iterates

{t 7→ f n
t (a(t))}n≥1

forms a normal family on V. (Recall that a family of holomorphic maps is normal
if it is precompact in the topology of uniform convergence on compact subsets; i.e.,
any sequence contains a locally uniformly convergent subsequence.) The pair ( f, a)
is preperiodic if there exist integers m > n ≥ 0 such that f m

t (a(t))= f n
t (a(t)) for

MSC2010: primary 37P30; secondary 37F45, 11G05.
Keywords: dynamics of rational maps, canonical height, stability.
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all t ∈ V. The pair ( f, a) is isotrivial if there exists a branched cover W → V
and an algebraic family of Möbius transformations M : W ×P1

→ P1 such that
Mt ◦ ft ◦M−1

t : P
1
→ P1 and Mt(a(t)) ∈ P1 are independent of t .

It is immediate from the definitions that either preperiodicity or isotriviality will
imply stability. In this article, we prove the converse:

Theorem 1.1. Let f be an algebraic family of rational maps of degree d ≥ 2, and
let a be a marked point. Suppose ( f, a) is stable. Then either ( f, a) is isotrivial or
it is preperiodic.

This is a generalization of [Dujardin and Favre 2008, Theorem 2.5], which itself
extends [McMullen 1987, Theorem 2.2], treating the case where a is a critical
point of f . In the study of complex dynamics, it is well known that a holomorphic
family f : X ×P1

→ P1, for X any complex manifold, is dynamically stable if
and only if the pair ( f, c) is stable for all critical points c of f [Lyubich 1983;
Mañé et al. 1983; McMullen 1994, Chapter 4]. For nonisotrivial algebraic families
f : V ×P1

→ P1, McMullen [1987, Lemma 2.1] proved that dynamical stability
on all of V implies that all critical points are preperiodic. Combining this with
Thurston’s rigidity theorem, he concluded that a nonisotrivial stable family must be
a family of flexible Lattès maps (i.e., covered by an endomorphism of a nonisotrivial
family of elliptic curves).

Canonical height. One step in the proof of Theorem 1.1 provides an elementary
geometric proof of Baker’s theorem [2009, Theorem 1.6] on the finiteness of rational
points with small height, for the canonical height ĥ f associated to the function field
C(V ), when the variety V has dimension 1. In fact, we obtain his statement under
the weaker hypothesis that f is not isotrivial over k = C(V ) (rather than assuming
f is nonisotrivial over any extension of k); see [Baker 2009, Remark 1.7(i)]. The
map f is isotrivial over k = C(V ) if there exists an algebraic family of Möbius
transformations M : V ×P1

→ P1 such that Mt ◦ ft ◦M−1
t is independent of t .

Theorem 1.2. Suppose f is a rational function defined over the function field
k = C(V ), of degree ≥ 2, and assume that V has dimension 1. Let ĥ f be the
canonical height of f . If f is not isotrivial over k, then there exists a b > 0
such that the set {a ∈ P1(k) : ĥ f (a) < b} is finite.

Remark 1.3. Theorem 1.2 contains as a special case the corresponding result
about rational points on an elliptic curve E over k, equipped with the Néron–
Tate height, generally attributed to Lang and Néron [1959]; see [Silverman 1994,
Theorem III.5.4] for a proof. It was a step in proving the Mordell–Weil theorem
for function fields. (To treat this case, we project E to P1 and let f be the rational
function induced by multiplication-by-2 on E .) In this setting, one can say more:
the set of points in P1(k) with height < b that lift to rational points in E(k) is
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finite for all b > 0; see [Baker 2009, Theorem B.9], where this is deduced from the
conclusion of Theorem 1.2.

The canonical height ĥ f was introduced in [Call and Silverman 1993], and it
satisfies ĥ f ( f (a)) = dĥ f (a) when f has degree d. So Theorem 1.2 implies that
rational points of height 0 are preperiodic unless f is isotrivial over k. This was
proved for polynomials f in [Benedetto 2005]. When k is a number field, this was
observed in [Call and Silverman 1993], and the conclusion of Theorem 1.2 holds
for all b > 0. In the function field setting, the conclusion of Theorem 1.2 cannot
hold for all b > 0, since, for example, the union of all constant points a ∈ P1(C)

will form an infinite set of bounded canonical height for any f . On page 1040, we
provide explicit examples of functions f for which we compute the sharp bound b
and the total number of rational preperiodic points. Also, note that examples do
exist of rational functions f ∈ k(z) that are isotrivial but not isotrivial over k=C(V ).
A necessary condition is a nontrivial automorphism group of f ; see Example 2.2.

Combining Theorem 1.1 with Theorem 1.2, we have:

Theorem 1.4. Suppose f : V × P1
→ P1 is a nonisotrivial algebraic family of

rational maps, where V has dimension 1. Let ĥ f :P
1(k̄)→R be a canonical height

of f , defined over the function field k = C(V ). For each a ∈ P1(k̄), the following
are equivalent:

(1) The pair ( f, a) is stable.

(2) ĥ f (a)= 0.

(3) ( f, a) is preperiodic.

Moreover, the set {a ∈ P1(k) : ( f, a) is stable} is finite.

Application to intersection theory. Combining Theorem 1.1 with Montel’s theorem
on normal families, we obtain another argument for the “easy” implication of the
Masser–Zannier theorems [2010; 2012] on anomalous torsion for elliptic curves.

Proposition 1.5. Suppose that E is any nonisotrivial elliptic curve defined over a
function field k = C(V ), where V has dimension 1, and let P be a point of E(k).
Then the set of t ∈ V for which the point Pt is torsion on Et is infinite.

The harder part of the Masser–Zannier theorems is the following statement: if
two points P and Q in E(k) are independent on E and neither is torsion, meaning
that they do not satisfy a relation of the form m P + nQ = 0 with integers m and n
not both zero, then the set of t ∈ V for which Pt and Qt are both torsion on Et

is finite. (In [DeMarco et al. 2016], we gave a dynamical proof of this harder
implication for the Legendre family Et .)

The theorems of [Masser and Zannier 2012], followed by a series of analogous
results in the dynamical setting (e.g., [Baker and DeMarco 2011; Ghioca et al.
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2013; 2015; DeMarco et al. 2015]), led to the development of a general conjecture
about rational maps and marked points — addressing a question first posed by
Umberto Zannier, but also encompassing a case of intrinsic dynamical interest,
where the marked points are the critical points of the map. A precise statement of
this conjecture appears as Conjecture 6.1 in Section 6. In [Baker and DeMarco
2013], we formulated the conjecture in the setting of marked critical points; an
error in one of our definitions is corrected here (Remark 6.3). In this article, we
use Theorem 1.1 to give a proof of one implication of the more general statement
of Conjecture 6.1. This implication reduces to proving the following statement.

Every algebraic family f : V ×P1
→P1 induces a (regular) projection V →Md

from the parameter space to the moduli space Md of conformal conjugacy classes
of maps. We say the family f has dimension N in moduli if the image of V under
this projection has dimension N in Md . Since V is irreducible, f has dimension 0
in moduli if and only if f is isotrivial.

Theorem 1.6. Let f : V ×P1
→ P1 be an algebraic family of rational maps of

degree d ≥ 2, of dimension N > 0 in moduli. Let a1, . . . , ak , with k ≤ N, be any
marked points. Then the set

S(a1, . . . , ak)=

k⋂
i=1

{t ∈ V : ai (t) is preperiodic for ft }

is Zariski-dense in V.

Remark 1.7. Conjecture 6.1 asserts that the set S(a1, . . . , ak) with k > N will be
Zariski-dense if and only if at most N of the points a1, . . . , ak are dynamically
“independent” on V.

Idea of the proof of Theorem 1.1. The proofs of [McMullen 1987, Theorem 2.2]
and [Dujardin and Favre 2008, Theorem 2.5] use crucially that the point is critical.
The first ingredient of our proof is similar to their proofs, building upon the fact
that there are only finitely many nonconstant morphisms from a quasiprojective
algebraic curve V to P1

\ {0, 1,∞}. This leads to the proof of Theorem 1.2. As a
special case of Theorem 1.2, we have:

Proposition 1.8. Let f : V ×P1
→ P1 be an algebraic family of rational maps of

degree d ≥ 2, and assume that V has complex dimension 1. Fix a marked point
a : V → P1, and define gn : V → P1 by gn(t)= f n

t (a(t)). If f is not isotrivial, and
if the degrees of {gn} are bounded, then there exist integers m > n ≥ 0 such that

f m
t (a(t))= f n

t (a(t)) for all t ∈ V .

Remark 1.9. If f is isotrivial, then the degrees of gn(t)= f n
t (a(t)) are bounded

if and only if the pair ( f, a) is isotrivial. (See Proposition 2.3.)
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For Theorem 1.1, it suffices to treat the case where V has complex dimension 1
and so is a finitely punctured Riemann surface. Then each gn(t)= f n

t (a(t)) extends
to a holomorphic map on the compactification of V. In light of Proposition 1.8, it
remains to prove that stability on V implies the degrees of {gn} are bounded.

The second ingredient of the proof is a study of normality and escape rates near
the punctures of V. The arguments given in Section 3 are inspired by the methods
of [DeMarco et al. 2015] and [DeMarco et al. 2016].

From a geometric point of view, the idea to show that the degrees of {gn} are
bounded is as follows. Let X denote (the normalization of) a compactification
of V. Under iteration, one would typically expect that deg gn ≈ d deg gn−1, where
d = deg f . Viewing gn as a curve in X ×P1 (by identifying the function with its
graph), the expected degree growth fails when the graph of gn passes through the
indeterminacy points of (t, z) 7→ (t, ft(z)) and thus its image contains “vertical
components” over the punctures of V. Lemma 3.3 shows that the multiplicity of
the vertical component in the image of any curve is uniformly bounded by some
integer q. On the other hand, normality on V implies that the graphs of gn are
converging over compact subsets of V. Therefore, if deg gn→∞, the graph of gn

must be fluctuating wildly near the punctures of V when n is large (Lemma 4.1).
But this fluctuation is controlled by Proposition 3.1.

2. Isotriviality and Theorem 1.2

Throughout this section, we assume that V is an irreducible quasiprojective complex
variety of dimension 1; i.e., V is obtained from a compact Riemann surface by
removing finitely many points. Let f :V×P1

→P1 be an algebraic family of rational
maps of degree d ≥ 2. We prove Theorem 1.2. We also prove Proposition 2.3, to
provide a characterization of isotriviality which is used in the proof of Theorem 1.1;
it is not needed for the proof of Theorem 1.2.

Isotrivial maps. By definition, f is isotrivial if there exists a family {Mt } of Möbius
transformations, regular over a branched cover p :W→V, such that Mt ◦ fp(t)◦M−1

t
is constant in t . For a marked point a : V → P1, the pair ( f, a) is isotrivial if, in
addition, the function Mt(a(p(t))) is constant on W. (Note that this is well defined,
even if the family Mt is not uniquely determined.) The map f (or the pair ( f, a))
is isotrivial over k = C(V ) if M can be chosen to be an algebraic family that is
regular on V.

Lemma 2.1. Let V have dimension 1. If ( f, a) is isotrivial, and if {a, f (a), f 2(a)}
is a set of three distinct functions on V, then ( f, a) is isotrivial over k.

Proof. Suppose ( f, a) is isotrivial. Let M :W ×P1
→ P1 be an algebraic family

of Möbius transformations, with branched cover p : W → V, such that R =
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Mw ◦ fp(w) ◦ M−1
w : P

1
→ P1 and b = Mw(a(p(w))) are independent of w ∈ W.

By removing finitely many points from V, we may assume that p : W → V is a
covering map.

Fix a basepoint t0 ∈ V and choose a point w0 ∈ p−1(t0). The choices of basepoint
determine a representation

ρf : π1(V, t0)→ Aut( ft0)⊂ PSL2(C)

that is trivial if and only if ( f, a) is isotrivial over k. Indeed, choose any γ ∈π1(V, t0)
and let η : [0, 1] →W be a lift of γ with η(0)= w0. Write wt for η(t). Then the
equality fp(w0)= fp(w1)= ft0 and isotriviality imply that Mw0 ft0 M−1

w0
=Mw1 ft0 M−1

w1
,

so ρf (γ ) := M−1
w1

Mw0 is an automorphism of ft0 . The triviality of ρf is equivalent
to the statement that Mw0 = Mw1 for all such paths, so that M descends to a regular
map M : V ×P1

→ P1.
Now choose the basepoint t0 so that {a(t0), ft0(a(t0)), f 2

t0(a(t0))} are three dis-
tinct points in P1. Fix any γ ∈ π1(V, t0). For each n ≥ 0, we have

ρf (γ )( f n
t0 (a(t0)))= f n

t0 (ρf (γ )(a(t0)))= f n
t0 M−1

w1
Mw0(a(p(w0)))

= f n
t0 M−1

w1
(b)= f n

t0 (a(p(w1))= f n
t0 (a(t0)),

so the full orbit of a(t0) under ft0 lies in the fixed set of ρf (γ ). By the assumption
on a we deduce that ρf (γ ) is the identity. Therefore, ( f, a) is isotrivial over k. �

Example 2.2. Consider the rational function f1(z)= z+1/z or the cubic polynomial
P1(z) = z3

− 3z. Both of these functions have z 7→ −z as an automorphism.
Conjugating by Mt(z)= t z and setting s = t2, we see that the families

fs(z)= z+ 1
sz

and Ps(z)= sz3
− 3z

are isotrivial over a degree-2 extension of k = C(s). On the other hand, neither
f nor P is isotrivial over k. This can be seen by computing the critical points

(=±
√

1/s in both examples), and observing that the critical points are interchanged
by a nontrivial loop in V = C \ {0}.

Proposition 2.3. Suppose V has dimension 1 and f is isotrivial. Let a : V → P1

be any marked point. The following are equivalent:

(1) The pair ( f, a) is isotrivial.

(2) The pair ( f, a) is stable.

(3) The degrees of gn(t)= f n
t (a(t)) are bounded.

Proof. Since f is isotrivial, there exist a finite branched cover p :W → V, an alge-
braic family of Möbius transformations M :W ×P1

→P1, and a map R :P1
→P1

such that Mt ◦ fp(t) ◦M−1
t = R for all t ∈W. Set s = p(t).
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If the pair ( f, a) is isotrivial, then b = Mt(a(s)) is also independent of t , so
the degrees of gn(t) = f n

s (a(s)) = M−1
t (Rn(b)) are clearly bounded. Thus (1)

implies (3). In addition, note that any sequence in the set {Rn(b)}n≥1 ⊂ P1 has a
convergent subsequence. This implies the normality of {M−1

t (Rn(b))}n≥1 on W
which in turn implies the normality of { f n

t (a(t))}n on V. Thus (1) implies (2).
Now suppose that ( f, a) is not isotrivial, so that b(t)= Mt(a(s)) is nonconstant

on W. We observe first that the degrees of {gn} must be unbounded, showing that
(3) implies (1). Indeed, since b is nonconstant, it extends to a surjective map of
finite degree from a compactification W to P1. Choose any point z0 ∈ P1 which is
nonexceptional for R, that is, such that the set of preimages R−n(z0) is growing in
cardinality as n→∞. For any D > 0, choose n so that the size of the set R−n(z0)

is larger than D. Then there is a set P ⊂W of cardinality |P| ≥ D such that b(t)
is in R−n(z0) for all t ∈ P . Then Rn(b(t)) = z0 for all t ∈ P . Taking D as large
as desired, this shows that the degrees of {t 7→ Rn(b(t))}n are unbounded. This in
turn implies that the degrees of gn(t)= M−1

t (Rn(b(t))) are unbounded.
Continuing to assume that ( f, a) is not isotrivial, we also see that b(t)=Mt(a(s))

has only finitely many critical points in W and the image b(W ) omits at most finitely
many points in P1. The map R has infinitely many repelling cycles in its Julia set,
so there must exist a t0 ∈ W such that b′(t0) 6= 0 and b(t0) is a repelling periodic
point of R for all t ∈ P . It follows that the sequence of derivatives ∂

∂t Rn(b(t))|t=t0
is unbounded; so the sequence {Rn(b(t)) = Mt( f n

s (a(s)))}n cannot be a normal
family on all of W. Therefore, {gn}n also fails to be normal, and so we have proved
that (2) implies (1). �

Finiteness of nonconstant maps. As in the proofs of Theorem 2.2 (and specifically
Proposition 4.3) in [McMullen 1987] and of Theorem 2.5 in [Dujardin and Favre
2008], we will need the following statement for our proof of Theorem 1.2.

Lemma 2.4. Let 3 be any quasiprojective, complex algebraic curve. There are
only finitely many nonconstant holomorphic maps from 3 to the triply punctured
sphere P1

\ {0, 1,∞}. The bound depends only on the Euler characteristic χ(3).

Proof. Any holomorphic map h : 3→ P1
\ {0, 1,∞} extends to a meromorphic

function on a (smooth) compactification X of 3. From Riemann–Hurwitz, the
degree of h is bounded by the Euler characteristic −χ(3). Any meromorphic
function on X is determined by its zeros, poles, and ones; indeed, the ratio of two
functions h1 and h2 with the same zeros and poles must be constant on X , and if
h1(x) = 1 = h2(x) for some x , then h1 ≡ h2. Thus, there are only finitely many
combinatorial possibilities for h. �

Proof of Theorem 1.2. Let d = deg f ≥ 2. The canonical height ĥ f (a) computes
the growth rate of the degrees of t 7→ f n

t (a(t)) as n→∞. Precisely, each a ∈P1(k̄)
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determines a meromorphic function W → P1 on a branched cover pa : W → V,
where the topological degree of pa coincides with the algebraic degree of the field
extension k(a) over k. The canonical height is computed as

ĥ f (a)=
1

deg pa
lim

n→∞

1
dn deg gn

for the maps gn :W → P1 defined by gn(s)= f n
pa(s)(a(s)). This height function ĥ f

is characterized by two conditions [Call and Silverman 1993, Theorem 1.1]:

(1) The difference |ĥ f (a)− deg a/deg pa| is uniformly bounded on P1(k̄).

(2) ĥ f ( f (a))= dĥ f (a) for all a ∈ P1(k̄).

In particular, the degrees of {gn} are growing to infinity if and only if the canonical
height of a is positive.

Suppose there is a sequence of rational points am ∈ P1(k), m ≥ 1, such that

1> ĥ f (am)→ 0

as m→∞. For each point a ∈ P1(k), the length of the orbit of a is defined to be
the cardinality of the set { f n(a) : n ≥ 0} in P1(k). Suppose further that only finitely
many of the am have infinite orbit, and that the finite orbit lengths are uniformly
bounded. In this case, all but finitely many of the am satisfy a finite number of
equations of the form f n(a)= f `(a) with n 6= `; thus the set {am} will be finite. If
this holds for any such sequence, then the theorem is proved.

We can assume, therefore, that the orbit lengths of the am are tending to infinity
with m or are equal to infinity for all m.

From property (1) of the height function, there exists a degree D such that
deg a≥ D with a ∈P1(k) implies ĥ f (a)≥ 1. For each m, choose an integer Nm ≥ 0
so that the orbit of am has length greater than Nm and so that

deg f i (am)≤ D

for all i ≤ Nm . Property (2) of the height function and the condition ĥ f (am)→ 0
imply that we may take Nm →∞ as m →∞. We will deduce that f must be
isotrivial over k.

Suppose now that ft has at least three distinct fixed points for general t ∈ V.
Remove the finitely many parameters in V where these three fixed points have
collisions. Then there exists a branched cover p :W → V and an algebraic family
of Möbius transformations M :W ×P1

→ P1 such that

Rt = Mt ◦ fp(t) ◦M−1
t

has its fixed points at 0, 1,∞ for all t ∈W.
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Set bm(t) = Mt(am(p(t))) for each m, so that Ri (bm) = M( f i (am)) for all
iterates. The uniform bound of D on the degrees of

⋃
m{ f i (am) : i ≤ Nm} implies

that there is a uniform bound of D′ on the degrees of
⋃

m{R
i (bm) : i ≤ Nm}. For

each point bm , we define

S0,m(n)= {t ∈W : Rn
t (bm(t))= 0},

S1,m(n)= {t ∈W : Rn
t (bm(t))= 1},

S∞,m(n)= {t ∈W : Rn
t (bm(t))=∞}.

Since {0, 1,∞} are fixed points of Rt for all t , we have

S0,m(n)⊂ S0,m(n+ 1)

for all m and all n; similarly for S1,m(n) and S∞,m(n). Let

Sm = S0,m(Nm)∪ S1,m(Nm)∪ S∞,m(Nm).

For each m and each n ≤ Nm , the iterate Rn(bm) determines a holomorphic map

W \ Sm −→ P1
\ {0, 1,∞}.

By construction, the degree of RNm (bm) is bounded by D′, so we have |Sm | ≤ 3D′

for all m. Therefore, there is a uniform bound B (independent of m) on the number
of nonconstant maps from W \ Sm to the triply punctured sphere P1

\ {0, 1,∞}
(Lemma 2.4). In other words, for each m, at most B of the first Nm iterates of bm

are nonconstant. Therefore, since Nm→∞, there exists an m0 such that bm0 has at
least 2d + 2 consecutive iterates that are constant and distinct.

Lemma 2.5. Suppose A and B are rational functions of degree d such that we have
A(xi )= B(xi ) for a sequence of 2d + 1 distinct points x1, . . . , x2d+1. Then A = B.

Proof. By postcomposing A and B with a Möbius transformation, we may assume
that the values A(xi ) and B(xi ) are finite for each i . Consider the difference
F = A− B. Then F is a rational function of degree ≤ 2d. But F vanishes in at
least 2d + 1 distinct points, so F ≡ 0. �

Set xi = Ri (bm0) for the consecutive indices i for which xi is constant in t . Then
Rt(xi )= xi+1 for all t along a set of 2d + 1 distinct points xi ∈ P1(C). Applying
Lemma 2.5, we conclude that the rational function Rt of degree d is independent
of t . In other words, f is isotrivial.

It remains to show that f is in fact isotrivial over k, but this follows from
Lemma 2.1. Indeed, for the point bm0 in the preceding paragraph, we had xi=Ri(bm0)

independent of t . In other words, the pair ( f, f i (am0)) is isotrivial. In addition,
the orbit length of f i (am0) is at least 2d + 1 ≥ 3. Lemma 2.1 states that the pair
( f, f i (am0)) must be isotrivial over k, so f itself is isotrivial over k.
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Finally, suppose that ft has only 1 or 2 fixed points, generally in V. For a
general parameter t0, choose a forward-invariant set of fixed points and preimages,
consisting of at least three distinct points. Pass to a branched cover W→V on which
these points can be marked holomorphically, excluding the finitely many points
where collisions occur. For each of these three points, we define the sets Si,m(n) as
above. If the i-th point is mapped to the j-th point by ft , then Si (n)⊂ Sj (n+ 1)
for all n. The rest of the proof goes through exactly the same. This completes the
proof of Theorem 1.2.

Two examples: computing canonical height and the number of rational preperi-
odic points. Consider Qt(z)= z2

+ t , the family of quadratic polynomials. This
family defines a nonisotrivial rational function Q over the function field k = C(t).
There is a unique point in P1(k) with finite orbit for Q, namely the point a =∞.
Indeed, writing a(t) = a1(t)/a2(t) for a ∈ P1(k) \ {∞}, we can compute explic-
itly that

deg(Q(a))=
{

2 deg a if deg a1 > deg a2,

2 deg a+ 1 if deg a1 ≤ deg a2.

In both cases, the image Q(a)will satisfy the hypothesis of the first case. Inductively
then, we have deg Qn(a)= 2n−1 deg Q(a). Consequently, the largest possible b in
the statement of Theorem 1.2 is b = 1

2 , since the set
{
a ∈ P1(k) : ĥQ(a) = 1

2

}
is

precisely the constant points a ∈ C, while∣∣{a ∈ P1(k) : ĥQ(a) < 1
2

}∣∣= 1.

As a second example, consider the family of flexible Lattès maps,

L t(z)=
(z2
− t)2

4z(z− 1)(z− t)
,

defining a nonisotrivial L over the field k = C(t). This family is the quotient
of the endomorphism P 7→ P + P on the Legendre family of elliptic curves
Et = {y2

= x(x − 1)(x − t)}. (See also the beginning of Section 5, where this
is discussed further.) For this example, Proposition 1.4 of [DeMarco et al. 2016]
shows there are exactly 4 rational preperiodic points, namely {0, 1, t,∞}. We also
explicitly computed the height of any starting point a ∈ P1(k) in Proposition 3.1 of
the same work. The constant points a ∈ C \ {0, 1} form an infinite set of points of
canonical height 1

2 , while∣∣{a ∈ P1(k) : ĥL(a) < 1
2

}∣∣= 4.

Again, b = 1
2 is the largest possible constant in the statement of Theorem 1.2.
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3. Escape rate at a degenerate parameter

In this section, we construct a “good” escape-rate function associated to a pair of
holomorphic maps f : D∗×P1

→ P1 and a : D∗→ P1, on the punctured unit disk
D∗ = {t ∈ C : 0< |t |< 1}. The construction follows that of [DeMarco et al. 2015;
2016]. I am indebted to Hexi Ye for his assistance in the proof of Proposition 3.1.

The setting. Throughout this section, we work in homogeneous coordinates on P1.
We assume we are given a family of homogeneous polynomial maps

Ft : C
2
→ C2,

of degree d ≥ 2, parameterized by t ∈D= {t ∈C : |t |< 1}, such that the coefficients
of Ft are holomorphic in t . Each Ft is given by a pair of homogeneous polynomials
(Pt , Qt), and we define Res(Ft) to be the homogeneous resultant of the polynomials
Pt and Qt . Recall that the resultant is a polynomial function of the coefficients
of Ft , vanishing if and only if Pt and Qt share a root in P1. See [Silverman 2007,
§2.4] for more information. We assume further that Res(Ft)= 0 if and only if t = 0,
and also that at least one coefficient of F0 is nonzero.

We use the norm

‖(z1, z2)‖ =max{|z1|, |z2|} on C2.

The escape-rate function. Let A : D→ C2
\ {(0, 0)} be any holomorphic map.

Write At for A(t).
For each n ≥ 0, the iterate Fn

t (At) is a pair of holomorphic functions in t ; we
define

an = ordt=0 Fn
t (At)

to be the minimum of the order of vanishing of the two coordinate functions at
t = 0; so a0 = 0 and an is a nonnegative integer for all n ≥ 1. Set

Fn(t)= t−an Fn
t (At)

so that Fn is a holomorphic map from D to C2
\ {(0, 0)} for each n. Our main goal

in this section is to prove the following statement.

Proposition 3.1. The functions

Gn(t)=
1

dn log ‖Fn(t)‖

converge locally uniformly on the punctured disk D∗ to a continuous function G
satisfying

G(t)= o(log |t |) as t→ 0.
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Remark 3.2. In [DeMarco et al. 2015; 2016], we used explicit expressions for Ft

to deduce that the function G was continuous at t = 0 for our examples. It remains
an interesting open question to determine necessary and sufficient conditions for the
functions Gn to converge uniformly to a continuous function G on a neighborhood
of t = 0.

Order of vanishing. Let Ft and Res(Ft) be defined as in page 1041.

Lemma 3.3. Let q = ordt=0 Res(Ft). There are constants 0<α< 1<β and δ > 0
such that

α|t |q ≤
‖Ft(z1, z2)‖

‖(z1, z2)‖d
≤ β,

for all (z1, z2) ∈ C2
\ {(0, 0)} and 0< |t |< δ.

Proof. The statement of Lemma 3.3 is essentially the content of [Baker and Rumely
2010, Lemma 10.1], letting k be the field of Laurent series in t , equipped with the
nonarchimedean valuation measuring the order of vanishing at t = 0. But to obtain
our estimate with the Euclidean norm, we work directly with their proof.

By the homogeneity of Ft , it suffices to prove the estimate assuming ‖(z1, z2)‖=1
with either z1 = 1 or z2 = 1. The upper bound is immediate from the presentation
of F , with bounded coefficients on compact subsets of D.

Write F = (F1(x, y), F2(x, y)). The resultant Res(F) is a nonzero element of
the valuation ring Ok = {z ∈ k : ordt=0 z ≥ 0}. From basic properties of the resultant
(e.g., [Silverman 2007, Proposition 2.13]), there exist polynomials g1, g2, h1, h2 ∈

Ok[x, y] such that

g1(x, y)F1(x, y)+ g2(x, y)F2(x, y)= Res(F)x2d−1 (3-1)
and

h1(x, y)F1(x, y)+ h2(x, y)F2(x, y)= Res(F)y2d−1. (3-2)

Setting x = 1, equation (3-1) shows that

min{ord F1(1, z2), ord F2(1, z2)} ≤ q

for any choice of z2 ∈Ok . In fact, taking

M = 2 max
{
sup

{
|g1(1, y)| : |t | ≤ 1

2 , |y| ≤ 1
}
, sup

{
|g2(1, y)| : |t | ≤ 1

2 , |y| ≤ 1
}}

we may find α1 > 0 and 0< δ1 <
1
2 such that

min{inf{|F1(1, z2)| : |z2| ≤ 1}, inf{|F2(1, y)| : |z2| ≤ 1}} ≥ |Res(F)|/M ≥ α1|t |q

for all |t |< δ1.
Similarly, setting y = 1 in equation (3-2), we may define the analogous α2 and δ2

to estimate F1(z1, 1) and F2(z1, 1) for any |z1| ≤ 1; the conclusion follows by
setting α =min{α1, α2} and δ =min{δ1, δ2}. �
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Proof of Proposition 3.1. It is a standard convergence argument in complex dynam-
ics that the functions d−n log ‖Fn

t (At)‖ converge locally uniformly in the region
where Res(Ft) 6= 0, exactly as in [Hubbard and Papadopol 1994], [Fornæss and
Sibony 1994], or [Branner and Hubbard 1988]. To see that the functions Gn converge
locally uniformly on D∗, we must look at the growth of the orders {an} as n→∞.
From the definition of an , we have a0 = 0 and

an+1 = dan + ordt=0 Ft(Fn(t)) (3-3)

for all n. Hence by Lemma 3.3, noting that z = Fn(t) has norm bounded away from
both 0 and∞ as t→ 0, we find that

0≤ kn+1 := an+1− d · an ≤ q.

Consequently, the sequence an/dn
=
∑n

i=1 ki/d i has a finite limit. In particular,
we may conclude that the sequence

Gn(t)=
1

dn log ‖Fn(t)‖ =
1

dn log ‖Fn
t (At)‖−

an

dn log |t |

converges locally uniformly (to G(t)) in the punctured unit disk.
To show that G(t)= o(log |t |) it suffices to show that, for any ε > 0, there is a

constant C and a δ > 0 such that

|G(t)| ≤ ε|log |t || +C

for all t in the disk of radius δ.
Fix a positive integer N, and define

bn := ordt=0 Fn−N
t (FN (t))

for n ≥ N, so that bN = 0 and

0≤ `n+1 := bn+1− d · bn ≤ q

by Lemma 3.3. In particular, we have

bn

dn =

n∑
i=N+1

`i

d i ≤

∞∑
i=N+1

q
d i

for all n > N. By increasing N if necessary, we can assume that

∞∑
i=N+1

q
d i < ε.
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Therefore (recalling the constants 0< α < 1 and δ > 0 from Lemma 3.3),

1
dn log ‖Fn(t)‖+

bn

dn log |t |

=
1

dn log ‖Fn−N
t (FN (t))‖

=

n−N∑
i=1

(
1

d i+N log ‖F i
t (FN (t))‖−

1
d i+N−1 log ‖F i−1

t (FN (t))‖
)
+

1
d N log ‖FN (t))‖

=

n−N∑
i=1

1
d i+N log

‖F i
t (FN (t))‖

‖F i−1
t (FN (t))‖d

+
1

d N log ‖FN (t))‖

≥

n−N∑
i=1

1
d i+N (log |t |q + logα)+

1
d N log ‖FN (t))‖

≥ ε log |t | +
1

d N log ‖FN (t))‖+
∞∑

i=N

1
d i logα.

Let C = sup
∣∣log ‖FN (t))‖/d N

∣∣ for t in the disk of radius 1
2 . Then

1
dn log ‖Fn(t)‖≥ε log |t |−C+

∞∑
i=N

1
d i logα−

bn

dn log |t |≥ε log |t |−C+
∞∑

i=N

1
d i logα,

for all |t |< δ and all n ≥ N.
For the reverse estimate, we have

1
dn log ‖Fn(t)‖+

bn

dn log |t | =
n−N∑
i=1

1
d i+N log

‖F i
t (FN (t))‖

‖F i−1
t (FN (t))‖d

+
1

d N log ‖FN (t))‖

≤

∞∑
i=N

1
d i logβ +

1
d N log ‖FN (t))‖,

where β > 1 is the constant from Lemma 3.3. With the same C as above, we
conclude that

1
dn log ‖Fn(t)‖ ≤ −

bn

dn log |t | +
∞∑

i=N

1
d i logβ +C ≤−ε log |t | +

∞∑
i=N

1
d i logβ +C

for all |t | < δ and all n ≥ N. Passing to the limit as n →∞, we conclude that
G(t)= o(log |t |) for t near 0. This concludes the proof of Proposition 3.1.

Stability. We now gather some consequences of Proposition 3.1 that will be used
in the proof of Theorem 1.1. Let Ft be given as on page 1041, so it induces a
family of rational maps f of degree d , parameterized by the punctured disk D∗. Let
a : D→ P1 be a holomorphic map with a holomorphic lift A : D→ C2

\ {(0, 0)}.
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We define the functions Fn and Gn as on page 1041, with

G(t)= lim
n→∞

1
dn log ‖Fn(t)‖.

Recall that the pair ( f, a) is stable on D∗ if the sequence of holomorphic functions
{gn(t) := f n

t (a(t))} forms a normal family on D∗.

Corollary 3.4. Suppose the pair ( f, a) is stable on the punctured disk D∗. Then
there exists a choice of holomorphic lift A : D→ C2

\ {(0, 0)} of a such that G ≡ 0.

Proof. Stability of ( f, a) on D∗ implies that G is harmonic where t 6= 0 for any
choice of holomorphic lift A of a [DeMarco 2003, Theorem 9.1]. Indeed, take a
subsequence of {gn} that converges uniformly on a small neighborhood U in D∗ to a
holomorphic map h into P1. Shrinking U if necessary, we may select the norm on C2

so that log ‖s(·)‖ is harmonic on a region containing the image h(U ) in P1, where s is
any holomorphic section of C2

\{(0, 0)}→P1. Then the corresponding subsequence
of the harmonic functions Gn are converging uniformly to a harmonic limit.

Fix a choice of A : D→ C2
\ {(0, 0)}, and construct the escape-rate function G.

The bound on G from Proposition 3.1 implies that G extends to a harmonic function
on the entire disk. Indeed, by a standard argument in complex analysis, we fix a
small disk of radius r and let h be the unique harmonic function on this disk with
h = G on the boundary circle. For each ε > 0, consider

uε(t)= G(t)− h(t)+ ε log |t |

for t in the punctured disk. The function uε extends to an upper-semicontinuous
function, setting uε(0) = −∞, and so uε is subharmonic on the disk because
it satisfies the sub-mean-value property. Thus, uε ≤ ε log r on the disk by the
maximum principle. Letting ε→ 0, we deduce that G ≤ h on the punctured disk.
Applying the same reasoning to

vε(t)= h(t)−G(t)+ ε log |t |

we obtain the reverse inequality, that h ≤ G, and therefore, h = G.
The harmonic function G can now be expressed locally as Re η for a holomorphic

function η on D. Now replace At with Ãt = e−η(t)At . Then

Fn
t ( Ãt)= e−dnη(t)Fn

t (At),

so the order of vanishing at t=0 is unchanged. We obtain a new escape-rate function

G̃(t)= lim
n→∞

1
dn log ‖t−an Fn

t ( Ãt)‖ = lim
n→∞

1
dn log ‖t−an e−dnη(t)Fn

t (At)‖

= lim
n→∞

1
dn log ‖e−dnη(t)Fn(t)‖ = G(t)+ log |e−η| = G(t)−G(t)≡ 0,

completing the proof of the corollary. �
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Lemma 3.5. Suppose that G ≡ 0. The functions {Fn(t) = t−an Fn
t (At)} are uni-

formly bounded in C2
\ {(0, 0)} on compact subsets of D∗.

Proof. Recall that the “usual” escape rate of Ft is defined by

GFt (z)= lim
n→∞

1
dn log ‖Fn

t (z)‖

for z in C2. The local uniform convergence of the limit (on D∗×C2
\{(0, 0)}) implies

that GFt (z) is continuous as a function of (t, z); it is proper in z ∈ C2
\ {(0, 0)},

since the function satisfies

GFt (αz)= GFt (z)+ log |α|

for all α ∈ C∗ and all (t, z). So our desired result follows if we can show that, for
each compact subset K of D∗, there exist constants −∞< c < C <∞ such that

c ≤ GFt (Fn(t))≤ C

for all n and all t ∈ K .
Indeed, note that G(t)= 0 implies that GFt (At)= η log |t | for

η = lim
an

dn = lim
n→∞

n∑
i=1

ki

d i

as in the proof of Proposition 3.1, with 0≤ ki ≤ q for all i . Therefore,

GFt (Fn(t))= dnGFt (At)− an log |t | = (dnη− an) log |t |

=

( ∞∑
i=n+1

ki

d i−n

)
log |t | ≥

( ∞∑
i=0

q
d i

)
log |t |.

On the other hand, the sequence an/dn increases to η, so (dnη− an) log |t | ≤ 0 for
all n and all t ∈ D∗; therefore, GFt (Fn(t))≤ 0 for all t and all n. �

4. Proof of Theorem 1.1

Let f be an algebraic family of rational maps of degree d ≥ 2, parameterized by
the irreducible quasiprojective complex variety V. Let a : V → P1 be a marked
point. In this section, we prove Theorem 1.1.

It suffices to prove the theorem when V is one-dimensional. For, if t0 is any
parameter in V at which a(t0) is not preperiodic, taking any one-dimensional slice
through t0 on which ( f, a) is not isotrivial, we conclude that ( f, a) will not be
stable on this slice. Therefore, the family of iterates cannot be normal on all of V.

If f is isotrivial, then the result follows immediately from Proposition 2.3. If
f is not isotrivial and if the degrees of gn(t) := f n

t (a(t)) are bounded, then the
conclusion follows immediately from Proposition 1.8.
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For the rest of the proof, assume that the degrees of {gn} are unbounded. Suppose
also that ( f, a) is stable and f is not isotrivial. We will derive a contradiction.

Let C denote the normalization of a compactification of V, so that we may
view f as a family defined over the punctured Riemann surface C \ {x1, . . . , xn}.
The stability of ( f, a) implies that {gn} is normal on V. As such, there exists a
subsequence {gnk } with unbounded degree that converges locally uniformly on V
to a holomorphic function h : V → P1. Note that h might have finite degree or it
may have essential singularities at the punctures xi of V. In either case, we find:

Lemma 4.1. There exists a puncture of V such that, for any neighborhood U of
this puncture, and for any point b ∈ P1 (with at most one exception), the cardinality
of g−1

nk
(b)∩U (counted with multiplicities) is unbounded as nk→∞.

Proof. We apply the argument principle. Fix any b ∈ P1 such that h 6≡ b. Choose
coordinates on P1 such that b= 0 and h 6≡∞. Choose a small loop γj around each
puncture x j of V on which h has no zeros or poles.

Consider the integral

N (γj )=
1

2π i

∫
γj

h′

h
∈ Z

computing the winding number of the loop h ◦ γj around the origin. By uniform
convergence of gnk → h on γj , and since gnk is meromorphic, the number N (γj ) is
equal to the difference between the number of zeros and number of poles of gnk

inside the circle for all nk sufficiently large. But since deg gnk → ∞ and the
functions converge uniformly to h outside these small loops, the actual count of
zeros and poles must be growing to infinity inside one of these circles. �

Fix a puncture xi of V satisfying the condition of Lemma 4.1. Choose local
coordinate t on C on a small disk D around the puncture xi of V. Choose coordinates
on P1 such that the conclusion of Lemma 4.1 holds for b= 0 and b=∞. Let B be
a small annulus in the disk D of the form

B = {r0 < |t |< r1}

with 0< 2r0 < r1− r0 < 1. Passing to a further subsequence if necessary, let

κ(nk)=min
{
|g−1

nk
(0)∩ Dr0 |, |g

−1
nk
(∞)∩ Dr0 |

}
so that κ(nk)→∞ with nk .

As in Section 3, choose a homogeneous polynomial lift Ft of ft to C2, normalized
so that the coefficients of Ft are holomorphic in t and not all 0 at t = 0. By
Proposition 3.1 and Corollary 3.4, we may choose a holomorphic lift A of a with
values in C2

\ {(0, 0)} such that the escape-rate function G satisfies G(t)≡ 0. From
Lemma 3.5, we deduce that the sequence {Fn(t)} is uniformly bounded — away
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from (0, 0) and∞— on the closed annulus B = {r0 ≤ |t | ≤ r1}. In other words,
there exist constants 0< c ≤ C <∞ such that

c ≤ ‖Fn(t)‖ ≤ C

for all n and all t ∈ B.
Write

Fnk (t)= (Pnk (t)Rnk (t), Qnk (t)Snk (t))

for holomorphic Pnk , Rnk , Qnk , Snk where Pnk , Qnk ≈ tκ(nk) on the disk D. More
precisely, there exist factors

Pnk (t)=
κ(nk)∏
i=1

(t − ti ) and Qnk (t)=
κ(nk)∏
i=1

(t − si )

for two disjoint sets of roots {ti } and {sj } contained in the small disk Dr0 . Note that

|Pnk (t)|, |Qnk (t)| ≤ (2r0)
κ(nk)

for |t | = r0, and
|Pnk (t)|, |Qnk (t)| ≥ (r1− r0)

κ(nk)

for |t | = r1. The uniform bounds on Fn(t) imply that

|Rnk (t)|, |Snk (t)| ≤
C

(r1−r0)κ(nk)

on the circle |t | = r1 and

max{|Rnk (t)|, |Snk (t)|} ≥
c

(2r0)κ(nk)

for each t on the circle |t | = r0 and all nk . But κ(nk)→∞ with nk and 2r0< r1−r0,
so for large nk these estimates will violate the maximum principle applied to the
holomorphic function P ′nk

or Q′nk
.

The contradiction obtained shows that if ( f, a) is stable on V with f not isotrivial,
then the degrees of {gn} must be bounded, returning us to the setting treated by
Proposition 1.8. This completes the proof of Theorem 1.1.

5. Density of intersections

In this section, we prove Proposition 1.5 and Theorem 1.6.

Elliptic curves. We begin by explaining the connection between Proposition 1.5 and
the theme of this article. Let Et be a family of smooth elliptic curves, parameterized
by a quasiprojective algebraic curve V. The equivalence relation x ∼ −x on Et

induces a projection to P1. Via this projection, the multiplication-by-2 map on Et

descends to a rational function ft on P1 of degree 4, called a Lattès map. (A formula
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for the resulting ft is shown for the Legendre family Et at the bottom of page 1040,
defined there as L t .) The family ft is nonisotrivial if and only if the family Et is
nonisotrivial. A point Pt ∈ Et projects to a preperiodic point for ft if and only if
Pt is torsion.

In Theorem 1.2, we also refer to the canonical height function: by its definition,
the Néron–Tate height on an elliptic curve is equal to 1

2 times the canonical height
for the associated multiplication-by-2 Lattès map. Therefore, height 0 on the elliptic
curve coincides with height 0 for the rational function.

Proof of Proposition 1.5. Let E be a nonisotrivial elliptic curve defined over a
function field k = C(X) for an irreducible complex algebraic curve X . We view E
as a family Et of smooth elliptic curves, for all but finitely many t ∈ X ; alternatively,
we view E as a complex surface, equipped with an elliptic fibration E→ X . Fix
P ∈ E(k). Then P determines a section P : X → E . Composing this section P
with the degree-two quotient from each Et , t ∈ X , to P1, we obtain a marked point
aP : X→ P1 and a nonisotrivial algebraic family of Lattès maps f : V ×P1

→ P1

on a Zariski-open subset V ⊂ X .
From Theorem 1.1, we know that the pair ( f, aP) is stable if and only if the pair

( f, aP) is preperiodic. So either aP(t) is preperiodic for ft for all t ∈ V (in which
case P is torsion on E/k), or the pair ( f, aP) is not stable.

In this way, the proposition is a consequence of the following statement, which
is a direct application of Montel’s theorem on normal families; see, e.g., [Milnor
2006] for background on Montel’s theorem.

Given a pair ( f, a), the stable set �( f, a)⊂ V is the largest open set on which
{t 7→ f n

t (a(t))} forms a normal family. The bifurcation locus B( f, a)⊂ V is the
complement of �( f, a) in V.

Proposition 5.1. Suppose f : V ×P1
→P1 is an algebraic family of rational maps

of degree d ≥ 2. Let a : V →P1 be a marked point, and suppose that the bifurcation
locus B( f, a) is nonempty. Then for each open U ⊂ V intersecting B( f, a), there
are infinitely many t ∈U where a(t) is preperiodic to a repelling cycle of ft .

Proof. Fix an open set U having nonempty intersection with B( f, a). Choose
a point t0 in B( f, a) ∩U. Choose three distinct repelling periodic points z1(t0),
z2(t0), z3(t0) of ft0 that are not in the forward orbit of a(t0). Shrinking U if
necessary, the implicit function theorem implies that these periodic points can be
holomorphically parameterized by t ∈ U. By Montel’s theorem, the failure of
normality of {t 7→ f n

t (a(t))} on U implies that there exists a parameter t1 ∈U and
an integer n1> 0 such that f n1

t1 (a(t1)) is an element of the set {z1(t1), z2(t1), z3(t1)}.
In particular, a(t1) is preperiodic for ft1 . Shrinking the neighborhood U, we may
find infinitely many such parameters. �
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Remark 5.2. In [DeMarco et al. 2016], we studied the distribution of the parameters
t ∈ X for which a marked point Pt ∈ Et is torsion, with Et the Legendre family of
elliptic curves. The set of such parameters is dense in the parameter space (in the
usual analytic topology).

Proof of Theorem 1.6. By hypothesis, the family f : V ×P1
→P1 has dimension

N in moduli; this means that the image of the induced projection V →Md to the
moduli space of rational maps has dimension N.

To prove Zariski density, we need to show that, for any algebraic subvariety
Y ⊂ V (possibly reducible), the complement 3= V \ Y contains a parameter t at
which all points a1(t), . . . , ak(t) are preperiodic. Note that3 is itself an irreducible,
quasiprojective complex algebraic variety, so that f : 3×P1

→ P1 is again an
algebraic family of rational maps, of dimension N in moduli.

Consider the marked point a1. Since f projects to an N-dimensional family in
the moduli space, with N > 0, it follows that ( f, a1) is not isotrivial on 3. By
Theorem 1.1, the pair ( f, a1) is either preperiodic or it fails to be stable on 3. If
( f, a1) is preperiodic, we set 31 =3. If ( f, a1) is unstable, then Proposition 5.1
shows that there exists a parameter t1 ∈3 where a1(t1) is preperiodic to a repelling
cycle of ft1 . If a1 satisfies the equation f n1(a1) = f m1(a1) at the parameter t1,
we define 31 ⊂ 3 to be an irreducible component of the subvariety defined by
the equation f n1

t (a1(t)) = f m1
t (a1(t)) that contains t1. Then 31 is a nonempty

quasiprojective variety, of codimension 1 in3. Furthermore, since the cycle persists
under perturbation, the condition defining 31 will also cut out a codimension-1
subvariety in the moduli space. In other words, 31 must project to a family of
dimension N−1 in the moduli space. By construction, ( f, a1) is preperiodic on 31.

We continue inductively. Fix 1≤ i<k. Suppose3i is a quasiprojective subvariety
of dimension≥ N−i in moduli on which ( f, a1), . . . , ( f, ai ) are preperiodic. Since
N − i > N −k ≥ 0, the pair ( f, ai+1) is not isotrivial on 3i . As above, we combine
Theorem 1.1 with Proposition 5.1 to find a parameter ti+1 ∈ 3i where ai+1 is
preperiodic. We define 3i+1 ⊂ 3i so that ( f, ai+1) is preperiodic on 3i+1, and
the family f : 3i+1 ×P1

→ P1 has dimension at least N − i − 1 in moduli. In
conclusion, all of the points ( f, a1), . . . , ( f, ak) are preperiodic on 3k , and 3k has
dimension at least N − k ≥ 0 in moduli. In particular, 3k is nonempty, and the
theorem is proved.

6. A conjecture on intersections and dynamical relations

We conclude this article with a revised statement of the conjecture from [Baker
and DeMarco 2013] on “unlikely intersections” and density of “special points” —
and we provide the proof of one implication, as an application of Theorem 1.1.
Specifically, we look at algebraic families f : V ×P1

→ P1 of dimension N > 0
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in moduli. We prove that if an (N + 1)-tuple of marked points is dynamically
related, then the set of parameters t ∈ V where they are simultaneously preperiodic
is Zariski-dense in V. We conclude the article with an explanation of how this
implies one implication of [Baker and DeMarco 2013, Conjecture 1.10].

Density of special points. In [Baker and DeMarco 2013, Conjecture 1.10], we
formulated a conjecture about the arrangement of postcritically finite maps (“special
points”) in the moduli space of rational maps of degree d ≥ 2. It was presented as
a dynamical analog of the André–Oort conjecture in arithmetic geometry, with the
aim of characterizing the “special subvarieties” of the moduli space, meaning the
algebraic families f : V ×P1

→ P1 with a Zariski-dense subset of postcritically
finite maps. Roughly speaking, the special subvarieties should be those that are
defined by (a general notion of) critical orbit relations. We proved special cases of
the conjecture, for certain families of polynomial maps, and we sketched the proof
of one implication in the general case.

If we formulate the conjecture to handle arbitrary marked points, not only critical
points, then the statement encompasses recent results about elliptic curves, as in the
work of Masser and Zannier (and therefore has overlap with the Pink and Zilber
conjectures); see [Masser and Zannier 2012] and the references therein. Evidence
towards the more general result is given by [Baker and DeMarco 2013, Theorem 1.3]
and the results of [Ghioca et al. 2013; 2015]. Conjecture 6.1 presented here is,
therefore, more than just an analogy with statements in arithmetic geometry.

Let V be an irreducible, quasiprojective complex algebraic variety, and let
f : V ×P1

→ P1 be an algebraic family of rational maps of degree d ≥ 2. For a
collection of n marked points a1, . . . , an : V → P1, we define

S(a1, . . . , an)=

n⋂
i=1

{t ∈ V : ai (t) is preperiodic for ft }.

We say the marked points a1, . . . , an are coincident along V if there exists a marked
point ai and a Zariski-open subset V ′ ⊂ V such that

S(a1, . . . , an)∩ V ′ = S(a1, . . . , ai−1, ai+1, . . . , an)∩ V ′.

In other words, if {a1(t), . . . , ai−1(t), ai+1(t), . . . , an(t)} are all preperiodic for ft

at a parameter t ∈ V ′, then the remaining point ai (t) must also be preperiodic for ft .
For example, if a pair ( f, a) is preperiodic on V, then any collection of points
{a1, . . . , an} containing a will be coincident.

A stronger notion than coincidence is that of the dynamical relation, requiring an
f -invariant algebraic relation between the points {a1, . . . , an}. A formal definition
is given below.
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Conjecture 6.1. Let f : V ×P1
→ P1 be an algebraic family of rational maps of

degree d ≥ 2, of dimension N > 0 in moduli. Let a0, . . . , aN be any collection of
N + 1 marked points. The following are equivalent:

(1) The set S(a0, . . . , aN ) is Zariski-dense in V .

(2) The points a0, . . . , aN are coincident along V .

(3) The points a0, . . . , aN are dynamically related along V.

Theorem 6.2. We have (3) =⇒ (2) and (2) =⇒ (1) in Conjecture 6.1.

The implication (3) =⇒ (2) will be a formal consequence of the definitions, while
(2) =⇒ (1) is presented below as an application of Theorem 1.1. The remaining
challenge is to show that (1) implies (3). We expect that (1) =⇒ (2) should be a
consequence of “arithmetic equidistribution” as in the proofs of [Baker and DeMarco
2011; 2013; Ghioca et al. 2013; 2015; DeMarco et al. 2016] when V is a curve.

Dynamical relations. The basic example of a dynamical relation between two
marked points a, b : V → P1 is an orbit relation: the existence of integers n, m
such that

f n
t (a(t))= f m

t (b(t))

for all t ∈V. To allow for complicated symmetries, we will say that N marked points
a1, . . . , aN are dynamically related along V if there exists a (possibly reducible)
algebraic subvariety

X ⊂ (P1)N

defined over the function field k = C(V ), such that three conditions are satisfied:

(R1) (a1, . . . , aN ) ∈ X .

(R2) (invariance) F(X)⊂ X , where F = ( f, f, . . . , f ) : (P1)N
→ (P1)N.

(R3) (nondegeneracy) There exists an i ∈ {1, . . . , N } and a Zariski-open subset
V ′⊂V such that the projection from the specialization Xt to the i-th coordinate
hyperplane in (P1

C
)N is a finite map for all t ∈ V ′.

Remark 6.3. In [Baker and DeMarco 2013], after stating Conjecture 1.10, we
offhandedly remarked that one implication of the conjecture “follows easily from
an argument mimicking the proof of Proposition 2.6 and the following observation”.
The proof of Theorem 1.6 in this article is the argument we had in mind, mimicking
[Baker and DeMarco 2013, Proposition 2.6], but the stated “observation” was not
formulated correctly. The inclusion of condition (R3) and the argument in the proof
of Theorem 6.2 on the next page are an attempt to correct that error.

To illustrate the dynamical relation, observe that any N points a1, . . . , aN are
dynamically related if one of the pairs ( f, ai ) is preperiodic. Indeed, if ai satisfies
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f n
t (ai (t))= f m

t (ai (t)) for all t ∈ V, for some pair of integers n 6= m ≥ 0, then we
could take X to be the hypersurface

{x ∈ (P1)N
: f n(xi )= f m(xi )}

defined over the field k = C(V ). As a nontrivial example, we look at the relation
arising in the Masser–Zannier theorems [2012]. Let f[k] be the Lattès map induced
from multiplication by k ∈N on a nonisotrivial elliptic curve E over k =C(V ). Let
ap, aq be the projections to P1 of two points p and q in E(k). The linear relation
n · p = m · q between points p and q on E , for integers n and m, translates into a
dynamical relation in (P1)2 defined by

f[n](x1)= f[m](x2).

This relation satisfies condition (R2) for F = ( f[k], f[k]) because all Lattès maps
descended from the same elliptic curve must commute.

Since the writing of [Baker and DeMarco 2013], we have learned about the results
in [Medvedev 2007] which significantly simplify the form of possible dynamical
relations. In particular, Medvedev has shown that the varieties X satisfying condition
(R2) should depend nontrivially on only two input variables. In other words, the
rational function f : P1

→ P1 will be disintegrated in the sense of [Medvedev and
Scanlon 2014, Definition 2.20]; see the first theorem in the introduction of the same
paper, treating the case where f is a polynomial. An affirmative answer to the
following question would provide a further refinement — and simplification — to
the notion of dynamical relation, extending the results of [Medvedev and Scanlon
2014] beyond the polynomial setting. (The work of Medvedev and Scanlon relied on
Ritt’s decomposition theory [1922] for polynomials; the analogous decomposition
theory for rational functions is not completely understood.)

Question 6.4. Assume that f is not isotrivial, and suppose that points a1, . . . , aN

are dynamically related. Does there always exist a pair of indices i , j (allowing
possibly i = j) such that the point (a1, . . . , aN ) satisfies a relation of the form

A(xi )= B(x j ), (6-1)

where A, B ∈ k(z) are nonconstant rational functions that commute with an iterate
of f ?

Hypersurfaces in (P1)N defined by relations of the form (6-1) satisfy condition
(R2) in the definition of the dynamical relation because f commutes with A and B;
they satisfy condition (R3) taking either coordinate i or j .

Proof of Theorem 6.2. We begin by proving (3) =⇒ (2); namely, that a dynamical
relation among the points a0, . . . , aN implies that the points are coincident. This
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follows from the definition of dynamical relation, and it does not depend on the
number of points.

Lemma 6.5. Let f : V × P1
→ P1 be any algebraic family of rational maps.

Suppose marked points a0, a1, . . . , an are dynamically related along V. Then the
points a0, . . . , an are coincident along V.

Proof. Let X denote the ( f, . . . , f )-invariant subvariety in (P1)n+1 for the point
(a1, . . . , an), given in the definition of the dynamical relation. Suppose the points
are labeled so that x0 is the coordinate satisfying condition (R3). Then the projection
from Xt to (P1

C
)n , forgetting the 0-th coordinate, is finite, for all t in the Zariski-open

subset V ′ ⊂ V.
Now let t0 be any parameter in V ′ at which a1(t0), . . . , an(t0) are preperiodic

for ft0 . The point a0(t0)must lie in the fiber of Xt0→(P
1)N over (a1(t0), . . . , an(t0)).

Invariance of X implies the invariance of Xt0 , so that f m
t0 (a0(t0)) lies in the fiber

over ( f m(a1(t0)), . . . , f m(aN (t0))) for all m ≥ 1. The preperiodicity of the points
guarantees that there are only finitely many points in the base in the orbit of
(a1(t0), . . . , an(t0)), so the orbit of a0(t0) must be contained in a finite set. In other
words, a0(t0) is preperiodic. This completes the proof. �

Now assume (2), that the given points a0, . . . , aN are coincident. Assume the
points are labeled so that a0 is the dependent point, in the sense that

S(a0, . . . , aN )∩ V ′ = S(a1, . . . , aN )∩ V ′

for some Zariski-open subset V ′ ⊂ V. Since V has dimension N in moduli,
Theorem 1.6 tells us that the set S(a1, . . . , aN ) is Zariski-dense in V. Therefore, so
is S(a0, . . . , aN ), and the implication (2) =⇒ (1) is proved.

Proof of one implication of [Baker and DeMarco 2013, Conjecture 1.10]. Sup-
pose that f : V ×P1

→ P1 is an algebraic family of rational maps of degree d ≥ 2
and dimension N > 0 in moduli. We assume that all 2d − 2 critical points of f
are marked. Conjecture 1.10 of [Baker and DeMarco 2013] states: the map ft is
postcritically finite for a Zariski-dense set of t ∈ V if and only if there are at most N
dynamically independent critical points.

Let c1, . . . , c2d−2 denote the marked critical points. Assume that f has at most
N dynamically independent critical points; in other words, given any n> N marked
critical points ci1, . . . , cin , there is a dynamical relation among them.

Note that S(c1, . . . , c2d−2) is precisely the set of parameters t for which ft is
postcritically finite. Applying Lemma 6.5 repeatedly, and reordering the points as
needed, there exists a Zariski-open subset V ′ ⊂ V such that

S(c1, . . . , c2d−2)∩ V ′ = S(c1, . . . , c2d−3)∩ V ′ = · · · = S(c1, . . . , cN )∩ V ′.
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From Theorem 1.6, we know that S(c1, . . . , cN ) is Zariski-dense in V. This proves
that the postcritically finite maps form a Zariski-dense subset of V.
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The behavior of the Frobenius map is investigated for valuation rings of prime
characteristic. We show that valuation rings are always F-pure. We introduce a
generalization of the notion of strong F-regularity, which we call F-pure regularity,
and show that a valuation ring is F-pure regular if and only if it is Noetherian. For
valuations on function fields, we show that the Frobenius map is finite if and only
if the valuation is Abhyankar; in this case the valuation ring is Frobenius split.
For Noetherian valuation rings in function fields, we show that the valuation ring
is Frobenius split if and only if Frobenius is finite, or equivalently, if and only if
the valuation ring is excellent.
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1. Introduction

Classes of singularities defined using Frobenius — F-purity, Frobenius splitting, and
the various variants of F-regularity — have played a central role in commutative
algebra and algebraic geometry over the past forty years. The goal of this paper is
a systematic study of these F-singularities in the novel, but increasingly important
non-Noetherian setting of valuation rings.
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Let R be a commutative ring of prime characteristic p. The Frobenius map is the
ring homomorphism R→F R sending each element to its p-th power. While simple
enough, the Frobenius map reveals deep structural properties of a Noetherian ring of
prime characteristic, and is a powerful tool for proving theorems for rings containing
an arbitrary field (or varieties, say, over C) by standard reduction to characteristic
p techniques. Theories such as Frobenius splitting [Mehta and Ramanathan 1985]
and tight closure [Hochster and Huneke 1990] are well-developed in the Noetherian
setting, often under the additional assumption that the Frobenius map is finite.
Since classically most motivating problems were inspired by algebraic geometry
and representation theory, these assumptions seemed natural and not very restrictive.
Now, however, good reasons are emerging to study F-singularities in certain non-
Noetherian settings as well.

One such setting is cluster algebras [Fomin and Zelevinsky 2002]. An upper
cluster algebra over Fp need not be Noetherian, but recently it was shown that it is
always Frobenius split, and indeed, admits a “cluster canonical” Frobenius splitting
[Benito et al. 2015]. Likewise valuation rings are enjoying a resurgence of popu-
larity despite rarely being Noetherian, with renewed interest in non-Archimedean
geometry [Conrad 2008], the development of tropical geometry [Gubler et al. 2016],
and the valuative tree [Favre and Jonsson 2004], to name just a few examples, as
well as fresh uses in higher dimensional birational geometry (e.g., [Cutkosky 2004;
Fernández de Bobadilla and Pereira 2012; Boucksom 2014]).

For a Noetherian ring R, the Frobenius map is flat if and only if R is regular, by a
famous theorem of Kunz [1969]. As we observe in Theorem 3.1, the Frobenius map
is always flat for a valuation ring. So in some sense, a valuation ring of characteristic
p might be interpreted as a “non-Noetherian regular ring.”

On the other hand, some valuation rings are decidedly more like the local rings
of smooth points on varieties than others. For example, for a variety X (over, say,
an algebraically closed field of characteristic p), the Frobenius map is always finite.
For valuation rings of the function field of X , however, we show that the Frobenius
is finite if and only the valuation is Abhyankar; see Theorem 5.1. In particular,
for discrete valuations, finiteness of Frobenius is equivalent to the valuation being
divisorial — that is, given by the order of vanishing along a prime divisor on some
birational model. Abhyankar valuations might be considered the geometrically
most interesting ones (see [Ein et al. 2003]), so it is fitting that their valuation
rings behave the most like the rings of smooth points on a variety. Indeed, recently,
the local uniformization problem for Abhyankar valuations was settled in positive
characteristic [Knaf and Kuhlmann 2005].

One can weaken the demand that Frobenius is flat and instead require only
that the Frobenius map is pure (see Section 2.5). Hochster and Roberts observed
that this condition, which they dubbed F-purity, is often sufficient for controlling
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singularities of a Noetherian local ring, an observation at the heart of their famous
theorem on the Cohen–Macaulayness of invariant rings [Hochster and Roberts
1976; 1974]. We show in Corollary 3.3 that any valuation ring of characteristic
p is F-pure. Purity of a map is equivalent to its splitting under suitable finiteness
hypotheses, but at least for valuation rings (which rarely satisfy said hypotheses),
the purity of Frobenius seems to be better behaved and more straightforward than
its splitting. Example 4.5.1 shows that not all valuation rings are Frobenius split,
even in the Noetherian case.

Frobenius splitting has well known deep local and global consequences for
algebraic varieties. In the local case, Frobenius splitting has been said to be
a “characteristic p analog” of log canonical singularities for complex varieties,
whereas related properties correspond to other singularities in the minimal model
program [Hara and Watanabe 2002; Schwede 2009b; Smith 1997; Takagi 2008]. For
projective varieties, Frobenius splitting is related to positivity of the anticanonical
bundle; see [Brion and Kumar 2005; Mehta and Ramanathan 1985; Smith 2000;
Schwede and Smith 2010]. Although valuation rings are always F-pure, the question
of their Frobenius splitting is subtle. Abhyankar valuations in function fields are
Frobenius split (Theorem 5.1), but a discrete valuation ring is Frobenius split if and
only if it is excellent in the sense of Grothendieck (Corollary 4.2.2). Along the way,
we prove a simple characterization of the finiteness of Frobenius for a Noetherian
domain in terms of excellence, which gives a large class of Noetherian domains in
which Frobenius splitting implies excellence; see Section 2.6 for details.

Closely related to F-purity and Frobenius splitting are the various variants of
F-regularity. Strong F-regularity was introduced by Hochster and Huneke [1989]
as a proxy for weak F-regularity — the property that all ideals are tightly closed —
because it is easily shown to pass to localizations. Whether or not a weakly F-regular
ring remains so after localization is a long standing open question in tight closure
theory, as is the equivalence of weak F-regularity and strong F-regularity. Strong
F-regularity has found many applications beyond tight closure, and is closely related
to Ramanathan’s notion of “Frobenius split along a divisor” [Ramanathan 1991;
Smith 2000]. A smattering of applications might include [Aberbach and Leuschke
2003; Benito et al. 2015; Blickle 2008; Brion and Kumar 2005; Gongyo et al. 2015;
Hacon and Xu 2015; Patakfalvi 2014; Schwede and Tucker 2012; Schwede 2009a;
Schwede and Smith 2010; Smith and Van den Bergh 1997; Smith and Zhang 2015;
Smith 2000].

Traditionally, strong F-regularity has been defined only for Noetherian rings in
which Frobenius is finite. To clarify the situation for valuation rings, we introduce a
new definition which we call F-pure regularity (see Definition 6.1.1) requiring purity
rather than splitting of certain maps. We show that F-pure regularity is better suited
for arbitrary rings, but equivalent to strong F-regularity under the standard finiteness



1060 Rankeya Datta and Karen E. Smith

hypotheses; it also agrees with another generalization of strong F-regularity proposed
by Hochster [2007] (using tight closure) in the local Noetherian case. Likewise, we
show that F-pure regularity is a natural and straightforward generalization of strong
F-regularity, satisfying many expected properties — for example, regular rings are
F-pure regular. Returning to valuation rings, in Theorem 6.5.1 we characterize
F-pure regular valuation rings as precisely those that are Noetherian.

Finally, in Section 6.6, we compare our generalization of strong F-regularity
with the obvious competing generalization, in which the standard definition in
terms of splitting certain maps is naively extended without assuming any finiteness
conditions. To avoid confusion,1 we call this split F-regularity. We characterize
split F-regular valuation rings (at least in a certain large class of fields) as precisely
those that are Frobenius split, or equivalently excellent; see Corollary 6.6.3. But
we also point out that there are regular local rings that fail to be split F-regular, so
perhaps split F-regularity is not a reasonable notion of “singularity.”

2. Preliminaries

Throughout this paper, all rings are assumed to be commutative, and of prime
characteristic p unless explicitly stated otherwise. By a local ring, we mean a ring
with a unique maximal ideal, not necessarily Noetherian.

2.1. Valuation rings. We recall some basic facts and definitions about valuation
rings (of arbitrary characteristic), while fixing notation. See [Bourbaki 1989, Chapter
VI] or [Matsumura 1989, Chapter 4] for proofs and details.

The symbol 0 denotes an ordered abelian group. Recall that such an abelian
group is torsion free. The rational rank of 0, denoted rat. rank0, is the dimension
of the Q-vector space Q⊗Z 0.

Let K be a field. A valuation on K is a homomorphism

v : K×→ 0

from the group of units of K , satisfying

v(x + y)≥min{v(x), v(y)}

for all x, y ∈ K×. We say that v is defined over a subfield k of K , or that v is a
valuation on K/k, if v takes the value 0 on elements of k.

There is no loss of generality in assuming that v is surjective, in which case we
say 0 (or 0v) is the value group of v. Two valuations v1 and v2 on K are said to

1An earlier version of this paper used the terms pure F-regularity and split F-regularity for the two
generalizations of classical strong F-regularity, depending upon whether maps were required to be
pure or split. The names were changed at Karl Schwede’s urging to avoid confusion with terminology
for pairs in [Takagi 2004].
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be equivalent if there is an order preserving isomorphism of their value groups
identifying v1(x) and v2(x) for all x ∈ K×. Throughout this paper, we identify
equivalent valuations.

The valuation ring of v is the subring Rv ⊆ K consisting of all elements x ∈ K×

such that v(x)≥ 0 (together with the zero element of K ). Two valuations on a field
K are equivalent if and only if they determine the same valuation ring. Hence a
valuation ring of K is essentially the same thing as an equivalence class of valuations
on K .

The valuation ring of v is local, with maximal ideal mv consisting of elements
of strictly positive values (and zero). The residue field Rv/mv is denoted κ(v). If v
is a valuation over k, then both Rv and κ(v) are k-algebras.

A valuation ring V of K can be characterized directly, without reference to a
valuation, as a subring with the property that for every x ∈ K , either x ∈ V or
x−1
∈ V . The valuation ring V uniquely determines a valuation v on K (up to

equivalence), whose valuation ring in turn recovers V . Indeed, it is easy to see that
the set of ideals of a valuation ring is totally ordered by inclusion, so the set of
principal ideals 0+ forms a monoid under multiplication, ordered by ( f ) ≤ (g)
whenever f divides g. Thus, 0 can be taken to be the ordered abelian group
generated by the principal ideals, and the valuation v : K×→ 0 is induced by the
monoid map sending each nonzero x ∈ V to the ideal generated by x . Clearly, the
valuation ring of v is V . See [Matsumura 1989, Chapter 4].

2.2. Extension of valuations. Consider an extension of fields K ⊆ L . By definition,
a valuation w on L is an extension of a valuation v on K if the restriction of w to
the subfield K is v. Equivalently, w extends v if Rw dominates Rv, meaning that
Rv = Rw ∩ K with mw ∩ Rv = mv . In this case, there is an induced map of residue
fields

κ(v) ↪→ κ(w).

The residue degree of w over v, denoted by f (w/v), is the degree of the residue
field extension κ(v) ↪→ κ(w).

If w extends v, there is a natural injection of ordered groups 0v ↪→ 0w, since 0v
is the image of w restricted to the subset K . The ramification index of w over v,
denoted by e(w/v), is the index of 0v in 0w.

If K ↪→ L is a finite extension, then both the ramification index e(w/v) and the
residue degree f (w/v) are finite. Indeed, if K ⊆ L is a degree n extension, then

e(w/v) f (w/v)≤ n. (2.2.0.1)

More precisely:

Proposition 2.2.1 [Bourbaki 1989, VI.8]. Let K ⊆ L be an extension of fields of
finite degree n. For a valuation v on K , consider the set S of all extensions (up to
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equivalence) w of v to L. Then∑
wi∈S

e(wi/v) f (wi/v)≤ n.

In particular, the set S is finite. Furthermore, equality holds if and only if the
integral closure of Rv in L is a finitely generated Rv-module.

2.3. Abhyankar valuations. Fix a field K finitely generated over a fixed ground
field k, and let v be a valuation on K/k. By definition, the transcendence degree of
v is the transcendence degree of the field extension

k ↪→ κ(v).

The main result about the transcendence degree of valuations is due to Abhyankar
[1956]. See also [Bourbaki 1989, VI.10.3, Corollary 1].

Theorem 2.3.1 (Abhyankar’s inequality). Let K be a finitely generated field exten-
sion of k, and let v be a valuation on K/k. Then

trans. deg v+ rat. rank0v ≤ trans. deg K/k. (2.3.1.1)

Moreover if equality holds, then 0v is a finitely generated abelian group, and
κ(v) is a finitely generated extension of k.

We say v is an Abhyankar valuation if equality holds in Abhyankar’s inequality
(2.3.1.1). Note that an Abyhankar valuation has a finitely generated value group,
and its residue field is finitely generated over the ground field k.

Example 2.3.2. Let K/k be the function field of a normal algebraic variety X of
dimension n over a ground field k. For a prime divisor Y of X , consider the local
ring OX,Y of rational functions on X regular at Y . The ring OX,Y is a discrete
valuation ring, corresponding to a valuation v (the order of vanishing along Y ) on
K/k; this valuation is of rational rank one and transcendence degree n− 1 over
k, hence Abhyankar. Such a valuation is called a divisorial valuation. Conversely,
every rational rank one Abhyankar valuation is divisorial: for such a v, there exists
some normal model X of K/k and a divisor Y such that v is the order of vanishing
along Y [Zariski and Samuel 1960, VI, §14, Theorem 31].

Proposition 2.3.3. Let K ⊆ L be a finite extension of finitely generated field exten-
sions of k, and suppose that w is valuation on L/k extending a valuation v on K/k.
Then w is Abhyankar if and only if v is Abhyankar.

Proof. Since L/K is finite, L and K have the same transcendence degree over k.
On the other hand, the extension κ(v) ⊆ κ(w) is also finite by (2.2.0.1), and so



Frobenius and valuation rings 1063

κ(v) and κ(w) also have the same transcendence degree over k. Again by (2.2.0.1),
since 0w/0v is a finite abelian group, Q⊗Z 0w/0v = 0. By exactness of

0→Q⊗Z 0v→Q⊗Z 0w→Q⊗Z 0w/0z→ 0

we conclude that 0w and 0v have the same rational rank. The result is now clear
from the definition of an Abhyankar valuation. �

2.4. Frobenius. Let R be a ring of prime characteristic p. The Frobenius map
R→F R is defined by F(x)= x p. We can denote the target copy of R by F∗R and
view it as an R-module via restriction of scalars by F ; thus F∗R is both a ring
(indeed, it is precisely R) and an R-module in which the action of r ∈ R on x ∈ F∗R
produces r px . With this notation, the Frobenius map F : R→ F∗R and its iterates
Fe
: R→ Fe

∗
R are ring maps, as well as R-module maps. See [Smith and Zhang

2015, p. 294] for a further discussion of this notation.
We note that Fe

∗
gives us an exact covariant functor from the category of R-

modules to itself. This is nothing but the usual restriction of scalars functor
associated to the ring homomorphism Fe

: R→ R.
For an ideal I ⊂ R, the notation I [p

e
] denotes the ideal generated by the pe-th

powers of the elements of I . Equivalently, I [p
e
] is the expansion of I under the

Frobenius map, that is, I [p
e
]
= I Fe

∗
R as subsets of R.

The image of Fe is the subring R pe
⊂ R of pe-th powers. If R is reduced (which

is equivalent to the injectivity of Frobenius), statements about the R-module Fe
∗

R
are equivalent to statements about the R pe

-module R.

Definition 2.4.1. A ring R of characteristic p is F-finite if F : R→ F∗R is a finite
map of rings, or equivalently, if R is a finitely generated R p-module. Note that
F : R→ F∗R is a finite map if and only if Fe

: R→ Fe
∗

R is a finite map for all
e > 0.

F-finite rings are ubiquitous. For example, every perfect field is F-finite, and a
finitely generated algebra over an F-finite ring is F-finite. Furthermore, F-finiteness
is preserved under homomorphic images, localization and completion. This means
that nearly every ring classically arising in algebraic geometry is F-finite. However,
valuation rings even of F-finite fields are often not F-finite.

2.5. F-purity and Frobenius splitting. We first review purity and splitting for maps
of modules over an arbitrary commutative ring A, not necessarily Noetherian or of
prime characteristic. A map of A-modules M→ϕ N is pure if for any A-module Q,
the induced map

M ⊗A Q→ N ⊗A Q
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is injective. The map M →ϕ N is split if ϕ has a left inverse in the category of
A-modules. Clearly, a split map is always pure. Although it is not obvious, the
converse holds under a weak hypothesis:

Lemma 2.5.1 [Hochster and Roberts 1976, Corollary 5.2]. Let M→ϕ N be a pure
map of A-modules where A is a commutative ring. Then ϕ is split if the cokernel
N/ϕ(M) is finitely presented.

Definition 2.5.2. Let R be an arbitrary commutative ring of prime characteristic p.

(a) The ring R is Frobenius split if the map F : R → F∗R splits as a map of
R-modules, that is, there exists an R-module map F∗R → R such that the
composition

R
F
−→ F∗R→ R

is the identity map.

(b) The ring R is F-pure if F : R→ F∗R is a pure map of R-modules.

A Frobenius split ring is always F-pure. The converse is also true under modest
hypothesis:

Corollary 2.5.3. A Noetherian F-finite ring of characteristic p is Frobenius split if
and only if it is F-pure.

Proof. The F-finiteness hypothesis implies that F∗R is a finitely generated R-module.
So a quotient of F∗R is also finitely generated. Since a finitely generated module
over a Noetherian ring is finitely presented, the result follows from Lemma 2.5.1. �

2.6. F-finiteness and excellence. Although we are mainly concerned with non-
Noetherian rings in this paper, it is worth pointing out the following curiosity for
readers familiar with Grothendieck’s concept of an excellent ring, a particular kind of
Noetherian ring expected to be the most general setting for many algebro-geometric
statements [EGA IV2 1965, définition 7.8.2].

Proposition 2.6.1. A Noetherian domain is F-finite if and only if it is excellent and
its fraction field is F-finite.

Proof. If R is F-finite with fraction field K , then also R⊗R p Kp ∼= K is finite over
Kp, so the fraction field of R is F-finite. Furthermore, Kunz [1976, Theorem 2.5]
showed that F-finite Noetherian rings are excellent.

We need to show that an excellent Noetherian domain with F-finite fraction field
is F-finite. We make use of the following well-known property2 of an excellent
domain A: the integral closure of A in any finite extension of its fraction field
is finite as an A-module [EGA IV2 1965, IV, 7.8.3(vi)]. The ring R p is excellent

2sometimes called the Japanese or N2 property.



Frobenius and valuation rings 1065

because it is isomorphic to R, and its fraction field is Kp. Since Kp ↪→ K is finite,
the integral closure S of R p in K is a finite R p-module. But clearly R ⊂ S, so R
is also a finitely generated R p module, since submodules of a Noetherian module
over a Noetherian ring are Noetherian. That is, R is F-finite. �

Using this observation, we can clarify the relationship between F-purity and
Frobenius splitting in an important class of rings.

Corollary 2.6.2. For an excellent Noetherian domain whose fraction field is F-finite,
Frobenius splitting is equivalent to F-purity.

Proof. Our hypothesis implies F-finiteness, so splitting and purity are equivalent by
Lemma 2.5.1. �

3. Flatness and purity of Frobenius in valuation rings

Kunz [1969, Theorem 2.1] showed that for a Noetherian ring of characteristic p,
the Frobenius map is flat if and only if the ring is regular. In this section, we show
how standard results on valuations yield the following result.

Theorem 3.1. Let V be a valuation ring of characteristic p. Then the Frobenius
map F : V → F∗V is faithfully flat.

This suggests that we can imagine a valuation ring to be “regular” in some sense.
Of course, a Noetherian valuation ring is either a field or a one dimensional regular
local ring, but because valuation rings are rarely Noetherian, Theorem 3.1 is not a
consequence of Kunz’s theorem.

Theorem 3.1 follows from the following general result, whose proof we include
for the sake of completeness.

Lemma 3.2 [Bourbaki 1989, VI.3.6, Lemma 1]. A finitely generated, torsion-free
module over a valuation ring is free. In particular, a torsion free module over a
valuation ring is flat.

Proof. Let M 6= 0 be a finitely generated, torsion-free V -module. Choose a
minimal set of generators {m1, . . . ,mn}. If there is a nontrivial relation among
these generators, then there exists v1, . . . , vn ∈ V (not all zero) such that v1m1+

· · ·+vnmn = 0. Re-ordering if necessary, we may assume that v1 is minimal among
(nonzero) coefficients, that is, (vi )⊂ (v1) for all i ∈ {1, . . . , n}. Then for each i > 1,
there exists ai ∈ V such that vi = aiv1. This implies that

v1(m1+ a2m2+ · · ·+ anmn)= 0.

Since v1 6= 0 and M is torsion free, we get

m1+ a2m2+ · · ·+ anmn = 0.
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Then m1 = −(a2m2+ · · · + anmn). So M can be generated by the smaller set
{m2, . . . ,mn} which contradicts the minimality of n. Hence {m1, . . . ,mn} must be
a free generating set.

The second statement follows by considering a torsion-free module as a directed
union of its finitely generated submodules, since a directed union of flat modules is
flat [Bourbaki 1989, I.2.7 Proposition 9] �

Proof of Theorem 3.1. Observe that F∗V is a torsion free V -module. So by
Lemma 3.2, the module F∗V is flat, which means the Frobenius map is flat. To see
that Frobenius is faithfully flat, we need only check that m F∗V 6= F∗V for m the
maximal ideal of V [Bourbaki 1989, I.3.5 Proposition 9(e)]. But this is clear: the
element 1 ∈ F∗V is not in m F∗V , since 1 ∈ V is not in the ideal m[p]. �

Corollary 3.3. Every valuation ring of characteristic p is F-pure.

Proof. Fix a valuation ring V of characteristic p. We have already seen that
the Frobenius map V → F∗V is faithfully flat (Theorem 3.1). But any faithfully
flat map of rings A→ B is pure as a map of A-modules [Bourbaki 1989, I.3.5
Proposition 9(c)]. �

4. F-finite valuation rings

In this section, we investigate F-finiteness in valuation rings. We first prove
Theorem 4.1.1 characterizing F-finite valuation rings as those V for which F∗V
is a free V -module. We then prove a numerical characterization of F-finiteness
in terms of ramification index and residue degree for extensions of valuations
under Frobenius in Theorem 4.3.1. This characterization is useful for constructing
interesting examples, and later for showing that F-finite valuations are Abhyankar.

4.1. Finiteness and freeness of Frobenius. For any domain R of characteristic
p, we have already observed (see the proof of Proposition 2.6.1) that a necessary
condition for F-finiteness is the F-finiteness of its fraction field. For this reason, we
investigate F-finiteness of valuation rings only in F-finite ambient fields.

Theorem 4.1.1. Let K be an F-finite field. A valuation ring V of K is F-finite if
and only if F∗V is a free V -module.

Proof. First assume F∗V is free over V . Since K ⊗R F∗V ∼= F∗K as K -vector
spaces, the rank of F∗V over V must be the same as the rank of F∗K over K ,
namely the degree [F∗K : K ] = [K : Kp

]. Since K is F-finite, this degree is finite,
and so F∗V is a free V -module of finite rank. In particular, V is F-finite.

Conversely, suppose that V is F-finite. Then F∗V is a finitely generated, torsion-
free V -module. So it is free by Lemma 3.2. �

Corollary 4.1.2. An F-finite valuation ring is Frobenius split.
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Proof. One of the rank one free summands of F∗V is the copy of V under F ,
so this copy of V splits off F∗V . Alternatively, since V → F∗V is pure, we can
use Lemma 2.5.1: the cokernel of V → F∗V is finitely presented because it is
finitely generated (being a quotient of the finitely generated V -module F∗V ) and
the module of relations is finitely generated (by 1 ∈ F∗V ). �

Remark 4.1.3. The same argument shows that any module finite extension V ↪→ S
splits — in other words, every valuation ring is a splinter in the sense of [Ma 1988];
see also [Ma 1988, Lemma 1.2].

4.2. Frobenius splitting in the Noetherian case. We can say more for Noetherian
valuation rings. First we make a general observation about F-finiteness in Noetherian
rings.

Theorem 4.2.1. For a Noetherian domain whose fraction field is F-finite, Frobenius
splitting implies F-finiteness (and hence excellence).

Before embarking on the proof, we point out a consequence for valuation rings.

Corollary 4.2.2. For a discrete valuation ring V whose fraction field is F-finite,
the following are equivalent:

(i) V is Frobenius split;

(ii) V is F-finite;

(iii) V is excellent.

Proof. A DVR is Noetherian, so equivalence of (i) and (ii) follows from combining
Theorem 4.2.1 and Corollary 4.1.2. The equivalence with excellence follows from
Proposition 2.6.1. �

Remark 4.2.3. We have proved that all valuation rings are F-pure. However, not all
valuation rings, even discrete ones on Fp(x, y), are Frobenius split, as Example 4.5.1
below shows.

The proof of Theorem 4.2.1 relies on the following lemma.

Lemma 4.2.4. A Noetherian domain with F-finite fraction field is F-finite if and
only if there exists φ ∈ HomR p(R, R p) such that φ(1) 6= 0.

Proof. Assuming such φ exists, we first observe that the canonical map R→ R∨∨

is injective, where R∨∨ :=HomR p(HomR p(R, R p), R p) is the double dual. Indeed,
let x ∈ R be a nonzero element. It suffices to show that there exists f ∈ R∨ :=
HomR p(R, R p) such that f (x) 6= 0. Let f = φ ◦ x p−1, where x p−1 is the R p-linear
map R→ R given by multiplication by x p−1. Then f (x)= φ(x p)= x pφ(1) 6= 0.
This shows that the double dual map is injective.

Now, to show that R is a finitely generated R p-module, it suffices to show that
the larger module R∨∨ is finitely generated. For this it suffices to show that R∨ is
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a finitely generated R p-module, since the dual of a finitely generated module is
finitely generated.

We now show that R∨ is finitely generated. Let M be a maximal free R p-
submodule of R. Note that M has finite rank (equal to [K : Kp

], where K is the
fraction field of R) and that R/M is a torsion R p-module. Since the dual of a
torsion module is zero, dualizing the exact sequence 0→ M→ R→ R/M→ 0
induces an injection

R∨ := HomR p(R, R p) ↪→ HomR p(M, R)= M∨.

Since M is a finitely generated R p-module, also M∨, and hence its submodule R∨

is finitely generated (R is Noetherian). This completes the proof that R is F-finite.
For the converse, fix any Kp-linear splitting ψ : K → Kp. Restricting to R

produces an R p-linear map to Kp. Since R is finitely generated over R p, we can
multiply by some nonzero element c of R p to produce a nonzero map φ : R→ R p

such that φ(1)= c 6= 0, completing the proof. �

Proof of Theorem 4.2.1. Let R be a domain with F-finite fraction field. A Frobenius
splitting is a map φ ∈ HomR p(R, R p) such that φ(1) = 1. Theorem 4.2.1 then
follows immediately from Lemma 4.2.4. �

4.3. A numerical criterion for F-finiteness. Consider the extension

Kp
⊆ K

where K any field of characteristic p. For any valuation v on K , let v p denote
the restriction to Kp. We next characterize F-finite valuations in terms of the
ramification index and residue degree of v over v p.

Theorem 4.3.1. A valuation ring V of an F-finite field K of prime characteristic p
is F-finite if and only if

e(v/v p) f (v/v p)= [K : Kp
],

where v is the corresponding valuation on K and v p is its restriction to Kp.

Proof. First note that v is the only valuation of K extending v p. Indeed, v is
uniquely determined by its values on elements of Kp, since v(x p) = pv(x) and
the value group of v is torsion-free. Furthermore, the valuation ring of v p is easily
checked to be V p.

Observe that V is the integral closure of V p in K . Indeed, since V is a valuation
ring, it is integrally closed in K , but it is also obviously integral over V p. We
now apply Proposition 2.2.1. Since there is only one valuation extending v p, the
inequality

e(v/v p) f (v/v p)≤ [K : Kp
]
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will be an equality if and only if the integral closure of V p in K , namely V , is finite
over V p. �

The following simple consequence has useful applications to the construction of
interesting examples of F-finite and non-F-finite valuations.

Corollary 4.3.2. Let V be a valuation ring of an F-finite field K of characteristic p.
If e(v/v p)= [K : Kp

] or f (v/v p)= [K : Kp
], then V is F-finite.

Remark 4.3.3. Theorem 4.3.1 and its corollary are easy to apply, because the
ramification index and residue degree for the extension V p ↪→ V can be computed
in practice. Indeed, since 0v p is clearly the subgroup p0v of 0v, we see that

e(v/v p)= [0v : p0v]. (4.3.3.1)

Also, the local map V p ↪→ V induces the residue field extension κ(v p) ↪→ κ(v),
which identifies the field κ(v p) with the subfield (κ(v))p. This means that

f (v/v p)= [κ(v) : κ(v)p
]. (4.3.3.2)

4.4. Examples of Frobenius split valuations. We can use our characterization
of F-finite valuations to easily give examples of valuations on Fp(x, y) that are
nondiscrete but Frobenius split.

Example 4.4.1. Consider the rational function field K = k(x, y) over a perfect field
k of characteristic p. For an irrational number α ∈ R, let 0 be the ordered additive
subgroup of R generated by 1 and α. Consider the unique valuation v : K×→ 0

determined by

v(x i y j )= i + jα,

and let V be the corresponding valuation ring. Since 0 ∼= Z⊕Z via the map which
sends a+bα 7→ (a, b), we see that the value group of v p is p0∼= p(Z⊕Z). Hence

e(v/v p)= [0 : p0] = p2
= [K : Kp

].

So V is F-finite by Corollary 4.3.2. Thus V is also Frobenius split by Corollary 4.1.2.

Example 4.4.2. Consider the lex valuation on the rational function field K =
k(x1, x2, . . . , xn) over a perfect field k of characteristic p. This is the valuation v :
K×→Zn on K/k defined by sending a monomial xa1

1 · · · x
an
n to (a1, . . . , an)∈Z⊕n ,

where 0 = Z⊕n is ordered lexicographically. Let V be the corresponding valuation
ring. The value group of V p is p0, so e(v/v p) = [0 : p0] = pn

= [K : Kp
]. As

in the previous example, Corollary 4.3.2 implies that V is F-finite, and so again
F-split.
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4.5. Example of a non-Frobenius split valuation. Our next example shows that
discrete valuation rings are not always F-finite, even in the rational function field
Fp(x, y). This is adapted from [Zariski and Samuel 1960, Example, p. 62], where
it is credited to F. K. Schmidt.

Example 4.5.1. Let Fp((t)) be the fraction field of the discrete valuation ring Fp[[t]]
of power series in one variable. Since the field of rational functions Fp(t) is
countable, the uncountable field Fp((t)) cannot be algebraic over Fp(t). So we can
find some power series

f (t)=
∞∑

n=1

antn

in Fp[[t]] transcendental over Fp(t).
Since t and f (t) are algebraically independent, there is an injective ring map

Fp[x, y] ↪→ Fp[[t]] such that x 7→ t and y 7→ f (t)

which induces an extension of fields

Fp(x, y) ↪→ Fp((t)).

Restricting the t-adic valuation on Fp((t)) to the subfield Fp(x, y) produces a discrete
valuation v of Fp(x, y). Let V denote its valuation ring.

We claim that V is not F-finite, a statement we can verify with Theorem 4.3.1.
Note that L = Fp(x, y) is F-finite, with [L : L p

] = p2. Since the value group 0v is
Z, we see that

e(v/v p)= [0v : p0v] = p.

On the other hand, to compute the residue degree f (v/v p), we must understand
the field extension κ(v)p ↪→ κ(v). Observe that for an element u ∈ Fp(x, y) to be
in V , its image in Fp((t)) must be a power series of the form

∞∑
n=0

bntn,

where bn ∈ Fp. Clearly
v(u− b0) > 0,

which means that the class of u =
∑
∞

n=0 bntn in κ(v) is equal to the class of b0 in
κ(v). This implies that κ(v)∼= Fp, so that [κ(v) : κ(v)p

] = 1. That is, f (v/v p)= 1.
Finally, we then have that

e(v/v p) f (v/v p)= p 6= p2
= [Fp(x, y) : (Fp(x, y))p

].
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So V cannot be F-finite by Theorem 4.3.1. Thus this Noetherian ring is neither
Frobenius split nor excellent by Corollary 4.2.2.

4.6. Finite extensions. Frobenius properties of valuations are largely preserved
under finite extension. First note that if K ↪→ L is a finite extension of F-finite
fields, then [L : L p

] = [K : Kp
]; this follows immediately from the commutative

diagram of fields

L K? _oo

L p
� ?

OO

Kp? _oo

� ?

OO

To wit, [L : Kp
] = [L : K ][K : Kp

] = [L : L p
][L p
: Kp
] and [L : K ] = [L p

: Kp
],

so that [L : L p
] = [K : Kp

]. Moreover, we have:

Proposition 4.6.1. Let K ↪→ L be a finite extension of F-finite fields of characteris-
tic p. Let v be a valuation on K and w an extension of v to L. Then:

(i) The ramification indices e(v/v p) and e(w/w p) are equal.

(ii) The residue degrees f (v/v p) and f (w/w p) are equal.

(iii) The valuation ring for v is F-finite if and only if the valuation ring for w is
F-finite.

Proof. By (2.2.0.1), we have

[0w : 0v][κ(w) : κ(v)] ≤ [L : K ],

so both [0w : 0v] and [κ(w) : κ(v)] are finite. Of course, we also know that the
ramification indices e(w/w p)= [0w : p0w] and e(v/v p)= [0v : p0v] are finite, as
are the residue degrees f (w/w p)= [κ(w) : κ(w)p

] and f (v/v p)= [κ(v) : κ(v)p
].

(i) In light of (4.3.3.1), we need to show that [0w : p0w] = [0v : p0v]. Since 0w is
torsion-free, multiplication by p induces an isomorphism 0w ∼= p0w, under which
the subgroup 0v corresponds to p0v. Thus [p0w : p0v] = [0w : 0v]. Using the
commutative diagram of finite index abelian subgroups

0w 0v?
_oo

p0w
� ?

OO

p0v? _oo

� ?

OO

we see that [0w : p0w][p0w : p0v] = [0w : 0v][0v : p0v]. Whence [0w : p0w] =
[0v : p0v].
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(ii) In light of (4.3.3.2), we need to show that [κ(w) : κ(w)p
] = [κ(v) : κ(v)p

]. We
have [κ(w)p

: κ(v)p
] = [κ(w) : κ(v)], so the result follows from computing the

extension degrees in the commutative diagram of finite field extensions:

κ(w) κ(v)? _oo

κ(w)p
� ?

OO

κ(v)p? _oo

� ?

OO

(iii) By (i) and (ii) we get e(w/w p)= e(v/v p) and f (w/w p)= f (v/v p). Therefore

e(w/w p) f (w/w p)= e(v/v p) f (v/v p).

Since also [L : L p
] = [K : Kp

], we see using Theorem 4.3.1 that w is F-finite if
and only if v is F-finite. �

5. F-finiteness in function fields

An important class of fields are function fields over a ground field k. By definition,
a field K is a function field over k if it is a finitely generated field extension
of k. These are the fields that arise as function fields of varieties over a (typically
algebraically closed) ground field k. What more can be said about valuation rings
in this important class of fields?

We saw in Example 4.5.1 that not every valuation of an F-finite function field
is F-finite. However, the following theorem gives a nice characterization of those
that are.

Theorem 5.1. Let K be a finitely generated field extension of an F-finite ground
field k. The following are equivalent for a valuation v on K/k:

(i) The valuation v is Abhyankar.

(ii) The valuation ring Rv is F-finite.

(iii) The valuation ring Rv is a free R p
v -module.

Furthermore, when these equivalent conditions hold, it is also true that Rv is
Frobenius split.

Since Abhyankar valuations have finitely generated value groups and residue
fields, the following corollary holds.

Corollary 5.2. An F-finite valuation of a function field over an F-finite field k has
a finitely generated value group and its residue field is a finitely generated field
extension of k.

For example, valuations whose value groups are Q can never be F-finite.
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Remark 5.3. In light of Proposition 2.6.1, we could add a fourth item to the list
of equivalent conditions in Theorem 5.1 in the Noetherian case: the valuation Rv
is excellent. The theorem says that the only discrete valuation rings (of function
fields) that are F-finite are the divisorial valuation rings or equivalently, the excellent
DVRs.

To prove Theorem 5.1, first recall that the equivalence of (ii) and (iii) was already
established in Theorem 4.1.1. The point is to connect these conditions with the
Abyhankar property. Our strategy is to use Theorem 4.3.1, which tells us that a
valuation v on K is F-finite if and only if

e(v/v p) f (v/v p)= [K : Kp
].

We do this by proving two propositions, one comparing the rational rank of v to
the ramification index e(v/v p), and the other comparing the transcendence degree
of v to the residue degree f (v/v p).

Proposition 5.4. Let v be a valuation of rational rank s on an F-finite field K . Then

e(v/v p)≤ ps,

with equality when the value group 0v is finitely generated.

Proof. To see that equality holds when 0v is finitely generated, note that in this
case, 0v ∼= Z⊕s . So 0v/p0v ∼= (Z/pZ)⊕s , which has cardinality ps . That is,
e(v/v p)= ps .

It remains to consider the case where 0 may not be finitely generated. Nonethe-
less, since e(v/v p) is finite (see (2.2.0.1)), we do know that [0v : p0v] = e(v/v p) is
finite. So the proof of Proposition 5.4 comes down to the following simple lemma
about abelian groups.

Lemma 5.5. Let 0 be a torsion free abelian group of rational rank s. Then

[0 : p0] ≤ ps .

It suffices to show that 0/p0 is a vector space of dimension ≤ s over Z/pZ. So
let t1, . . . , tn be elements of 0 whose classes modulo p0 are linearly independent
over Z/pZ. Then we claim that the ti are Z-independent elements of 0. Assume to
the contrary that there is some nontrivial relation a1t1+ · · · + antn = 0, for some
integers ai . Since 0 is torsion-free, we can assume without loss of generality, that
at least one a j is not divisible by p. But now modulo p0, this relation produces a
nontrivial relation on classes of the ti in 0/p0, contrary to the fact that these are
linearly independent. This shows that any Z/pZ-linearly independent subset of
0/p0 must have cardinality at most s. Thus the lemma, and hence Proposition 5.4,
is proved. �
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Proposition 5.6. Let K be a finitely generated field extension of an F-finite ground
field k. Let v be a valuation of transcendence degree t on K over k. Then

f (v/v p)≤ pt
[k : k p

],

with equality when κ(v) is finitely generated over k.

Proof. The second statement follows immediately from the following well-known
fact, whose proof is an easy computation.

Lemma 5.7. A finitely generated field L of characteristic p and transcendence
degree n over k satisfies [L : L p

] = [k : k p
]pn .

It remains to consider the case where κ(v) may not be finitely generated. Be-
cause K/k is a function field, Abhyankar’s inequality (2.3.1.1) guarantees that the
transcendence degree of κ(v) over k is finite. Let x1, . . . , xt be a transcendence
basis. There is a factorization

k ↪→ k(x1, . . . , xt) ↪→ κ(v),

where the second inclusion is algebraic. The proposition follows immediately from
the next lemma.

Lemma 5.8. If L ′ ⊆ L is an algebraic extension of F-finite fields, then [L : L p
] ≤

[L ′ : L ′p].

To prove this lemma, recall that Proposition 4.6.1 ensures that [L : L p
]=[L ′ : L ′p]

when L ′ ⊆ L is finite. So suppose L is algebraic but not necessarily finite over L ′.
Fix a basis {α1, . . . , αn} for L over L p, and consider the intermediate field

L ′ ↪→ L ′(α1, . . . , αn) ↪→ L .

Since each αi is algebraic over L ′, it follows that L̃ := L ′(α1, . . . , αn) is finite over
L ′, so again [L̃ : L̃ p

] = [L ′ : L ′p] by Proposition 4.6.1. Now observe that L̃ p
⊂ L p,

and so the L p-linearly independent set {α1, . . . , αn} is also linearly independent
over L̃ p. This means that [L : L p

] ≤ [L̃ : L̃ p
] and hence [L : L p

] ≤ [L ′ : L ′p]. This
proves Lemma 5.8.

Finally, Proposition 5.6 is proved by applying Lemma 5.8 to the inclusion

L ′ = k(x1, . . . , xt) ↪→ L = κ(v).

(Note that κ(v) is F-finite, because [κ(v) : (κ(v))p
] = f (v/v p) ≤ [K : Kp

] from
the general inequality (2.2.0.1).) So we get

f (v/v p)= [κ(v) : (κ(v))p
] ≤ [k(x1, . . . , xt) : (k(x1, . . . , xt))

p
] = pt

[k : k p
]. �
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Proof of Theorem 5.1. It only remains to prove the equivalence of (i) and (ii). First
assume v is Abhyankar. Then its value group 0v is finitely generated and its residue
field κ(v) is finitely generated over k. According to Proposition 5.4, we have
e(v/v p)= ps , where s is the rational rank of v. According to Proposition 5.6, we
have f (v/v p)= pt

[k : k p
], where t is the transcendence degree of v. By definition

of Abhyankar, s+ t = n, where n is the transcendence degree of K/k. But then

e(v/v p) f (v/v p)= (ps)(pt)[k : k p
] = pn

[k : k p
] = [K : Kp

].

By Theorem 4.3.1, we can conclude that v is F-finite.
Conversely, we want to prove that a valuation v with F-finite valuation ring Rv

is Abhyankar. Let s denote the rational rank and t denote the transcendence degree
of v. From Theorem 4.3.1, the F-finiteness of v gives

e(v/v p) f (v/v p)= [K : Kp
] = pn

[k : k p
].

Using the bounds ps
≥ e(v/v p) and pt

[k : k p
] ≥ f (v/v p) provided by Propositions

5.4 and 5.6, respectively, we substitute to get

ps pt
[k : k p

] ≥ e(v/v p) f (v/v p)= pn
[k : k p

].

It follows that s+ t ≥ n. Then s+ t = n by (2.3.1.1), and v is Abhyankar. �

6. F-regularity

An important class of F-pure rings are the strongly F-regular rings. Originally,
strongly F-regular rings were defined only in the Noetherian F-finite case. By
definition, a Noetherian F-finite reduced ring R of prime characteristic p is strongly
F-regular if for every non-zerodivisor c, there exists e such that the map

R→ Fe
∗

R, 1 7→ c

splits in the category of R-modules [Hochster and Huneke 1989]. In this section,
we show that by replacing the word “splits” with the words “is pure” in the above
definition, we obtain a well-behaved notion of F-regularity in a broader setting.
Hochster and Huneke [1994, Remark 5.3] themselves suggested, but never pursued,
this possibility.

Strong F-regularity first arose as a technical tool in the theory of tight closure:
Hochster and Huneke [1994] made use of it in their deep proof of the existence
of test elements. Indeed, the original motivation for (and the name of) strong
F-regularity was born from a desire to better understand weak F-regularity, the
property of a Noetherian ring characterized by all ideals being tightly closed. In
many contexts, strong and weak F-regularity are known to be equivalent (see, e.g.,
[Lyubeznik and Smith 1999] for the graded case, [Hochster and Huneke 1989] for
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the Gorenstein case), but it is becoming clear that at least for many applications,
strong F-regularity is the more useful and flexible notion. Applications beyond
tight closure include commutative algebra more generally [Aberbach and Leuschke
2003; Blickle 2008; Schwede and Tucker 2012; Schwede 2009a; Smith and Zhang
2015], algebraic geometry [Gongyo et al. 2015; Hacon and Xu 2015; Patakfalvi
2014; Schwede and Smith 2010; Smith 2000], representation theory [Brion and
Kumar 2005; Mehta and Ramanathan 1985; Ramanathan 1991; Smith and Van den
Bergh 1997] and combinatorics [Benito et al. 2015].

6.1. Basic properties of F-pure regularity. We propose the following definition,
intended to be a generalization of strong F-regularity to arbitrary commutative rings
of characteristic p, not necessarily F-finite or Noetherian.

Definition 6.1.1. Let c be an element in a ring R of prime characteristic p. Then
R is said to be F-pure along c if there exists e > 0 such that the R-linear map

λe
c : R→ Fe

∗
R, 1 7→ c

is a pure map of R-modules. We say R is F-pure regular if it is F-pure along every
non-zerodivisor.

A ring R is F-pure if and only if it is F-pure along the element 1. Thus F-pure
regularity is a substantial strengthening of F-purity, requiring F-purity along all
non-zerodivisors instead of just along the unit.

Remark 6.1.2. (i) If R is Noetherian and F-finite, then the map λe
c : R→ Fe

∗
R

is pure if and only if it splits (by Lemma 2.5.1). So F-pure regularity for a
Noetherian F-finite ring is the same as strong F-regularity.

(ii) If c is a zerodivisor, then the map λe
c is never injective for any e ≥ 1. In

particular, a ring is never F-pure along a zerodivisor.

(iii) The terminology “F-pure along c” is chosen to honor Ramanathan’s [1991]
closely related notion of “Frobenius splitting along a divisor”. See [Smith
2000].

The following proposition gathers up some basic properties of F-pure regularity
for arbitrary commutative rings.

Proposition 6.1.3. Let R be a commutative ring of characteristic p, not necessarily
Noetherian or F-finite.

(a) If R is F-pure along some element, then R is F-pure. More generally, if R is
F-pure along a product cd, then R is F-pure along the factors c and d.

(b) If R is F-pure along some element, then R is reduced.
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(c) If R is an F-pure regular ring with finitely many minimal primes, and S ⊂ R
is a multiplicative set, then S−1 R is F-pure regular. In particular, F-pure
regularity is preserved under localization in Noetherian rings, as well as in
domains.

(d) Let ϕ : R → T be a pure ring map which maps non-zerodivisors of R to
non-zerodivisors of T . If T is F-pure regular, then R is F-pure regular. In
particular, if ϕ : R→ T is faithfully flat and T is F-pure regular, then R is
F-pure regular.

(e) Let R1, . . . , Rn be rings of characteristic p. If R1×· · ·× Rn is F-pure regular,
then each Ri is F-pure regular.

The proof of Proposition 6.1.3 consists mostly of applying general facts about
purity to the special case of the maps λe

c. For the convenience of the reader, we
gather these basic facts together in one lemma.

Lemma 6.1.4. Let A be an arbitrary commutative ring A, not necessarily Noether-
ian nor of characteristic p.

(a) If M → N and N → Q are pure maps of A-modules, then the composition
M→ N → Q is also pure.

(b) If a composition M→ N → Q of A-modules is pure, then M→ N is pure.

(c) If B is an A-algebra and M→ N is pure map of A-modules, then B⊗A M→
B⊗A N is a pure map of B-modules.

(d) Let B be an A-algebra. If M→ N is a pure map of B-modules, then it is also
pure as a map of A-modules.

(e) An A-module map M→ N is pure if and only if for all prime ideals P ⊂ A,
MP→ NP is pure.

(f) A faithfully flat map of rings is pure.

(g) If (3,≤) is a directed set with a least element λ0, and {Nλ}λ∈3 is a direct limit
system of A-modules indexed by 3 and M → Nλ0 is an A-linear map, then
M→ lim

−−→λ
Nλ is pure if and only if M→ Nλ is pure for all λ.

(h) A map of modules A→ N over a Noetherian local ring (A,m) is pure if and
only if E ⊗A A→ E ⊗A N is injective, where E is the injective hull of the
residue field of R.

Proof. Properties (a)–(d) follow easily from the definition of purity and elementary
properties of tensor products. As an example, let us prove (d). If P is an A-module,
we want to show that P ⊗A M→ P ⊗A N is injective. The map of B-modules

(P ⊗A B)⊗B M→ (P ⊗A B)⊗B N
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is injective by purity of M → N as a map of B-modules. Using the natural A-
module isomorphisms (P⊗A B)⊗B M ∼= P⊗A M and (P⊗A B)⊗B N ∼= P⊗A N ,
we conclude that P ⊗A M→ P ⊗A N is injective in the category of A-modules.

Property (e) follows from (c) by tensoring with Ap and the fact that injectivity
of a map of modules is a local property. Property (f) follows from [Bourbaki 1989,
I.3.5, Proposition 9(c)]. Properties (g) and (h) are proved in [Hochster and Huneke
1995, Lemma 2.1]. �

Proof of Proposition 6.1.3. (a) Multiplication by d is an R-linear map, so by
restriction of scalars also

Fe
∗

R
×d
−−→ Fe

∗
R

is R-linear. Precomposing with λe
c we have

R
λe

c
−→ Fe

∗
R
×d
−−→ Fe

∗
R, 1 7→ cd,

which is λe
cd . Our hypothesis that R is F-pure along cd means that there is some e

for which this composition is pure. So by Lemma 6.1.4(b), it follows also that λe
c

is pure. That is, R is F-pure along c (and since R is commutative, along d). The
second statement follows since F-purity along the product c×1 implies R is F-pure
along 1. So some iterate of Frobenius is a pure map, and so F-purity follows from
Lemma 6.1.4(b).

(b) By (a) we see that R is F-pure. In particular, the Frobenius map is pure and
hence injective, so R is reduced.

(c) Note that by (b), R is reduced. Let α ∈ S−1 R be a non-zerodivisor. Because
R has finitely many minimal primes, a standard prime avoidance argument shows
that there exists a non-zerodivisor c ∈ R and s ∈ S such that α = c/s (a minor
modification of [Hochster 2007, Proposition, p. 57]). By hypothesis, R is F-pure
along c. Hence there exists e > 0 such that the map λe

c : R→ Fe
∗

R is pure. Then
the map

λe
c/1 : S

−1 R −→ Fe
∗
(S−1 R), 1 7→ c/1

is pure by 6.1.4(e) and the fact that S−1(Fe
∗

R) ∼= Fe
∗
(S−1 R) as S−1 R-modules

(the isomorphism S−1(Fe
∗

R) ∼= Fe
∗
(S−1 R) is given by r/s 7→ r/s pe

). Now the
S−1 R-linear map

`1/s : S−1 R→ S−1 R, 1 7→ 1/s

is an isomorphism. Applying Fe
∗

, we see that

Fe
∗
(`1/s) : Fe

∗
(S−1 R)→ Fe

∗
(S−1 R), 1 7→ 1/s
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is also an isomorphism of S−1 R-modules. In particular, Fe
∗
(`1/s) is a pure map of

S−1 R-modules. So purity of
Fe
∗
(`1/s) ◦ λ

e
c/1

follows by 6.1.4(a). But Fe
∗
(`1/s) ◦ λ

e
c/1 is precisely the map

λe
c/s : S

−1 R→ Fe
∗
(S−1 R), 1 7→ c/s.

(d) Let c ∈ R be a non-zerodivisor. Then ϕ(c) is a non-zerodivisor in T by
hypothesis. Pick e > 0 such that the map λe

ϕ(c) : T → Fe
∗

T is a pure map of
T -modules. By 6.1.4(f) and 6.1.4(a),

R
ϕ
−→ T

λe
ϕ(c)
−−→ Fe

∗
T

is a pure map of R-modules. We have commutative diagram of R-linear maps

R T

Fe
∗

R Fe
∗

T

ϕ

λe
c λe

ϕ(c)

Fe
∗ (ϕ)

The purity of λe
c follows by 6.1.4(b). Note that if ϕ is faithfully flat, then it is

pure by 6.1.4(f) and maps non-zerodivisors to non-zerodivisors.

(e) Let R := R1× · · ·× Rn . Consider the multiplicative set

S := R1× · · ·× Ri−1×{1}× Ri+1× · · ·× Rn.

Since S−1 R ∼= Ri , it suffices to show that S−1 R is F-pure regular. So let α ∈ S−1 R
be a non-zerodivisor. Note that we can select u ∈ R and s ∈ S such that u is a
non-zerodivisor and α = u/s. So we can now repeat the proof of (c) verbatim to
see that S−1 R must be pure along α. �

Remark 6.1.5. It is worth observing that in Definition 6.1.1, if the map λe
c is a

pure map, then λ f
c is also a pure map for all f ≥ e. Indeed, to see this note that it

suffices to show that λe+1
c is pure. We know R is F-pure by 6.1.3(a). So Frobenius

F : R→ F∗R

is a pure map of R-modules. By hypothesis,

λe
c : R→ Fe

∗
R

is pure. Hence 6.1.4(d) tell us that

F∗(λe
c) : F∗R→ F∗(Fe

∗
R)
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is a pure map of R-modules. Hence the composition

R
F
−→ F∗R

F∗(λe
c)

−−−→ F∗(Fe
∗

R), 1 7→ c

is a pure map of R-modules by 6.1.4(a). But F∗(Fe
∗

R) as an R-module is precisely
Fe+1
∗

R. So
λe+1

c : R→ Fe+1
∗

R.

is pure.

Example 6.1.6. The polynomial ring over Fp in infinitely many variables (localized
at the obvious maximal ideal) is an example of a F-pure regular ring which is not
Noetherian.

6.2. Relationship of F-pure regularity to other singularities. We show that our
generalization of strong F-regularity continues to enjoy many important properties
of the more restricted version.

Theorem 6.2.1 [Hochster and Huneke 1989, Theorem 3.1(c)]. A regular local ring,
not necessarily F-finite, is F-pure regular.

Proof. Let (R,m) be a regular local ring. By Krull’s intersection theorem we know
that ⋂

e>0

m[p
e
]
= 0.

Since R is a domain, the non-zerodivisors are precisely the nonzero elements of R.
So let c ∈ R be a nonzero element. Choose e such that c /∈ m[p

e
]. We show that the

map
λe

c : R→ Fe
∗

R, 1 7→ c

is pure.
By Lemma 6.1.4, it suffices to check that for the injective hull E of the residue

field of R, the induced map

λe
c⊗ idE : R⊗R E→ Fe

∗
R⊗R E

is injective, and for this, in turn, we need only check that the socle generator is not
in the kernel.

Recall that E is the direct limit of the injective maps

R/(x1, . . . , xn)
x
−→ R/(x2

1 , . . . , x2
n)

x
−→ R/(x3

1 , . . . , x3
n)

x
−→ · · ·

where x1, . . . , xn is a minimal set of generators for m, and the maps are given by
multiplication by x =5d

i=1xi . So the module Fe
∗

R⊗R E is the direct limit of the
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maps

R/(x pe

1 , . . . , x pe

n )
x pe

−−→ R/(x2pe

1 , . . . , x2pe

n )
x pe

−−→ R/(x3pe

1 , . . . , x3pe

n )
x pe

−−→ · · ·

which remains injective by the faithful flatness of Fe
∗

R. The induced map λe
c⊗ idE :

E → Fe
∗

R ⊗ E sends the socle (namely the image of 1 in R/m) to the class of
c in R/m[p

e
], so it is nonzero provided c /∈ m[p

e
]. Thus for every nonzero c in a

regular local (Noetherian) ring, we have found an e, such that the map λe
c is pure.

So regular local rings are F-pure regular. �

Proposition 6.2.2. An F-pure regular ring is normal, that is, it is integrally closed
in its total quotient ring.

Proof. Take a fraction r/s in the total quotient ring integral over R. Then clearing
denominators in an equation of integral dependence, we have r ∈ (s), the integral
closure of the ideal (s). This implies that there exists an h such that (r, s)n+h

=

(s)n(r, s)h for all n [Matsumura 1989, p. 64]. Setting c= sh , this implies crn
∈ (s)n

for all large n. In particular, taking n = pe, we see that the class of r modulo (s) is
in the kernel of the map induced by tensoring the map

R→ Fe
∗

R, 1 7→ c (6.2.2.1)

with the quotient module R/(s). By purity of the map (6.2.2.1), it follows that
r ∈ (s). We conclude that r/s is in R and that R is normal. �

6.3. Connections with tight closure. In his lecture notes on tight closure, Hochster
[2007] suggests another way to generalize strong F-regularity to non-F-finite (but
Noetherian) rings using tight closure. We show here that his generalized strong
F-regularity is the same as F-pure regularity for local Noetherian rings.

Although Hochster and Huneke introduced tight closure only in Noetherian
rings, we can make the same definition in general for an arbitrary ring of prime
characteristic p. Let N ↪→M be an inclusion of R-modules. The tight closure of N
in M is an R-module N ∗M containing N . By definition, an element x ∈ M is in N ∗M
if there exists c ∈ R, not in any minimal prime, such that for all sufficiently large
e, the element c⊗ x ∈ Fe

∗
R⊗R M belongs to the image of the module Fe

∗
R⊗R N

under the natural map Fe
∗

R⊗R N→ Fe
∗

R⊗R M induced by tensoring the inclusion
N ↪→ M with the R-module Fe

R . We say that N is tightly closed in M if N ∗M = N .

Definition 6.3.1. Let R be a Noetherian ring of prime characteristic p. We say that
R is strongly F-regular in the sense of Hochster if, for any inclusion of R modules
N ↪→ M , N ∗M = N .

The next result compares F-pure regularity with strong F-regularity in the sense
of Hochster.
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Proposition 6.3.2. Let R be an arbitrary commutative ring of prime characteristic.
If R is F-pure regular, then N is tightly closed in M for any pair of R modules with
N ⊂ M. The converse also holds if R is Noetherian and local.

Proof. Suppose x ∈ N ∗M . Equivalently the class x̄ of x in M/N is in 0∗M/N . So
there exists c not in any minimal prime such that c⊗ x̄ = 0 in Fe

∗
R⊗R M/N for

all large e. But this means that the map

R→ Fe
∗

R, 1 7→ c

is not pure for any e, since the naturally induced map

R⊗M/N → Fe
∗

R⊗M/N

has 1⊗ x̄ in its kernel.
For the converse, let c ∈ R be not in any minimal prime. We need to show that

there exists some e such that the map R→ Fe
∗

R sending 1 to c is pure. Let E be
the injective hull of the residue field of R. According to Lemma 6.1.4(i), it suffices
to show that there exists an e such that after tensoring E , the induced map

R⊗ E→ Fe
∗

R⊗ E

is injective. But if not, then a generator η for the socle of E is in the kernel for
every e, that is, for all e, c⊗ η = 0 in Fe

∗
R⊗ E . In this case, η ∈ 0∗E , contrary to

our hypothesis that all modules are tightly closed. �

Remark 6.3.3. We do not know whether Proposition 6.3.2 holds in the nonlocal
case. Indeed, we do not know if F-pure regularity is a local property: if Rm is F-pure
regular for all maximal ideals m of R, does it follow that R is F-pure regular? If
this were the case, then our argument above extends to arbitrary Noetherian rings.

Remark 6.3.4. A Noetherian ring of characteristic p is weakly F-regular if N is
tightly closed in M for any pair of Noetherian R modules with N ⊂ M. Clearly
F-pure regular implies weakly F-regular. The converse is a long standing open
question in the F-finite Noetherian case. For valuation rings, however, our arguments
show that weak and pure F-regularity are equivalent (and both are equivalent to the
valuation ring being Noetherian); See Corollary 6.5.4.

6.4. Elements along which F-purity fails. We now observe an analog of the split-
ting prime of Aberbach and Enescu [2005]; See also [Tucker 2012, Lemma 4.7].

Proposition 6.4.1. Let R be a ring of characteristic p. The set

I := {c ∈ R : R is not F-pure along c}.

is closed under multiplication by R, and R \ I is multiplicatively closed. Thus, if
I is closed under addition, then I is a prime ideal (or the whole ring R).
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Proof. We first note that I is closed under multiplication by elements of R. Indeed,
suppose that c ∈ I and r ∈ R. Then if rc /∈ I, we have that R is F-pure along rc,
but this implies R is F-pure along c by Proposition 6.1.3(a), contrary to c ∈ I.

We next show that the complement R \ I is a multiplicatively closed set (if
nonempty). To wit, take c, d /∈ I. Because R is F-pure along both c and d , we have
that there exist e and f such that the maps

R
λe

c
−→ Fe

∗
R, 1 7→ c, and R

λ
f
d
−→ F f

∗
R, 1 7→ d

are both pure. Since purity is preserved by restriction of scalars (Lemma 6.1.4(d)),
we also have that

Fe
∗

R
Fe
∗ (λ

f
d )

−−−−→ Fe
∗

F f
∗

R = Fe+ f
∗

R

is pure. Hence the composition

R
λe

c
−→ Fe

∗
R

λ
f
d
−→ Fe

∗
F f
∗

R, 1 7→ cpe
d

is pure as well (Lemma 6.1.4(a)). This means that cpe
d is not in I, and since I is

closed under multiplication, neither is cd . Note also that if R \ I is nonempty, then
1 ∈ R \ I by Proposition 6.1.3(a). Thus R \ I is a multiplicative set.

Finally, if I is closed under addition (and I 6= R), we conclude that I is a prime
ideal since it is an ideal whose complement is a multiplicative set. �

Remark 6.4.2. If R is a Noetherian local domain, then the set I of Proposition 6.4.1
can be checked to be closed under addition (see, for example, [Tucker 2012,
Lemma 4.7] for the F-finite case). Likewise, for valuation rings, the set I is
also an ideal: we construct it explicitly in the next section. However, for an arbitrary
ring, I can fail to be an ideal. For example, under suitable hypothesis, the set I
is also the union of the centers of F-purity in the sense of Schwede, hence in this
case, I is a finite union of ideals but not necessarily an ideal in the nonlocal case;
see [Schwede 2010].

6.5. F-pure regularity and valuation rings. In this subsection we characterize
valuation rings that are F-pure regular, as summarized by the following main result.

Theorem 6.5.1. A valuation ring is F-pure regular if and only if it is Noetherian.
Equivalently, a valuation ring is F-pure regular if and only if it is a field or a DVR.

A key ingredient in the proof is the following theorem about the set of elements
along which V fails to be F-pure (see Definition 6.1.1).

Theorem 6.5.2. The set of elements c along which a valuation ring (V,m) fails to
be F-pure is the prime ideal

Q :=
⋂
e>0

m[p
e
].
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Proof. First, take any c ∈Q. We need to show that V is not F-pure along c, that is,
that the map

λe
c : V → Fe

∗
V, 1 7→ c

is not pure for any e. Because c ∈ m[p
e
], we see that tensoring with κ := V/m

produces the zero map. So λe
c is not pure for any e, which means V is not F-pure

along c.
For the other inclusion, let c /∈m[p

e
] for some e> 0. We claim that λe

c : V→ Fe
∗

V
is pure. Apply Lemma 6.1.4(g) to the set 6 of finitely generated submodules of
Fe
∗

V which contain c. Note that 6 is a directed set under inclusion with a least
element, namely the V -submodule of Fe

∗
V generated by c, and Fe

∗
V is the direct

limit of the elements of 6. It suffices to show that if T ∈6, then

λT : V → T, 1 7→ c

is pure. But T is free since it is a finitely generated, torsion-free module over a
valuation ring (Lemma 3.2). Since c /∈ m[p

e
], by the V module structure on T , we

get c /∈mT . By Nakayama’s lemma, we know c is part of a free basis for T . So λT

splits, and is pure in particular.
Now that we know that the set of elements along which R is not F-pure is an

ideal, it follows that it is a prime ideal from Proposition 6.4.1. �

Corollary 6.5.3. For a valuation ring (V,m) of characteristic p, define

Q :=
⋂
e>0

m[p
e
].

Then the quotient V/Q is an F-pure regular valuation ring. Furthermore, V is
F-pure regular if and only if Q is zero.

Proof. The second statement follows immediately from Theorem 6.5.2. For the
first, observe that V/Q is a domain since Q is prime. So ideals of V/Q inherit the
total ordering under inclusion from V , and V/Q is a valuation ring whose maximal
ideal m satisfies

⋂
e>0 m[p

e
]
= 0. So V/Q is F-pure regular. �

Corollary 6.5.4. For a valuation ring, F-pure regularity is equivalent to all ideals
(equivalently, the maximal ideal) being tightly closed.

Proof. Proposition 6.3.2 ensures that F-pure regularity implies all ideals are tightly
closed. For the converse, note that if there is some nonzero c in

⋂
e>0 m[p

e
],

then 1 ∈ m∗. So for any proper ideal m, the condition that m∗ = m implies that⋂
e>0 m[p

e
]
= 0. In particular, if the maximal ideal of a valuation ring V is tightly

closed, then Corollary 6.5.3 implies that V is F-pure regular. �

Proof of Theorem 6.5.1. First observe that if V is a field or DVR, then it is F-pure
regular. Indeed, every map of modules over a field is pure (since all vector space
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maps split). And a DVR is a one dimensional regular local ring, so it is F-pure
regular by Theorem 6.2.1.

Conversely, we show that if (V,m) is F-pure regular, its dimension is at most
one. Suppose (V,m) admits a nonzero prime ideal P 6=m. Choose x ∈m \P , and a
nonzero element c ∈ P . The element c cannot divide xn in V , since in that case we
would have xn

⊂ (c)⊂ P , but P is a prime ideal not containing x . It then follows
from the definition of a valuation ring that xn divides c for all n. This means in
particular that c ∈ (x)[p

e
]
⊂ m[p

e
] for all e. So c ∈Q. According to Theorem 6.5.2,

R is not F-pure regular.
It remains to show that an F-pure regular valuation ring V of dimension one is

discrete. Recall that the value group 0 of V is (order isomorphic to) an additive
subgroup of R [Matsumura 1989, Theorem 10.7].

We claim that 0 has a least positive element. To see this, let η be the greatest
lower bound of all positive elements in 0. First observe that η is strictly positive.
Indeed, for fixed c ∈ m, the sequence v(c)/pe consists of positive real numbers
approaching zero as e gets large. If 0 contains elements of arbitrarily small positive
values, then we could find x ∈ V such that

0< v(x) <
v(c)
pe .

But then 0 < v(x pe
) < v(c), which says that c ∈ (x)[p

e
]
⊂ m[p

e
] for all e. This

contradicts our assumption that V is F-pure along c (again, using Theorem 6.5.2).
Now that we know the greatest lower bound η of 0 is positive, it remains to

show that η ∈ 0. Choose ε such that 0< ε < η. If η /∈ 0, we know η < v(y) for all
y ∈ m. Since η is the greatest lower bound, we can find y such that

η < v(y) < η+ ε,

as well as x such that
η < v(x) < v(y) < η+ ε.

Then
0< v(y/x) < ε < η,

contradicting the fact that η is a lower bound for 0. We conclude that η ∈ 0, and
that 0 has a least positive element.

It is now easy to see, using the Archimedean axiom for real numbers, that the
ordered subgroup 0 of R is generated by its least positive element η. In particular,
0 is order isomorphic to Z. We conclude that V is a DVR. �

Remark 6.5.5. For a valuation ring (V,m) of dimension n ≥ 1, our results show
that in general Q=

⋂
e∈N m[p

e
] is a prime ideal of height at least n− 1. It is easy

to see that the situation where V/Q is a DVR arises if and only if m is principal,
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which in turn is equivalent to the value group 0 having a least positive element.
For example, this is the case for the lex valuation in Example 4.4.2. It is not hard to
check that Q is a uniformly F-compatible ideal in the sense of Schwede [2010] (see
also [Smith and Zhang 2015, §3A] for further discussion of uniformly F-compatible
ideals), generalizing of course to the non-Noetherian and non-F-finite setting. A
general investigation of uniformly F-compatible ideals appears to be fruitful, and is
being undertaken by the first author.

6.6. Split F-regularity. Of course, there is another obvious way3 to adapt Hochster
and Huneke’s definition of strongly F-regular to arbitrary rings of prime character-
istic p:

Definition 6.6.1. A ring R is split F-regular if for all nonzero divisors c, there
exists e such that the map R→ Fe

∗
R sending 1 to c splits as a map of R-modules.

Since split maps are pure, a split F-regular ring is F-pure regular. Split F-regular
rings are also clearly Frobenius split. On the other hand, Example 4.5.1 shows
that a discrete valuation ring need not be Frobenius split, so split F-regularity is
strictly stronger than F-pure regularity. In particular, not every regular local ring
is split F-regular, so split F-regularity should not really be considered a class of
“singularities” even for Noetherian rings.

Remark 6.6.2. In Noetherian rings, split F-regularity is very close to F-pure regu-
larity. For example, if R is an F-pure regular Noetherian domain whose fraction
field is F-finite, then the only obstruction to split F-regularity is the splitting of
Frobenius. This is a consequence of Lemma 4.2.4, which tells us R is F-finite if it
is Frobenius split, and Lemma 2.5.1, which tells us F-split and F-pure are the same
in F-finite Noetherian rings.

Corollary 6.6.3. For a discrete valuation ring V whose fraction field is F-finite,
the following are equivalent:

(i) V is split F-regular.

(ii) V is Frobenius split.

(iii) V is F-finite.

(iv) V is free over V p.

(v) V is excellent.

Moreover, if K is a function field over an F-finite ground field k, and V is a valuation
of K/k, then (i)–(v) are equivalent to V being a divisorial valuation ring.

3This generalization is used for cluster algebras in [Benito et al. 2015] for example.
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Proof. All this has been proved already. Recall that a DVR is a regular local ring, so
it is always F-pure regular and hence split F-regular if it is F-finite. Also, the final
statement follows from Theorem 5.1 because an Abyhankar valuation of rational
rank one is necessarily divisorial, and a divisorial valuation of a functional field
over an F-finite field is necessarily F-finite. �

To summarize: a valuation ring is F-pure regular if and only if it is Noetherian,
and split F-regular (under the additional assumption that its fraction field is F-finite)
if and only if it is excellent.

7. Concluding remarks

We have argued that for valuation rings, F-purity and F-pure regularity (a version
of strong F-regularity defined using pure maps instead of split maps) are natural
and robust properties. We have also seen that the conditions of Frobenius splitting
and split F-regularity are more subtle, and that even regular rings can fail to satisfy
these.

For Noetherian valuation rings in F-finite fields, we have seen that the Frobenius
splitting property is equivalent to F-finiteness and also to excellence, but we do not
know what happens in the non-Noetherian case: does there exist an example of a
(necessarily non-Noetherian) Frobenius split valuation ring of an F-finite field that is
not F-finite? By Corollary 5.2, a possible strategy could be to construct a Frobenius
split valuation ring in a function field whose value group is infinitely generated.
For example, can one construct an F-split valuation in Fp(x, y) with value group
Q? On the other hand, perhaps Frobenius splitting is equivalent to F-finiteness (just
as in the Noetherian case). One might then ask whether a generalized version of
Theorem 4.1.1 holds for arbitrary fields: is a valuation ring Frobenius split if and
only if Frobenius is free?

We propose that F-pure regularity is a more natural generalization of strong
F-regularity to the non-F-finite case than a suggested generalization of strong F-
regularity using tight closure due to Hochster. We have seen that F-pure regularity
implies Hochster’s notion, and that they are equivalent for local Noetherian rings.
However, we do not know whether F-pure regularity is a local notion: if Rm is
F-pure regular for all maximal ideals, does it follow that R is F-pure regular? We
expect this to be true, but the standard arguments are insufficient to prove it. (In
the Noetherian F-finite case, this is well known; see [Hochster and Huneke 1994,
Theorem 5.5(a)]. Furthermore, the answer is affirmative for excellent rings with
F-finite total quotient rings, by Proposition 2.6.1.) If true, then F-pure regularity
would be equivalent to all modules being tightly closed in the Noetherian case. More
generally, might F-pure regularity be equivalent to the property that all modules are
tightly closed even in the non-Noetherian case? Or even that all ideals are tightly
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closed? An affirmative answer to this last question would imply that strong and
weak F-regularity are equivalent.
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Hoffmann’s conjecture for
totally singular forms of prime degree

Stephen Scully

One of the most significant discrete invariants of a quadratic form φ over a field k
is its (full) splitting pattern, a finite sequence of integers which describes the
possible isotropy behavior of φ under scalar extension to arbitrary overfields
of k. A similarly important but more accessible variant of this notion is that of
the Knebusch splitting pattern of φ, which captures the isotropy behavior of φ
as one passes over a certain prescribed tower of k-overfields. We determine all
possible values of this latter invariant in the case where φ is totally singular. This
includes an extension of Karpenko’s theorem (formerly Hoffmann’s conjecture)
on the possible values of the first Witt index to the totally singular case. Contrary
to the existing approaches to this problem (in the nonsingular case), our results
are achieved by means of a new structural result on the higher anisotropic kernels
of totally singular quadratic forms. Moreover, the methods used here readily
generalize to give analogous results for arbitrary Fermat-type forms of degree p
over fields of characteristic p > 0.

1. Introduction

Let k be a field, let φ be a nonzero quadratic form on a (nonzero) k-vector space V
of finite dimension and let Xφ ⊆ P(V ) denote the projective k-scheme defined by
the vanishing of φ. Given a k-linear subspace W of V , we write φ|W for the form
obtained by restricting φ to W . In the case where φ|W is the zero form, W is said to
be totally isotropic (with respect to φ). The largest integer among the dimensions of
all totally isotropic subspaces of V is called the isotropy index of φ, and is denoted
by i0(φ). In the special case where φ is nonsingular (i.e., where Xφ is smooth),
i0(φ) is more commonly known as the Witt index of φ, and is bounded from above
by the integer part of 1

2 dimφ (where dimφ denotes the dimension of the k-vector
space V ). In the opposite extreme where φ is totally singular (i.e., where Xφ has
no smooth points at all), i0(φ) may take any value between 0 and dimφ− 1.

Assume now that φ is anisotropic (i.e., that i0(φ)= 0). A simple, yet fundamen-
tally important invariant of φ is its (full) splitting pattern, which may be defined

MSC2010: primary 11E04; secondary 14E05, 15A03.
Keywords: quadratic forms, quasilinear p-forms, splitting patterns, canonical dimension.
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as the increasing sequence of nonzero isotropy indices attained by φ under scalar
extension to every overfield of k.1 Although this sequence appears to be somewhat
intractable in general, its first entry (assuming there is one) may be computed
more explicitly as the isotropy index of the extension φL of φ to the function field
L = k(Xφ) of the (integral) quadric Xφ . This (almost tautological) observation
is the basic motivation underlying the following construction, originally due to
Knebusch [1976]: let k0 = k, φ0 = φ, and inductively define kr = kr−1(Xφr−1),
φr = (φkr )an,2 with the understanding that this (finite) process stops when we reach
the first nonnegative integer h(φ) such that dimφh(φ) ≤ 1. The integer h(φ) and the
tower of fields k = k0 ⊂ k1 ⊂ · · · ⊂ kh(φ) are known as the height and Knebusch
splitting tower of φ, respectively. For 1 ≤ r ≤ h(φ), the anisotropic form φr is
called the r-th higher anisotropic kernel of φ. The r-th higher isotropy index
of φ, denoted ir (φ), is defined as the difference i0(φkr )− i0(φkr−1). The sequence
i(φ)= (i1(φ), . . . , ih(φ)(φ)) is called the Knebusch splitting pattern of φ.3 Note that
we have ir (φ)= i1(φr−1) for every r ≥ 2 by the inductive nature of the construction.

If φ is nonsingular, then its full and Knebusch splitting patterns are easily seen
to determine one another (see [Elman et al. 2008, Proposition 25.1]). This need not
be the case for (totally) singular forms (see Example 2.47 below), but Knebusch’s
construction still offers a meaningful and practical way to preclassify quadratic
forms according to some notion of “algebraic complexity”. By virtue of its definition,
the Knebusch splitting pattern thus embodies a fundamental link between intrinsic
algebraic properties of quadratic forms and the geometry of the algebraic varieties
which are naturally associated to them. In recent years, the advent of effective new
tools with which to study algebraic cycles on projective homogeneous varieties has,
in this way, led to dramatic progress on many long-standing problems within the
algebraic theory of quadratic forms. The impact of these developments has been
felt most deeply in characteristic 6= 2, where (1) anisotropic forms of dimension ≥ 2
are necessarily nonsingular, and (2) the geometric methods are better developed,
even if we restrict our considerations to nonsingular forms only; see [Elman et al.
2008] for a thorough exposition of much of the recent work which has been done
in this area.

One of the central problems in the investigation of splitting properties of quadratic
forms over general fields is the following:

1This terminology is not standard; see, e.g., [Hoffmann and Laghribi 2004], where refined splitting
pattern invariants are considered. Our definition does, however, agree (in content if not presentation)
with those found in the literature when φ is nonsingular or totally singular (the only relevant cases here).

2For any form ψ over a field K , ψan denotes the anisotropic kernel of ψ , an anisotropic K-form
uniquely determined up to isomorphism by the (refined) Witt decomposition of ψ ; see [Hoffmann and
Laghribi 2004, §2].

3The term standard splitting pattern is also used in the literature. Footnote 1 again applies here.
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Question 1.1. Let φ be an anisotropic quadratic form of dimension ≥ 2 over a field.
What are the possible values of the sequence i(φ)?

Since ir (φ) = i1(φr−1) for all 2 ≤ r ≤ h(φ), the natural first approximation to
this problem is to determine the possible values of the invariant i1 among all forms
of a given dimension. To this end, we have the following general conjecture:

Conjecture 1.2 (Hoffmann4). Let φ be an anisotropic quadratic form of dimension
≥ 2 over a field. Then i1(φ)− 1 is the remainder modulo 2s of dimφ− 1 for some
s < log2(dimφ).5

In characteristic 6= 2, the first major result in the direction of Conjecture 1.2
was established by Hoffmann himself [1995, Corollary 1], who showed that if
dimφ = 2n

+ m for nonnegative integers n and 1 ≤ m ≤ 2n , then i1(φ) ≤ m.
A few years later, Izhboldin [2004, Corollary 5.12] proved that one cannot have
i1(φ)=m−1 here unless m = 2. Izhboldin’s paper combined an elaboration of the
algebraic methods conceived in [Hoffmann 1995] with emerging work of Vishik
[1998; 1999], who developed a systematic approach to the study of the splitting
pattern using the (integral) motive of the given quadric (see [Vishik 2004], where
motivic methods were used to verify Hoffmann’s conjecture in all dimensions ≤ 22
in this setting). Going further, Vishik later formulated a very general conjecture
concerning the complete motivic decomposition of a smooth anisotropic quadric
(the excellent connections conjecture) which subsumed the nonsingular case of
Conjecture 1.2 in a conceptual way. Not long after this, Karpenko [2003] used a
similar approach to prove the characteristic 6= 2 case of the conjecture in its entirety,
the key new ingredient being the use of (reduced power) Steenrod operations on
modulo-2 Chow groups. More recently, Vishik [2011, Theorem 1.3] proved the
excellent connections conjecture in characteristic 6= 2, thus yielding another proof
of Hoffmann’s conjecture in this setting. Vishik’s work also makes essential use of
Steenrod squares in Chow theory.

In characteristic 2, the general picture is more complicated. In the nonsingular
case, Karpenko and Vishik’s approaches to Conjecture 1.2 are still valid, and
progress is only hindered here by the fact that the total mod-2 Steenrod operation
is not yet available when 2 is not invertible in the base field. To this end, weak
forms of the first three Steenrod squares have been constructed by Haution [2013,
Theorem 6.2; 2015, Theorem 5.8], and these suffice to prove nontrivial partial

4This conjecture was originally stated by Hoffmann under the additional hypothesis char(k) 6= 2,
but we expect that the assertion is also valid in characteristic 2.

5After passing to a purely transcendental extension of k if necessary, all values of i1(φ) which are
not excluded by the conjecture can be realized by making an appropriate choice of φ. In all cases,
φ may, in fact, be chosen to be either nonsingular or (if char(k)= 2) totally singular; see [Vishik 2004,
§7.4] and Proposition 6.4 below, respectively.
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results towards Conjecture 1.2. Haution’s results are further supplemented by earlier
work of Hoffmann and Laghribi [2006, Lemma 4.1], who extended Hoffmann’s
upper bound on i1(φ) to the characteristic-2 setting, irrespective of whether φ is
nonsingular or not. For singular forms, however, the situation is different, and
almost nothing is known in the direction of Conjecture 1.2 beyond Hoffmann and
Laghribi’s bound. In fact, the only real exception to this general state of affairs
lies in the extreme case where φ is totally singular. Here, it was recently shown
in [Scully 2016, Theorem 9.4] that if dimφ = 2n

+m for nonnegative integers n
and 1≤m ≤ 2n , and if i1(φ) 6=m (that is, if Hoffmann and Laghribi’s bound is not
met), then i1(φ)≤ m/2. In the present article, we will settle this case completely
by proving:

Theorem 1.3. Conjecture 1.2 is true in the case where φ is totally singular.

Contrary to the existing approaches to the nonsingular case of Conjecture 1.2,
our proof of Theorem 1.3 does not involve the study of Chow correspondences
on the quadric Xφ . Indeed, although we also make use of the computation of the
canonical dimension6 of Xφ (see [Karpenko and Merkurjev 2003; Totaro 2008]),
it is exploited here in a rather more direct and algebraic way. This point of view
begins with the following observation:

Proposition 1.4 (see Proposition 4.3 below). Let φ be an anisotropic totally singu-
lar quadratic form of dimension ≥ 2 over a field k of characteristic 2 and let ψ ⊂ φ
be a subform of codimension i1(φ). Suppose furthermore that h(ψ) < h(φ).7 Then
there exist a quasi-Pfister quadratic form π ,8 a subform σ ⊂ π , an element λ ∈ k∗

and a form τ over k such that ψ ' π ⊗ τ and φ ' ψ ⊥ λσ .

In the situation of Proposition 1.4, Hoffmann’s conjecture is immediately verified.
Indeed, (since σ ⊂ π) the integer dimπ is a power of 2 strictly greater than
i1(φ) − 1 = dim σ − 1, and (since ψ is divisible by π) we have dimφ − 1 =
dimψ + i1(φ)− 1 ≡ i1(φ)− 1 (mod dimπ). It is not always possible, however,
to decompose the form φ in the manner intimated by the proposition. In fact,
Vishik (see [Totaro 2009, Lemma 7.1]) has given examples of 16-dimensional
anisotropic quadratic forms in characteristic 6= 2 which have first higher isotropy
index equal to 2, but which do not decompose in this way, and the same examples
carry over into the totally singular setting (see Lemma 4.4 below). Thus, the
picture is, in general, more complicated than that suggested by Proposition 1.4.
Perhaps surprisingly, however, the main result of this paper shows that the next best
thing happens:

6Here, the canonical dimension of an algebraic variety X over a field k should be understood as
the minimal dimension cdim(X) of the image of a rational self-map X 99K X .

7A weaker condition will suffice; see the statement of Proposition 4.3.
8That is, π is the diagonal part of a bilinear Pfister form over k; see Section 2C below.
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Theorem 1.5. Let φ be an anisotropic totally singular quadratic form of dimension
≥ 2 over a field of characteristic 2 and let s be the smallest nonnegative integer
such that 2s

≥ i1(φ). Then φ1 is divisible by an s-fold quasi-Pfister form.

This is a new kind of statement of which no analogue is known in the nonsingular
theory (even in characteristic 6= 2). As remarked above, a key ingredient needed for
its proof is Totaro’s computation [2008, Theorem 5.1] of the canonical dimension
of a totally singular quadric. In [Scully 2013], this computation was extended to the
wider class of Fermat-type hypersurfaces of degree p over fields of characteristic
p > 0, and this enables us to also prove a direct analogue of Theorem 1.5 for
totally singular forms of any prime degree p > 2 (known here as quasilinear
p-forms); see Theorem 5.1 below. Subsequently, we also get an analogue of
Theorem 1.3 in higher degrees. As a corollary, this yields a complete solution to
the problem of determining the possible values of the canonical dimension of a
degree-p Fermat-type hypersurface in characteristic p > 0 (Theorem 6.6); it is
worth noting here that no such result is known for Fermat-type hypersurfaces of
prime degree p > 2 over fields of characteristic not p. Returning to the case where
p = 2, let us explain more precisely how Theorem 1.5 implies the totally singular
case of Hoffmann’s conjecture:

Proof of Theorem 1.3. Since φ is totally singular, we have dimφ1 = dimφ− i1(φ)

(see Remarks 2.36(2) below). Thus, if s is as in Theorem 1.5, then

dimφ− 1= dimφ1+ i1(φ)− 1≡ i1(φ)− 1 (mod 2s).

Since i1(φ)− 1< 2s , the result follows. �

Of course, our main result goes somewhat deeper than this. In fact, Theorem 1.5
(resp. Theorem 5.1 below) yields a complete answer to Question 1.1 in the totally
singular case (resp. its analogue for arbitrary quasilinear p-forms). In other words,
all restrictions on the possible values of the Knebusch splitting pattern of φ are
explained here by the presence of certain divisibilities among its higher anisotropic
kernels — precise statements are given in Section 6A below (see Theorem 6.1,
Proposition 6.4). With this result in hand, it then becomes natural to try to understand
the general discrepancy which exists between the Knebusch and full splitting
patterns in the totally singular case. An immediate challenge here concerns the
determination of all nontrivial restrictions which the former invariant imposes
on the latter. In Section 7 below, we initiate this process by conjecturing that
the gaps in the full splitting pattern established in characteristic 6= 2 by Vishik
[2011, Proposition 2.6] (or see Theorem 7.1 below) as a consequence of his proof
of the excellent connections conjecture are also present in the totally singular
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theory. A particular case of this conjecture was already proved in [Scully 2016,
Theorem 9.2], and we provide some further evidence for its general veracity here.9

Finally, the main results of this paper should have valuable implications for the
study of symmetric bilinear forms over fields of characteristic 2. Indeed, in character-
istic 2, the diagonal parts of symmetric bilinear forms are nothing else but the totally
singular quadratic forms discussed above. This will be investigated in a later text.

The remainder of this text is organized as follows. In Sections 2 and 3, we recall
the basic theory of quasilinear p-forms and introduce the key notions and results
which will be needed in the main part of the text. As a warm-up for the proof of
our main result, we prove in Section 4 (a stronger version of) Proposition 1.4 and
consider some situations in which it may be applied. The proof of Theorem 1.5 (and
its generalization to higher degrees) is then given in Section 5, and, in Section 6, we
apply this result to determine all possible Knebusch splitting patterns of quasilinear
p-forms and settle another conjecture of Hoffmann concerning quasilinear p-forms
with “maximal splitting”. Lastly, in Section 7, we consider the aforementioned prob-
lem of establishing totally singular analogues of the results obtained in [Vishik 2011].

Notation and Terminology. Unless stated otherwise, p will denote an arbitrary
prime integer and F will denote an arbitrary field of characteristic p. If L is a
field of characteristic p and a1, . . . , an are elements of L , then La1,...,an will denote
the field L( p

√
a1, . . . , p

√
an ). Finally, if k is a field and T = (T1, . . . , Tm) is a tuple

of algebraically independent variables over k, then we will write k[T ] for the
polynomial ring k[T1, . . . , Tn] and k(T ) for its fraction field.

2. Quasilinear p-forms and quasilinear p-hypersurfaces

The basic material presented in this section was originally developed in the series
of papers [Hoffmann and Laghribi 2004; Laghribi 2004a; 2004b; 2006; Hoffmann
2004]. Additional elementary results which will be needed in the sequel are also
included here. For any details which are omitted from our exposition of the basic
theory, we refer the reader to [Hoffmann 2004].

2A. Basic notions. Let φ : V → F be an F-valued form on a finite-dimensional
F-vector space V . We say that φ is a quasilinear p-form (on V ) if φ is homogeneous
of degree p and the equation φ(v+w)= φ(v)+φ(w) holds for all (v,w)∈ V ×V .
By a quasilinear p-form over F (or sometimes simply a form over F or F-form),
we will mean a quasilinear p-form on some finite-dimensional F-vector space.
By a quasilinear p-hypersurface over F we will mean a projective hypersurface
defined by the vanishing of a nonzero quasilinear p-form on some F-vector space

9To the author’s knowledge, there is no conjectural description of the possible values of the full
splitting pattern, even in the nonsingular case (in any characteristic).
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of dimension ≥ 2. In the special case where p = 2, we will speak of quasilinear
quadratic forms rather than quasilinear 2-forms.

Remark 2.1. Let T = (T1, . . . , Tn) be a tuple of n ≥ 2 algebraically indepen-
dent variables over F , and let f ∈ F[T ] \ {0}. Then the projective hypersurface
X f = { f = 0} ⊂ Pn−1 is nowhere smooth if and only if f ∈ F[T p

1 , . . . , T p
n ]. In

particular, if p = 2, then a nonzero quadratic form of dimension ≥ 2 over F is
totally singular (in the sense of Section 1) if and only if it is quasilinear.

Let φ be a quasilinear p-form over F . The underlying F-vector space of φ will be
denoted by Vφ . Its dimension will be called the dimension of φ and will be denoted
by dimφ. If dimφ ≥ 2 and φ is nonzero, then the quasilinear p-hypersurface
{φ = 0} ⊂P(Vφ) (which is nowhere smooth by Remark 2.1) will be denoted by Xφ .
The set {φ(v) | v ∈ Vφ} of elements of F represented by φ will be denoted by D(φ).
Given a field extension L of F , we will write φL for the unique quasilinear p-form
on the L-vector space Vφ⊗F L such that φL(v⊗1)= φ(v) for all v ∈ Vφ . If R is a
subring of L containing F , then D(φR) will denote the subset {φ(w) |w ∈ Vφ⊗F R}
of D(φL) (which lies in R). Given a ∈ F , we will write aφ for the form v 7→ aφ(v)
on the vector space Vφ .

Let ψ be another quasilinear p-form over F . If there exists an injective (resp.
bijective) F-linear map f : Vψ → Vφ such that φ( f (v)) = ψ(v) for all v ∈ Vψ ,
then we will say that ψ is a subform of (resp. is isomorphic to) φ and write ψ ⊂ φ
(resp. ψ ' φ). If ψ ' aφ for some a ∈ F∗, then we will say that ψ and φ are
similar. The sum ψ ⊕φ (resp. product ψ ⊗φ) is defined as the unique quasilinear
p-form on Vψ ⊕ Vφ (resp. Vψ ⊗F Vφ) such that (ψ ⊕ φ)((v,w)) = ψ(v)+ φ(w)
(resp. (ψ ⊗ φ)(v ⊗w) = ψ(v)φ(w)) for all (v,w) ∈ Vψ × Vφ . Given a positive
integer n, we will let n · φ denote the sum of n copies of φ (note that we have
n ·φ 6= nφ for n > 1). If there exists a form τ over F such that φ 'ψ⊗ τ , then we
will say that φ is divisible by ψ .

Given elements a1, . . . , an ∈ F , we will write 〈a1, . . . , an〉 for the quasilinear
p-form (λ1, . . . , λn) 7→

∑n
i=1 aiλ

p
i on the F-vector space F⊕n . By definition, every

quasilinear p-form of dimension n over F is isomorphic to 〈a1, . . . , an〉 for some
ai ∈ F .

A vector v ∈ Vφ is said to be isotropic if φ(v) = 0. We will say that φ is
isotropic if Vφ contains a nonzero isotropic vector, and anisotropic otherwise. By
the additivity of φ, the subset V 0

φ of all isotropic vectors in Vφ is, in fact, an F-linear
subspace of Vφ . Its dimension will be called the isotropy index of φ, and will be
denoted by i0(φ) (note that in the case where p = 2 and φ is nonzero, this agrees
with the definition given in Section 1). The additivity of φ also implies that D(φ)
is a finite-dimensional F p-linear subspace of F (where F is equipped with its
natural F p-vector space structure). Conversely, if U is a nonzero finite-dimensional
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F p-linear subspace of F , and if a1, . . . , an is a basis of U , then σ = 〈a1, . . . , an〉 is
a quasilinear p-form over F satisfying D(σ )=U . In fact, it is easy to see that, up
to isomorphism, σ is the unique anisotropic quasilinear p-form with this property:

Lemma 2.2 (see [Hoffmann 2004, Proposition 2.12]). Let U be a finite-dimensional
F p-linear subspace of F. Then, up to isomorphism, there exists a unique anisotropic
quasilinear p-form φ over F such that D(φ)=U.

In particular, Pfister’s quadratic subform theorem [Elman et al. 2008, Theorem
17.12] takes the following simplified form in this setting:

Proposition 2.3 (see [Hoffmann 2004, Proposition 2.6]). Letψ and φ be anisotropic
quasilinear p-forms over F. Then ψ ⊂φ if and only if D(ψ)⊆ D(φ). In particular,
ψ ' φ if and only if D(ψ)= D(φ).

In view of these observations, we can define (up to isomorphism) the anisotropic
kernel of φ as the unique anisotropic quasilinear p-form φan over F such that
D(φan)= D(φ). If we view D(φ) as an F-vector space via the Frobenius F 7→ F p,
then φ : Vφ→ D(φ) is a surjective F-linear map with kernel V 0

φ . We thus obtain:

Proposition 2.4 (see [Hoffmann 2004, Lemma 2.10]). Let φ be a quasilinear
p-form over F. Then φ is anisotropic if and only if φ ' φan. If φ is isotropic, then
φ ' φan⊕ i0(φ) · 〈0〉. In particular, dimφan = dimφ− i0(φ).

In summary, we see that φ is determined up to isomorphism by the set D(φ)
and the integer i0(φ). If dimφan ≤ 1, then we will say that φ is split. Given another
form ψ over F , we will write ψ ∼ φ whenever ψan ' φan. If F is perfect (that is,
if F = F p), then every form over F is split and the theory is vacuous. As such, we
are essentially only interested in the case where F is imperfect. Unless indicated
otherwise, we will assume henceforth that all quasilinear p-forms are nonzero (i.e.,
of anisotropic dimension ≥ 1).

Remark 2.5. Let φ be a quasilinear p-form over F . Choose a basis v1, . . . , vn

of Vφ and let ai = φ(vi ) for all 1 ≤ i ≤ n, so that φ ' 〈a1, . . . , an〉. Suppose that
v ∈ Vφ is an isotropic vector, and write v=

∑n
i=1 λivi . If λj 6= 0 for 1≤ j ≤ n, then

the F p-vector space D(φ) is spanned by the elements a1, . . . , a j−1, a j+1, . . . , an .
In particular, we have φ ∼ 〈a1, . . . , a j−1, a j+1, . . . , an〉.

2B. Function fields of quasilinear p-hypersurfaces and their products. Let φ be
a quasilinear p-form of dimension ≥ 2 over F . If φ is not split, then the quasilinear
p-hypersurface Xφ is an integral scheme (see [Hoffmann 2004, Lemma 7.1]), as is
its affine cone {φ = 0} ⊂ A(Vφ). In this case, we will write F(φ) for the function
field of the former and F[φ] for that of the latter. If L is a field extension of F ,
then we will simply write L(φ) instead of L(φL) whenever it is defined. In general,
given a finite collection φ1, . . . , φn of quasilinear p-forms of dimension ≥ 2 over F ,
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we will write F(φ1×· · ·×φn) for the function field of the scheme Xφ1×· · ·× Xφn ,
provided that it is integral. This notation will be further simplified where possible;
for example, if φ1 = · · · = φn = φ, then we will simply write F(φ×n) instead of
F(φ1× · · ·×φn).

Remarks 2.6. Let φ be a quasilinear p-form over F . Assume that φ is not split.
We make the following basic observations:

(1) Let a0, . . . , an ∈ F be such that φ ' 〈a0, . . . , an〉 and a0, a1 6= 0. Then we
have F-isomorphisms

F(φ)' F(S)
(

p
√

a−1
1

(
a0+ a2S p

2 + · · ·+ an S p
n
) )

and

F[φ] ' Frac
(
F[T ]/

(
a0T p

0 +· · ·+anT p
n
))
' F(U )

(
p
√

a−1
0

(
a1U p

1 + · · ·+ anU p
n
) )
,

where S = (S2, . . . , Sn), T = (T0, . . . , Tn) and U = (U1, . . . ,Un) are tuples
of algebraically independent variables over F .

(2) F[φ] is F-isomorphic to a degree-1 purely transcendental extension of F(φ).

(3) F(φ) is F-isomorphic to a degree-i0(φ) purely transcendental extension of
F(φan); see Proposition 2.4.

(4) The form φF(φ) is evidently isotropic. Furthermore, if a1, . . . , an ∈ F are such
that φ ' 〈a1, . . . , an〉, then consideration of the generic point in Xφ(F(φ))
shows that φF(φ) ∼ 〈a1, . . . , ai−1, ai+1, . . . , an〉 for every 1 ≤ i ≤ n; see
Remark 2.5.

2C. Quasi-Pfister p-forms. Let φ be a quasilinear p-form over F and let n be
a positive integer. We say that φ is an n-fold quasi-Pfister p-form if there exist
a1, . . . , an ∈ F such that φ ' 〈〈a1, . . . , an〉〉 :=

⊗n
i=1〈1, ai , a2

i , . . . , a p−1
i 〉. For

convenience, we also say that φ is a 0-fold quasi-Pfister p-form if φ ' 〈1〉. Note,
in particular, that if φ is an n-fold quasi-Pfister p-form for some n ≥ 0, then we
have dimφ = pn . The basic observation concerning quasi-Pfister p-forms is found
in the following proposition (which follows easily from Lemma 2.2):

Proposition 2.7 (see [Hoffmann 2004, Proposition 4.6]). Let φ be a quasilinear
p-form over F. Then φan is a quasi-Pfister p-form if and only if D(φ) is a subfield
of F.

Since the set of elements represented by an arbitrary quasi-Pfister p-form is, by
definition, a subfield of the base field, we obtain:

Corollary 2.8 (see [Hoffmann 2004, Proposition 4.6]). Let φ be a quasi-Pfister
p-form over F. Then φan is a quasi-Pfister p-form. In particular, if φ is isotropic,
then dimφan =

1
pk dimφ for some k ≥ 1.
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Remark 2.9. More explicitly, let φ = 〈〈a1, . . . , an〉〉 for some n ≥ 1 and ai ∈ F .
Then D(φ)= F p(a1, . . . , an). Let m be such that [F p(a1, . . . , an) : F p

] = pm . If
m = 0 (i.e., D(φ) = F p), then φan ' 〈1〉. If m ≥ 1, then φan ' 〈〈b1, . . . , bm〉〉 for
any m elements b1, . . . , bm ∈ F such that F p(b1, . . . , bm)= F p(a1, . . . , an).

Quasi-Pfister p-forms have a central role to play in the general theory of quasi-
linear p-forms. As shown by Hoffmann [2004], these forms are distinguished
here by the very same properties which distinguish the classical Pfister forms
among nonsingular quadratic forms. For this reason, it will be useful to define
the divisibility index of a given form φ, denoted d0(φ), as the largest nonnegative
integer s such that φan is divisible by an s-fold quasi-Pfister p-form. Clearly we
have d0(φ)≤ logp(dimφan), with equality holding if and only if φan is similar to a
quasi-Pfister p-form. An alternative description of this invariant will be given in
Corollary 2.19 below.

2D. The norm form. Let φ be a quasilinear p-form over F . The norm field of φ,
denoted N (φ), is defined (see [Hoffmann 2004, Definition 4.1]) as the smallest
subfield of F which contains all ratios of nonzero elements of D(φ). Note, in
particular, that we have N (aφ) = N (φ) = N (φan) for all a ∈ F∗. In spite of its
simple nature, this invariant has an important role to play in the whole theory. A
more explicit description of the norm field may be given as follows:

Remark 2.10. If a1, . . . , an ∈ F are such that φ ' 〈a1, . . . , an〉 and a1 6= 0, then
we have N (φ)= F p

(a2
a1
, . . . , an

a1

)
.

In particular, we see that N (φ) is a nonzero finite-dimensional F p-linear sub-
space of F . By Lemma 2.2, it follows that, up to isomorphism, there exists a
unique anisotropic quasilinear p-form φnor over F such that D(φnor)= N (φ). The
form φnor is called the norm form of φ (see [Hoffmann 2004, Definition 4.9]). By
Proposition 2.7, φnor is a quasi-Pfister p-form. Its dimension (which is necessarily
equal to a power of p) is called the norm degree of φ, and is denoted by ndeg(φ)
(see [Hoffmann 2004, Definition 4.1]). The following lemma characterizes the
norm form as the smallest anisotropic quasi-Pfister p-form which contains φan as
a subform up to multiplication by a scalar (again, this is a simple consequence of
Proposition 2.3):

Lemma 2.11 (see [Scully 2016, Lemma 2.10]). Let φ be a quasilinear p-form
(resp. a quasilinear p-form such that 1 ∈ D(φ)) and π an anisotropic quasi-Pfister
p-form over F. Then φan is similar to a subform of π (resp. φan ⊂ π ) if and only if
φnor ⊂ π . In particular, φan is similar to a subform of φnor (resp. φan ⊂ φnor).

Example 2.12. Let φ be a quasilinear p-form over F . The following are equivalent:

(1) φan is similar (resp. isomorphic) to a quasi-Pfister p-form.
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(2) φnor ' aφan for some a ∈ F∗ (resp. φnor ' φan).

(3) N (φ)= aD(φ) for some a ∈ F∗ (resp. N (φ)= D(φ)).

2E. Similarity factors. Let φ be a quasilinear p-form over F . By a similarity
factor of φ, we mean an element a ∈ F∗ such that aφ ' φ. The set of all similarity
factors of φ will be denoted by G(φ)∗, and we will write G(φ) for the set G(φ)∗∪{0}.
Note that G(aφ) = G(φ) = G(φan) for all a ∈ F∗, the second equality being an
obvious consequence of Proposition 2.4. Thus, in view of Proposition 2.3, we have:

Lemma 2.13 (see [Hoffmann 2004, Lemma 6.3]). Let φ be a quasilinear p-form
over F and let a ∈ F∗. Then a ∈ G(φ)∗ if and only if aD(φ)⊆ D(φ).

Example 2.14. Let φ be a quasi-Pfister p-form over F . Then, since D(φ) is a
subfield of F , we have G(φ)= D(φ).

More generally, Lemma 2.13 immediately implies the following:

Corollary 2.15 (see [Hoffmann 2004, Proposition 6.4]). Let φ be a quasilinear
p-form over F. Then G(φ) is a subfield of N (φ) containing F p.

In particular, G(φ) is a nonzero finite-dimensional F p-linear subspace of F . By
Lemma 2.2, it follows that, up to isomorphism, there exists a unique anisotropic
quasilinear p-form φsim over F such that D(φsim)= G(φ). The form φsim is called
the similarity form of φ (see [Hoffmann 2004, Definition 6.5]). By Proposition 2.7,
φsim is a quasi-Pfister p-form. Taken together, Examples 2.12 and 2.14 yield:

Example 2.16. Let φ be a quasilinear p-form over F . The following are equivalent:

(1) φan is similar (resp. isomorphic) to a quasi-Pfister p-form.

(2) φsim ' φnor ' aφan for some a ∈ F∗ (resp. φsim ' φnor ' φan).

(3) G(φ)= N (φ)= aD(φ) for some a ∈ F∗ (resp. G(φ)= N (φ)= D(φ)).

The basic observation concerning similarity factors is the following:

Proposition 2.17. Let φ and ψ be quasilinear p-forms over F. Then G(ψ)⊆G(φ)
if and only if φan is divisible by ψsim.

Proof. We may assume that 1 ∈ D(φ). Suppose G(ψ)⊆ G(φ). By Corollary 2.15,
G(ψ) and G(φ) are subfields of F . By Lemma 2.13, D(φ) is naturally a (finite-
dimensional) vector space over G(φ), and hence over G(ψ). If a1, . . . , am is a
basis of D(φ) over G(ψ), then (since D(ψsim)= G(ψ)), Lemma 2.2 implies that
φan ' ψsim⊗〈a1, . . . , am〉. Conversely, if φan is divisible by ψsim, then it is clear
that G(ψ)⊆ G(φ), since G(ψ)= D(ψsim)= G(ψsim) by Example 2.16. �

We thus obtain the following characterization of the similarity form:
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Corollary 2.18 (see [Hoffmann 2004, Proposition 6.4]). Let φ be a quasilinear
p-form and π an anisotropic quasi-Pfister p-form over F. Then φan is divisible
by π if and only if φsim is divisible by π . In particular, φan is divisible by φsim.

This enables us to reinterpret the divisibility index d0(φ) (see Section 2C) as
follows:

Corollary 2.19. Let φ be a quasilinear p-form over F. Then we have d0(φ) =

logp(dimφsim)= logp([G(φ) : F
p
]).

We also get the following:

Corollary 2.20. Let φ and ψ be quasilinear p-forms over F. Then φan is divisible
by ψnor if and only if N (ψ) ⊆ G(φ). If , additionally, 1 ∈ D(ψ), then the latter
condition may be replaced by D(ψ)⊆ G(φ).

Proof. For the second statement, we simply recall that N (φ) is the smallest subfield
of F containing all ratios of nonzero elements of D(φ) and that G(φ) is a subfield
of F (Corollary 2.15). For the first, we can replace ψ by its norm form to arrive at
the case where N (ψ)= G(ψ) and ψnor ' ψsim (see Example 2.16). The result is
therefore a particular case of Proposition 2.17. �

2F. A criterion for a quasilinear p-form to be quasi-Pfister. Let φ be a quasi-
linear p-form over F such that 1 ∈ D(φ), let L be a field extension of F and let
α ∈ D(φL) \ {0}. Consider the set Sα = {a ∈ F | αa ∈ D(φL)}. Since D(φL) is an
L p-linear subspace of L , we have the following observation:∑

λ
p
i ai ∈ Sα for all λi ∈ F and all ai ∈ Sα. (2-1)

Lemma 2.21. In the above situation, let P ∈ F p
[T ] be a polynomial of degree < p

in a single variable T such that P(b) ∈ Sα for all b ∈ D(φ). Then bn
∈ Sα for all

b ∈ D(φ) and all n ≤ deg(P).

Proof. We proceed by induction on d = deg(P). Since α ∈ D(φL), the case
where d = 0 is trivial. Suppose now that d > 0, and let λ ∈ F be such that
P(T +λp)= P(T )+Q(T ) for some Q ∈ F p

[T ] of degree d−1. Since F p
⊆ D(φ)

by hypothesis, our assumption and (2-1) imply that Q(b)= P(b+λp)− P(b) ∈ Sα
for all b∈D(φ). By the induction hypothesis, it follows that bn

∈ Sα for all b∈D(φ)
and all n < d . Finally, since P(b)=

∑d
i=0 λ

p
i bi for some λi ∈ F with λd 6= 0, (2-1)

implies that, for any b ∈ D(φ), we also have bd
∈ Sα. This proves the lemma. �

Suppose now that there exists a polynomial P ∈ F p
[T ] as in the statement of

Lemma 2.21 with deg(P) ≥ 2 (in particular, we necessarily have p > 2). A first
application of the lemma shows that we have D(φ)⊆ Sα . Since D(φL) is spanned
by D(φ) as an L p-vector space, this implies that αD(φL)⊆ D(φL), and hence (for
dimension reasons) that αD(φL) = D(φL). Another application of Lemma 2.21
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then shows that bn
∈ D(φL) for all b∈ D(φ) and all n≤ deg(P). In particular, since

deg(P)≥ 2, we have 2bc = (b+ c)2− b2
− c2
∈ D(φL) for all b, c ∈ D(φ). Since

p> 2, and since D(φL) is spanned by D(φ) as an L p-vector space, this implies that
D(φL) is closed under multiplication, i.e., that D(φL)= N (φL) (see Remark 2.10).
By Example 2.12, this means that (φL)an ' (φL)nor. We have thus proved:

Lemma 2.22. Assume that p > 2. Let φ be a quasilinear p-form over F such
that 1 ∈ D(φ) and let L be a field extension of F. Suppose that there exists a
polynomial P ∈ F p

[T ] in a single variable T , and an element α ∈ D(φL) \ {0}
such that 2≤ deg(P) < p and αP(b) ∈ D(φL) for all b ∈ D(φ). Then (φL)an is a
quasi-Pfister p-form.

2G. The Cassels–Pfister representation theorem. Let φ be a quadratic form over
a field k and let f ∈ k[T ] be a polynomial in a single variable T which is represented
by the form φk(T ). One of the foundational results of the classical algebraic theory
of quadratic forms is the Cassels–Pfister representation theorem, which asserts that,
in this case, φ already represents f over the polynomial ring k[T ] (see [Elman
et al. 2008, Theorem 17.3]). In the present setting, the original argument of Cassels
may be readily adapted to prove the analogous statement for quasilinear p-forms.
However, as pointed out by Hoffmann [2004], the additivity property of these forms
enables one to prove a stronger multivariable statement taking the following form:

Theorem 2.23 (see [Hoffmann 2004, Corollary 3.4]). Let φ be a quasilinear p-form
over F , let T = (T1, . . . , Tm) be a tuple of algebraically independent variables
over F and let f ∈ F[T ]. Then f ∈ D(φF(T )) if and only if f ∈ D(φF[T ]), if and
only if f ∈ D(φ)[T p

1 , . . . , T p
m ].

Now, in the situation of Theorem 2.23, the F(T )p-vector space D(φF(T )) is
(evidently) spanned by elements of D(φ). Thus, in view of Lemma 2.13, we
immediately obtain the following result concerning rational similarity factors:

Corollary 2.24 (see [Hoffmann 2004, Proposition 6.7]). Let φ be a quasilinear p-
form over F , let T = (T1, . . . , Tm) be a tuple of algebraically independent variables
over F and let f ∈ F[T ]. Then f ∈G(φF(T )) if and only if f ∈G(φ)[T p

1 , . . . , T p
m ].

2H. Isotropy of quasilinear p-forms under scalar extension. We now collect some
basic facts regarding the isotropy of quasilinear p-forms under scalar extension.

Let K and L be extensions of a field k. Recall that a k-place K 99K L is a
pair (R, f ) consisting of a valuation subring k ⊆ R ⊆ K and a local k-algebra
homomorphism f : R→ L . For example, given an inclusion i : K ↪→ L , the pair
(K , i) defines a k-place K 99K L . If there exist k-places K 99K L and L 99K K ,
then we say that K and L are equivalent over k, and write K ∼k L . For instance,
this is easily seen to be the case whenever L (resp. K ) is a purely transcendental
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extension of K (resp. L) (see [Elman et al. 2008, §103] for further details). We
have here the following basic lemma, which is a consequence of the completeness
of Xφ (see [EGA II 1961, (7.3.8)]):

Lemma 2.25 (see [Scully 2016, Lemma 3.4]). Let φ be a quasilinear p-form
over F and let K and L be field extensions of F such that there exists an F-place
K 99K L. Then i0(φL)≥ i0(φK ). In particular, if K ∼F L , then i0(φK )= i0(φL).

Note, in particular, that passage to rational extensions of the base field does
not affect the isotropy index of a quasilinear p-form. By MacLane’s theorem
[Lang 2002, Proposition VIII.4], the same is, in fact, true of arbitrary separable
extensions:10

Lemma 2.26 (see [Hoffmann 2004, Proposition 5.3]). Let φ be an anisotropic
quasilinear p-form over F and let L be a field extension of F. If L is separable
over F , then φL is anisotropic and ndeg(φL)= ndeg(φ).

Thus, in order to study the isotropy behavior of quasilinear p-forms under scalar
extension, we are effectively reduced to considering the case of purely insepara-
ble algebraic extensions. In degree p, we have the following basic observations,
all of which can be easily verified using the results which have been discussed
thus far (recall here that, given a1, . . . , an ∈ F , we denote by Fa1,...,an the field
F( p
√

a1, . . . , p
√

an )):

Lemma 2.27 (see [Hoffmann 2004, §5; Scully 2016, Lemma 3.8]). Let φ be a
quasilinear p-form over F and let a ∈ F \ F p. Then:

(1) D(φFa )= D(〈〈a〉〉⊗φ)=
∑p−1

i=0 ai D(φ).

(2) i0(φFa )=
1
p i0(〈〈a〉〉⊗φ).

(3) ndeg(φFa )=

{ 1
p ndeg(φ) if a ∈ N (φ),
ndeg(φ) if a /∈ N (φ).

(4) If φ is anisotropic and a /∈ N (φ), then φFa is anisotropic.

(5) dim (φFa )an ≥
1
p dimφan.

(6) Equality holds in (5) if and only if φan is divisible by 〈〈a〉〉, if and only if
a ∈ G(φ).

Remark 2.28. The second equivalence in (6) holds by Corollary 2.20.

As an application of the first part of the lemma, we have:

Corollary 2.29. Let φ be a quasilinear p-form over F and let a ∈ F \ F p. Then
G(φFa )= G(〈〈a〉〉⊗φ). In particular, d0(〈〈a〉〉⊗φ)= d0(φFa )+ 1.

10Recall that an extension of fields k ⊆ L is called separable if, for any algebraic closure k̄ of k,
the ring L ⊗k k̄ has no nontrivial nilpotent elements.
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Proof. More specifically, the first statement is an immediate consequence of Lemmas
2.27(1) and 2.13. The second then follows from Corollary 2.19. �

Suppose now that π = 〈〈a1, . . . , an〉〉 is an anisotropic quasi-Pfister p-form
over F . By Remark 2.9, we have [F p(a1, . . . , an) : F p

] = pn , which means that
ai /∈ Fa1,...,ai−1 for every 1 ≤ i ≤ n. Repeated applications of Lemma 2.27(2) and
Corollary 2.29 therefore yield the following proposition:

Proposition 2.30. Let φ be a quasilinear p-form over F , let π be as above and let
ψ = π ⊗φ. Then i0(ψ)= pni0(φFa1,...,an

) and d0(ψ)= d0(φFa1,...,an
)+ n.

Now, in view of Remarks 2.6(1), one may combine the above results in or-
der to study the isotropy behavior of quasilinear p-forms under scalar extension
to function fields of quasilinear p-hypersurfaces. More specifically, let ψ be a
quasilinear p-form over F which is not split, and let a0, . . . , an ∈ F be such
that ψ ' 〈a0, . . . , an〉, with a0, a1 6= 0. Then, by Remarks 2.6(1), we have an
F-isomorphism of fields

F(ψ)' F(T )
(

p
√

a−1
1

(
a0+ a2T p

2 + · · ·+ anT p
n
) )
,

where T = (T2, . . . , Tn) is an (n− 1)-tuple of algebraically independent variables
over F . Thus, putting Lemmas 2.26 and 2.27 and together, we obtain:

Lemma 2.31 (see [Hoffmann 2004, §§7.3, 7.4]). Let φ be an anisotropic quasi-
linear p-form over F , and let ψ be as above. Then:

(1) dim (φF(ψ))an ≥
1
p dimφ.

(2) Equality holds in (1) if and only if a−1
1

(
a0+ a2T p

2 + · · ·+ anT p
n
)
∈ G(φF(T )).

(3) ndeg(φF(ψ))≥
1
p ndeg(φ).

(4) Equality holds in (3) if and only if a−1
1

(
a0+ a2T p

2 + · · ·+ anT p
n
)
∈ N (φF(T )).

(5) The equivalent conditions of (4) are satisfied if φF(ψ) is isotropic.

As a basic application, we have:

Corollary 2.32 (see [Hoffmann 2004, §§7.3, 7.4]). Let φ and ψ be quasilinear
p-forms over F such that φ is anisotropic and ψ is not split. Then:

(1) dim (φF(ψ))an ≥
1
p dimφ, with equality holding if and only if N (ψ)⊆ G(φ).

(2) If φF(ψ) is isotropic, then N (ψ)⊆ N (φ). In particular, ndeg(ψ)≤ ndeg(φ).

Proof. We may assume that ψ is as in Lemma 2.31. In this case, we have N (ψ)=
F p
(a0

a1
, . . . , an

a1

)
(see Remark 2.9), and so (1) follows from the first two parts of the

former lemma and Corollary 2.24. Similarly, since N (φL) = D((φnor)L) for any
field extension L of F , (2) follows from Lemma 2.31(4,5) and Theorem 2.23. �
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Finally, it will be useful to record in this section another basic application of the
Cassels–Pfister theorem. To state it, let T = (T1, . . . , Tm) be a tuple of algebraically
independent variables over F , let g∈ F[T ] be an irreducible polynomial and let F[g]
denote the field Frac(F[T ]/(g)) (i.e., the function field of the integral hypersurface
{g = 0} ⊂ Am

F ). Given f ∈ F[T ], we write multg( f ) for the multiplicity of g in f ,
i.e., the largest nonnegative integer s such that f = gsh for some h ∈ F[T ].11

Proposition 2.33. In the above situation, let φ be a quasilinear p-form over F
and let f ∈ F[T ]. Suppose that f ∈ D(φF(T )) and that φF[g] is anisotropic. Then
multg( f )≡ 0 (mod p).

Proof. Let s = multg( f ). After replacing f by f/gkp
∈ D(φF(T )) for a suitable

integer k ≥ 0, we may assume that s < p. Our goal is then to prove that s = 0. To
see this, note first that there exists a v ∈ Vφ ⊗F F[T ] such that φF(T )(v) = f by
Theorem 2.23. If s 6= 0, then the image v̄ of v in Vφ ⊗F F[g] is an isotropic vector
for φF[g]. By hypothesis, it follows that v̄ = 0, which means that v = gw for some
w ∈ Vφ⊗F F[T ]. But this implies that f = g pφF(T )(w), which contradicts the fact
that s < p. We conclude that s = 0, and so the proposition is proved. �

2I. The divisibility index and scalar extension. Let φ be a quasilinear p-form
over F . We make some brief remarks concerning the behavior of the divisibility
index d0(φ) (see Section 2C) under scalar extension.

Lemma 2.34. Let φ be a quasilinear p-form over F and let L be a field extension
of F. If (φsim)L is anisotropic, then d0(φL)≥ d0(φ).

Proof. As an L p-vector space, D((φsim)L) is spanned by D(φsim)= G(φ). Since
we evidently have G(φ)⊆ G(φL)= D((φL)sim), and since (φsim)L is anisotropic
by hypothesis, Proposition 2.3 implies that (φsim)L ⊂ (φL)sim. The desired assertion
now follows from Corollary 2.19. �

In particular, this applies in the case where L is a separable extension of F (see
Lemma 2.26). In the case where L is purely transcendental over F , we can say more:

Lemma 2.35. Let φ be a quasilinear p-form over F and let L be a purely transcen-
dental extension of F. Then (φL)sim ' (φsim)L and d0(φL)= d0(φ).

Proof. Continuing with the proof of Lemma 2.34, it is sufficient to show that in this
case G(φL) is generated by G(φ) over L p. If L is finitely generated over F , then
this follows from Corollary 2.24. On the other hand, the general case reduces easily
to the finitely generated case in view of Lemma 2.13, so the lemma is proved. �

11With the added convention that multg(0)=+∞.
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2J. The Knebusch splitting pattern. Let φ be a quasilinear p-form over F . Fol-
lowing the construction outlined in Section 1 (see also [Hoffmann 2004, §7.5]), set
F0 = F , φ0 = φan, and recursively define

• Fr = Fr−1(φr−1) (provided φr−1 is not split), and

• φr = (φFr )an (provided Fr is defined).

Note here that if φr is defined, then we have dimφr < dimφr−1 by Remarks 2.6(4).
As such, the whole process is finite, terminating at the first nonnegative integer h(φ)
for which dimφh(φ) ≤ 1. The integer h(φ) will be called the height of φ, and the
tower of fields F0⊂ F1⊂· · ·⊂ Fh(φ) will be called the Knebusch splitting tower of φ.
For each 0≤ r ≤ h(φ), we set jr (φ)= i0(φFr ). If φ is not split and r ≥ 1, then the dif-
ference jr (φ)−jr−1(φ) will be called the r-th higher isotropy index of φ, and will be
denoted by ir (φ). In this case, the form φr will be called the r-th higher anisotropic
kernel of φ. Finally, the sequence i(φ) = (i1(φ), . . . , ih(φ)(φ)) (understood to be
empty if φ is split) will be called the Knebusch splitting pattern of φ.12

Remarks 2.36. Let φ be a quasilinear p-form over F .

(1) By the recursive nature of the above construction, we have ir (φ)= i1(φr−1)

for every 1≤ r ≤ h(φ).

(2) By Proposition 2.4, we have ir (φ)= dimφr−1− dimφr for all 1≤ r ≤ h(φ).

(3) Let L be a field extension of F . As already remarked in Section 1, it is not true
in general that i0(φL)= jr (φ) for some 0≤ r ≤ h(φ); see Example 2.47 below.

Note that by Remarks 2.6(3) we have the following:

Lemma 2.37. Let φ be a quasilinear p-form form of dimension ≥ 2 and let (Fr )

denote its Knebusch splitting tower. Then Fr ∼F F(φ×r ) for every 0≤ r ≤ h(φ).

In light of Lemma 2.37, we therefore have:

Corollary 2.38. Let φ be a quasilinear p-form over F. Then, for every 0≤r≤h(φ),
we have jr (φ)= i0

(
φF(φ×r )

)
.

Given the results of Section 2H, we are now in a position to prove the following
characterization of anisotropic quasi-Pfister p-forms:

Proposition 2.39 (see [Hoffmann and Laghribi 2004, Theorem 8.11]). Let φ be an
anisotropic quasilinear p-form of dimension ≥ 2 over F. Then dimφ1 ≥

1
p dimφ,

and the following conditions are equivalent:

(1) dimφ1 =
1
p dimφ.

(2) i(φ)=
(

ph(φ)
− ph(φ)−1, ph(φ)−1

− ph(φ)−2, . . . , p2
− p, p− 1

)
.

12See Footnote 3. We omit the term i0(φ) from the sequence because we are ultimately interested
in the case where φ is anisotropic (i.e., where i0(φ)= 0).
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(3) φ is similar to a quasi-Pfister p-form.

Proof. The inequality dimφ1 ≥
1
p dimφ holds by Corollary 2.32. The same result

shows that equality holds if and only if N (φ)⊆ G(φ). By Corollary 2.20, the latter
condition holds if and only if φ is divisible by φnor. In view of Lemma 2.11, this
proves the equivalence of (1) and (3), as well as the implication (2)⇒ (3). On
the other hand, if φ is similar to a quasi-Pfister p-form of dimension pn , then φ1

is similar to a quasi-Pfister p-form of dimension pn−1 by Corollary 2.8 and (1).
Since i1(φ) = dimφ− dimφ1 (see Remarks 2.36(2)), an easy induction on h(φ)
then shows that (3) implies (2). �

Finally, a repeated application of Lemma 2.31(3–5) (with ψ = φ) yields the
following computation of the height h(φ):

Corollary 2.40 (see [Hoffmann 2004, Theorem 7.25(ii)]). Let φ be a quasilinear
p-form over F. Then h(φ)= logp(ndeg(φ)).

Together with Corollary 2.32(2), this implies the following useful result:

Corollary 2.41 (see [Scully 2016, Proposition 4.12]). Let φ and ψ be quasilinear
p-forms over F such that φ is anisotropic and ψ is not split. If φF(ψ) is isotropic,
then h(ψ)≤ h(φ).

2K. The quasi-Pfister height and higher divisibility indices. Let φ be a quasi-
linear p-form over F . As in [Scully 2016, §4.2], we define the quasi-Pfister height
of φ, denoted hqp(φ), to be the smallest nonnegative integer l such that φl is similar
to a quasi-Pfister p-form (this is well defined, since φh(φ), being of dimension 1, is
similar to a 0-fold quasi-Pfister p-form). We have:

Lemma 2.42. Let φ be a quasilinear p-form over F and let d = h(φ)− hqp(φ).
Then i(φ) =

(
i1(φ), . . . , ihqp(φ)(φ), pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p − 1
)

and ihqp(φ)(φ)= dim(φ)− jhqp(φ)−1(φ)− pd < pd+1
− pd .

Proof. The first statement is an immediate consequence of Proposition 2.39. The
point here is that φhqp(φ) is similar to a quasi-Pfister p-form of dimension pd .
By Remarks 2.36(2), we therefore have ihqp(φ)(φ)= dimφhqp(φ)−1− dimφhqp(φ) =

dim(φ)− jhqp(φ)−1(φ)− pd . Finally, since φhqp(φ)−1 is (by the definition of hqp(φ))
not similar to a quasi-Pfister p-form, it must have dimension < pd+1, again by
Proposition 2.39. This proves the inequality in the second statement, and hence
the lemma. �

The Knebusch splitting pattern of a quasilinear p-form φ is therefore determined
by h(φ), hqp(φ) and the truncated sequence

(
i1(φ), . . . , ihqp(φ)(φ)

)
. With a view to

studying the latter invariant, we now introduce new invariants of φ which will be
of central interest in the sequel. More specifically, for each 1≤ r ≤ h(φ), we define
the r-th higher divisibility index of φ, denoted dr (φ), as the integer d0(φr ) (see
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Section 2C). In other words, dr (φ) is the largest integer s such that φr is divisible
by an s-fold quasi-Pfister p-form (over the corresponding field of the Knebusch
splitting tower of φ). The sequence of integers (d0(φ), . . . , dh(φ)(φ))will be denoted
by d(φ). As per Lemma 2.42 (and the proof of Proposition 2.39), we have:

Lemma 2.43. Let φ be a quasilinear p-form over F and let d = h(φ)− hqp(φ).
Then d(φ)=

(
d0(φ), . . . , dhqp(φ)−1(φ), d, d − 1, . . . , 1, 0

)
.

We also, however, have the following information concerning the “nontrivial
part” of the sequence d(φ):

Lemma 2.44. Let φ be a quasilinear p-form over F. Then d0(φ)≤ · · · ≤ dhqp(φ).

Proof. We may assume that φ is anisotropic and not split. We need to show that if φ
is not similar to a quasi-Pfister p-form, then d1(φ)≥ d0(φ). By Lemma 2.34 it will
be sufficient to check that φsim remains anisotropic over F(φ). Suppose otherwise.
Then, by Corollary 2.32(1), we have N (φ)⊆ G(φ). By Corollary 2.15 it follows
that N (φ)= G(φ), or, equivalently, that φnor ' φsim (see Lemma 2.2). But, in view
of Lemma 2.11 and Corollary 2.18, this implies that φ is similar to a quasi-Pfister
p-form, thus contradicting our assumption. The lemma follows. �

In particular, since ir (φ)= dimφr −dimφr−1 for all 1≤ r ≤ h(φ) (see Remarks
2.36(2)), we obtain the following result concerning the integers ir (φ):

Corollary 2.45. Let φ be a quasilinear p-form over F. Then we have ir (φ) ≡ 0
(mod dr−1(φ)) for all 1≤ r ≤ hqp(φ).

2L. Some examples. We now conclude this section with two basic computations
which will be needed in the sequel, beginning with:

Lemma 2.46. Let φ be an anisotropic quasilinear p-form over F and let ψ =
φF(T ) ⊥ 〈T 〉, where T is an algebraically independent variable over F. Then
i(ψ)= (1, i1(φ), i2(φ), . . . , ih(φ)(φ)) and d(ψ)= (0, d0(φ), d1(φ), . . . , dh(φ)(φ)).

Proof. The form ψ is clearly anisotropic. Now, the field F(T )(ψ) is F-isomorphic
to a purely transcendental extension of F (see the presentation of Remarks 2.6(1),
for example). In particular, φF(T )(ψ) is anisotropic (Lemma 2.26), and so i1(ψ)= 1
and ψ1 ' φF(T )(ψ) (see Remark 2.5). Since F(T )(ψ) is purely transcendental
over F , the first statement now follows immediately from Lemma 2.26. In a similar
way, Lemma 2.35 implies that dr (ψ) = dr−1(φ) for all 1 ≤ r ≤ h(ψ). Thus, to
prove the second statement, it only remains to check that d0(ψ) = 0. But, since
i1(ψ)= 1, this is an immediate consequence of Corollary 2.45. �

Given this result, we can give an example of a quasilinear p-form whose (full)
splitting pattern is not determined by its Knebusch splitting pattern:
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Example 2.47 (see [Hoffmann and Laghribi 2004, Example 8.15]). Let T =
(T1, . . . , Tn+1) be a tuple of algebraically independent variables over a field F0 of
characteristic p, and let F = F0(T ). Consider the form φ = 〈〈T1, . . . , Tn〉〉 ⊥ 〈Tn+1〉

over F . By Lemma 2.46 and Proposition 2.39, we have

i(φ)=
(
1, pn

− pn−1, pn−1
− pn−2, . . . , p2

− p, p− 1
)
,

so that jr (φ)= pn
− pn−r+1

+ 1 for all 1≤ r ≤ n+ 1. On the other hand, the full
splitting pattern of φ also contains all the integers pn

− pn−r+1 (1 ≤ r ≤ n + 1).
Indeed, if (Ls) denotes the Knebusch splitting tower of 〈〈a1, . . . , an〉〉L , then we
clearly have i0(φLr−1) = pn

− pn−r+1 for all 1 ≤ r ≤ n + 1 (again, we are using
Lemma 2.26 and Proposition 2.39 here).

Our second computation is the following:

Lemma 2.48. Let φ be a quasilinear p-form over F. Letψ=〈〈T1, . . . , Tn〉〉⊗φF(T ),
where T = (T1, . . . , Tn) is a tuple of algebraically independent variables over F.
Then i(ψ)=

(
pni1(φ), . . . , pnih(φ)(φ), pn

− pn−1, pn−1
− pn−2, . . . , p2

− p, p−1
)

and d(ψ)=
(
d0(φ)+ n, d1(φ)+ n, . . . , dh(φ)−1(φ)+ n, n, n− 1, . . . , 1, 0

)
.

Proof. It is enough to treat the case where n = 1. To simplify the notation, let
us write T for the variable T1 and L for the rational function field F(T ). Now,
by construction, we have ndeg(ψ) = p(ndeg(φ)) (see Remark 2.10). In view of
Corollary 2.40, it follows that h(ψ)= h(φ)+1. Let (Lr ) and (Fr ) denote the Kneb-
usch splitting towers of ψ and φ respectively. We claim that, for every 0≤ r ≤ h(φ),
(Lr )T is F-isomorphic to a purely transcendental extension of Fr . The case where
r = 0 is evident. In general, we have (Lr )T = (LT )r , where ((LT )r ) denotes the
Knebusch splitting tower of ψLT . But, since 〈〈T 〉〉LT ∼ 〈1〉, and since LT is purely
transcendental over F (the r = 0 case), we have (ψLT )an ' φLT . By Remark 2.5,
it follows that (Lr )T is L-isomorphic to a purely transcendental extension of the
free composite Fr · LT . Again, since LT is purely transcendental over F , the claim
follows. Given this, Proposition 2.30 and Lemma 2.26 together imply that

jr (ψ)= i0(ψLr )= pi0(φ(Lr )T )= pi0(φFr )= pjr (φ)

for all 0≤ r ≤ h(φ), which proves the first statement of the lemma. Similarly, our
claim, Proposition 2.30 and Lemma 2.35 together imply that

dr (ψ)= d0(ψLr )= d0(φ(Lr )T )+ 1= d0(φFr )+ 1= dr (φ)+ 1

for all 0≤ r ≤ h(φ), and so the second statement also holds. �

3. An incompressibility theorem and related results

In this section, we collect some of the farther-reaching results on the isotropy
behavior of quasilinear p-forms over function fields of quasilinear p-hypersurfaces
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which have been obtained in recent years. These results will have an essential role
to play in the sequel. We do not provide full details here, but the interested reader is
referred to the original articles [Hoffmann and Laghribi 2004; Totaro 2008; Scully
2016] for further information.

3A. The incompressibility theorem. Let φ be an anisotropic quasilinear p-form
of dimension ≥ 2 over F with associated quasilinear p-hypersurface Xφ . As in
[Scully 2013, §5], we define the Izhboldin dimension of Xφ , denoted dimIzh(Xφ),
to be the integer dim Xφ − i1(φ)+ 1. The following result was proved in [loc. cit.]:

Theorem 3.1 [Scully 2013, Theorem 5.12]. Let X be an anisotropic quasilinear
p-hypersurface over F. Let Y be an algebraic variety over F such that Y (Fsep)=∅.
If dim Y < dimIzh(X), then there cannot exist a rational map X 99K Y .

Remarks 3.2. (1) In the case where p = 2, Theorem 3.1 is due to Totaro [2008,
Theorem 5.1]. In fact, if Xφ = {φ = 0} is an anisotropic projective quadric over a
field k of any characteristic, and if Y is any complete k-variety possessing no closed
points of odd degree, then it is known that the existence of a rational map X 99K Y
necessarily implies that dim Y ≥dimIzh(Xφ), where dimIzh(Xφ)=dim Xφ−i1(φ)+1.
This result was first proved by Karpenko and Merkurjev [2003, Theorem 4.1] (see
also [Elman et al. 2008, Theorem 76.5]) in the case where Xφ is smooth, and was
later extended by Totaro [loc. cit.] to the singular case.

(2) The special case where Y is a closed subvariety of X shows that the canonical
dimension of X (see Section 1) is equal to dimIzh(X) (the inequality cdim(X) ≤
dimIzh(X) is trivial; see [Scully 2013, Corollary 5.14]).

In the remainder of this section, we will recall some of the main applications of
Theorem 3.1 (and its proof). Here, we mention the following:

Corollary 3.3 (see [Scully 2016, Corollary 5.4]). Let φ and ψ be anisotropic quasi-
linear p-forms of dimension ≥ 2 over F , and let σ ⊂ φ be a subform of dimension
≤ dimψ − i1(ψ). Then σF(ψ) ⊂ (φF(ψ))an. In particular, σF(ψ) is anisotropic.

Proof. We trivially have D(σF(ψ)) ⊆ D(φF(ψ)). In light of Proposition 2.3, it
therefore suffices to check that σF(ψ) is anisotropic, or, equivalently, that there does
not exist a rational map Xψ 99K Xσ . But, since Xσ (Fsep)=∅ (see Lemma 2.26),
this is an immediate consequence of Theorem 3.1. �

In particular, we have the following fundamental observation:

Corollary 3.4. Let φ be an anisotropic quasilinear p-form of dimension≥ 2 over F
and let ψ ⊂ φ be a subform of codimension i1(φ). Then φ1 ' ψF(φ).

Proof. By Corollary 3.3, we have ψF(φ) ⊂ φ1. Since both forms have the same
dimension by hypothesis, the result follows. �
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3B. Neighbors and near neighbors, I. Let ψ and φ be anisotropic quasilinear
p-forms of dimension ≥ 2 over F . We will say that ψ is a neighbor (resp. near
neighbor) of φ if ψ is similar to a subform of codimension < i1(φ) (resp. codimen-
sion i1(φ)) of φ. Our motivation here is the following extension of Corollary 3.4:

Lemma 3.5. Let φ and ψ be anisotropic quasilinear p-forms over F such that φ is
anisotropic of dimension ≥ 2 and ψ is similar to a subform of φ. Then (ψF(φ))an is
similar to φ1 if and only if ψ is a neighbor or near neighbor of φ.

Proof. Without loss of generality, we may assume that ψ ⊂ φ. Again, we trivially
have D(ψF(φ)) ⊆ D(φF(φ)) = D(φ1). By Proposition 2.3, it therefore suffices to
check that dim (ψF(φ))an = dimφ− i1(φ) if and only if ψ has codimension ≤ i1(φ)

in φ. The left-to-right implication here is trivial. Conversely, if ψ has codimension
≤ i1(φ) in φ, then we have dim (ψF(φ))an≥dimφ−i1(φ) by Theorem 3.1. Since the
reverse inequality holds here by obvious dimension reasons, the lemma is proved. �

Note here that while neighbors of φ become anisotropic over F(φ), its near
neighbors do not (Corollary 3.3). This enables us to compute:

Proposition 3.6 (see [Scully 2013, Proposition 6.1]). Let φ and ψ be anisotropic
quasilinear p-forms of dimension ≥ 2 over F such that ψ is a codimension-d
neighbor of φ. Then i1(ψ)= i1(φ)− d.

3C. The ruledness theorem. Another key application of Theorem 3.1 is the fol-
lowing extension of Proposition 3.6, which shows in a precise way that anisotropic
quasilinear p-hypersurfaces having first higher isotropy index larger than 1 are ruled.

Theorem 3.7 (see [Scully 2013, Theorem 7.6]). Let φ and ψ be anisotropic quasi-
linear p-forms of dimension ≥ 2 over F such that ψ is a codimension-d neighbor
of φ. Then Xφ is birationally isomorphic to Xψ ×F Pd .

Proof. By Proposition 3.6, we have i1(ψ)= i1(φ)−d . It is therefore enough to treat
the case where d = i1(ψ)−1, and this is covered by [Scully 2013, Theorem 7.6]. �

Remark 3.8. Again, in the case where p = 2, this result is due to Totaro [2008,
Theorem 6.4]. Unlike Theorem 3.1, however, the analogous assertion remains open
for generically smooth quadrics (in any characteristic; see [Totaro 2008; 2009]).

It is worth mentioning the following explicitly:

Corollary 3.9. Let φ and ψ be anisotropic quasilinear p-forms of dimension ≥ 2
over F such that i1(φ) > 1 and ψ is similar to a codimension-1 subform of φ. Then
we have an F-isomorphism of fields F(φ)' F[ψ].

Proof. By Theorem 3.7, F(φ) is F-isomorphic to a degree-one purely transcendental
extension of F(ψ). In view of Remarks 2.6(3), the result follows. �
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3D. Neighbors and near neighbors, II. Given Theorem 3.7, we extend Proposition
3.6 as follows:

Proposition 3.10 (see [Scully 2016, Proposition 6.2]). Let φ and ψ be anisotropic
quasilinear p-forms of dimension ≥ 2 over F such that ψ is a codimension-d
neighbor of φ. Then we have i(ψ) = (i1(φ)− d, i2(φ), . . . , ih(φ)(φ)) and d(ψ) =

(d0(ψ), d1(φ), . . . , dh(φ)(φ)).

Proof. By Theorem 3.7, F(φ) is F-isomorphic to a purely transcendental exten-
sion of F(ψ). Thus, if (Fr ) and (F(φ)r ) denote the Knebusch splitting towers
of ψ and ψF(φ), respectively, then F(φ)r is Fr -isomorphic to a purely transcen-
dental extension of Fr+1 for every 0 ≤ r ≤ h(ψF(φ)). In particular, we have
ir (ψF(φ)) = ir+1(ψ) and dr (ψF(φ)) = dr+1(ψ) for any such r by Lemmas 2.26
and 2.35, respectively. On the other hand, Lemma 3.5 shows that (ψF(φ))an is
similar to φ1. Since ir (φ) = ir−1(φ1) and dr (φ) = dr−1(φ1) for all 1 ≤ r ≤ h(φ),
the proposition follows immediately. �

Let φ be a quasilinear p-form over F . We say that φ is a quasi-Pfister p-neighbor
(of π) if there exists a quasi-Pfister p-form π over F such that φ is similar to a
subform of π and dimφ > 1

p dimπ . If φ is anisotropic, then it follows from
Proposition 2.39 that φ is a quasi-Pfister p-neighbor if and only if it is a neighbor of
some quasi-Pfister p-form in the sense of Section 3B. Forms of this type are of spe-
cial importance in the general theory of quasilinear p-forms. Putting Lemma 2.11,
Proposition 2.39, Corollary 2.40, Lemma 3.5 and Proposition 3.10 together, we
obtain the following classification of anisotropic quasi-Pfister p-neighbors:

Corollary 3.11 (see [Scully 2016, Theorem 6.4]). Let φ be an anisotropic quasi-
linear p-form of dimension ≥ 2 over F and let n be the smallest nonnegative integer
such that pn+1

≥ dimφ. Then the following are equivalent:

(1) φ is a quasi-Pfister p-neighbor.

(2) φ is a neighbor of φnor.

(3) φF(φnor) is isotropic.

(4) ndeg(φ)= pn+1.

(5) h(φ)= n+ 1.

(6) i1(φ)= dimφ− pn and i2(φ)= pn
− pn−1.

(7) i(φ)=
(
dimφ− pn, pn

− pn−1, pn−1
− pn−2, . . . , p2

− p, p− 1
)
.

(8) φ1 is similar to a quasi-Pfister p-form (i.e., hqp(φ)≤ 1).

Remark 3.12. In the case where p= 2, this result was proved earlier by Hoffmann
and Laghribi [2004, Theorem 8.1] using different methods.
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For arbitrary subforms, the situation is naturally more complicated, but we can
nevertheless appeal to the following general result which was proved in [Scully
2016] (and whose proof again makes essential use of Theorems 3.1 and 3.7):

Proposition 3.13 (see [Scully 2016, Proposition 8.6]). Let φ and ψ be anisotropic
quasilinear p-forms of dimension ≥ 2 over F such that φF(ψ) is isotropic. Then
either

(1) (ψr )Fr (φ) is anisotropic for all 0≤ r < h(ψ) and i(ψF(φ))= i(ψ), or

(2) i(ψF(φ))=
(
i1(ψ),. . .,is−1(ψ),is(ψ)+is+1(ψ),is+2(ψ),. . .,ih(ψ)(ψ)

)
, where

s < h(ψ) is the smallest nonnegative integer such that (ψs)Fs(φ) is isotropic.

Note here that in the special situation where ψ is a neighbor of φ, we are
necessarily in case (2) with s being equal to 0. Since (ψF(φ))an' φ1 in this instance
(Lemma 3.5), we recover the computation of Proposition 3.10. By contrast, if ψ is
a near neighbor of φ, then we can be in either of cases (1) and (2) (see Remark 3.15
below). Nevertheless, we still have ψF(φ) ' φ1 (Corollary 3.4), and so we get:

Corollary 3.14 (see [Scully 2016, Corollary 6.10]). Let φ be an anisotropic quasi-
linear p-form of dimension ≥ 2 over F and let ψ be a near neighbor of φ. Then
either

(1) (ψr )Fr (φ) is anisotropic for all 0≤ r < h(ψ) and i(ψ)= i(φ1), or

(2) i(ψ)=
(
i2(φ), i3(φ), . . . , is(φ), is(ψ), is+1(φ)−is(ψ), is+2(φ), . . . , ih(φ)(φ)

)
,

where s < h(ψ) is the smallest positive integer such that (ψs)Fs(φ) is isotropic.

Remark 3.15. As per the comments above, neither of cases (1) and (2) can be
ruled out here. Indeed, case (1) describes the situation where h(ψ) = h(φ)− 1,
while case (2) describes the situation where h(ψ)= h(φ). As the reader will easily
verify using Corollary 2.40, both these situations can arise in practice.

3E. A comparison result. We now conclude this section by recalling the following
comparison result for isotropy indices of quasilinear quadratic forms which was
obtained in [Scully 2016] with the help of Theorem 3.1:

Proposition 3.16 (see [Scully 2016, Theorem 7.13, Remark 9.1]). Assume that
p = 2. Let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2 over F
and let L be a field extension of F such that φL is not split. Then

i0(φL(φ))− i1(φ)≥min
{
i0(φL),

[ 1
2(dimφ− i1(φ)+ 1)

]}
.

Remark 3.17. A similar statement also holds for p> 2 (see [Scully 2016, Theorem
7.13]), but this will not be needed below.

Finally, it will be convenient to record here the following application of this result:
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Theorem 3.18 [Scully 2016, Theorem 9.2]. Let φ be an anisotropic quasilinear
quadratic form of dimension ≥ 2 over F and write dimφ = 2n

+m for uniquely
determined integers n ≥ 0 and 1≤m ≤ 2n . Then, for any field extension L of F , we
either have i0(φL)≥ m or i0(φL)≤ m− i1(φ).

Remark 3.19. Taking L = F(φ) here, we see that if i1(φ) < m, then i1(φ)≤ m/2.
This result will now be subsumed in our Theorem 1.3.

4. A motivational example

As a warm-up for the proof of our main result, we will now prove Proposition 1.4.
Throughout this section, we assume that p = 2. By a quasi-Pfister form, we
will mean a quasi-Pfister 2-form. Our assumption on the prime p is imposed
for simplicity, but also because we will make use of the following fact already
mentioned in the introduction, the analogue of which is unknown when p > 3 (see
[Scully 2016, §4.1]):

Lemma 4.1 (see [Hoffmann 2004, Corollary 7.22]). Let φ be an anisotropic quasi-
linear quadratic form of dimension ≥ 2 over F and let L be a field extension of F
such that φL is isotropic. Then i0(φL)≥ i1(φ).

Now, let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2 over F
and let ψ ⊂ φ be a subform of codimension i1(φ). By Corollary 3.4, ψF(φ) is
isomorphic to the first higher anisotropic kernel of φ. In the next section, we will
prove Theorem 1.5, which asserts that the latter form is divisible by a quasi-Pfister
form of dimension ≥ i1(φ). Here, we will consider some special situations in which
this divisibility property is already visible over the base field F . To this end, we
will be interested in the following technical condition on the pair (φ, ψ):

(?) There exist elements a ∈ D(φ)\{0} and b∈ D(ψ)\{0} such that a 6= c(bd+e f )
for any c, d, e, f ∈ D(ψ).

Example 4.2. If, in the above situation, we have ndeg(ψ) < ndeg(φ) (equivalently,
if h(ψ) < h(φ); see Corollary 2.40), then (?) holds for the pair (φ, ψ). Indeed,
in this case, D(φ) is (evidently) not contained in cN (ψ) for any c ∈ F . Since
bd + e f ∈ N (ψ) for every b, d, e, f ∈ D(ψ), the validity of (?) is immediately
verified.

In light of Example 4.2, Proposition 1.4 is subsumed in the following result:

Proposition 4.3. Let φ be an anisotropic quasilinear quadratic form of dimension
≥ 2 over F and let ψ ⊂ φ be subform of codimension i1(φ) such that the pair
(φ, ψ) satisfies (?). Then there exist a quasi-Pfister form π , a subform σ ⊂ π , an
element λ ∈ D(φ) and a form τ over F such that ψ ' π ⊗ τ and φ ' ψ ⊥ λσ .
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Proof. Let b ∈ D(ψ) \ {0} be as in (?). Then (?) also holds for the pair (bφ, bψ).
If this were not the case, then, for every a ∈ D(φ), we could find c, d, e, f ∈ D(ψ)
such that ba = bc(b3d + beb f ), or, equivalently, such that a = b2c(bd + e f ). But,
since D(ψ) is an F2-linear subspace of F , we have b2c ∈ D(ψ), and so this would
contradict the fact that (?) holds for the original pair (φ, ψ). Since the exchange
(φ, ψ)→ (bφ, bψ) does not affect the statement of the proposition, we can therefore
assume that b = 1. In other words, we can assume that 1 ∈ D(ψ) and that:

(?′) There exists an element a ∈ D(φ) \ {0} such that a 6= c(d + e f ) for any
c, d, e, f ∈ D(ψ).

Let us fix a ∈ D(φ) \ {0} as in (?′). We will now prove that the statement of the
proposition holds with λ= a. First, we note that (?′) implies:

(1) a /∈ D(ψ).

(2) ψFau is anisotropic for every u ∈ D(ψ) \ {0}.

Indeed, if a were in D(ψ), then we could contradict (?′) by taking c= 1, d = a and
e= f = 0. Similarly, if ψFau were isotropic in (2), then (since ψ is anisotropic) we
could find nonzero elements x, y ∈ D(ψ) such that au = xy (see Lemma 2.27(2));
taking c = x−1, d = 0, e = y and f = u, this would again contradict (?′).

Now, (1) implies that we have ψ ⊥ 〈a〉 ⊂ φ. If i1(φ)= 1, then the latter inclusion
is an isomorphism, and the statement of the proposition holds with π = σ = 〈1〉
and τ = ψ . Assume now that i1(φ) > 1. Since 1, a ∈ D(φ), φFa is isotropic
by Lemma 2.27(2). By Lemma 4.1, it then follows that i0(φFa ) ≥ i1(φ). On the
other hand, (2) (with u = 1 ∈ D(ψ)) shows that ψFa is anisotropic, and, since
dimψ = dimφ − i1(φ), we conclude that (φFa )an ' ψFa . In other words, we
have D(φFa ) = D(ψFa ) = D(ψ) + aD(ψ) (where the latter equality holds by
Lemma 2.27(1)). By Lemma 2.2, it follows that we can write φ ' ψ ⊥ 〈a〉 ⊥ aσ ′

for some form σ ′⊂ψ . Let σ =〈1〉⊥σ ′, so that φ'ψ ⊥aσ . As 1∈ D(ψ), we have
σ ⊂ ψ . Since σ is anisotropic and represents 1, Lemma 2.11 shows that σ ⊂ σnor.
Thus, in order to complete the proof, it will be enough to prove that ψ is divisible
by π = σnor. By Corollary 2.20, this amounts to showing that D(σ )⊂ G(ψ). Let
x ∈ D(σ )\{0}. In order to show that x ∈G(ψ), we must check that xy ∈ D(ψ) for
all y ∈ D(ψ) (see Lemma 2.13). If y = 0, then there is nothing to prove. Suppose
now that y 6= 0. Then, by Lemma 2.27(2), φFay is isotropic. On the other hand,
ψFay is anisotropic by (2). Using Lemma 4.1 in the same way as before, we see
that (φFay )an ' ψFay , or, equivalently, that D(φFay )= D(ψFay )= D(ψ)+ ay D(ψ).
But, letting u =

√
ay, we have xy = (a−1u)2ax ∈ D(φFay ). In particular, we can

find u, v ∈ D(ψ) such that xy = u + ayv. To complete the proof, it now only
remains to show that v = 0. But, if v 6= 0, then we have a = v−1(x + uy−1), and
we obtain a contradiction to (?′) by taking c = v−1, d = x , e = u and f = y−1.
The result follows. �
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In general, it is not always possible to find a subform ψ ⊂ φ of codimen-
sion i1(φ) such that the pair (φ, ψ) satisfies condition (?). Indeed, note that if
i1(φ) = 2 in the situation of Proposition 4.3, then φ is divisible by the binary
(i.e., 2-dimensional) form σ . The following example, which is directly analo-
gous to an example of Vishik from the characteristic 6= 2 theory of quadratic
forms, shows that there exist anisotropic quasilinear quadratic forms which have
first higher isotropy index equal to 2, but which are not divisible by a binary
form: let a, b, c, d, e be algebraically independent variables over a field F0 of
characteristic 2, let F = F0(a, b, c, d, e) and consider the anisotropic F-form
φ = 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ e〈a, b, c, d〉.

Lemma 4.4 (Vishik; see [Totaro 2009, Lemma 7.1]). In the above situation, we
have i1(φ)= 2, but φ is not divisible by a binary form.

Proof. We will freely use some basic facts from the theory of symmetric bilinear
forms over fields of characteristic 2. If B is such a form, then φB will denote the
totally singular quadratic form v 7→ B(v, v). For all other notation and terminology,
the reader is referred to [Elman et al. 2008, Chapter I].

Let b be the bilinear form 〈〈ab, ac, ad〉〉b ⊥ bcd〈1, ab, ac, ad〉b ⊥ e〈a, b, c, d〉b
over F , so that φ = φb. As the reader will immediately verify, we have

b∼ c := 〈〈a, b, c, d〉〉b ⊥ 〈〈e〉〉b⊗〈a, b, c, d〉b,

where the symbol ∼ denotes Witt equivalence. Let π = 〈〈a, b, c, d〉〉b, and let π ′ de-
note the pure subform of π . Since ndeg(φπ )=16<32=ndeg(φ), Corollary 2.32(2)
implies that πF(φ) is anisotropic. At the same time, it follows from Remarks 2.6(4)
and the definition of φ that e ∈ D(π ′F(φ)). Thus, by [Elman et al. 2008, Lemma 6.1],
there exists a 3-fold bilinear Pfister form η over F(φ) such that πF(φ) ' 〈〈e〉〉b⊗ η.
In particular, cF(φ) is divisible by 〈〈e〉〉b, and so iW (cF(φ)) is even (see [Elman et al.
2008, Proposition 6.22]; iW denotes here the Witt index). Since dim c−dim b= 8≡
0 (mod 4), it follows that iW (bF(φ)) is also even. In particular, this shows that
i1(φ) ≥ 2 (see [Laghribi 2007, Proposition 5.15]), and to prove that i1(φ) = 2, it
suffices to find a field extension L of F such that φL is isotropic but i0(φL)≤ 2 (see
Lemma 4.1). We claim that L = Fcde is such an extension. First, note that since
cde = (bcd)(b−1e) is a product of two nonzero elements of D(φ), φL is isotropic
by Lemma 2.27(2). On the other hand, it is easy to see that the codimension-2
subform ψ = 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ e〈c, d〉 ⊂φ remains anisotropic
over L . Indeed, since

ψL ' 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ 〈d, c〉 ⊂ 〈〈a, b, c, d〉〉L ,

it suffices to check that 〈〈a, b, c, d〉〉 remains anisotropic over L . But, since cde /∈
F2(a, b, c, d) = N (〈〈a, b, c, d〉〉), this follows from Lemma 2.27(4). Since the
anisotropy of ψL readily implies that i0(φL)≤ 2, we have proved our claim.
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It now remains to check that φ is not divisible by a binary form. For the sake of
contradiction, suppose instead that φ is divisible by 〈〈u〉〉 for some u ∈ F \ F2.
We claim that u ∈ F2(ab, ac, ad). Again, let us assume that this is not the
case. Then the quasi-Pfister form τ = 〈〈ab, ac, ad〉〉 remains anisotropic over Fu

by Lemma 2.27(4). Let σ = τ ⊥ 〈bcd〉 ⊂ φ and η = τ ⊥ 〈ae〉 ⊂ φ. Since
i0(φFu ) =

1
2 dimφ = 8 (Lemma 2.27(6)), and since dim σ = dim η = 9, both

σFu and ηFu are necessarily isotropic. Since τFu is anisotropic, this means that
bcd, ae ∈ D(τFu ) = F2(ab, ac, ad, u). But this implies that F2(a, b, c, d, e) ⊆
F2(ab, ac, ad, u), thus contradicting the fact that the elements a, b, c, d, e are
algebraically independent over F0. This proves our claim, and so we can write
u = v+w for some v ∈ D(〈1, ab, ac, ad〉) and w ∈ D(〈bc, bd, cd, abcd〉). Now,
Lemma 2.27(6) implies that u ∈ G(φ). In particular, applying Lemma 2.13 to the
elements ae, acd, abd ∈ D(φ), we see that

(1) aeu ∈ D(φ),

(2) acdu ∈ D(φ), and

(3) abdu ∈ D(φ).

We can now complete the proof: first, note that we have aev ∈ D(φ), since
ae〈1, ab, ac, ad〉 ' e〈a, b, c, d〉 ⊂ φ. By (1), this implies that aew ∈ D(φ). Note
however that ae〈bc, bd, cd, abcd〉' 〈abce, abde, acde, bcde〉, and the latter form
does not represent any nonzero element of D(φ). It follows that w = 0, and
so u ∈ D(〈1, ab, ac, ad〉). Next, consider the form ρ = acd〈1, ab, ac, ad〉 '
〈acd, bcd, c, d〉. By (2), we have acdu ∈ D(ρ) ∩ D(φ). Since the elements
a, b, c, d , e are algebraically independent over F0, direct inspection shows that the
former intersection is equal to acd D(〈1, ab〉), and so u ∈ D(〈1, ab〉). Finally, we
can use (3) in a similar way to show that u ∈ F2, thus providing us with the needed
contradiction. The lemma is proved. �

In fact, Vishik’s example shows more: it is generally not possible to find a subform
ψ ⊂ φ of codimension i1(φ) such that the pair (φ, ψ) satisfies condition (?), even
after making arbitrary rational extensions of F — this stronger assertion follows
from Lemma 2.35. This leads us to consider the possibility that decompositions
of the kind suggested by Proposition 4.3 may be found by passing to suitable
transcendental extensions of the base field, and, ultimately, to our main result.
Nevertheless, it is still interesting to ask for conditions on φ (or, more specifically,
on the Knebusch splitting pattern of φ) which automatically ensure the existence of
the needed subform ψ . To this end, it is natural to look to the extremities where φ
is “far from generic” (e.g., where i1(φ) is “large”). The basic example is provided
here by Proposition 2.39, which characterizes (scalar multiples of) anisotropic
quasi-Pfister forms in terms of i1, and one can hope that similar characterizations
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exist for “sufficiently simple” forms (see also Theorem 6.8 below). A better
understanding of all these problems would have important implications for the
study of symmetric bilinear forms of “low complexity” (e.g., of “small” height) in
characteristic 2.

5. Main theorem

We are now ready to give the proof of Theorem 1.5. In order to treat the case where
p > 2, the statement needs to be modified as follows:

Theorem 5.1. Let φ be an anisotropic quasilinear p-form of dimension ≥ 2 over F
and let s be the smallest nonnegative integer such that ps

≥ i1(φ). If φ is not a
quasi-Pfister p-neighbor, then φ1 is divisible by an s-fold quasi-Pfister p-form.

Remark 5.2. Nothing is lost here by assuming that φ is not a quasi-Pfister p-neighbor.
Indeed, if φ is a quasi-Pfister p-neighbor, and n denotes the smallest nonnegative
integer such that pn+1

≥ dimφ, then φ1 is similar to an n-fold quasi-Pfister p-form
by Corollary 3.11. If p= 2, then we have i1(φ)≤ 1

2 dimφ ≤ 2n by Proposition 2.39,
so that n ≥ s, where s is the integer defined in the statement of the theorem.
Note, however, that if p > 2, then n may be strictly smaller than s (again, see
Corollary 3.11). This explains why the additional hypothesis is needed here, but
not in the statement of Theorem 1.5 (i.e., the case where p = 2).

Proof. To simplify the notation, we will write i1 instead of i1(φ) in what follows.
If i1 = 1, then the statement of the theorem holds trivially. We therefore assume
henceforth that i1 > 1. After multiplying φ by a nonzero scalar if necessary, we
may also assume that 1 ∈ D(φ). In particular, we can find a1, . . . , an ∈ F such
that φ ' 〈1, a1, . . . , an〉. For the remainder of the proof, we let φ′ = 〈a1, . . . , an〉,
and we write φ′(T ) for the “generic value” of φ′, i.e., φ′(T )=

∑n
i=1 ai T

p
i ∈ F[T ],

where T = (T1, . . . , Tn) is a tuple of algebraically independent variables over F .
By Corollary 3.9, the function field F(φ) is F-isomorphic to F[φ′], and may
therefore be identified with Frac

(
F[T ]/(φ′(T ))

)
(see Remarks 2.6(1)). Fixing this

identification henceforth, we will write f̄ for the image of a polynomial f ∈ F[T ]
under the canonical F-algebra homomorphism F[T ] → F(φ). We will also write
m( f ) for the multiplicity multφ′(T )( f ) of φ′(T ) in f , i.e., the largest integer k such
that f = φ′(T )kh for some h ∈ F[T ]. Note here that we have f̄ 6= 0 if and only if
m( f )= 0.

Now, let ψ ⊂ φ be any subform of codimension i1(φ) such that 1 ∈ D(ψ). Then:

Lemma 5.3. In the above situation, we can find elements gi, j ∈D(ψF[T ]) (1≤ i< i1,
1≤ j < p) such that

φF(T ) ' ψF(T )⊕φ
′(T )〈1, f1, . . . , fi1−1〉,

where fi =
∑p−1

j=1 gi, jφ
′(T ) j−1 for each 1≤ i < i1.
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Proof. First, let us note that φ′(T ) /∈ D(ψF(T )). Indeed, if ψF(T ) were to rep-
resent φ′(T ), then it would follow from Theorem 2.23 that a1, . . . , an ∈ D(ψ).
Since 1 ∈ D(ψ) by hypothesis, this would imply that D(φ) ⊆ D(ψ), or, equiv-
alently, that φ ⊂ ψ (see Proposition 2.3), which is impossible for dimension
reasons (recall here that i1 > 1 by assumption). It follows that ψF(T ) ⊕ 〈φ

′(T )〉
is anisotropic, and so ψF(T ) ⊕ 〈φ

′(T )〉 ⊂ φF(T ) by Proposition 2.3. Now, the
affine function field F[φ] may be identified (over F) with the field K = F(T )φ′(T )
(see Remarks 2.6(1)). Since F[φ] is F-isomorphic to a purely transcendental
extension of F(φ) (Remarks 2.6(2)), Corollary 3.4 and Lemma 2.26 together
imply that ψK ' (φK )an. In particular, we have D(φF(T )) ⊂ D(φK ) = D(ψK ) =∑p−1

j=0 D(ψF(T ))φ
′(T ) j (where the last equality holds by Lemma 2.27(1)). Thus,

by Lemma 2.2, we can complete the subform inclusion ψF(T )⊕〈φ
′(T )〉 ⊂ φF(T )

to an isomorphism φF(T ) ' ψF(T )⊕〈φ
′(T )〉⊕ 〈 f ′1, . . . , f ′i1−1〉, where, for each i ,

we have f ′i =
∑p−1

j=0 gi, jφ
′(T ) j for some gi, j ∈ D(ψF(T )). Note, however, that

every element of D(ψF(T )) is (trivially) the ratio of an element of D(ψF[T ]) and
a p-th power in F[T ]. Since multiplying the f ′i by p-th powers in F[T ] does not
change the F(T )-form 〈 f ′1, . . . , f ′i1−1〉 up to isomorphism (see Lemma 2.2), we
can arrange it so that the gi, j belong to D(ψF[T ]). Similarly, since subtracting
elements of D(ψF(T )) from the f ′i does not change the isomorphism class of
ψF(T ) ⊕ 〈 f ′1, . . . , f ′i1−1〉 (again, see Lemma 2.2), we can also arrange it so that
gi,0 = 0 for all i . The remaining gi, j then satisfy the statement of the lemma. �

Let us now fix elements gi, j ∈ D(ψF[T ]) (and the associated polynomials fi )
satisfying the statement of Lemma 5.3. We are searching here for a sufficiently
large quasi-Pfister divisor of φ1, and we would like to try to build this quasi-Pfister
p-form from the elements gi,1. The basic point here is the following:

Lemma 5.4. In the above situation, we have gi,1b ∈ D(φ1) for all b ∈ D(ψ) and
all 1≤ i < i1.

Proof. If b = 0, then the statement is trivial. Let us now fix b ∈ D(ψ) \ {0}. We
will need another lemma:

Lemma 5.5. In the above situation, there exist elements si, j ∈ D(ψF[T ]) and
ti, j ∈ F[T ] \ {0} (1≤ i < i1, 0≤ j < p) such that, for every 1≤ i < i1, we have:

(1) b fi =
∑p−1

j=0 (si, j/t p
i, j )(φ

′(T ) j/b j ) in F(T ).

(2) For each 0≤ j < p, at least one of si, j and ti, j is nonzero.

Proof. Let 1 ≤ i < i1, and consider the field L = F(T )u , where u = φ′(T )/b. In
view of Remarks 2.6(1), L is F-isomorphic to the affine function field F[η], where
η denotes the F-form 〈b〉 ⊥ φ′. Now, since b ∈ D(ψ), and since ψ ⊂ φ, we have
D(φ′)⊆ D(η)⊆ D(φ). In particular, if η 6' φ, then it follows from Lemma 2.2 that
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ηan ' φ
′. Either way, we see that L is F-isomorphic to a degree-1 purely transcen-

dental extension of F(φ)— in the first case, see Remarks 2.6(2); in the second, see
Remarks 2.6(3) and Corollary 3.9. By Corollary 3.4 and Lemma 2.26, it follows
that ψL ' (φL)an. In other words, we have D(φL)= D(ψL)=

∑p−1
j=0 D(ψF(T ))u j

(again, see Lemma 2.27(1) for the final equality). Now, since u is a p-th power
in L , we have b fi = φ

′(T ) fi/u ∈ D(φL). We can therefore write b fi =
∑p−1

i=0 q j u j

for some q j ∈ D(ψF(T )). Since every element of D(ψF(T )) is the quotient of an
element of D(ψF[T ]) and a p-th power in F[T ], and since u = φ′(T )/b, this shows
that we can find elements si, j ∈ D(ψF[T ]) and ti, j ∈ F[T ] \ {0} such that (1) holds.
Finally, sinceψF(φ) is anisotropic, Proposition 2.33 implies that m(si, j )≡0 (mod p)
for all 0 ≤ j < p. For each such j , let mj = min(m(si, j ), pm(ti, j )), and put
s ′i, j = si, j/φ

′(T )mj and t ′i, j = ti, j/φ
′(T )mj/p. Then, by Theorem 2.23, we again

have s ′i, j ∈ D(ψF[T ]). Thus, replacing si, j by s ′i, j and ti, j by t ′i, j (for each j), we
arrive at the situation where, for any j , either m(si, j )= 0 or m(ti, j )= 0. In other
words, at least one of si, j and ti, j is nonzero, as we wanted. �

Returning now to the proof of Lemma 5.4, let si, j ∈D(ψF[T ]) and ti, j ∈ F[T ]\{0}
be as in Lemma 5.5. In particular, we have the equation

p−1∑
l=1

bgi,lφ
′(T )l−1

= b fi =

p−1∑
j=0

si, j

t p
i, j

φ′(T ) j

b j

in F(T ). Clearing denominators, we obtain

∏
k

t p
i,k

p−1∑
l=1

bgi,lφ
′(T )l−1

=

p−1∑
j=0

∏
k 6= j

t p
i,ksi, j

φ′(T ) j

b j . (5-1)

Now, we claim that, for all 0≤ j < p, we have ti, j 6= 0, or, equivalently, m(ti, j )= 0.
To see this, let m = min

{∑
k 6= j m(ti,k) | 0≤ j < p

}
. Then our claim amounts to the

assertion that m=
∑p−1

k=0 m(ti,k). Suppose that this is not the case, and let 0≤ j < p
be minimal so that

∑
k 6= j m(ti,k)= m. Then, reducing both sides of (5-1) modulo

φ′(T )pm+ j+1, we see that si, j ≡ 0 (mod φ′(T )). In other words, we have si, j = 0.
By the choice of the si, j and ti, j , this implies that ti, j 6= 0, or, equivalently, that
m(ti, j ) = 0. But then m =

∑
k 6= j m(ti,k) =

∑p−1
k=0 m(ti,k), which contradicts our

assumption. The claim is therefore proved, and so, reducing (5-1) modulo φ′(T )
and dividing through by

∏
k ti,k p, we obtain the equality gi,1b = si,0/ti,0 p in F(φ).

As si,0 ∈ D(ψF[T ]), this shows that gi,1b ∈ D(ψF(φ)). But since ψF(φ) ' φ1, we
have D(ψF(φ))= D(φ1), and the lemma is therefore proved. �

Continuing with the proof of Theorem 5.1, let us now choose elements gi, j in
D(ψF[T ]) as in the statement of Lemma 5.3 so that the integer

∑i1−1
i=1 degT1

(gi,1) is
minimal, where degT1

(g) denotes the degree of any g ∈ F[T ] viewed as an element
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of the ring F(T2, . . . , Tn)[T1], i.e., as a polynomial in the single variable T1 (with the
added convention that degT1

(0)= 0). Consider the form σ = 〈1, g1,1, . . . , gi1−1,1〉

over F(φ). The final step in the proof of the theorem will be to prove the following
statement:

Lemma 5.6. In the above situation, σ is anisotropic.

Before proving the lemma, let us explain how this concludes the proof of
Theorem 5.1. First, we claim that φ1 is divisible by the quasi-Pfister p-form σnor.
By Corollary 2.20, this amounts to checking that D(σ ) ⊆ G(φ1). Since G(φ1)

is a subfield of F containing F p (Corollary 2.15), it suffices to show here that
gi,1 ∈ G(φ1) for all 1≤ i < i1. But by Lemma 2.13, this is equivalent to showing
that, for all such i , we have gi,1 D(φ1)⊆D(φ1). Since D(φ1)=D(ψF(φ)) is spanned
as an F(φ)p-vector space by D(ψ), this follows immediately from Lemma 5.4. The
claim is therefore proved, and to finish the proof of the theorem, it only remains to
check that dim σnor ≥ ps . But, σ is anisotropic by Lemma 5.6, and so σ ⊂ σnor by
Lemma 2.11. In particular, we have dim σnor ≥ dim σ = i1, which is precisely the
assertion that dim σnor ≥ ps (because dim σnor is necessarily a power of p). Now,
in order to prove Lemma 5.6, we need another auxiliary statement:

Lemma 5.7. If σ is isotropic, then p>2, and there exist polynomials g j ∈D(ψF[T ])

(1≤ j < p) and an integer 2≤ k < p such that:

(1)
∑p−1

j=1 g jφ
′(T ) j

∈ D(φF[T ]).

(2) m(gl) > 0 for all 1≤ l < k.

(3) m(gk)= 0.

Proof. If σ is isotropic, then since φ′(T ) is a Fermat-type polynomial of degree p,
we can find an integer 1≤m≤ p and polynomials h0, . . . , hi1−1, h ∈ F[T ] such that:

(i) h p
0 + g1,1h p

1 + · · ·+ gi1−1,1h p
i1−1 = φ

′(T )mh in F[T ].

(ii) degT1
(hi ) < p for all 0≤ i < i1.

(iii) hi 6= 0 for some 1≤ i < i1.

First, let us note that we have φ′(T )mh ∈ D(ψF[T ]) by (i) and the definition of the
elements gi,1. Since ψF(φ) is anisotropic, it follows from Proposition 2.33 that h= 0
or m = p. Either way, we can assume henceforth that m = p. Now, by (iii), there
exists an 1≤ l < i1 such that hl 6= 0. Among all such integers l, let us fix one so that
degT1

(gl,1h p
l ) is maximal. Consider now the polynomial f = h p

0 +
∑i1−1

k=1 fkh p
k ∈

F[T ], where the fk are as in the statement of Lemma 5.3. Since hl 6= 0, Lemma 2.2
implies that 〈1, f1, . . . , fi1−1〉'〈1, f1, . . . , fl−1, f, fl+1, . . . , fi1−1〉 as F(T )-forms.
In particular, we have

φF(T ) ' ψF(T )⊕φ
′(T )〈1, f1, . . . , fl−1, f, fl+1, . . . , fi1−1〉. (5-2)
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Now, by definition, f =
∑p−1

j=1 g′jφ
′(T ) j−1, where g′1 = φ

′(T )mh ∈ D(ψF[T ]) and
g′j =

∑i1−1
k=1 gk, j h

p
k ∈ D(ψF[T ]) for all 2≤ i < p. Let r =min{m(g′j ) | 1≤ j < p}.

Since g′j ∈ D(ψF[T ]) for all j , and since ψF(φ) is anisotropic, another application
of Proposition 2.33 shows that r ≡ 0 (mod p). In particular, for each j ≥ 1, we
have g j := g′j/φ

′(T )r ∈ D(ψF[T ]). In view of (5-2), it follows that the exchange
gl, j → g j does not alter the statement of Lemma 5.3. By our choice of the gi, j , we
therefore have

degT1
(φ′(T )p−r h)= degT1

(g1)≥ degT1
(gl,1). (5-3)

Now, we claim that the elements g j (together with an appropriate integer k) satisfy
the conditions of the lemma. We have already seen here the validity of (1). At the
same time, we have m(g j )= 0 for some j ≥ 1 by construction. Thus, in order to
prove the existence of an integer k such that (2) and (3) are satisfied, we just need to
check that m(g1)>0. Recall again that we have g1=φ

′(T )p−r h. If h=0, then there
is nothing to prove. Suppose now that h 6=0. By (i) and the choice of the integer l, we
have degT1

(gl,1h p
l )≥degT1

(φ′(T )ph)≥ p2
+degT1

(h). Since degT1
(hl)< p (by (ii)),

it follows that degT1
(gl,1) > degT1

(h). In view of (5-3), we see that r = 0 in this
case. In particular, we have g1= φ

′(T )ph, and so m(g1)≥ p> 0, as we wanted. �

We are now ready to prove Lemma 5.6 and thus complete the proof of Theorem 5.1.
If p = 2, then the statement was already proved in Lemma 5.7. Suppose now
that p > 2, and assume for the sake of contradiction that σ is isotropic. Let g j

(1 ≤ j < p) and k be as in the statement of Lemma 5.7. By condition (2) of the
lemma, we can, for each l < k, write gl = φ

′(T )ml hl for some positive integer ml

and some polynomial hl . By a now familiar application of Proposition 2.33, we
have ml ≡ 0 (mod p) for every such l. In particular, the ml are all strictly larger
than k. Now, by condition (1) of the lemma, the element

φ′(T)k
(
gk+gk−1φ

′(T)+· · ·+gi1−1φ
′(T)p−k−1

+h1φ
′(T)m1−k

+· · ·+hk−1φ
′(T)mk−1−k)

lies in D(φF[T ]). Using the very same argument as that used to prove Lemma 5.4
above (and the fact that the integers ml − k (l < k) are all positive), one readily
shows that bk gk ∈ D(φ1) for every b ∈ D(ψ). Note, however, that gk 6= 0 by
condition (3) of Lemma 5.7. Since 2 ≤ k < p, and since φ1 ' ψF(φ), it follows
from Lemma 2.22 that φ1 is a quasi-Pfister p-form. But, by Corollary 3.11, this
in turn implies that φ is a quasi-Pfister p-neighbor, thus contradicting our original
hypothesis. The lemma and theorem are therefore proved. �

6. First applications of the main theorem

We now give the basic applications of Theorem 1.5.
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6A. Possible values of the Knebusch splitting pattern. Let φ be a quasilinear
p-form of dimension ≥ 2 over F . In the previous section we have shown that
the first higher anisotropic kernel φ1 of φ is divisible by a quasi-Pfister p-form
of dimension ≥ i1(φ), provided that φan is not a quasi-Pfister p-neighbor. In the
terminology of Section 2K, this amounts to the assertion that if hqp(φ)≥ 2, then
d1(φ) ≥ logp(i1(φ)) (here we are also making use Corollary 3.11). By virtue of
the inductive nature of the Knebusch splitting tower construction, we also obtain
analogous restrictions on the higher isotropy indices ir (φ) (2≤ r < hqp(φ)) in terms
of the corresponding higher divisibility indices dr (φ). Taking the observations of
Section 2K into account, our results may be summarized as follows:

Theorem 6.1. Let φ be a quasilinear p-form over F and let d=h(φ)−hqp(φ). Then:

(1) i(φ)=
(
i1(φ), . . . , ihqp(φ)(φ), pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p− 1
)
.

(2) ihqp(φ)= dimφ− jhqp(φ)−1(φ)− pd < pd+1
− pd .

(3) d(φ)=
(
d0(φ), . . . , dhqp(φ)−1(φ), d, d − 1, . . . , 1, 0

)
.

(4) d0(φ)≤ d1(φ)≤ · · · ≤ dhqp(φ) = d.

(5) ir (φ)≡ 0 (mod pdr−1(φ)) for all 1≤ r < hqp(φ).

(6) dr (φ)≥ logp(ir (φ)) for all 1≤ r < hqp(φ).

(7) For every 1≤ r < hqp(φ), ir (φ)− 1 is the remainder of dimφ− jr−1(φ)− 1
modulo pdr (φ).

Proof. Parts (1), (2), (3), (4) and (5) are the statements comprising Lemmas
2.42, 2.43, 2.44 and Corollary 2.45. Since ir (φ) = i1(φr−1), dr (φ) = d1(φr−1)

and dimφr−1 = dimφ − jr−1(φ) for all 1 ≤ r ≤ h(φ), parts (6) and (7) follow
immediately from Theorem 5.1 and Corollary 3.11. �

In order to highlight the general shape of the Knebusch splitting pattern exposed
by Theorem 6.1, it is worth writing down the following result explicitly (here the
notation a | b means that a divides b):

Corollary 6.2. Let φ be a quasilinear p-form over F. Then

i1(φ)≤ pd1(φ) | i2(φ)≤ pd2(φ) | · · · | ihqp(φ)−1(φ)≤ pdhqp(φ)−1(φ) | ihqp(φ)(φ).

Remark 6.3. In the special case where p = 2, the chain of inequalities

i1(φ)≤ i2(φ)≤ · · · ≤ ihqp(φ)(φ)

was previously obtained in [Scully 2016, Theorem 9.5] using Proposition 3.16.
Here, we have given a more precise and natural explanation of this phenomenon.

We now show that, as far as the Knebusch splitting pattern is concerned, one
cannot do any better than Theorem 6.1 in general:
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Proposition 6.4. Let n be any positive integer. Suppose that we are given a nonneg-
ative integer k ≤ n and two sequences (d0, d1, . . . , dk = d) and (i1, . . . , ik) of k+1
and k nonnegative integers, respectively, such that the following conditions hold:

(i) ik = n−
∑k−1

j=1 i j − pd < pd+1
− pd .

(ii) d0 ≤ d1 ≤ · · · ≤ dk = d.

(iii) 1≤ ir ≡ 0 (mod pdr−1) for all 1≤ r < k.

(iv) dr ≥ logp(ir ) for all 1≤ r < k.

(v) For every 1≤ r < k, ir − 1 is the remainder of n−
(∑r−1

j=1 i j
)
− 1 modulo pdr .

Then there exists a (purely transcendental) field extension L of F and an anisotropic
quasilinear p-form φ of dimension n over L such that:

(1) hqp(φ)= k.

(2) h(φ)= k+ d.

(3) d(φ)=
(
d0(φ), . . . , dk−1(φ), d, d − 1, . . . , 1, 0

)
.

(4) dr (φ)≥ dr for all 0≤ r < k.

(5) i(φ)=
(
i1, . . . , ik, pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p− 1
)
.

Proof. We argue by induction on k. If k = 0, then Proposition 2.39 shows that we
can take L = F(T ) and φ = 〈〈T1, . . . , Td〉〉, where T = (T1, . . . , Td) is a d-tuple
of algebraically independent variables over F . Suppose now that k > 0, and let
n′ = (n − i1)/pd1 and i′r = ir+1/pd1 for all 1 ≤ r < k. By our hypotheses, these
ratios are, in fact, positive integers. Setting d′r = dr+1− d1 for all 0 ≤ r < k, and
putting d ′ = d′k−1, conditions (i)–(v) then imply the following:

(i′) i′k−1 = n′−
∑k−2

j=1 i
′

j − pd ′ < pd ′+1
− pd ′ .

(ii′) d′0 ≤ d′1 ≤ · · · ≤ d′k−1 = d ′.

(iii′) 1≤ i′r ≡ 0 (mod pd′r−1) for all 1≤ r < k− 1.

(iv′) d′r ≥ logp(i
′
r ) for all 1≤ r < k− 1.

(v′) For every 1 ≤ r < k − 1, i′r − 1 is the remainder of n′ −
(∑r−1

j=1 i
′

j

)
− 1

modulo pd′r .

By the induction hypothesis, there exists a (purely transcendental) field extension L0

of F and an anisotropic quasilinear p-form ψ of dimension n′ over L0 such that:

(1′) hqp(ψ)= k− 1.

(2′) h(ψ)= k− 1+ d ′.

(3′) d(ψ)=
(
d0(ψ), d1(ψ), . . . , dk−2(ψ), d ′, d ′− 1, . . . , 1, 0

)
.

(4′) dr (ψ)≥ d′r for all 0≤ r < k− 1.

(5′) i(ψ)=
(
i′1, . . . , i

′

k−1, pd ′
− pd ′−1, pd ′−1

− pd ′−2, . . . , p2
− p, p− 1

)
.
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Consider now the form σ =ψL1 ⊥ 〈T0〉 over the rational function field L1= L0(T0).
By (3′), (5′) and Lemma 2.46, we have:

(a) d(σ )=
(
0, d0(ψ), d1(ψ), . . . , dk−2(ψ), d ′, d ′− 1, . . . , 1, 0

)
.

(b) i(σ )=
(
1, i′1, . . . , i

′

k−1, pd ′
− pd ′−1, pd ′−1

− pd ′−2, . . . , p2
− p, p− 1

)
.

We would like to modify this further. Consider the product τ = 〈〈T1, . . . , Td1〉〉⊗σL

over L = L1(T ), where T = (T1, . . . , Td1) is a d1-tuple of algebraically independent
variables over L1. Then, by (a), (b) and Lemma 2.48, we have:

(c) d(τ )=
(
d1, d1(ψ)+ d1, d2(ψ)+ d1, . . . , dk−2(ψ)+ d1, d, d − 1, . . . , 1, 0

)
.

(d) i(τ )=
(

pd1, i2, . . . , ik, pd
− pd−1, pd−1

− pd−2, . . . , p2
− p, p− 1

)
.

Now, by (iv), we have i1 = pd1 − s for some 0 ≤ s < pd1 . By (ii) and (iii), s is
divisible by pd0 . Let φ be any codimension-s subform of τ which is divisible
by 〈〈T1, . . . , Td0〉〉. Clearly φ is anisotropic, and by (c), (d) and Proposition 3.10,
we have:

(e) d(φ)=
(
d0(φ), d1(ψ)+ d1, . . . , dk−2(ψ)+ d1, d, d − 1, . . . , 1, 0

)
.

(f) i(φ)=
(
i1, i2, . . . , ik, pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p− 1
)
.

The second statement shows that φ satisfies conditions (2) and (5). At the same
time, since d0(φ)≥ d0 by construction, and since d2(ψ)+ d1 ≥ d′r + d1 = dr+1 for
all 0≤ r < k− 1 by (4′), (e) shows that (3) and (4) are also satisfied. Finally, since
ik < pd+1

− pd , Proposition 2.39 shows that hqp(φ)= k, i.e., that (1) holds for φ.
The pair (L , φ) therefore has all the desired properties. �

Remark 6.5. In general, it is not possible to arrange it so that dr (φ) = dr for all
0≤ r < k in the statement of Proposition 6.4. For example, suppose that p= 2, and
take n= 2s+1

−2 for some s ≥ 3, k = 1, d0= 0, d1= s, i0= 0, i1= 2s
−2. As the

reader will readily verify, these integers satisfy conditions (i)–(v) of the proposition.
On the other hand, let (L , φ) be any pair consisting of a field extension L of F
and an anisotropic form φ of dimension 2s+1

− 2 over L such that i1(φ)= 2s
− 2.

By Theorem 6.8 below (see also [Scully 2016, Theorem 9.6]), φ is necessarily a
quasi-Pfister 2-neighbor, and therefore satisfies conditions (1)–(5) of the proposition
(see Corollary 3.11). We claim, however, that d0(φ) > 0, i.e., that φ is divisible
by a binary form. To see this, note that there exists an anisotropic (s + 1)-fold
bilinear Pfister form π over L and a subform b ⊂ π such that φ is given by the
assignment v 7→ b(v, v). Since b (being a codimension-2 subform of π) becomes
split over the extension K = Ldet(b) (where det denotes the determinant), we have
i0(φK )≥

1
2 dimφ (see [Laghribi 2007, Proposition 5.15]), whence φ is divisible by

〈〈det(b)〉〉 (Lemma 2.27(6)).

Theorem 6.1 and Proposition 6.4 thus give a complete solution to the problem
of determining the possible values of the Knebusch splitting pattern for quasilinear
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p-forms. In particular, we have an answer to Question 1.1 in the totally singular case.
As noted in Example 2.47, the Knebusch and full splitting patterns need not agree in
general for quasilinear p-forms. In Section 7 below, we will consider the problem of
determining the possible values of the full splitting pattern in the case where p = 2.

6B. Canonical dimensions of quasilinear p-hypersurfaces. Since the canonical
dimension of an anisotropic quasilinear p-hypersurface is determined by the Kneb-
usch splitting pattern of its underlying form (this is the basic fact underlying our
proof of Theorem 5.1; see Theorem 3.1 and Remarks 3.2(2)), we also obtain a list
of all restrictions on the possible values of the former invariant:

Theorem 6.6. Let X be an anisotropic quasilinear p-hypersurface over F. Then
there exists a nonnegative integer s such that:

(1) ps
− 1≤ dim X < ps

+ cdim(X).

(2) cdim(X)≡−1 (mod ps).

There are no further restrictions on cdim(X).

Proof. As per the above discussion, this follows readily from Theorems 3.1 and 6.1
and Proposition 6.4 (see also Remarks 3.2(2)). �

Remarks 6.7. (1) We emphasize again that cdim(X) is to be understood here
as the minimum dimension of the image of a rational self-map X 99K X . For
p > 3, we do not know if this agrees with the definition given in [Elman et al.
2008, §90] (although this is certainly expected; see [Scully 2016, Question 4.4,
Proposition 4.7]).

(2) The problem of determining all possible values of the canonical dimension
for smooth (projective) hypersurfaces X of prime degree p > 2 in characteristic
6= p remains open in general. Using a degree formula, Merkurjev [2003, §7.3]
showed that if dim X ≥ pn

− 1 for some nonnegative integer n, then we also have
cdim(X)≥ pn

− 1 provided that X has no points of degree prime to p. Little else
is known. By way of specialization, our Theorem 6.6 may be of some use when
considering specific examples over certain fields of characteristic zero.

6C. Quasilinear p-forms with maximal splitting. Let φ be an anisotropic quasi-
linear p-form of dimension ≥ 2 over F and write dimφ = pn

+m for uniquely
determined integers n≥ 0 and 1≤m≤ pn+1

− pn . By Theorem 6.1 (see also [Scully
2013, Corollary 6.8]), we have i1(φ)≤m. If equality holds here, then we say that φ
has maximal splitting. The basic examples of forms having this property are given
by anisotropic quasi-Pfister p-neighbors (see Corollary 3.11). It is interesting to
ask here to what extent this property characterizes quasi-Pfister p-neighbors. Given
Theorem 5.1, we can now prove the following general result:
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Theorem 6.8. Let φ be an anisotropic quasilinear p-form of dimension ≥ 2 over F
and let n be the smallest nonnegative integer such that pn+1

≥ dimφ. If φ has
maximal splitting, and if either

(1) p > 2 and dimφ > pn
+ pn−1, or

(2) p = 2 and dimφ > 2n
+ 2n−2,

then φ is a quasi-Pfister p-neighbor.

Proof. By Theorem 5.1, we may assume that d1(φ)≥ i1(φ). Suppose first that p> 2.
Since φ has maximal splitting, we have i1(φ) > pn−1 by (1), and so d1(φ) ≥ pn .
On the other hand, we have dimφ1 = dimφ− i1(φ)= pn (see Remarks 2.36(2)). It
follows that φ1 is similar to an n-fold quasi-Pfister p-form, and so φ is a quasi-Pfister
p-neighbor by Corollary 3.11. If p = 2, the same argument (and (2)) shows that φ1

is a form of dimension 2n which is divisible by an (n−1)-fold quasi-Pfister 2-form.
Since every binary form is similar to a quasi-Pfister 2-form in this case, φ1 is, in
fact, similar to an n-fold quasi-Pfister 2-form, and we now conclude as before. �

Remark 6.9. The statement of Theorem 6.8 was originally conjectured in [Hoff-
mann 2004, Remark 7.32] (see also [Scully 2016, Question 7.6]). The result is the
best possible, in the sense that one has examples of anisotropic quasilinear p-forms
with maximal splitting which are not quasi-Pfister p-neighbors in every dimension
omitted in the statement of the theorem (see [Hoffmann 2004, Example 7.31]). In the
special case where p = 2, Theorem 6.8 was previously established in [Scully 2016,
Theorem 9.6] using Proposition 3.16. Here, we obtain a more natural explanation of
this phenomenon by way of Theorem 5.1. Note that the p= 2 case of the theorem is
a direct analogue of a conjecture of Hoffmann in the theory of nonsingular quadratic
forms which remains open, even over fields of characteristic different from 2 (see
[Hoffmann 1995, §4; Izhboldin and Vishik 2000, Conjecture 1.6].

7. Further remarks on the splitting of quasilinear quadratic forms

Having determined all possible standard splitting patterns of quasilinear p-forms
(Theorem 6.1, Proposition 6.4), we now turn our attention towards the problem
of obtaining a similar result for the full splitting pattern. Here, we restrict our
considerations to the case of quasilinear quadratic forms, where we can take direct
inspiration from the following theorem of Vishik (which may be deduced from the
existence of “excellent connections” in the integral Chow motives of anisotropic
quadrics over fields of characteristic 6= 2; see [Vishik 2011, Theorem 1.3]):

Theorem 7.1 [Vishik 2011]. Let φ be an anisotropic quadratic form of dimension
≥2 over a field k of characteristic 6=2. Let dimφ−i1(φ)=2r1−2r2+· · ·+(−1)s−12rs

for uniquely determined integers r1> r2> · · ·> rs−1> rs+1≥ 1. Let 1≤ l ≤ s, and
put Dl =

∑l−1
i=1(−1)i−12ri−1

+ε(l)
∑s

j=l(−1) j−12rj , where ε(l)= 1 (resp. ε(l)= 0)
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if l is even (resp. odd). Then, for any field extension L of k, we either have
i0(φL)≥ Dl + i1(φ) or i0(φL)≤ Dl .

Proof. This is nothing else but a restatement of [Vishik 2011, Proposition 2.6] in
terms of Witt indices. To see how it may be derived from [Vishik 2011, Theorem 2.1]
in further detail, we refer the reader to [Scully 2016, Proof of Theorem 1.2]. �

Examples 7.2. Let φ be an anisotropic quadratic form of dimension ≥ 2 over a
field k of characteristic 6= 2, and write dimφ = 2n

+m for uniquely determined
integers n ≥ 0 and 1≤ m ≤ 2n .

(1) For l = 1, Theorem 7.1 asserts that i0(φL)≥ i1(φ) whenever φL is isotropic.

(2) For l = 2, Theorem 7.1 asserts that, for any field extension L of k, we either
have i0(φL)≥ m or i0(φL)≤ m− i1(φL).

(3) For l = s, Theorem 7.1 asserts that, for any field extension L of k, we either
have i0(φL) ≥

1
2(dimφ + i1(φ) − 2rs ) or i0(φL) ≤

1
2(dimφ − i1(φ) − 2rs ).

Taking L = k̄
(
so that i0(φL) =

[ 1
2 dimφ

])
, we see that i1(φ) ≤ 2rs , which

gives a proof of Hoffmann’s Conjecture 1.2 in this setting (see [Vishik 2011,
Theorem 2.5.])

We expect, in fact, that Theorem 7.1 extends verbatim to our setting. Henceforth,
let us assume that p = 2. We state the following:

Conjecture 7.3. Let φ be an anisotropic quasilinear quadratic form of dimension
≥ 2 over F , and write dimφ− i1(φ) = 2r1 − 2r2 + · · · + (−1)s−12rs for uniquely
determined integers r1 > r2 > · · · > rs−1 > rs + 1 ≥ 1. Let 1 ≤ l ≤ s, and put
Dl =

∑l−1
i=1(−1)i−12ri−1

+ ε(l)
∑s

j=l(−1) j−12rj , where ε(l) = 1 (resp. ε(l) = 0)
if l is even (resp. odd). If L is any field extension of F , then we either have
i0(φL)≥ Dl + i1(φ) or i0(φL)≤ Dl .

This expectation is partly justified by:

Proposition 7.4. Conjecture 7.3 holds for l ≤ 2.

Proof. As in Examples 7.2(1) (resp. (2)), the l = 1 (resp. l = 2) case is nothing else
but Lemma 4.1 (resp. Theorem 3.18). �

At present, we do not have a general approach to the l > 2 case of Conjecture 7.3.
Using Theorem 1.3, however, we can provide further evidence for the l = s case.
First, it is worth stating here the following lemma:

Lemma 7.5. In order to prove Conjecture 7.3, we may assume that i1(φL)≥ i1(φ).

Proof. Suppose that the statement of the conjecture fails to hold. In other words,
suppose that i1(φ) > 1 and i0(φL) = Dl + t for some 1 ≤ t < i1(φ). Note that
we necessarily have rs > 0 by Theorem 1.3. Now, let σ = (φL)an. Since D(σ )
is spanned by elements of D(φ), there exists a subform ρ ⊂ φ such that σ ' ρL
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(see Lemma 2.2). Let ψ be any codimension-(t − 1) subform of φ containing ρ.
By construction, we have D(ψL) ⊆ D(φL) = D(σ ) = D(ρL) ⊆ D(ψL), whence
D(ψL)=D(σ ), or, equivalently, (ψL)an'σ . In particular, we have i0(ψL)=Dl+1.
On the other hand, since t < i1(φ), ψ is a neighbor of φ, and so dimψ − i1(ψ)=

dimφ − i1(φ) = 2r1 − 2r2 + · · · + (−1)s−12rs (Proposition 3.10). We therefore
conclude that the statement of the conjecture also fails for the triple (ψ, l, L). Since
we are looking to produce a contradiction, we can replace φ by ψ in order to arrive
at the case where t = 1. In this case, we claim that i1(φL) ≥ i1(φ). To see this,
note first that L(φ) is L-isomorphic to a purely transcendental extension of L(σ )
(Remarks 2.6(3)). In view of Lemma 2.26, it follows that i1(φL) = i1(σL(φ)). In
particular, we have i0(φL(φ))= i0(φL)+ i0(σL(φ))= i0(φL)+ i1(φL). The statement
of Proposition 3.16 may therefore be rewritten here as

i1(φL)+ i0(φL)− i1(φ)≥min
{
i0(φL),

[ 1
2(dimφ− i1(φ)+ 1)

]}
. (7-1)

But, since rs > 0, we have i0(φL)= Dl+1≤ 2r1−1
−2r2−1

+· · ·+ (−1)s−12rs−1
=

1
2(dimφ− i1(φ)). Inequality (7-1) therefore yields the desired assertion, and so the
lemma is proved. �

We can now prove:

Proposition 7.6. Conjecture 7.3 holds when l = s and L = F(Q) is the function
field of any integral (affine or projective) quadric Q over F.

Proof. In view of Lemma 2.26, the statement of the conjecture is stable under
replacing F by any separable extension of itself. We may therefore assume that
L is a purely inseparable quadratic extension of F . By Lemma 7.5, we may also
assume that i1(φL)≥ i1(φ). Suppose now that the statement fails to hold, so that
i1(φ) > 1 and i0(φL)= Ds + t for some 1≤ t < i1(φ). We then have

dim (φL)an =

{
2r1−1

− 2r2−1
+ · · ·− 2rs−2−1

+ 2rs−1−1
+ i1(φ)− t if s is even,

2r1−1
− 2r2−1

+ · · ·− 2rs−1−1
+ 2rs + i1(φ)− t if s is odd.

Since i1(φL)≥ i1(φ), and since 1≤ i1(φ)− t < i1(φ), Theorem 1.3 implies that

i1(φL)≥

{
2rs−1−1

+ i1(φ)− t if s is even,
2rs + i1(φ)− t if s is odd,

from which we conclude that

i0(φL)+ i1(φL)≥

{
2r1−1

− 2r2−1
+ · · ·+ 2rs−1−1

+ i1(φ) if s is even,
2r1−1

− 2r2−1
+ · · ·+ 2rs−2−1

+ i1(φ) if s is odd.
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But i0(φL)+i1(φL)= i0(φL(φ))= i1(φ)+i0((φ1)L(φ)) (see the proof of Lemma 7.5),
and so we have

i0((φ1)L(φ))≥

{
2r1−1

− 2r2−1
+ · · ·+ 2rs−1−1 if s is even,

2r1−1
− 2r2−1

+ · · ·+ 2rs−2−1 if s is odd.

Either way, we see that i0((φ1)L(φ)) > 2r1−1
− 2r2−1

+ · · · + (−1)s−12rs−1
=

1
2(dimφ−i1(φ))=

1
2 dimφ1. Since L(φ) is a purely inseparable quadratic extension

of F(φ), this is impossible by Lemma 2.27(5), and so the result follows. �

In general, it suffices to prove Conjecture 7.3 in the case where L is a finite
purely inseparable extension of F . Proposition 7.6 shows that the l = s case of the
conjecture holds for degree-2 purely inseparable extensions. More generally, the
proposition covers the case where ndeg(φL)=

1
2 ndeg(φL). Indeed, using Lemmas

2.26 and 2.27(3), one can easily reduce this case to that of a quadratic extension.

Acknowledgements

This work was carried out while I was a visiting postdoctoral fellow at Max-Planck-
Institut für Mathematik in Bonn. I would like to thank this institution for its support
and hospitality throughout the duration of my stay.

References

[EGA II 1961] A. Grothendieck, “Eléments de géométrie algébrique, II: Étude globale élémentaire de
quelques classes de morphismes”, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 5–222. MR 0163909
Zbl 0118.36206

[Elman et al. 2008] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric the-
ory of quadratic forms, American Mathematical Society Colloquium Publications 56, American
Mathematical Society, Providence, RI, 2008. MR 2427530 Zbl 1165.11042

[Haution 2013] O. Haution, “On the first Steenrod square for Chow groups”, Amer. J. Math. 135:1
(2013), 53–63. MR 3022956 Zbl 1267.14012

[Haution 2015] O. Haution, “Detection by regular schemes in degree two”, Algebr. Geom. 2:1 (2015),
44–61. MR 3322197 Zbl 1322.14036

[Hoffmann 1995] D. W. Hoffmann, “Isotropy of quadratic forms over the function field of a quadric”,
Math. Z. 220:3 (1995), 461–476. MR 1362256 Zbl 0840.11017

[Hoffmann 2004] D. W. Hoffmann, “Diagonal forms of degree p in characteristic p”, pp. 135–183 in
Algebraic and arithmetic theory of quadratic forms, edited by R. Baeza et al., Contemp. Math. 344,
American Mathematical Society, Providence, RI, 2004. MR 2058673

[Hoffmann and Laghribi 2004] D. W. Hoffmann and A. Laghribi, “Quadratic forms and Pfister
neighbors in characteristic 2”, Trans. Amer. Math. Soc. 356:10 (2004), 4019–4053. MR 2058517
Zbl 1116.11020

[Hoffmann and Laghribi 2006] D. W. Hoffmann and A. Laghribi, “Isotropy of quadratic forms over
the function field of a quadric in characteristic 2”, J. Algebra 295:2 (2006), 362–386. MR 2194958
Zbl 1138.11012

[Izhboldin 2004] O. T. Izhboldin, “Virtual Pfister neighbors and first Witt index”, pp. 131–142 in
Geometric methods in the algebraic theory of quadratic forms, edited by J.-P. Tignol, Lecture Notes
in Math. 1835, Springer, Berlin, 2004. MR 2066517 Zbl 1053.11033

http://www.numdam.org/numdam-bin/item?id=PMIHES_1961__8__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1961__8__5_0
http://msp.org/idx/mr/0163909
http://msp.org/idx/zbl/0118.36206
http://msp.org/idx/mr/2427530
http://msp.org/idx/zbl/1165.11042
http://dx.doi.org/10.1353/ajm.2013.0003
http://msp.org/idx/mr/3022956
http://msp.org/idx/zbl/1267.14012
http://dx.doi.org/10.14231/AG-2015-003
http://msp.org/idx/mr/3322197
http://msp.org/idx/zbl/1322.14036
http://dx.doi.org/10.1007/BF02572626
http://msp.org/idx/mr/1362256
http://msp.org/idx/zbl/0840.11017
http://dx.doi.org/10.1090/conm/344/06214
http://msp.org/idx/mr/2058673
http://dx.doi.org/10.1090/S0002-9947-04-03461-0
http://dx.doi.org/10.1090/S0002-9947-04-03461-0
http://msp.org/idx/mr/2058517
http://msp.org/idx/zbl/1116.11020
http://dx.doi.org/10.1016/j.jalgebra.2004.02.038
http://dx.doi.org/10.1016/j.jalgebra.2004.02.038
http://msp.org/idx/mr/2194958
http://msp.org/idx/zbl/1138.11012
http://dx.doi.org/10.1007/978-3-540-40990-8_4
http://msp.org/idx/mr/2066517
http://msp.org/idx/zbl/1053.11033


1132 Stephen Scully

[Izhboldin and Vishik 2000] O. Izhboldin and A. Vishik, “Quadratic forms with absolutely maximal
splitting”, pp. 103–125 in Quadratic forms and their applications (Dublin, 1999), edited by E.
Bayer-Fluckiger et al., Contemp. Math. 272, American Mathematical Society, Providence, RI, 2000.
MR 1803363 Zbl 0972.11017

[Karpenko 2003] N. A. Karpenko, “On the first Witt index of quadratic forms”, Invent. Math. 153:2
(2003), 455–462. MR 1992018 Zbl 1032.11016

[Karpenko and Merkurjev 2003] N. Karpenko and A. Merkurjev, “Essential dimension of quadrics”,
Invent. Math. 153:2 (2003), 361–372. MR 1992016 Zbl 1032.11015

[Knebusch 1976] M. Knebusch, “Generic splitting of quadratic forms, I”, Proc. London Math. Soc. (3)
33:1 (1976), 65–93. MR 0412101 Zbl 0351.15016

[Laghribi 2004a] A. Laghribi, “On splitting of totally singular quadratic forms”, Rend. Circ. Mat.
Palermo (2) 53:3 (2004), 325–336. MR 2165184 Zbl 1097.11017

[Laghribi 2004b] A. Laghribi, “Quasi-hyperbolicity of totally singular quadratic forms”, pp. 237–248
in Algebraic and arithmetic theory of quadratic forms, edited by R. Baeza et al., Contemp. Math.
344, American Mathematical Society, Providence, RI, 2004. MR 2060200 Zbl 1143.11313

[Laghribi 2006] A. Laghribi, “The norm theorem for totally singular quadratic forms”, Rocky Moun-
tain J. Math. 36:2 (2006), 575–592. MR 2234821 Zbl 1142.11020

[Laghribi 2007] A. Laghribi, “Sur le déploiement des formes bilinéaires en caractéristique 2”, Pacific
J. Math. 232:1 (2007), 207–232. MR 2358037 Zbl 1214.11044

[Lang 2002] S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics 211, Springer, New York,
2002. MR 1878556 Zbl 0984.00001

[Merkurjev 2003] A. Merkurjev, “Steenrod operations and degree formulas”, J. Reine Angew. Math.
565 (2003), 13–26. MR 2024643 Zbl 1091.14006

[Scully 2013] S. Scully, “Rational maps between quasilinear hypersurfaces”, Compos. Math. 149:3
(2013), 333–355. MR 3040743 Zbl 1315.11025

[Scully 2016] S. Scully, “On the splitting of quasilinear p-forms”, J. Reine Angew. Math. 713 (2016),
49–83.

[Totaro 2008] B. Totaro, “Birational geometry of quadrics in characteristic 2”, J. Algebraic Geom.
17:3 (2008), 577–597. MR 2395138 Zbl 1144.11031

[Totaro 2009] B. Totaro, “Birational geometry of quadrics”, Bull. Soc. Math. France 137:2 (2009),
253–276. MR 2543476 Zbl 1221.14014

[Vishik 1998] A. Vishik, “Integral motives of quadrics”, preprint 1998-13, Max Planck Institute for
Mathematics, 1998, available at https://www.mpim-bonn.mpg.de/preblob/286.

[Vishik 1999] A. Vishik, “Direct summands in the motives of quadrics”, preprint, 1999, available at
https://www.maths.nottingham.ac.uk/personal/av/Papers/dirsumE.pdf.

[Vishik 2004] A. Vishik, “Motives of quadrics with applications to the theory of quadratic forms”,
pp. 25–101 in Geometric methods in the algebraic theory of quadratic forms, edited by J.-P. Tignol,
Lecture Notes in Math. 1835, Springer, Berlin, 2004. MR 2066515 Zbl 1047.11033

[Vishik 2011] A. Vishik, “Excellent connections in the motives of quadrics”, Ann. Sci. Éc. Norm.
Supér. (4) 44:1 (2011), 183–195. MR 2760197 Zbl 1223.14005

Communicated by Raman Parimala
Received 2015-08-07 Revised 2016-02-24 Accepted 2016-03-24

sscully@ualberta.ca Department of Mathematical and Statistical Sciences,
University of Alberta, Edmonton AB T6G 2G1, Canada

mathematical sciences publishers msp

http://dx.doi.org/10.1090/conm/272/04399
http://dx.doi.org/10.1090/conm/272/04399
http://msp.org/idx/mr/1803363
http://msp.org/idx/zbl/0972.11017
http://dx.doi.org/10.1007/s00222-003-0294-7
http://msp.org/idx/mr/1992018
http://msp.org/idx/zbl/1032.11016
http://dx.doi.org/10.1007/s00222-003-0292-9
http://msp.org/idx/mr/1992016
http://msp.org/idx/zbl/1032.11015
http://dx.doi.org/10.1112/plms/s3-33.1.65
http://msp.org/idx/mr/0412101
http://msp.org/idx/zbl/0351.15016
http://dx.doi.org/10.1007/BF02875725
http://msp.org/idx/mr/2165184
http://msp.org/idx/zbl/1097.11017
http://dx.doi.org/10.1090/conm/344/06220
http://msp.org/idx/mr/2060200
http://msp.org/idx/zbl/1143.11313
http://dx.doi.org/10.1216/rmjm/1181069468
http://msp.org/idx/mr/2234821
http://msp.org/idx/zbl/1142.11020
http://dx.doi.org/10.2140/pjm.2007.232.207
http://msp.org/idx/mr/2358037
http://msp.org/idx/zbl/1214.11044
http://dx.doi.org/10.1007/978-1-4613-0041-0
http://msp.org/idx/mr/1878556
http://msp.org/idx/zbl/0984.00001
http://dx.doi.org/10.1515/crll.2003.098
http://msp.org/idx/mr/2024643
http://msp.org/idx/zbl/1091.14006
http://dx.doi.org/10.1112/S0010437X12000632
http://msp.org/idx/mr/3040743
http://msp.org/idx/zbl/1315.11025
http://dx.doi.org/10.1515/crelle-2013-0121
http://dx.doi.org/10.1090/S1056-3911-08-00472-4
http://msp.org/idx/mr/2395138
http://msp.org/idx/zbl/1144.11031
http://msp.org/idx/mr/2543476
http://msp.org/idx/zbl/1221.14014
https://www.mpim-bonn.mpg.de/preblob/286
https://www.maths.nottingham.ac.uk/personal/av/Papers/dirsumE.pdf
http://dx.doi.org/10.1007/978-3-540-40990-8_2
http://msp.org/idx/mr/2066515
http://msp.org/idx/zbl/1047.11033
http://msp.org/idx/mr/2760197
http://msp.org/idx/zbl/1223.14005
mailto:sscully@ualberta.ca
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 10:5 (2016)

dx.doi.org/10.2140/ant.2016.10.1133

K3 surfaces over finite fields
with given L-function

Lenny Taelman

The zeta function of a K3 surface over a finite field satisfies a number of obvious
(archimedean and `-adic) and a number of less obvious (p-adic) constraints. We
consider the converse question, in the style of Honda–Tate: given a function Z
satisfying all these constraints, does there exist a K3 surface whose zeta-function
equals Z? Assuming semistable reduction, we show that the answer is yes if we
allow a finite extension of the finite field. An important ingredient in the proof is
the construction of complex projective K3 surfaces with complex multiplication
by a given CM field.

Introduction

Let X be a K3 surface over Fq . The zeta function of X has the form

Z(X/Fq , T )=
1

(1− T )L(X/Fq , qT )(1− q2T )

where the polynomial L(X/Fq) is defined by

L(X/Fq , T ) := det
(
1− T Frob,H2(XFq

,Q`(1))
)
∈Q[T ].

We have L(X/Fq , T ) =
∏22

i=1(1− γi T ) with the γi of complex absolute value 1.
The polynomial L(X/Fq , T ) factors in Q[T ] as L = LalgL trc with

Lalg(X/Fq , T )=
∏
γi∈µ∞

(1− T γi ), L trc(X/Fq , T )=
∏
γi 6∈µ∞

(1− T γi ),

where µ∞ is the group of complex roots of unity.

Theorem 1. Let X be a K3 surface over Fq with q = pa . Assume that X is not
supersingular. Then

(1) all complex roots of L trc(X/Fq , T ) have absolute value 1;

(2) no root of L trc(X/Fq , T ) is a root of unity;

MSC2010: primary 14J28; secondary 14G15, 14K22, 11G25.
Keywords: K3 surfaces, zeta functions, finite fields.
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(3) L trc(X/Fq , T ) ∈ Z`[T ] for all ` 6= p;

(4) the Newton polygon of L trc(X/Fq , T ) at p is of the form

h 2d − h 2d

−a

with h and d integers satisfying 1≤ h ≤ d ≤ 10;

(5) L trc(X/Fq , T )= Qe for some e > 0 and some irreducible Q ∈Q[T ], and Q
has a unique irreducible factor in Qp[T ] with negative slope.

The above theorem collects results of Deligne, Artin, Mazur, Yu and Yui, and
slightly expands on these, see Section 1 for the details. The integer h in the theorem
is the height of X (which is finite by the assumption that X is not supersingular),
and assuming the Tate conjecture (which is now known in almost all cases [Charles
2013; 2014; Madapusi Pera 2015]) the Picard rank of XFq

is 22− 2d.

Definition 2 (Property (?)). A K3 surface X over a finite extension k of Qp is said
to satisfy (?) if there exists a finite extension k ⊂ ` and a proper flat algebraic space
X→ SpecO` such that

(1) X×SpecO`
Spec `∼= X ×Spec k Spec `,

(2) X is regular,

(3) the special fiber of X is a reduced normal crossings divisor with smooth
components,

(4) ωX/O`
∼=OX.

Property (?) is a strong form of potential semistability. It is expected that every
X satisfies (?), but this is presently only known for special classes of K3 surfaces,
see [Maulik 2014, §4] and [Liedtke and Matsumoto 2015, §2]. Our main result is
the following partial converse to Theorem 1.

Theorem 3. Assume every K3 surface X over a p-adic field satisfies (?). Let

L =
2d∏

i=1

(1− γi T ) ∈ 1+ T Q[T ]

be a polynomial which satisfies properties (1)–(5) of Theorem 1. Then there exists a
positive integer n and a K3 surface X over Fqn such that

L trc(X/Fqn , T )=
2d∏

i=1

(1− γ n
i T ).
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The proof of Theorem 3 follows the same strategy as the proof of the Honda–Tate
theorem [Tate 1971]: given L trc, one constructs a K3 surface over a finite field by
first producing a complex projective K3 surface with CM by a suitably chosen CM
field, then descending it to a number field, and finally reducing it to the residue field
at a suitably chosen prime above p. In the final step a criterion of good reduction
is needed, which has been obtained recently by Matsumoto [2015] and Liedtke and
Matsumoto [2015], under the assumption (?).

A crucial intermediate result, that may be of independent interest, is the following
theorem.

Theorem 4. Let E be a CM field with [E :Q] ≤ 20. Then there exists a K3 surface
over C with CM by E.

See Section 2 for the definition of “CM by E”, and see Section 3 for the proof
of this theorem.

Remark 5. I do not know if one can take n= 1 in Theorem 3. Finite extensions are
used in several parts of the proof, both in constructing a K3 surface X over some
finite field, and in verifying that the action of Frobenius on H2 is the prescribed one.

Recently Kedlaya and Sutherland [2015] obtained some computational evidence
suggesting that the theorem might hold with n=1. They enumerated all polynomials
L satisfying (1)–(5) with q = 2, deg L = deg Q = 20 and with L(1) = 2 and
L(−1) 6= 2. There are 1995 such polynomials. If L = L trc(X/F2, T ) for a K3
surface over F2, then the Artin–Tate formula [Milne 1975; Elsenhans and Jahnel
2015] puts strong restrictions on the Néron–Severi lattice of X . These restrictions
suggest that X should be realizable as a smooth quartic, and indeed for each of the
1995 polynomials Kedlaya and Sutherland manage to identify a smooth quartic X
defined over F2 with L = L trc(X/F2, T ).

If one can take n = 1 in Theorem 3, then new ideas will be needed to prove this.
Indeed, there is no reason at all that the X constructed in the current proof is defined
over Fq . A similar problem occurs in the proof of the Honda-Tate theorem [Tate
1971]: given a q-Weil number one first constructs an abelian variety over a finite
extension of Fq , and then identifies the desired abelian variety as a simple factor of
the Weil restriction to Fq . Perhaps a variation of this argument in the context of
hyperkähler varieties can be made to work in our setting?

Remark 6. By the work of Madapusi Pera [2015], for every d there is an étale map
M2d → Sh2d from the moduli space of quasipolarized K3 surfaces of degree 2d to
a an integral model of a certain Shimura variety, over Z[1/2]. It is surjective over
C, and assuming (?), one can deduce from the criterion of Liedtke and Matsumoto
that it is surjective on Fp-points. In odd characteristic, Kottwitz [1990] and Kisin
[2013] have given a group-theoretic description of the isogeny classes in Sh2d(Fp),
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for every d . With arguments similar to those in Section 3, it should be possible to
deduce Theorem 1 and Theorem 3 from the above results.

1. p-adic properties of zeta functions of K3 surfaces

1.1. Recap on the formal Brauer group of a K3 surface. Let X be a K3 surface
over a field k. Artin and Mazur [1977] have shown that the functor

R 7→ ker (Br X R→ Br X)

on Artinian k-algebras is prorepresentable by a (one-dimensional) formal group
B̂r X over k. This formal group is called the formal Brauer group of X .

Assume now that k is a perfect field of characteristic p > 0 and that X is not
supersingular. Then B̂r X has finite height h satisfying 1≤ h ≤ 10. We denote by
D(B̂r X) the (covariant) Dieudonné module of B̂r X . This has the structure of an
F-crystal over k. It is free of rank h over the ring W of Witt vectors of k.

We denote by H2
crys(X/W )<1 the maximal sub-F-crystal of H2

crys(X/W ) that
has all slopes < 1.

Proposition 7. If X is not supersingular, then there is a canonical isomorphism

H2
crys(X/W )<1 ∼= D(B̂r X)

of F-crystals over k.

Proof. By [Illusie 1979, §7.2] there is a canonical isomorphism of F-crystals

H2
crys(X/W )= H2(X,WOX )⊕H1(X,W�1

X/k)⊕H0(X,W�2
X/k), (1)

coming from the de Rham–Witt complex, and by [Artin and Mazur 1977, Corol-
lary 4.3] we have an isomorphism of F-crystals

H2(X,WOX )= D(B̂r X).

Since B̂r X is a formal group, the slopes of H2(X,WOX )=D(B̂r X) are < 1. On
the other hand, since F is divisible by pi on H2−i (X,W�i

X/k), the slopes of the
other summands in (1) are ≥ 1. This proves the theorem. �

1.2. Proof of Theorem 1.

Proof. Property (2) holds by definition, (3) is a formal consequence of the trace
formula in `-adic cohomology (see, e.g., [Deligne 1974, §1]), and (1) is part of the
Weil conjectures [Deligne 1972; 1974].

The other properties make use of crystalline cohomology. Property (4) is well,
known. It follows for example from Mazur’s proof of “Newton above Hodge”
[Mazur 1972; 1973] for liftable varieties with torsion-free cohomology, see [Mazur
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1972, §2]. Property (5) is a sharpening of a result of Yu and Yui [2008, Proposi-
tion 3.2]. The argument is essentially the same as in [loc. cit.], we repeat it for
completeness.

For a polynomial Q =
∏
(1− γi T ) ∈Qp[T ] we denote by Q<0 the product

Q<0 =
∏

vp(γi )<0

(1− γi T ) ∈Qp[T ].

Let K be the field of fractions of W . If q = pa , then by Proposition 7 we have

L trc,<0 := L trc,<0(X/Fq , T )= detK
(
1− FaT, K ⊗W D(B̂r X)(1)

)
in Qp[T ] ⊂ K [T ]. Since B̂r X is a one-dimensional formal group of finite height,
the crystal D(B̂r X) is indecomposable. It follows that the endomorphism Fa of
D(B̂r X) has an irreducible minimum polynomial over K , and hence L trc,<0 = Pe

<0
for some irreducible P<0 ∈ Qp(T ). Let Q be an irreducible factor of L trc. Then
Q has a reciprocal root γ with vp(γ ) < 0, for otherwise the roots of Q would be
algebraic integers and hence roots of unity. In particular Q<0 = P<0. Apparently
any two irreducible factors of L trc share a common root, hence L trc = Qe. This
proves (5). �

2. CM theory of K3 surfaces

This section collects results of Zarhin, Shafarevich and Rizov.

2.1. Hodge theoretic aspects. For a projective K3 surface X over C we denote
by NS(X) its Néron–Severi group and by T(X)⊂ H2(X,Z(1)) the transcendental
lattice, i.e., T(X) is the orthogonal complement of NS(X). We have a decomposition

H2(X,Q(1))= NS(X)Q⊕ T(X)Q.

The Hodge structure T(X)Q is irreducible [Zarhin 1983, Theorem 1.4.1]. The cup
product pairing defines even symmetric bilinear forms on NS(X) and T(X) of
signature (1, ρ− 1) and (2, 20− ρ), with ρ = rk NS(X).

Proposition 8 [Zarhin 1983, §2]. Let X be a projective K3 surface over C. Then
the following are equivalent:

(1) The Hodge group of T(X)Q is commutative.

(2) E := EndHS T(X)Q is a CM field and dimE T(X)Q = 1. �

Definition 9. If X satisfies the equivalent conditions (1) and (2) of Proposition 8,
then we say that X is a K3 surface with CM (by E).

Remark 10. Another equivalent condition is that T(X)Q is contained in the Tan-
nakian category of Hodge structures generated by the H1 of CM abelian varieties.
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If E is a CM field, then we denote the canonical complex conjugation of E by
z 7→ z̄, and its fixed field by E0. We have [E : E0] = 2, and E0 is a totally real
number field.

Proposition 11. Let X be a K3 surface with CM by E. Then

(1) ax · y = x · ā y for all a ∈ E and x, y ∈ T(X)Q;

(2) the group of Hodge isometries of T(X)Q is ker(Nm : E×→ E×0 ).

Proof. The cup product pairing induces an isomorphism

T(X)Q −→∼ Hom(T(X)Q,Q)

of Hodge structures, and hence the action of E on T(X) induces an “adjoint”
homomorphism ϕ : E→ E such that ax · y = x ·ϕ(a)y. Considering the induced
action on H0,2(X) one sees that ϕ(a) = ā, which proves the first assertion. The
second is an immediate consequence of the first. �

2.2. Arithmetic aspects: the Main Theorem of CM. Let X be a K3 surface over
C with CM by E . Consider the algebraic torus G over Q which is the kernel of
the norm map E×→ E×0 (seen as map of tori over Q). Then G(Q) is the group of
E-linear isometries of T(X)Q.

If X is defined over a subfield k ⊂ C, then we have canonical isomorphisms

H2
et(X k̄,Q`(1))= H2(X (C),Q(1))⊗Q Q`.

Since the Galois action on the left-hand side respects the intersection pairing and
the subgroup NS(X k̄)=NS(XC), we see that both Galk and G(Q`) act on T(X)Q`

.
If we denote by A f the finite adèles of Q, i.e., A f =Q⊗ Ẑ, then we obtain actions
of Galk and G(A f ) on T(X)A f .

Theorem 12 (Main Theorem of CM for K3 surfaces [Rizov 2010]). There exists a
number field k ⊂ C containing E such that

(1) X is defined over k,

(2) the Galois action on T(X)A f factors over a map ρ : Galk→ G(A f )

(3) the diagram

Galk GalE A×E, f /E×

G(A f ) G(A f )/G(Q)

ρ

CFT

z 7→z̄/z

commutes.
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Proof. This is a reformulation of [Rizov 2010, Corollary 3.9.2]. Note however that
the stated definition of complex multiplication [Rizov 2010, Definition 1.4.3] needs
to be corrected (the condition dimE TQ = 1 is missing) for the proof and statement
to be correct. �

Remark 13. A priori, the moduli space of polarized complex K3 surfaces has two
natural models over Q: the “canonical model” of the theory of Shimura varieties
[Deligne 1971, §3], which is defined in terms of the Galois action on special points,
and the model coming from the moduli interpretation. The essential content of
Theorem 12 is that these two models coincide. (See also [Madapusi Pera 2015, §3]).

3. Existence of K3 surface with CM by a given CM field

In this section we prove Theorem 4. By the surjectivity of the period map for K3
surfaces, this reduces to a problem about quadratic forms over Q.

3.1. Invariants of quadratic forms over Q. We quickly recall some basic facts
about quadratic forms over Q. We refer to [Cassels 1978; Scharlau 1985; Serre
1970] for details and proofs. Let k be a field of characteristic different from 2. A
quadratic space over k is a pair V = (V, q) consisting of a finite-dimensional vector
space over k and a nondegenerate symmetric bilinear form q : V ×V → k. To such
a space one associates the following invariants:

(1) the dimension dim(V );

(2) the determinant det(V ) ∈ k×/k×2;

(3) the Hasse invariant w(V ) ∈ Br(k)[2].

Any form V over k is isomorphic to a diagonal form 〈α1, . . . , αn〉 with n = dim V ,
and for such a form the invariants are

det(V )=
∏

i

αi ∈ k×/k×2,

w(V )=
∑
i< j

(αi , α j )k ∈ Br(k)[2],

where (α, β)k denotes the class of the quaternion algebra generated by i and j with
i2
= α, j2

= β, i j =− j i .
We denote the orthogonal sum of two quadratic spaces by V ⊕W .

Lemma 14. Let V and W be quadratic spaces over k. Then

(1) det(V ⊕W )= det(V ) det(W );

(2) w(V ⊕W )= w(V )+w(W )+ (det(V ), det(W ))k .

Proof. This follows from the above formulas for the determinant and Hasse invariant
of a diagonal quadratic form, and the bilinearity of (α, β)k . �
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Theorem 15. Two forms over Qp are isomorphic if and only if they have the same
dimension, determinant and Hasse invariant. For every d ≥ 3, δ ∈ Q×p /Q

×2
p

and w ∈ Br(Qp)[2] there exists a form of dimension d, determinant δ and Hasse
invariant w. �

If k =Q then a fourth invariant is given by the signature of the form VR.

Theorem 16. Two forms over Q are isomorphic if and only if they have the same
signature, determinant, and Hasse invariant. All forms V over Q of signature (r, s)
satisfy

(1) the sign of δ(V ) is (−1)s ;

(2) the image of w(V ) in Br(R)[2] = Z/2Z is s(s− 1)/2 mod 2.

If r + s ≥ 3, and if δ and w satisfy (1) and (2) above, then there exists a quadratic
space over Q with signature (r, s), determinant δ and Hasse invariant w. �

Lemma 17. For 3K 3,Q =Q⊗Z 3K 3, the Hasse invariant w(3K 3,Q) ∈ Br(Q)[2]
is the class of the quaternion algebra (−1,−1)Q, and det(3K 3,Q)=−1.

Proof. We have 3K 3 ∼= (−E8)⊕ (−E8)⊕U ⊕U ⊕U where U is the standard
hyperbolic plane. Using this explicit description, one computes (over Q) an orthog-
onal basis, and computes the invariants using the formula for diagonal forms. �

3.2. The form qλ. Let E be a CM field with maximal totally real subfield E0. Put
d := [E0 : Q]. Denote by z 7→ z̄ the complex conjugation on E . For λ ∈ E×0 the
map

qλ : E × E 7→Q, (x, y) 7→ trE0/Q(λx ȳ)

is a nondegenerate symmetric bilinear form over Q.
We denote the discriminant of the number field E by 1(E/Q).

Lemma 18 [Bayer-Fluckiger 2014, Lemma 1.3.2].

det(qλ)= (−1)d 1(E/Q) in Q×/Q×2.

Lemma 19. If λ ∈ E×0 has signature (r, s), then qλ has signature (2r, 2s). �

3.3. Construction of a K3 surface with CM by E. A key ingredient in the proof
of Theorem 4 is the following proposition on rational quadratic forms. I am grateful
to Eva Bayer for pointing me to her work on maximal tori in orthogonal groups
[Bayer-Fluckiger 2014], and for explaining how it simplifies an earlier version of
the proof below.

Proposition 20. Let E be a CM field with maximal totally real subfield E0, and
assume d := [E0 :Q] ≤ 10. Then there exists a λ ∈ E×0 of signature (1, d − 1) and
a quadratic space V such that, as quadratic spaces over Q,

(E, qλ) ⊕ V ∼= 3K 3,Q �
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Proof. If d < 10 then we claim that for every choice of λ a complement V exists.
Indeed, given a choice of λ, then the dimension, signature, determinant and Hasse
invariant of V are determined by Lemma 14. These invariants satisfy conditions (1)
and (2) of Theorem 16 because they are satisfied by the invariants of (E, qλ) and
3K 3,Q. Since dim(V ) > 2, the theorem then guarantees the existence of a form V
with (E, qλ)⊕ V ∼=3K 3,Q.

So we assume d = 10. Let δ =1(E/Q) ∈Q×/Q×2. Note that δ > 0 (since d is
even). Consider the diagonal quadratic space V = 〈−1, δ〉. By the same reasoning
as above, there exists a unique quadratic space W of dimension 20 such that

W ⊕ 〈−1, δ〉 ∼= 3K 3,Q.

We will show that W can be realized as (E, qλ) for a suitable choice of λ ∈ E×0 .
Note that W has signature (2, 18), so by Lemma 19 the scalar λ will automatically
have signature (1, 9).

By Corollary 4.0.3 and Proposition 1.3.1 of [Bayer-Fluckiger 2014], there exists
a λ with (E, qλ)∼=W if and only if the following three conditions hold:

(1) the signature of W is even;

(2) disc(W )= δ;

(3) for every prime p such that all places of E0 above p split in E , we have that
WQp is isomorphic to an orthogonal sum of 10 hyperbolic planes.

Our W clearly satisfies the first two conditions. For the third, consider a prime p
such that all places of E0 above p split in E . Then the image of δ in Q×p /Q

×2
p is 1.

Together with Lemma 14 and Lemma 17 this allows us to compute the invariants of
WQp , and we find det(WQp)= 1 and w(WQp)= (−1,−1)Qp . These are the same
as the invariants for 10 copies of the hyperbolic plane, so with Theorem 15 we see
that W satisfies the third condition, which finishes the proof of the proposition. �

Finally, we show that for every CM field E of degree at most 20 there exists a
projective K3 surface X with CM by E .

Proof of Theorem 4. Choose λ ∈ E0 and V as in Proposition 20. This guarantees
that there exists an integral lattice

3⊂ (E, qλ)⊕ V

with 3 ∼= 3K 3. Choose such a 3, and choose an embedding ε : E ↪→ C with
ε(λ) > 0. Then we have a splitting

3C = Cε ⊕ Cε ⊕ (⊕σ 6=ε,εCσ ) ⊕ VC.

We make 3 into a pure Z-Hodge structure of weight 0 by declaring Cε to be of
type (1,−1), its conjugate Cε of type (−1, 1), and all the other terms of type (0, 0).
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By construction, the bilinear form 3⊗3→ Z is a morphism of Hodge structures.
Note that E acts on E ⊂ 3Q via Hodge structure endomorphisms, so that E is
irreducible and hence

30,0
∩3Q = V .

For every nonzero z ∈H2,0 we have z · z̄ ∈R>0 since ε(λ)> 0, so that the surjectivity
of the period map [Todorov 1980] gives the existence of a complex analytic K3
surface X and a Hodge isometry 3 ∼= H2(X,Z(1)). A priori, it may not be clear
that X is algebraic. However, as Pic(X)Q ∼= V has signature (1, 21− 2d), there
exists an h ∈ Pic(X) with h · h > 0. By [Barth et al. 2004, Theorem IV.6.2] this
implies that the surface X is projective. By construction, X is a K3 surface with
CM by E . �

Remark 21. A similar construction has been used by Piatetski-Shapiro and Sha-
farevich [1973, §3] in showing the existence of some K3 surfaces with CM. The
new ingredients that allow us to obtain a stronger result are the use of rational (as
opposed to integral) quadratic forms, the results of Bayer on quadratic forms qλ,
and the use of the algebraicity criterion from [Barth et al. 2004], which avoids the
delicate question of identifying an ample h ∈ Pic(X).

4. Existence of K3 surface with given Ltrc

In this section we will prove Theorem 3. So let

L =
2d∏

i=1

(1− γi T ) ∈ 1+ T Q[T ]

be a polynomial satisfying properties (1)–(5) of Theorem 1. Consider the number
field F :=Q(γ1).

Lemma 22. F is a CM field and γ 1γ1 = 1.

Proof. The image γ of γ1 under any homomorphism F→C satisfies |γ | = 1, hence
γ = γ−1. Moreover γ cannot be real, since then γ =±1, contradicting the fact that
γ1 is not a root of unity. It follows that F is a CM field with complex conjugation
γ1 7→ γ−1

1 . �

By property (5), the number field F has a unique valuation v above the prime p
such that v(γ1) < 0.

Lemma 23. There exists an extension E of F with [E :Q] = 2d, and such that

(1) E is a CM field;

(2) the valuation v has a unique extension to E.
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Proof. Let F0 be the maximal totally real subfield of F . Let v0 be the place of F0

under v. Now choose a polynomial P(X) ∈ F0[X ] such that

(1) deg P = e;

(2) P has e real roots for every embedding F0 ↪→ R;

(3) P is irreducible in (F0)v0[X ].

Note that v0 splits in F , since by the preceding lemma v̄(γ1) > 0 and hence v̄ 6= v.
In particular P(X) is irreducible in Fv[X ], and it follows that E := F[X ]/P(X) is
a field satisfying the desired conditions. �

We fix an E satisfying the conditions of the lemma. Abusing notation, we will
denote the unique extension of v to E by the same symbol v.

Lemma 24. [Ev :Qp] = h.

Proof. Since L = Qe, and since v is the unique place with v(γ1) < 0, we see from
properties (4) and (5) in Theorem 1 that [Fv :Qp] = h/e. But [E : F] = e and v
has a unique extension to E , hence [Ev :Qp] = h. �

Let X be a K3 surface over C with CM by E . By the Main Theorem of CM
(Theorem 12) this surface is defined over a number field k containing E . Let w be
a place of k lying above v. We extend the commutative diagram of Theorem 12 to
include the local-global compatibility of class field theory:

Wkw WEv E×v

Galk GalE A×E, f /E×

G(A f ) G(A f )/G(Q)

LCFT

ρ

GCFT

z 7→z/z̄

(2)

Here Wkw ⊂ Galkw denotes the Weil group of the local field kw. Extending k if
necessary, we may assume that the residue field Fw is an extension of Fq .

Choose a prime ` 6= p. Then the image of inertia Ikw in G(Z`) is finite, hence
after replacing k by a finite extension, we may assume that the action of Galkw on
H2

et(X k̄,Q`(1)) is unramified.
Now assume Xkw satisfies (?). Then, replacing k once more by a finite extension,

we may assume by the criterion of Liedtke and Matsumoto [2015, Theorem 2.5]
that X has good reduction at w. Let X/Fw be the reduction of X/k at w.

Let σ ∈Wkw be a Frobenius element. Note that γ1 lies in G(Q)⊂ E×.

Proposition 25. There is an m > 0 such that for all ` 6= p we have in G(Q`)

ρ(σm)` = γ
m[Fw :Fq ]

1 .
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Proof. Let π ∈ E×v be the image of σ under the CFT map. Then

v(π)=
e(kw : Ev)
f (Ev :Qp)

.

The image of π in G(A f )/G(Q) is the class of the idèle

(1, . . . , 1, π, π−1, 1, . . . , 1) ∈ A×E, f ,

where π ∈ Ev̄ denotes the image of π under the isomorphism Ev→ Ev̄ induced by
complex conjugation on E .

We have v(γ1)=−[Fq : Fp]/h from which we compute

v(γ
[Fw :Fq ]

1 )=−v(π),

and hence v̄(γ [Fw :Fq ]

1 ) = v(π). Moreover, γ1 is a unit at all places of E different
from v and v̄. It follows that the idèle

α := γ
[Fw :Fq ]

1 · (1, . . . , 1, π, π, 1, . . . , 1) ∈ A×E, f .

lies in the maximal compact subgroup

K = {g ∈ (OE ⊗ Ẑ)× | gḡ = 1} ⊂ G(A f ).

Since Galk is compact also, ρ(σ) lies in K. From the commutativity of the dia-
gram (2) we conclude that ρ(σ)/α lies in the kernel of the map

K→ G(A f )/G(Q).

This kernel equals {g ∈O×E | gḡ = 1}, which is finite by the Dirichlet unit theorem.
We conclude that ρ(σm)= αm for some m, and hence

ρ(σm)` = γ
m
1

in G(Q`) for all ` 6= p. �

We have
L(X/Fw)= detQ`

(1− σT, H2
et(XFw

,Q`(1))).

Since none of the conjugates of γ1 are roots of unity, we conclude from the preceding
proposition that there is a finite extension Fw ⊂ F′w such that

L trc(XF′w
/F′w)= detQ(1− γ

[F′w :Fq ]

1 T, E),

or in other words
L trc(XF′w

/F′w)=
∏

i

(1− γ [F
′
w :Fq ]

i T ),

which finishes the proof of Theorem 3.
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poverhnosteĭ tipa K3”, Trudy Mat. Inst. Steklov. 132 (1973), 44–54. Translated as “The arith-
metic of surfaces of type K3” in Proc. Steklov Inst. Math. 132 (1973), 45–57. MR 49 #302
Zbl 0293.14010

[Rizov 2010] J. Rizov, “Kuga–Satake abelian varieties of K3 surfaces in mixed characteristic”, J.
Reine Angew. Math. 648 (2010), 13–67. MR 2012e:14089 Zbl 1208.14031

[Scharlau 1985] W. Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen
Wissenschaften 270, Springer, Berlin, 1985. MR 86k:11022 Zbl 0584.10010

[Serre 1970] J.-P. Serre, Cours d’arithmétique, Collection SUP: “Le Mathématicien” 2, Presses
Universitaires de France, Paris, 1970. Translated as A course in arithmetic, Graduate Texts in
Mathematics 7, Springer, New York, 1973. MR 41 #138 Zbl 0225.12002

[Tate 1971] J. Tate, “Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda)”,
pp. 95–110 in Séminaire Bourbaki 1968/1969 (Exposé 352), Lecture Notes in Mathematics 175,
Springer, Berlin, 1971. MR 3077121 Zbl 0212.25702

[Todorov 1980] A. N. Todorov, “Applications of the Kähler–Einstein–Calabi–Yau metric to moduli
of K3 surfaces”, Invent. Math. 61:3 (1980), 251–265. MR 82k:32065 Zbl 0472.14006

[Yu and Yui 2008] J.-D. Yu and N. Yui, “K3 surfaces of finite height over finite fields”, J. Math. Kyoto
Univ. 48:3 (2008), 499–519. MR 2010j:11099 Zbl 1174.14034

[Zarhin 1983] Y. G. Zarhin, “Hodge groups of K3 surfaces”, J. Reine Angew. Math. 341 (1983),
193–220. MR 84g:14009 Zbl 0506.14034

Communicated by Kiran S. Kedlaya
Received 2015-08-17 Revised 2015-11-27 Accepted 2015-12-27

l.d.j.taelman@uva.nl Korteweg-de Vries Instituut, Universiteit van Amsterdam,
P.O. Box 94248, 1090 GE Amsterdam, Netherlands

mathematical sciences publishers msp

http://www.math.harvard.edu/~kisin/dvifiles/lr.pdf
http://www.jmilne.org/math/Books/index.html#1990
http://msp.org/idx/mr/92b:11038
http://msp.org/idx/zbl/0743.14019
http://msp.org/idx/arx/1411.4797
http://dx.doi.org/10.1007/s00222-014-0557-5
http://msp.org/idx/mr/3370622
http://msp.org/idx/zbl/06480962
http://dx.doi.org/10.1007/s00209-014-1365-8
http://msp.org/idx/mr/3299851
http://msp.org/idx/zbl/1317.14089
http://dx.doi.org/10.1215/00127094-2804783
http://msp.org/idx/mr/3265555
http://msp.org/idx/zbl/1308.14043
http://dx.doi.org/10.1090/S0002-9904-1972-12976-8
http://msp.org/idx/mr/48:8507
http://msp.org/idx/zbl/0258.14006
http://dx.doi.org/10.2307/1970906
http://msp.org/idx/mr/48:297
http://msp.org/idx/zbl/0261.14005
http://dx.doi.org/10.2307/1971042
http://msp.org/idx/mr/54:2659
http://msp.org/idx/zbl/0343.14005
http://mi.mathnet.ru/rus/tm/v132/p44
http://mi.mathnet.ru/rus/tm/v132/p44
http://msp.org/idx/mr/49:302
http://msp.org/idx/zbl/0293.14010
http://dx.doi.org/10.1515/CRELLE.2010.078
http://msp.org/idx/mr/2012e:14089
http://msp.org/idx/zbl/1208.14031
http://dx.doi.org/10.1007/978-3-642-69971-9
http://msp.org/idx/mr/86k:11022
http://msp.org/idx/zbl/0584.10010
https://www-fourier.ujf-grenoble.fr/~marin/une_autre_crypto/Livres/Serre_cours_d%5C'atithmetique.pdf
http://dx.doi.org/10.1007/978-1-4684-9884-4
http://msp.org/idx/mr/41:138
http://msp.org/idx/zbl/0225.12002
http://www.numdam.org/item?id=SB_1968-1969__11__95_0
http://msp.org/idx/mr/3077121
http://msp.org/idx/zbl/0212.25702
http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002096579
http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002096579
http://msp.org/idx/mr/82k:32065
http://msp.org/idx/zbl/0472.14006
http://projecteuclid.org/euclid.kjm/1250271381
http://msp.org/idx/mr/2010j:11099
http://msp.org/idx/zbl/1174.14034
http://dx.doi.org/10.1515/crll.1983.341.193
http://msp.org/idx/mr/84g:14009
http://msp.org/idx/zbl/0506.14034
mailto:l.d.j.taelman@uva.nl
http://msp.org


Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
the ANT website.

Originality. Submission of a manuscript acknowledges that the manuscript is orig-
inal and and is not, in whole or in part, published or under consideration for pub-
lication elsewhere. It is understood also that the manuscript will not be submitted
elsewhere while under consideration for publication in this journal.

Language. Articles in ANT are usually in English, but articles written in other
languages are welcome.

Length There is no a priori limit on the length of an ANT article, but ANT con-
siders long articles only if the significance-to-length ratio is appropriate. Very long
manuscripts might be more suitable elsewhere as a memoir instead of a journal
article.

Required items. A brief abstract of about 150 words or less must be included.
It should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and sub-
ject classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties
of TEX, and exceptionally in other formats, are acceptable. Initial uploads should
be in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article titles
and page ranges. All references in the bibliography should be cited in the text. The
use of BibTEX is preferred but not required. Tags will be converted to the house
format, however, for submission you may use the format of your choice. Links will
be provided to all literature with known web locations and authors are encouraged
to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need
to submit the original source files in vector graphics format for all diagrams in your
manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure that
what you are saving is vector graphics and not a bitmap. If you need help, please
write to graphics@msp.org with details about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corre-
sponding author) at a Web site in PDF format. Failure to acknowledge the receipt of
proofs or to return corrections within the requested deadline may cause publication
to be postponed.

http://dx.doi.org/10.2140/ant
mailto:graphics@msp.org


Algebra & Number Theory
Volume 10 No. 5 2016

939Conjugacy classes of special automorphisms of the affine spaces
JÉRÉMY BLANC

969Inversion of adjunction for rational and Du Bois pairs
SÁNDOR J. KOVÁCS and KARL SCHWEDE

1001Hochschild cohomology commutes with adic completion
LIRAN SHAUL

1031Bifurcations, intersections, and heights
LAURA DEMARCO

1057Frobenius and valuation rings
RANKEYA DATTA and KAREN E. SMITH

1091Hoffmann’s conjecture for totally singular forms of prime degree
STEPHEN SCULLY

1133K3 surfaces over finite fields with given L-function
LENNY TAELMAN

1937-0652(2016)10:5;1-K

A
lgebra

&
N

um
ber

Theory
2016

Vol.10,
N

o.5


	 vol. 10, no. 5, 2016
	Masthead and Copyright
	Jérémy Blanc
	1. Introduction
	2. Preliminaries
	2A. Topology on Aut(Ankk@k@k)
	2B. Dynamical properties and the behaviour at infinity
	2C. Families of automorphisms and valuations

	3. Conjugacy classes of dynamically regular automorphisms of Ankk@k@k
	3A. Image at infinity of elements of Aut(Ankk@k@k(-1.5mu(t)-1.5mu))

	4. Conjugacy classes of elements in SAut(A2K)
	4A. Overview of the Jung–van der Kulk theorem and its applications
	4B. Conjugacy classes of elements of SJ(A2K).
	4C. Degenerations between the four families of conjugacy classes
	4C1. From family (ii) and (iii) to family (i)
	4C2. Family (iv)

	4D. The diagonalisable elements

	Acknowledgements
	References

	Sándor J. Kovács and Karl Schwede
	1. Introduction
	2. Definitions and basic properties
	2A. Rational pairs
	2B. Notation
	2C. Du Bois pairs

	3. An injectivity theorem
	4. Deformation of Du Bois pairs
	5. Generalizing the Kollár–Kovács result to pairs
	6. Generalizing Kovács–Schwede–Smith to pairs
	7. An inversion of adjunction for rational and Du Bois pairs
	Acknowledgements
	References

	Liran Shaul
	Introduction
	1. Preliminaries on completion, torsion, Hochschild cohomology
	Completion and torsion
	Hochschild cohomology

	2. Weak proregularity and flat base change
	3. The functors R``a, L`a
	4. Hochschild cohomology and derived completion
	5. Hochschild homology and derived torsion
	Acknowledgments
	References

	Laura DeMarco
	1. Introduction
	2. Isotriviality and 0=theorem.51=Theorem 1.2
	3. Escape rate at a degenerate parameter
	4. Proof of 0=theorem.31=Theorem 1.1
	5. Density of intersections
	6. A conjecture on intersections and dynamical relations
	Acknowledgements
	References

	Rankeya Datta and Karen E. Smith
	1. Introduction
	2. Preliminaries
	2.1. Valuation rings
	2.2. Extension of valuations
	2.3. Abhyankar valuations
	2.4. Frobenius
	2.5. F-purity and Frobenius splitting
	2.6. F-finiteness and excellence

	3. Flatness and purity of Frobenius in valuation rings
	4. F-finite valuation rings
	4.1. Finiteness and freeness of Frobenius
	4.2. Frobenius splitting in the Noetherian case.
	4.3. A numerical criterion for F-finiteness
	4.4. Examples of Frobenius split valuations
	4.5. Example of a non-Frobenius split valuation
	4.6. Finite extensions

	5. F-finiteness in function fields
	6. F-regularity
	6.1. Basic properties of F-pure regularity
	6.2. Relationship of F-pure regularity to other singularities
	6.3. Connections with tight closure
	6.4. Elements along which F-purity fails
	6.5. F-pure regularity and valuation rings
	6.6. Split F-regularity

	7. Concluding remarks
	Acknowledgements
	References

	Stephen Scully
	1. Introduction
	2. Quasilinear p-forms and quasilinear p-hypersurfaces
	2A. Basic notions
	2B. Function fields of quasilinear p-hypersurfaces and their products
	2C. Quasi-Pfister p-forms
	2D. The norm form
	2E. Similarity factors
	2F. A criterion for a quasilinear p-form to be quasi-Pfister
	2G. The Cassels–Pfister representation theorem
	2H. Isotropy of quasilinear p-forms under scalar extension
	2I. The divisibility index and scalar extension
	2J. The Knebusch splitting pattern
	2K. The quasi-Pfister height and higher divisibility indices
	2L. Some examples

	3. An incompressibility theorem and related results
	3A. The incompressibility theorem
	3B. Neighbors and near neighbors, I
	3C. The ruledness theorem
	3D. Neighbors and near neighbors, II
	3E. A comparison result

	4. A motivational example
	5. Main theorem
	6. First applications of the main theorem
	6A. Possible values of the Knebusch splitting pattern
	6B. Canonical dimensions of quasilinear p-hypersurfaces
	6C. Quasilinear p-forms with maximal splitting

	7. Further remarks on the splitting of quasilinear quadratic forms
	Acknowledgements
	References

	Lenny Taelman
	Introduction
	1. p-adic properties of zeta functions of K3 surfaces
	1.1. Recap on the formal Brauer group of a K3 surface
	1.2. Proof of 0=theorem.21=Theorem 1

	2. CM theory of K3 surfaces
	2.1. Hodge theoretic aspects
	2.2. Arithmetic aspects: the Main Theorem of CM

	3. Existence of K3 surface with CM by a given CM field
	3.1. Invariants of quadratic forms over Q
	3.2. The form q
	3.3. Construction of a K3 surface with CM by E

	4. Existence of K3 surface with given Ltrc
	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

