
Algebra &
Number
Theory

msp

Volume 10

2016
No. 5

Hochschild cohomology commutes
with adic completion

Liran Shaul





msp
ALGEBRA AND NUMBER THEORY 10:5 (2016)

dx.doi.org/10.2140/ant.2016.10.1001

Hochschild cohomology commutes
with adic completion

Liran Shaul

For a flat commutative k-algebra A such that the enveloping algebra A ⊗k A
is noetherian, given a finitely generated bimodule M, we show that the adic
completion of the Hochschild cohomology module HHn(A/k,M) is naturally
isomorphic to HHn( Â/k, M̂). To show this, we make a detailed study of de-
rived completion as a functor D(Mod A)→ D(Mod Â) over a nonnoetherian
ring A, prove a flat base change result for weakly proregular ideals, and prove
that Hochschild cohomology and analytic Hochschild cohomology of complete
noetherian local rings are isomorphic, answering a question of Buchweitz and
Flenner. Our results make it possible for the first time to compute the Hochschild
cohomology of k[[t1, . . . , tn]] over any noetherian ring k, and open the door for a
theory of Hochschild cohomology over formal schemes.
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All rings in this paper are assumed to be commutative and unital.

Introduction

Hochschild cohomology [1945] has been the prominent cohomology theory for
associative algebras since its introduction. In commutative algebra and algebraic
geometry, its importance was first demonstrated by the celebrated theorem of
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Hochschild, Kostant and Rosenberg. See [Ionescu 2001] for a survey of the use of
Hochschild cohomology in commutative algebra.

The aim of this paper is to initiate the study of Hochschild cohomology in the
category of adic rings. Adic rings, the affine pieces of the theory of formal schemes,
are by definition commutative noetherian rings A which are a-adically complete
with respect to some ideal a⊆ A. In the survey just cited, Ionescu states:

In our survey no results about Hochschild cohomology of a topological
algebra w[ere] mentioned. This is because this kind of results is missing
completely.

As far as we know, little has changed regarding this statement since then. One of
the main difficulties in developing such a theory can be already observed in the
most simple example of an adic ring: Let k be a field of characteristic 0, and let
A = k[[t]]. The construction of Hochschild cohomology involves the enveloping
algebra of A. But even in this simple case, the enveloping algebra k[[t]] ⊗k k[[t]]
is a nonnoetherian ring of infinite Krull dimension, so it is very difficult to do
homological algebra over it. Passing to the completion of this enveloping algebra,
one obtains the much more manageable completed tensor product

k[[t]] ⊗̂k k[[t]] ∼= k[[t1, t2]].

However, from a homological point of view, this step is highly nontrivial, as
it involves the ring map from k[[t]] ⊗k k[[t]] to its completion. Completions of
nonnoetherian rings are in general poorly behaved (for instance, they need not
be flat). In this paper we develop the homological tools needed to overcome this
difficulty, and use them to study the Hochschild cohomology of such adic algebras.

Here is a more detailed description of the content of this paper. First, in Section 1
we review some preliminaries on Hochschild cohomology and about the derived
torsion and derived completion functors. In particular, we recall the notion of a
weakly proregular ideal in a commutative ring. Weak proregularity is the right
condition in order for the derived torsion and derived completion functors to possess
good behavior.

In Section 2, we prove that in most enveloping algebras of adic rings occurring
in nature, the ideal of definition of the adic topology is weakly proregular. This
result also has interesting implications in derived algebraic geometry of formal
schemes. See Corollary 2.9.

Given a (not necessarily noetherian) ring A and a weakly proregular ideal a⊆ A,
we study in Section 3 the derived functors of the functors

0̂a(M) := lim
−−→

HomA(A/an,M) :Mod A→Mod Â
and

3̂a(M) := lim
←−−

A/an
⊗A M :Mod A→Mod Â,
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where Â is the a-adic completion of A. To cope with the possible lack of flatness of
the completion map A→ Â, we use DG-homological algebra techniques. From the
results of this section, we deduce the following generalized Greenlees–May duality:

Corollary 3.9. Let A be a commutative ring, let a ⊆ A be a weakly proregular
ideal, and let M, N ∈ D(Mod A). Then there are isomorphisms

L3̂a(R HomA(M, N ))∼= R HomA(R0̂a(M), N )∼= R HomA(M,L3̂a(N ))

of functors
D(Mod A)×D(Mod A)→ D(Mod Â).

Using the results of Sections 2 and 3, the main results of this paper are obtained
in Section 4. First, in Theorem 4.1 we provide formulas which describe the effect
of applying the derived completion functor to the Hochschild cohomology complex
of a not necessarily adic algebra. The next major result reduces the problem
of computing the Hochschild cohomology of an adic algebra to a problem over
noetherian rings:

Corollary 4.3. Let k be a commutative ring, and let A be a flat noetherian k-
algebra. Assume a ⊆ A is an ideal, such that A is a-adically complete, and such
that A/a is essentially of finite type over k. Let I := a⊗k A + A⊗k a, and set
A⊗̂k A :=3I (A⊗k A). Then for any M ∈Mod A⊗k A which is I-adically complete
(for example, any a-adically complete A-module, or more particularly, any finitely
generated A-module), there is a functorial isomorphism

R HomA⊗k A(A,M)∼= R HomA⊗̂k A(A,M)

in D(Mod A), and the ring A ⊗̂k A is noetherian.

Using the results of [Buchweitz and Flenner 2006], as a corollary of this result,
we are able to prove in Corollary 4.5 that Hochschild cohomology and analytic
Hochschild cohomology of complete noetherian local algebras coincide, answering
a question of Buchweitz and Flenner. Finally, Section 4 ends with a theorem which
proves the result mentioned in the title of the paper. More precisely, we show:

Theorem 4.13. Let k be a commutative ring, and let A be a flat noetherian
k-algebra such that A ⊗k A is noetherian. Let a ⊆ A be an ideal, and let M
be a finitely generated (A⊗k A)-module. Then for any n ∈N, there is a functorial
isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Extn

Â⊗k Â
( Â, M̂).

If , moreover, either

(1) k is a field, or
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(2) A is projective over k, a is a maximal ideal, and M is a finitely generated
A-module,

then there is also a functorial isomorphism

3a(HHn(A/k,M))∼= HHn( Â/k, M̂).

In the short and final Section 5, we briefly discuss analogous results for Hochschild
homology.

Warning. Contrary to the convention in many papers in the field, unless stated
otherwise, we do not assume that rings are noetherian.

1. Preliminaries on completion, torsion and Hochschild cohomology

Given a commutative ring A, we denote by Mod A the abelian category of A-modules,
and by D(Mod A) its (unbounded) derived category. If A is noetherian, we will
denote by Df(Mod A) the triangulated subcategory made of complexes with finitely
generated cohomologies. We will freely use resolutions of unbounded complexes,
following [Spaltenstein 1988].

Completion and torsion. References for the material in this section are [Alonso Tar-
río et al. 1997; 1999; Greenlees and May 1992; Porta et al. 2014b; 2015; Schenzel
2003; Simon 1990; Yekutieli 2011]. See [Porta et al. 2014b, Remark 7.14] for a
brief discussion on the history of this material. Let A be a commutative ring, and let
a⊆ A be a finitely generated ideal. The a-torsion functor 0a(−) :Mod A→Mod A
is defined by

0a(M) := lim
−−→

HomA(A/an,M).

This functor is a left exact additive functor. We denote its (total) right derived functor
by R0a : D(Mod A)→ D(Mod A). It is computed using K-injective resolutions.
See [Brodmann and Sharp 2013] for a detailed study of the a-torsion functor and
its derived functor in the noetherian case. More important in this paper is the a-adic
completion functor, defined by

3a(−) :Mod A→Mod A, 3a(M) := lim
←−−

A/an
⊗A M.

This functor is additive, but in general is neither left exact nor right exact (even when
A is noetherian; see [Yekutieli 2011, Example 3.20]). It does however preserve
surjections. We denote by L3a : D(Mod A)→ D(Mod A) its left derived functor.
By [Alonso Tarrío et al. 1997, Section 1], it can be computed using K-flat resolutions.
Both of the functors 0a(−), 3a(−) are idempotent [Yekutieli 2011, Corollary 3.6].

For any ring A, the A-module3a(A) has the structure of a commutative A-algebra,
called the completion of A. If A is noetherian then 3a(A) is flat over A, but if A
is not noetherian this does not always holds. For example, if A is any countable
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ring which is not coherent, then the completion map A[x] → A[[x]] is not flat
[Stacks 2005–, Tag 0AL8]. The ring 3a(A) is noetherian if and only if the ring
A/a is noetherian [Stacks 2005–, Tag 05GH]. If A is noetherian and M is a
finitely generated A-module, then there is an isomorphism of functors 3a(M)∼=
3a(A) ⊗A M, so in particular in that case, 3a(−) is exact on the category of
finitely generated A-modules [Stacks 2005–, Tag 00MB]. We will sometimes denote
by Â the A-algebra 3a(A) and by M̂ the A-module 3a(M). For any ring A, the
A-modules 0a(M) and 3a(M) carry naturally the structure of Â-modules, and so
one may view the a-torsion and a-completion functors as functors Mod A→Mod Â.
Section 3 is dedicated to a study of the functors obtained from this observation.

Given a ring A, and an element a∈ A, the infinite dual Koszul complex associated
to it is

K∨
∞
(A; (a)) :=

(
· · · → 0→ A→ A[a−1

] → 0→ · · ·
)

concentrated in degrees 0, 1. If (a1, . . . , an) is a finite sequence of elements in A,
then the infinite dual Koszul complex associated to it is

K∨
∞
(A; (a1, . . . , an)) := K∨

∞
(A; (a1))⊗A · · · ⊗A K∨

∞
(A; (an)).

It is a bounded complex of flat A-modules. Given an ideal a ⊆ A, and a finite
sequence a of elements of A that generate a, by [Porta et al. 2014b, Corollary 4.26],
there is a morphism of functors

R0a(−)→ K∨
∞
(A; a)⊗A−.

The sequence a is called weakly proregular if this morphism is an isomorphism of
functors. This notion is actually independent of a, and depends only on the ideal a
generated by it [Schenzel 2003, Lemma 3.3]. Hence, we say a finitely generated
ideal a is weakly proregular if some (or, equivalently, any) finite sequence that
generates it is weakly proregular. In a noetherian ring, any ideal and any finite
sequence are weakly proregular, but there are examples of finitely generated (even
principal) ideals in nonnoetherian rings which are not weakly proregular.

Given a ring A and a finite sequence a of elements of A, the infinite dual Koszul
complex has an explicit free resolution, called the telescope complex and denoted
by Tel(A; a). This resolution is a bounded complex of countably generated free
A-modules [Porta et al. 2014b, Lemma 5.7]. In particular, if the ideal a generated
by a is weakly proregular, then there is also an isomorphism of functors

R0a(−)∼= Tel(A; a)⊗A−.

Moreover, in this case, by [Porta et al. 2014b, Corollary 5.25], there is also an
isomorphism of functors

L3a(−)∼= HomA(Tel(A; a),−).
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It follows that if A is a commutative ring, and a is a weakly proregular ideal, then
both of the functors R0a, L3a have finite cohomological dimension, and there is a
bifunctorial isomorphism, the Greenlees–May duality,

R HomA(R0a(M), N )∼= R HomA(M,L3a(N ))

for any M, N ∈ D(Mod A).
Both the infinite dual Koszul complex and the telescope complex enjoy the

following base change property: if A is a ring, a is a finite sequence of elements in A,
A → B is a ring map, and b is the image of a under this map, then there are
isomorphisms

K∨
∞
(A; a)⊗A B ∼= K∨

∞
(B; b), Tel(A; a)⊗A B ∼= Tel(B; b)

of complexes of B-modules.
For any complex M ∈ D(Mod A), there are canonical maps

R0a(M)→ M, (1.1)
and

M→ L3a(M). (1.2)

The complex M is called cohomologically a-torsion (resp. cohomologically a-
adically complete) if the map (1.1) (resp. (1.2)) is an isomorphism. If a is weakly
proregular then the functors R0a and L3a are idempotent [Porta et al. 2014b,
Corollary 4.30, Proposition 7.10] and it follows that in this case the collection of all
cohomologically a-torsion (resp. cohomologically a-adically complete) complexes
is a triangulated subcategory of D(Mod A) which is equal to the essential image of
the functor R0a (resp. L3a). Moreover, by [Porta et al. 2014b, Theorem 7.11], in
this case these categories are equivalent (the Matlis–Greenlees–May equivalence).

Hochschild cohomology. Let k be a commutative ring, and let A be a commutative
k-algebra. We let

A⊗
n
k := A⊗k · · · ⊗k A︸ ︷︷ ︸

n

,

and denote by B the bar resolution

· · · → A⊗
n
k → · · · → A⊗

2
k → A→ 0.

Given an A-bimodule M, the n-th Hochschild cohomology module of A over k
with coefficients in M is given by

HHn(A/k,M) := H n HomA⊗k A(B,M).

See [Cartan and Eilenberg 1956, Chapter IX], [Loday 1998, Chapter 1] and [Weibel
1994, Chapter 9] for more details on this classical construction. If A is projective
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(resp. flat) over k, then B is a projective (resp. flat) resolution of A over the
enveloping algebra A⊗k A. Hence, in the projective case, the natural map

HHn(A/k,M)→ ExtnA⊗k A(A,M)

is an isomorphism. When A is only flat over k, but not necessarily projective, this
map might fail in general to be an isomorphism. Nevertheless, the modules on the
right-hand side are interesting on their own, and are sometimes referred to in the
literature as the derived Hochschild (or Shukla) cohomology modules of A over k.
In this paper we will focus mostly on these modules1 and, a bit more generally, on
the complex R HomA⊗k A(A,M). Somewhat imprecisely, we will refer to

R HomA⊗k A(A,M)

as the Hochschild complex of A with coefficients in M even when A is only flat
over k. We will however use the notation HHn(A/k,M) to denote only the classical
Hochschild cohomology modules.

2. Weak proregularity and flat base change

Let k be a base commutative ring, and let A, B be two flat k-algebras. Assume
that A and B are equipped with adic topologies, generated by finitely generated
ideals a⊆ A and b⊆ B. In that case, the tensor product A⊗k B is also naturally
equipped with an adic topology. It is generated by the finitely generated ideal
a⊗k B + A⊗k b⊆ A⊗k B. The aim of this section is to discuss the question of
when this ideal is weakly proregular. We allow A to be different from B, although
we will only use the case A = B in the rest of the paper.

Recall that a ring k is called absolutely flat (or Von Neumann regular) if every
k-module is flat. Over such rings, the above question is easy:

Proposition 2.1. Let k be an absolutely flat ring. Let A, B be two k-algebras, and
let a⊆ A and b⊆ B be weakly proregular ideals. Then the ideal

a⊗k B+ A⊗k b⊆ A⊗k B

is weakly proregular.

Proof. In the case where k is a field, and A and B are noetherian and complete with
respect to the adic topology, this is shown in [Porta et al. 2014b, Example 4.35],
and the proof there remains true under the above assumptions. �

Remark 2.2. Assume A is a ring, a⊆ A is a weakly proregular ideal, B is a flat
A-algebra, and b= a · B. Then by [Alonso Tarrío et al. 1997, Example 3.0(B)], the
ideal b is also weakly proregular.

1See, however, Corollary 4.5 and Theorem 4.13 where even in the possible absence of projectivity
we will discuss classical Hochschild cohomology.
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Recall that if A is a noetherian ring, with a⊆ A an ideal, and if I is an injective
A-module, then 0a(I ) is also an injective A-module (for example, by [Hartshorne
1977, Lemma 3.2]). We now state and prove a weaker form of this fact in the case
when A is not necessarily noetherian, but 3a(A) is.

If A is a ring, with a ⊆ A a finitely generated ideal, and if M is an A-module,
then M is called a-flasque if, for each k > 0, we have Hk

a(M)= 0, where Hk
a(M) :=

Hk(R0a(M)). Any injective module is a-flasque. If M is a-flasque, then the
canonical morphism 0a(M)→ R0a(M) is an isomorphism. By [Brodmann and
Sharp 2013, Theorem 3.4.10], the direct limit of a-flasque modules is a-flasque.

Lemma 2.3. Let A be a ring, and let a, b ⊆ A be two finitely generated ideals.
Suppose that the ring Â =3a(A) is noetherian. Let b̂= b Â. Then for any injective
A-module I, the Â-module 0̂a I is b̂-flasque.

Proof. Let Aj = A/a j+1. Since a is finitely generated, there is an isomorphism
Aj ∼= Â/(a Â) j+1. Note that, by assumption, Aj is noetherian. Let b̂j be the image
of b̂ in Aj . Let Ij = HomA(Aj , I ). Then 0̂a I = lim

−−→
Ij , so it is enough to show that

Ij is b̂-flasque. Note also that Ij is an injective Aj -module. Let k > 0, let b̂ be a
finite sequence generating b̂, and let bj be its image in Aj . Since Â is noetherian,
b̂ is weakly proregular, so that

H k
b̂
(Ij )∼= H k(K∨

∞
( Â; b̂)⊗ Â Ij

)
∼= H k(K∨

∞
(Aj ; bj )⊗Aj Ij

)
∼= H k

b̂j
(Ij ),

where the last isomorphism follows from the fact that Aj is noetherian, so that b̂j is
weakly proregular. Since Ij is injective over Aj , it follows that H k

b̂j
(Ij )= 0 for all

k > 0, which proves the claim. �

Proposition 2.4. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal such that 3a(A) is noetherian. Let b⊆ A be an ideal containing a. Then b is
also weakly proregular.

Proof. We keep the notation of Lemma 2.3. It is clear that A/b is noetherian. Let a
be a finite sequence generating a, and let b be a finite sequence generating b. Let I be
an injective A-module. By [Schenzel 2003, Theorem 1.1], it is enough to show that

H k(Tel(A; b)⊗A I )= 0

for all k 6= 0.
Since a⊆b, the ideal generated by the concatenated sequence (a, b) is equal to the

ideal generated by b, so there is a homotopy equivalence Tel(A; (a, b))∼=Tel(A; b).
Hence, there is an isomorphism

Tel(A; b)⊗A I ∼= Tel(A; (a, b))⊗A I ∼= Tel(A; b)⊗A Tel(A; a)⊗A I
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in D(Mod A). Since a is a weakly proregular sequence, I is an injective A-module,
and Tel(A; b) is a bounded complex of flat modules, the latter is isomorphic in
D(Mod A) to

Tel(A; b)⊗A 0a I.

Thus, it is enough to show that all the cohomologies (except the zeroth) of the
complex of A-modules Tel(A; b)⊗A 0a I vanish. Let

Rest Â/A : D(Mod Â)→ D(Mod A)

be the forgetful functor, and let b̂ be the image of the sequence b in Â. Consider
the complex

Tel( Â; b̂)⊗ Â 0̂a I ∈ D(Mod Â).

We claim that

Rest Â/A

(
Tel( Â; b̂)⊗ Â 0̂a I

)
= Tel(A; b)⊗A 0a I. (2.5)

Indeed, by the base change property of the telescope complex, we have an isomor-
phism

Tel( Â; b̂)⊗ Â 0̂a I ∼= Tel(A; b)⊗A 0̂a I

of complexes in D(Mod Â). So using the fact that

Rest Â/A(0̂a I )= 0a I

we obtain (2.5). Since for a complex M ∈ D(Mod Â) we have

H k(M)= 0 if and only if H k(Rest Â/A(M)
)
= 0,

it is enough to show that H k
(
Tel( Â; b̂) ⊗ Â 0̂a I

)
= 0 for all k 6= 0. By weak

proregularity of the sequence b̂, there is an isomorphism

Tel( Â; b̂)⊗ Â 0̂a I ∼= R0b̂0̂a I

in D(Mod Â). By Lemma 2.3, this is isomorphic in D(Mod Â) to 0b̂0̂a I . Since this
complex is clearly concentrated in degree zero, it follows that all of its cohomologies
except the zeroth vanish, which proves the result. �

Here is the main result of this section:

Theorem 2.6. Let k be a commutative ring, let A be a flat noetherian k-algebra,
and let a⊆ A be an ideal such that A/a is essentially of finite type over k. Let B be
a flat noetherian k-algebra, and let b⊆ B be an ideal. Then the ideal

I := a⊗k B+ A⊗k b⊆ A⊗k B

is weakly proregular.
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Proof. According to Remark 2.2, the ideal I1 := a⊗k B ⊆ A ⊗k B is weakly
proregular. Since B is flat over k, we have (A ⊗k B)/I1 ∼= A/a ⊗k B, and as
A/a is essentially of finite type over k, it follows that (A⊗k B)/I1 is noetherian.
Hence, 3I1(A ⊗k B) is also noetherian. Since I1 ⊆ I, the result follows from
Proposition 2.4. �

Remark 2.7. The assumption that A is noetherian in the above result can be relaxed:
it is enough to assume that a is weakly proregular. It is an open problem to the
author if the above result remains true without the assumption that A/a is essentially
of finite type over k (as in Proposition 2.1).

Remark 2.8. Let k be a commutative ring, and let A, B be two commutative
noetherian k-algebras which are adically complete with respect to ideals a ⊆ A,
b⊆ B. In this situation, Grothendieck and Dieudonné [1960, Section 10.7] defined
the fiber product of the two affine formal schemes Spf A, Spf B over k to be the
formal spectrum of the ring 3a⊗k B+A⊗kb(A⊗k B).

Now, we switch to the point of view of derived algebraic geometry, and assume
that A and B are flat over k. Forgetting the adic structure on A, B, the flatness
assumption ensures that, in this situation, the usual fiber product Spec(A⊗k B)
of the schemes Spec(A) and Spec(B) coincides with their derived fiber product.
Returning to the adic situation, Lurie defined [2011, Section 4.2] a notion of a
derived completion of an (E∞) ring, and showed [2011, Section 4.3] that if the ring
is noetherian then its derived completion coincides with its ordinary completion.
Recently, using our [Porta et al. 2014a, Theorem 4.2], it was shown in [Braunling
et al. 2015, Proposition 5.4] that if R is any commutative ring, and if I ⊆ R is
a weakly proregular ideal, then the derived I-completion of R coincides with its
ordinary I-adic completion. Hence, the results of this section imply the following:

Corollary 2.9. Let k be a commutative ring, and let A, B be noetherian flat
k-algebras which are adically complete with respect to ideals a ⊆ A, b ⊆ B.
Assume further that either k is an absolutely flat ring (e.g., a field) or that A/a is
essentially of finite type over k. Then the derived fiber product of the formal schemes
Spf A, Spf B over k is equal to the formal spectrum of 3a⊗k B+A⊗kb(A⊗k B).

3. The functors R0̂a, L3̂a

Let A be a commutative ring, let a ⊆ A be a finitely generated ideal, and let Â
be the a-adic completion of A. For any A-module M, the A-modules 0a(M) and
3a(M) carry naturally Â-module structures, and one obtains additive functors
0̂a, 3̂a : Mod A→ Mod Â, defined by the same formulas as 0a and 3a. These
functors have derived functors R0̂a,L3̂a : D(Mod A)→ D(Mod Â), calculated
using K-injective and K-flat resolutions, respectively. This section is dedicated to a
study of these functors.



Hochschild cohomology commutes with adic completion 1011

Keeping an eye towards the main goal of this text, we must avoid assuming that
A is noetherian. Hence, we do not know if the completion map A→ Â is flat. We
overcome this issue by using DG-algebras, which will be assumed to be (graded-)
commutative. We refer the reader to [Avramov 1998; Keller 1994; Mac Lane 1963;
Yekutieli 2016] for information about DG-algebras and their derived categories.
For a DG-algebra A, we denote by DGMod A the category of DG-modules over A,
and by D(DGMod A) the derived category over A.

We shall need the following well known result from DG-homological algebra:

Proposition 3.1. Let A→ B be a quasiisomorphism between two commutative
DG-algebras, and let

RestB/A : D(DGMod B)→ D(DGMod A)

be the forgetful functor.

(1) There is an isomorphism

1D(DGMod B) ∼= B⊗L
A RestB/A(−)

of functors D(DGMod B)→ D(DGMod B).

(2) There is an isomorphism

1D(DGMod B) ∼= R HomA(B,RestB/A(−))

of functors D(DGMod B)→ D(DGMod B).

Proof. Part (1) follows immediately from [Stacks 2005–, Tag 09S6], or [Yekutieli
2016, Proposition 2.5(1)], while part (2) follows immediately from [Shaul 2016,
Lemma 2.2], or [Yekutieli 2016, Proposition 2.5(2)]. �

As far as we know, the next results are new even in the case where A is noetherian.
In the noetherian case, one does not need DG-algebras in the proof of the next result.

Theorem 3.2. Let A be a commutative ring, let a⊆ A be a finitely generated ideal,
and let a be a finite sequence that generates a. Assume that a is weakly proregular.
Then there is an isomorphism of functors

R0̂a(−)∼= Â⊗L
A (K

∨

∞
(A; a)⊗A−).

Proof. Set Â := 3a(A). Consider the completion map A→ Â. Since A is not
necessarily noetherian, this map might fail to be flat, so let A f

→ Ã g
→ Â be a K-flat

DG-algebra resolution of A → Â. That is, f : A → Ã is a K-flat DG-algebra
map, g : Ã→ Â is a quasiisomorphism of DG-algebras, and g ◦ f is equal to the
completion map A→ Â. We denote by

Rest Â/ Ã :D(Mod Â)→D(DGMod Ã) and Rest Ã/A :D(DGMod Ã)→D(Mod A)



1012 Liran Shaul

the corresponding forgetful functors. Set

R0̃a(−) := Rest Â/ Ã ◦R0̂a(−) : D(Mod A)→ D(DGMod Ã).

Let M ∈D(Mod A). Let P→M be a K-flat resolution of M, and let M→ I be a K-
injective resolution of M. The map f : A→ Ã induces a map 1P⊗A f : P→ P⊗A Ã.
Let P ⊗A Ã→ J be a K-injective resolution of P ⊗A Ã over Ã. Because f is
flat, J is also a K-injective resolution of P ⊗A Ã over A. There is a unique map
φ : I → J in K(Mod A), which makes the diagram

P
1P⊗A f

//

��

P ⊗A Ã

��

I
φ

// J

(3.3)

commutative, and it induces a map 0a(φ) : 0a(I )→ 0a(J ). Our goal is to show
that 0a(φ) is a quasiisomorphism. The morphism of functors

α(−) : 0a(−)→ K∨
∞
(A; a)⊗A−

that was constructed in [Porta et al. 2014b, Equation (4.19)], and the map φ induce
the commutative diagram

0a(I )
0a(φ)

//

αI
��

0a(J )

αJ
��

K∨
∞
(A; a)⊗A I

1⊗Aφ
// K∨
∞
(A; a)⊗A J

(3.4)

Because a is weakly proregular, the two vertical maps are quasiisomorphisms. We
claim that the bottom horizontal map is also a quasiisomorphism. To see this,
consider the following commutative diagram in K(Mod A):

K∨
∞
(A; a)⊗A I 1

// K∨
∞
(A; a)⊗A J

K∨
∞
(A; a)⊗A P

2

OO

3
// K∨
∞
(A; a)⊗A P ⊗A Ã

4

OO

Tel(A; a)⊗A P 5
//

6

OO

7
��

Tel(A; a)⊗A P ⊗A Ã

8

OO

9
��

Tel(A; a)⊗A P ⊗A HomA(Tel(A; a), A) 10
// Tel(A; a)⊗A P ⊗A Â
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The top square in this diagram is induced from the square (3.3), the middle square
is induced from the quasiisomorphism

Tel(A; a)→ K∨
∞
(A; a),

and the bottom square is induced from the commutative diagram [Porta et al. 2014b,
Equation (5.26)]. By [Porta et al. 2014b, Corollary 5.23], HomA(Tel(A; a), A)→ Â
is a quasiisomorphism. Since Tel(A; a) and P are both K-flat, it follows that (10)
is a quasiisomorphism. K-flatness of P also implies that (9) is a quasiisomor-
phism. The map (7), which is induced by the map A→ HomA(Tel(A; a), A) is a
quasiisomorphism by [Alonso Tarrío et al. 1997, Corollary after Theorem (0.3)*]
(or the proof of [Porta et al. 2014b, Lemma 7.6]). Hence, the map (5) is also a
quasiisomorphism. It is clear that (6) and (8) are quasiisomorphisms, so that (3) is
also a quasiisomorphism. As (2) and (4) are also quasiisomorphisms, we deduce
that (1) is a quasiisomorphism. Returning to the commutative diagram (3.4), we
deduce that the map

0a(φ) : 0a(I )→ 0a(J )

is a quasiisomorphism.
There are functorial isomorphisms in D(DGMod Ã):

R0̃a(M)= Rest Â/ Ã(R0̂a(M))
∼= Rest Â/ Ã(0̂a(I )).

Since the map 0a(φ) : 0a(I )→ 0a(J ) is a quasiisomorphism, it follows that

Rest Â/ Ã(0̂a(φ)) : Rest Â/ Ã(0̂a(I ))→ Rest Â/ Ã(0̂a(J ))

is also a quasiisomorphism. The DG Ã-module Rest Â/ Ã(0̂a(J )) is a sub-DG-module
of J, and the inclusion map induces a map

Rest Â/ Ã(0̂a(J ))→ K∨
∞
(A; a)⊗A J. (3.5)

Applying the forgetful functor Rest Ã/A to the map in (3.5) yields the quasiisomor-
phism

0a(J )∼= K∨
∞
(A; a)⊗A J,

so that the map in (3.5) is also a quasiisomorphism. Hence,

R0̃a(M)∼= K∨
∞
(A; a)⊗A J ∼= K∨

∞
(A; a)⊗A M ⊗A Ã.

By Proposition 3.1, there is an isomorphism of functors

1D(DGMod Â)
∼= Â⊗L

Ã
Rest Â/ Ã(−).

Hence,
R0̂a(−)∼= Â⊗L

Ã
R0̃a(−),
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which implies that

R0̂a(M)∼= Â⊗L
A (K

∨

∞
(A; a)⊗A M). �

Dually, we have the next result for the L3̂a functor. Note however that, in this
case, even if A is noetherian, we have to use DG-algebra resolutions, because Â is
almost never projective over A (see, for example, [Buchweitz and Flenner 2006,
Theorem 2.1]).

Theorem 3.6. Let A be a commutative ring, let a⊆ A be a finitely generated ideal,
and let a be a finite sequence that generates a. Assume that a is weakly proregular.
Then there is an isomorphism of functors

L3̂a(−)∼= R HomA( Â⊗A Tel(A; a),−).

Proof. We use notation as in the proof of Theorem 3.2. Let A f
→ Ã g

→ Â be a
K-projective DG-algebra resolution of A→ Â, and set

L3̃a(−) := Rest Â/ Ã ◦L3̂a(−) : D(Mod A)→ D(DGMod Ã).

Let M ∈D(Mod A). Let P→M be a K-projective resolution, and let M→ I be a K-
injective resolution. The map f : A→ Ã induces a map HomA( f,1) :HomA( Ã, I )→I.
Let Q→HomA( Ã, I ) be a K-projective resolution of HomA( Ã, I ) over Ã. There is
a unique map φ : Q→ P in K(Mod A) making the diagram

HomA( Ã, I )
HomA( f,1)

// I

Q

OO

φ
// P

OO

(3.7)

commutative. The morphism of functors

β(−) : HomA(Tel(A; a),−)→3a(−)

that was constructed in [Porta et al. 2014b, Definition 5.16] and the map φ : Q→ P
induce a commutative diagram

3a(Q)
3a(φ)

// 3a(P)

HomA(Tel(A; a), Q)

βQ

OO

HomA(1,φ)
// HomA(Tel(A; a), P)

βP

OO

(3.8)

and, because of weak proregularity of a, the two vertical maps in this diagram are
quasiisomorphisms. We will show that the bottom horizontal map is also a quasi-
isomorphism, which will imply that the top horizontal map is a quasiisomorphism.
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To see this, consider the commutative diagram

HomA(T, Q) 1
//

2
��

HomA(T, P)

3
��

HomA(T,HomA( Ã, I )) 4
// HomA(Tel(A; a), I )

HomA(T,HomA( Â, I ))

5

OO

6
// HomA(T,HomA(HomA(T, A), I ))

7

OO

in K(Mod A), where we have set T := Tel(A; a). The top square of this diagram is
induced from the square (3.7), while the bottom square is induced from the com-
mutative diagram of [Porta et al. 2014b, Equation (5.26)]. Weak proregularity of a
implies that the map (6) is a quasiisomorphism. The fact that I is K-injective and that
Tel(A; a) is K-projective implies that (5) is a quasiisomorphism. The hom-tensor
adjunction and [Alonso Tarrío et al. 1997, Corollary after Theorem (0.3)*] (or the
proof of [Porta et al. 2014b, Lemma 7.6]) shows that (7) is also a quasiisomorphism.
Hence, (4) is a quasiisomorphism. As (2) and (3) are clearly quasiisomorphisms, we
deduce that (1) is a quasiisomorphism. Returning to the commutative diagram (3.8),
we deduce that the map

3a(φ) :3a(Q)→3a(P)

is a quasiisomorphism.
There are functorial isomorphisms

L3̃a(M)= Rest Â/ Ã(L3̂a(M))∼= Rest Â/ Ã(3̂a(P))

in D(DGMod Ã), and since the map3a(φ) :3a(Q)→3a(P) is a quasiisomorphism,
it follows that the map

Rest Â/ Ã(3̂a(φ)) : Rest Â/ Ã(3̂a(Q))→ Rest Â/ Ã(3̂a(P))

is also a quasiisomorphism. By [Porta et al. 2014b, Corollary 5.23], there is an
A-linear quasiisomorphism

βQ : HomA(Tel(A; a), Q)→3a(Q),

and it is easy to verify that the same construction gives rise to an Ã-linear quasi-
isomorphism

HomA(Tel(A; a), Q)→ Rest Â/ Ã(3̂a(Q)).
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Hence, there are isomorphisms of functors

L3̃a(M)∼= HomA(Tel(A; a), Q)
∼= HomA(Tel(A; a),HomA( Ã, I ))
∼= R HomA(Tel(A; a)⊗A Ã,M).

By Proposition 3.1, there is an isomorphism of functors

1D(DGMod Â)
∼= R Hom Ã( Â,Rest Â/ Ã(−)).

Hence,
L3̂a(−)∼= R Hom Ã( Â,L3̃a(−)),

which implies that

L3̂a(M)∼= R HomA(Tel(A; a)⊗A Â,M). �

Corollary 3.9. Let A be a commutative ring, let a ⊆ A be a weakly proregular
ideal, and let M, N ∈ D(Mod A). Then there are isomorphisms

L3̂a(R HomA(M, N ))∼= R HomA(R0̂a(M), N )∼= R HomA(M,L3̂a(N ))

of functors
D(Mod A)×D(Mod A)→ D(Mod Â).

Proof. Let a be a finite sequence that generates a. The hom-tensor adjunction
and the quasiisomorphism K∨

∞
(A; a)∼= Tel(A; a) show that there are bifunctorial

isomorphisms

R HomA
(
Tel(A; a)⊗A Â,R HomA(M, N )

)
∼=R HomA

(
K∨
∞
(A; a)⊗A Â⊗L

A M, N
)

and

R HomA
(
K∨
∞
(A; a)⊗A Â⊗L

A M, N
)
∼=R HomA

(
M,R HomA

(
Tel(A; a)⊗A Â, N

))
,

so the result follows from Theorems 3.2 and 3.6. �

Remark 3.10. If A = Â, then the above corollary collapses to the Greenlees–May
duality (see [Alonso Tarrío et al. 1997, Theorem (0.3)], or [Porta et al. 2014b,
Theorem 7.12]).

The next two corollaries will be applied in the next section to study relations
between the derived completion functor and Hochschild cohomology.

Corollary 3.11. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal. Given a ring map Â → B, and a complex M ∈ D(Mod B), there is an
isomorphism

R HomA(M,L3a(−))∼= R Hom Â(M,L3̂a(−))
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of functors

D(Mod A)→ D(Mod B).

Proof. Let a be a finite sequence that generates a. Let N ∈ D(Mod A). By
Theorem 3.6, there is an isomorphism of functors

R Hom Â(M,L3̂a(N ))∼= R Hom Â

(
M,R HomA

(
Tel(A; a)⊗A Â, N

))
.

Applying the hom-tensor adjunction twice, we get an isomorphism

R Hom Â

(
M,R HomA

(
Tel(A; a)⊗A Â, N

))
∼=R HomA

(
M,HomA(Tel(A; a), N )

)
,

which proves the claim. �

Corollary 3.12. Let A be a commutative ring, and let B be a commutative A-algebra.
Let a ⊆ A be a weakly proregular ideal, let b = a · B, and assume that b is also
weakly proregular. Then there is an isomorphism

L3̂bR HomA(B,−)∼= R HomA(B̂,L3a(−))

of functors

D(Mod A)→ D(Mod B̂),

where B̂ :=3b(B).

Proof. Let a be a finite sequence that generates a, and let b be its image in B. By
Theorem 3.6, given M ∈ D(Mod A), there is a functorial isomorphism

L3̂bR HomA(B,M)∼= R HomB
(
B̂⊗B Tel(B; b),R HomA(B,M)

)
,

so, by the derived hom-tensor adjunction,

L3̂bR HomA(B,M)∼= R HomA
(
B̂⊗B Tel(B; b),M

)
.

By the base change property of the telescope complex, we have

Tel(B; b)∼= B⊗A Tel(A; a),

so that

L3̂bR HomA(B,M)∼= R HomA
(
B̂⊗A Tel(A; a),M

)
.

Hence, using adjunction again, and the fact that a is weakly proregular, we obtain
the result. �

Dually to these two corollaries, we have the following results which will apply
to the study of Hochschild homology. We omit the very similar proofs.
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Corollary 3.13. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal. Given a ring map Â → B, and a complex M ∈ D(Mod B), there is an
isomorphism

M ⊗L
A R0a(−)∼= M ⊗L

Â
R0̂a(−)

of functors
D(Mod A)→ D(Mod B).

Corollary 3.14. Let A be a commutative ring, and let B be a commutative A-algebra.
Let a ⊆ A be a weakly proregular ideal, let b = a · B, and assume that b is also
weakly proregular. Then there is an isomorphism

R0̂b(B⊗L
A−)
∼= B̂⊗L

A R0a(−))

of functors
D(Mod A)→ D(Mod B̂),

where B̂ :=3b(B).

4. Hochschild cohomology and derived completion

We now turn to the main theme of this paper: relations between adic completion
(and its derived functor) and Hochschild cohomology. The results of this section
rely heavily on the tools developed in the previous sections.

Our first result describes the effect of applying the derived completion functor to
the Hochschild cohomology complex in a rather general situation. We will later
specialize further to obtain more explicit results.

Theorem 4.1. Let k be a commutative ring, let A be a flat noetherian k-algebra,
and let a⊆ A be an ideal. Assume further that at least one of the following holds:

(1) The ring k is an absolutely flat ring (e.g., a field).

(2) The ring A/a is essentially of finite type over k.

(3) The ideal I := a⊗k A+ A⊗k a⊆ A⊗k A is weakly proregular.

Set Â :=3a(A) and A ⊗̂k A :=3I (A⊗k A). Then there are isomorphisms

L3̂aR HomA⊗k A(A,−)∼= R HomA⊗k A( Â,L3I (−))∼= R HomA⊗̂k A( Â,L3̂I (−))

of functors
D(Mod A⊗k A)→ D(Mod Â).

Proof. If k is absolutely flat, then I is weakly proregular by Proposition 2.1, while if
A/a is essentially of finite type over k, then I is weakly proregular by Theorem 2.6.
Since the image of I in A is equal to a, and since A being noetherian implies that
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a is weakly proregular, given M ∈ D(Mod A⊗k A), by Corollary 3.12, there is a
functorial isomorphism

L3̂aR HomA⊗k A(A,M)∼= R HomA⊗k A( Â,L3I (M)).

Note that, considered as an (A⊗k A)-module, the I-adic completion of A is equal
to Â. Hence, we may apply Corollary 3.11, and deduce that there is a functorial
isomorphism

R HomA⊗k A( Â,L3I (M))∼= R HomA⊗̂k A( Â,L3̂I (M))

in D(Mod Â). This proves the result. �

The next lemma might seem trivial at first glance. However, the possible lack of
flatness of the completion map makes it a little more difficult.

Lemma 4.2. Let A be a commutative ring, and let a⊆ A be a weakly proregular
ideal. Assume that Â :=3a(A) is noetherian, and let M ∈Mod Â be an a-adically
complete Â-module. Let

Rest Â/A : D(Mod Â)→ D(Mod A)

be the forgetful functor. Then there is a functorial isomorphism

L3a(Rest Â/A(M))
∼= Rest Â/A(M)

in D(Mod A), and a functorial isomorphism

L3̂a(Rest Â/A(M))
∼= M

in D(Mod Â).

Proof. Let a be a finite sequence that generates a, and let â be its image in Â. Since
Â is noetherian and M is a-adically complete, it follows from [Porta et al. 2015,
Theorem 1.21] that M is cohomologically a Â-adically complete, so there is an
isomorphism

M ∼= R Hom Â(Tel( Â; â),M).

The base change property of the telescope complex implies that Tel(A; a)⊗A Â ∼=
Tel( Â; â). Using this fact and the hom-tensor adjunction, we deduce that

Rest Â/A(M)
∼= R HomA

(
Tel(A; a),Rest Â/A(M)

)
,

so that
L3a

(
Rest Â/A(M)

)
∼= Rest Â/A(M).

Note that

Rest Â/A

(
L3̂a

(
Rest Â/A(M)

))
∼= L3a

(
Rest Â/A(M)

)
∼= Rest Â/A(M).
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Hence, the complex of Â-modules

L3̂a

(
Rest Â/A(M)

)
is concentrated in degree 0. Letting P→ Rest Â/A(M) be a projective resolution,
we deduce that the map

3̂a(P)→ 3̂a

(
Rest Â/A(M)

)
∼= M

is an Â-linear quasiisomorphism, so the result follows from the fact that

L3̂a

(
Rest Â/A(M)

)
∼= 3̂a(P). �

Using this lemma, and as a first corollary of Theorem 4.1, we obtain the next
result which reduces the problem of computing the Hochschild cohomology of an
adically complete ring to a problem over noetherian rings.

Corollary 4.3. Let k be a commutative ring, and let A be a flat noetherian k-algebra.
Assume a ⊆ A is an ideal such that A is a-adically complete, and such that
A/a is essentially of finite type over k. Let I = a ⊗k A + A ⊗k a, and set
A ⊗̂k A := 3I (A ⊗k A). Then for any M ∈ Mod A ⊗k A which is I-adically
complete (for example, any a-adically complete A-module, or, more particularly,
any finitely generated A-module), there is a functorial isomorphism

R HomA⊗k A(A,M)∼= R HomA⊗̂k A(A,M)

in D(Mod A), and the ring A ⊗̂k A is noetherian.

Proof. That A⊗̂k A is noetherian follows from the fact that (A⊗k A)/I ∼= A/a⊗k A/a
is noetherian, and I is finitely generated. Since A = Â, according to Theorem 4.1,
there is a functorial isomorphism

R HomA⊗k A(A,L3I (M))∼= R HomA⊗̂k A(A,L3̂I (M)).

By Lemma 4.2, we have

L3I (M)∼= M in D(Mod A⊗k A)
and

L3̂I (M)∼= M in D(Mod A ⊗̂k A).

Using these two facts, we obtain the functorial isomorphism

R HomA⊗k A(A,M)∼= R HomA⊗̂k A(A,M). �

Remark 4.4. In [Buchweitz and Flenner 2006, Section 3, page 113], the authors
defined the analytic Hochschild cohomology and discussed its relation to ordinary
Hochschild cohomology. The setup there is as follows: (A,mA) and (B,mB) are
two complete noetherian local rings, and there is a flat local map A→ B such that
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the induced map A/mA→ B/mB is an isomorphism. In this situation, the authors
defined the analytic bar resolution B̂ by replacing B⊗

n
A with its completion with

respect to the maximal ideal ker(B⊗
n
A → B/mB) in the ordinary bar resolution.

Using this complex, the authors defined the analytic Hochschild cohomology by

ĤHn(B/A,M) := H n HomB⊗̂A B(B̂,M),

observed that there is a canonical map

ĤHn(B/A,M)→ HHn(B/A,M),

and asked if these modules are isomorphic. Using Corollary 4.3 and the results
of [Buchweitz and Flenner 2006], we may now obtain a positive answer to this
question:

Corollary 4.5. Let (A,mA)→ (B,mB) be a flat local homomorphism of complete
noetherian local rings such that the induced map of residue fields A/mA→ B/mB

is an isomorphism. Then for any mB-adically complete B-module M (in particular,
for any finitely generated B-module M), there is a natural B-module isomorphism

ĤHn(B/A,M)∼= HHn(B/A,M).

Proof. Note that M is ker(B⊗A B→ B/mB)-adically complete, so by [Buchweitz
and Flenner 2006, Proposition 3.1], the natural map

HHn(B/A,M)→ ExtnB⊗A B(B,M)

is an isomorphism. Similarly, by [Buchweitz and Flenner 2006, Proposition 3.2],
the natural map

ĤHn(B/A,M)→ ExtnB⊗̂A B(B,M)

is an isomorphism. Finally, by Corollary 4.3, there is a natural isomorphism

ExtnB⊗A B(B,M)∼= ExtnB⊗̂A B(B,M),

so the result follows. �

Our next goal is to give the complex appearing in Theorem 4.1 a description in
terms of the Hochschild complex of the ring Â. First we need a lemma.

Lemma 4.6. Let k be a commutative ring, let A be a flat noetherian k-algebra, and
let a⊆ A be an ideal. Let

I := a⊗k A+ A⊗k a⊆ A⊗k A,

let â := a ·3a(A), and let

J = â⊗k Â+ Â⊗k â= I · ( Â⊗k Â)⊆ Â⊗k Â.



1022 Liran Shaul

If τA : A→ Â is the completion map, then the ring map

3I (τA⊗k τA) :3I (A⊗k A)→3J ( Â⊗k Â)

is an isomorphism.

Proof. Notice that for each n we have

I n
=

n∑
i=0

ai
⊗ an−i ,

where we have set a0
= A. Hence,

a2n
⊗k A+ A⊗k a

2n
⊆ I 2n

⊆ an
⊗k A+ A⊗k a

n.

It follows that the two sequences of ideals {I n
} and {an

⊗k A+ A⊗k a
n
} are cofinal

in each other, so that

lim
←−−
(A⊗k A)/I n ∼= lim

←−−
(A⊗k A)/(an

⊗k A+ A⊗k a
n)∼= lim

←−−
A/an

⊗k A/an.

Since A is noetherian, Â is flat over A, so it is also flat over k. Hence, in the exact
same manner,

lim
←−−
( Â⊗k Â)/J n ∼= lim

←−−
Â/(â)n ⊗k A/(â)n.

Hence, the result follows from the fact that Â/(â)n∼= A/an, and from the observation
that the maps 3I (τA⊗k τA) and

lim
←−−
((τA⊗k τA)/(a

n
⊗k A+ A⊗k a

n))

are equal. �

Remark 4.7. In the notation of the above lemma, note that composing the comple-
tion map

Â⊗k Â→3J ( Â⊗k Â)

with the isomorphism

3J ( Â⊗k Â)→3I (A⊗k A)

we obtain a ring map
Â⊗k Â→3I (A⊗k A).

Using this map, given M ∈Mod(A⊗k A), we will be able to regard

3̂I (M) ∈Mod(3I (A⊗k A))

as an ( Â⊗k Â)-module which is J-adically complete.
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We may now refine Theorem 4.1, and present the derived completion of the
Hochschild cohomology complex as a Hochschild cohomology complex over the
completion:

Theorem 4.8. Let k be a commutative ring, and let A be a flat noetherian k-algebra
such that A⊗k A is noetherian. Let a ⊆ A be an ideal, and let M be a finitely
generated (A⊗k A)-module. Set

I := a⊗k A+ A⊗k a⊆ A⊗k A.

Then there is a functorial isomorphism

L3̂a(R HomA⊗k A(A,M))∼= R Hom Â⊗k Â( Â, M̂)

in D(Mod Â), where Â := 3̂a(A) and M̂ := 3̂I (M).

Proof. Set A ⊗̂k A :=3I (A⊗k A). By assumption, A⊗k A is noetherian, so I is
weakly proregular. According to Theorem 4.1, there is a functorial isomorphism

L3̂a(R HomA⊗k A(A,M))∼= R HomA⊗̂k A( Â,L3̂I (M)). (4.9)

Because A⊗k A is noetherian and M is a finitely generated module, it follows that

L3̂I (M)∼= 3̂I (M)= M̂

in D(Mod A ⊗̂k A). Hence, by Lemma 4.6, there is a functorial isomorphism

R HomA⊗̂k A( Â, M̂)∼= R Hom Â⊗̂k Â( Â, M̂) (4.10)

in D(Mod Â). Let â := a · Â ⊆ Â. Since A is noetherian, the map A → Â is
flat, so the map A⊗k A→ Â⊗k Â is also flat. Hence, by Remark 2.2, the ideal
J := I · ( Â⊗k Â)= â⊗k Â+ Â⊗k â is weakly proregular.

Because A⊗k A is noetherian, its completion 3I (A⊗k A) is also noetherian, so,
again by Lemma 4.6, the ring 3J ( Â⊗k Â) is noetherian. Hence, by Lemma 4.2,
L3J (M̂) ∼= L3̂J (M̂) ∼= M̂ . Applying Theorem 4.1 to the ring Â, we have a
functorial isomorphism

R Hom Â⊗k Â( Â,L3J (M))∼= R Hom Â⊗̂k Â( Â,L3̂J (M)).

Composing this isomorphism with the isomorphisms of (4.9) and (4.10), we obtain
the result. �

Our final goal in this section is to show that when taking cohomology in the
above theorem, derived completion may be replaced with ordinary completion. The
next simple lemma is needed for the proof of Proposition 4.12.
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Lemma 4.11. Let A be a noetherian ring, let P be a bounded complex of free
A-modules, and let M be a finitely generated A-module. Then the canonical map

HomA(P, A)⊗A M→ HomA(P,M)

is an isomorphism of complexes.

Proof. It is enough to show this in the case where P is a single free A-module. In
that case, note that HomA(P, A) is a direct product of copies of A, and since A is
noetherian this is a flat A-module. Thus, both of the functors HomA(P, A)⊗A−

and HomA(P,−) are exact, and if M is a finitely generated free A-module, then the
canonical map HomA(P, A)⊗A M→ HomA(P,M) is obviously an isomorphism.
Hence, the result of the lemma follows from the standard finite presentation trick. �

In the case where M is bounded above, the next proposition is [Frankild 2003,
Proposition 2.7]. We, however, wish to apply this result to the Hochschild complex
which is bounded below, so we give a proof that works for complexes without any
boundedness condition.

Proposition 4.12. Let A be a noetherian ring, and let a ⊆ A be an ideal. Then
there is an isomorphism

L3a(M)∼= Â⊗A M

of functors
Df(Mod A)→ D(Mod A).

Proof. There is a sequence of morphisms of functors

Â⊗A M ∼= HomA(Tel(A; a), A)⊗A M→ HomA(Tel(A; a),M)∼= L3a(M).

Because A is assumed to be noetherian, Â is flat over A. Hence, both L3a(−)

and −⊗A Â are functors of finite cohomological dimension. Thus, by [Hartshorne
1966, Proposition I.7.1], it is enough to show that the above morphism is an
isomorphism in the case where M is a finitely generated A-module, and this follows
from Lemma 4.11. �

Here is the result promised in the title of this paper:

Theorem 4.13. Let k be a commutative ring, and let A be a flat noetherian
k-algebra such that A ⊗k A is noetherian. Let a ⊆ A be an ideal, and let M
be a finitely generated (A⊗k A)-module. Then for any n ∈N, there is a functorial
isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Extn

Â⊗k Â
( Â, M̂).

If , moreover, either

(1) k is a field, or
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(2) A is projective over k, a is a maximal ideal, and M is a finitely generated
A-module,

then there is also a functorial isomorphism

3a(HHn(A/k,M)
)
∼= HHn( Â/k, M̂).

Proof. The assumptions of the theorem ensure that

R HomA⊗k A(A,M) ∈ Df(Mod A),

so since A is noetherian, we have a functorial isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Â⊗A H n(R HomA⊗k A(A,M)).

Flatness of Â over A implies (for example, by [Porta et al. 2014b, Corollary 2.12])
that there is a natural isomorphism

Â⊗A H n(R HomA⊗k A(A,M))∼= H n( Â⊗A R HomA⊗k A(A,M)).

Hence, by Proposition 4.12, it is enough to compute the n-th cohomology of the
complex

L3a(R HomA⊗k A(A,M)).

Letting
Rest Â/A : D(Mod Â)→ D(Mod A)

be the forgetful functor, the above complex is equal to

Rest Â/A ◦L3̂a(R HomA⊗k A(A,M)).

By Theorem 4.8, there is a functorial isomorphism

L3̂aR HomA⊗k A(A,M)∼= R Hom Â⊗k Â( Â, M̂)

in D(Mod Â), so applying the forgetful functor we obtain an A-linear natural
isomorphism

3a

(
ExtnA⊗k A(A,M)

)
∼= Extn

Â⊗k Â
( Â, M̂).

(Actually, any A-linear map between Â-modules is automatically Â-linear, so this
isomorphism is even an isomorphism of Â-modules.) This establishes the first claim
of the theorem. If k is a field then the second claim obviously follows from the first
one. Assume now that A is projective over k, that a is a maximal ideal, and that M
is a finitely generated A-module. Let φ be the composition of the diagonal map
Â⊗k Â→ Â with the map Â→ Â/a Â. Then m = ker(φ)⊆ Â⊗k Â is a maximal
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ideal, and the image of m in Â is equal to a Â. Hence M̂ is m-adically complete, so
by [Buchweitz and Flenner 2006, Proposition 3.1] the canonical map

HHn( Â/k, M̂)→ Extn
Â⊗k Â

( Â, M̂)

is an isomorphism. This proves the second claim. �

The above result allows us to compute the Hochschild cohomology of power
series rings, which is new as far as we know.

Example 4.14. Let k be a noetherian ring. Let A=k[x1, . . . , xn], a= (x1, . . . , xn),
and M = A. Note that A is projective over k, and that 3a(A) = k[[x1, . . . , xn]].
Hence, by the above theorem, we have

Exti
Â⊗k Â

( Â, Â)∼=3a

(
HHi (k[x1, . . . , xn]/k, k[x1, . . . , xn])

)
.

By the Hochschild–Kostant–Rosenberg theorem, the right-hand side is equal to

3a ∧
i (k[x1, . . . , xn]

n),

so we have an isomorphism

Exti
Â⊗k Â

( Â, Â)∼= ∧i (k[[x1, . . . , xn]]
n).

If, moreover, k is a field, we obtain that

HHi (k[[x1, . . . , xn]]/k, k[[x1, . . . , xn]])∼= ∧
i (k[[x1, . . . , xn]]

n).

We remark that one can also use Corollary 4.3 to make this calculation.

Example 4.15. Let A be a noetherian ring, and let a ⊆ A be an ideal. Then, by
Theorem 4.8, we have

R Hom Â⊗A Â( Â, Â)∼= L3̂aR HomA(A, A)= Â.

Assume now that a is a maximal ideal. Then, by Theorem 4.13,

HHn( Â/A, Â)= 0

for all n 6= 0, and HH0( Â/A, Â)= Â. Specializing to the case where A = Z, and
a = (p) for some prime number p, we have computed the absolute Hochschild
cohomology of the ring of p-adic integers Zp.

Remark 4.16. The above examples are both particular cases of an adic Hochschild–
Kostant–Rosenberg theorem which applies for any formally smooth adic alge-
bra A such that A/a is essentially of finite type over k. This can be shown
using Corollary 4.3 and by studying the local structure of the completed diagonal
ker(A ⊗̂k A→ A). A full proof of this will appear elsewhere.
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5. Hochschild homology and derived torsion

In this short and final section we discuss relations between Hochschild homology
and the derived torsion functor.

Theorem 5.1. Let k be a commutative ring, let A be a flat noetherian k-algebra,
and let a⊆ A be an ideal. Assume further that at least one of the following holds:

(1) The ring k is an absolutely flat ring (e.g., a field).

(2) A/a is essentially of finite type over k.

(3) The ideal I := a⊗k A+ A⊗k a⊆ A⊗k A is weakly proregular.

Set Â :=3a(A) and A ⊗̂k A :=3I (A⊗k A). Then there are isomorphisms

R0̂a
(

A⊗L
A⊗k A−

)
∼= Â⊗L

A⊗k A R0I (−)∼= Â⊗L
A⊗̂k A R0̂I (−)

of functors
D(Mod A⊗k A)→ D(Mod Â).

Proof. As in the proof of Theorem 4.1, the first two conditions imply the third one,
so we may assume I is weakly proregular. The first isomorphism then follows from
Corollary 3.14, while the second isomorphism follows from Corollary 3.13. �

Remark 5.2. In view of Theorem 4.13, it is natural to ask if Hochschild homology
also commutes with adic completion. Here, the answer is false, even in simple
situations. Indeed, let k be a field of characteristic 0, let A = k[x], and let a= (x).
Then

HH1(A/k, A)∼= A,

so that 3a(HH1(A/k, A))∼= k[[x]]. On the other hand, HH1( Â/k, Â)∼=�1
k[[x]]/k is

an infinitely generated k[[x]]-module.

Remark 5.3. As an alternative to the badly behaved Hochschild homology of
commutative adic algebras, Hübl [1989] developed a theory of adic Hochschild
homology by studying the cohomologies of the functor

A⊗L
A⊗̂k A− .

As our Corollary 4.3 shows, in the case of Hochschild cohomology, usual Hochschild
cohomology coincides with adic Hochschild cohomology, but by the previous
remark we see that for Hochschild homology this is not the case.
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