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We prove the equivalence of dynamical stability, preperiodicity, and canonical
height 0, for algebraic families of rational maps ft : P

1(C)→ P1(C), param-
eterized by t in a quasiprojective complex variety. We use this to prove one
implication in the if-and-only-if statement of a certain conjecture on unlikely
intersections in the moduli space of rational maps (see “Special curves and
postcritically finite polynomials”, Forum Math. Pi 1 (2013), e3). We present the
conjecture here in a more general form.

1. Introduction

Let f : V × P1(C)→ P1(C) be an algebraic family of rational maps of degree
d ≥ 2. That is, V is an irreducible quasiprojective complex variety, and f is a
morphism such that ft := f (t, · ) : P1

→ P1 has degree d for all t ∈ V. Fix a
morphism a : V →P1, which we view as a marked point on P1. When V is a curve,
we will alternatively view f as a rational function defined over the function field
k = C(V ), with a ∈ P1(k). In this article, we study the relation between dynamical
stability of the pair ( f, a), preperiodicity of the point a, and the canonical height
of a (defined over the field k). In the final section, we present the general form of a
conjecture on density of “special points” in this setting of dynamics on P1 (which
includes as a special case some known statements about points on elliptic curves) —
see Conjecture 6.1; compare [Baker and DeMarco 2013, Conjecture 1.10]. We
finish the article with the proof of one part of the conjecture, as an application of
this study of stability in algebraic families.

Stability. The pair ( f, a) is said to be stable if the sequence of iterates

{t 7→ f n
t (a(t))}n≥1

forms a normal family on V. (Recall that a family of holomorphic maps is normal
if it is precompact in the topology of uniform convergence on compact subsets; i.e.,
any sequence contains a locally uniformly convergent subsequence.) The pair ( f, a)
is preperiodic if there exist integers m > n ≥ 0 such that f m

t (a(t))= f n
t (a(t)) for
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all t ∈ V. The pair ( f, a) is isotrivial if there exists a branched cover W → V
and an algebraic family of Möbius transformations M : W ×P1

→ P1 such that
Mt ◦ ft ◦M−1

t : P
1
→ P1 and Mt(a(t)) ∈ P1 are independent of t .

It is immediate from the definitions that either preperiodicity or isotriviality will
imply stability. In this article, we prove the converse:

Theorem 1.1. Let f be an algebraic family of rational maps of degree d ≥ 2, and
let a be a marked point. Suppose ( f, a) is stable. Then either ( f, a) is isotrivial or
it is preperiodic.

This is a generalization of [Dujardin and Favre 2008, Theorem 2.5], which itself
extends [McMullen 1987, Theorem 2.2], treating the case where a is a critical
point of f . In the study of complex dynamics, it is well known that a holomorphic
family f : X ×P1

→ P1, for X any complex manifold, is dynamically stable if
and only if the pair ( f, c) is stable for all critical points c of f [Lyubich 1983;
Mañé et al. 1983; McMullen 1994, Chapter 4]. For nonisotrivial algebraic families
f : V ×P1

→ P1, McMullen [1987, Lemma 2.1] proved that dynamical stability
on all of V implies that all critical points are preperiodic. Combining this with
Thurston’s rigidity theorem, he concluded that a nonisotrivial stable family must be
a family of flexible Lattès maps (i.e., covered by an endomorphism of a nonisotrivial
family of elliptic curves).

Canonical height. One step in the proof of Theorem 1.1 provides an elementary
geometric proof of Baker’s theorem [2009, Theorem 1.6] on the finiteness of rational
points with small height, for the canonical height ĥ f associated to the function field
C(V ), when the variety V has dimension 1. In fact, we obtain his statement under
the weaker hypothesis that f is not isotrivial over k = C(V ) (rather than assuming
f is nonisotrivial over any extension of k); see [Baker 2009, Remark 1.7(i)]. The
map f is isotrivial over k = C(V ) if there exists an algebraic family of Möbius
transformations M : V ×P1

→ P1 such that Mt ◦ ft ◦M−1
t is independent of t .

Theorem 1.2. Suppose f is a rational function defined over the function field
k = C(V ), of degree ≥ 2, and assume that V has dimension 1. Let ĥ f be the
canonical height of f . If f is not isotrivial over k, then there exists a b > 0
such that the set {a ∈ P1(k) : ĥ f (a) < b} is finite.

Remark 1.3. Theorem 1.2 contains as a special case the corresponding result
about rational points on an elliptic curve E over k, equipped with the Néron–
Tate height, generally attributed to Lang and Néron [1959]; see [Silverman 1994,
Theorem III.5.4] for a proof. It was a step in proving the Mordell–Weil theorem
for function fields. (To treat this case, we project E to P1 and let f be the rational
function induced by multiplication-by-2 on E .) In this setting, one can say more:
the set of points in P1(k) with height < b that lift to rational points in E(k) is
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finite for all b > 0; see [Baker 2009, Theorem B.9], where this is deduced from the
conclusion of Theorem 1.2.

The canonical height ĥ f was introduced in [Call and Silverman 1993], and it
satisfies ĥ f ( f (a)) = dĥ f (a) when f has degree d. So Theorem 1.2 implies that
rational points of height 0 are preperiodic unless f is isotrivial over k. This was
proved for polynomials f in [Benedetto 2005]. When k is a number field, this was
observed in [Call and Silverman 1993], and the conclusion of Theorem 1.2 holds
for all b > 0. In the function field setting, the conclusion of Theorem 1.2 cannot
hold for all b > 0, since, for example, the union of all constant points a ∈ P1(C)

will form an infinite set of bounded canonical height for any f . On page 1040, we
provide explicit examples of functions f for which we compute the sharp bound b
and the total number of rational preperiodic points. Also, note that examples do
exist of rational functions f ∈ k(z) that are isotrivial but not isotrivial over k=C(V ).
A necessary condition is a nontrivial automorphism group of f ; see Example 2.2.

Combining Theorem 1.1 with Theorem 1.2, we have:

Theorem 1.4. Suppose f : V × P1
→ P1 is a nonisotrivial algebraic family of

rational maps, where V has dimension 1. Let ĥ f :P
1(k̄)→R be a canonical height

of f , defined over the function field k = C(V ). For each a ∈ P1(k̄), the following
are equivalent:

(1) The pair ( f, a) is stable.

(2) ĥ f (a)= 0.

(3) ( f, a) is preperiodic.

Moreover, the set {a ∈ P1(k) : ( f, a) is stable} is finite.

Application to intersection theory. Combining Theorem 1.1 with Montel’s theorem
on normal families, we obtain another argument for the “easy” implication of the
Masser–Zannier theorems [2010; 2012] on anomalous torsion for elliptic curves.

Proposition 1.5. Suppose that E is any nonisotrivial elliptic curve defined over a
function field k = C(V ), where V has dimension 1, and let P be a point of E(k).
Then the set of t ∈ V for which the point Pt is torsion on Et is infinite.

The harder part of the Masser–Zannier theorems is the following statement: if
two points P and Q in E(k) are independent on E and neither is torsion, meaning
that they do not satisfy a relation of the form m P + nQ = 0 with integers m and n
not both zero, then the set of t ∈ V for which Pt and Qt are both torsion on Et

is finite. (In [DeMarco et al. 2016], we gave a dynamical proof of this harder
implication for the Legendre family Et .)

The theorems of [Masser and Zannier 2012], followed by a series of analogous
results in the dynamical setting (e.g., [Baker and DeMarco 2011; Ghioca et al.
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2013; 2015; DeMarco et al. 2015]), led to the development of a general conjecture
about rational maps and marked points — addressing a question first posed by
Umberto Zannier, but also encompassing a case of intrinsic dynamical interest,
where the marked points are the critical points of the map. A precise statement of
this conjecture appears as Conjecture 6.1 in Section 6. In [Baker and DeMarco
2013], we formulated the conjecture in the setting of marked critical points; an
error in one of our definitions is corrected here (Remark 6.3). In this article, we
use Theorem 1.1 to give a proof of one implication of the more general statement
of Conjecture 6.1. This implication reduces to proving the following statement.

Every algebraic family f : V ×P1
→P1 induces a (regular) projection V →Md

from the parameter space to the moduli space Md of conformal conjugacy classes
of maps. We say the family f has dimension N in moduli if the image of V under
this projection has dimension N in Md . Since V is irreducible, f has dimension 0
in moduli if and only if f is isotrivial.

Theorem 1.6. Let f : V ×P1
→ P1 be an algebraic family of rational maps of

degree d ≥ 2, of dimension N > 0 in moduli. Let a1, . . . , ak , with k ≤ N, be any
marked points. Then the set

S(a1, . . . , ak)=

k⋂
i=1

{t ∈ V : ai (t) is preperiodic for ft }

is Zariski-dense in V.

Remark 1.7. Conjecture 6.1 asserts that the set S(a1, . . . , ak) with k > N will be
Zariski-dense if and only if at most N of the points a1, . . . , ak are dynamically
“independent” on V.

Idea of the proof of Theorem 1.1. The proofs of [McMullen 1987, Theorem 2.2]
and [Dujardin and Favre 2008, Theorem 2.5] use crucially that the point is critical.
The first ingredient of our proof is similar to their proofs, building upon the fact
that there are only finitely many nonconstant morphisms from a quasiprojective
algebraic curve V to P1

\ {0, 1,∞}. This leads to the proof of Theorem 1.2. As a
special case of Theorem 1.2, we have:

Proposition 1.8. Let f : V ×P1
→ P1 be an algebraic family of rational maps of

degree d ≥ 2, and assume that V has complex dimension 1. Fix a marked point
a : V → P1, and define gn : V → P1 by gn(t)= f n

t (a(t)). If f is not isotrivial, and
if the degrees of {gn} are bounded, then there exist integers m > n ≥ 0 such that

f m
t (a(t))= f n

t (a(t)) for all t ∈ V .

Remark 1.9. If f is isotrivial, then the degrees of gn(t)= f n
t (a(t)) are bounded

if and only if the pair ( f, a) is isotrivial. (See Proposition 2.3.)
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For Theorem 1.1, it suffices to treat the case where V has complex dimension 1
and so is a finitely punctured Riemann surface. Then each gn(t)= f n

t (a(t)) extends
to a holomorphic map on the compactification of V. In light of Proposition 1.8, it
remains to prove that stability on V implies the degrees of {gn} are bounded.

The second ingredient of the proof is a study of normality and escape rates near
the punctures of V. The arguments given in Section 3 are inspired by the methods
of [DeMarco et al. 2015] and [DeMarco et al. 2016].

From a geometric point of view, the idea to show that the degrees of {gn} are
bounded is as follows. Let X denote (the normalization of) a compactification
of V. Under iteration, one would typically expect that deg gn ≈ d deg gn−1, where
d = deg f . Viewing gn as a curve in X ×P1 (by identifying the function with its
graph), the expected degree growth fails when the graph of gn passes through the
indeterminacy points of (t, z) 7→ (t, ft(z)) and thus its image contains “vertical
components” over the punctures of V. Lemma 3.3 shows that the multiplicity of
the vertical component in the image of any curve is uniformly bounded by some
integer q. On the other hand, normality on V implies that the graphs of gn are
converging over compact subsets of V. Therefore, if deg gn→∞, the graph of gn

must be fluctuating wildly near the punctures of V when n is large (Lemma 4.1).
But this fluctuation is controlled by Proposition 3.1.

2. Isotriviality and Theorem 1.2

Throughout this section, we assume that V is an irreducible quasiprojective complex
variety of dimension 1; i.e., V is obtained from a compact Riemann surface by
removing finitely many points. Let f :V×P1

→P1 be an algebraic family of rational
maps of degree d ≥ 2. We prove Theorem 1.2. We also prove Proposition 2.3, to
provide a characterization of isotriviality which is used in the proof of Theorem 1.1;
it is not needed for the proof of Theorem 1.2.

Isotrivial maps. By definition, f is isotrivial if there exists a family {Mt } of Möbius
transformations, regular over a branched cover p :W→V, such that Mt ◦ fp(t)◦M−1

t
is constant in t . For a marked point a : V → P1, the pair ( f, a) is isotrivial if, in
addition, the function Mt(a(p(t))) is constant on W. (Note that this is well defined,
even if the family Mt is not uniquely determined.) The map f (or the pair ( f, a))
is isotrivial over k = C(V ) if M can be chosen to be an algebraic family that is
regular on V.

Lemma 2.1. Let V have dimension 1. If ( f, a) is isotrivial, and if {a, f (a), f 2(a)}
is a set of three distinct functions on V, then ( f, a) is isotrivial over k.

Proof. Suppose ( f, a) is isotrivial. Let M :W ×P1
→ P1 be an algebraic family

of Möbius transformations, with branched cover p : W → V, such that R =
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Mw ◦ fp(w) ◦ M−1
w : P

1
→ P1 and b = Mw(a(p(w))) are independent of w ∈ W.

By removing finitely many points from V, we may assume that p : W → V is a
covering map.

Fix a basepoint t0 ∈ V and choose a point w0 ∈ p−1(t0). The choices of basepoint
determine a representation

ρf : π1(V, t0)→ Aut( ft0)⊂ PSL2(C)

that is trivial if and only if ( f, a) is isotrivial over k. Indeed, choose any γ ∈π1(V, t0)
and let η : [0, 1] →W be a lift of γ with η(0)= w0. Write wt for η(t). Then the
equality fp(w0)= fp(w1)= ft0 and isotriviality imply that Mw0 ft0 M−1

w0
=Mw1 ft0 M−1

w1
,

so ρf (γ ) := M−1
w1

Mw0 is an automorphism of ft0 . The triviality of ρf is equivalent
to the statement that Mw0 = Mw1 for all such paths, so that M descends to a regular
map M : V ×P1

→ P1.
Now choose the basepoint t0 so that {a(t0), ft0(a(t0)), f 2

t0(a(t0))} are three dis-
tinct points in P1. Fix any γ ∈ π1(V, t0). For each n ≥ 0, we have

ρf (γ )( f n
t0 (a(t0)))= f n

t0 (ρf (γ )(a(t0)))= f n
t0 M−1

w1
Mw0(a(p(w0)))

= f n
t0 M−1

w1
(b)= f n

t0 (a(p(w1))= f n
t0 (a(t0)),

so the full orbit of a(t0) under ft0 lies in the fixed set of ρf (γ ). By the assumption
on a we deduce that ρf (γ ) is the identity. Therefore, ( f, a) is isotrivial over k. �

Example 2.2. Consider the rational function f1(z)= z+1/z or the cubic polynomial
P1(z) = z3

− 3z. Both of these functions have z 7→ −z as an automorphism.
Conjugating by Mt(z)= t z and setting s = t2, we see that the families

fs(z)= z+ 1
sz

and Ps(z)= sz3
− 3z

are isotrivial over a degree-2 extension of k = C(s). On the other hand, neither
f nor P is isotrivial over k. This can be seen by computing the critical points

(=±
√

1/s in both examples), and observing that the critical points are interchanged
by a nontrivial loop in V = C \ {0}.

Proposition 2.3. Suppose V has dimension 1 and f is isotrivial. Let a : V → P1

be any marked point. The following are equivalent:

(1) The pair ( f, a) is isotrivial.

(2) The pair ( f, a) is stable.

(3) The degrees of gn(t)= f n
t (a(t)) are bounded.

Proof. Since f is isotrivial, there exist a finite branched cover p :W → V, an alge-
braic family of Möbius transformations M :W ×P1

→P1, and a map R :P1
→P1

such that Mt ◦ fp(t) ◦M−1
t = R for all t ∈W. Set s = p(t).
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If the pair ( f, a) is isotrivial, then b = Mt(a(s)) is also independent of t , so
the degrees of gn(t) = f n

s (a(s)) = M−1
t (Rn(b)) are clearly bounded. Thus (1)

implies (3). In addition, note that any sequence in the set {Rn(b)}n≥1 ⊂ P1 has a
convergent subsequence. This implies the normality of {M−1

t (Rn(b))}n≥1 on W
which in turn implies the normality of { f n

t (a(t))}n on V. Thus (1) implies (2).
Now suppose that ( f, a) is not isotrivial, so that b(t)= Mt(a(s)) is nonconstant

on W. We observe first that the degrees of {gn} must be unbounded, showing that
(3) implies (1). Indeed, since b is nonconstant, it extends to a surjective map of
finite degree from a compactification W to P1. Choose any point z0 ∈ P1 which is
nonexceptional for R, that is, such that the set of preimages R−n(z0) is growing in
cardinality as n→∞. For any D > 0, choose n so that the size of the set R−n(z0)

is larger than D. Then there is a set P ⊂W of cardinality |P| ≥ D such that b(t)
is in R−n(z0) for all t ∈ P . Then Rn(b(t)) = z0 for all t ∈ P . Taking D as large
as desired, this shows that the degrees of {t 7→ Rn(b(t))}n are unbounded. This in
turn implies that the degrees of gn(t)= M−1

t (Rn(b(t))) are unbounded.
Continuing to assume that ( f, a) is not isotrivial, we also see that b(t)=Mt(a(s))

has only finitely many critical points in W and the image b(W ) omits at most finitely
many points in P1. The map R has infinitely many repelling cycles in its Julia set,
so there must exist a t0 ∈ W such that b′(t0) 6= 0 and b(t0) is a repelling periodic
point of R for all t ∈ P . It follows that the sequence of derivatives ∂

∂t Rn(b(t))|t=t0
is unbounded; so the sequence {Rn(b(t)) = Mt( f n

s (a(s)))}n cannot be a normal
family on all of W. Therefore, {gn}n also fails to be normal, and so we have proved
that (2) implies (1). �

Finiteness of nonconstant maps. As in the proofs of Theorem 2.2 (and specifically
Proposition 4.3) in [McMullen 1987] and of Theorem 2.5 in [Dujardin and Favre
2008], we will need the following statement for our proof of Theorem 1.2.

Lemma 2.4. Let 3 be any quasiprojective, complex algebraic curve. There are
only finitely many nonconstant holomorphic maps from 3 to the triply punctured
sphere P1

\ {0, 1,∞}. The bound depends only on the Euler characteristic χ(3).

Proof. Any holomorphic map h : 3→ P1
\ {0, 1,∞} extends to a meromorphic

function on a (smooth) compactification X of 3. From Riemann–Hurwitz, the
degree of h is bounded by the Euler characteristic −χ(3). Any meromorphic
function on X is determined by its zeros, poles, and ones; indeed, the ratio of two
functions h1 and h2 with the same zeros and poles must be constant on X , and if
h1(x) = 1 = h2(x) for some x , then h1 ≡ h2. Thus, there are only finitely many
combinatorial possibilities for h. �

Proof of Theorem 1.2. Let d = deg f ≥ 2. The canonical height ĥ f (a) computes
the growth rate of the degrees of t 7→ f n

t (a(t)) as n→∞. Precisely, each a ∈P1(k̄)
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determines a meromorphic function W → P1 on a branched cover pa : W → V,
where the topological degree of pa coincides with the algebraic degree of the field
extension k(a) over k. The canonical height is computed as

ĥ f (a)=
1

deg pa
lim

n→∞

1
dn deg gn

for the maps gn :W → P1 defined by gn(s)= f n
pa(s)(a(s)). This height function ĥ f

is characterized by two conditions [Call and Silverman 1993, Theorem 1.1]:

(1) The difference |ĥ f (a)− deg a/deg pa| is uniformly bounded on P1(k̄).

(2) ĥ f ( f (a))= dĥ f (a) for all a ∈ P1(k̄).

In particular, the degrees of {gn} are growing to infinity if and only if the canonical
height of a is positive.

Suppose there is a sequence of rational points am ∈ P1(k), m ≥ 1, such that

1> ĥ f (am)→ 0

as m→∞. For each point a ∈ P1(k), the length of the orbit of a is defined to be
the cardinality of the set { f n(a) : n ≥ 0} in P1(k). Suppose further that only finitely
many of the am have infinite orbit, and that the finite orbit lengths are uniformly
bounded. In this case, all but finitely many of the am satisfy a finite number of
equations of the form f n(a)= f `(a) with n 6= `; thus the set {am} will be finite. If
this holds for any such sequence, then the theorem is proved.

We can assume, therefore, that the orbit lengths of the am are tending to infinity
with m or are equal to infinity for all m.

From property (1) of the height function, there exists a degree D such that
deg a≥ D with a ∈P1(k) implies ĥ f (a)≥ 1. For each m, choose an integer Nm ≥ 0
so that the orbit of am has length greater than Nm and so that

deg f i (am)≤ D

for all i ≤ Nm . Property (2) of the height function and the condition ĥ f (am)→ 0
imply that we may take Nm →∞ as m →∞. We will deduce that f must be
isotrivial over k.

Suppose now that ft has at least three distinct fixed points for general t ∈ V.
Remove the finitely many parameters in V where these three fixed points have
collisions. Then there exists a branched cover p :W → V and an algebraic family
of Möbius transformations M :W ×P1

→ P1 such that

Rt = Mt ◦ fp(t) ◦M−1
t

has its fixed points at 0, 1,∞ for all t ∈W.
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Set bm(t) = Mt(am(p(t))) for each m, so that Ri (bm) = M( f i (am)) for all
iterates. The uniform bound of D on the degrees of

⋃
m{ f i (am) : i ≤ Nm} implies

that there is a uniform bound of D′ on the degrees of
⋃

m{R
i (bm) : i ≤ Nm}. For

each point bm , we define

S0,m(n)= {t ∈W : Rn
t (bm(t))= 0},

S1,m(n)= {t ∈W : Rn
t (bm(t))= 1},

S∞,m(n)= {t ∈W : Rn
t (bm(t))=∞}.

Since {0, 1,∞} are fixed points of Rt for all t , we have

S0,m(n)⊂ S0,m(n+ 1)

for all m and all n; similarly for S1,m(n) and S∞,m(n). Let

Sm = S0,m(Nm)∪ S1,m(Nm)∪ S∞,m(Nm).

For each m and each n ≤ Nm , the iterate Rn(bm) determines a holomorphic map

W \ Sm −→ P1
\ {0, 1,∞}.

By construction, the degree of RNm (bm) is bounded by D′, so we have |Sm | ≤ 3D′

for all m. Therefore, there is a uniform bound B (independent of m) on the number
of nonconstant maps from W \ Sm to the triply punctured sphere P1

\ {0, 1,∞}
(Lemma 2.4). In other words, for each m, at most B of the first Nm iterates of bm

are nonconstant. Therefore, since Nm→∞, there exists an m0 such that bm0 has at
least 2d + 2 consecutive iterates that are constant and distinct.

Lemma 2.5. Suppose A and B are rational functions of degree d such that we have
A(xi )= B(xi ) for a sequence of 2d + 1 distinct points x1, . . . , x2d+1. Then A = B.

Proof. By postcomposing A and B with a Möbius transformation, we may assume
that the values A(xi ) and B(xi ) are finite for each i . Consider the difference
F = A− B. Then F is a rational function of degree ≤ 2d. But F vanishes in at
least 2d + 1 distinct points, so F ≡ 0. �

Set xi = Ri (bm0) for the consecutive indices i for which xi is constant in t . Then
Rt(xi )= xi+1 for all t along a set of 2d + 1 distinct points xi ∈ P1(C). Applying
Lemma 2.5, we conclude that the rational function Rt of degree d is independent
of t . In other words, f is isotrivial.

It remains to show that f is in fact isotrivial over k, but this follows from
Lemma 2.1. Indeed, for the point bm0 in the preceding paragraph, we had xi=Ri(bm0)

independent of t . In other words, the pair ( f, f i (am0)) is isotrivial. In addition,
the orbit length of f i (am0) is at least 2d + 1 ≥ 3. Lemma 2.1 states that the pair
( f, f i (am0)) must be isotrivial over k, so f itself is isotrivial over k.
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Finally, suppose that ft has only 1 or 2 fixed points, generally in V. For a
general parameter t0, choose a forward-invariant set of fixed points and preimages,
consisting of at least three distinct points. Pass to a branched cover W→V on which
these points can be marked holomorphically, excluding the finitely many points
where collisions occur. For each of these three points, we define the sets Si,m(n) as
above. If the i-th point is mapped to the j-th point by ft , then Si (n)⊂ Sj (n+ 1)
for all n. The rest of the proof goes through exactly the same. This completes the
proof of Theorem 1.2.

Two examples: computing canonical height and the number of rational preperi-
odic points. Consider Qt(z)= z2

+ t , the family of quadratic polynomials. This
family defines a nonisotrivial rational function Q over the function field k = C(t).
There is a unique point in P1(k) with finite orbit for Q, namely the point a =∞.
Indeed, writing a(t) = a1(t)/a2(t) for a ∈ P1(k) \ {∞}, we can compute explic-
itly that

deg(Q(a))=
{

2 deg a if deg a1 > deg a2,

2 deg a+ 1 if deg a1 ≤ deg a2.

In both cases, the image Q(a)will satisfy the hypothesis of the first case. Inductively
then, we have deg Qn(a)= 2n−1 deg Q(a). Consequently, the largest possible b in
the statement of Theorem 1.2 is b = 1

2 , since the set
{
a ∈ P1(k) : ĥQ(a) = 1

2

}
is

precisely the constant points a ∈ C, while∣∣{a ∈ P1(k) : ĥQ(a) < 1
2

}∣∣= 1.

As a second example, consider the family of flexible Lattès maps,

L t(z)=
(z2
− t)2

4z(z− 1)(z− t)
,

defining a nonisotrivial L over the field k = C(t). This family is the quotient
of the endomorphism P 7→ P + P on the Legendre family of elliptic curves
Et = {y2

= x(x − 1)(x − t)}. (See also the beginning of Section 5, where this
is discussed further.) For this example, Proposition 1.4 of [DeMarco et al. 2016]
shows there are exactly 4 rational preperiodic points, namely {0, 1, t,∞}. We also
explicitly computed the height of any starting point a ∈ P1(k) in Proposition 3.1 of
the same work. The constant points a ∈ C \ {0, 1} form an infinite set of points of
canonical height 1

2 , while∣∣{a ∈ P1(k) : ĥL(a) < 1
2

}∣∣= 4.

Again, b = 1
2 is the largest possible constant in the statement of Theorem 1.2.
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3. Escape rate at a degenerate parameter

In this section, we construct a “good” escape-rate function associated to a pair of
holomorphic maps f : D∗×P1

→ P1 and a : D∗→ P1, on the punctured unit disk
D∗ = {t ∈ C : 0< |t |< 1}. The construction follows that of [DeMarco et al. 2015;
2016]. I am indebted to Hexi Ye for his assistance in the proof of Proposition 3.1.

The setting. Throughout this section, we work in homogeneous coordinates on P1.
We assume we are given a family of homogeneous polynomial maps

Ft : C
2
→ C2,

of degree d ≥ 2, parameterized by t ∈D= {t ∈C : |t |< 1}, such that the coefficients
of Ft are holomorphic in t . Each Ft is given by a pair of homogeneous polynomials
(Pt , Qt), and we define Res(Ft) to be the homogeneous resultant of the polynomials
Pt and Qt . Recall that the resultant is a polynomial function of the coefficients
of Ft , vanishing if and only if Pt and Qt share a root in P1. See [Silverman 2007,
§2.4] for more information. We assume further that Res(Ft)= 0 if and only if t = 0,
and also that at least one coefficient of F0 is nonzero.

We use the norm

‖(z1, z2)‖ =max{|z1|, |z2|} on C2.

The escape-rate function. Let A : D→ C2
\ {(0, 0)} be any holomorphic map.

Write At for A(t).
For each n ≥ 0, the iterate Fn

t (At) is a pair of holomorphic functions in t ; we
define

an = ordt=0 Fn
t (At)

to be the minimum of the order of vanishing of the two coordinate functions at
t = 0; so a0 = 0 and an is a nonnegative integer for all n ≥ 1. Set

Fn(t)= t−an Fn
t (At)

so that Fn is a holomorphic map from D to C2
\ {(0, 0)} for each n. Our main goal

in this section is to prove the following statement.

Proposition 3.1. The functions

Gn(t)=
1

dn log ‖Fn(t)‖

converge locally uniformly on the punctured disk D∗ to a continuous function G
satisfying

G(t)= o(log |t |) as t→ 0.
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Remark 3.2. In [DeMarco et al. 2015; 2016], we used explicit expressions for Ft

to deduce that the function G was continuous at t = 0 for our examples. It remains
an interesting open question to determine necessary and sufficient conditions for the
functions Gn to converge uniformly to a continuous function G on a neighborhood
of t = 0.

Order of vanishing. Let Ft and Res(Ft) be defined as in page 1041.

Lemma 3.3. Let q = ordt=0 Res(Ft). There are constants 0<α< 1<β and δ > 0
such that

α|t |q ≤
‖Ft(z1, z2)‖

‖(z1, z2)‖d
≤ β,

for all (z1, z2) ∈ C2
\ {(0, 0)} and 0< |t |< δ.

Proof. The statement of Lemma 3.3 is essentially the content of [Baker and Rumely
2010, Lemma 10.1], letting k be the field of Laurent series in t , equipped with the
nonarchimedean valuation measuring the order of vanishing at t = 0. But to obtain
our estimate with the Euclidean norm, we work directly with their proof.

By the homogeneity of Ft , it suffices to prove the estimate assuming ‖(z1, z2)‖=1
with either z1 = 1 or z2 = 1. The upper bound is immediate from the presentation
of F , with bounded coefficients on compact subsets of D.

Write F = (F1(x, y), F2(x, y)). The resultant Res(F) is a nonzero element of
the valuation ring Ok = {z ∈ k : ordt=0 z ≥ 0}. From basic properties of the resultant
(e.g., [Silverman 2007, Proposition 2.13]), there exist polynomials g1, g2, h1, h2 ∈

Ok[x, y] such that

g1(x, y)F1(x, y)+ g2(x, y)F2(x, y)= Res(F)x2d−1 (3-1)
and

h1(x, y)F1(x, y)+ h2(x, y)F2(x, y)= Res(F)y2d−1. (3-2)

Setting x = 1, equation (3-1) shows that

min{ord F1(1, z2), ord F2(1, z2)} ≤ q

for any choice of z2 ∈Ok . In fact, taking

M = 2 max
{
sup

{
|g1(1, y)| : |t | ≤ 1

2 , |y| ≤ 1
}
, sup

{
|g2(1, y)| : |t | ≤ 1

2 , |y| ≤ 1
}}

we may find α1 > 0 and 0< δ1 <
1
2 such that

min{inf{|F1(1, z2)| : |z2| ≤ 1}, inf{|F2(1, y)| : |z2| ≤ 1}} ≥ |Res(F)|/M ≥ α1|t |q

for all |t |< δ1.
Similarly, setting y = 1 in equation (3-2), we may define the analogous α2 and δ2

to estimate F1(z1, 1) and F2(z1, 1) for any |z1| ≤ 1; the conclusion follows by
setting α =min{α1, α2} and δ =min{δ1, δ2}. �



Bifurcations, intersections, and heights 1043

Proof of Proposition 3.1. It is a standard convergence argument in complex dynam-
ics that the functions d−n log ‖Fn

t (At)‖ converge locally uniformly in the region
where Res(Ft) 6= 0, exactly as in [Hubbard and Papadopol 1994], [Fornæss and
Sibony 1994], or [Branner and Hubbard 1988]. To see that the functions Gn converge
locally uniformly on D∗, we must look at the growth of the orders {an} as n→∞.
From the definition of an , we have a0 = 0 and

an+1 = dan + ordt=0 Ft(Fn(t)) (3-3)

for all n. Hence by Lemma 3.3, noting that z = Fn(t) has norm bounded away from
both 0 and∞ as t→ 0, we find that

0≤ kn+1 := an+1− d · an ≤ q.

Consequently, the sequence an/dn
=
∑n

i=1 ki/d i has a finite limit. In particular,
we may conclude that the sequence

Gn(t)=
1

dn log ‖Fn(t)‖ =
1

dn log ‖Fn
t (At)‖−

an

dn log |t |

converges locally uniformly (to G(t)) in the punctured unit disk.
To show that G(t)= o(log |t |) it suffices to show that, for any ε > 0, there is a

constant C and a δ > 0 such that

|G(t)| ≤ ε|log |t || +C

for all t in the disk of radius δ.
Fix a positive integer N, and define

bn := ordt=0 Fn−N
t (FN (t))

for n ≥ N, so that bN = 0 and

0≤ `n+1 := bn+1− d · bn ≤ q

by Lemma 3.3. In particular, we have

bn

dn =

n∑
i=N+1

`i

d i ≤

∞∑
i=N+1

q
d i

for all n > N. By increasing N if necessary, we can assume that

∞∑
i=N+1

q
d i < ε.
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Therefore (recalling the constants 0< α < 1 and δ > 0 from Lemma 3.3),

1
dn log ‖Fn(t)‖+

bn

dn log |t |

=
1

dn log ‖Fn−N
t (FN (t))‖

=

n−N∑
i=1

(
1

d i+N log ‖F i
t (FN (t))‖−

1
d i+N−1 log ‖F i−1

t (FN (t))‖
)
+

1
d N log ‖FN (t))‖

=

n−N∑
i=1

1
d i+N log

‖F i
t (FN (t))‖

‖F i−1
t (FN (t))‖d

+
1

d N log ‖FN (t))‖

≥

n−N∑
i=1

1
d i+N (log |t |q + logα)+

1
d N log ‖FN (t))‖

≥ ε log |t | +
1

d N log ‖FN (t))‖+
∞∑

i=N

1
d i logα.

Let C = sup
∣∣log ‖FN (t))‖/d N

∣∣ for t in the disk of radius 1
2 . Then

1
dn log ‖Fn(t)‖≥ε log |t |−C+

∞∑
i=N

1
d i logα−

bn

dn log |t |≥ε log |t |−C+
∞∑

i=N

1
d i logα,

for all |t |< δ and all n ≥ N.
For the reverse estimate, we have

1
dn log ‖Fn(t)‖+

bn

dn log |t | =
n−N∑
i=1

1
d i+N log

‖F i
t (FN (t))‖

‖F i−1
t (FN (t))‖d

+
1

d N log ‖FN (t))‖

≤

∞∑
i=N

1
d i logβ +

1
d N log ‖FN (t))‖,

where β > 1 is the constant from Lemma 3.3. With the same C as above, we
conclude that

1
dn log ‖Fn(t)‖ ≤ −

bn

dn log |t | +
∞∑

i=N

1
d i logβ +C ≤−ε log |t | +

∞∑
i=N

1
d i logβ +C

for all |t | < δ and all n ≥ N. Passing to the limit as n →∞, we conclude that
G(t)= o(log |t |) for t near 0. This concludes the proof of Proposition 3.1.

Stability. We now gather some consequences of Proposition 3.1 that will be used
in the proof of Theorem 1.1. Let Ft be given as on page 1041, so it induces a
family of rational maps f of degree d , parameterized by the punctured disk D∗. Let
a : D→ P1 be a holomorphic map with a holomorphic lift A : D→ C2

\ {(0, 0)}.
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We define the functions Fn and Gn as on page 1041, with

G(t)= lim
n→∞

1
dn log ‖Fn(t)‖.

Recall that the pair ( f, a) is stable on D∗ if the sequence of holomorphic functions
{gn(t) := f n

t (a(t))} forms a normal family on D∗.

Corollary 3.4. Suppose the pair ( f, a) is stable on the punctured disk D∗. Then
there exists a choice of holomorphic lift A : D→ C2

\ {(0, 0)} of a such that G ≡ 0.

Proof. Stability of ( f, a) on D∗ implies that G is harmonic where t 6= 0 for any
choice of holomorphic lift A of a [DeMarco 2003, Theorem 9.1]. Indeed, take a
subsequence of {gn} that converges uniformly on a small neighborhood U in D∗ to a
holomorphic map h into P1. Shrinking U if necessary, we may select the norm on C2

so that log ‖s(·)‖ is harmonic on a region containing the image h(U ) in P1, where s is
any holomorphic section of C2

\{(0, 0)}→P1. Then the corresponding subsequence
of the harmonic functions Gn are converging uniformly to a harmonic limit.

Fix a choice of A : D→ C2
\ {(0, 0)}, and construct the escape-rate function G.

The bound on G from Proposition 3.1 implies that G extends to a harmonic function
on the entire disk. Indeed, by a standard argument in complex analysis, we fix a
small disk of radius r and let h be the unique harmonic function on this disk with
h = G on the boundary circle. For each ε > 0, consider

uε(t)= G(t)− h(t)+ ε log |t |

for t in the punctured disk. The function uε extends to an upper-semicontinuous
function, setting uε(0) = −∞, and so uε is subharmonic on the disk because
it satisfies the sub-mean-value property. Thus, uε ≤ ε log r on the disk by the
maximum principle. Letting ε→ 0, we deduce that G ≤ h on the punctured disk.
Applying the same reasoning to

vε(t)= h(t)−G(t)+ ε log |t |

we obtain the reverse inequality, that h ≤ G, and therefore, h = G.
The harmonic function G can now be expressed locally as Re η for a holomorphic

function η on D. Now replace At with Ãt = e−η(t)At . Then

Fn
t ( Ãt)= e−dnη(t)Fn

t (At),

so the order of vanishing at t=0 is unchanged. We obtain a new escape-rate function

G̃(t)= lim
n→∞

1
dn log ‖t−an Fn

t ( Ãt)‖ = lim
n→∞

1
dn log ‖t−an e−dnη(t)Fn

t (At)‖

= lim
n→∞

1
dn log ‖e−dnη(t)Fn(t)‖ = G(t)+ log |e−η| = G(t)−G(t)≡ 0,

completing the proof of the corollary. �
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Lemma 3.5. Suppose that G ≡ 0. The functions {Fn(t) = t−an Fn
t (At)} are uni-

formly bounded in C2
\ {(0, 0)} on compact subsets of D∗.

Proof. Recall that the “usual” escape rate of Ft is defined by

GFt (z)= lim
n→∞

1
dn log ‖Fn

t (z)‖

for z in C2. The local uniform convergence of the limit (on D∗×C2
\{(0, 0)}) implies

that GFt (z) is continuous as a function of (t, z); it is proper in z ∈ C2
\ {(0, 0)},

since the function satisfies

GFt (αz)= GFt (z)+ log |α|

for all α ∈ C∗ and all (t, z). So our desired result follows if we can show that, for
each compact subset K of D∗, there exist constants −∞< c < C <∞ such that

c ≤ GFt (Fn(t))≤ C

for all n and all t ∈ K .
Indeed, note that G(t)= 0 implies that GFt (At)= η log |t | for

η = lim
an

dn = lim
n→∞

n∑
i=1

ki

d i

as in the proof of Proposition 3.1, with 0≤ ki ≤ q for all i . Therefore,

GFt (Fn(t))= dnGFt (At)− an log |t | = (dnη− an) log |t |

=

( ∞∑
i=n+1

ki

d i−n

)
log |t | ≥

( ∞∑
i=0

q
d i

)
log |t |.

On the other hand, the sequence an/dn increases to η, so (dnη− an) log |t | ≤ 0 for
all n and all t ∈ D∗; therefore, GFt (Fn(t))≤ 0 for all t and all n. �

4. Proof of Theorem 1.1

Let f be an algebraic family of rational maps of degree d ≥ 2, parameterized by
the irreducible quasiprojective complex variety V. Let a : V → P1 be a marked
point. In this section, we prove Theorem 1.1.

It suffices to prove the theorem when V is one-dimensional. For, if t0 is any
parameter in V at which a(t0) is not preperiodic, taking any one-dimensional slice
through t0 on which ( f, a) is not isotrivial, we conclude that ( f, a) will not be
stable on this slice. Therefore, the family of iterates cannot be normal on all of V.

If f is isotrivial, then the result follows immediately from Proposition 2.3. If
f is not isotrivial and if the degrees of gn(t) := f n

t (a(t)) are bounded, then the
conclusion follows immediately from Proposition 1.8.
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For the rest of the proof, assume that the degrees of {gn} are unbounded. Suppose
also that ( f, a) is stable and f is not isotrivial. We will derive a contradiction.

Let C denote the normalization of a compactification of V, so that we may
view f as a family defined over the punctured Riemann surface C \ {x1, . . . , xn}.
The stability of ( f, a) implies that {gn} is normal on V. As such, there exists a
subsequence {gnk } with unbounded degree that converges locally uniformly on V
to a holomorphic function h : V → P1. Note that h might have finite degree or it
may have essential singularities at the punctures xi of V. In either case, we find:

Lemma 4.1. There exists a puncture of V such that, for any neighborhood U of
this puncture, and for any point b ∈ P1 (with at most one exception), the cardinality
of g−1

nk
(b)∩U (counted with multiplicities) is unbounded as nk→∞.

Proof. We apply the argument principle. Fix any b ∈ P1 such that h 6≡ b. Choose
coordinates on P1 such that b= 0 and h 6≡∞. Choose a small loop γj around each
puncture x j of V on which h has no zeros or poles.

Consider the integral

N (γj )=
1

2π i

∫
γj

h′

h
∈ Z

computing the winding number of the loop h ◦ γj around the origin. By uniform
convergence of gnk → h on γj , and since gnk is meromorphic, the number N (γj ) is
equal to the difference between the number of zeros and number of poles of gnk

inside the circle for all nk sufficiently large. But since deg gnk → ∞ and the
functions converge uniformly to h outside these small loops, the actual count of
zeros and poles must be growing to infinity inside one of these circles. �

Fix a puncture xi of V satisfying the condition of Lemma 4.1. Choose local
coordinate t on C on a small disk D around the puncture xi of V. Choose coordinates
on P1 such that the conclusion of Lemma 4.1 holds for b= 0 and b=∞. Let B be
a small annulus in the disk D of the form

B = {r0 < |t |< r1}

with 0< 2r0 < r1− r0 < 1. Passing to a further subsequence if necessary, let

κ(nk)=min
{
|g−1

nk
(0)∩ Dr0 |, |g

−1
nk
(∞)∩ Dr0 |

}
so that κ(nk)→∞ with nk .

As in Section 3, choose a homogeneous polynomial lift Ft of ft to C2, normalized
so that the coefficients of Ft are holomorphic in t and not all 0 at t = 0. By
Proposition 3.1 and Corollary 3.4, we may choose a holomorphic lift A of a with
values in C2

\ {(0, 0)} such that the escape-rate function G satisfies G(t)≡ 0. From
Lemma 3.5, we deduce that the sequence {Fn(t)} is uniformly bounded — away
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from (0, 0) and∞— on the closed annulus B = {r0 ≤ |t | ≤ r1}. In other words,
there exist constants 0< c ≤ C <∞ such that

c ≤ ‖Fn(t)‖ ≤ C

for all n and all t ∈ B.
Write

Fnk (t)= (Pnk (t)Rnk (t), Qnk (t)Snk (t))

for holomorphic Pnk , Rnk , Qnk , Snk where Pnk , Qnk ≈ tκ(nk) on the disk D. More
precisely, there exist factors

Pnk (t)=
κ(nk)∏
i=1

(t − ti ) and Qnk (t)=
κ(nk)∏
i=1

(t − si )

for two disjoint sets of roots {ti } and {sj } contained in the small disk Dr0 . Note that

|Pnk (t)|, |Qnk (t)| ≤ (2r0)
κ(nk)

for |t | = r0, and
|Pnk (t)|, |Qnk (t)| ≥ (r1− r0)

κ(nk)

for |t | = r1. The uniform bounds on Fn(t) imply that

|Rnk (t)|, |Snk (t)| ≤
C

(r1−r0)κ(nk)

on the circle |t | = r1 and

max{|Rnk (t)|, |Snk (t)|} ≥
c

(2r0)κ(nk)

for each t on the circle |t | = r0 and all nk . But κ(nk)→∞ with nk and 2r0< r1−r0,
so for large nk these estimates will violate the maximum principle applied to the
holomorphic function P ′nk

or Q′nk
.

The contradiction obtained shows that if ( f, a) is stable on V with f not isotrivial,
then the degrees of {gn} must be bounded, returning us to the setting treated by
Proposition 1.8. This completes the proof of Theorem 1.1.

5. Density of intersections

In this section, we prove Proposition 1.5 and Theorem 1.6.

Elliptic curves. We begin by explaining the connection between Proposition 1.5 and
the theme of this article. Let Et be a family of smooth elliptic curves, parameterized
by a quasiprojective algebraic curve V. The equivalence relation x ∼ −x on Et

induces a projection to P1. Via this projection, the multiplication-by-2 map on Et

descends to a rational function ft on P1 of degree 4, called a Lattès map. (A formula
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for the resulting ft is shown for the Legendre family Et at the bottom of page 1040,
defined there as L t .) The family ft is nonisotrivial if and only if the family Et is
nonisotrivial. A point Pt ∈ Et projects to a preperiodic point for ft if and only if
Pt is torsion.

In Theorem 1.2, we also refer to the canonical height function: by its definition,
the Néron–Tate height on an elliptic curve is equal to 1

2 times the canonical height
for the associated multiplication-by-2 Lattès map. Therefore, height 0 on the elliptic
curve coincides with height 0 for the rational function.

Proof of Proposition 1.5. Let E be a nonisotrivial elliptic curve defined over a
function field k = C(X) for an irreducible complex algebraic curve X . We view E
as a family Et of smooth elliptic curves, for all but finitely many t ∈ X ; alternatively,
we view E as a complex surface, equipped with an elliptic fibration E→ X . Fix
P ∈ E(k). Then P determines a section P : X → E . Composing this section P
with the degree-two quotient from each Et , t ∈ X , to P1, we obtain a marked point
aP : X→ P1 and a nonisotrivial algebraic family of Lattès maps f : V ×P1

→ P1

on a Zariski-open subset V ⊂ X .
From Theorem 1.1, we know that the pair ( f, aP) is stable if and only if the pair

( f, aP) is preperiodic. So either aP(t) is preperiodic for ft for all t ∈ V (in which
case P is torsion on E/k), or the pair ( f, aP) is not stable.

In this way, the proposition is a consequence of the following statement, which
is a direct application of Montel’s theorem on normal families; see, e.g., [Milnor
2006] for background on Montel’s theorem.

Given a pair ( f, a), the stable set �( f, a)⊂ V is the largest open set on which
{t 7→ f n

t (a(t))} forms a normal family. The bifurcation locus B( f, a)⊂ V is the
complement of �( f, a) in V.

Proposition 5.1. Suppose f : V ×P1
→P1 is an algebraic family of rational maps

of degree d ≥ 2. Let a : V →P1 be a marked point, and suppose that the bifurcation
locus B( f, a) is nonempty. Then for each open U ⊂ V intersecting B( f, a), there
are infinitely many t ∈U where a(t) is preperiodic to a repelling cycle of ft .

Proof. Fix an open set U having nonempty intersection with B( f, a). Choose
a point t0 in B( f, a) ∩U. Choose three distinct repelling periodic points z1(t0),
z2(t0), z3(t0) of ft0 that are not in the forward orbit of a(t0). Shrinking U if
necessary, the implicit function theorem implies that these periodic points can be
holomorphically parameterized by t ∈ U. By Montel’s theorem, the failure of
normality of {t 7→ f n

t (a(t))} on U implies that there exists a parameter t1 ∈U and
an integer n1> 0 such that f n1

t1 (a(t1)) is an element of the set {z1(t1), z2(t1), z3(t1)}.
In particular, a(t1) is preperiodic for ft1 . Shrinking the neighborhood U, we may
find infinitely many such parameters. �
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Remark 5.2. In [DeMarco et al. 2016], we studied the distribution of the parameters
t ∈ X for which a marked point Pt ∈ Et is torsion, with Et the Legendre family of
elliptic curves. The set of such parameters is dense in the parameter space (in the
usual analytic topology).

Proof of Theorem 1.6. By hypothesis, the family f : V ×P1
→P1 has dimension

N in moduli; this means that the image of the induced projection V →Md to the
moduli space of rational maps has dimension N.

To prove Zariski density, we need to show that, for any algebraic subvariety
Y ⊂ V (possibly reducible), the complement 3= V \ Y contains a parameter t at
which all points a1(t), . . . , ak(t) are preperiodic. Note that3 is itself an irreducible,
quasiprojective complex algebraic variety, so that f : 3×P1

→ P1 is again an
algebraic family of rational maps, of dimension N in moduli.

Consider the marked point a1. Since f projects to an N-dimensional family in
the moduli space, with N > 0, it follows that ( f, a1) is not isotrivial on 3. By
Theorem 1.1, the pair ( f, a1) is either preperiodic or it fails to be stable on 3. If
( f, a1) is preperiodic, we set 31 =3. If ( f, a1) is unstable, then Proposition 5.1
shows that there exists a parameter t1 ∈3 where a1(t1) is preperiodic to a repelling
cycle of ft1 . If a1 satisfies the equation f n1(a1) = f m1(a1) at the parameter t1,
we define 31 ⊂ 3 to be an irreducible component of the subvariety defined by
the equation f n1

t (a1(t)) = f m1
t (a1(t)) that contains t1. Then 31 is a nonempty

quasiprojective variety, of codimension 1 in3. Furthermore, since the cycle persists
under perturbation, the condition defining 31 will also cut out a codimension-1
subvariety in the moduli space. In other words, 31 must project to a family of
dimension N−1 in the moduli space. By construction, ( f, a1) is preperiodic on 31.

We continue inductively. Fix 1≤ i<k. Suppose3i is a quasiprojective subvariety
of dimension≥ N−i in moduli on which ( f, a1), . . . , ( f, ai ) are preperiodic. Since
N − i > N −k ≥ 0, the pair ( f, ai+1) is not isotrivial on 3i . As above, we combine
Theorem 1.1 with Proposition 5.1 to find a parameter ti+1 ∈ 3i where ai+1 is
preperiodic. We define 3i+1 ⊂ 3i so that ( f, ai+1) is preperiodic on 3i+1, and
the family f : 3i+1 ×P1

→ P1 has dimension at least N − i − 1 in moduli. In
conclusion, all of the points ( f, a1), . . . , ( f, ak) are preperiodic on 3k , and 3k has
dimension at least N − k ≥ 0 in moduli. In particular, 3k is nonempty, and the
theorem is proved.

6. A conjecture on intersections and dynamical relations

We conclude this article with a revised statement of the conjecture from [Baker
and DeMarco 2013] on “unlikely intersections” and density of “special points” —
and we provide the proof of one implication, as an application of Theorem 1.1.
Specifically, we look at algebraic families f : V ×P1

→ P1 of dimension N > 0
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in moduli. We prove that if an (N + 1)-tuple of marked points is dynamically
related, then the set of parameters t ∈ V where they are simultaneously preperiodic
is Zariski-dense in V. We conclude the article with an explanation of how this
implies one implication of [Baker and DeMarco 2013, Conjecture 1.10].

Density of special points. In [Baker and DeMarco 2013, Conjecture 1.10], we
formulated a conjecture about the arrangement of postcritically finite maps (“special
points”) in the moduli space of rational maps of degree d ≥ 2. It was presented as
a dynamical analog of the André–Oort conjecture in arithmetic geometry, with the
aim of characterizing the “special subvarieties” of the moduli space, meaning the
algebraic families f : V ×P1

→ P1 with a Zariski-dense subset of postcritically
finite maps. Roughly speaking, the special subvarieties should be those that are
defined by (a general notion of) critical orbit relations. We proved special cases of
the conjecture, for certain families of polynomial maps, and we sketched the proof
of one implication in the general case.

If we formulate the conjecture to handle arbitrary marked points, not only critical
points, then the statement encompasses recent results about elliptic curves, as in the
work of Masser and Zannier (and therefore has overlap with the Pink and Zilber
conjectures); see [Masser and Zannier 2012] and the references therein. Evidence
towards the more general result is given by [Baker and DeMarco 2013, Theorem 1.3]
and the results of [Ghioca et al. 2013; 2015]. Conjecture 6.1 presented here is,
therefore, more than just an analogy with statements in arithmetic geometry.

Let V be an irreducible, quasiprojective complex algebraic variety, and let
f : V ×P1

→ P1 be an algebraic family of rational maps of degree d ≥ 2. For a
collection of n marked points a1, . . . , an : V → P1, we define

S(a1, . . . , an)=

n⋂
i=1

{t ∈ V : ai (t) is preperiodic for ft }.

We say the marked points a1, . . . , an are coincident along V if there exists a marked
point ai and a Zariski-open subset V ′ ⊂ V such that

S(a1, . . . , an)∩ V ′ = S(a1, . . . , ai−1, ai+1, . . . , an)∩ V ′.

In other words, if {a1(t), . . . , ai−1(t), ai+1(t), . . . , an(t)} are all preperiodic for ft

at a parameter t ∈ V ′, then the remaining point ai (t) must also be preperiodic for ft .
For example, if a pair ( f, a) is preperiodic on V, then any collection of points
{a1, . . . , an} containing a will be coincident.

A stronger notion than coincidence is that of the dynamical relation, requiring an
f -invariant algebraic relation between the points {a1, . . . , an}. A formal definition
is given below.
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Conjecture 6.1. Let f : V ×P1
→ P1 be an algebraic family of rational maps of

degree d ≥ 2, of dimension N > 0 in moduli. Let a0, . . . , aN be any collection of
N + 1 marked points. The following are equivalent:

(1) The set S(a0, . . . , aN ) is Zariski-dense in V .

(2) The points a0, . . . , aN are coincident along V .

(3) The points a0, . . . , aN are dynamically related along V.

Theorem 6.2. We have (3) =⇒ (2) and (2) =⇒ (1) in Conjecture 6.1.

The implication (3) =⇒ (2) will be a formal consequence of the definitions, while
(2) =⇒ (1) is presented below as an application of Theorem 1.1. The remaining
challenge is to show that (1) implies (3). We expect that (1) =⇒ (2) should be a
consequence of “arithmetic equidistribution” as in the proofs of [Baker and DeMarco
2011; 2013; Ghioca et al. 2013; 2015; DeMarco et al. 2016] when V is a curve.

Dynamical relations. The basic example of a dynamical relation between two
marked points a, b : V → P1 is an orbit relation: the existence of integers n, m
such that

f n
t (a(t))= f m

t (b(t))

for all t ∈V. To allow for complicated symmetries, we will say that N marked points
a1, . . . , aN are dynamically related along V if there exists a (possibly reducible)
algebraic subvariety

X ⊂ (P1)N

defined over the function field k = C(V ), such that three conditions are satisfied:

(R1) (a1, . . . , aN ) ∈ X .

(R2) (invariance) F(X)⊂ X , where F = ( f, f, . . . , f ) : (P1)N
→ (P1)N.

(R3) (nondegeneracy) There exists an i ∈ {1, . . . , N } and a Zariski-open subset
V ′⊂V such that the projection from the specialization Xt to the i-th coordinate
hyperplane in (P1

C
)N is a finite map for all t ∈ V ′.

Remark 6.3. In [Baker and DeMarco 2013], after stating Conjecture 1.10, we
offhandedly remarked that one implication of the conjecture “follows easily from
an argument mimicking the proof of Proposition 2.6 and the following observation”.
The proof of Theorem 1.6 in this article is the argument we had in mind, mimicking
[Baker and DeMarco 2013, Proposition 2.6], but the stated “observation” was not
formulated correctly. The inclusion of condition (R3) and the argument in the proof
of Theorem 6.2 on the next page are an attempt to correct that error.

To illustrate the dynamical relation, observe that any N points a1, . . . , aN are
dynamically related if one of the pairs ( f, ai ) is preperiodic. Indeed, if ai satisfies
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f n
t (ai (t))= f m

t (ai (t)) for all t ∈ V, for some pair of integers n 6= m ≥ 0, then we
could take X to be the hypersurface

{x ∈ (P1)N
: f n(xi )= f m(xi )}

defined over the field k = C(V ). As a nontrivial example, we look at the relation
arising in the Masser–Zannier theorems [2012]. Let f[k] be the Lattès map induced
from multiplication by k ∈N on a nonisotrivial elliptic curve E over k =C(V ). Let
ap, aq be the projections to P1 of two points p and q in E(k). The linear relation
n · p = m · q between points p and q on E , for integers n and m, translates into a
dynamical relation in (P1)2 defined by

f[n](x1)= f[m](x2).

This relation satisfies condition (R2) for F = ( f[k], f[k]) because all Lattès maps
descended from the same elliptic curve must commute.

Since the writing of [Baker and DeMarco 2013], we have learned about the results
in [Medvedev 2007] which significantly simplify the form of possible dynamical
relations. In particular, Medvedev has shown that the varieties X satisfying condition
(R2) should depend nontrivially on only two input variables. In other words, the
rational function f : P1

→ P1 will be disintegrated in the sense of [Medvedev and
Scanlon 2014, Definition 2.20]; see the first theorem in the introduction of the same
paper, treating the case where f is a polynomial. An affirmative answer to the
following question would provide a further refinement — and simplification — to
the notion of dynamical relation, extending the results of [Medvedev and Scanlon
2014] beyond the polynomial setting. (The work of Medvedev and Scanlon relied on
Ritt’s decomposition theory [1922] for polynomials; the analogous decomposition
theory for rational functions is not completely understood.)

Question 6.4. Assume that f is not isotrivial, and suppose that points a1, . . . , aN

are dynamically related. Does there always exist a pair of indices i , j (allowing
possibly i = j) such that the point (a1, . . . , aN ) satisfies a relation of the form

A(xi )= B(x j ), (6-1)

where A, B ∈ k(z) are nonconstant rational functions that commute with an iterate
of f ?

Hypersurfaces in (P1)N defined by relations of the form (6-1) satisfy condition
(R2) in the definition of the dynamical relation because f commutes with A and B;
they satisfy condition (R3) taking either coordinate i or j .

Proof of Theorem 6.2. We begin by proving (3) =⇒ (2); namely, that a dynamical
relation among the points a0, . . . , aN implies that the points are coincident. This
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follows from the definition of dynamical relation, and it does not depend on the
number of points.

Lemma 6.5. Let f : V × P1
→ P1 be any algebraic family of rational maps.

Suppose marked points a0, a1, . . . , an are dynamically related along V. Then the
points a0, . . . , an are coincident along V.

Proof. Let X denote the ( f, . . . , f )-invariant subvariety in (P1)n+1 for the point
(a1, . . . , an), given in the definition of the dynamical relation. Suppose the points
are labeled so that x0 is the coordinate satisfying condition (R3). Then the projection
from Xt to (P1

C
)n , forgetting the 0-th coordinate, is finite, for all t in the Zariski-open

subset V ′ ⊂ V.
Now let t0 be any parameter in V ′ at which a1(t0), . . . , an(t0) are preperiodic

for ft0 . The point a0(t0)must lie in the fiber of Xt0→(P
1)N over (a1(t0), . . . , an(t0)).

Invariance of X implies the invariance of Xt0 , so that f m
t0 (a0(t0)) lies in the fiber

over ( f m(a1(t0)), . . . , f m(aN (t0))) for all m ≥ 1. The preperiodicity of the points
guarantees that there are only finitely many points in the base in the orbit of
(a1(t0), . . . , an(t0)), so the orbit of a0(t0) must be contained in a finite set. In other
words, a0(t0) is preperiodic. This completes the proof. �

Now assume (2), that the given points a0, . . . , aN are coincident. Assume the
points are labeled so that a0 is the dependent point, in the sense that

S(a0, . . . , aN )∩ V ′ = S(a1, . . . , aN )∩ V ′

for some Zariski-open subset V ′ ⊂ V. Since V has dimension N in moduli,
Theorem 1.6 tells us that the set S(a1, . . . , aN ) is Zariski-dense in V. Therefore, so
is S(a0, . . . , aN ), and the implication (2) =⇒ (1) is proved.

Proof of one implication of [Baker and DeMarco 2013, Conjecture 1.10]. Sup-
pose that f : V ×P1

→ P1 is an algebraic family of rational maps of degree d ≥ 2
and dimension N > 0 in moduli. We assume that all 2d − 2 critical points of f
are marked. Conjecture 1.10 of [Baker and DeMarco 2013] states: the map ft is
postcritically finite for a Zariski-dense set of t ∈ V if and only if there are at most N
dynamically independent critical points.

Let c1, . . . , c2d−2 denote the marked critical points. Assume that f has at most
N dynamically independent critical points; in other words, given any n> N marked
critical points ci1, . . . , cin , there is a dynamical relation among them.

Note that S(c1, . . . , c2d−2) is precisely the set of parameters t for which ft is
postcritically finite. Applying Lemma 6.5 repeatedly, and reordering the points as
needed, there exists a Zariski-open subset V ′ ⊂ V such that

S(c1, . . . , c2d−2)∩ V ′ = S(c1, . . . , c2d−3)∩ V ′ = · · · = S(c1, . . . , cN )∩ V ′.
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From Theorem 1.6, we know that S(c1, . . . , cN ) is Zariski-dense in V. This proves
that the postcritically finite maps form a Zariski-dense subset of V.
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