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totally singular forms of prime degree

Stephen Scully

One of the most significant discrete invariants of a quadratic form φ over a field k
is its (full) splitting pattern, a finite sequence of integers which describes the
possible isotropy behavior of φ under scalar extension to arbitrary overfields
of k. A similarly important but more accessible variant of this notion is that of
the Knebusch splitting pattern of φ, which captures the isotropy behavior of φ
as one passes over a certain prescribed tower of k-overfields. We determine all
possible values of this latter invariant in the case where φ is totally singular. This
includes an extension of Karpenko’s theorem (formerly Hoffmann’s conjecture)
on the possible values of the first Witt index to the totally singular case. Contrary
to the existing approaches to this problem (in the nonsingular case), our results
are achieved by means of a new structural result on the higher anisotropic kernels
of totally singular quadratic forms. Moreover, the methods used here readily
generalize to give analogous results for arbitrary Fermat-type forms of degree p
over fields of characteristic p > 0.

1. Introduction

Let k be a field, let φ be a nonzero quadratic form on a (nonzero) k-vector space V
of finite dimension and let Xφ ⊆ P(V ) denote the projective k-scheme defined by
the vanishing of φ. Given a k-linear subspace W of V , we write φ|W for the form
obtained by restricting φ to W . In the case where φ|W is the zero form, W is said to
be totally isotropic (with respect to φ). The largest integer among the dimensions of
all totally isotropic subspaces of V is called the isotropy index of φ, and is denoted
by i0(φ). In the special case where φ is nonsingular (i.e., where Xφ is smooth),
i0(φ) is more commonly known as the Witt index of φ, and is bounded from above
by the integer part of 1

2 dimφ (where dimφ denotes the dimension of the k-vector
space V ). In the opposite extreme where φ is totally singular (i.e., where Xφ has
no smooth points at all), i0(φ) may take any value between 0 and dimφ− 1.

Assume now that φ is anisotropic (i.e., that i0(φ)= 0). A simple, yet fundamen-
tally important invariant of φ is its (full) splitting pattern, which may be defined
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as the increasing sequence of nonzero isotropy indices attained by φ under scalar
extension to every overfield of k.1 Although this sequence appears to be somewhat
intractable in general, its first entry (assuming there is one) may be computed
more explicitly as the isotropy index of the extension φL of φ to the function field
L = k(Xφ) of the (integral) quadric Xφ . This (almost tautological) observation
is the basic motivation underlying the following construction, originally due to
Knebusch [1976]: let k0 = k, φ0 = φ, and inductively define kr = kr−1(Xφr−1),
φr = (φkr )an,2 with the understanding that this (finite) process stops when we reach
the first nonnegative integer h(φ) such that dimφh(φ) ≤ 1. The integer h(φ) and the
tower of fields k = k0 ⊂ k1 ⊂ · · · ⊂ kh(φ) are known as the height and Knebusch
splitting tower of φ, respectively. For 1 ≤ r ≤ h(φ), the anisotropic form φr is
called the r-th higher anisotropic kernel of φ. The r-th higher isotropy index
of φ, denoted ir (φ), is defined as the difference i0(φkr )− i0(φkr−1). The sequence
i(φ)= (i1(φ), . . . , ih(φ)(φ)) is called the Knebusch splitting pattern of φ.3 Note that
we have ir (φ)= i1(φr−1) for every r ≥ 2 by the inductive nature of the construction.

If φ is nonsingular, then its full and Knebusch splitting patterns are easily seen
to determine one another (see [Elman et al. 2008, Proposition 25.1]). This need not
be the case for (totally) singular forms (see Example 2.47 below), but Knebusch’s
construction still offers a meaningful and practical way to preclassify quadratic
forms according to some notion of “algebraic complexity”. By virtue of its definition,
the Knebusch splitting pattern thus embodies a fundamental link between intrinsic
algebraic properties of quadratic forms and the geometry of the algebraic varieties
which are naturally associated to them. In recent years, the advent of effective new
tools with which to study algebraic cycles on projective homogeneous varieties has,
in this way, led to dramatic progress on many long-standing problems within the
algebraic theory of quadratic forms. The impact of these developments has been
felt most deeply in characteristic 6= 2, where (1) anisotropic forms of dimension ≥ 2
are necessarily nonsingular, and (2) the geometric methods are better developed,
even if we restrict our considerations to nonsingular forms only; see [Elman et al.
2008] for a thorough exposition of much of the recent work which has been done
in this area.

One of the central problems in the investigation of splitting properties of quadratic
forms over general fields is the following:

1This terminology is not standard; see, e.g., [Hoffmann and Laghribi 2004], where refined splitting
pattern invariants are considered. Our definition does, however, agree (in content if not presentation)
with those found in the literature when φ is nonsingular or totally singular (the only relevant cases here).

2For any form ψ over a field K , ψan denotes the anisotropic kernel of ψ , an anisotropic K-form
uniquely determined up to isomorphism by the (refined) Witt decomposition of ψ ; see [Hoffmann and
Laghribi 2004, §2].

3The term standard splitting pattern is also used in the literature. Footnote 1 again applies here.
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Question 1.1. Let φ be an anisotropic quadratic form of dimension ≥ 2 over a field.
What are the possible values of the sequence i(φ)?

Since ir (φ) = i1(φr−1) for all 2 ≤ r ≤ h(φ), the natural first approximation to
this problem is to determine the possible values of the invariant i1 among all forms
of a given dimension. To this end, we have the following general conjecture:

Conjecture 1.2 (Hoffmann4). Let φ be an anisotropic quadratic form of dimension
≥ 2 over a field. Then i1(φ)− 1 is the remainder modulo 2s of dimφ− 1 for some
s < log2(dimφ).5

In characteristic 6= 2, the first major result in the direction of Conjecture 1.2
was established by Hoffmann himself [1995, Corollary 1], who showed that if
dimφ = 2n

+ m for nonnegative integers n and 1 ≤ m ≤ 2n , then i1(φ) ≤ m.
A few years later, Izhboldin [2004, Corollary 5.12] proved that one cannot have
i1(φ)=m−1 here unless m = 2. Izhboldin’s paper combined an elaboration of the
algebraic methods conceived in [Hoffmann 1995] with emerging work of Vishik
[1998; 1999], who developed a systematic approach to the study of the splitting
pattern using the (integral) motive of the given quadric (see [Vishik 2004], where
motivic methods were used to verify Hoffmann’s conjecture in all dimensions ≤ 22
in this setting). Going further, Vishik later formulated a very general conjecture
concerning the complete motivic decomposition of a smooth anisotropic quadric
(the excellent connections conjecture) which subsumed the nonsingular case of
Conjecture 1.2 in a conceptual way. Not long after this, Karpenko [2003] used a
similar approach to prove the characteristic 6= 2 case of the conjecture in its entirety,
the key new ingredient being the use of (reduced power) Steenrod operations on
modulo-2 Chow groups. More recently, Vishik [2011, Theorem 1.3] proved the
excellent connections conjecture in characteristic 6= 2, thus yielding another proof
of Hoffmann’s conjecture in this setting. Vishik’s work also makes essential use of
Steenrod squares in Chow theory.

In characteristic 2, the general picture is more complicated. In the nonsingular
case, Karpenko and Vishik’s approaches to Conjecture 1.2 are still valid, and
progress is only hindered here by the fact that the total mod-2 Steenrod operation
is not yet available when 2 is not invertible in the base field. To this end, weak
forms of the first three Steenrod squares have been constructed by Haution [2013,
Theorem 6.2; 2015, Theorem 5.8], and these suffice to prove nontrivial partial

4This conjecture was originally stated by Hoffmann under the additional hypothesis char(k) 6= 2,
but we expect that the assertion is also valid in characteristic 2.

5After passing to a purely transcendental extension of k if necessary, all values of i1(φ) which are
not excluded by the conjecture can be realized by making an appropriate choice of φ. In all cases,
φ may, in fact, be chosen to be either nonsingular or (if char(k)= 2) totally singular; see [Vishik 2004,
§7.4] and Proposition 6.4 below, respectively.
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results towards Conjecture 1.2. Haution’s results are further supplemented by earlier
work of Hoffmann and Laghribi [2006, Lemma 4.1], who extended Hoffmann’s
upper bound on i1(φ) to the characteristic-2 setting, irrespective of whether φ is
nonsingular or not. For singular forms, however, the situation is different, and
almost nothing is known in the direction of Conjecture 1.2 beyond Hoffmann and
Laghribi’s bound. In fact, the only real exception to this general state of affairs
lies in the extreme case where φ is totally singular. Here, it was recently shown
in [Scully 2016, Theorem 9.4] that if dimφ = 2n

+m for nonnegative integers n
and 1≤m ≤ 2n , and if i1(φ) 6=m (that is, if Hoffmann and Laghribi’s bound is not
met), then i1(φ)≤ m/2. In the present article, we will settle this case completely
by proving:

Theorem 1.3. Conjecture 1.2 is true in the case where φ is totally singular.

Contrary to the existing approaches to the nonsingular case of Conjecture 1.2,
our proof of Theorem 1.3 does not involve the study of Chow correspondences
on the quadric Xφ . Indeed, although we also make use of the computation of the
canonical dimension6 of Xφ (see [Karpenko and Merkurjev 2003; Totaro 2008]),
it is exploited here in a rather more direct and algebraic way. This point of view
begins with the following observation:

Proposition 1.4 (see Proposition 4.3 below). Let φ be an anisotropic totally singu-
lar quadratic form of dimension ≥ 2 over a field k of characteristic 2 and let ψ ⊂ φ
be a subform of codimension i1(φ). Suppose furthermore that h(ψ) < h(φ).7 Then
there exist a quasi-Pfister quadratic form π ,8 a subform σ ⊂ π , an element λ ∈ k∗

and a form τ over k such that ψ ' π ⊗ τ and φ ' ψ ⊥ λσ .

In the situation of Proposition 1.4, Hoffmann’s conjecture is immediately verified.
Indeed, (since σ ⊂ π) the integer dimπ is a power of 2 strictly greater than
i1(φ) − 1 = dim σ − 1, and (since ψ is divisible by π) we have dimφ − 1 =
dimψ + i1(φ)− 1 ≡ i1(φ)− 1 (mod dimπ). It is not always possible, however,
to decompose the form φ in the manner intimated by the proposition. In fact,
Vishik (see [Totaro 2009, Lemma 7.1]) has given examples of 16-dimensional
anisotropic quadratic forms in characteristic 6= 2 which have first higher isotropy
index equal to 2, but which do not decompose in this way, and the same examples
carry over into the totally singular setting (see Lemma 4.4 below). Thus, the
picture is, in general, more complicated than that suggested by Proposition 1.4.
Perhaps surprisingly, however, the main result of this paper shows that the next best
thing happens:

6Here, the canonical dimension of an algebraic variety X over a field k should be understood as
the minimal dimension cdim(X) of the image of a rational self-map X 99K X .

7A weaker condition will suffice; see the statement of Proposition 4.3.
8That is, π is the diagonal part of a bilinear Pfister form over k; see Section 2C below.
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Theorem 1.5. Let φ be an anisotropic totally singular quadratic form of dimension
≥ 2 over a field of characteristic 2 and let s be the smallest nonnegative integer
such that 2s

≥ i1(φ). Then φ1 is divisible by an s-fold quasi-Pfister form.

This is a new kind of statement of which no analogue is known in the nonsingular
theory (even in characteristic 6= 2). As remarked above, a key ingredient needed for
its proof is Totaro’s computation [2008, Theorem 5.1] of the canonical dimension
of a totally singular quadric. In [Scully 2013], this computation was extended to the
wider class of Fermat-type hypersurfaces of degree p over fields of characteristic
p > 0, and this enables us to also prove a direct analogue of Theorem 1.5 for
totally singular forms of any prime degree p > 2 (known here as quasilinear
p-forms); see Theorem 5.1 below. Subsequently, we also get an analogue of
Theorem 1.3 in higher degrees. As a corollary, this yields a complete solution to
the problem of determining the possible values of the canonical dimension of a
degree-p Fermat-type hypersurface in characteristic p > 0 (Theorem 6.6); it is
worth noting here that no such result is known for Fermat-type hypersurfaces of
prime degree p > 2 over fields of characteristic not p. Returning to the case where
p = 2, let us explain more precisely how Theorem 1.5 implies the totally singular
case of Hoffmann’s conjecture:

Proof of Theorem 1.3. Since φ is totally singular, we have dimφ1 = dimφ− i1(φ)

(see Remarks 2.36(2) below). Thus, if s is as in Theorem 1.5, then

dimφ− 1= dimφ1+ i1(φ)− 1≡ i1(φ)− 1 (mod 2s).

Since i1(φ)− 1< 2s , the result follows. �

Of course, our main result goes somewhat deeper than this. In fact, Theorem 1.5
(resp. Theorem 5.1 below) yields a complete answer to Question 1.1 in the totally
singular case (resp. its analogue for arbitrary quasilinear p-forms). In other words,
all restrictions on the possible values of the Knebusch splitting pattern of φ are
explained here by the presence of certain divisibilities among its higher anisotropic
kernels — precise statements are given in Section 6A below (see Theorem 6.1,
Proposition 6.4). With this result in hand, it then becomes natural to try to understand
the general discrepancy which exists between the Knebusch and full splitting
patterns in the totally singular case. An immediate challenge here concerns the
determination of all nontrivial restrictions which the former invariant imposes
on the latter. In Section 7 below, we initiate this process by conjecturing that
the gaps in the full splitting pattern established in characteristic 6= 2 by Vishik
[2011, Proposition 2.6] (or see Theorem 7.1 below) as a consequence of his proof
of the excellent connections conjecture are also present in the totally singular



1096 Stephen Scully

theory. A particular case of this conjecture was already proved in [Scully 2016,
Theorem 9.2], and we provide some further evidence for its general veracity here.9

Finally, the main results of this paper should have valuable implications for the
study of symmetric bilinear forms over fields of characteristic 2. Indeed, in character-
istic 2, the diagonal parts of symmetric bilinear forms are nothing else but the totally
singular quadratic forms discussed above. This will be investigated in a later text.

The remainder of this text is organized as follows. In Sections 2 and 3, we recall
the basic theory of quasilinear p-forms and introduce the key notions and results
which will be needed in the main part of the text. As a warm-up for the proof of
our main result, we prove in Section 4 (a stronger version of) Proposition 1.4 and
consider some situations in which it may be applied. The proof of Theorem 1.5 (and
its generalization to higher degrees) is then given in Section 5, and, in Section 6, we
apply this result to determine all possible Knebusch splitting patterns of quasilinear
p-forms and settle another conjecture of Hoffmann concerning quasilinear p-forms
with “maximal splitting”. Lastly, in Section 7, we consider the aforementioned prob-
lem of establishing totally singular analogues of the results obtained in [Vishik 2011].

Notation and Terminology. Unless stated otherwise, p will denote an arbitrary
prime integer and F will denote an arbitrary field of characteristic p. If L is a
field of characteristic p and a1, . . . , an are elements of L , then La1,...,an will denote
the field L( p

√
a1, . . . , p

√
an ). Finally, if k is a field and T = (T1, . . . , Tm) is a tuple

of algebraically independent variables over k, then we will write k[T ] for the
polynomial ring k[T1, . . . , Tn] and k(T ) for its fraction field.

2. Quasilinear p-forms and quasilinear p-hypersurfaces

The basic material presented in this section was originally developed in the series
of papers [Hoffmann and Laghribi 2004; Laghribi 2004a; 2004b; 2006; Hoffmann
2004]. Additional elementary results which will be needed in the sequel are also
included here. For any details which are omitted from our exposition of the basic
theory, we refer the reader to [Hoffmann 2004].

2A. Basic notions. Let φ : V → F be an F-valued form on a finite-dimensional
F-vector space V . We say that φ is a quasilinear p-form (on V ) if φ is homogeneous
of degree p and the equation φ(v+w)= φ(v)+φ(w) holds for all (v,w)∈ V ×V .
By a quasilinear p-form over F (or sometimes simply a form over F or F-form),
we will mean a quasilinear p-form on some finite-dimensional F-vector space.
By a quasilinear p-hypersurface over F we will mean a projective hypersurface
defined by the vanishing of a nonzero quasilinear p-form on some F-vector space

9To the author’s knowledge, there is no conjectural description of the possible values of the full
splitting pattern, even in the nonsingular case (in any characteristic).
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of dimension ≥ 2. In the special case where p = 2, we will speak of quasilinear
quadratic forms rather than quasilinear 2-forms.

Remark 2.1. Let T = (T1, . . . , Tn) be a tuple of n ≥ 2 algebraically indepen-
dent variables over F , and let f ∈ F[T ] \ {0}. Then the projective hypersurface
X f = { f = 0} ⊂ Pn−1 is nowhere smooth if and only if f ∈ F[T p

1 , . . . , T p
n ]. In

particular, if p = 2, then a nonzero quadratic form of dimension ≥ 2 over F is
totally singular (in the sense of Section 1) if and only if it is quasilinear.

Let φ be a quasilinear p-form over F . The underlying F-vector space of φ will be
denoted by Vφ . Its dimension will be called the dimension of φ and will be denoted
by dimφ. If dimφ ≥ 2 and φ is nonzero, then the quasilinear p-hypersurface
{φ = 0} ⊂P(Vφ) (which is nowhere smooth by Remark 2.1) will be denoted by Xφ .
The set {φ(v) | v ∈ Vφ} of elements of F represented by φ will be denoted by D(φ).
Given a field extension L of F , we will write φL for the unique quasilinear p-form
on the L-vector space Vφ⊗F L such that φL(v⊗1)= φ(v) for all v ∈ Vφ . If R is a
subring of L containing F , then D(φR) will denote the subset {φ(w) |w ∈ Vφ⊗F R}
of D(φL) (which lies in R). Given a ∈ F , we will write aφ for the form v 7→ aφ(v)
on the vector space Vφ .

Let ψ be another quasilinear p-form over F . If there exists an injective (resp.
bijective) F-linear map f : Vψ → Vφ such that φ( f (v)) = ψ(v) for all v ∈ Vψ ,
then we will say that ψ is a subform of (resp. is isomorphic to) φ and write ψ ⊂ φ
(resp. ψ ' φ). If ψ ' aφ for some a ∈ F∗, then we will say that ψ and φ are
similar. The sum ψ ⊕φ (resp. product ψ ⊗φ) is defined as the unique quasilinear
p-form on Vψ ⊕ Vφ (resp. Vψ ⊗F Vφ) such that (ψ ⊕ φ)((v,w)) = ψ(v)+ φ(w)
(resp. (ψ ⊗ φ)(v ⊗w) = ψ(v)φ(w)) for all (v,w) ∈ Vψ × Vφ . Given a positive
integer n, we will let n · φ denote the sum of n copies of φ (note that we have
n ·φ 6= nφ for n > 1). If there exists a form τ over F such that φ 'ψ⊗ τ , then we
will say that φ is divisible by ψ .

Given elements a1, . . . , an ∈ F , we will write 〈a1, . . . , an〉 for the quasilinear
p-form (λ1, . . . , λn) 7→

∑n
i=1 aiλ

p
i on the F-vector space F⊕n . By definition, every

quasilinear p-form of dimension n over F is isomorphic to 〈a1, . . . , an〉 for some
ai ∈ F .

A vector v ∈ Vφ is said to be isotropic if φ(v) = 0. We will say that φ is
isotropic if Vφ contains a nonzero isotropic vector, and anisotropic otherwise. By
the additivity of φ, the subset V 0

φ of all isotropic vectors in Vφ is, in fact, an F-linear
subspace of Vφ . Its dimension will be called the isotropy index of φ, and will be
denoted by i0(φ) (note that in the case where p = 2 and φ is nonzero, this agrees
with the definition given in Section 1). The additivity of φ also implies that D(φ)
is a finite-dimensional F p-linear subspace of F (where F is equipped with its
natural F p-vector space structure). Conversely, if U is a nonzero finite-dimensional
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F p-linear subspace of F , and if a1, . . . , an is a basis of U , then σ = 〈a1, . . . , an〉 is
a quasilinear p-form over F satisfying D(σ )=U . In fact, it is easy to see that, up
to isomorphism, σ is the unique anisotropic quasilinear p-form with this property:

Lemma 2.2 (see [Hoffmann 2004, Proposition 2.12]). Let U be a finite-dimensional
F p-linear subspace of F. Then, up to isomorphism, there exists a unique anisotropic
quasilinear p-form φ over F such that D(φ)=U.

In particular, Pfister’s quadratic subform theorem [Elman et al. 2008, Theorem
17.12] takes the following simplified form in this setting:

Proposition 2.3 (see [Hoffmann 2004, Proposition 2.6]). Letψ and φ be anisotropic
quasilinear p-forms over F. Then ψ ⊂φ if and only if D(ψ)⊆ D(φ). In particular,
ψ ' φ if and only if D(ψ)= D(φ).

In view of these observations, we can define (up to isomorphism) the anisotropic
kernel of φ as the unique anisotropic quasilinear p-form φan over F such that
D(φan)= D(φ). If we view D(φ) as an F-vector space via the Frobenius F 7→ F p,
then φ : Vφ→ D(φ) is a surjective F-linear map with kernel V 0

φ . We thus obtain:

Proposition 2.4 (see [Hoffmann 2004, Lemma 2.10]). Let φ be a quasilinear
p-form over F. Then φ is anisotropic if and only if φ ' φan. If φ is isotropic, then
φ ' φan⊕ i0(φ) · 〈0〉. In particular, dimφan = dimφ− i0(φ).

In summary, we see that φ is determined up to isomorphism by the set D(φ)
and the integer i0(φ). If dimφan ≤ 1, then we will say that φ is split. Given another
form ψ over F , we will write ψ ∼ φ whenever ψan ' φan. If F is perfect (that is,
if F = F p), then every form over F is split and the theory is vacuous. As such, we
are essentially only interested in the case where F is imperfect. Unless indicated
otherwise, we will assume henceforth that all quasilinear p-forms are nonzero (i.e.,
of anisotropic dimension ≥ 1).

Remark 2.5. Let φ be a quasilinear p-form over F . Choose a basis v1, . . . , vn

of Vφ and let ai = φ(vi ) for all 1 ≤ i ≤ n, so that φ ' 〈a1, . . . , an〉. Suppose that
v ∈ Vφ is an isotropic vector, and write v=

∑n
i=1 λivi . If λj 6= 0 for 1≤ j ≤ n, then

the F p-vector space D(φ) is spanned by the elements a1, . . . , a j−1, a j+1, . . . , an .
In particular, we have φ ∼ 〈a1, . . . , a j−1, a j+1, . . . , an〉.

2B. Function fields of quasilinear p-hypersurfaces and their products. Let φ be
a quasilinear p-form of dimension ≥ 2 over F . If φ is not split, then the quasilinear
p-hypersurface Xφ is an integral scheme (see [Hoffmann 2004, Lemma 7.1]), as is
its affine cone {φ = 0} ⊂ A(Vφ). In this case, we will write F(φ) for the function
field of the former and F[φ] for that of the latter. If L is a field extension of F ,
then we will simply write L(φ) instead of L(φL) whenever it is defined. In general,
given a finite collection φ1, . . . , φn of quasilinear p-forms of dimension ≥ 2 over F ,
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we will write F(φ1×· · ·×φn) for the function field of the scheme Xφ1×· · ·× Xφn ,
provided that it is integral. This notation will be further simplified where possible;
for example, if φ1 = · · · = φn = φ, then we will simply write F(φ×n) instead of
F(φ1× · · ·×φn).

Remarks 2.6. Let φ be a quasilinear p-form over F . Assume that φ is not split.
We make the following basic observations:

(1) Let a0, . . . , an ∈ F be such that φ ' 〈a0, . . . , an〉 and a0, a1 6= 0. Then we
have F-isomorphisms

F(φ)' F(S)
(

p
√

a−1
1

(
a0+ a2S p

2 + · · ·+ an S p
n
) )

and

F[φ] ' Frac
(
F[T ]/

(
a0T p

0 +· · ·+anT p
n
))
' F(U )

(
p
√

a−1
0

(
a1U p

1 + · · ·+ anU p
n
) )
,

where S = (S2, . . . , Sn), T = (T0, . . . , Tn) and U = (U1, . . . ,Un) are tuples
of algebraically independent variables over F .

(2) F[φ] is F-isomorphic to a degree-1 purely transcendental extension of F(φ).

(3) F(φ) is F-isomorphic to a degree-i0(φ) purely transcendental extension of
F(φan); see Proposition 2.4.

(4) The form φF(φ) is evidently isotropic. Furthermore, if a1, . . . , an ∈ F are such
that φ ' 〈a1, . . . , an〉, then consideration of the generic point in Xφ(F(φ))
shows that φF(φ) ∼ 〈a1, . . . , ai−1, ai+1, . . . , an〉 for every 1 ≤ i ≤ n; see
Remark 2.5.

2C. Quasi-Pfister p-forms. Let φ be a quasilinear p-form over F and let n be
a positive integer. We say that φ is an n-fold quasi-Pfister p-form if there exist
a1, . . . , an ∈ F such that φ ' 〈〈a1, . . . , an〉〉 :=

⊗n
i=1〈1, ai , a2

i , . . . , a p−1
i 〉. For

convenience, we also say that φ is a 0-fold quasi-Pfister p-form if φ ' 〈1〉. Note,
in particular, that if φ is an n-fold quasi-Pfister p-form for some n ≥ 0, then we
have dimφ = pn . The basic observation concerning quasi-Pfister p-forms is found
in the following proposition (which follows easily from Lemma 2.2):

Proposition 2.7 (see [Hoffmann 2004, Proposition 4.6]). Let φ be a quasilinear
p-form over F. Then φan is a quasi-Pfister p-form if and only if D(φ) is a subfield
of F.

Since the set of elements represented by an arbitrary quasi-Pfister p-form is, by
definition, a subfield of the base field, we obtain:

Corollary 2.8 (see [Hoffmann 2004, Proposition 4.6]). Let φ be a quasi-Pfister
p-form over F. Then φan is a quasi-Pfister p-form. In particular, if φ is isotropic,
then dimφan =

1
pk dimφ for some k ≥ 1.
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Remark 2.9. More explicitly, let φ = 〈〈a1, . . . , an〉〉 for some n ≥ 1 and ai ∈ F .
Then D(φ)= F p(a1, . . . , an). Let m be such that [F p(a1, . . . , an) : F p

] = pm . If
m = 0 (i.e., D(φ) = F p), then φan ' 〈1〉. If m ≥ 1, then φan ' 〈〈b1, . . . , bm〉〉 for
any m elements b1, . . . , bm ∈ F such that F p(b1, . . . , bm)= F p(a1, . . . , an).

Quasi-Pfister p-forms have a central role to play in the general theory of quasi-
linear p-forms. As shown by Hoffmann [2004], these forms are distinguished
here by the very same properties which distinguish the classical Pfister forms
among nonsingular quadratic forms. For this reason, it will be useful to define
the divisibility index of a given form φ, denoted d0(φ), as the largest nonnegative
integer s such that φan is divisible by an s-fold quasi-Pfister p-form. Clearly we
have d0(φ)≤ logp(dimφan), with equality holding if and only if φan is similar to a
quasi-Pfister p-form. An alternative description of this invariant will be given in
Corollary 2.19 below.

2D. The norm form. Let φ be a quasilinear p-form over F . The norm field of φ,
denoted N (φ), is defined (see [Hoffmann 2004, Definition 4.1]) as the smallest
subfield of F which contains all ratios of nonzero elements of D(φ). Note, in
particular, that we have N (aφ) = N (φ) = N (φan) for all a ∈ F∗. In spite of its
simple nature, this invariant has an important role to play in the whole theory. A
more explicit description of the norm field may be given as follows:

Remark 2.10. If a1, . . . , an ∈ F are such that φ ' 〈a1, . . . , an〉 and a1 6= 0, then
we have N (φ)= F p

(a2
a1
, . . . , an

a1

)
.

In particular, we see that N (φ) is a nonzero finite-dimensional F p-linear sub-
space of F . By Lemma 2.2, it follows that, up to isomorphism, there exists a
unique anisotropic quasilinear p-form φnor over F such that D(φnor)= N (φ). The
form φnor is called the norm form of φ (see [Hoffmann 2004, Definition 4.9]). By
Proposition 2.7, φnor is a quasi-Pfister p-form. Its dimension (which is necessarily
equal to a power of p) is called the norm degree of φ, and is denoted by ndeg(φ)
(see [Hoffmann 2004, Definition 4.1]). The following lemma characterizes the
norm form as the smallest anisotropic quasi-Pfister p-form which contains φan as
a subform up to multiplication by a scalar (again, this is a simple consequence of
Proposition 2.3):

Lemma 2.11 (see [Scully 2016, Lemma 2.10]). Let φ be a quasilinear p-form
(resp. a quasilinear p-form such that 1 ∈ D(φ)) and π an anisotropic quasi-Pfister
p-form over F. Then φan is similar to a subform of π (resp. φan ⊂ π ) if and only if
φnor ⊂ π . In particular, φan is similar to a subform of φnor (resp. φan ⊂ φnor).

Example 2.12. Let φ be a quasilinear p-form over F . The following are equivalent:

(1) φan is similar (resp. isomorphic) to a quasi-Pfister p-form.
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(2) φnor ' aφan for some a ∈ F∗ (resp. φnor ' φan).

(3) N (φ)= aD(φ) for some a ∈ F∗ (resp. N (φ)= D(φ)).

2E. Similarity factors. Let φ be a quasilinear p-form over F . By a similarity
factor of φ, we mean an element a ∈ F∗ such that aφ ' φ. The set of all similarity
factors of φ will be denoted by G(φ)∗, and we will write G(φ) for the set G(φ)∗∪{0}.
Note that G(aφ) = G(φ) = G(φan) for all a ∈ F∗, the second equality being an
obvious consequence of Proposition 2.4. Thus, in view of Proposition 2.3, we have:

Lemma 2.13 (see [Hoffmann 2004, Lemma 6.3]). Let φ be a quasilinear p-form
over F and let a ∈ F∗. Then a ∈ G(φ)∗ if and only if aD(φ)⊆ D(φ).

Example 2.14. Let φ be a quasi-Pfister p-form over F . Then, since D(φ) is a
subfield of F , we have G(φ)= D(φ).

More generally, Lemma 2.13 immediately implies the following:

Corollary 2.15 (see [Hoffmann 2004, Proposition 6.4]). Let φ be a quasilinear
p-form over F. Then G(φ) is a subfield of N (φ) containing F p.

In particular, G(φ) is a nonzero finite-dimensional F p-linear subspace of F . By
Lemma 2.2, it follows that, up to isomorphism, there exists a unique anisotropic
quasilinear p-form φsim over F such that D(φsim)= G(φ). The form φsim is called
the similarity form of φ (see [Hoffmann 2004, Definition 6.5]). By Proposition 2.7,
φsim is a quasi-Pfister p-form. Taken together, Examples 2.12 and 2.14 yield:

Example 2.16. Let φ be a quasilinear p-form over F . The following are equivalent:

(1) φan is similar (resp. isomorphic) to a quasi-Pfister p-form.

(2) φsim ' φnor ' aφan for some a ∈ F∗ (resp. φsim ' φnor ' φan).

(3) G(φ)= N (φ)= aD(φ) for some a ∈ F∗ (resp. G(φ)= N (φ)= D(φ)).

The basic observation concerning similarity factors is the following:

Proposition 2.17. Let φ and ψ be quasilinear p-forms over F. Then G(ψ)⊆G(φ)
if and only if φan is divisible by ψsim.

Proof. We may assume that 1 ∈ D(φ). Suppose G(ψ)⊆ G(φ). By Corollary 2.15,
G(ψ) and G(φ) are subfields of F . By Lemma 2.13, D(φ) is naturally a (finite-
dimensional) vector space over G(φ), and hence over G(ψ). If a1, . . . , am is a
basis of D(φ) over G(ψ), then (since D(ψsim)= G(ψ)), Lemma 2.2 implies that
φan ' ψsim⊗〈a1, . . . , am〉. Conversely, if φan is divisible by ψsim, then it is clear
that G(ψ)⊆ G(φ), since G(ψ)= D(ψsim)= G(ψsim) by Example 2.16. �

We thus obtain the following characterization of the similarity form:
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Corollary 2.18 (see [Hoffmann 2004, Proposition 6.4]). Let φ be a quasilinear
p-form and π an anisotropic quasi-Pfister p-form over F. Then φan is divisible
by π if and only if φsim is divisible by π . In particular, φan is divisible by φsim.

This enables us to reinterpret the divisibility index d0(φ) (see Section 2C) as
follows:

Corollary 2.19. Let φ be a quasilinear p-form over F. Then we have d0(φ) =

logp(dimφsim)= logp([G(φ) : F
p
]).

We also get the following:

Corollary 2.20. Let φ and ψ be quasilinear p-forms over F. Then φan is divisible
by ψnor if and only if N (ψ) ⊆ G(φ). If , additionally, 1 ∈ D(ψ), then the latter
condition may be replaced by D(ψ)⊆ G(φ).

Proof. For the second statement, we simply recall that N (φ) is the smallest subfield
of F containing all ratios of nonzero elements of D(φ) and that G(φ) is a subfield
of F (Corollary 2.15). For the first, we can replace ψ by its norm form to arrive at
the case where N (ψ)= G(ψ) and ψnor ' ψsim (see Example 2.16). The result is
therefore a particular case of Proposition 2.17. �

2F. A criterion for a quasilinear p-form to be quasi-Pfister. Let φ be a quasi-
linear p-form over F such that 1 ∈ D(φ), let L be a field extension of F and let
α ∈ D(φL) \ {0}. Consider the set Sα = {a ∈ F | αa ∈ D(φL)}. Since D(φL) is an
L p-linear subspace of L , we have the following observation:∑

λ
p
i ai ∈ Sα for all λi ∈ F and all ai ∈ Sα. (2-1)

Lemma 2.21. In the above situation, let P ∈ F p
[T ] be a polynomial of degree < p

in a single variable T such that P(b) ∈ Sα for all b ∈ D(φ). Then bn
∈ Sα for all

b ∈ D(φ) and all n ≤ deg(P).

Proof. We proceed by induction on d = deg(P). Since α ∈ D(φL), the case
where d = 0 is trivial. Suppose now that d > 0, and let λ ∈ F be such that
P(T +λp)= P(T )+Q(T ) for some Q ∈ F p

[T ] of degree d−1. Since F p
⊆ D(φ)

by hypothesis, our assumption and (2-1) imply that Q(b)= P(b+λp)− P(b) ∈ Sα
for all b∈D(φ). By the induction hypothesis, it follows that bn

∈ Sα for all b∈D(φ)
and all n < d . Finally, since P(b)=

∑d
i=0 λ

p
i bi for some λi ∈ F with λd 6= 0, (2-1)

implies that, for any b ∈ D(φ), we also have bd
∈ Sα. This proves the lemma. �

Suppose now that there exists a polynomial P ∈ F p
[T ] as in the statement of

Lemma 2.21 with deg(P) ≥ 2 (in particular, we necessarily have p > 2). A first
application of the lemma shows that we have D(φ)⊆ Sα . Since D(φL) is spanned
by D(φ) as an L p-vector space, this implies that αD(φL)⊆ D(φL), and hence (for
dimension reasons) that αD(φL) = D(φL). Another application of Lemma 2.21
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then shows that bn
∈ D(φL) for all b∈ D(φ) and all n≤ deg(P). In particular, since

deg(P)≥ 2, we have 2bc = (b+ c)2− b2
− c2
∈ D(φL) for all b, c ∈ D(φ). Since

p> 2, and since D(φL) is spanned by D(φ) as an L p-vector space, this implies that
D(φL) is closed under multiplication, i.e., that D(φL)= N (φL) (see Remark 2.10).
By Example 2.12, this means that (φL)an ' (φL)nor. We have thus proved:

Lemma 2.22. Assume that p > 2. Let φ be a quasilinear p-form over F such
that 1 ∈ D(φ) and let L be a field extension of F. Suppose that there exists a
polynomial P ∈ F p

[T ] in a single variable T , and an element α ∈ D(φL) \ {0}
such that 2≤ deg(P) < p and αP(b) ∈ D(φL) for all b ∈ D(φ). Then (φL)an is a
quasi-Pfister p-form.

2G. The Cassels–Pfister representation theorem. Let φ be a quadratic form over
a field k and let f ∈ k[T ] be a polynomial in a single variable T which is represented
by the form φk(T ). One of the foundational results of the classical algebraic theory
of quadratic forms is the Cassels–Pfister representation theorem, which asserts that,
in this case, φ already represents f over the polynomial ring k[T ] (see [Elman
et al. 2008, Theorem 17.3]). In the present setting, the original argument of Cassels
may be readily adapted to prove the analogous statement for quasilinear p-forms.
However, as pointed out by Hoffmann [2004], the additivity property of these forms
enables one to prove a stronger multivariable statement taking the following form:

Theorem 2.23 (see [Hoffmann 2004, Corollary 3.4]). Let φ be a quasilinear p-form
over F , let T = (T1, . . . , Tm) be a tuple of algebraically independent variables
over F and let f ∈ F[T ]. Then f ∈ D(φF(T )) if and only if f ∈ D(φF[T ]), if and
only if f ∈ D(φ)[T p

1 , . . . , T p
m ].

Now, in the situation of Theorem 2.23, the F(T )p-vector space D(φF(T )) is
(evidently) spanned by elements of D(φ). Thus, in view of Lemma 2.13, we
immediately obtain the following result concerning rational similarity factors:

Corollary 2.24 (see [Hoffmann 2004, Proposition 6.7]). Let φ be a quasilinear p-
form over F , let T = (T1, . . . , Tm) be a tuple of algebraically independent variables
over F and let f ∈ F[T ]. Then f ∈G(φF(T )) if and only if f ∈G(φ)[T p

1 , . . . , T p
m ].

2H. Isotropy of quasilinear p-forms under scalar extension. We now collect some
basic facts regarding the isotropy of quasilinear p-forms under scalar extension.

Let K and L be extensions of a field k. Recall that a k-place K 99K L is a
pair (R, f ) consisting of a valuation subring k ⊆ R ⊆ K and a local k-algebra
homomorphism f : R→ L . For example, given an inclusion i : K ↪→ L , the pair
(K , i) defines a k-place K 99K L . If there exist k-places K 99K L and L 99K K ,
then we say that K and L are equivalent over k, and write K ∼k L . For instance,
this is easily seen to be the case whenever L (resp. K ) is a purely transcendental
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extension of K (resp. L) (see [Elman et al. 2008, §103] for further details). We
have here the following basic lemma, which is a consequence of the completeness
of Xφ (see [EGA II 1961, (7.3.8)]):

Lemma 2.25 (see [Scully 2016, Lemma 3.4]). Let φ be a quasilinear p-form
over F and let K and L be field extensions of F such that there exists an F-place
K 99K L. Then i0(φL)≥ i0(φK ). In particular, if K ∼F L , then i0(φK )= i0(φL).

Note, in particular, that passage to rational extensions of the base field does
not affect the isotropy index of a quasilinear p-form. By MacLane’s theorem
[Lang 2002, Proposition VIII.4], the same is, in fact, true of arbitrary separable
extensions:10

Lemma 2.26 (see [Hoffmann 2004, Proposition 5.3]). Let φ be an anisotropic
quasilinear p-form over F and let L be a field extension of F. If L is separable
over F , then φL is anisotropic and ndeg(φL)= ndeg(φ).

Thus, in order to study the isotropy behavior of quasilinear p-forms under scalar
extension, we are effectively reduced to considering the case of purely insepara-
ble algebraic extensions. In degree p, we have the following basic observations,
all of which can be easily verified using the results which have been discussed
thus far (recall here that, given a1, . . . , an ∈ F , we denote by Fa1,...,an the field
F( p
√

a1, . . . , p
√

an )):

Lemma 2.27 (see [Hoffmann 2004, §5; Scully 2016, Lemma 3.8]). Let φ be a
quasilinear p-form over F and let a ∈ F \ F p. Then:

(1) D(φFa )= D(〈〈a〉〉⊗φ)=
∑p−1

i=0 ai D(φ).

(2) i0(φFa )=
1
p i0(〈〈a〉〉⊗φ).

(3) ndeg(φFa )=

{ 1
p ndeg(φ) if a ∈ N (φ),
ndeg(φ) if a /∈ N (φ).

(4) If φ is anisotropic and a /∈ N (φ), then φFa is anisotropic.

(5) dim (φFa )an ≥
1
p dimφan.

(6) Equality holds in (5) if and only if φan is divisible by 〈〈a〉〉, if and only if
a ∈ G(φ).

Remark 2.28. The second equivalence in (6) holds by Corollary 2.20.

As an application of the first part of the lemma, we have:

Corollary 2.29. Let φ be a quasilinear p-form over F and let a ∈ F \ F p. Then
G(φFa )= G(〈〈a〉〉⊗φ). In particular, d0(〈〈a〉〉⊗φ)= d0(φFa )+ 1.

10Recall that an extension of fields k ⊆ L is called separable if, for any algebraic closure k̄ of k,
the ring L ⊗k k̄ has no nontrivial nilpotent elements.
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Proof. More specifically, the first statement is an immediate consequence of Lemmas
2.27(1) and 2.13. The second then follows from Corollary 2.19. �

Suppose now that π = 〈〈a1, . . . , an〉〉 is an anisotropic quasi-Pfister p-form
over F . By Remark 2.9, we have [F p(a1, . . . , an) : F p

] = pn , which means that
ai /∈ Fa1,...,ai−1 for every 1 ≤ i ≤ n. Repeated applications of Lemma 2.27(2) and
Corollary 2.29 therefore yield the following proposition:

Proposition 2.30. Let φ be a quasilinear p-form over F , let π be as above and let
ψ = π ⊗φ. Then i0(ψ)= pni0(φFa1,...,an

) and d0(ψ)= d0(φFa1,...,an
)+ n.

Now, in view of Remarks 2.6(1), one may combine the above results in or-
der to study the isotropy behavior of quasilinear p-forms under scalar extension
to function fields of quasilinear p-hypersurfaces. More specifically, let ψ be a
quasilinear p-form over F which is not split, and let a0, . . . , an ∈ F be such
that ψ ' 〈a0, . . . , an〉, with a0, a1 6= 0. Then, by Remarks 2.6(1), we have an
F-isomorphism of fields

F(ψ)' F(T )
(

p
√

a−1
1

(
a0+ a2T p

2 + · · ·+ anT p
n
) )
,

where T = (T2, . . . , Tn) is an (n− 1)-tuple of algebraically independent variables
over F . Thus, putting Lemmas 2.26 and 2.27 and together, we obtain:

Lemma 2.31 (see [Hoffmann 2004, §§7.3, 7.4]). Let φ be an anisotropic quasi-
linear p-form over F , and let ψ be as above. Then:

(1) dim (φF(ψ))an ≥
1
p dimφ.

(2) Equality holds in (1) if and only if a−1
1

(
a0+ a2T p

2 + · · ·+ anT p
n
)
∈ G(φF(T )).

(3) ndeg(φF(ψ))≥
1
p ndeg(φ).

(4) Equality holds in (3) if and only if a−1
1

(
a0+ a2T p

2 + · · ·+ anT p
n
)
∈ N (φF(T )).

(5) The equivalent conditions of (4) are satisfied if φF(ψ) is isotropic.

As a basic application, we have:

Corollary 2.32 (see [Hoffmann 2004, §§7.3, 7.4]). Let φ and ψ be quasilinear
p-forms over F such that φ is anisotropic and ψ is not split. Then:

(1) dim (φF(ψ))an ≥
1
p dimφ, with equality holding if and only if N (ψ)⊆ G(φ).

(2) If φF(ψ) is isotropic, then N (ψ)⊆ N (φ). In particular, ndeg(ψ)≤ ndeg(φ).

Proof. We may assume that ψ is as in Lemma 2.31. In this case, we have N (ψ)=
F p
(a0

a1
, . . . , an

a1

)
(see Remark 2.9), and so (1) follows from the first two parts of the

former lemma and Corollary 2.24. Similarly, since N (φL) = D((φnor)L) for any
field extension L of F , (2) follows from Lemma 2.31(4,5) and Theorem 2.23. �
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Finally, it will be useful to record in this section another basic application of the
Cassels–Pfister theorem. To state it, let T = (T1, . . . , Tm) be a tuple of algebraically
independent variables over F , let g∈ F[T ] be an irreducible polynomial and let F[g]
denote the field Frac(F[T ]/(g)) (i.e., the function field of the integral hypersurface
{g = 0} ⊂ Am

F ). Given f ∈ F[T ], we write multg( f ) for the multiplicity of g in f ,
i.e., the largest nonnegative integer s such that f = gsh for some h ∈ F[T ].11

Proposition 2.33. In the above situation, let φ be a quasilinear p-form over F
and let f ∈ F[T ]. Suppose that f ∈ D(φF(T )) and that φF[g] is anisotropic. Then
multg( f )≡ 0 (mod p).

Proof. Let s = multg( f ). After replacing f by f/gkp
∈ D(φF(T )) for a suitable

integer k ≥ 0, we may assume that s < p. Our goal is then to prove that s = 0. To
see this, note first that there exists a v ∈ Vφ ⊗F F[T ] such that φF(T )(v) = f by
Theorem 2.23. If s 6= 0, then the image v̄ of v in Vφ ⊗F F[g] is an isotropic vector
for φF[g]. By hypothesis, it follows that v̄ = 0, which means that v = gw for some
w ∈ Vφ⊗F F[T ]. But this implies that f = g pφF(T )(w), which contradicts the fact
that s < p. We conclude that s = 0, and so the proposition is proved. �

2I. The divisibility index and scalar extension. Let φ be a quasilinear p-form
over F . We make some brief remarks concerning the behavior of the divisibility
index d0(φ) (see Section 2C) under scalar extension.

Lemma 2.34. Let φ be a quasilinear p-form over F and let L be a field extension
of F. If (φsim)L is anisotropic, then d0(φL)≥ d0(φ).

Proof. As an L p-vector space, D((φsim)L) is spanned by D(φsim)= G(φ). Since
we evidently have G(φ)⊆ G(φL)= D((φL)sim), and since (φsim)L is anisotropic
by hypothesis, Proposition 2.3 implies that (φsim)L ⊂ (φL)sim. The desired assertion
now follows from Corollary 2.19. �

In particular, this applies in the case where L is a separable extension of F (see
Lemma 2.26). In the case where L is purely transcendental over F , we can say more:

Lemma 2.35. Let φ be a quasilinear p-form over F and let L be a purely transcen-
dental extension of F. Then (φL)sim ' (φsim)L and d0(φL)= d0(φ).

Proof. Continuing with the proof of Lemma 2.34, it is sufficient to show that in this
case G(φL) is generated by G(φ) over L p. If L is finitely generated over F , then
this follows from Corollary 2.24. On the other hand, the general case reduces easily
to the finitely generated case in view of Lemma 2.13, so the lemma is proved. �

11With the added convention that multg(0)=+∞.
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2J. The Knebusch splitting pattern. Let φ be a quasilinear p-form over F . Fol-
lowing the construction outlined in Section 1 (see also [Hoffmann 2004, §7.5]), set
F0 = F , φ0 = φan, and recursively define

• Fr = Fr−1(φr−1) (provided φr−1 is not split), and

• φr = (φFr )an (provided Fr is defined).

Note here that if φr is defined, then we have dimφr < dimφr−1 by Remarks 2.6(4).
As such, the whole process is finite, terminating at the first nonnegative integer h(φ)
for which dimφh(φ) ≤ 1. The integer h(φ) will be called the height of φ, and the
tower of fields F0⊂ F1⊂· · ·⊂ Fh(φ) will be called the Knebusch splitting tower of φ.
For each 0≤ r ≤ h(φ), we set jr (φ)= i0(φFr ). If φ is not split and r ≥ 1, then the dif-
ference jr (φ)−jr−1(φ) will be called the r-th higher isotropy index of φ, and will be
denoted by ir (φ). In this case, the form φr will be called the r-th higher anisotropic
kernel of φ. Finally, the sequence i(φ) = (i1(φ), . . . , ih(φ)(φ)) (understood to be
empty if φ is split) will be called the Knebusch splitting pattern of φ.12

Remarks 2.36. Let φ be a quasilinear p-form over F .

(1) By the recursive nature of the above construction, we have ir (φ)= i1(φr−1)

for every 1≤ r ≤ h(φ).

(2) By Proposition 2.4, we have ir (φ)= dimφr−1− dimφr for all 1≤ r ≤ h(φ).

(3) Let L be a field extension of F . As already remarked in Section 1, it is not true
in general that i0(φL)= jr (φ) for some 0≤ r ≤ h(φ); see Example 2.47 below.

Note that by Remarks 2.6(3) we have the following:

Lemma 2.37. Let φ be a quasilinear p-form form of dimension ≥ 2 and let (Fr )

denote its Knebusch splitting tower. Then Fr ∼F F(φ×r ) for every 0≤ r ≤ h(φ).

In light of Lemma 2.37, we therefore have:

Corollary 2.38. Let φ be a quasilinear p-form over F. Then, for every 0≤r≤h(φ),
we have jr (φ)= i0

(
φF(φ×r )

)
.

Given the results of Section 2H, we are now in a position to prove the following
characterization of anisotropic quasi-Pfister p-forms:

Proposition 2.39 (see [Hoffmann and Laghribi 2004, Theorem 8.11]). Let φ be an
anisotropic quasilinear p-form of dimension ≥ 2 over F. Then dimφ1 ≥

1
p dimφ,

and the following conditions are equivalent:

(1) dimφ1 =
1
p dimφ.

(2) i(φ)=
(

ph(φ)
− ph(φ)−1, ph(φ)−1

− ph(φ)−2, . . . , p2
− p, p− 1

)
.

12See Footnote 3. We omit the term i0(φ) from the sequence because we are ultimately interested
in the case where φ is anisotropic (i.e., where i0(φ)= 0).
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(3) φ is similar to a quasi-Pfister p-form.

Proof. The inequality dimφ1 ≥
1
p dimφ holds by Corollary 2.32. The same result

shows that equality holds if and only if N (φ)⊆ G(φ). By Corollary 2.20, the latter
condition holds if and only if φ is divisible by φnor. In view of Lemma 2.11, this
proves the equivalence of (1) and (3), as well as the implication (2)⇒ (3). On
the other hand, if φ is similar to a quasi-Pfister p-form of dimension pn , then φ1

is similar to a quasi-Pfister p-form of dimension pn−1 by Corollary 2.8 and (1).
Since i1(φ) = dimφ− dimφ1 (see Remarks 2.36(2)), an easy induction on h(φ)
then shows that (3) implies (2). �

Finally, a repeated application of Lemma 2.31(3–5) (with ψ = φ) yields the
following computation of the height h(φ):

Corollary 2.40 (see [Hoffmann 2004, Theorem 7.25(ii)]). Let φ be a quasilinear
p-form over F. Then h(φ)= logp(ndeg(φ)).

Together with Corollary 2.32(2), this implies the following useful result:

Corollary 2.41 (see [Scully 2016, Proposition 4.12]). Let φ and ψ be quasilinear
p-forms over F such that φ is anisotropic and ψ is not split. If φF(ψ) is isotropic,
then h(ψ)≤ h(φ).

2K. The quasi-Pfister height and higher divisibility indices. Let φ be a quasi-
linear p-form over F . As in [Scully 2016, §4.2], we define the quasi-Pfister height
of φ, denoted hqp(φ), to be the smallest nonnegative integer l such that φl is similar
to a quasi-Pfister p-form (this is well defined, since φh(φ), being of dimension 1, is
similar to a 0-fold quasi-Pfister p-form). We have:

Lemma 2.42. Let φ be a quasilinear p-form over F and let d = h(φ)− hqp(φ).
Then i(φ) =

(
i1(φ), . . . , ihqp(φ)(φ), pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p − 1
)

and ihqp(φ)(φ)= dim(φ)− jhqp(φ)−1(φ)− pd < pd+1
− pd .

Proof. The first statement is an immediate consequence of Proposition 2.39. The
point here is that φhqp(φ) is similar to a quasi-Pfister p-form of dimension pd .
By Remarks 2.36(2), we therefore have ihqp(φ)(φ)= dimφhqp(φ)−1− dimφhqp(φ) =

dim(φ)− jhqp(φ)−1(φ)− pd . Finally, since φhqp(φ)−1 is (by the definition of hqp(φ))
not similar to a quasi-Pfister p-form, it must have dimension < pd+1, again by
Proposition 2.39. This proves the inequality in the second statement, and hence
the lemma. �

The Knebusch splitting pattern of a quasilinear p-form φ is therefore determined
by h(φ), hqp(φ) and the truncated sequence

(
i1(φ), . . . , ihqp(φ)(φ)

)
. With a view to

studying the latter invariant, we now introduce new invariants of φ which will be
of central interest in the sequel. More specifically, for each 1≤ r ≤ h(φ), we define
the r-th higher divisibility index of φ, denoted dr (φ), as the integer d0(φr ) (see
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Section 2C). In other words, dr (φ) is the largest integer s such that φr is divisible
by an s-fold quasi-Pfister p-form (over the corresponding field of the Knebusch
splitting tower of φ). The sequence of integers (d0(φ), . . . , dh(φ)(φ))will be denoted
by d(φ). As per Lemma 2.42 (and the proof of Proposition 2.39), we have:

Lemma 2.43. Let φ be a quasilinear p-form over F and let d = h(φ)− hqp(φ).
Then d(φ)=

(
d0(φ), . . . , dhqp(φ)−1(φ), d, d − 1, . . . , 1, 0

)
.

We also, however, have the following information concerning the “nontrivial
part” of the sequence d(φ):

Lemma 2.44. Let φ be a quasilinear p-form over F. Then d0(φ)≤ · · · ≤ dhqp(φ).

Proof. We may assume that φ is anisotropic and not split. We need to show that if φ
is not similar to a quasi-Pfister p-form, then d1(φ)≥ d0(φ). By Lemma 2.34 it will
be sufficient to check that φsim remains anisotropic over F(φ). Suppose otherwise.
Then, by Corollary 2.32(1), we have N (φ)⊆ G(φ). By Corollary 2.15 it follows
that N (φ)= G(φ), or, equivalently, that φnor ' φsim (see Lemma 2.2). But, in view
of Lemma 2.11 and Corollary 2.18, this implies that φ is similar to a quasi-Pfister
p-form, thus contradicting our assumption. The lemma follows. �

In particular, since ir (φ)= dimφr −dimφr−1 for all 1≤ r ≤ h(φ) (see Remarks
2.36(2)), we obtain the following result concerning the integers ir (φ):

Corollary 2.45. Let φ be a quasilinear p-form over F. Then we have ir (φ) ≡ 0
(mod dr−1(φ)) for all 1≤ r ≤ hqp(φ).

2L. Some examples. We now conclude this section with two basic computations
which will be needed in the sequel, beginning with:

Lemma 2.46. Let φ be an anisotropic quasilinear p-form over F and let ψ =
φF(T ) ⊥ 〈T 〉, where T is an algebraically independent variable over F. Then
i(ψ)= (1, i1(φ), i2(φ), . . . , ih(φ)(φ)) and d(ψ)= (0, d0(φ), d1(φ), . . . , dh(φ)(φ)).

Proof. The form ψ is clearly anisotropic. Now, the field F(T )(ψ) is F-isomorphic
to a purely transcendental extension of F (see the presentation of Remarks 2.6(1),
for example). In particular, φF(T )(ψ) is anisotropic (Lemma 2.26), and so i1(ψ)= 1
and ψ1 ' φF(T )(ψ) (see Remark 2.5). Since F(T )(ψ) is purely transcendental
over F , the first statement now follows immediately from Lemma 2.26. In a similar
way, Lemma 2.35 implies that dr (ψ) = dr−1(φ) for all 1 ≤ r ≤ h(ψ). Thus, to
prove the second statement, it only remains to check that d0(ψ) = 0. But, since
i1(ψ)= 1, this is an immediate consequence of Corollary 2.45. �

Given this result, we can give an example of a quasilinear p-form whose (full)
splitting pattern is not determined by its Knebusch splitting pattern:
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Example 2.47 (see [Hoffmann and Laghribi 2004, Example 8.15]). Let T =
(T1, . . . , Tn+1) be a tuple of algebraically independent variables over a field F0 of
characteristic p, and let F = F0(T ). Consider the form φ = 〈〈T1, . . . , Tn〉〉 ⊥ 〈Tn+1〉

over F . By Lemma 2.46 and Proposition 2.39, we have

i(φ)=
(
1, pn

− pn−1, pn−1
− pn−2, . . . , p2

− p, p− 1
)
,

so that jr (φ)= pn
− pn−r+1

+ 1 for all 1≤ r ≤ n+ 1. On the other hand, the full
splitting pattern of φ also contains all the integers pn

− pn−r+1 (1 ≤ r ≤ n + 1).
Indeed, if (Ls) denotes the Knebusch splitting tower of 〈〈a1, . . . , an〉〉L , then we
clearly have i0(φLr−1) = pn

− pn−r+1 for all 1 ≤ r ≤ n + 1 (again, we are using
Lemma 2.26 and Proposition 2.39 here).

Our second computation is the following:

Lemma 2.48. Let φ be a quasilinear p-form over F. Letψ=〈〈T1, . . . , Tn〉〉⊗φF(T ),
where T = (T1, . . . , Tn) is a tuple of algebraically independent variables over F.
Then i(ψ)=

(
pni1(φ), . . . , pnih(φ)(φ), pn

− pn−1, pn−1
− pn−2, . . . , p2

− p, p−1
)

and d(ψ)=
(
d0(φ)+ n, d1(φ)+ n, . . . , dh(φ)−1(φ)+ n, n, n− 1, . . . , 1, 0

)
.

Proof. It is enough to treat the case where n = 1. To simplify the notation, let
us write T for the variable T1 and L for the rational function field F(T ). Now,
by construction, we have ndeg(ψ) = p(ndeg(φ)) (see Remark 2.10). In view of
Corollary 2.40, it follows that h(ψ)= h(φ)+1. Let (Lr ) and (Fr ) denote the Kneb-
usch splitting towers of ψ and φ respectively. We claim that, for every 0≤ r ≤ h(φ),
(Lr )T is F-isomorphic to a purely transcendental extension of Fr . The case where
r = 0 is evident. In general, we have (Lr )T = (LT )r , where ((LT )r ) denotes the
Knebusch splitting tower of ψLT . But, since 〈〈T 〉〉LT ∼ 〈1〉, and since LT is purely
transcendental over F (the r = 0 case), we have (ψLT )an ' φLT . By Remark 2.5,
it follows that (Lr )T is L-isomorphic to a purely transcendental extension of the
free composite Fr · LT . Again, since LT is purely transcendental over F , the claim
follows. Given this, Proposition 2.30 and Lemma 2.26 together imply that

jr (ψ)= i0(ψLr )= pi0(φ(Lr )T )= pi0(φFr )= pjr (φ)

for all 0≤ r ≤ h(φ), which proves the first statement of the lemma. Similarly, our
claim, Proposition 2.30 and Lemma 2.35 together imply that

dr (ψ)= d0(ψLr )= d0(φ(Lr )T )+ 1= d0(φFr )+ 1= dr (φ)+ 1

for all 0≤ r ≤ h(φ), and so the second statement also holds. �

3. An incompressibility theorem and related results

In this section, we collect some of the farther-reaching results on the isotropy
behavior of quasilinear p-forms over function fields of quasilinear p-hypersurfaces



Hoffmann’s conjecture for totally singular forms of prime degree 1111

which have been obtained in recent years. These results will have an essential role
to play in the sequel. We do not provide full details here, but the interested reader is
referred to the original articles [Hoffmann and Laghribi 2004; Totaro 2008; Scully
2016] for further information.

3A. The incompressibility theorem. Let φ be an anisotropic quasilinear p-form
of dimension ≥ 2 over F with associated quasilinear p-hypersurface Xφ . As in
[Scully 2013, §5], we define the Izhboldin dimension of Xφ , denoted dimIzh(Xφ),
to be the integer dim Xφ − i1(φ)+ 1. The following result was proved in [loc. cit.]:

Theorem 3.1 [Scully 2013, Theorem 5.12]. Let X be an anisotropic quasilinear
p-hypersurface over F. Let Y be an algebraic variety over F such that Y (Fsep)=∅.
If dim Y < dimIzh(X), then there cannot exist a rational map X 99K Y .

Remarks 3.2. (1) In the case where p = 2, Theorem 3.1 is due to Totaro [2008,
Theorem 5.1]. In fact, if Xφ = {φ = 0} is an anisotropic projective quadric over a
field k of any characteristic, and if Y is any complete k-variety possessing no closed
points of odd degree, then it is known that the existence of a rational map X 99K Y
necessarily implies that dim Y ≥dimIzh(Xφ), where dimIzh(Xφ)=dim Xφ−i1(φ)+1.
This result was first proved by Karpenko and Merkurjev [2003, Theorem 4.1] (see
also [Elman et al. 2008, Theorem 76.5]) in the case where Xφ is smooth, and was
later extended by Totaro [loc. cit.] to the singular case.

(2) The special case where Y is a closed subvariety of X shows that the canonical
dimension of X (see Section 1) is equal to dimIzh(X) (the inequality cdim(X) ≤
dimIzh(X) is trivial; see [Scully 2013, Corollary 5.14]).

In the remainder of this section, we will recall some of the main applications of
Theorem 3.1 (and its proof). Here, we mention the following:

Corollary 3.3 (see [Scully 2016, Corollary 5.4]). Let φ and ψ be anisotropic quasi-
linear p-forms of dimension ≥ 2 over F , and let σ ⊂ φ be a subform of dimension
≤ dimψ − i1(ψ). Then σF(ψ) ⊂ (φF(ψ))an. In particular, σF(ψ) is anisotropic.

Proof. We trivially have D(σF(ψ)) ⊆ D(φF(ψ)). In light of Proposition 2.3, it
therefore suffices to check that σF(ψ) is anisotropic, or, equivalently, that there does
not exist a rational map Xψ 99K Xσ . But, since Xσ (Fsep)=∅ (see Lemma 2.26),
this is an immediate consequence of Theorem 3.1. �

In particular, we have the following fundamental observation:

Corollary 3.4. Let φ be an anisotropic quasilinear p-form of dimension≥ 2 over F
and let ψ ⊂ φ be a subform of codimension i1(φ). Then φ1 ' ψF(φ).

Proof. By Corollary 3.3, we have ψF(φ) ⊂ φ1. Since both forms have the same
dimension by hypothesis, the result follows. �
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3B. Neighbors and near neighbors, I. Let ψ and φ be anisotropic quasilinear
p-forms of dimension ≥ 2 over F . We will say that ψ is a neighbor (resp. near
neighbor) of φ if ψ is similar to a subform of codimension < i1(φ) (resp. codimen-
sion i1(φ)) of φ. Our motivation here is the following extension of Corollary 3.4:

Lemma 3.5. Let φ and ψ be anisotropic quasilinear p-forms over F such that φ is
anisotropic of dimension ≥ 2 and ψ is similar to a subform of φ. Then (ψF(φ))an is
similar to φ1 if and only if ψ is a neighbor or near neighbor of φ.

Proof. Without loss of generality, we may assume that ψ ⊂ φ. Again, we trivially
have D(ψF(φ)) ⊆ D(φF(φ)) = D(φ1). By Proposition 2.3, it therefore suffices to
check that dim (ψF(φ))an = dimφ− i1(φ) if and only if ψ has codimension ≤ i1(φ)

in φ. The left-to-right implication here is trivial. Conversely, if ψ has codimension
≤ i1(φ) in φ, then we have dim (ψF(φ))an≥dimφ−i1(φ) by Theorem 3.1. Since the
reverse inequality holds here by obvious dimension reasons, the lemma is proved. �

Note here that while neighbors of φ become anisotropic over F(φ), its near
neighbors do not (Corollary 3.3). This enables us to compute:

Proposition 3.6 (see [Scully 2013, Proposition 6.1]). Let φ and ψ be anisotropic
quasilinear p-forms of dimension ≥ 2 over F such that ψ is a codimension-d
neighbor of φ. Then i1(ψ)= i1(φ)− d.

3C. The ruledness theorem. Another key application of Theorem 3.1 is the fol-
lowing extension of Proposition 3.6, which shows in a precise way that anisotropic
quasilinear p-hypersurfaces having first higher isotropy index larger than 1 are ruled.

Theorem 3.7 (see [Scully 2013, Theorem 7.6]). Let φ and ψ be anisotropic quasi-
linear p-forms of dimension ≥ 2 over F such that ψ is a codimension-d neighbor
of φ. Then Xφ is birationally isomorphic to Xψ ×F Pd .

Proof. By Proposition 3.6, we have i1(ψ)= i1(φ)−d . It is therefore enough to treat
the case where d = i1(ψ)−1, and this is covered by [Scully 2013, Theorem 7.6]. �

Remark 3.8. Again, in the case where p = 2, this result is due to Totaro [2008,
Theorem 6.4]. Unlike Theorem 3.1, however, the analogous assertion remains open
for generically smooth quadrics (in any characteristic; see [Totaro 2008; 2009]).

It is worth mentioning the following explicitly:

Corollary 3.9. Let φ and ψ be anisotropic quasilinear p-forms of dimension ≥ 2
over F such that i1(φ) > 1 and ψ is similar to a codimension-1 subform of φ. Then
we have an F-isomorphism of fields F(φ)' F[ψ].

Proof. By Theorem 3.7, F(φ) is F-isomorphic to a degree-one purely transcendental
extension of F(ψ). In view of Remarks 2.6(3), the result follows. �
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3D. Neighbors and near neighbors, II. Given Theorem 3.7, we extend Proposition
3.6 as follows:

Proposition 3.10 (see [Scully 2016, Proposition 6.2]). Let φ and ψ be anisotropic
quasilinear p-forms of dimension ≥ 2 over F such that ψ is a codimension-d
neighbor of φ. Then we have i(ψ) = (i1(φ)− d, i2(φ), . . . , ih(φ)(φ)) and d(ψ) =

(d0(ψ), d1(φ), . . . , dh(φ)(φ)).

Proof. By Theorem 3.7, F(φ) is F-isomorphic to a purely transcendental exten-
sion of F(ψ). Thus, if (Fr ) and (F(φ)r ) denote the Knebusch splitting towers
of ψ and ψF(φ), respectively, then F(φ)r is Fr -isomorphic to a purely transcen-
dental extension of Fr+1 for every 0 ≤ r ≤ h(ψF(φ)). In particular, we have
ir (ψF(φ)) = ir+1(ψ) and dr (ψF(φ)) = dr+1(ψ) for any such r by Lemmas 2.26
and 2.35, respectively. On the other hand, Lemma 3.5 shows that (ψF(φ))an is
similar to φ1. Since ir (φ) = ir−1(φ1) and dr (φ) = dr−1(φ1) for all 1 ≤ r ≤ h(φ),
the proposition follows immediately. �

Let φ be a quasilinear p-form over F . We say that φ is a quasi-Pfister p-neighbor
(of π) if there exists a quasi-Pfister p-form π over F such that φ is similar to a
subform of π and dimφ > 1

p dimπ . If φ is anisotropic, then it follows from
Proposition 2.39 that φ is a quasi-Pfister p-neighbor if and only if it is a neighbor of
some quasi-Pfister p-form in the sense of Section 3B. Forms of this type are of spe-
cial importance in the general theory of quasilinear p-forms. Putting Lemma 2.11,
Proposition 2.39, Corollary 2.40, Lemma 3.5 and Proposition 3.10 together, we
obtain the following classification of anisotropic quasi-Pfister p-neighbors:

Corollary 3.11 (see [Scully 2016, Theorem 6.4]). Let φ be an anisotropic quasi-
linear p-form of dimension ≥ 2 over F and let n be the smallest nonnegative integer
such that pn+1

≥ dimφ. Then the following are equivalent:

(1) φ is a quasi-Pfister p-neighbor.

(2) φ is a neighbor of φnor.

(3) φF(φnor) is isotropic.

(4) ndeg(φ)= pn+1.

(5) h(φ)= n+ 1.

(6) i1(φ)= dimφ− pn and i2(φ)= pn
− pn−1.

(7) i(φ)=
(
dimφ− pn, pn

− pn−1, pn−1
− pn−2, . . . , p2

− p, p− 1
)
.

(8) φ1 is similar to a quasi-Pfister p-form (i.e., hqp(φ)≤ 1).

Remark 3.12. In the case where p= 2, this result was proved earlier by Hoffmann
and Laghribi [2004, Theorem 8.1] using different methods.
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For arbitrary subforms, the situation is naturally more complicated, but we can
nevertheless appeal to the following general result which was proved in [Scully
2016] (and whose proof again makes essential use of Theorems 3.1 and 3.7):

Proposition 3.13 (see [Scully 2016, Proposition 8.6]). Let φ and ψ be anisotropic
quasilinear p-forms of dimension ≥ 2 over F such that φF(ψ) is isotropic. Then
either

(1) (ψr )Fr (φ) is anisotropic for all 0≤ r < h(ψ) and i(ψF(φ))= i(ψ), or

(2) i(ψF(φ))=
(
i1(ψ),. . .,is−1(ψ),is(ψ)+is+1(ψ),is+2(ψ),. . .,ih(ψ)(ψ)

)
, where

s < h(ψ) is the smallest nonnegative integer such that (ψs)Fs(φ) is isotropic.

Note here that in the special situation where ψ is a neighbor of φ, we are
necessarily in case (2) with s being equal to 0. Since (ψF(φ))an' φ1 in this instance
(Lemma 3.5), we recover the computation of Proposition 3.10. By contrast, if ψ is
a near neighbor of φ, then we can be in either of cases (1) and (2) (see Remark 3.15
below). Nevertheless, we still have ψF(φ) ' φ1 (Corollary 3.4), and so we get:

Corollary 3.14 (see [Scully 2016, Corollary 6.10]). Let φ be an anisotropic quasi-
linear p-form of dimension ≥ 2 over F and let ψ be a near neighbor of φ. Then
either

(1) (ψr )Fr (φ) is anisotropic for all 0≤ r < h(ψ) and i(ψ)= i(φ1), or

(2) i(ψ)=
(
i2(φ), i3(φ), . . . , is(φ), is(ψ), is+1(φ)−is(ψ), is+2(φ), . . . , ih(φ)(φ)

)
,

where s < h(ψ) is the smallest positive integer such that (ψs)Fs(φ) is isotropic.

Remark 3.15. As per the comments above, neither of cases (1) and (2) can be
ruled out here. Indeed, case (1) describes the situation where h(ψ) = h(φ)− 1,
while case (2) describes the situation where h(ψ)= h(φ). As the reader will easily
verify using Corollary 2.40, both these situations can arise in practice.

3E. A comparison result. We now conclude this section by recalling the following
comparison result for isotropy indices of quasilinear quadratic forms which was
obtained in [Scully 2016] with the help of Theorem 3.1:

Proposition 3.16 (see [Scully 2016, Theorem 7.13, Remark 9.1]). Assume that
p = 2. Let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2 over F
and let L be a field extension of F such that φL is not split. Then

i0(φL(φ))− i1(φ)≥min
{
i0(φL),

[1
2(dimφ− i1(φ)+ 1)

]}
.

Remark 3.17. A similar statement also holds for p> 2 (see [Scully 2016, Theorem
7.13]), but this will not be needed below.

Finally, it will be convenient to record here the following application of this result:
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Theorem 3.18 [Scully 2016, Theorem 9.2]. Let φ be an anisotropic quasilinear
quadratic form of dimension ≥ 2 over F and write dimφ = 2n

+m for uniquely
determined integers n ≥ 0 and 1≤m ≤ 2n . Then, for any field extension L of F , we
either have i0(φL)≥ m or i0(φL)≤ m− i1(φ).

Remark 3.19. Taking L = F(φ) here, we see that if i1(φ) < m, then i1(φ)≤ m/2.
This result will now be subsumed in our Theorem 1.3.

4. A motivational example

As a warm-up for the proof of our main result, we will now prove Proposition 1.4.
Throughout this section, we assume that p = 2. By a quasi-Pfister form, we
will mean a quasi-Pfister 2-form. Our assumption on the prime p is imposed
for simplicity, but also because we will make use of the following fact already
mentioned in the introduction, the analogue of which is unknown when p > 3 (see
[Scully 2016, §4.1]):

Lemma 4.1 (see [Hoffmann 2004, Corollary 7.22]). Let φ be an anisotropic quasi-
linear quadratic form of dimension ≥ 2 over F and let L be a field extension of F
such that φL is isotropic. Then i0(φL)≥ i1(φ).

Now, let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2 over F
and let ψ ⊂ φ be a subform of codimension i1(φ). By Corollary 3.4, ψF(φ) is
isomorphic to the first higher anisotropic kernel of φ. In the next section, we will
prove Theorem 1.5, which asserts that the latter form is divisible by a quasi-Pfister
form of dimension ≥ i1(φ). Here, we will consider some special situations in which
this divisibility property is already visible over the base field F . To this end, we
will be interested in the following technical condition on the pair (φ, ψ):

(?) There exist elements a ∈ D(φ)\{0} and b∈ D(ψ)\{0} such that a 6= c(bd+e f )
for any c, d, e, f ∈ D(ψ).

Example 4.2. If, in the above situation, we have ndeg(ψ) < ndeg(φ) (equivalently,
if h(ψ) < h(φ); see Corollary 2.40), then (?) holds for the pair (φ, ψ). Indeed,
in this case, D(φ) is (evidently) not contained in cN (ψ) for any c ∈ F . Since
bd + e f ∈ N (ψ) for every b, d, e, f ∈ D(ψ), the validity of (?) is immediately
verified.

In light of Example 4.2, Proposition 1.4 is subsumed in the following result:

Proposition 4.3. Let φ be an anisotropic quasilinear quadratic form of dimension
≥ 2 over F and let ψ ⊂ φ be subform of codimension i1(φ) such that the pair
(φ, ψ) satisfies (?). Then there exist a quasi-Pfister form π , a subform σ ⊂ π , an
element λ ∈ D(φ) and a form τ over F such that ψ ' π ⊗ τ and φ ' ψ ⊥ λσ .
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Proof. Let b ∈ D(ψ) \ {0} be as in (?). Then (?) also holds for the pair (bφ, bψ).
If this were not the case, then, for every a ∈ D(φ), we could find c, d, e, f ∈ D(ψ)
such that ba = bc(b3d + beb f ), or, equivalently, such that a = b2c(bd + e f ). But,
since D(ψ) is an F2-linear subspace of F , we have b2c ∈ D(ψ), and so this would
contradict the fact that (?) holds for the original pair (φ, ψ). Since the exchange
(φ, ψ)→ (bφ, bψ) does not affect the statement of the proposition, we can therefore
assume that b = 1. In other words, we can assume that 1 ∈ D(ψ) and that:

(?′) There exists an element a ∈ D(φ) \ {0} such that a 6= c(d + e f ) for any
c, d, e, f ∈ D(ψ).

Let us fix a ∈ D(φ) \ {0} as in (?′). We will now prove that the statement of the
proposition holds with λ= a. First, we note that (?′) implies:

(1) a /∈ D(ψ).

(2) ψFau is anisotropic for every u ∈ D(ψ) \ {0}.

Indeed, if a were in D(ψ), then we could contradict (?′) by taking c= 1, d = a and
e= f = 0. Similarly, if ψFau were isotropic in (2), then (since ψ is anisotropic) we
could find nonzero elements x, y ∈ D(ψ) such that au = xy (see Lemma 2.27(2));
taking c = x−1, d = 0, e = y and f = u, this would again contradict (?′).

Now, (1) implies that we have ψ ⊥ 〈a〉 ⊂ φ. If i1(φ)= 1, then the latter inclusion
is an isomorphism, and the statement of the proposition holds with π = σ = 〈1〉
and τ = ψ . Assume now that i1(φ) > 1. Since 1, a ∈ D(φ), φFa is isotropic
by Lemma 2.27(2). By Lemma 4.1, it then follows that i0(φFa ) ≥ i1(φ). On the
other hand, (2) (with u = 1 ∈ D(ψ)) shows that ψFa is anisotropic, and, since
dimψ = dimφ − i1(φ), we conclude that (φFa )an ' ψFa . In other words, we
have D(φFa ) = D(ψFa ) = D(ψ) + aD(ψ) (where the latter equality holds by
Lemma 2.27(1)). By Lemma 2.2, it follows that we can write φ ' ψ ⊥ 〈a〉 ⊥ aσ ′

for some form σ ′⊂ψ . Let σ =〈1〉⊥σ ′, so that φ'ψ ⊥aσ . As 1∈ D(ψ), we have
σ ⊂ ψ . Since σ is anisotropic and represents 1, Lemma 2.11 shows that σ ⊂ σnor.
Thus, in order to complete the proof, it will be enough to prove that ψ is divisible
by π = σnor. By Corollary 2.20, this amounts to showing that D(σ )⊂ G(ψ). Let
x ∈ D(σ )\{0}. In order to show that x ∈G(ψ), we must check that xy ∈ D(ψ) for
all y ∈ D(ψ) (see Lemma 2.13). If y = 0, then there is nothing to prove. Suppose
now that y 6= 0. Then, by Lemma 2.27(2), φFay is isotropic. On the other hand,
ψFay is anisotropic by (2). Using Lemma 4.1 in the same way as before, we see
that (φFay )an ' ψFay , or, equivalently, that D(φFay )= D(ψFay )= D(ψ)+ ay D(ψ).
But, letting u =

√
ay, we have xy = (a−1u)2ax ∈ D(φFay ). In particular, we can

find u, v ∈ D(ψ) such that xy = u + ayv. To complete the proof, it now only
remains to show that v = 0. But, if v 6= 0, then we have a = v−1(x + uy−1), and
we obtain a contradiction to (?′) by taking c = v−1, d = x , e = u and f = y−1.
The result follows. �
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In general, it is not always possible to find a subform ψ ⊂ φ of codimen-
sion i1(φ) such that the pair (φ, ψ) satisfies condition (?). Indeed, note that if
i1(φ) = 2 in the situation of Proposition 4.3, then φ is divisible by the binary
(i.e., 2-dimensional) form σ . The following example, which is directly analo-
gous to an example of Vishik from the characteristic 6= 2 theory of quadratic
forms, shows that there exist anisotropic quasilinear quadratic forms which have
first higher isotropy index equal to 2, but which are not divisible by a binary
form: let a, b, c, d, e be algebraically independent variables over a field F0 of
characteristic 2, let F = F0(a, b, c, d, e) and consider the anisotropic F-form
φ = 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ e〈a, b, c, d〉.

Lemma 4.4 (Vishik; see [Totaro 2009, Lemma 7.1]). In the above situation, we
have i1(φ)= 2, but φ is not divisible by a binary form.

Proof. We will freely use some basic facts from the theory of symmetric bilinear
forms over fields of characteristic 2. If B is such a form, then φB will denote the
totally singular quadratic form v 7→ B(v, v). For all other notation and terminology,
the reader is referred to [Elman et al. 2008, Chapter I].

Let b be the bilinear form 〈〈ab, ac, ad〉〉b ⊥ bcd〈1, ab, ac, ad〉b ⊥ e〈a, b, c, d〉b
over F , so that φ = φb. As the reader will immediately verify, we have

b∼ c := 〈〈a, b, c, d〉〉b ⊥ 〈〈e〉〉b⊗〈a, b, c, d〉b,

where the symbol ∼ denotes Witt equivalence. Let π = 〈〈a, b, c, d〉〉b, and let π ′ de-
note the pure subform of π . Since ndeg(φπ )=16<32=ndeg(φ), Corollary 2.32(2)
implies that πF(φ) is anisotropic. At the same time, it follows from Remarks 2.6(4)
and the definition of φ that e ∈ D(π ′F(φ)). Thus, by [Elman et al. 2008, Lemma 6.1],
there exists a 3-fold bilinear Pfister form η over F(φ) such that πF(φ) ' 〈〈e〉〉b⊗ η.
In particular, cF(φ) is divisible by 〈〈e〉〉b, and so iW (cF(φ)) is even (see [Elman et al.
2008, Proposition 6.22]; iW denotes here the Witt index). Since dim c−dim b= 8≡
0 (mod 4), it follows that iW (bF(φ)) is also even. In particular, this shows that
i1(φ) ≥ 2 (see [Laghribi 2007, Proposition 5.15]), and to prove that i1(φ) = 2, it
suffices to find a field extension L of F such that φL is isotropic but i0(φL)≤ 2 (see
Lemma 4.1). We claim that L = Fcde is such an extension. First, note that since
cde = (bcd)(b−1e) is a product of two nonzero elements of D(φ), φL is isotropic
by Lemma 2.27(2). On the other hand, it is easy to see that the codimension-2
subform ψ = 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ e〈c, d〉 ⊂φ remains anisotropic
over L . Indeed, since

ψL ' 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ 〈d, c〉 ⊂ 〈〈a, b, c, d〉〉L ,

it suffices to check that 〈〈a, b, c, d〉〉 remains anisotropic over L . But, since cde /∈
F2(a, b, c, d) = N (〈〈a, b, c, d〉〉), this follows from Lemma 2.27(4). Since the
anisotropy of ψL readily implies that i0(φL)≤ 2, we have proved our claim.
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It now remains to check that φ is not divisible by a binary form. For the sake of
contradiction, suppose instead that φ is divisible by 〈〈u〉〉 for some u ∈ F \ F2.
We claim that u ∈ F2(ab, ac, ad). Again, let us assume that this is not the
case. Then the quasi-Pfister form τ = 〈〈ab, ac, ad〉〉 remains anisotropic over Fu

by Lemma 2.27(4). Let σ = τ ⊥ 〈bcd〉 ⊂ φ and η = τ ⊥ 〈ae〉 ⊂ φ. Since
i0(φFu ) =

1
2 dimφ = 8 (Lemma 2.27(6)), and since dim σ = dim η = 9, both

σFu and ηFu are necessarily isotropic. Since τFu is anisotropic, this means that
bcd, ae ∈ D(τFu ) = F2(ab, ac, ad, u). But this implies that F2(a, b, c, d, e) ⊆
F2(ab, ac, ad, u), thus contradicting the fact that the elements a, b, c, d, e are
algebraically independent over F0. This proves our claim, and so we can write
u = v+w for some v ∈ D(〈1, ab, ac, ad〉) and w ∈ D(〈bc, bd, cd, abcd〉). Now,
Lemma 2.27(6) implies that u ∈ G(φ). In particular, applying Lemma 2.13 to the
elements ae, acd, abd ∈ D(φ), we see that

(1) aeu ∈ D(φ),

(2) acdu ∈ D(φ), and

(3) abdu ∈ D(φ).

We can now complete the proof: first, note that we have aev ∈ D(φ), since
ae〈1, ab, ac, ad〉 ' e〈a, b, c, d〉 ⊂ φ. By (1), this implies that aew ∈ D(φ). Note
however that ae〈bc, bd, cd, abcd〉' 〈abce, abde, acde, bcde〉, and the latter form
does not represent any nonzero element of D(φ). It follows that w = 0, and
so u ∈ D(〈1, ab, ac, ad〉). Next, consider the form ρ = acd〈1, ab, ac, ad〉 '
〈acd, bcd, c, d〉. By (2), we have acdu ∈ D(ρ) ∩ D(φ). Since the elements
a, b, c, d , e are algebraically independent over F0, direct inspection shows that the
former intersection is equal to acd D(〈1, ab〉), and so u ∈ D(〈1, ab〉). Finally, we
can use (3) in a similar way to show that u ∈ F2, thus providing us with the needed
contradiction. The lemma is proved. �

In fact, Vishik’s example shows more: it is generally not possible to find a subform
ψ ⊂ φ of codimension i1(φ) such that the pair (φ, ψ) satisfies condition (?), even
after making arbitrary rational extensions of F — this stronger assertion follows
from Lemma 2.35. This leads us to consider the possibility that decompositions
of the kind suggested by Proposition 4.3 may be found by passing to suitable
transcendental extensions of the base field, and, ultimately, to our main result.
Nevertheless, it is still interesting to ask for conditions on φ (or, more specifically,
on the Knebusch splitting pattern of φ) which automatically ensure the existence of
the needed subform ψ . To this end, it is natural to look to the extremities where φ
is “far from generic” (e.g., where i1(φ) is “large”). The basic example is provided
here by Proposition 2.39, which characterizes (scalar multiples of) anisotropic
quasi-Pfister forms in terms of i1, and one can hope that similar characterizations
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exist for “sufficiently simple” forms (see also Theorem 6.8 below). A better
understanding of all these problems would have important implications for the
study of symmetric bilinear forms of “low complexity” (e.g., of “small” height) in
characteristic 2.

5. Main theorem

We are now ready to give the proof of Theorem 1.5. In order to treat the case where
p > 2, the statement needs to be modified as follows:

Theorem 5.1. Let φ be an anisotropic quasilinear p-form of dimension ≥ 2 over F
and let s be the smallest nonnegative integer such that ps

≥ i1(φ). If φ is not a
quasi-Pfister p-neighbor, then φ1 is divisible by an s-fold quasi-Pfister p-form.

Remark 5.2. Nothing is lost here by assuming that φ is not a quasi-Pfister p-neighbor.
Indeed, if φ is a quasi-Pfister p-neighbor, and n denotes the smallest nonnegative
integer such that pn+1

≥ dimφ, then φ1 is similar to an n-fold quasi-Pfister p-form
by Corollary 3.11. If p= 2, then we have i1(φ)≤ 1

2 dimφ ≤ 2n by Proposition 2.39,
so that n ≥ s, where s is the integer defined in the statement of the theorem.
Note, however, that if p > 2, then n may be strictly smaller than s (again, see
Corollary 3.11). This explains why the additional hypothesis is needed here, but
not in the statement of Theorem 1.5 (i.e., the case where p = 2).

Proof. To simplify the notation, we will write i1 instead of i1(φ) in what follows.
If i1 = 1, then the statement of the theorem holds trivially. We therefore assume
henceforth that i1 > 1. After multiplying φ by a nonzero scalar if necessary, we
may also assume that 1 ∈ D(φ). In particular, we can find a1, . . . , an ∈ F such
that φ ' 〈1, a1, . . . , an〉. For the remainder of the proof, we let φ′ = 〈a1, . . . , an〉,
and we write φ′(T ) for the “generic value” of φ′, i.e., φ′(T )=

∑n
i=1 ai T

p
i ∈ F[T ],

where T = (T1, . . . , Tn) is a tuple of algebraically independent variables over F .
By Corollary 3.9, the function field F(φ) is F-isomorphic to F[φ′], and may
therefore be identified with Frac

(
F[T ]/(φ′(T ))

)
(see Remarks 2.6(1)). Fixing this

identification henceforth, we will write f̄ for the image of a polynomial f ∈ F[T ]
under the canonical F-algebra homomorphism F[T ] → F(φ). We will also write
m( f ) for the multiplicity multφ′(T )( f ) of φ′(T ) in f , i.e., the largest integer k such
that f = φ′(T )kh for some h ∈ F[T ]. Note here that we have f̄ 6= 0 if and only if
m( f )= 0.

Now, let ψ ⊂ φ be any subform of codimension i1(φ) such that 1 ∈ D(ψ). Then:

Lemma 5.3. In the above situation, we can find elements gi, j ∈D(ψF[T ]) (1≤ i< i1,
1≤ j < p) such that

φF(T ) ' ψF(T )⊕φ
′(T )〈1, f1, . . . , fi1−1〉,

where fi =
∑p−1

j=1 gi, jφ
′(T ) j−1 for each 1≤ i < i1.
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Proof. First, let us note that φ′(T ) /∈ D(ψF(T )). Indeed, if ψF(T ) were to rep-
resent φ′(T ), then it would follow from Theorem 2.23 that a1, . . . , an ∈ D(ψ).
Since 1 ∈ D(ψ) by hypothesis, this would imply that D(φ) ⊆ D(ψ), or, equiv-
alently, that φ ⊂ ψ (see Proposition 2.3), which is impossible for dimension
reasons (recall here that i1 > 1 by assumption). It follows that ψF(T ) ⊕ 〈φ

′(T )〉
is anisotropic, and so ψF(T ) ⊕ 〈φ

′(T )〉 ⊂ φF(T ) by Proposition 2.3. Now, the
affine function field F[φ] may be identified (over F) with the field K = F(T )φ′(T )
(see Remarks 2.6(1)). Since F[φ] is F-isomorphic to a purely transcendental
extension of F(φ) (Remarks 2.6(2)), Corollary 3.4 and Lemma 2.26 together
imply that ψK ' (φK )an. In particular, we have D(φF(T )) ⊂ D(φK ) = D(ψK ) =∑p−1

j=0 D(ψF(T ))φ
′(T ) j (where the last equality holds by Lemma 2.27(1)). Thus,

by Lemma 2.2, we can complete the subform inclusion ψF(T )⊕〈φ
′(T )〉 ⊂ φF(T )

to an isomorphism φF(T ) ' ψF(T )⊕〈φ
′(T )〉⊕ 〈 f ′1, . . . , f ′i1−1〉, where, for each i ,

we have f ′i =
∑p−1

j=0 gi, jφ
′(T ) j for some gi, j ∈ D(ψF(T )). Note, however, that

every element of D(ψF(T )) is (trivially) the ratio of an element of D(ψF[T ]) and
a p-th power in F[T ]. Since multiplying the f ′i by p-th powers in F[T ] does not
change the F(T )-form 〈 f ′1, . . . , f ′i1−1〉 up to isomorphism (see Lemma 2.2), we
can arrange it so that the gi, j belong to D(ψF[T ]). Similarly, since subtracting
elements of D(ψF(T )) from the f ′i does not change the isomorphism class of
ψF(T ) ⊕ 〈 f ′1, . . . , f ′i1−1〉 (again, see Lemma 2.2), we can also arrange it so that
gi,0 = 0 for all i . The remaining gi, j then satisfy the statement of the lemma. �

Let us now fix elements gi, j ∈ D(ψF[T ]) (and the associated polynomials fi )
satisfying the statement of Lemma 5.3. We are searching here for a sufficiently
large quasi-Pfister divisor of φ1, and we would like to try to build this quasi-Pfister
p-form from the elements gi,1. The basic point here is the following:

Lemma 5.4. In the above situation, we have gi,1b ∈ D(φ1) for all b ∈ D(ψ) and
all 1≤ i < i1.

Proof. If b = 0, then the statement is trivial. Let us now fix b ∈ D(ψ) \ {0}. We
will need another lemma:

Lemma 5.5. In the above situation, there exist elements si, j ∈ D(ψF[T ]) and
ti, j ∈ F[T ] \ {0} (1≤ i < i1, 0≤ j < p) such that, for every 1≤ i < i1, we have:

(1) b fi =
∑p−1

j=0 (si, j/t p
i, j )(φ

′(T ) j/b j ) in F(T ).

(2) For each 0≤ j < p, at least one of si, j and ti, j is nonzero.

Proof. Let 1 ≤ i < i1, and consider the field L = F(T )u , where u = φ′(T )/b. In
view of Remarks 2.6(1), L is F-isomorphic to the affine function field F[η], where
η denotes the F-form 〈b〉 ⊥ φ′. Now, since b ∈ D(ψ), and since ψ ⊂ φ, we have
D(φ′)⊆ D(η)⊆ D(φ). In particular, if η 6' φ, then it follows from Lemma 2.2 that
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ηan ' φ
′. Either way, we see that L is F-isomorphic to a degree-1 purely transcen-

dental extension of F(φ)— in the first case, see Remarks 2.6(2); in the second, see
Remarks 2.6(3) and Corollary 3.9. By Corollary 3.4 and Lemma 2.26, it follows
that ψL ' (φL)an. In other words, we have D(φL)= D(ψL)=

∑p−1
j=0 D(ψF(T ))u j

(again, see Lemma 2.27(1) for the final equality). Now, since u is a p-th power
in L , we have b fi = φ

′(T ) fi/u ∈ D(φL). We can therefore write b fi =
∑p−1

i=0 q j u j

for some q j ∈ D(ψF(T )). Since every element of D(ψF(T )) is the quotient of an
element of D(ψF[T ]) and a p-th power in F[T ], and since u = φ′(T )/b, this shows
that we can find elements si, j ∈ D(ψF[T ]) and ti, j ∈ F[T ] \ {0} such that (1) holds.
Finally, sinceψF(φ) is anisotropic, Proposition 2.33 implies that m(si, j )≡0 (mod p)
for all 0 ≤ j < p. For each such j , let mj = min(m(si, j ), pm(ti, j )), and put
s ′i, j = si, j/φ

′(T )mj and t ′i, j = ti, j/φ
′(T )mj/p. Then, by Theorem 2.23, we again

have s ′i, j ∈ D(ψF[T ]). Thus, replacing si, j by s ′i, j and ti, j by t ′i, j (for each j), we
arrive at the situation where, for any j , either m(si, j )= 0 or m(ti, j )= 0. In other
words, at least one of si, j and ti, j is nonzero, as we wanted. �

Returning now to the proof of Lemma 5.4, let si, j ∈D(ψF[T ]) and ti, j ∈ F[T ]\{0}
be as in Lemma 5.5. In particular, we have the equation

p−1∑
l=1

bgi,lφ
′(T )l−1

= b fi =

p−1∑
j=0

si, j

t p
i, j

φ′(T ) j

b j

in F(T ). Clearing denominators, we obtain

∏
k

t p
i,k

p−1∑
l=1

bgi,lφ
′(T )l−1

=

p−1∑
j=0

∏
k 6= j

t p
i,ksi, j

φ′(T ) j

b j . (5-1)

Now, we claim that, for all 0≤ j < p, we have ti, j 6= 0, or, equivalently, m(ti, j )= 0.
To see this, let m = min

{∑
k 6= j m(ti,k) | 0≤ j < p

}
. Then our claim amounts to the

assertion that m=
∑p−1

k=0 m(ti,k). Suppose that this is not the case, and let 0≤ j < p
be minimal so that

∑
k 6= j m(ti,k)= m. Then, reducing both sides of (5-1) modulo

φ′(T )pm+ j+1, we see that si, j ≡ 0 (mod φ′(T )). In other words, we have si, j = 0.
By the choice of the si, j and ti, j , this implies that ti, j 6= 0, or, equivalently, that
m(ti, j ) = 0. But then m =

∑
k 6= j m(ti,k) =

∑p−1
k=0 m(ti,k), which contradicts our

assumption. The claim is therefore proved, and so, reducing (5-1) modulo φ′(T )
and dividing through by

∏
k ti,k p, we obtain the equality gi,1b = si,0/ti,0 p in F(φ).

As si,0 ∈ D(ψF[T ]), this shows that gi,1b ∈ D(ψF(φ)). But since ψF(φ) ' φ1, we
have D(ψF(φ))= D(φ1), and the lemma is therefore proved. �

Continuing with the proof of Theorem 5.1, let us now choose elements gi, j in
D(ψF[T ]) as in the statement of Lemma 5.3 so that the integer

∑i1−1
i=1 degT1

(gi,1) is
minimal, where degT1

(g) denotes the degree of any g ∈ F[T ] viewed as an element
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of the ring F(T2, . . . , Tn)[T1], i.e., as a polynomial in the single variable T1 (with the
added convention that degT1

(0)= 0). Consider the form σ = 〈1, g1,1, . . . , gi1−1,1〉

over F(φ). The final step in the proof of the theorem will be to prove the following
statement:

Lemma 5.6. In the above situation, σ is anisotropic.

Before proving the lemma, let us explain how this concludes the proof of
Theorem 5.1. First, we claim that φ1 is divisible by the quasi-Pfister p-form σnor.
By Corollary 2.20, this amounts to checking that D(σ ) ⊆ G(φ1). Since G(φ1)

is a subfield of F containing F p (Corollary 2.15), it suffices to show here that
gi,1 ∈ G(φ1) for all 1≤ i < i1. But by Lemma 2.13, this is equivalent to showing
that, for all such i , we have gi,1 D(φ1)⊆D(φ1). Since D(φ1)=D(ψF(φ)) is spanned
as an F(φ)p-vector space by D(ψ), this follows immediately from Lemma 5.4. The
claim is therefore proved, and to finish the proof of the theorem, it only remains to
check that dim σnor ≥ ps . But, σ is anisotropic by Lemma 5.6, and so σ ⊂ σnor by
Lemma 2.11. In particular, we have dim σnor ≥ dim σ = i1, which is precisely the
assertion that dim σnor ≥ ps (because dim σnor is necessarily a power of p). Now,
in order to prove Lemma 5.6, we need another auxiliary statement:

Lemma 5.7. If σ is isotropic, then p>2, and there exist polynomials g j ∈D(ψF[T ])

(1≤ j < p) and an integer 2≤ k < p such that:

(1)
∑p−1

j=1 g jφ
′(T ) j

∈ D(φF[T ]).

(2) m(gl) > 0 for all 1≤ l < k.

(3) m(gk)= 0.

Proof. If σ is isotropic, then since φ′(T ) is a Fermat-type polynomial of degree p,
we can find an integer 1≤m≤ p and polynomials h0, . . . , hi1−1, h ∈ F[T ] such that:

(i) h p
0 + g1,1h p

1 + · · ·+ gi1−1,1h p
i1−1 = φ

′(T )mh in F[T ].

(ii) degT1
(hi ) < p for all 0≤ i < i1.

(iii) hi 6= 0 for some 1≤ i < i1.

First, let us note that we have φ′(T )mh ∈ D(ψF[T ]) by (i) and the definition of the
elements gi,1. Since ψF(φ) is anisotropic, it follows from Proposition 2.33 that h= 0
or m = p. Either way, we can assume henceforth that m = p. Now, by (iii), there
exists an 1≤ l < i1 such that hl 6= 0. Among all such integers l, let us fix one so that
degT1

(gl,1h p
l ) is maximal. Consider now the polynomial f = h p

0 +
∑i1−1

k=1 fkh p
k ∈

F[T ], where the fk are as in the statement of Lemma 5.3. Since hl 6= 0, Lemma 2.2
implies that 〈1, f1, . . . , fi1−1〉'〈1, f1, . . . , fl−1, f, fl+1, . . . , fi1−1〉 as F(T )-forms.
In particular, we have

φF(T ) ' ψF(T )⊕φ
′(T )〈1, f1, . . . , fl−1, f, fl+1, . . . , fi1−1〉. (5-2)
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Now, by definition, f =
∑p−1

j=1 g′jφ
′(T ) j−1, where g′1 = φ

′(T )mh ∈ D(ψF[T ]) and
g′j =

∑i1−1
k=1 gk, j h

p
k ∈ D(ψF[T ]) for all 2≤ i < p. Let r =min{m(g′j ) | 1≤ j < p}.

Since g′j ∈ D(ψF[T ]) for all j , and since ψF(φ) is anisotropic, another application
of Proposition 2.33 shows that r ≡ 0 (mod p). In particular, for each j ≥ 1, we
have g j := g′j/φ

′(T )r ∈ D(ψF[T ]). In view of (5-2), it follows that the exchange
gl, j → g j does not alter the statement of Lemma 5.3. By our choice of the gi, j , we
therefore have

degT1
(φ′(T )p−r h)= degT1

(g1)≥ degT1
(gl,1). (5-3)

Now, we claim that the elements g j (together with an appropriate integer k) satisfy
the conditions of the lemma. We have already seen here the validity of (1). At the
same time, we have m(g j )= 0 for some j ≥ 1 by construction. Thus, in order to
prove the existence of an integer k such that (2) and (3) are satisfied, we just need to
check that m(g1)>0. Recall again that we have g1=φ

′(T )p−r h. If h=0, then there
is nothing to prove. Suppose now that h 6=0. By (i) and the choice of the integer l, we
have degT1

(gl,1h p
l )≥degT1

(φ′(T )ph)≥ p2
+degT1

(h). Since degT1
(hl)< p (by (ii)),

it follows that degT1
(gl,1) > degT1

(h). In view of (5-3), we see that r = 0 in this
case. In particular, we have g1= φ

′(T )ph, and so m(g1)≥ p> 0, as we wanted. �

We are now ready to prove Lemma 5.6 and thus complete the proof of Theorem 5.1.
If p = 2, then the statement was already proved in Lemma 5.7. Suppose now
that p > 2, and assume for the sake of contradiction that σ is isotropic. Let g j

(1 ≤ j < p) and k be as in the statement of Lemma 5.7. By condition (2) of the
lemma, we can, for each l < k, write gl = φ

′(T )ml hl for some positive integer ml

and some polynomial hl . By a now familiar application of Proposition 2.33, we
have ml ≡ 0 (mod p) for every such l. In particular, the ml are all strictly larger
than k. Now, by condition (1) of the lemma, the element

φ′(T)k
(
gk+gk−1φ

′(T)+· · ·+gi1−1φ
′(T)p−k−1

+h1φ
′(T)m1−k

+· · ·+hk−1φ
′(T)mk−1−k)

lies in D(φF[T ]). Using the very same argument as that used to prove Lemma 5.4
above (and the fact that the integers ml − k (l < k) are all positive), one readily
shows that bk gk ∈ D(φ1) for every b ∈ D(ψ). Note, however, that gk 6= 0 by
condition (3) of Lemma 5.7. Since 2 ≤ k < p, and since φ1 ' ψF(φ), it follows
from Lemma 2.22 that φ1 is a quasi-Pfister p-form. But, by Corollary 3.11, this
in turn implies that φ is a quasi-Pfister p-neighbor, thus contradicting our original
hypothesis. The lemma and theorem are therefore proved. �

6. First applications of the main theorem

We now give the basic applications of Theorem 1.5.
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6A. Possible values of the Knebusch splitting pattern. Let φ be a quasilinear
p-form of dimension ≥ 2 over F . In the previous section we have shown that
the first higher anisotropic kernel φ1 of φ is divisible by a quasi-Pfister p-form
of dimension ≥ i1(φ), provided that φan is not a quasi-Pfister p-neighbor. In the
terminology of Section 2K, this amounts to the assertion that if hqp(φ)≥ 2, then
d1(φ) ≥ logp(i1(φ)) (here we are also making use Corollary 3.11). By virtue of
the inductive nature of the Knebusch splitting tower construction, we also obtain
analogous restrictions on the higher isotropy indices ir (φ) (2≤ r < hqp(φ)) in terms
of the corresponding higher divisibility indices dr (φ). Taking the observations of
Section 2K into account, our results may be summarized as follows:

Theorem 6.1. Let φ be a quasilinear p-form over F and let d=h(φ)−hqp(φ). Then:

(1) i(φ)=
(
i1(φ), . . . , ihqp(φ)(φ), pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p− 1
)
.

(2) ihqp(φ)= dimφ− jhqp(φ)−1(φ)− pd < pd+1
− pd .

(3) d(φ)=
(
d0(φ), . . . , dhqp(φ)−1(φ), d, d − 1, . . . , 1, 0

)
.

(4) d0(φ)≤ d1(φ)≤ · · · ≤ dhqp(φ) = d.

(5) ir (φ)≡ 0 (mod pdr−1(φ)) for all 1≤ r < hqp(φ).

(6) dr (φ)≥ logp(ir (φ)) for all 1≤ r < hqp(φ).

(7) For every 1≤ r < hqp(φ), ir (φ)− 1 is the remainder of dimφ− jr−1(φ)− 1
modulo pdr (φ).

Proof. Parts (1), (2), (3), (4) and (5) are the statements comprising Lemmas
2.42, 2.43, 2.44 and Corollary 2.45. Since ir (φ) = i1(φr−1), dr (φ) = d1(φr−1)

and dimφr−1 = dimφ − jr−1(φ) for all 1 ≤ r ≤ h(φ), parts (6) and (7) follow
immediately from Theorem 5.1 and Corollary 3.11. �

In order to highlight the general shape of the Knebusch splitting pattern exposed
by Theorem 6.1, it is worth writing down the following result explicitly (here the
notation a | b means that a divides b):

Corollary 6.2. Let φ be a quasilinear p-form over F. Then

i1(φ)≤ pd1(φ) | i2(φ)≤ pd2(φ) | · · · | ihqp(φ)−1(φ)≤ pdhqp(φ)−1(φ) | ihqp(φ)(φ).

Remark 6.3. In the special case where p = 2, the chain of inequalities

i1(φ)≤ i2(φ)≤ · · · ≤ ihqp(φ)(φ)

was previously obtained in [Scully 2016, Theorem 9.5] using Proposition 3.16.
Here, we have given a more precise and natural explanation of this phenomenon.

We now show that, as far as the Knebusch splitting pattern is concerned, one
cannot do any better than Theorem 6.1 in general:
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Proposition 6.4. Let n be any positive integer. Suppose that we are given a nonneg-
ative integer k ≤ n and two sequences (d0, d1, . . . , dk = d) and (i1, . . . , ik) of k+1
and k nonnegative integers, respectively, such that the following conditions hold:

(i) ik = n−
∑k−1

j=1 i j − pd < pd+1
− pd .

(ii) d0 ≤ d1 ≤ · · · ≤ dk = d.

(iii) 1≤ ir ≡ 0 (mod pdr−1) for all 1≤ r < k.

(iv) dr ≥ logp(ir ) for all 1≤ r < k.

(v) For every 1≤ r < k, ir − 1 is the remainder of n−
(∑r−1

j=1 i j
)
− 1 modulo pdr .

Then there exists a (purely transcendental) field extension L of F and an anisotropic
quasilinear p-form φ of dimension n over L such that:

(1) hqp(φ)= k.

(2) h(φ)= k+ d.

(3) d(φ)=
(
d0(φ), . . . , dk−1(φ), d, d − 1, . . . , 1, 0

)
.

(4) dr (φ)≥ dr for all 0≤ r < k.

(5) i(φ)=
(
i1, . . . , ik, pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p− 1
)
.

Proof. We argue by induction on k. If k = 0, then Proposition 2.39 shows that we
can take L = F(T ) and φ = 〈〈T1, . . . , Td〉〉, where T = (T1, . . . , Td) is a d-tuple
of algebraically independent variables over F . Suppose now that k > 0, and let
n′ = (n − i1)/pd1 and i′r = ir+1/pd1 for all 1 ≤ r < k. By our hypotheses, these
ratios are, in fact, positive integers. Setting d′r = dr+1− d1 for all 0 ≤ r < k, and
putting d ′ = d′k−1, conditions (i)–(v) then imply the following:

(i′) i′k−1 = n′−
∑k−2

j=1 i
′

j − pd ′ < pd ′+1
− pd ′ .

(ii′) d′0 ≤ d′1 ≤ · · · ≤ d′k−1 = d ′.

(iii′) 1≤ i′r ≡ 0 (mod pd′r−1) for all 1≤ r < k− 1.

(iv′) d′r ≥ logp(i
′
r ) for all 1≤ r < k− 1.

(v′) For every 1 ≤ r < k − 1, i′r − 1 is the remainder of n′ −
(∑r−1

j=1 i
′

j

)
− 1

modulo pd′r .

By the induction hypothesis, there exists a (purely transcendental) field extension L0

of F and an anisotropic quasilinear p-form ψ of dimension n′ over L0 such that:

(1′) hqp(ψ)= k− 1.

(2′) h(ψ)= k− 1+ d ′.

(3′) d(ψ)=
(
d0(ψ), d1(ψ), . . . , dk−2(ψ), d ′, d ′− 1, . . . , 1, 0

)
.

(4′) dr (ψ)≥ d′r for all 0≤ r < k− 1.

(5′) i(ψ)=
(
i′1, . . . , i

′

k−1, pd ′
− pd ′−1, pd ′−1

− pd ′−2, . . . , p2
− p, p− 1

)
.
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Consider now the form σ =ψL1 ⊥ 〈T0〉 over the rational function field L1= L0(T0).
By (3′), (5′) and Lemma 2.46, we have:

(a) d(σ )=
(
0, d0(ψ), d1(ψ), . . . , dk−2(ψ), d ′, d ′− 1, . . . , 1, 0

)
.

(b) i(σ )=
(
1, i′1, . . . , i

′

k−1, pd ′
− pd ′−1, pd ′−1

− pd ′−2, . . . , p2
− p, p− 1

)
.

We would like to modify this further. Consider the product τ = 〈〈T1, . . . , Td1〉〉⊗σL

over L = L1(T ), where T = (T1, . . . , Td1) is a d1-tuple of algebraically independent
variables over L1. Then, by (a), (b) and Lemma 2.48, we have:

(c) d(τ )=
(
d1, d1(ψ)+ d1, d2(ψ)+ d1, . . . , dk−2(ψ)+ d1, d, d − 1, . . . , 1, 0

)
.

(d) i(τ )=
(

pd1, i2, . . . , ik, pd
− pd−1, pd−1

− pd−2, . . . , p2
− p, p− 1

)
.

Now, by (iv), we have i1 = pd1 − s for some 0 ≤ s < pd1 . By (ii) and (iii), s is
divisible by pd0 . Let φ be any codimension-s subform of τ which is divisible
by 〈〈T1, . . . , Td0〉〉. Clearly φ is anisotropic, and by (c), (d) and Proposition 3.10,
we have:

(e) d(φ)=
(
d0(φ), d1(ψ)+ d1, . . . , dk−2(ψ)+ d1, d, d − 1, . . . , 1, 0

)
.

(f) i(φ)=
(
i1, i2, . . . , ik, pd

− pd−1, pd−1
− pd−2, . . . , p2

− p, p− 1
)
.

The second statement shows that φ satisfies conditions (2) and (5). At the same
time, since d0(φ)≥ d0 by construction, and since d2(ψ)+ d1 ≥ d′r + d1 = dr+1 for
all 0≤ r < k− 1 by (4′), (e) shows that (3) and (4) are also satisfied. Finally, since
ik < pd+1

− pd , Proposition 2.39 shows that hqp(φ)= k, i.e., that (1) holds for φ.
The pair (L , φ) therefore has all the desired properties. �

Remark 6.5. In general, it is not possible to arrange it so that dr (φ) = dr for all
0≤ r < k in the statement of Proposition 6.4. For example, suppose that p= 2, and
take n= 2s+1

−2 for some s ≥ 3, k = 1, d0= 0, d1= s, i0= 0, i1= 2s
−2. As the

reader will readily verify, these integers satisfy conditions (i)–(v) of the proposition.
On the other hand, let (L , φ) be any pair consisting of a field extension L of F
and an anisotropic form φ of dimension 2s+1

− 2 over L such that i1(φ)= 2s
− 2.

By Theorem 6.8 below (see also [Scully 2016, Theorem 9.6]), φ is necessarily a
quasi-Pfister 2-neighbor, and therefore satisfies conditions (1)–(5) of the proposition
(see Corollary 3.11). We claim, however, that d0(φ) > 0, i.e., that φ is divisible
by a binary form. To see this, note that there exists an anisotropic (s + 1)-fold
bilinear Pfister form π over L and a subform b ⊂ π such that φ is given by the
assignment v 7→ b(v, v). Since b (being a codimension-2 subform of π) becomes
split over the extension K = Ldet(b) (where det denotes the determinant), we have
i0(φK )≥

1
2 dimφ (see [Laghribi 2007, Proposition 5.15]), whence φ is divisible by

〈〈det(b)〉〉 (Lemma 2.27(6)).

Theorem 6.1 and Proposition 6.4 thus give a complete solution to the problem
of determining the possible values of the Knebusch splitting pattern for quasilinear
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p-forms. In particular, we have an answer to Question 1.1 in the totally singular case.
As noted in Example 2.47, the Knebusch and full splitting patterns need not agree in
general for quasilinear p-forms. In Section 7 below, we will consider the problem of
determining the possible values of the full splitting pattern in the case where p = 2.

6B. Canonical dimensions of quasilinear p-hypersurfaces. Since the canonical
dimension of an anisotropic quasilinear p-hypersurface is determined by the Kneb-
usch splitting pattern of its underlying form (this is the basic fact underlying our
proof of Theorem 5.1; see Theorem 3.1 and Remarks 3.2(2)), we also obtain a list
of all restrictions on the possible values of the former invariant:

Theorem 6.6. Let X be an anisotropic quasilinear p-hypersurface over F. Then
there exists a nonnegative integer s such that:

(1) ps
− 1≤ dim X < ps

+ cdim(X).

(2) cdim(X)≡−1 (mod ps).

There are no further restrictions on cdim(X).

Proof. As per the above discussion, this follows readily from Theorems 3.1 and 6.1
and Proposition 6.4 (see also Remarks 3.2(2)). �

Remarks 6.7. (1) We emphasize again that cdim(X) is to be understood here
as the minimum dimension of the image of a rational self-map X 99K X . For
p > 3, we do not know if this agrees with the definition given in [Elman et al.
2008, §90] (although this is certainly expected; see [Scully 2016, Question 4.4,
Proposition 4.7]).

(2) The problem of determining all possible values of the canonical dimension
for smooth (projective) hypersurfaces X of prime degree p > 2 in characteristic
6= p remains open in general. Using a degree formula, Merkurjev [2003, §7.3]
showed that if dim X ≥ pn

− 1 for some nonnegative integer n, then we also have
cdim(X)≥ pn

− 1 provided that X has no points of degree prime to p. Little else
is known. By way of specialization, our Theorem 6.6 may be of some use when
considering specific examples over certain fields of characteristic zero.

6C. Quasilinear p-forms with maximal splitting. Let φ be an anisotropic quasi-
linear p-form of dimension ≥ 2 over F and write dimφ = pn

+m for uniquely
determined integers n≥ 0 and 1≤m≤ pn+1

− pn . By Theorem 6.1 (see also [Scully
2013, Corollary 6.8]), we have i1(φ)≤m. If equality holds here, then we say that φ
has maximal splitting. The basic examples of forms having this property are given
by anisotropic quasi-Pfister p-neighbors (see Corollary 3.11). It is interesting to
ask here to what extent this property characterizes quasi-Pfister p-neighbors. Given
Theorem 5.1, we can now prove the following general result:
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Theorem 6.8. Let φ be an anisotropic quasilinear p-form of dimension ≥ 2 over F
and let n be the smallest nonnegative integer such that pn+1

≥ dimφ. If φ has
maximal splitting, and if either

(1) p > 2 and dimφ > pn
+ pn−1, or

(2) p = 2 and dimφ > 2n
+ 2n−2,

then φ is a quasi-Pfister p-neighbor.

Proof. By Theorem 5.1, we may assume that d1(φ)≥ i1(φ). Suppose first that p> 2.
Since φ has maximal splitting, we have i1(φ) > pn−1 by (1), and so d1(φ) ≥ pn .
On the other hand, we have dimφ1 = dimφ− i1(φ)= pn (see Remarks 2.36(2)). It
follows that φ1 is similar to an n-fold quasi-Pfister p-form, and so φ is a quasi-Pfister
p-neighbor by Corollary 3.11. If p = 2, the same argument (and (2)) shows that φ1

is a form of dimension 2n which is divisible by an (n−1)-fold quasi-Pfister 2-form.
Since every binary form is similar to a quasi-Pfister 2-form in this case, φ1 is, in
fact, similar to an n-fold quasi-Pfister 2-form, and we now conclude as before. �

Remark 6.9. The statement of Theorem 6.8 was originally conjectured in [Hoff-
mann 2004, Remark 7.32] (see also [Scully 2016, Question 7.6]). The result is the
best possible, in the sense that one has examples of anisotropic quasilinear p-forms
with maximal splitting which are not quasi-Pfister p-neighbors in every dimension
omitted in the statement of the theorem (see [Hoffmann 2004, Example 7.31]). In the
special case where p = 2, Theorem 6.8 was previously established in [Scully 2016,
Theorem 9.6] using Proposition 3.16. Here, we obtain a more natural explanation of
this phenomenon by way of Theorem 5.1. Note that the p= 2 case of the theorem is
a direct analogue of a conjecture of Hoffmann in the theory of nonsingular quadratic
forms which remains open, even over fields of characteristic different from 2 (see
[Hoffmann 1995, §4; Izhboldin and Vishik 2000, Conjecture 1.6].

7. Further remarks on the splitting of quasilinear quadratic forms

Having determined all possible standard splitting patterns of quasilinear p-forms
(Theorem 6.1, Proposition 6.4), we now turn our attention towards the problem
of obtaining a similar result for the full splitting pattern. Here, we restrict our
considerations to the case of quasilinear quadratic forms, where we can take direct
inspiration from the following theorem of Vishik (which may be deduced from the
existence of “excellent connections” in the integral Chow motives of anisotropic
quadrics over fields of characteristic 6= 2; see [Vishik 2011, Theorem 1.3]):

Theorem 7.1 [Vishik 2011]. Let φ be an anisotropic quadratic form of dimension
≥2 over a field k of characteristic 6=2. Let dimφ−i1(φ)=2r1−2r2+· · ·+(−1)s−12rs

for uniquely determined integers r1> r2> · · ·> rs−1> rs+1≥ 1. Let 1≤ l ≤ s, and
put Dl =

∑l−1
i=1(−1)i−12ri−1

+ε(l)
∑s

j=l(−1) j−12rj , where ε(l)= 1 (resp. ε(l)= 0)
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if l is even (resp. odd). Then, for any field extension L of k, we either have
i0(φL)≥ Dl + i1(φ) or i0(φL)≤ Dl .

Proof. This is nothing else but a restatement of [Vishik 2011, Proposition 2.6] in
terms of Witt indices. To see how it may be derived from [Vishik 2011, Theorem 2.1]
in further detail, we refer the reader to [Scully 2016, Proof of Theorem 1.2]. �

Examples 7.2. Let φ be an anisotropic quadratic form of dimension ≥ 2 over a
field k of characteristic 6= 2, and write dimφ = 2n

+m for uniquely determined
integers n ≥ 0 and 1≤ m ≤ 2n .

(1) For l = 1, Theorem 7.1 asserts that i0(φL)≥ i1(φ) whenever φL is isotropic.

(2) For l = 2, Theorem 7.1 asserts that, for any field extension L of k, we either
have i0(φL)≥ m or i0(φL)≤ m− i1(φL).

(3) For l = s, Theorem 7.1 asserts that, for any field extension L of k, we either
have i0(φL) ≥

1
2(dimφ + i1(φ) − 2rs ) or i0(φL) ≤

1
2(dimφ − i1(φ) − 2rs ).

Taking L = k̄
(
so that i0(φL) =

[ 1
2 dimφ

])
, we see that i1(φ) ≤ 2rs , which

gives a proof of Hoffmann’s Conjecture 1.2 in this setting (see [Vishik 2011,
Theorem 2.5.])

We expect, in fact, that Theorem 7.1 extends verbatim to our setting. Henceforth,
let us assume that p = 2. We state the following:

Conjecture 7.3. Let φ be an anisotropic quasilinear quadratic form of dimension
≥ 2 over F , and write dimφ− i1(φ) = 2r1 − 2r2 + · · · + (−1)s−12rs for uniquely
determined integers r1 > r2 > · · · > rs−1 > rs + 1 ≥ 1. Let 1 ≤ l ≤ s, and put
Dl =

∑l−1
i=1(−1)i−12ri−1

+ ε(l)
∑s

j=l(−1) j−12rj , where ε(l) = 1 (resp. ε(l) = 0)
if l is even (resp. odd). If L is any field extension of F , then we either have
i0(φL)≥ Dl + i1(φ) or i0(φL)≤ Dl .

This expectation is partly justified by:

Proposition 7.4. Conjecture 7.3 holds for l ≤ 2.

Proof. As in Examples 7.2(1) (resp. (2)), the l = 1 (resp. l = 2) case is nothing else
but Lemma 4.1 (resp. Theorem 3.18). �

At present, we do not have a general approach to the l > 2 case of Conjecture 7.3.
Using Theorem 1.3, however, we can provide further evidence for the l = s case.
First, it is worth stating here the following lemma:

Lemma 7.5. In order to prove Conjecture 7.3, we may assume that i1(φL)≥ i1(φ).

Proof. Suppose that the statement of the conjecture fails to hold. In other words,
suppose that i1(φ) > 1 and i0(φL) = Dl + t for some 1 ≤ t < i1(φ). Note that
we necessarily have rs > 0 by Theorem 1.3. Now, let σ = (φL)an. Since D(σ )
is spanned by elements of D(φ), there exists a subform ρ ⊂ φ such that σ ' ρL
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(see Lemma 2.2). Let ψ be any codimension-(t − 1) subform of φ containing ρ.
By construction, we have D(ψL) ⊆ D(φL) = D(σ ) = D(ρL) ⊆ D(ψL), whence
D(ψL)=D(σ ), or, equivalently, (ψL)an'σ . In particular, we have i0(ψL)=Dl+1.
On the other hand, since t < i1(φ), ψ is a neighbor of φ, and so dimψ − i1(ψ)=

dimφ − i1(φ) = 2r1 − 2r2 + · · · + (−1)s−12rs (Proposition 3.10). We therefore
conclude that the statement of the conjecture also fails for the triple (ψ, l, L). Since
we are looking to produce a contradiction, we can replace φ by ψ in order to arrive
at the case where t = 1. In this case, we claim that i1(φL) ≥ i1(φ). To see this,
note first that L(φ) is L-isomorphic to a purely transcendental extension of L(σ )
(Remarks 2.6(3)). In view of Lemma 2.26, it follows that i1(φL) = i1(σL(φ)). In
particular, we have i0(φL(φ))= i0(φL)+ i0(σL(φ))= i0(φL)+ i1(φL). The statement
of Proposition 3.16 may therefore be rewritten here as

i1(φL)+ i0(φL)− i1(φ)≥min
{
i0(φL),

[1
2(dimφ− i1(φ)+ 1)

]}
. (7-1)

But, since rs > 0, we have i0(φL)= Dl+1≤ 2r1−1
−2r2−1

+· · ·+ (−1)s−12rs−1
=

1
2(dimφ− i1(φ)). Inequality (7-1) therefore yields the desired assertion, and so the
lemma is proved. �

We can now prove:

Proposition 7.6. Conjecture 7.3 holds when l = s and L = F(Q) is the function
field of any integral (affine or projective) quadric Q over F.

Proof. In view of Lemma 2.26, the statement of the conjecture is stable under
replacing F by any separable extension of itself. We may therefore assume that
L is a purely inseparable quadratic extension of F . By Lemma 7.5, we may also
assume that i1(φL)≥ i1(φ). Suppose now that the statement fails to hold, so that
i1(φ) > 1 and i0(φL)= Ds + t for some 1≤ t < i1(φ). We then have

dim (φL)an =

{
2r1−1

− 2r2−1
+ · · ·− 2rs−2−1

+ 2rs−1−1
+ i1(φ)− t if s is even,

2r1−1
− 2r2−1

+ · · ·− 2rs−1−1
+ 2rs + i1(φ)− t if s is odd.

Since i1(φL)≥ i1(φ), and since 1≤ i1(φ)− t < i1(φ), Theorem 1.3 implies that

i1(φL)≥

{
2rs−1−1

+ i1(φ)− t if s is even,
2rs + i1(φ)− t if s is odd,

from which we conclude that

i0(φL)+ i1(φL)≥

{
2r1−1

− 2r2−1
+ · · ·+ 2rs−1−1

+ i1(φ) if s is even,
2r1−1

− 2r2−1
+ · · ·+ 2rs−2−1

+ i1(φ) if s is odd.
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But i0(φL)+i1(φL)= i0(φL(φ))= i1(φ)+i0((φ1)L(φ)) (see the proof of Lemma 7.5),
and so we have

i0((φ1)L(φ))≥

{
2r1−1

− 2r2−1
+ · · ·+ 2rs−1−1 if s is even,

2r1−1
− 2r2−1

+ · · ·+ 2rs−2−1 if s is odd.

Either way, we see that i0((φ1)L(φ)) > 2r1−1
− 2r2−1

+ · · · + (−1)s−12rs−1
=

1
2(dimφ−i1(φ))=

1
2 dimφ1. Since L(φ) is a purely inseparable quadratic extension

of F(φ), this is impossible by Lemma 2.27(5), and so the result follows. �

In general, it suffices to prove Conjecture 7.3 in the case where L is a finite
purely inseparable extension of F . Proposition 7.6 shows that the l = s case of the
conjecture holds for degree-2 purely inseparable extensions. More generally, the
proposition covers the case where ndeg(φL)=

1
2 ndeg(φL). Indeed, using Lemmas

2.26 and 2.27(3), one can easily reduce this case to that of a quadratic extension.
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