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A fibered power theorem
for pairs of log general type

Kenneth Ascher and Amos Turchet

Let f : (X, D)→ B be a stable family with log canonical general fiber. We prove
that, after a birational modification of the base B̃→ B, there is a morphism from
a high fibered power of the family to a pair of log general type. If in addition the
general fiber is openly canonical, then there is a morphism from a high fibered
power of the original family to a pair openly of log general type.

1. Introduction

We work over an algebraically closed field of characteristic 0.
Analyzing the geometry of fibered powers of families of varieties has been pivotal

in showing that well known conjectures in Diophantine geometry imply uniform
boundedness of rational points on algebraic varieties of general type. Caporaso,
Harris, and Mazur showed in a celebrated paper [Caporaso et al. 1997] that various
versions of Lang’s conjecture imply uniform boundedness of rational points on
curves of general type. More precisely, they show that, assuming Lang’s conjecture,
for every number field K and integer g ≥ 2, there exists an integer B(K , g) such
that no smooth curve of genus g≥ 2 defined over K has more than B(K , g) rational
points. Similar statements were proven for the case of surfaces of general type in
[Hassett 1996], and eventually all positive-dimensional varieties of general type
in [Abramovich 1997a] and [Abramovich and Voloch 1996]. The essence of these
papers is a purely algebro-geometric statement: the proof of a “fibered power
theorem”, which analyzes the behavior of families of varieties of general type.

The goal of our current research program is to apply birational geometry and
moduli theory to show that the Vojta–Lang conjecture (see Conjecture 1.3) implies
uniform boundedness of stably integral points (see [Abramovich 1997b]) on varieties
of log general type. In short, our objective is to generalize the uniformity results
mentioned above from varieties of general type to pairs of log general type. The
first step is a generalization of the fibered power theorem alluded to above to the
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context of pairs, and we take the goal of this paper to be the proof of the following
theorem:

Theorem 1.1. Let (X, D)→ B be a stable family with integral and log canonical
general fiber over a smooth projective variety B. Then after a birational modifica-
tion of the base B̃→ B, there exists an integer n > 0, a positive-dimensional pair
(W̃, 1̃) of log general type, and a morphism (X̃n

B, D̃n)→ (W̃, 1̃).

Moreover, with an additional assumption on the singularities of the general fiber,
we can avoid a modification of the base:

Theorem 1.2. Let (X, D)→ B be a stable family with integral, openly canonical,
and log canonical general fiber (see Definition 1.6) over a smooth projective
variety B. Then there exists an integer n > 0, a positive-dimensional pair (W,1)
openly of log general type, and a morphism (Xn

B, Dn)→ (W,1).

We state two theorems to satisfy the two competing definitions of log general
type, one which often appears in birational geometry, and one which is useful for
arithmetic applications. To remove any ambiguity, we refer to the former as a
pair of log general type, and the latter as a pair openly of log general type. See
Definitions 1.4 and 1.5 for precise definitions.

Next, we wish to briefly outline how the previous theorem can be used for
arithmetic applications. The analogue of Lang’s conjecture in the setting of pairs is
the following conjecture, due to Vojta and reformulated using ideas of Lang.

Conjecture 1.3 (Vojta–Lang). Let K be a number field and let S be a finite set of
places of K . Let (X, D) be a pair openly of log general type defined over K . Then
the set of S-integral points of X \ D is not Zariski dense.

Given a stable family, Theorem 1.2 gives a morphism from a high fibered power of
this family to a pair (W,1) openly of log general type. Conjecture 1.3 then predicts
that the integral points of W \1 are not Zariski dense. This allows us to prove in
a forthcoming article uniformity results for integral points on higher-dimensional
pairs of log general type assuming that the Vojta–Lang conjecture holds.

Definition 1.4. A pair (X, D) of a proper variety X and an effective Q-divisor D
is of log general type if

• (X, D) has log canonical singularities, and

• ωX (D) is big.

For applications to arithmetic (in forthcoming work) it will be useful to consider
the following.

Definition 1.5. Let X be a quasiprojective variety and let X̃→ X be a desingular-
ization. Let X̃ ⊂ Y by a projective embedding and suppose D = Y \ X̃ is a divisor
of normal crossings. Then X is openly of log general type if ωY (D) is big.
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This second definition is independent of both the choice of the desingularization
as well as the embedding; it is also a birational invariant. Definitions 1.4 and 1.5
are equivalent if the pair (X, D) has log canonical singularities and one considers
the variety X \ (D ∪Sing(X)).

Just to reiterate, we will refer to Definition 1.4 by saying (X, D) is a pair of log
general type. We will refer to Definition 1.5 by stating that the pair is openly of log
general type, as the definition is motivated by considering the complement X \ D.
Throughout the course of this paper, we will take care to specify which definition
we are using.

Definition 1.6. By openly canonical, we mean that the variety X \D has canonical
singularities.

For definitions of canonical, log canonical singularities, and stable pairs, see
Definitions 2.2 and 2.6.

Ideas of proof. To prove Theorem 1.1, we show that it suffices to prove this:

Theorem 4.12. Let (X, D)→ B be a stable family with integral and log canonical
general fiber over a smooth projective variety B. Suppose that the variation of
the family f is maximal (see Definition 2.9). Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) of the pair by a finite group of automorphisms is of log
general type.

Similarly, to prove Theorem 1.2, it suffices to prove the following:

Theorem 4.9. Let f : (X, D)→ B be a stable family with integral, openly canoni-
cal, and log canonical general fiber over a smooth projective variety B. Suppose
that the variation of the family f is maximal. Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) is openly of log general type.

For a definition of maximal variation, see Definition 2.9.
We then obtain Theorem 1.2 by means of Theorem 1.1 and Theorem 4.12. More

specifically, we show that there is a birational transformation (W̃, 1̃)→ (W,1)
such that (W̃, 1̃) manifests (W,1) as a pair openly of log general type.

The main tool of this paper is a recent result of Kovács–Patakfalvi which says that
given a stable family with maximal variation f : (X, Dε)→ B where the general
fiber is Kawamata log terminal (klt), then for large m the sheaf f∗(ω f (Dε))

m is big
[Kovács and Patakfalvi 2015, Theorem 7.1]. Here, the divisor Dε denotes the divisor
with lowered coefficients (1− ε)D for a small rational number ε. Unfortunately
their result does not hold for log canonical pairs; see Example 7.5 of [Kovács and
Patakfalvi 2015]. As a result, since D is not assumed to be Q-Cartier, one obstacle
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of this paper is showing that bigness of ωXn
B
(Dε,n) for some n large enough allows

you to conclude bigness of ωXn
B
(Dn). To do so, one must first take a Q-factorial

dlt modification, followed by a relative log canonical model. The ideas here are
present in Propositions 2.9 and 2.15 of [Patakfalvi and Xu 2015]. See Remark 3.5
for a more detailed discussion.

Finally, we must guarantee that the fibered powers are not too singular. A priori,
it is unclear if taking high fibered powers to ensure the positivity of ωXn

B
(Dn) leads

to a pair with good singularities. This is ensured by the following statement.

Proposition 4.4. Let f : (X, D) → B be a stable family with integral and log
canonical general fiber over a smooth projective variety B. Then for all n > 0, the
fibered powers (Xn

B, Dn) have log canonical singularities.

This also works after taking quotients by finite groups of automorphisms:

Corollary 4.10. Let f : (X, D)→ B be an slc family with integral and log canonical
general fiber over a smooth projective variety B. Then for n large enough, the
quotient pair (Xn

B/G, Dn/G) also has log canonical singularities.

In fact, although we do not use it in this paper, we prove:

Proposition 4.6. The total space of the fiber product of stable families over a stable
base is stable.

The main result we seek then follows via the above methods after applying
standard tools from moduli theory.

Previous work. The general ideas present in this paper originated in the work
of Caporaso, Harris, and Mazur, who showed in [Caporaso et al. 1997] that the
fibered power theorem is true for families of curves of general type, i.e., families
with general fiber smooth curves of genus g ≥ 2. More precisely, they proved the
following theorem.

Theorem 1.7 [Caporaso et al. 1997, Theorem 1.3]. Let f : X → B be a proper
morphism of integral varieties whose general fiber is a smooth curve of genus g ≥ 2.
Then for n sufficiently large, Xn

B admits a dominant rational map h : Xn
B→W to a

positive-dimensional variety of general type W.

In this same paper, the authors conjectured that this result is actually true for
families of varieties of general type of arbitrary dimension. However, they focused
only on the case of curves, as their results relied upon the nice description of a
compact moduli space parametrizing mildly singular objects: the moduli space of
genus g stable curves, Mg. After Alexeev, Kollár, and Shepherd-Barron constructed
a moduli space parametrizing stable surfaces analogous to that of stable curves,
Hassett [1996] showed that the correlation theorem was also true for families
of surfaces of general type. Abramovich [1997a] later proved the fibered power
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theorem for varieties of general type of arbitrary dimension, using an analogue of
semistable reduction.

Abramovich and Matsuki [2001] proved a fibered power theorem for principally
polarized abelian varieties, using Alexeev’s compact moduli space. This was
a generalization of some prior results which considered pairs of elliptic curves
and their origins; see [Pacelli 1997; 1999; Abramovich 1997b]. Furthermore,
Abramovich and Matsuki remark that the result should in fact be true for stable
pairs (X, D), and so we take this as the goal of this paper.

Finally, although we hope that this result will be of interest in its own right from
the viewpoint of geometry, there are numerous applications to arithmetic, namely to
the study of integral points on pairs of log general type, assuming the Lang–Vojta
conjecture. This approach was taken in all the papers mentioned above and we
obtain similar results in this direction (to appear).

Outline.
• Section 2: Preliminary definitions and notation.
• Section 3: We prove that ωXn

B
(Dn) is big for a stable family of maximal variation

with log canonical general fiber, and that the fibered power theorem holds for max
variation families when the general fiber is both openly canonical and log canonical.
• Section 4: Some results on singularities, namely we analyze the singularities of
fibered powers and study the affect of group quotients, and we prove the fibered
power theorem for log canonical general fiber in the case of max variation.
• Section 5: We prove the full fibered power theorems by reducing to families of
maximal variation.

2. Preliminaries and notation

Birational geometry.

Definition 2.1. A line bundle L on a proper variety X is called big if the global
sections of Lm define a birational map for m > 0. A Cartier divisor D is called big
if OX (D) is big.

From the point of view of birational geometry and the minimal model program,
it has become convenient and standard to work with pairs. We define a pair (X, D)
to be a variety X along with an effective R-divisor D =

∑
di Di which is a linear

combination of distinct prime divisors.

Definition 2.2. Let (X, D) be a pair where X is a normal variety and K X + D is
Q-Cartier. Suppose that there is a log resolution f : Y → X such that

KY +
∑

aE E = f ∗(K X + D),
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where the sum goes over all irreducible divisors on Y . We say that (X, D) is

• canonical if all aE ≤ 0,

• log canonical (lc) if all aE ≤ 1, and

• Kawamata log terminal (klt) if all aE < 1.

Remark 2.3. In particular, for a klt pair, the coefficients di in the decomposition
D =

∑
di Di are all strictly < 1. Similarly, for a lc pair, the coefficients are ≤ 1.

Definition 2.4. A pair
(
X, D=

∑
di Di

)
is semilog canonical (slc) if X is reduced,

K X + D is Q-Cartier, and

(1) the variety X satisfies Serre’s condition S2,

(2) X is Gorenstein in codimension one, and

(3) if ν : Xν
→ X is the normalization, then the pair

(
Xν,

∑
diν
−1(Di )+ D∨

)
is

log canonical, where D∨ denotes the preimage of the double locus on Xν.

Remark 2.5. Semilog canonical singularities can be thought of as the extension of
log canonical singularities to nonnormal varieties. The only difference is that a log
resolution is replaced by a good semiresolution.

Definition 2.6. A pair (X, D) of a proper variety X and an effective Q-divisor D,
is a stable pair if

• the line bundle ωX (D) is ample and

• the pair (X, D) has semilog canonical singularities.

We assume that all of our families of pairs satisfy Kollár’s condition. To be
precise, we define a stable family as follows. Let X be a variety and F an OX -
module. The dual of F is denoted F?

:= HomX (F,OX ) and we define the m-th
reflexive power of F to be the double dual (or reflexive hull) of the m-th tensor
power of F :

F [m] := (F⊗m)??.

Definition 2.7. An slc family is a flat morphism f : (X, D)→ B such that

• each fiber (Xb, Db) is an slc pair,

• ω f (D)[m] is flat, and

• (Kollár’s condition) for every base change τ : B ′ → B, given the induced
morphism ρ : (XB ′, DB ′)→ (X, D) we have that the natural homomorphism

ρ∗(ω f (D)[m])→ ω f ′(D)[m]

is an isomorphism.

We say that f : (X, D)→ B is a stable family if in addition to the above, each
(Xb, Db) is a stable pair. Equivalently, KXb + Db is ample for every b ∈ B.
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Moduli space of stable pairs. Constructing the moduli space of stable pairs, de-
noted below by Mh , has been a difficult task. A discussion of the construction of
the moduli space Mh is not necessary for this paper, but for sake of completeness
we note that there exists a finite set of constants, which we denote by h, that allows
for a compact moduli space. As long as the coefficients di appearing in the divisor
decomposition are all > 1

2 , there are no issues and we do in fact have a well defined
moduli space. There is no harm in assuming this outright, which leads to the
following:

Assumption 2.8. The coefficients of the divisors considered are always > 1
2 .

We refer the reader to [Kollár 2010] or to the introduction of [Kovács and
Patakfalvi 2015] for more details.

Variation of moduli. Given a stable family f : (X, D)→ B, we obtain a canonical
morphism

φ : B→ Mh

sending a point b∈ B to the point of the moduli space Mh of stable pairs, classifying
the fiber (Xb, Db). This motivates the following definition.

Definition 2.9. A family has maximal variation of moduli if the corresponding
canonical morphism is generically finite.

Equivalently, the above definition means that the family is a truly varying family,
diametrically opposed to one which is isotrivial, where the fibers do not vary at all.

Notation. Given a morphism of pairs f : (X, D)→ B, we denote by (Xn
B, Dn)

the unique irreducible component of the n-th fiber product of (X, D) over B
dominating B. We define Dn to be the divisor Dn :=

∑n
i=1 π

∗

i (D) where the maps
πi : (Xn

B, Dn)→ B denote the projections onto the i-th factors. We denote by fn

the maps fn : (Xn
B, Dn)→ B. Finally, we denote by Dε the divisor (1− ε)D and

by Dε,n the sum Dε,n :=
∑n

i=1 π
∗

i (Dε).

3. Positivity of the relative anticanonical sheaf

Recall that to prove that the pair (Xn
B, Dn) is a pair of log general type, we must

show that

(a) ωXn
B
(Dn) is big, and

(b) the pair (Xn
B, Dn) has log canonical singularities.

We also remind the reader that we will demonstrate in Section 4 that Theorem 4.12
implies Theorem 1.1. Therefore, in this section we assume that the variation of our
family is maximal. More precisely, the goal of this section is to prove the following
proposition, tackling property (a).
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Proposition 3.1. Let f : (X, D)→ B be a stable family with maximal variation
over a smooth, projective variety B with integral and log canonical general fiber.
Then for n sufficiently large, the sheaf ωXn

B
(Dn) is big.

As mentioned in the introduction, we will prove this by means of a slightly
weaker statement:

Proposition 3.2. Let f : (X, Dε)→ B be a stable family with maximal variation
over a smooth, projective variety B with klt general fiber. Then for n sufficiently
large, the sheaf ωXn

B
(Dε,n) is big.

Our proof of Proposition 3.2 requires a recent theorem of Kovács and Patakfalvi:

Theorem 3.3 [Kovács and Patakfalvi 2015, Theorem 7.1 and Corollary 7.3]. If
f : (X, Dε)→ B is a stable family with maximal variation over a normal, projective
variety B with klt general fiber, then f∗(ω f (Dε)

m) is big for m large enough.
Moreover, ω f (Dε) is big.

Let S[n] denote the reflexive hull of the n-th symmetric power of a sheaf. Then
the above theorem is equivalent to saying that, under the hypotheses, for any ample
line bundle H on B there exists an integer n0 such that

S[n0]( f∗(ω f (Dε)
m))⊗ H−1 (1)

is generically globally generated. We desire to show that this implies Proposition 3.2;
this essentially follows from Proposition 5.1 of [Hassett 1996], but we include the
proof for completeness to show how it extends to the case of pairs. We begin with
a lemma.

Lemma 3.4. Let f : (X, D)→ B be a stable family over a smooth projective variety
B such that the general fiber has log canonical singularities. Then for all n > 0, the
following formula holds:

ωXn
B
(Dn)

[m]
= π∗1ω f (D)[m]⊗ · · ·⊗π∗nω f (D)[m]⊗ f ∗n ω

m
B .

Proof. Recall that the relative dualizing sheaf satisfies the equation

ω fn (Dn)= π
∗

1ω f (D)⊗ · · ·⊗π∗nω f (D),

where π j denotes the projection π j : Xn
→ X to the j -th factor. Since B is smooth

we obtain
ωXn

B
(Dn)

[m]
= ω fn (Dn)

[m]
⊗ f ∗n ω

m
B .

Since f : (X, D)→ B is a stable family, there exists an integer m such that for all
b ∈ B, the sheaf ω f (D)[m]|Xb is locally free. Moreover, since this sheaf is locally
free on each fiber, ω f (D)[m] is also locally free for this m. We claim that

ωXn
B
(Dn)

[m]
= π∗1ω f (D)[m]⊗ · · ·⊗π∗nω f (D)[m]⊗ f ∗n ω

m
B .
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Both sides of the equation are reflexive — the left-hand side by construction, and the
right-hand side because it is the tensor product of locally free sheaves. Therefore,
to prove the equivalence, we must show the two sides agree on an open set whose
complement has codimension at least two. Consider the locus consisting of both
the general fibers, which are log canonical and hence Q-Gorenstein, as well as the
nonsingular parts of the special fibers. Note that the complement of this locus is
of codimension at least two, because the singular parts of the special fiber are of
codimension one, thus of at least codimension two in the total space. �

Proof of Proposition 3.2. Let m ∈ Z be such that both ω f (Dε)
[m] is locally free and

f∗(ω f (Dε)
m) is big. First note that for n large enough, the sheaf

( f∗(ω f (Dε)
m))[n]⊗ H−1

is generically globally generated. This follows since by Proposition 5.2 of [Hassett
1996], for an r-dimensional vector space V, each irreducible component of the
reflexive hull of the m-th tensor power of V is a quotient of a representation
S[q1](V )⊗· · ·⊗ S[qk ](V ), where k = r !. Using this, we prove that ωXn

B
(Dε,n) is big

for large n. To do so, it suffices to show that there are on the order of mn dim Xη+b

sections of ωXn
B
(Dε)

[m], where b = dim B and Xη denotes the general fiber.
By Lemma 3.4,

ωXn
B
(Dε,n)

[m]
= π∗1ω f (Dε)

[m]
⊗ · · ·⊗π∗nω f (Dε)

[m]
⊗ f ∗n ω

m
B .

The sheaf ω f (Dε) has good positivity properties — it is big by Corollary 7.3 of
[Kovács and Patakfalvi 2015], but the sheaf ωB is somewhat arbitrary and could
easily prevent ωXn

B
(Dε,n) from being big. However, taking high enough powers of

X allows the positivity of ω f (Dε) to overcome the possible negativity of ωB .
Applying ( fn)∗ gives, via the projection formula,

( fn)∗(ωXn
B
(Dε,n)

[m])= ( f∗(ω f (Dε)
[m]))n ⊗ωm

B ,

which is also a reflexive sheaf by Corollary 1.7 of [Hartshorne 1980]. More
specifically, it is the pushforward of a reflexive sheaf under a proper dominant
morphism. Then the inclusion map ω f (Dε)

m
→ ω f (Dε)

[m] induces a map of
reflexive sheaves:

( f∗ω f (Dε)
m)[n]→ ( f∗ω f (Dε)

[m])n = ( fn)∗(ωXn
B
(Dε,n)

[m])⊗ω−m
B ,

which is an isomorphism at the generic point of B.
Let H be an invertible sheaf on B such that H ⊗ωB is very ample. Then we can

choose n so that ( f∗ω f (Dε)
m)[n]⊗ H−m is generically globally generated for all

admissible values of m. But then

( f∗ω f (Dε)
m)[n]⊗ H−m

= ( fn)∗(ωXn
B
(Dε,n)

[m])⊗ (H ⊗ωB)
−m
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is also generically globally generated for the same m.
This sheaf has rank on the order of mn dim Xη , so there are at least this many

global sections. By our assumption on H , we have that (H⊗ωB)
m has on the order

of mb sections varying horizontally along the base B. By tensoring, we obtain that
the sheaf

( fn)∗(ωXn
B
(Dε,n))

[m]

has on the order of mn dim Xη+b global sections, and therefore ωXn
B
(Dε,n) is big. �

Remark 3.5. Proposition 3.2 assumed that the general fiber (Xb, Db) had klt
singularities, but to prove Theorem 1.1 as stated, we must allow the general fiber to
have log canonical singularities. Unfortunately, we cannot just raise the coefficients
of D so that the pair has log canonical singularities, via twisting by εD to conclude
that ωXn

B
(Dn) is also big. This is because we do not know that the divisor D is

Q-Cartier. We remedy this situation with a Q-factorial divisorial log terminal (dlt)
modification (see Section 1.4 of [Kollár 2013] for an overview of dlt models), as
explained below.

First, the definition of a dlt pair:

Definition 3.6. Let (X, D) be a log canonical pair such that X is normal and
D =

∑
di Di is the sum of distinct prime divisors. Then (X, D) is divisorial log

terminal (dlt) if there exists a closed subset Z ⊂ X such that

(1) X \ Z is smooth and D|X\Z is an snc divisor;

(2) if f : Y → X is birational and E ⊂ Y is an irreducible divisor such that
centerX E ⊂ Z , then the discrepancy a(E, X, D) < 1.

See Definition 2.25 in [Kollár and Mori 1998] for a definition of the discrepancy
of a divisor E with respect to a pair (X, D).

Roughly speaking, a pair (X, D) is dlt if it is log canonical, and it is simple
normal crossings at the places where it is not klt. The following theorem of Hacon
guarantees the existence of dlt modifications.

Theorem 3.7 [Kollár and Kovács 2010, Theorem 3.1]. Let (X, D) be a pair of
a projective variety X and a divisor D =

∑
di Di with coefficients 0 ≤ di ≤ 1,

such that K X + D is Q-Cartier. Then (X, D) admits a Q-factorial mini dlt model
f min
: (Xmin, Dmin)→ (X, D).

The upshot here is that, starting with a log canonical pair (X, D) we can obtain
a model which is dlt and Q-factorial.

The statement that we will actually apply follows from [Patakfalvi and Xu 2015,
Proposition 2.9]:

Proposition 3.8. Let f : (X, D)→ B be a stable family over a smooth variety B.
Assume that the general fiber (Xb, Db) has log canonical singularities and that the
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variation of the family is maximal. Then for each 0 < ε � 1 there exists a pair
(Z ,1ε), an effective divisor 1 on Z , and a morphism p : Z→ X such that

(a) K Z +1= p∗(K X + D),

(b) (Z ,1ε) is klt,

(c) g : (Z ,1ε)→ B is a stable family,

(d) the variation of g is maximal, and

(e) 1−1ε is an effective divisor such that Supp(ε1)⊂ Ex(p)∩Supp(p−1
∗
1).

Sketch of proof. The rough idea is to take a Q-factorial dlt modification of X , and
then shrink the resulting divisor so that the new pair (Z̃ , 1̃ε) is klt. Finally, taking
the relative log canonical model of (Z̃ , 1̃ε)→ X yields a stable family with klt
general fiber and maximal variation. �

We are now in position to prove the main statement of this section, Proposition 3.1,
whose proof is inspired by Proposition 2.15 of [Patakfalvi and Xu 2015].

Proof of Proposition 3.1. We begin with a stable family with maximal variation
f : (X, D)→ B such that the generic fiber is log canonical. The goal is to show
that ωXn

B
(Dn) is big for n sufficiently large.

First take p̃ : Z̃ → X to be a Q-factorial dlt modification of X , and let 1̃
be a divisor on Z̃ such that p̃∗(K X + D) = K Z̃ + 1̃. Since Z̃ is Q-factorial by
construction, we can lower the coefficients of the divisor 1̃ by 0< ε� 1, a rational
number, to obtain a klt pair (Z̃ , 1̃ε).

Define p : Z → X to be the relative log canonical model of (Z̃ , 1̃ε) → X .
Denoting the induced morphism by q : Z̃ 99K Z , we define 1 to be the pushforward
1= q∗(1̃). By Proposition 3.8, the new family g : (Z ,1ε)→ B is a stable family
with maximal variation such that the generic fiber is klt. Thus, by Proposition 3.2,
for n large enough, ωZn

B
(1ε,n) is big.

Moreover, since (Z ,1ε)→ X is the relative log canonical model of (Z̃ , 1̃ε)→ X ,
pluri-log canonical forms on Z̃ are the pullbacks of pluri-log canonical forms on Z .
From this we conclude that ωZ̃n

B
(1̃ε,n) is also big. Now since Z̃ is Q-factorial,

we know that ε1 is a Q-Cartier divisor. This property allows us to enlarge the
coefficients of 1̃. Recall that ε1 is effective by Proposition 3.8(e), and thus
ωZ̃n

B
(1̃n) is big as well.

Since p̃ : Z̃→ X is a birational morphism and p̃∗(KX + D)= K Z̃ + 1̃, pulling
back pluri-log canonical forms through p̃ preserves the number of sections. Thus,
we finally conclude that ωXn

B
(Dn) is big. �

Finally, we prove the following theorem for pairs openly of log general type.

Theorem 3.9. Let f : (X, D)→ B be a stable family with integral, openly canoni-
cal, and log canonical general fiber over a smooth projective variety B. Suppose that
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the variation of the family f is maximal. Then ωXn
ss
(Dss

n ) is big, where (Xn
ss, Dss

n )

denotes the n-th fibered power of the weak semistable model of the pair (X, D).

Proof. Consider the diagram

(Xss, Dss) (X̃ , D̃)= X ×B1 B (X, D)

1⊂ B1 B1 B

φ

πss

σ

g f

where (Xss, Dss)→ B1 denotes the weak semistable model (see Definition 0.4 of
[Karu 1999]) of the family (X, D)→ B, and 1 ⊂ B1 denotes the discriminant
divisor over which the exceptional lies. Such a model exists by [Karu 1999]. Since
taking the weak semistable model gives a pair which is at worst openly canonical
and log canonical, we are not required to take a resolution of singularities. This
is because, by definition of both openly canonical and log canonical singularities,
sections of ωXss(D

ss) give regular sections of logarithmic pluricanonical sheaves of
any desingularization.

More precisely, we have

φ∗(ωg(D̃))= ωπss(D
ss
+ E)⊂ ωπss(D

ss
+π∗ss(1)).

Let π∗ss1 = 1
ss. Then since ωg(D̃) is big by Theorem 3.3, so is ωg(D̃ − 1

n1
ss).

Taking fibered powers, as in Proposition 3.1, shows that ωX̃n
B1
(D̃n(−1

ss
n )) is also

big. Moreover,

φ∗n
(
ωX̃n

B1
(D̃n(−1

ss
n ))
)
⊂ ωXn

ss
(Dss

n )(1
ss
n −1

ss
n )= ωXn

ss
(Dss

n )

is big. �

The definition of openly of log general type then implies that we have actually
shown the following.

Theorem 3.10. Let f : (X, D)→ B be a stable family with integral, openly canon-
ical, and log canonical general fiber over a smooth projective variety B. Suppose
that the variation of the family f is maximal. Then there exists an integer n > 0
such that (Xn

B, Dn) is openly of log general type.

4. Singularities

The purpose of this section is to prove that if we begin with a pair (X, D) with
log canonical singularities, then fibered powers (Xn

B, Dn) also have log canonical
singularities for all n > 0. As the following example shows, it is necessary to
restrict the singularities, as there exist varieties Y such that ωY is big, but Y is not
of general type!
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Example 4.1. Let Y be the projective cone over a quintic plane curve C . Then ωY

is big (even ample), but Y is birational to P1
×C , which has Kodaira dimension

κ(P1
×C)=−∞. So although ωY is big, Y is not openly of log general type.

The following proposition is a version of log inversion of adjunction.

Proposition 4.2 [Patakfalvi 2016, Lemma 2.12]. The total space of an slc family
over an slc base has slc singularities.

This result immediately extends to products of slc families.

Corollary 4.3. The total space of the product of slc families over an slc base also
has slc singularities.

Proof. Let f : (X1, D1)→ B and g : (X2, D2)→ B be two slc families over an
slc base B. Then the product family g : (X,1)→ B is the total space of an slc
family over either of the factors. Therefore both the product family as well as its
total space have slc singularities by Proposition 4.2. �

Inductively, this shows that the fibered powers (Xn
B, Dn) have semilog canonical

singularities. The statement that we will actually use to prove our result is the
following:

Proposition 4.4. Let f : (X, D) → B be a stable family with integral and log
canonical general fiber over a smooth projective variety B. Then for all n > 0, the
fibered powers (Xn

B, Dn) have log canonical singularities.

Proof. By Proposition 4.2, the total space of the family (X, D) is slc. In fact, we will
show that it is actually log canonical, which is equivalent to showing that (X, D) is
normal. Recall that to show that the pair (X, D) is normal, it suffices to show that
it is regular in codimension one (abbreviated R1) and satisfies Serre’s condition S2.
Since the general fiber has log canonical singularities, the fibers (Xb, Db) are R1
over the general point of the base B. Over the special fibers, the singularities are of
at least codimension one in the fiber, and are thus at least codimension two in the
total space. Therefore, it follows that the total space (X, D) is R1. Finally, the pair
(X, D) is S2 by definition, since it has semilog canonical singularities.

Therefore, by Corollary 4.3, for all n > 0 the fibered powers (Xn
B, Dn) also have

log canonical singularities. �

In fact, the following stronger statements are also true. Although we do not use
them in this paper, we hope that they may be of interest to readers.

Proposition 4.5. The fiber product of two stable families is a stable family.

Proof. This result essentially follows from Proposition 2.12 in [Bhatt et al. 2013].
We reproduce the argument for the convenience of the reader.

Let f : (X, D)→ B and g : (Y, E)→ B be two stable families, and denote the
fiber product family by h : (Z , F)→ B. Since both families f and g are flat of finite
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type with S2 fibers by assumption, and since we are assuming Kollár’s condition,
by Proposition 5.1.4 of [Abramovich and Hassett 2011] we have that ω[k]X/B(D) is
flat over B. Moreover, by Lemma 2.11 of [Bhatt et al. 2013] we have that

p∗Xω
[k]
X/B(D)⊗ p∗Yω

[k]
Y/B(E)

is a reflexive sheaf on the product. By Lemma 2.6 of [Hassett and Kovács 2004],
the above sheaf is isomorphic to ω[k]Z/B(F) on an open subset whose complement
has codimension at least two, and therefore we conclude that

ω
[k]
Z/B(F)= p∗Xω

[k]
X/B(D)⊗ p∗Yω

[k]
Y/B(E).

Moreover, Kollár’s condition holds, as by assumption both components of this fiber
product commute with arbitrary base change. Choosing a sufficient index k, namely
the least common multiple of the index of the factors, we see that ωZ/B(F) is a
relatively ample Q-line bundle, and thus we conclude that h : (Z , F)→ B is also a
stable family. �

Proposition 4.6. The total space of the fiber product of stable families over a stable
base is stable.

Proof. By Proposition 2.15 in [Patakfalvi and Xu 2015] (see also [Fujino 2012,
Theorem 1.13]), if f : (X, D) → (B, E) is a stable family whose variation is
maximal over a normal base, then ω f (D) is nef. First we note that it suffices to
prove the statement over a normal base, since nef is a property which is decided on
curves. Since normalization is a finite birational morphism, nonnegative intersection
with a curve is preserved. Thus, we wish to show that this statement is true without
the assumption that the variation of f is maximal. Let B ′→ B be a finite cover of
the base so that the pullback family f ′ : (X ′, D′)→ B ′ maps to g : (U,D)→ T ,
a family of maximal variation. In this case ω f ′(D′) is nef, as it is the pullback of
ωg(D) which is nef. Since ω f ′(D′) is the pullback of ω f (D) by the finite morphism
X ′→ X , the projection formula implies that ω f (D) is nef as well. This shows that
the sheaf ω f (D) is nef, regardless of whether the variation of f is maximal or not.
Then since ω f (D) is nef and f -ample, and since the base is stable, ωB(E) is ample.
Therefore, we can conclude that ωX (D+ f ∗E)= ω f (D)⊗ f ∗ωB(E) is ample. �

The next theorem, which we actually need, follows from Propositions 3.1 and 4.4.

Theorem 4.7. Let (X, D)→ B be a stable family with integral and log canonical
general fiber and maximal variation over a smooth projective variety B. Then there
exists an integer n > 0 such that the pair (Xn

B, Dn) is of log general type.

Proof. By Proposition 3.1, we have that ωXn
B
(Dn) is big, and by Proposition 4.4,

the fibered powers (Xn
B, Dn) have log canonical singularities. �
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To prove the stronger Theorem 4.12, we must show that what we have proven
also works after taking the quotient by a group of automorphisms. This is precisely
the content of Proposition 4.8 and Corollary 4.11 below.

This claim essentially follows from the work of various authors in previous
papers in the subject. The approach is present in, for example, Lemma 3.2.4 of
[Abramovich and Matsuki 2001] as well as Lemma 2.4 of [Pacelli 1999]. We
reproduce the statement in our case below.

Proposition 4.8. Let (X, D) be openly of log general type. There exists a positive
integer n such that the pair (Xn

B, Dn)/G is also openly of log general type.

Proof. Let H ⊂ X be the locus of fixed points of the action of G ⊆Aut(X, D). Let
IH denote the corresponding sheaf of ideals. We have seen before that ω f (D) is
big. Then, for sufficiently large k, we have that the sheaf

ω f (D)⊗k
⊗ f ∗ω⊗k

B ⊗ I |G|H

is big. If we pass to the k-th fibered power, we have that

(ωX k
B
(Dk))

⊗k
⊗ f ∗k ω

⊗k
B ⊗

k∏
i=1
π−1I |G|H

is also big.
Regarding the above product, we have

∏k
i=1 π

−1
i I |G|H ⊂

(∑k
i=1 π

−1
i I |G|H

)k, and
the latter ideal vanishes to order at least k|G| on the fixed points of the action of G.
Moreover, we have that

(ω fk (Dk))
⊗k
⊗π∗k ω

⊗k
B = (ωX k

B
(Dk))

⊗k.

This allows us to conclude that for n � 0, there are enough invariant sections
of ωX k

B
(Dk)

⊗n vanishing on the fixed point locus to order at least n|G|.
Now let

r : (X ,D)→ (X k
B, Dk)

be an equivariant good resolution of singularities such that r−1(Dk) = D. Note
that such a resolution is guaranteed by Hironaka [1977]. Since X \ D does not
necessarily have canonical singularities away from the general fiber, we have
introduced exceptional divisors in the resolution that will alter sections of ωX (D).
To fix this, we simply apply the methods used in the proof of Theorem 3.9 — namely,
twist by some small negative multiple of the divisor 1 containing the exceptional.

To conclude the result, it suffices to show that invariant sections of (ωX k
B
(Dk))

⊗n

vanishing on the fixed point locus to order at least n|G| descend to sections of the
pluri-log canonical divisors of a good resolution of the quotient pair (Xn

B/G, Dn/G).
Denote by q : (X ,D)→ (X/G,D/G) the morphism to the quotient, and let

φ : (X̃/G, D̃/G)→ (X/G,D/G)
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denote a good resolution. Then Lemma 4 from [Abramovich 1997b] tells us
that the invariant sections of ωX (D)⊗n vanishing on the fixed point locus to order
≥ n|G| come from sections of the pluri-log canonical divisors of a desingularization,
i.e., sections of ωX̃ (D̃)⊗n. Therefore, for n sufficiently large, the quotient pair
(Xn

B, Dn)/G is openly of log general type. �

This also proves the following theorem:

Theorem 4.9. Let f : (X, D)→ B be a stable family with integral, openly canoni-
cal, and log canonical general fiber over a smooth projective variety B. Suppose
that the variation of the family f is maximal. Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) is openly of log general type.

Furthermore, combining Proposition 4.8 with Proposition 4.4 yields:

Corollary 4.10. Let f : (X, D)→ B be an slc family with integral and log canonical
general fiber over a smooth projective variety B. Then for n large enough, the
quotient pair (Xn

B/G, Dn/G) also has log canonical singularities.

This then gives an analogue to Proposition 4.8 for pairs of log general type.

Corollary 4.11. Let (X, D) be a pair of log general type. There exists a positive
integer n such that the pair (Xn

B, Dn)/G is also a pair of log general type.

Thus we have completed the proof of the following theorem.

Theorem 4.12. Let (X, D)→ B be a stable family with integral and log canonical
general fiber over a smooth projective variety B. Suppose that the variation of
the family f is maximal (see Definition 2.9). Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) of the pair by a finite group of automorphisms is of log
general type.

Proof. This follows from Theorem 4.7 and Corollary 4.11. �

The next and final section shows how to reduce the proof of the Theorem 1.1 to
Theorem 4.12. Then, we show that Theorem 1.2 follows from Theorem 1.1.

5. Proof of Theorems 1.1 and 1.2 — reduction to the case of max variation

The final section of this paper is devoted to reducing the proofs of our two main
theorems to the case of maximal variation. We will use the existence of a tautological
family over a finite cover of our moduli space to show that, after a birational
modification of the base, the pullback of a stable family with integral and log
canonical general fiber has a morphism to the quotient of a family of maximal



A fibered power theorem for pairs of log general type 1597

variation by a finite group. Then using the fact that our result holds for families of
maximal variation, we will conclude that, after a modification of the base, a high
fibered power of the pullback of a stable family with integral and log canonical
general fiber has a morphism to a pair of log general type.

Finally, we show that if we add the assumption that the general fiber of our
family is openly canonical and log canonical, we can avoid taking a modification
of the base to prove Theorem 1.2.

Remark 5.1. As we will be using the moduli space of stable pairs Mh , we remind
the reader that we are in the situation of Assumption 2.8.

Unfortunately the moduli space Mh that we are working with does not carry a
universal family. The following lemma gives a tautological family, which can be
thought of as an approximation of a universal family.

Lemma 5.2 [Kovács and Patakfalvi 2015, Corollary 5.19]. There exists a tautolog-
ical family (T ,D) over a finite cover � of the moduli space Mh of stable log pairs.
That is, there exists a variety �, a finite surjective map φ :�→ Mh , and a stable
family T →� such that φ(x)= [(Tx ,Dx)].

Proposition 5.3. Let f : (X, D)→ B be a stable family such that the general
fiber is integral and has log canonical singularities. Then there exists a birational
modification of the base B̃→ B, and a morphism (X̃ , D̃)→ B̃ to (T6̃, D̃)/G, the
quotient of a family of maximal variation by a finite group G

Proof. Let f : (X, D)→ B be a stable family such that the general fiber is integral
and has log canonical singularities. In particular, we do not assume that the variation
of f is maximal. There is a well defined canonical morphism B→ Mh . Call the
image of this morphism 6. Over this 6 lies the universal family (T6,D). Since
Mh is a stack, the maps (X, D)→ (T6,D) and B→6 factor through the coarse
spaces 6 and (T 6,D). The general fiber of (T 6,D)→6 is simply (S, DS)/K ,
where (S, DS) is a pair of log general type and K is the finite automorphism group.

Unfortunately there is no control on the singularities of 6— if the singularities
are not too mild, the fibered powers (T n

6 ,Dn) have no chance of having log canonical
singularities. To remedy this we take a resolution of singularities. Using Lemma 5.2,
we take a Galois cover followed by an equivariant resolution of singularities to
obtain 6̃→ 6. Call the Galois group of this cover H . Then over 6̃, we have a
tautological family (T6̃, D̃). Here the general fiber is simply (S, DS), a pair of log
general type.

Consider the quotient map 6̃→ 6̃/H . Taking the pullback of (T 6,D) through
6̃/H yields (T6̃/H , D̃′). Letting G be the group G = H × K , we can construct the
following diagram:
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(T6̃, D̃) (T6̃, D̃)/G (T6̃/H , D̃′) (T 6,D) T

6̃ 6̃/H 6̃/H 6 Mh

ν

We claim that the map ν : (T6̃, D̃)/G→ (T6̃/H , D̃′) is actually the normalization
of (T6̃/H , D̃′). First note that (T6̃, D̃)/G is normal, and that the morphism ν is finite
as the morphism (T6̃, D̃)→ (T 6,D) is. Therefore, to prove ν is the normalization
of (T6̃/H , D̃′), it suffices to prove that ν is birational. To do so, consider the
following diagram:

(T6̃, D̃) (T6̃, D̃)/H ((T6̃, D̃)/H)/K = (T6̃, D̃)/G

6̃ 6̃/H 6̃/H

From this diagram it is clear that the general fiber of (T6̃, D̃)/G→ 6̃/H is precisely
(S, DS)/K — the quotient by H identifies fibers and the quotient by K removes
the automorphisms. Since the map ν is an isomorphism over the generic fibers, ν is
a birational map and thus is the normalization of (T6̃/H , D̃′).

The pair (X, D) does not map to (T6̃/H , D̃′). Instead, take a modification of the
base B̃→ B, where B̃= B×6 6̃/H . Then the pullback (X̃ , D̃)maps to (T6̃/H , D̃′).
Since (X̃ , D̃) is normal and ν is the normalization, we see that (X̃ , D̃) also maps
to (T6̃, D̃)/G. Finally, because the family (T6̃, D̃)/G→ 6̃/H is the quotient of a
family of maximal variation by a finite group, we have completed the proof of the
proposition. �

Proof of Theorem 1.1. Let (T6̃, D̃) denote the tautological family of maximal
variation obtained in the proof of Proposition 5.3. Passing to n-th fibered powers,
Theorem 4.12 guarantees that (T n

6̃
, D̃n) is of log general type. By Corollary 4.11,

(T n
6̃
, D̃n)/G is also of log general type for n sufficiently large. Thus the proof of

Theorem 1.1 follows from Proposition 5.3, as we have shown that after modifying
the base, we obtain a morphism from a high fibered power of our family to a pair
of log general type. �

Finally, we prove Theorem 1.2, the fibered power theorem for pairs openly of
log general type.

Proof of Theorem 1.2. The proof essentially follows from the proof of Proposition 5.3.
Assuming that the general fiber is openly canonical and log canonical, Theorem 4.9
shows that, for n sufficiently large, the pair (T n

6̃
, D̃n)/G is openly of log general type.

As there is a birational morphism (T n
6̃
, D̃n)/G→ (T n

6,Dn), it follows that (T n
6,Dn)
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is also openly of log general type. Therefore, we have constructed a morphism
from a high fibered power of our family to a pair openly of log general type, and
have thus completed the proof of the theorem. The upshot here is that we do not
have to modify the base of our starting family. �
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