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Arithmetic invariant theory and 2-descent
for plane quartic curves

Jack A. Thorne
Appendix by Tasho Kaletha

Given a smooth plane quartic curve C over a field k of characteristic 0, with
Jacobian variety J, and a marked rational point P ∈C(k), we construct a reductive
group G and a G-variety X, together with an injection J (k)/2J (k) ↪→G(k)\X (k).
We do this using the Mumford theta group of the divisor 22 of J, and a construc-
tion of Lurie which passes from Heisenberg groups to Lie algebras.
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Introduction

Motivation. Let C be a smooth, projective, geometrically connected algebraic curve
over a field k of characteristic 0, and let J denote its Jacobian variety. It is of interest
to calculate the group J (k)/2J (k). For example, when k =Q, this is often the first
step in understanding the structure of the finitely generated abelian group J (Q).
Calculating the group J (k)/2J (k) is known as performing a 2-descent.

In order to calculate J (k)/2J (k), it is often very useful to be able to understand
this group in terms of explicit objects in representation theory. This is particularly
the case if one wishes to understand the behavior of the groups J (k)/2J (k) as
the curve C is allowed to vary. A famous example is the description of this
group in terms of binary quartic forms, in the case where C = J is an elliptic
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curve [Birch and Swinnerton-Dyer 1963]. More recently, Bhargava and Gross
[2013] and Wang [2013] have given a similar description in the case where C
is an odd hyperelliptic curve, i.e., a hyperelliptic curve with a marked rational
Weierstrass point P ∈ C(k). In this case, the group J (k)/2J (k) is understood in
terms of equivalence classes of self-adjoint linear operators with fixed characteristic
polynomial.

The aim of this paper is to give an invariant-theoretic description of the group
J (k)/2J (k) when C is a nonhyperelliptic genus-3 curve with a marked rational
point P ∈ C(k). Such a curve is canonically embedded as a quartic curve in P2

k ,
which explains the title of this paper. The set of such pairs (C, P) breaks up into
4 natural families, according to the behavior of the projective tangent line to C at P
(these are described below).

Our results can be summarized in broad terms as follows: for each family of
curves, we obtain a reductive group G over k, an algebraic variety X on which G
acts, and, for each pair x = (C, P) defined over k, a closed G-orbit Xx ⊂ X and a
canonical injection

J (k)/2J (k) ↪→ G(k) \ Xx(k).

If k is separably closed, then the set G(k) \ Xx(k) has a single element. In general,
the set Xx(k) of k-rational points breaks up into many G(k)-orbits, which become
conjugate over the separable closure. The set of G(k)-orbits can be described in
terms of Galois cohomology, and this allows us to make a link with the theory of
2-descent.

Two of the spaces X that we construct are in fact linear representations, and
our results in these cases (although not our proofs) parallel those in [Bhargava and
Gross 2013, §4]. Bhargava and Gross apply the results of [loc. cit.] to understand
the average size of the 2-Selmer group of the Jacobian of an odd hyperelliptic curve
over Q. We hope that our results will have similar applications in the future, but
we do not pursue the study of Selmer groups in this paper.

The other two spaces we construct are global analogues of Vinberg’s θ-groups,
which have been previously studied from the point of view of geometric invariant
theory by Richardson [1982b]. We wonder if they can have similar applications in
arithmetic invariant theory, and if there are similar and simpler spaces which are
related, for example, to elliptic curves.

Description of main results. We now describe more precisely what we prove in
this paper. Let k be a field of characteristic 0. We are interested in the arithmetic
of all pairs (C, P) over k, where C is a smooth nonhyperelliptic curve of genus 3,
and P ∈ C(k) is a marked rational point. We break up such pairs into 4 families,
corresponding to the behavior of the projective tangent line `= TPC in the canonical
embedding:
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Case E7: ` meets C at exactly 3 points (the generic case).

Case e7: ` meets C at exactly 2 points, with contact of order 3 at P (` is a flex).

Case E6: `meets C at exactly 2 points, with contact of order 2 at P (` is a bitangent
line).

Case e6: ` meets C at exactly 1 point (` is a hyperflex).

The name for each case indicates the semisimple algebraic group or Lie algebra
inside which we will construct the variety X described above. The definitions are
as follows:

Case E7: Let H be a split adjoint simple group of type E7, and let θ : H→ H be a
split stable involution (see Proposition 1.9 below). We define G to be the
identity component of the θ -fixed group H θ, and Y to be the connected
component of the identity in the θ -inverted set H θ(h)=h−1

. (Equivalently,
Y can be realized as the quotient H/G.)

Case e7: Let H, θ , and G be as in case E7. We define V to be the tangent space to Y
at the identity, where Y is as in case E7. Then V is a linear representation
of G, and can be identified with the −1-eigenspace of θ in h= Lie H.

Case E6: Let H be instead a split adjoint simple group of type E6, and let θ :H→H
be a split stable involution. We define G to be the identity component
of the θ-fixed group H θ, and Y to be the connected component of the
identity in the θ -inverted set H θ(h)=h−1

.

Case e6: Let H, θ , and G be as in case E6. We define V to be the tangent space to Y
at the identity, where Y is as in case E6. Equivalently, V = hθ=−1

⊂ h.

In case E7 or E6, we let X = Y. In case e7 or e6, we let X = V. In each case the
open subscheme X s

⊂ X of geometric stable orbits (i.e., closed orbits with finite
stabilizers) is nonempty, and can be realized as the complement of a discriminant
hypersurface. A Chevalley restriction theorem holds, and if k is separably closed
then two elements x, y ∈ X s(k) are G(k)-conjugate if and only if they have the
same image in the categorical quotient X//G. (We remark that the quotients V//G
are abstractly isomorphic to affine space. This is not so for the quotients Y//G,
although it would be so if in their definition we replaced the adjoint group H by
its simply connected cover.) The spaces V are linear representations of G of the
type arising from Vinberg theory, and have been studied in the context of arithmetic
invariant theory in, e.g., [Thorne 2013]. The spaces Y are a “global” analogue of
the representations V.

Our first main result is the construction of a point of G(k) \ X s(k) which corre-
sponds to the trivial element of the group J (k)/2J (k):
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Theorem 1 (see Theorem 3.5). (1) In case E7 or E6, let S denote the functor
k-alg→ Sets which classifies pairs (C, P), where C is a smooth, nonhyperelliptic
curve of genus 3, and P is a point of C as above. Then there is a canonical map

S(k)→ G(k) \ Y s(k).

If k is separably closed, then this map is bijective.

(2) In case e7 or e6, let S denote the functor k-alg→ Sets which classifies tuples
(C, P, t), where C is a smooth nonhyperelliptic curve of genus 3, P is a point of C
as above, and t is a nonzero element of the Zariski tangent space of C at P. Then
there is a canonical map

S(k)→ G(k) \ V s(k).

If k is separably closed, this map is bijective.

In any of the above cases, given x ∈S(k) corresponding to a tuple (C, P, . . . ), we
write Jx for the Jacobian of C and Xx ⊂ X for the geometric stable orbit containing
the image of x , where again X = Y in case E7 or E6, and X = V in case e7 or e6. As
noted above, G(k) acts transitively on Xx(k) if k is separably closed, but in general
this is not the case; instead, the orbits comprising G(k) \ Xx(k) can be described in
terms of Galois cohomology. Our main theorem shows how to construct orbits in
G(k) \ Xx(k) using rational points of Jx(k):

Theorem 2 (see Theorem 3.6). Let notation be as above. Then there is a canonical
injection Jx(k)/2Jx(k) ↪→G(k)\ Xx(k). The image of the identity element of Jx(k)
is the image of x under the map of Theorem 1.

We observe that the Jacobian Jx depends only on the curve C , but the set
G(k) \ Xx(k) depends on the choice of auxiliary data; an analogous situation arises
when doing 2-descent on the Jacobian of a hyperelliptic curve which has more than
one k-rational Weierstrass point.

Methods. The methods we adopt to prove Theorems 1 and 2 seem to be different
to preceding work of a similar type. This reflects the fact that we are now in the
territory of exceptional groups, whereas, e.g., 2-descent on hyperelliptic curves can
be understood using the invariant theory of Vinberg θ -groups which are constructed
inside classical groups (in fact, groups of type An).

Our starting point is a classical geometric construction. For concreteness, we
describe what happens just in the case of type E6. Let us therefore take a smooth,
nonhyperelliptic curve C over C of genus 3, and let P ∈ C(C) be a marked point
where the projective tangent line in the canonical embedding is a bitangent line.
The double cover π : S→ P2 branched over C is a del Pezzo surface of degree 2,
and the strict transform of ` is the union of two −1-curves; blowing down one of
these, we obtain a smooth cubic surface S.
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There is a well-known connection between cubic surfaces and the root system
of type E6: let 3 = K⊥S ⊂ H 2(S,Z) denote the orthogonal complement of the
canonical class of S. Then 3 is in fact a root lattice of type E6. This does not
immediately provide a relation with geometric invariant theory because there is no
functorial construction of a reductive group from a root lattice.

However, Lurie [2001] has observed that one can construct in a functorial way
the group H corresponding to 3 given the additional data of a double cover of
V =3/23, i.e., a group extension

1→ {±1} → Ṽ → V → 1 (0-1)

satisfying some additional conditions — in particular, that the quadratic form
q : V → F2 corresponding to this extension agrees with the one derived from
the natural quadratic form on 3.

It turns out that the realization of the cubic surface X using the plane quartic
curve C is exactly the data required for input into Lurie’s construction. Indeed, let
J denote the Jacobian of the curve C . Then J has a natural principal polarization2,
and associated to L= 22 is the Mumford theta group

1→ {±1} → H̃L→ J [2] → 1. (0-2)

(More precisely, the Mumford theta group is a central extension of J [2] by Gm .
The presence of the odd theta characteristic corresponding to the bitangent ` allows
us to refine it to an extension by {±1}.) We show that there is a canonical iso-
morphism J [2] ∼= 3/23; pushing out the sequence (0-2) by this isomorphism,
we obtain a sequence of type (0-1), to which Lurie’s construction applies. We
thus obtain from the data (C, `) an algebraic group of type E6. (We remark here
that the isomorphism J [2] ∼=3/23 is well-known and classical; see, for example,
[Dolgachev and Ortland 1988, Chapter IX, §1]. We thank the anonymous referee
for this reference.)

The principle underlying this paper is that the construction outlined above is
sufficiently functorial that we can recover the arithmetic situation over any field k of
characteristic 0 simply by Galois descent. To construct the orbits whose existence
is asserted by Theorem 2, we simply twist the extension (0-2). More precisely, we
recall in Section 1C below how a point of Jx(k) gives rise to a twisted form of the
Heisenberg group H̃L. We then construct additional orbits by applying our version
of Lurie’s construction to this twisted Heisenberg group.

Other remarks. There are some minor subtleties in our construction that we remark
on now. One point is that, in cases e6, e7, we associate orbits not to pairs (C, P) but
to triples (C, P, t), where t is a nonzero Zariski tangent vector at the point P. This
reflects the fact that the space X constructed in this case has an extra symmetry: it is
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a linear representation of the reductive group G, so we are free to multiply elements
by scalars. This scaling corresponds to scaling the tangent vector t . A similar feature
appears in [Bhargava and Gross 2013], where it allows one to “clear denominators”
when working over Q, and restrict to integral orbits.

Another point is that, in the geometric construction sketched above, we associate
a point to a pair (C, `), and do not need the point P which gives rise to the
bitangent `. Of course, ` being fixed, there are exactly two possible choices of
point P. It turns out that, in each case, the data of the point P is exactly the
data required to rigidify the picture so that we obtain the expected bijection (as in
Theorem 1) when k is separably closed. This is an essential feature, since we rely
heavily on Galois descent.

Our modified version of Lurie’s construction associates to an appropriate exten-
sion Ṽ with action by the absolute Galois group of k a triple (h, t, θ) consisting
of a Lie algebra over k of the correct Dynkin type, a Cartan subalgebra t⊂ h, and
a stable involution θ of h which acts as multiplication by −1 on t. For arithmetic
applications, we extend this construction in a surprising way: we show that a
representation of the group Ṽ appearing in the extension (0-1), and on which
−1 acts as multiplication by −1, gives rise to a representation of the θ-fixed Lie
algebra hθ.

The features of these constructions suggest that they should have an inverse, i.e.,
that, given a tuple (h, t, θ) consisting of a simple Lie algebra h over k, a Cartan
subalgebra t⊂ h and an involution θ of h which acts as −1 on t, one should be able
to pass in the opposite direction to obtain a root lattice 3 with 0k-action and an
extension Ṽ of V =3/23 of type (0-1). The existence of such an inverse has been
shown by Tasho Kaletha, and appears in the Appendix to this paper. He finds the
group Ṽ inside the simply connected cover of the group G = (H θ )◦, where H is
the adjoint simple group over k with Lie algebra h. In Section 3B, we apply these
results to calculate the number of orbits with given invariants in the case k = R.

Organization of this paper. In Section 1 below, we recall some basic facts about
quadratic forms, 2-descent for abelian varieties, and the invariant theory of the
G-varieties under consideration here. In Section 2 we describe our modifications to
Lurie’s constructions. In Section 3 we apply these constructions to the geometry of
plane quartics, in order to arrive at the results described in this introduction. We
conclude in Section 3B with an explicit example in the case k = R.

Notation. Throughout this paper, k will denote a field of characteristic 0, and ks

a fixed separable closure of k. We write 0k = Gal(ks/k). If X is a k-vector space
or a scheme of finite type over k, then we write Xks for the object obtained by
extending scalars to ks. If X is a smooth projective variety over k, then we write KX

for its canonical class. If G, H, . . . are connected algebraic groups over k, then we
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use gothic letters g, h, . . . to denote their Lie algebras. If H is an algebraic group
over k, then we write H 1(k, H) for the continuous cohomology set H 1(0k, H(ks)),
where H(ks) is endowed with the discrete topology. If θ is an involution of H, then
we write H θ for the closed subgroup of H consisting of θ-fixed elements, and hθ

for the Lie algebra of H (equivalently, the +1-eigenspace of the differential of θ
in h). We will make use of the equivalence between commutative finite k-groups
and Z[0k]-modules of finite cardinality (given by H 7→ H(ks)).

By definition, a lattice (3, 〈 · , · 〉) is a finite free Z-module 3 together with
a symmetric and positive-definite bilinear form 〈 · , · 〉 : 3×3→ Z. We define
3∨= {λ∈3⊗Z Q | 〈λ,3〉 ⊂Z}, which is naturally identified with Hom(3,Z). We
call 3 a (simply laced) root lattice if it satisfies the following additional conditions:

• For each λ ∈3, 〈λ, λ〉 is an even integer.

• The set 0 = {λ ∈3 | 〈λ, λ〉 = 2} generates 3 as an abelian group.

In this case, 0 is a simply laced root system, each γ ∈ 0 being associated with the
simple reflection sγ (x)= x−〈x, γ 〉γ . If 0 is irreducible, then it is a root system of
type A, D, or E . In any case, we write W (3)⊂ Aut(3) for the Weyl group of 0,
a finite group generated by the simple reflections sγ , γ ∈ 0.

In several places, we will consider central group extensions of the form

1→ {±1} → Ẽ→ E→ 1.

If ẽ ∈ Ẽ , then we will write −ẽ for the element (−1) · ẽ. We note that this is not
necessarily equal to ẽ−1. We write e for the image of ẽ in E .

1. Background

We first recall some background material. For proofs of the results in Sections 1A
and 1B, we refer the reader to [Gross and Harris 2004].

1A. Quadratic forms over F2. Let V be a finite-dimensional F2-vector space, and
let 〈 · , · 〉 : V × V → F2 be a strictly alternating pairing.

Definition 1.1. A quadratic refinement of V is a function q : V → F2 such that, for
all v,w ∈ V, we have 〈v,w〉 = q(v+w)+ q(v)+ q(w).

In general, there is no distinguished quadratic refinement of V. However, we
have the following result.

Proposition 1.2. Suppose that the pairing 〈 · , · 〉 is nondegenerate.

(1) Fix a decomposition V = U ⊕U ′, where U, U ′ are isotropic subspaces of
dimension g ≥ 0. Then the function qU,U ′(v) = 〈vU , vU ′〉 is a quadratic
refinement. (Here we write vU , vU ′ for the projections of v ∈ V onto the two
isotropic subspaces.)
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(2) The set of quadratic refinements of V is a principal homogeneous space for V,
addition being defined by the formula (v+ q)(w)= q(w)+〈v,w〉.

Definition 1.3. Suppose that the pairing 〈 · , · 〉 is nondegenerate, and let q be a
quadratic refinement of V. The Arf invariant a(q) ∈ F2 of q is defined as follows.
Fix a decomposition V =U ⊕U ′ into isotropic subspaces of dimension g ≥ 0. Let
{e1, . . . , eg} be a basis of U, and let {ε1, . . . , εg} denote the dual basis of U ′. Then
a(q)=

∑g
i=1 q(ei )q(εi ).

Lemma 1.4. Suppose that the pairing 〈 · , · 〉 is nondegenerate, and let dim V = 2g.

(1) The Arf invariant a(q) is well-defined.

(2) Let Sp(V ) denote the group of automorphisms of the pair (V, 〈 · , · 〉). Then
Sp(V ) has precisely 2 orbits on the set of quadratic refinements of V, which
are distinguished by their Arf invariants. The set of refinements with a(q)= 0
has cardinality 2g−1(2g

+ 1) and the set of refinements with a(q) = 1 has
cardinality 2g−1(2g

− 1).

(3) If q is a quadratic refinement and v ∈ V, then a(q + v)= a(q)+ q(v).

1B. Theta characteristics. Let k be a field of characteristic 0, and let C be a
smooth, projective, geometrically irreducible curve over k, of genus g ≥ 2. We
write KC for the canonical bundle of C , and J = Pic0(C) for the Jacobian of
C . We write V = J [2], a finite k-group. We view V as an F2-vector space of
dimension 2g with continuous 0k-action. The Weil pairing defines a nondegenerate,
strictly alternating bilinear form 〈 · , · 〉 : V × V → F2 which is 0k-invariant.

Definition 1.5. (1) A theta characteristic is a line bundle L on C such that L⊗2∼=KC .

(2) Let L be a theta characteristic. We say that L is odd (resp. even) if h0(L) is
odd (resp. even).

Here and below we write h0(L)= dimk H 0(C,L) for any line bundle L on the
curve C .

Lemma 1.6. (1) As a principal homogeneous space for V, the k-variety of iso-
morphism classes of theta characteristics is canonically identified with the
k-scheme of quadratic refinements of the Weil pairing: if L is a theta charac-
teristic, we associate to it the quadratic refinement q : V → F2 defined by the
formula q(v)= h0(L⊗OC v)+ h0(v) mod 2.

(2) With notation as above, the Arf invariant of q is a(q)= h0(L) mod 2.

Henceforth, we identify the set of theta characteristics of the curve C with the
set of quadratic refinements κ : V → F2.
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1C. Heisenberg groups and descent. We continue with the notation of Section 1B.
Let J g−1 denote the J-torsor of degree-(g− 1) line bundles on C ; it contains the
theta divisor Wg−1. Given a theta characteristic κ defined over k, we have the
translation map tκ : J → J g−1, L 7→ L⊗ κ , and we define 2κ = t∗κWg−1. It is a
symmetric divisor, and all symmetric theta divisors arise in this fashion. (This is
classical; see [Birkenhake and Lange 2004, Chapter 11].) Similarly, if A ∈ J (k)
then there is a translation map tA : J → J, L 7→ L⊗ A.

The isomorphism class of the line bundle Lκ = OJ (22κ) is independent of
the choice of κ , but there is no canonical choice of isomorphism as κ varies. In
particular, even if κ is defined only over ks, the field of definition of this bundle is
equal to k. We choose a bundle L in this isomorphism class defined over k. We
introduce the Heisenberg group H̃L of pairs (ω, ϕ), where ω∈ J [2] and ϕ :L→ t∗ωL
is an isomorphism. It is an extension

0→ Gm→ H̃L→ J [2] → 0.

Lemma 1.7. (1) Let ω, η ∈ J [2], and let ω̃, η̃ denote lifts of these elements to H̃L.
Then ω̃η̃ω̃−1η̃−1

= (−1)〈ω,η〉.

(2) Let Aut(H̃L; J [2]) denote the group of automorphisms of H̃L fixing Gm point-
wise and acting as the identity on J [2]. Then the map

η 7→ ((ω, ϕ) 7→ (ω, (−1)〈η,ω〉ϕ))

defines an isomorphism J [2] ∼= Aut(H̃L; J [2]).

Proof. The first part can be taken as the definition of the Weil pairing. The second
part follows from [Birkenhake and Lange 2004, Lemma 6.6.6]. �

If κ is a theta characteristic defined over k, then we can define a character
χκ : H̃L→ Gm by the formula χκ(ω̃)= ω̃2(−1)qκ (ω). (This makes sense since the
square of any element of H̃L lies in Gm .) We then have an exact sequence

1→ {±1} → kerχκ→ J [2] → 1. (1-1)

This construction will play an important role later on; compare the required data at
the beginning of Section 2 below.

Associated to J is the Kummer exact sequence

0→ J [2] → J → J → 0,

and the associated short exact sequence in Galois cohomology

0→ J (k)/2J (k) δ→ H 1(k, J [2])→ H 1(k, J )[2] → 0.
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The map δ can be written down explicitly as follows: given A ∈ J (k), choose
B ∈ J (ks) such that [2](B)= A. Then the cohomology class δ(A) is represented
by the cocycle σ 7→ σB− B.

We now give another interpretation of this homomorphism in terms of the
group H̃L. The field of definition of the line bundle t∗BL is equal to k; we let LB

denote a choice of descent to k, unique up to k-isomorphism. This allows us to
define the Heisenberg group H̃LB of pairs (ω, ϕ), where ω ∈ J [2] and ϕ is an
isomorphism LB → t∗ωLB . We also fix a choice of isomorphism f : LB → t∗BL
over ks.

The choice of f defines an isomorphism F : (H̃L)ks ∼= (H̃LB )ks , given by the
formula

F : (ω, ϕ) 7→ (ω, t∗ω f −1
◦ t∗Bϕ ◦ f ). (1-2)

We define a cocycle valued in Aut(H̃L; J [2]) by the formula σ 7→ F−1 σF.

Lemma 1.8. This cocycle is equal to the cocycle σ 7→ σB− B under the identifica-
tion of Lemma 1.7.

In particular, this cocycle depends only on B, and not on any other choice.

Proof. The proof is by an explicit calculation, F−1 σF being given by

(ω, ϕ) 7→
(
ω, t∗ω−B f ◦ t∗

−B
[
t∗ω
σf −1
◦ t∗σBϕ ◦

σf
]
◦ t∗
−B f −1).

We must show that this expression is equal to (ω, (−1)〈ω,
σB−B〉ϕ). However, writing

η = σB− B and ψ = t∗
−σB( f ◦ σf −1), we have (η, ψ) ∈ H̃L and, by Lemma 1.7,(

ω, (−1)〈ω,
σB−B〉ϕ

)
= (η, ψ)(ω, ϕ)(η, ψ)−1(ω, ϕ)−1(ω, ϕ)

= (η, ψ)(ω, ϕ)(η, ψ)−1

=
(
ω, t∗ω+ηψ ◦ t∗ηϕ ◦ t∗ηψ

−1).
Expanding this expression now shows it to be equal to F−1 σF. �

1D. Invariant theory of reductive groups with involution. Let k be a field of char-
acteristic 0, and let H be a split adjoint simple group over k of type A, D, or E .

Proposition 1.9. There exists a unique H(k)-conjugacy class of involutions θ of H
satisfying the following two conditions:

(1) tr(dθ : h→ h)=− rank H.

(2) The group (H θ )◦ is split.

Proof. The result [Thorne 2013, Corollary 2.15] states that there is a unique H(k)-
orbit of involutions θ : H → H such that tr dθ =− rank H and hdθ=−1 contains a
regular nilpotent element. The discussion there also shows by construction that, for
each θ in this class, the group (H θ )◦ is split. We must show that if θ : H → H is
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an involution such that tr dθ =− rank H and (H θ )◦ is split, then hdθ=−1 contains
a regular nilpotent. Let t0 ⊂ hdθ=1 be a split Cartan subalgebra, and let t⊂ h be a
split Cartan subalgebra containing t0.

By [Thorne 2013, Lemmas 2.6 and 2.14], we can find a normal sl2-triple
(E, X, F) in h⊗k ks , i.e., a tuple of elements E, X, F ∈ h⊗k ks satisfying the
relations

[E, F] = X, θ(X)= X,

[X, E] = 2E, θ(E)=−E,

[X, F] = −2F, θ(F)=−F,

with E regular nilpotent and X ∈ t0⊗k ks. Since X is part of an sl2-triple, it follows
that α(X) ∈ Z for every root of t in h, hence X ∈ t, hence X ∈ t0. By [de Graaf
2011, Proposition 7], we can find elements E ′ ∈ hdθ=−1 and F ′ ∈ hdθ=−1

⊗k ks

such that (E ′, X, F ′) is a normal sl2-triple. In particular, E ′ is a regular nilpotent.
This completes the proof. �

Henceforth, we fix a choice of θ satisfying the conclusion of Proposition 1.9
and write G = (H θ )◦. Then G is a split semisimple group. (For a proof that G
is semisimple, see Section A2 of the Appendix to this paper.) We will study the
invariant theory of two different actions of G. We first consider V = hdθ=−1. Then
V is a linear representation of the group G.

Theorem 1.10. (1) V satisfies the Chevalley restriction theorem: if t ⊂ V is a
Cartan subalgebra, then the map NG(t)→ Wt = NH (t)/ZH (t) is surjective,
and the inclusion t⊂ V induces an isomorphism

t //Wt
∼= V//G.

In particular, the quotient V//G is isomorphic to affine space.

(2) Suppose that k = ks, and let x, y ∈ V be regular semisimple elements. Then x
is G(k)-conjugate to y if and only if x , y have the same image in V//G.

(3) There exists a discriminant polynomial 1 ∈ k[V ] such that, for all x ∈ V, x is
regular semisimple if and only if 1(x) 6= 0, if and only if the G-orbit of x is
closed in V and StabG(x) is finite.

Proof. This follows from results of Vinberg, which are summarized in [Panyushev
2005] or (in our case of interest) [Thorne 2013, §2]. �

We now consider the variety Y ⊂ H, the locally closed image of the mor-
phism H → H , h 7→ h−1θ(h). It is a connected component of the subvariety
{h ∈ H | θ(h)= h−1

}, and is in particular closed in H. Note that Y has a marked
point (namely the identity element of H ), and the tangent space to Y at this marked
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point is canonically isomorphic, as a G-representation, to the representation V
defined above.

Theorem 1.11. (1) Y satisfies the Chevalley restriction theorem: if T ⊂ Y is a
maximal torus, then NG(T )→ WT = NH (T )/ZH (T ) is surjective, and the
inclusion T ⊂ Y induces an isomorphism

T//WT ∼= Y//G.

(2) Suppose that k = ks, and let x, y ∈ Y be regular semisimple elements. Then x
is G(k)-conjugate to y if and only if x , y have the same image in Y//G.

(3) There exists a discriminant polynomial 1 ∈ k[Y ] such that, for all x ∈ Y, x is
regular semisimple if and only if 1(x) 6= 0, if and only if the G-orbit of x is
closed in Y and StabG(x) is finite.

Proof. See [Richardson 1982b, §0]. �

2. A group with involution

Let k be a field of characteristic 0. Suppose that we are given the following data:

• An irreducible simply laced root lattice (3, 〈 · , · 〉) together with a continuous
homomorphism 0k→W (3)⊂ Aut(3).

• A central extension Ṽ of V =3/23

0→ {±1} → Ṽ → V → 0

together with a homomorphism 0k → Aut(Ṽ ). We suppose that 0k leaves
invariant the subgroup {±1}, and that the induced homomorphism0k→Aut(V )
agrees with the homomorphism 0k→ Aut(3)→ Aut(3/23)= Aut(V ). We
also suppose that, for ṽ ∈ Ṽ, we have the relation ṽ2

=(−1)
1
2 〈v,v〉.

In terms of this data we will define, following [Lurie 2001]:

(1) A simple Lie algebra h over k of type equal to the Dynkin type of 3.

(2) A maximal torus T of H, the adjoint group over k with Lie algebra h, together
with an isomorphism T [2](ks)∼= V∨ of Z[0k]-modules.

(3) An involution θ : H → H leaving T stable, and satisfying θ(t)= t−1 for all
t ∈ T (k).

Suppose, given further the data of a finite-dimensional k-vector space W and a
homomorphism ρ : Ṽ →GL(Wks) such that ρ(−1)=− idW and for all σ ∈ 0k and
ṽ ∈ Ṽ, we have ρ(σṽ)= σρ(ṽ). Then we will further define:

(4) A Lie algebra homomorphism R : hθ → gl(W ).
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(Using the equivalence between Z[0k]-modules of finite cardinality and commutative
finite k-groups, ρ corresponds to a homomorphism Ṽ → GL(W ) of k-groups.)

Let 3̃ equal 3×V Ṽ, a central extension of 3 by {±1}. Let 0 ⊂ 3 be the set
of roots, and 0̃ ⊂ 3̃ its inverse image. Following [Lurie 2001], we define L ′ to be
the free abelian group on symbols X γ̃ for γ̃ ∈ 0̃, modulo the relation X γ̃ =−X−γ̃ .
(Thus {γ̃ ,−γ̃ } is the inverse image in 0̃ of γ ∈ 0.) We set L =3∨⊕ L ′, and define
a bracket [ · , · ] : L × L→ L by the formulae:

• [λ, λ′] = 0 for all λ, λ′ ∈3∨.

• [λ, X γ̃ ] = −[X γ̃ , λ] = 〈λ, γ 〉X γ̃ for λ ∈3∨.

• [X γ̃ , X γ̃ ′] = X γ̃ γ̃ ′ if γ + γ ′ ∈ 0.

• [X γ̃ , X γ̃ ′] = εγ̃ γ̃ ′γ if γ + γ ′ = 0. (By definition, εγ̃ γ̃ ′ = γ̃ γ̃ ′ ∈ {±1} ⊂ Z.)

• [X γ̃ , X γ̃ ′] = 0 otherwise.

Theorem 2.1. (1) L is a Lie algebra over Z. There is a natural action of 0k on L ,
respecting the Lie bracket [ · , · ].

(2) Let h= (L⊗k ks)0k. Then h is a simple Lie algebra over k of Dynkin type equal
to the type of the root lattice 3.

Proof. (1) That L is a Lie algebra over Z of the required type follows from [Lurie
2001, §3.1]. The Galois group 0k acts on 3 and on 0̃ by the given data. We make
it act on L = 3⊕ L ′ by its standard action on 3 and on L ′ by permuting basis
vectors X γ̃ , γ̃ ∈ 0̃. It is immediate from the definition that this respects the bracket.

(2) By Galois descent, the natural map hks → L ⊗k ks is an isomorphism. The
result follows immediately from this. �

Let H denote the simple adjoint group over k with Lie algebra h. Let t =
(3∨⊗k ks)0k ⊂ h; it is the Lie algebra of a maximal torus T of H, whose module
of characters X∗(Tks) is identified with the Z[0k]-module 3. In particular, there is
an isomorphism of Z[0k]-modules T [2](ks)∼=3∨/23∨ ∼= V∨.

We now define the involution θ . Given γ̃ ∈ 0̃, we define Yγ̃ = X γ̃−1 . By
definition, then, [X γ̃ , Yγ̃ ] = γ ∈3. It easy to check that Y−γ̃ =−Yγ̃ . We define an
involution σ : L→ L by taking σ to be multiplication by −1 on 3 and by taking
σ(X γ̃ )=−Yγ̃ .

Proposition 2.2. (1) σ is a well-defined Lie algebra involution, and respects the
action of the group 0k .

(2) Let θ denote the involution of h induced by σ by functoriality. Then tr θ =
− rank h.

Proof. (1) We must check that σ preserves the relations defining [ · , · ]. Let us show
that σ [X γ̃ , X γ̃ ′] = σ X γ̃ γ̃ ′ = −Yγ̃ γ̃ ′ is equal to [σ X γ̃ , σ X γ̃ ′] = [X γ̃−1, X γ̃ ′−1] =
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X γ̃−1γ̃ ′−1 , when γ + γ ′ ∈ 0. Equivalently, we must show that γ̃ γ̃ ′ =−γ̃ ′γ̃ . By the
definition of 3̃, it is equivalent to show that 〈γ, γ ′〉 is odd. Since we work in a
simply laced root system, this is implied by the condition that γ + γ ′ is a root.

(2) This follows because θ acts as −1 on t. �

We define G = (H θ )◦. We define NV to be the image of the natural homomor-
phism V → V∨; it is a Z[0k]-module, and the induced symplectic form on NV

is nondegenerate and 0k-equivariant. The isomorphism T [2] ∼= V∨ restricts to an
isomorphism (T [2] ∩G)∼= NV (cf. [Thorne 2013, Corollary 2.8]).

It remains to define, given a finite-dimensional k-vector space W and a Galois-
equivariant homomorphism ρ : Ṽ → GL(Wks) such that ρ(−1) = − idW , a Lie
algebra homomorphism R : g→ gl(W ). Let us first assume that k = ks. Then the
Lie algebra g is spanned by the elements X γ̃ + X−γ̃−1 = Z γ̃ , say. Let π : 0̃→ Ṽ
denote the natural map. We define a morphism R : g→ gl(W ) of k-vector spaces
by the formula

R(Z γ̃ )= 1
2ρ(π(γ̃ )).

This is well-defined since Z γ̃ =−Z−γ̃ =−Z γ̃−1 , and π(γ̃ )= (−1)
1
2 〈γ,γ 〉π(γ̃ )−1

=

−π(γ̃ )−1. In the case k 6= ks, this defines a homomorphism gks → gl(Wks) which
commutes with the action of 0k , and we write R : g→ gl(W ) for the homomorphism
obtained by Galois descent.

Proposition 2.3. R : g→ gl(W ) is a Lie algebra homomorphism.

Proof. We can again assume that k=ks. We must show that, given γ̃ , γ̃ ′∈ 0̃, we have

R([Z γ̃ , Z γ̃ ′])= [R(Z γ̃ ), R(Z γ̃ ′)].

We now break up into cases according to the value of 〈γ, γ ′〉.

(1) If 〈γ, γ ′〉 = ±2, then γ ′ =±γ , hence γ̃ ′ =±γ̃±1, and both sides of the above
equation are zero.

(2) If 〈γ, γ ′〉 = ±1, then γ ∓ γ ′ is a root. Let us assume for simplicity that
〈γ, γ ′〉=−1, so that γ+γ ′ is a root, and [Z γ̃ , Z γ̃ ′]= Z γ̃ γ̃ ′ . We must show that

1
2ρ(π(γ̃ γ̃

′))= 1
4ρ(π(γ̃ )) · ρ(π(γ̃

′))− 1
4ρ(π(γ̃

′)) · ρ(π(γ̃ )).

This follows from the fact that γ̃ ′γ̃=(−1)〈γ,γ
′
〉γ̃ γ̃ ′=−γ̃ γ̃ ′ and ρ(−1)=− idW .

(3) If 〈γ, γ ′〉 = 0 then neither of γ ± γ ′ is a root, and the left-hand side of the
above equation is zero. On the other hand, π(γ̃ ) and π(γ̃ ′) commute, so the
right-hand side is also zero.

This concludes the proof. �
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The above constructions are evidently functorial in Ṽ, in the following sense:
given Ṽ, ṼB satisfying the conditions at the beginning of this section, and a 0k-
equivariant isomorphism f : Ṽ → ṼB , we obtain an isomorphism of associated
simple adjoint groups F : H ∼= HB , intertwining θ , θB , and restricting to an isomor-
phism T → TB which induces the identity on 3. In this connection, we have the
following lemma.

Lemma 2.4. (1) Let us write Aut(Ṽ ; V ) for the group of automorphisms of Ṽ
leaving the central subgroup {±1} invariant and inducing the identity on
V. Then there is a canonical isomorphism V∨ ∼= Aut(Ṽ ; V ), given by f 7→
(ṽ 7→ (−1) f (v)

· ṽ).

(2) Let f ∈ V∨, and let F denote the induced automorphism of the triple (H, θ, T ).
Let s denote the image of f under the canonical isomorphism V∨ ∼= T [2](ks).
Then F = Ad(s).

Proof. (1) Immediate.

(2) The automorphism f induces the automorphism γ̃ 7→ (−1) f (γ )γ̃ of 0̃. We must
therefore show that (−1) f (γ )

= 〈γ, s〉. However, this follows from the definition of
the element s. �

3. Plane quartic curves

Let k be a field of characteristic 0 and C a smooth (geometrically connected,
projective) nonhyperelliptic curve of genus 3 over k. The canonical embedding then
gives C as a plane quartic curve in P2

k ; let us write π : S→P2
k for the double cover

of P2
k branched over S. Then S is a del Pezzo surface of degree 2, i.e., a smooth

surface with −KS ample and K 2
S = 2. (We note that if k 6= ks, then S depends, up

to isomorphism, on a choice of defining equation of C ; a particular choice will be
specified below. The set of isomorphism classes is a torsor for k×/(k×)2.)

Proposition 3.1. (1) The group Pic(Sks) is free of rank 8 over Z. Its natural
intersection pairing is unimodular.

(2) The sublattice 3= K⊥S ⊂ Pic(Sks) is a root lattice of type E7.

(3) Suppose that ` is a bitangent line of C in its canonical embedding. Then
π−1(`ks) = e ∪ f is a union of two smooth curves of genus 0. Define 3` =
〈e, f 〉⊥ ⊂3. Then 3` is a root lattice of type E6.

(4) There are natural isomorphisms3∨∼= Pic(Sks)/ZKS and3∨` ∼= Pic(Sks)/〈e, f 〉.

(5) Each of Pic(Sks), 3, and 3` (when it is defined) has a natural structure of
Z[0k]-module, which respects the intersection pairings.
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Proof. This is all classical; see [Griffiths and Harris 1994, pp. 545–549] and
[Dolgachev 2012, Chapter 8]. It is useful to note that Sks can be realized as the
blowup of P2

ks at 7 points in general position. �

We define NC to be the image of the natural map 3/23→3∨/23∨. Viewing
C ⊂ S as the ramification locus of π , we see that there is a natural 0k-equivariant
map Pic(Sks)→ Pic(Cks) given by restriction of line bundles.

Proposition 3.2. There is a commutative diagram of finite k-groups

3∨/23∨
∼=
// (Pic(C)/ZKC)[2]

NC

?�

OO

∼=
// Pic0(C)[2]

?�

OO

Proof. We first define the maps. The top map is induced by the composite

3∨ ∼= Pic(S)/ZKS→ Pic(C)/ZKC ,

which takes image in (Pic(C)/ZKC)[2] ⊂ Pic(C)/ZKC . It is well-defined since
KS|C = −KC , and if D is any divisor class on S then 2D|C ∼ (D + ι∗D)|C is
a multiple of KC (where ι : S → S is the involution which swaps sheets). The
left and right maps are the natural inclusions. To see that the bottom map is
derived from the top one, it is enough to note that if D is a divisor class in 3, then
deg D|C = 〈KS, D〉 = 0, so D|C ∈ Pic0(C)[2].

We now show that the top and bottom maps are isomorphisms. We can assume
that k=ks. The groups in the top row have the same cardinality, 27. If ` is a bitangent
line of C corresponding to an odd theta characteristic κ ∈ (Pic(C)/ZKC)[2], and
π−1(`)= e∪ f , then the image of e ∈3∨ in (Pic(C)/ZKC)[2] equals κ . The group
(Pic(C)/ZKC)[2] is generated by the odd theta characteristics. This shows that the
top arrow is surjective, hence an isomorphism. The groups in the bottom row have
the same cardinality, 26, and the bottom arrow is injective. It is therefore also an
isomorphism, and this completes the proof. �

As pointed out in the introduction, Proposition 3.2 is essentially classical.

Proposition 3.3. (1) Under the isomorphism NC ∼= Pic0(C)[2] of Proposition 3.2,
the natural symplectic form on NC is identified with the Weil pairing on
Pic0(C)[2].

(2) Let ` be a k-rational bitangent line of C , and let κ denote the corresponding
k-rational theta characteristic. Let q` : NC → F2 denote the quadratic form
corresponding to the isomorphism3`/23`∼= NC , and let qκ :Pic0(C)[2]→ F2

be the quadratic form induced by κ . Then, under the isomorphism NC ∼=

Pic0(C)[2] of Proposition 3.2, q` and qκ are identified.
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Proof. Since q` and qκ are quadratic refinements of the symplectic forms, it suffices
to prove the second part. These quadratic forms have Arf invariant 1, and therefore
have each exactly 28 zeroes. It therefore suffices to show that q` and qκ have at
least 28 zeroes in common. To do this, we can assume that k = ks. If κ ′ is any odd
theta characteristic of C , then κ − κ ′ ∈ Pic0(C)[2] is a zero of qκ , and there are
exactly 28 such elements. (Use the formula a(q+v)= a(q)+q(v) of Lemma 1.4.)
We must therefore show that if v ∈ 3` has image κ − κ ′, then 〈v, v〉 is divisible
by 4. This is an easy calculation in Pic(Sks). �

We now fix a rational point P ∈C(k). We define elements of certain tori and their
Lie algebras, following [Looijenga 1993, §1]. We break into 4 cases, according to
the geometry of the point P. Let ` denote the tangent line to C at P in P2

k , and
K = π−1(`) its inverse image, an anticanonical curve in S.

Case E7: ` not a flex. In the most general case, the tangent line at P to C in its
plane embedding meets C at 3 distinct points and therefore has contact of order 2
at P. We define a point of the torus T = Hom(3,Gm), up to inversion. Indeed, in
this case K is an irreducible rational curve with a unique nodal singularity at P.
There is a unique choice of S for which the tangent directions of K at P are defined
over k; we make this choice. Restriction of line bundles induces a homomorphism
Pic(S)→ Pic(K ). An element of Pic(S) is orthogonal to KS (under the intersection
pairing) if and only if its restriction to K has degree 0, so we obtain an induced
homomorphism 3→ Pic0(K ). Choosing a group isomorphism Pic0(K )∼=Gm , we
now obtain a point κC ∈ T (k), well-defined up to inversion.

Case e7: ` a flex, not a hyperflex. We now suppose that the tangent line to C at P
has contact of order exactly 3, and fix in addition a nonzero tangent vector t in the
Zariski tangent space of C at P. We define a point κC of the Lie algebra t of the
torus T = Hom(3,Gm), well-defined up to multiplication by −1. The curve K
is irreducible and rational with a unique cuspidal singularity, at P. Restriction
induces a morphism 3→ Pic0(K ). To write down κC , it therefore suffices to give
a normalization of the isomorphism Pic0(K )∼= Ga , at least up to sign.

To do this we find it convenient to introduce explicit coordinates. Using Riemann–
Roch, it is easy to show that there are unique functions x, y ∈ k(C)× satisfying:

• x ∈ H 0(C,OC(2P + Q)) and y ∈ H 0(C,OC(3P − Q)).

• Let z ∈ OC,P be a coordinate such that dz(t) = 1. Then x = z−2
+ · · · and

y = z−3
+ · · · locally at P.

• x and y satisfy the equation

y3
= x3 y+ p10x2

+ x(p2 y2
+ p8 y+ p14)+ p6 y2

+ p12 y+ p18

for some p2, . . . , p18 ∈ k.



1390 Jack A. Thorne

Then we can choose homogeneous coordinates X , Y , Z on P2
k such that C is given

by the equation

Y 3Z= X3Y+p10 X2Z2
+X (p2Y 2Z+p8Y Z2

+p14 Z3)+p6Y 2Z2
+p12Y Z3

+p18 Z4,

and this equation is uniquely determined by the triple (C, P, t). We use it to define
the surface S. Then a chart in S is the affine surface

w2
= z0− (x3

0 + p10x2
0 z2

0+ · · ·+ p18z4
0),

where x0= X/Y, z0= Z/Y, and the curve K is given locally by the equation z0= 0.
Let f : K̃ → K be the normalization. A coordinate in K̃ at the point above P is
given by w/x0. We use the isomorphism Ga ∼= Pic0(K ), t 7→ δ(1+ tw/x0), where
δ is the connecting homomorphism of the exact sequence of sheaves on K

0→O×K → f∗O×K̃ → f∗O×K̃ /O
×

K → 0.

Case E6: ` a bitangent, not a hyperflex. We now suppose that ` meets C at two
distinct points, say P, Q, and that it has contact of order 2 at each point. Then
the root subsystem 3` ⊂ 3 is defined, and we will define a point of the torus
T = Hom(3`,Gm). The curve Kks = eks ∪ fks is a union of two smooth conics,
which meet transversely at two distinct points. We choose S so that these conics
are defined over k. We thus obtain a homomorphism 3`→ Pic0(K )−, where (?)−

denotes the −1-eigenspace of the involution induced by switching sheets. The
group Pic0(K )− is canonically isomorphic to Gm , the isomorphism being specified
as in [Looijenga 1993, §1.12]: if s ∈ Gm tends to 0, then e is contracted to P
and f is contracted to Q. We define κC ∈ T (k) to be the point obtained via this
isomorphism. If the roles of e and f are reversed, then κC is replaced by κ−1

C .

Case e6: ` a hyperflex. We now suppose that ` has contact of order 4 with C at P,
and fix in addition a nonzero tangent vector t in the Zariski tangent space of C
at P. Then the root system 3` ⊂ 3 is defined, and we will define a point κC of
the Lie algebra t of the torus T = Hom(3`,Gm). Restriction once more induces a
map 3`→ Pic0(K )−, and we obtain a point κC ∈ t by specifying an isomorphism
Pic0(K )− ∼= Ga . To do this, we again introduce explicit coordinates. There are
unique functions x, y ∈ k(C)× satisfying:

• x ∈ H 0(C,OC(3P)) and y ∈ H 0(C,OC(4P)).

• Let z ∈ OC,P be a coordinate such that dz(t) = 1. Then x = z−3
+ · · · and

y = z−4
+ · · · locally at P.

• x and y satisfy the equation

y3
= x4
+ y(p2x2

+ p5x + p8)+ p6x2
+ p9x + p12

for some p2, . . . , p12 ∈ k.
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Then we can choose homogeneous coordinates X , Y , Z on P2
k such that C is given

by the equation

Y 3 Z = X4
+ Y (p2 X2 Z + p5 X Z2

+ p8 Z3)+ p6 X2 Z2
+ p9 X Z3

+ p12 Z4,

and this equation is uniquely determined by the triple (C, P, t). We use it to define
the surface S. A chart in S is the affine surface

w2
= z0− (x4

0 + · · ·+ p12z4
0),

where x0= X/Y and z0= Z/Y. The curve K = e∪ f is a union of 2 smooth conics
which are tangent at the point P, and is given in the above chart by the equation
z0 = 0. A coordinate at P in both e and f is given by x0. We use the isomorphism
Ga ∼= Pic0(K )−, t 7→ δ(1+ t x, 1), where δ is the connecting homomorphism in the
exact sequence of sheaves on K

0→O×K →O×e ⊕O×f → (O×e ⊕O×f )/O
×

K → 0.

If the roles of e and f are reversed, then κC is replaced by −κC .
In each case, we write S : k-alg → Sets for the functor of data (C, P, . . . )

considered above. This means:

• In case E7, S is the functor of pairs (C, P), where C is a nonhyperelliptic
curve of genus 3 and P is a point of C which is not a flex or a bitangent in
the canonical embedding. More precisely, for each A ∈ k-alg, S(A) is the set
of isomorphism classes of pairs (π, P) consisting of a proper flat morphism
π : C → Spec A and a section P : Spec A → C of π such that for each
geometric point s̄ of Spec A, the pair (Cs̄, Ps̄) is of this type.

• In case e7, S is the functor of triples (C, P, t), where C is a nonhyperelliptic
curve of genus 3, P is a point of C which is a flex (but not a hyperflex) in the
canonical embedding, and t is a nonzero element of the Zariski tangent space
of C at P.

• In case E6, S is the functor of pairs (C, P), where C is a nonhyperelliptic
curve of genus 3 and P is a point such that TPC is a bitangent in the canonical
embedding of C .

• In case e6, S is the functor of triples (C, P, t), where C is a nonhyperelliptic
curve of genus 3, P is a point which is a hyperflex in the canonical embedding,
and t is a nonzero element of the Zariski tangent space of C at P.

We can now state the following reformulation of some results of Looijenga:

Theorem 3.4. Suppose that k = ks.
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• In case E7, let 30 be a root lattice of the corresponding type, and let T0 =

Hom(30,Gm). Then the Weyl group W =W (30) acts on T0, and the assign-
ment (C, P)→ κC induces a bijection S(k)→ (T rss

0 //W )(k).

• In case E6, let 30 be a root lattice of the corresponding type, and let T0 =

Hom(30,Gm). Fix a nontrivial class e0 ∈ 3
∨

0/30. Then the Weyl group
W =W (30) acts on T0, and the assignment (C, P)→ κC induces a bijection
S(k)→ (T rss

0 //W )(k).

• In case e7, let 30 be a root lattice of the corresponding type, and let t0 =
Hom(30,Ga). Then the Weyl group W = W (30) acts on t0, and the assign-
ment (C, P, t)→ κC induces a bijection S(k)→ (trss

0 //W )(k).

• In case e6, let 30 be a root lattice of the corresponding type, and let t0 =
Hom(30,Ga). Fix a nontrivial class e0 ∈ 3

∨

0/30. Then the Weyl group
W =W (30) acts on t0, and the assignment (C, P, t)→ κC induces a bijection
S(k)→ (trss

0 //W )(k).

The subscript “rss” indicates the open subset of regular semisimple elements,
i.e., the complement of all root hyperplanes.

Proof. We first explain what happens in the case of type E7. For any field k (not
necessarily separably closed), and any pair (C, P) ∈ S(k), we have constructed a
point κC of the torus T =Hom(3,Gm), where3 is the root lattice with Z[0k]-action
constructed above using the curve C .

When k = ks, this action is trivial, and we can choose an isomorphism 3∼=30

of root lattices, which is well-defined up to the action of the group Aut(30). The
Dynkin diagram of type E7 has no extra symmetries, so in fact Aut(30) = W
(see [Bourbaki 2002, Chapter VI, §1, No. 5, Proposition 16]). We thus obtain
an isomorphism T ∼= T0, well-defined up to the action of W, and a point κC ∈

(T0//W )(k)= T0(k)/W. Note that κC is well-defined only up to inversion, but W
contains the element −1. The result [Looijenga 1993, Proposition 1.8] now states
that the point κC is regular semisimple, and that the map S(k)→ (T rss

0 //W )(k) is a
bijection. (In fact, the result is stated when k =C, but the proof is algebrogeometric
in nature and goes through without change when k is any separably closed field of
characteristic 0.) Indeed, the construction given there is exactly the one we have
explicated above.

We now explain what happens in the case of type E6. Our construction gives
a point κC = κ(C, P, e) of the torus T = Hom(3`,Gm), where e is a choice of
irreducible component of the strict transform of the bitangent line ` at P inside S;
we have κ(C, P, f ) = κ(C, P, e)−1. The automorphism group Aut(30) is now
strictly larger than W, because the Dynkin diagram of type E6 has extra symmetries,
the quotient Aut(30)/W being generated by the automorphism −1. In fact, these
ambiguities cancel out.
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Indeed, the quotient 3∨`/3` is cyclic of order 3, and the quotient Aut(30)/W
acts faithfully on it. We can mark the nontrivial elements of 3∨`/3` by e and f as
follows: the class corresponding to e is the one containing the classes of the 27 lines
on S which intersect e (but not f ), and the class corresponding to f is the one
containing the classes of the 27 lines which intersect f (but not e). Let λe :3`→30

be an isomorphism which sends the class in 3∨`/3` corresponding to e to e0. Then
λe is determined up to the action of W (30). The point λeκ(C, P, e) ∈ (T0//W )(k)
is therefore well-defined, and we have λ f κ(C, P, f ) = (λeκ(C, P, e)−1)−1

=

λeκ(C, P, e) mod W0. This gives a map S(k)→ (T0//W )(k) which is independent
of any choices, and which is shown to be a bijection into (T rss

0 //W )(k) by [Looijenga
1993, Proposition 1.13].

The Lie algebra cases are very similar, making reference to [Looijenga 1993,
Propositions 1.11 and 1.15]. �

3A. Construction of orbits. We now come to the most important part of this paper.
In each of the cases E7, e7, E6 and e6 described above, we give a semisimple
group G over k, together with a G-variety X, and write down orbits in G(k)\ X (k)
corresponding to elements of the groups J (k)/2J (k). We must first fix “reference
data”. This means:

• In cases E7 and e7, we fix a choice of pair (H, θ), where H is a split adjoint
simple group over k of type E7, and θ is an involution satisfying the conditions
of Proposition 1.9. We define G = (H θ )◦, and fix an inner class of isomorphisms
g∼= sl8; equivalently, we distinguish one of the two 8-dimensional representations
of g as the “standard representation”. The group H has no outer automorphisms, but
the group H θ has two connected components, and the nonidentity component acts
on the identity component G by outer automorphisms, exchanging the two choices
of standard representation. Indeed, the component group can be calculated using
[Reeder 2010, Proposition 2.1] and the Kac coordinates of the inner automorphism θ ,
which appear in the tables in [Reeder et al. 2012]. The proof of [Reeder 2010,
Proposition 2.1] shows that we can find a representative of the nontrivial component
which normalizes a maximal torus of G but which does not act on this torus in
the same way as any Weyl element of G; the induced automorphism of G must
therefore be outer.

• In cases E6 and e6, we fix a choice of pair (H, θ), where H is a split adjoint
simple group over k of type E6, and θ is an involution satisfying the conditions
of Proposition 1.9. We define G = (H θ )◦ = H θ, and distinguish one of the two
27-dimensional representations of h as the “standard representation”. The connect-
edness of H θ can be shown as above using [Reeder 2010; Reeder et al. 2012].

We recall that in Section 1D we have defined two G-varieties Y and V in terms
of the pair (H, θ). We use these to define the G-variety X as follows:
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• In cases E7 and E6, we define X = Y ⊂ H.

• In cases e7 and e6, we define X = V ⊂ h.

In each case there is a G-invariant open subscheme X s
⊂ X of regular semisimple

(equivalently, stable) orbits. We can now state our first main theorem:

Theorem 3.5. In each case, the assignment (C, P, . . .) 7→ κC determines a map

S(k)→ G(k) \ X s(k). (3-1)

If k = ks, then this map is bijective.

We observe that the theorem has already been proved in the case k = ks. Indeed,
in this case, the set G(k)\X s(k) can be understood, via the Chevalley isomorphisms
of Section 1D, in terms of Weyl group orbits in a maximal torus or Cartan subalgebra.
Via this isomorphism, the theorem becomes Theorem 3.4. Our problem, then, is to
lift this construction so that it works over any field. This also explains the need for
the “reference data” described at the beginning of Section 3A: it will provide the
correct rigidification, in analogy with what happens in the proof of Theorem 3.4.

We remark that in cases e7 and e6, the functor S is representable (as the triples
(C, P, t) have no automorphisms). This implies that, for any field k, the map S(k)→
G(k) \ V s(k) is injective, and the composite S(k)→ G(k) \ V s(k)→ (V s//G)(k)
is bijective.

Proof. Let us first treat the E7 case. Let (C, P) ∈ S(k), and let V = 3/23. The
point κC defined above lies in T (k), where T = Hom(3,Gm), and is well-defined
up to inversion. We are going to define an extension Ṽ of V, with 0k-action, and
then apply the constructions of Section 2 to build a group around the torus T. Let
H̃L be the Heisenberg group defined in Section 1C; it fits into an exact sequence

1→ Gm→ H̃L→ Pic0(C)[2] → 1.

According to Proposition 3.2, there is a canonical injection Pic0(C)[2] ↪→ V∨ of
finite k-groups. Dualizing, we obtain a surjection V → Pic0(C)[2], and we push
out the above extension by this surjection to obtain a central extension

1→ Gm→ Ẽ→ V → 1.

The commutator pairing of Ẽ descends to the natural symplectic form on V (since
this is true for H̃L, by Lemma 1.7, and the kernel of V → Pic0(C)[2] is exactly
the radical of this symplectic form). Since V is endowed with a 0k-invariant
quadratic form q : V → F2, we can define a character χq : Ẽ→Gm by the formula
ẽ 7→ (−1)q(e)ẽ2. This makes sense since, for any ẽ ∈ Ẽ , we have ẽ2

∈Gm . Taking
Ṽ = kerχq then gives the desired extension

1→ {±1} → Ṽ → V → 1.
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(This is a slight variant on the procedure leading to the extension (1-1).) Note
that if W = H 0(Pic0(C),L), then there is a natural homomorphism of k-groups
Ṽ→GL(W ). Indeed, the group H̃L acts on W by definition by pullback of sections;
we can then pull back this action along the homomorphism Ṽ → H̃L. If k = ks,
then this is an 8-dimensional irreducible representation of the abstract group Ṽ (ks),
which sends −1 to − idWks .

In Section 2 we have associated to the triple (3, Ṽ ,W ) a simple adjoint group H0

of type E7, together with a stable involution θ and maximal torus T ⊂ H0, and a
representation of g0= hθ0 on W. By definition, the torus T is canonically isomorphic
to Hom(3,Gm), and θ acts on it by t 7→ t−1. The group H0 is split; in fact, since
g0 is a form of sl8 with an 8-dimensional representation which is defined over k,
g0 is split. The Lie algebras g0 and h0 are semisimple Lie algebras of rank 7, so
this implies that h0 must also be split.

By Proposition 1.9, there is an isomorphism ϕ : H → H0 satisfying θ0ϕ = ϕθ .
This isomorphism is defined uniquely up to H θ (k)-conjugacy. The group H θ is
disconnected, with two connected components; the nontrivial component acts on
the connected component G= (H θ )◦ by outer automorphisms. In order to pin down
the isomorphism ϕ up to G(k)-conjugacy, we observe that ϕ∗(W ) is an irreducible
8-dimensional representation of g, which is therefore isomorphic either to the fixed
“standard representation” or its dual. After possibly modifying ϕ, we can therefore
assume that ϕ carries W to the standard representation of g. The isomorphism ϕ is
then indeed determined uniquely up to G(k)-conjugacy.

It follows that the orbit G(k) ·ϕ−1(κC) ∈ G(k) \ Y (k) is well-defined. (Note, in
particular, that κC is defined only up to inversion, but that θ acts on κC by inversion
and lies in G(k)— in fact in the center of G(k)— so the orbit is independent of
any choices.) To complete the proof in this case, we must show that ϕ−1(κC) is
stable (equivalently, regular semisimple in T ), and that the map we have defined is
a bijection if k = ks. This follows from the discussion preceding the proof of this
theorem, and Theorem 3.4.

Let us now treat the E6 case. The inverse image π−1(`)= e∪ f of the bitangent `
at P in the surface S determines the root lattice 3`, and we set V =3`/23`. The
natural symplectic pairing on V is nondegenerate, and the quadratic form q :V→F2

arising from the form on 3` agrees with the quadratic form on V arising from the
isomorphism V ∼= Pic0(C)[2] and the odd theta characteristic κ corresponding to `,
by Proposition 3.3. We then have the Heisenberg group H̃L:

1→ Gm→ H̃L→ Pic0(C)[2] → 1.

Pushing out by the isomorphism V ∼= Pic0(C)[2], we obtain an extension (isomor-
phic to H̃L)

1→ Gm→ Ẽ→ V → 1.
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We define a character χq : Ẽ → Gm by the formula ẽ 7→ (−1)q(e)ẽ2, and set
Ṽ = kerχq . Then Ṽ is an extension

1→ {±1} → Ṽ → V → 1.

We define W = H 0(Pic0(C),L); then Ṽ acts on W through the homomorphism
Ṽ → H̃L. Applying the constructions of Section 2 to the triple (3`, Ṽ ,W ), we
obtain an adjoint group H0 of type E6 equipped with a stable involution θ0, together
with an action of the Lie algebra g0= hθ0

0 on W. Since g0 is an inner form of sp8 and
has an 8-dimensional representation defined over k, it must be split. This implies
that H0 has split rank at least 4; by the classification of forms of E6 [Tits 1966,
pp. 58–59], we see that H0 must be quasisplit, and split by a quadratic extension.
This quadratic extension is the smallest extension splitting the Galois action on
3∨`3`. Since the geometric irreducible components e and f of π−1(`) are defined
over k, this action is trivial, and we see that H0 is also split.

Applying Proposition 1.9 once more, we see that there is an isomorphism
ϕe : H→ H0 such that ϕeθ = θ0ϕe. This isomorphism is determined up to H θ (k)=
G(k)-conjugacy (as H θ is connected in this case). Moreover, we can assume that,
under the isomorphism ϕe, the minuscule representation of H0 with weights in
3∨`/3` corresponding to e is identified with the “standard representation” of H.

The orbit G(k) ·ϕ−1
e (κC) is then well-defined: reversing the roles of e and f in

our construction replaces κC = κ(C, P, e) by κ(C, P, f )= κ(C, P, e)−1, and θ0 is
an outer automorphism, acting on 3∨`3` ∼= Z/3Z as multiplication by −1, so we
can take ϕf = ϕe ◦ θ0. Then we have

G(k) ·ϕ−1
f (κ(C, P, f ))= G(k) ·ϕ−1

f (θ0(κ(C, P, e)))= G(k) ·ϕ−1
e (κ(C, P, e)).

This shows that we have constructed a well-defined map S(k)→ G(k) \ X (k). The
rest of the theorem in this case follows from the discussion preceding the proof of
this theorem, and Theorem 3.4.

The arguments in the Lie algebra cases are very similar, with maximal tori
replaced by Cartan subalgebras. We omit the details. �

Fix x = (C, P, . . . ) ∈ S(k). Let π : X→ X//G denote the natural quotient map,
and let Xx = π

−1π(x). Then we know that Xx ⊂ X s consists of a single G-orbit
(see Section 1D), but Xx(k)may break up into several G(k)-orbits which all become
conjugate over ks. Let Jx denote the Jacobian of C . We now state our second main
theorem, which shows how to construct elements of G(k) \ Xx(k) from Jx(k):

Theorem 3.6. With notation as above, there is a canonical map

Jx(k)/2Jx(k) ↪→ G(k) \ Xx(k). (3-2)

It is functorial in k in the obvious sense.
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The map (3-2) will extend the map of Theorem 3.5, in the sense that the image
of the identity element of Jx(k)/2Jx(k) under (3-2) equals the image of x ∈ S(k)
under (3-1).

Proof. The proof is a twist of the proof of Theorem 3.5, using the ideas of Section 1C.
We treat first the E7 case. Let A ∈ Jx(k) be a rational point. Choose B ∈ Jx(ks)

such that [2](B)= A. Then the field of definition of the line bundle t∗BL is equal to k,
and we choose a bundle LB over k which becomes isomorphic to t∗BL over ks. We
continue to denote 3= Pic(Sks), V =3/23, and associate to LB the Heisenberg
group H̃LB , which fits into an exact sequence

1→ Gm→ H̃LB → Jx [2] → 1.

Arguing exactly as in the proof of Theorem 3.5, we obtain an extension

1→ {±1} → ṼB→ V → 1,

together with a homomorphism ṼB→ H̃LB through which the group ṼB acts on the
space WB = H 0(Jx ,LB), an 8-dimensional k-vector space. Over ks, this defines an
irreducible representation of the abstract group ṼB(ks).

Using the constructions of Section 2, we associate to the triple (3, ṼB,WB) a
group HB with involution θB , maximal torus TB ∼= Hom(3,Gm), and an action of
the Lie algebra gB = hθB

B on WB . Just as in the proof of Theorem 3.5, the existence
of WB implies that the groups HB and GB are split, and TB(k) has a point κC ,
well-defined up to inversion. By Proposition 1.9, we can find an isomorphism
ϕB : H → HB which intertwines θ and θB , and under which WB corresponds to
the “standard representation” of g∼= sl8. The choice of ϕB is then unique up to the
action of G(k), and we associate to the point B the orbit G(k) ·ϕ−1

B (κC)⊂ Yx(k).
We observe that if A = B = 0, the identity of Jx(k), then the above construc-

tion reduces to that of Theorem 3.5. In general, we must show that the orbit
G(k) ·ϕ−1

B (κC)⊂ Px(k) depends only on the image of A in Jx(k)/2Jx(k) (and not
on the choice of B), and that distinct elements of Jx(k)/2Jx(k) give rise to distinct
orbits. Let ϕ−1

0 (κC) ∈ Yx(k) be the point constructed in the proof of Theorem 3.5.
Since G(ks) acts transitively on Px(ks), a well-known principle asserts that there is
a canonical bijection

G(k) \ Yx(k)∼= ker
(
H 1(k, ZG(ϕ

−1
0 (κC)))→ H 1(k,G)

)
, (3-3)

under which the base orbit G(k) · ϕ−1
0 (κC) corresponds to the marked element;

see, for example, [Bhargava and Gross 2014, Proposition 1]. By [Thorne 2013,
Corollary 2.10] and Proposition 3.2, there is a canonical isomorphism

ZG(ϕ
−1
0 (κC))∼= ZG0(κC)∼= image (V → V∨)∼= Jx [2].
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We will show that under the composite

G(k) \ Yx(k) ↪→ H 1(k, ZG(ϕ
−1
0 (κC)))∼= H 1(k, Jx [2]),

the orbit G(k) · ϕ−1
B (κC) is mapped to the image of A under the 2-descent homo-

morphism of Section 1C.
The pullback t∗B defines a canonical isomorphism Ṽ ∼= ṼB over ks by the formula

(1-2). This gives rise to an isomorphism of triples F : (H0, θ0, T0)∼= (HB, θB, TB)

which induces the identity on Hom(3,Gm) under the identification of this torus
with T0 and TB . According to Lemma 2.4, we can identify F−1 σF with an element
of V∨. Lemma 1.8 now implies that this element in fact lies in the image of the
homomorphism V → V∨ and, under the identification of this image with Jx [2],
is identified with the cocycle σ 7→ σB − B. This identity of cocycles implies the
desired identity of cohomology classes, and completes the proof in this case.

The proof of the theorem in the remaining cases, E6, e7, and e6, simply requires
analogous modifications to the proof of Theorem 3.5. We work out the E6 case
here. Let us take x = (C, P) ∈ S(k), so that P is a point such that TPC = ` is a
bitangent in the canonical embedding of the curve C . The root lattice 3` is defined,
and we define V =3`/23`. The natural symplectic pairing on V is nondegenerate,
and the quadratic form q : V → F2 arising from the form on 3` agrees with the
quadratic form on V arising from the isomorphism V ∼= Jx [2] and the odd theta
characteristic κ corresponding to `, by Proposition 3.3. Let A ∈ Jx(k), and choose
a point B ∈ Jx(ks) with [2](B) = A. Let LB be a descent of the line bundle t∗BL
to k. We then have the Heisenberg group H̃LB :

1→ Gm→ H̃LB → Jx [2] → 1.

Arguing exactly as in the proof of Theorem 3.5, we obtain an extension

1→ {±1} → ṼB→ V → 1,

and ṼB acts on the 8-dimensional k-vector space WB = H 0(Jx ,LB) through a
homomorphism ṼB → H̃LB . We can apply the constructions of Section 2 to
the triple (3`, ṼB,WB) to obtain a group HB with involution θB , maximal torus
TB ∼= Hom(3,Gm), and an action of the Lie algebra gB = hθB

B on WB . The exis-
tence of WB implies that the groups HB and GB are split, and TB(k) has a point
κC = κ(C, P, e) which depends on a choice of component e of π−1(`)= e∪ f . By
Proposition 1.9, we can find an isomorphism ϕB,e : H → HB which intertwines
θ and θB , and under which the “standard representation” of h corresponds to the
minuscule representation of hB corresponding to the class of e in 3∨` ∨ /3`. The
choice of ϕB,e is then unique up to the action of G(k), and we associate to the
point B the orbit G(k) · ϕ−1

B,e(κ(C, P, e)) ⊂ Yx(k). Just as in the E7 case, we



Arithmetic invariant theory and 2-descent for plane quartic curves 1399

can check that the map B 7→ G(k) · ϕ−1
B,e(κ(C, P, e)) descends to an injection

Jx(k)/2Jx(k) ↪→ G(k) \ Yx(k). This completes the proof. �

3B. An example. To illustrate our theorem, we describe explicitly what happens
in the e6 case, when k = R. Then the reference group H is a split adjoint group
of type E6 over R, H θ

= G is isomorphic to PSp8, a projective symplectic group
in 8 variables, and V = hdθ=−1 is a 42-dimensional irreducible subrepresentation
of ∧4(8). The corresponding family of curves is the family (C, P, t) of smooth
nonhyperelliptic genus-3 curves, equipped with a point P which is a hyperflex in
the canonical embedding, and a nonzero Zariski tangent vector t ∈ TPC . It consists
of the smooth members in the family

y3
= x4
+ y(p2x2

+ p5x + p8)+ p6x2
+ p9x + p12

(here we are using the affine chart which makes P the unique point at infinity). For
each tuple

(p2, p5, p8, p6, p9, p12) ∈ R6

for which this curve is smooth, we can write down the following data:

• Topological invariants of the curve C(R)⊂P2(R): following [Gross and Harris
1981], we write n(C) for the number of connected components of C(R), and
a(C)= 0 or 1 depending on whether or not C(C)−C(R) is disconnected.

• A stable G-orbit Vx ⊂ V s, and an H(R)-conjugacy class of maximal tori
T ⊂ H (T is the stabilizer in H of the base orbit in Vx(R), which is regular
semisimple).

• An injection J (R)/2J (R) ↪→ G(R) \ Vx(R), where J is the Jacobian of the
curve C .

The isomorphism classes of tori in H are in bijection with the conjugacy class of
elements in the Weyl group W of order 2 [Reeder 2011, §6]. It turns out that these
correspond to the possible topological types of the curve C(R) in P2(R), as shown
in Table 1. The table should be interpreted as follows: suppose that a curve C has
the given invariants. (It follows from the table on [Gross and Harris 1981, p. 174]
that the only possible values for the pair (n(C), a(C)) are the ones listed in Table 1.)
Then the real structure on the torus T is the one determined by the Weyl element in
the left-hand column, and the data in the remaining three columns is as given. Here
s1, s2, s3 ∈ W are commuting simple reflections, and τ ∈ W may be constructed
as follows: choose a D4 root system inside 3. Then −1 ∈ W (D4), and τ is the
element that acts as −1 on the span of the D4 roots, and as +1 on their orthogonal
complement. The elements 1, s1, s1s2, s1s2s3, and τ are pairwise nonconjugate
in W and every involution in W is conjugate to one of these. (For the classification
of conjugacy classes of involutions in Weyl groups, see [Richardson 1982a].)
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conjugacy number of
class n(C) a(C) real bitangents #J (R)/2J (R) #G(R) \ Vx (R)

1 4 0 28 23 36
s1 3 1 16 22 10

s1s2 2 1 8 2 3
s1s2s3 1 1 4 1 1
τ 2 0 4 2 3

Table 1. Correspondence between conjugacy class of elements in
the Weyl group of order 2 and possible topological types of the
curve C(R) in P2(R).

One can check explicitly that each of the above combinations of (n(C), a(C))
does indeed occur. Table 1 can be verified as follows. It follows from our theory that
there is an isomorphism J [2](C)∼=3`/23` under which the action σ of complex
conjugation corresponds to the action of an involution w ∈W (3`)=W and which
identifies the Weil pairing on the left-hand side with the natural symplectic pairing
on the right. On the other hand, [Gross and Harris 1981, Proposition 4.4] shows that
the data of the pair (J [2](C), σ ) (as a symplectic F2-vector space with involution) is
sufficient to recover n(C) and a(C). A calculation shows that the Weyl involutions
biject with the possible choices for the pair (n(C), a(C)). This determines the
number of real bitangents and the quantity #J (R)/2J (R).

We justify the final column using the results in the Appendix. The set G(R)\Vx(R)

is in canonical bijection with the set ker(H 1(R, J [2])→ H 1(R,G)), the marked
element corresponding to the trivial element of J (R)/2J (R). We analyze this
kernel using the following diagram of R-groups with exact rows, whose existence
is asserted by the main result in the Appendix:

1 // µ2 // Sp8
// PSp8

// 1

1 // µ2 //

OO

Ṽ //

OO

J [2] //

OO

1

Here Ṽ is the extension used in the proof of Theorem 3.5; it is a subgroup of
the Heisenberg group H̃L. Using the triviality of the set H 1(R,Sp8), we get an
identification

G(R)\Vx(R)∼=ker(H 1(R, J [2])→H 1(R,G))∼=ker(H 1(R, J [2])→H 2(R, µ2)),

where the arrow
q : H 1(R, J [2])→ H 2(R, µ2)∼= Z/2Z

is the connecting map arising from the bottom row of the above commutative
diagram. (Note that we are working here with nonabelian Galois cohomology; the
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connecting map is defined, becauseµ2 is central, but it need not be a homomorphism
of groups.)

Tate duality gives a perfect pairing on H 1(R, J [2]), with respect to which
J (R)/2J (R) is a maximal isotropic subspace. The map q is a quadratic refinement
of this pairing, in the sense of Section 1A, which is identically zero on the subspace
J (R)/2J (R) (see [Poonen and Rains 2012, Corollary 4.7]). It follows that a(q)= 0,
and the set q−1(0) has 2g−1(2g

+ 1) elements, where g = dimF2 J (R)/2J (R). This
leads to the final column in Table 1.

Appendix: A converse to Lurie’s functorial construction
of simply laced Lie algebras

by Tasho Kaletha

In Section 2 a construction due to Lurie was recalled, which associates in a functorial
way a semisimple Lie algebra h to a simply laced root lattice 3 equipped with
an extension Ṽ of V = 3/23 by {±1}. In fact, the construction produces not
just h, but also some additional structure, including a Cartan subalgebra t. This
construction was, moreover, refined in several ways. It was shown that an action of
the Galois group of a field k on Ṽ is translated to a k-structure on h; it was shown
that h comes equipped with a stable involution θ (i.e., an involution satisfying the
first condition of Proposition 1.9); and finally a construction was described that
produces from a rational representation ρ of the finite algebraic k-group Ṽ with
ρ(−1)=−1 a rational representation dπ of the Lie algebra g= hθ.

The purpose of this appendix is to provide a converse to this refinement of Lurie’s
construction. The basic question is: given h, t, and θ , is it possible to recover the
extension Ṽ in a concrete way? That this should be the case, and in fact where the
extension is to be found, was suggested to us by Jack Thorne. His idea was that
the extension Ṽ should be the preimage in Gsc of the 2-torsion subgroup of Tsc,
where Tsc is the maximal torus of the simply connected group Hsc with Lie algebra
h given by the Cartan subalgebra t, and Gsc is the simply connected group with
Lie algebra g. In this appendix, we will show that this preimage is indeed an
extension of V by {±1} and we will, moreover, construct an isomorphism from this
extension to Ṽ that preserves the action of the Galois group of k and intertwines
the representations ρ and π .

We thank Jack Thorne for sharing with us this interesting question and for
including our results in his paper.

A1. Statement of two propositions. Let k be a field of characteristic 0 and ks a
fixed separable closure, and let 0k = Gal(ks/k). Let 3 be a finite free Z-module
equipped with a symmetric bilinear form 〈 · , · 〉 : 3⊗3→ Z and satisfying the
following conditions:
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• rk3> 1.

• For any nonzero λ ∈3, the value 〈λ, λ〉 is a positive even integer.

• The set 0 = {λ ∈3 | 〈λ, λ〉 = 2} generates 3.

As discussed in [Lurie 2001], these are precisely the root lattices of simply laced
root systems. Here we are excluding the system A1. The subset 0 ⊂ 3 is the
set of roots. We shall place the additional assumption that 0 is irreducible. This
assumption is made just for convenience and can easily be removed.

Write q(λ)= 1
2〈λ, λ〉, this is a quadratic form. Let V =3/23 and let

1→ {±1} → Ṽ → V → 0

be an extension of groups (we write the group law of Ṽ multiplicatively) with the
property that, for each ṽ ∈ Ṽ and its image v ∈ V, the equality ṽ2

= (−1)q(v) holds.
This equation characterizes the isomorphism class of this extension.

Assume we are given an action of 0k on 3 that preserves 〈 · , · 〉, as well as an
action of 0k on Ṽ that preserves the subgroup {±1}, such that the two actions on V
induced from these coincide. Let 3̃=3×V Ṽ and let 0̃ ⊂ 3̃ be the preimage of 0.
The extension 3̃ of 3 by {±1} inherits an action of 0k and this action preserves 0̃.

Let h be the Lie algebra associated to this data as described in Section 2. It
comes equipped with a Cartan subalgebra t and a map 0̃→ h sending each γ̃ to a
nonzero root vector X γ̃ ∈ hγ and having the properties:

• X−γ̃ =−X γ̃ .

• [X γ̃ , X γ̃ ′] = X γ̃ γ̃ ′ if γ + γ ′ ∈ 0 (by assumption γ̃ γ̃ ′ ∈ 0̃).

• [X γ̃ , X γ̃ ′] = (γ̃ γ̃ ′)Hγ if γ ′ = −γ , where Hγ ∈ t is the coroot for γ (by
assumption γ̃ γ̃ ′ ∈ {±1}).

Let H = Aut(h)◦ be the corresponding adjoint group, Hsc its simply connected
cover, and θ the involution of h which acts by −1 on t and by θ(X γ̃ ) = −X γ̃−1

on the root subspaces. It induces an involution on H and Hsc as well and this
involution acts by inversion of the maximal tori T and Tsc whose Lie algebra is t.
Let g= hθ be the fixed Lie subalgebra and G = H θ,◦ the connected component of
the fixed subgroup. Let G ′ = H θ

sc. According to [Steinberg 1968, Theorem 8.1]
G ′ is connected. Its image in H is equal to G. Since θ commutes with the action
of 0k , the groups G and G ′ are defined over k.

Proposition A.1. The group G ′ is semisimple and its fundamental group has order 2.

Let Gsc be the simply connected cover of G. We will from now on denote
the fundamental group of G ′ by {±1} ⊂ Gsc. For a root γ ∈ 0, let γ∨ be the
corresponding coroot. The map

V → Tsc, [γ ] 7→ γ∨(−1)
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identifies V with the 2-torsion subgroup of Tsc and this subgroup belongs to G ′. We
form the pullback extension

1 // {±1} // Gsc // G ′ // 1

1 // {±1} // X //

OO

V //

OO

1

This extension inherits an action of 0k .
Finally, given a rational representation ρ : Ṽ→GL(W ) of the algebraic k-group Ṽ

on a finite-dimensional k-vector space W such that ρ(−1)=−1, we define a repre-
sentation dπ : g→ gl(W ) by dπ(X γ̃ − X γ̃−1)= 1

2ρ(γ̃ ), and let π : Gsc→GL(W )

be the corresponding rational representation of Gsc. Recall that Proposition 2.3
asserts that dπ is indeed a Lie algebra representation.

Proposition A.2. There exists an isomorphism of extensions 8 : Ṽ → X which is
0k-equivariant and intertwines ρ with π |X for all representations ρ as above.

A2. Proof of Proposition A.1. According to [Reeder et al. 2012, §5.3], the involu-
tion θ is stable and hence its conjugacy class is uniquely determined. A description
of this conjugacy class for each Dynkin type is given in [Reeder et al. 2012, §8]
in terms of Kac diagrams. The normalized Kac diagram of the stable involution
contains a unique node with label 1, and all other nodes have label 0. According to
[Reeder 2010, §3.7], this implies that the center of G is finite. Thus G, and hence
also G ′, is semisimple. Its Dynkin diagram is obtained by removing the unique
node with label 1 from the Kac diagram of the stable involution. In order to prove
that the fundamental group of G ′ has order 2, we argue as follows. According to
[Reeder 2010, §3.7], the order of the center of G is given by bι, where ι is the index
of the unique node with label 1 in the Kac diagram, and bι is an integer defined in
[Reeder 2010, §3.3], which according to Theorem 3.7 in [loc. cit.] is equal to 2 if θ
is inner and to 1 if θ is outer. Since θ acts by −1 on the Cartan subalgebra t, it is
inner if and only if −1 belongs to the Weyl group of (t, h).

The kernel of the map G ′→ G is equal to Z(Hsc)
θ. Thus the center of G ′ has

size |Z(Hsc)
θ
| · bι. The proof will be complete once we show that this number is

equal to one half of the connection index of the Dynkin diagram of G. This can be
done by inspection of the individual cases An (n > 1), Dn , E6, E7, E8. We give
the examples of the exceptional types, E6, E7, and E8, and leave the discussion of
the classical types, An and Dn , to the reader.

For type E6, the Kac diagram of θ is given by the last row of Table 3 of [Reeder
et al. 2012, §8.1] and has the form 0 0 0⇐ 0 1, so G has type C4. Since θ is outer,
G is adjoint. There are no θ -fixed points in the center of Hsc, thus G ′ ∼= PSp4.

For type E7, the Kac diagram of θ is given by the last row of Table 4 and has
the form 0 0 0 0 0 0 0

1 , so G is of type A7. The center of G now has order 2, because
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θ is inner, and, moreover, the fixed points of θ in Z(Hsc) also have order 2, so the
center of G ′ has order 4.

For type E8, the Kac diagram of θ is given by the last row in Table 5 and has
the form 1 0 0 0 0 0 0 0

0 , so G is of type D8. The center of G has order 2, because θ is
inner. Since Z(Hsc)= 1, the center of G ′ also has order 2.

For the classical types, the relevant diagrams are those in row 2 of Table 10 (H is
of type A2n and G is of type Bn), row 3 of Table 11 with k = n− 1 (H is of type
A2n−1 and G is of type Dn), row 3 of Table 14 for k = n even (H is of type Dn

and G is of type D n
2
× D n

2
), and row 3 of Table 15 with l = n odd (H is of type

Dn and G is of type B n−1
2
× B n−1

2
). Note that θ is inner for Deven and outer for An

and Dodd.

A3. Proof of Proposition A.2.

A3.1. The group SOn . We define the group SOn to be the subgroup of SLn fixed
by the transpose-inverse automorphism. This group is semisimple when n > 2.
For n = 2, it is noncanonically isomorphic to Gm over ks. One can specify an
isomorphism by fixing a 4-th root of unity i ∈ ks. Then we have

Gm→ SO2, x 7→ 1
2

[
x + x−1 i(x − x−1)

−i(x − x−1) x + x−1

]
.

For future reference, we record the formula[
a b
−b a

]2

=

[
a2
− b2 2ab

−2ab a2
− b2

]
for the squaring map SO2

( )2
−→ SO2.

A3.2. Construction of the isomorphism Ṽ → X. Choose a set of simple roots
1 ⊂ 0. The image 1V of 1 in V is a set of generators for this group, and the
relations on this set are 2v = 0 for all v ∈1V . Let 1̃ be the preimage of 1 in 3̃,
and let 1̃V be the image of 1̃ in Ṽ. Then 1̃V is a set of generators for Ṽ, and the
relations on this set are ṽ2

= (−1) and ṽw̃ = (−1)〈v,w〉w̃ṽ.
We now define a map φ : 1̃→ X. Given γ̃ ∈ 1̃ we obtain a monomorphism

ηγ̃ : SL2→ Hsc with θ-stable image that translates the action of θ on its image
to the action of transpose-inverse on SL2. The fixed subgroup SO2 of this action
therefore lands in G ′.

Lemma A.3. The preimage of ηγ̃ (SO2) in Gsc is connected.

The proof of this lemma will be given in Section A3.6. Granting this lemma, it fol-
lows from Proposition A.1 that there exists a unique homomorphism φγ̃ :SO2→Gsc
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making the following diagram commute:

SO2
φγ̃
//

( )2

��

Gsc

��

SO2
ηγ̃
// G ′

This homomorphism is injective. We let

φ(γ̃ )= φγ̃

([
1

−1

])
.

By the above diagram, the image of φ(γ̃ ) in G ′ is equal to γ∨(−1), which shows
that φ(γ̃ ) ∈ X. Moreover, φ(γ̃ )2 = φγ̃ (−1) is a nontrivial element of Gsc whose
image in G ′ is trivial, hence φ(γ̃ )2 =−1.

We thus obtain a map φ : 1̃→ X which descends to a map 8 : 1̃V → X and
whose image contains a set of generators for X. We claim that 8 is 0k-equivariant.
Given σ ∈ 0k , we have ησ γ̃ = σ ◦ ηγ̃ , and hence φσ γ̃ = σ ◦φγ̃ , where on the right
sides of these equations σ denotes the action of σ on G ′ and Gsc, respectively. Thus
φ(σ γ̃ )= σφ(γ̃ ) for all γ̃ ∈ 0̃ and this establishes the 0k-equivariance of 8.

Our task is to show that 8 respects the relation ṽw̃ = (−1)〈v,w〉w̃ṽ. Once this
is done, it will extend to a surjective homomorphism 8 : Ṽ → X, which will then
have to be bijective because its source and target have the same cardinality. It will
furthermore be 0k-equivariant.

A3.3. The isomorphism PGL2 → SO3. Consider the adjoint action of PGL2 on
its Lie algebra sl2. Fix a 4-th root of unity i ∈ ks as well as an element

√
2 ∈ ks.

The basis

√
2
−1
[

1
−1

]
, (i

√
2)−1

[
1

−1

]
,

√
2
−1
[

1
1

]
is an orthonormal basis for the symmetric bilinear form tr(AB) and provides an
isomorphism PGL2→ SO3 defined over ks, which is explicitly given by

[
a b
c d

]
7→ (ad−bc)−1

 ad + bc i(ac+ bd) bd − ac

−i(ab+ cd) 1
2(a

2
+ b2
+ c2
+ d2) i

2(a
2
− b2
+ c2
− d2)

−(ab− cd) i
2(c

2
+ d2
− a2
− b2) 1

2(a
2
− b2
− c2
+ d2)

.
Its derivative, sl2→ so3, is given by

[
a b
c d

]
7→

 0 i(b+ c) b− c
−i(b+ c) 0 2ia

c− b −2ia 0

.
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A3.4. The relation ṽw̃ = (−1)〈v,w〉w̃ṽ. In Section A3.2 we constructed a map
8 : 1̃V → X. In order to show that it extends to an isomorphism Ṽ → X, it remains
to check that, for ṽ, w̃ ∈ 1̃V with images v,w ∈1V , we have

8(ṽ)8(w̃)= (−1)〈v,w〉8(w̃)8(ṽ). (A-1)

Let γ̃ , δ̃ ∈ 0̃ be preimages of ṽ, w̃, and let γ, δ ∈1 be their images. We have either
〈γ, δ〉 = 0 or 〈γ, δ〉 =−1. In the first case, the cocharacters ηγ̃ and ηδ̃ commute and
hence their images are contained in a common maximal torus of G ′. The preimage
in Gsc of this maximal torus is a maximal torus of Gsc and contains the images of
φγ̃ and φδ̃ , and we conclude that these two cocharacters also commute. This proves
(A-1) in the case 〈γ, δ〉 = 0 and we are left with the case 〈γ, δ〉 = −1. Then the
elements {X γ̃±1, X δ̃±1, X(γ̃ δ̃)±1} generate a subalgebra of h isomorphic to sl3. Even
more, there is a preferred embedding µγ̃ ,δ̃ : sl3→ h given by0 1

0
0

 7→ X γ̃ ,

0
0 1

0

 7→ X δ̃,

0 1
0

0

 7→ X γ̃ δ̃.

It integrates to an embedding µγ̃ ,δ̃ :SL3→ Hsc. The embeddings ηγ̃ , ηδ̃ :SL2→ Hsc

factor through µγ̃ ,δ̃ and give embeddings

SO2→ SO3,

[
a b
−b a

]
7→

 a b
−b a

1

,
and

SO2→ SO3,

[
a b
−b a

]
7→

1
a b
−b a

.
We compose these with the isomorphism SO3→ PGL2 of Section A3.3, for which
we fix the elements i,

√
2 ∈ ks as discussed there. This gives two embeddings

SO2→ PGL2.
The first one is characterized by[

a b
−b a

]
7→

[
α β

β α

]
,

where α2
+β2

= a and 2iαβ = b. The composition of this with the squaring map
on SO2 lifts to the map

SO2→ SL2,

[
a b
−b a

]
7→

[
a b/ i

b/ i a

]
.

The image of
[ 0
−1

1
0

]
under this map is equal to

[ 0
−i
−i

0

]
.
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The second embedding SO2→ PGL2 is given by[
a b
−b a

]
7→

[√
a− ib

√
a− ib

−1

]
.

Note that this is well-defined with an arbitrary choice of
√

a− ib. Its composition
with the squaring map on SO2 lifts to the map

SO2→ SL2,

[
a b
−b a

]
7→

[
(a− ib)

(a− ib)−1

]
.

The image of
[ 0
−1

1
0

]
under this map is equal to

[
−i

i

]
. The claim now follows from[

0 −i
−i 0

]
·

[
−i

i

]
=−

[
−i

i

]
·

[
0 −i
−i 0

]
.

A3.5. Intertwining property of 8 : Ṽ → X. Let ρ : Ṽ → GL(W ) be a rational
representation of the finite algebraic k-group Ṽ on a finite-dimensional k-vector
space W, having the property that ρ(−1) = −1. Let π : Gsc → GL(W ) be the
rational representation obtained from it. We want to show that 8 intertwines ρ
with π |X . It is enough to show that, for γ̃ ∈ 1̃ with image ṽ ∈ Ṽ, we have the
following equality in GL(W )(ks):

π(8(ṽ))= ρ(ṽ).

Let γ ∈1 be the image of γ̃ . Choose δ ∈1 with 〈γ, δ〉 = −1 and let δ̃ ∈ 1̃ be a
preimage. Let w̃ ∈ Ṽ be the image of δ̃. Let Q ⊂ Ṽ be the subgroup generated
by ṽ, w̃. It is isomorphic to the quaternion group.

Let µγ̃ ,δ̃ : sl3→ h be the embedding determined by γ̃ and δ̃ as in Section A3.4.
It determines an embedding µγ̃ ,δ̃ : SL3→ Hsc.

Decompose W =
⊕n

i=1 Wi under ρ|Q into irreducible representations over ks. The
condition ρ(−1)=−1 forces all Wi to be isomorphic to the unique 2-dimensional
representation of Q. Moreover, by construction of dπ , each subspace Wi of W is
preserved by the action of dπ(µγ̃ ,δ̃(so3)), hence also by the action of π(µγ̃ ,δ̃(SO3)).
We can thus focus on a single Wi . Choosing a suitable basis for Wi over ks, we
obtain from ρ|Q the embedding Q→ SL2(ks) given by

ṽ 7→

[
−i

−i

]
, w̃ 7→

[
−i

i

]
, ṽw̃ 7→

[
1

−1

]
.

Reviewing the construction of dπ , we see that the restriction to Wi of dπ ◦µγ̃ ,δ̃
provides the isomorphism so3→ sl2 given by 0 1
−1 0

0

 7→ 1
2

[
−i

−i

]
,

0
0 1
−1 0

 7→ 1
2

[
−i

i

]
,

 0 1
0

−1 0

 7→ 1
2

[
1

−1

]
,
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which one easily checks to be the inverse of the isomorphism of Section A3.3.
Thus, the composition of the isomorphism SL2→ Spin3 of Section A3.3 with the
embedding µγ̃ ,δ̃ : Spin3→ Gsc provides a representation of SL2 on Wi which in
the chosen basis of Wi is given by the identity map SL2 → SL2. However, the
discussion of Section A3.4 shows that 8(ṽ) ∈ Gsc is the image of the element[
−i
−i ] under the composition of the isomorphism SL2→ Spin3 of Section A3.3

with the embedding µγ̃ ,δ̃ : Spin3→ Gsc. We conclude that ρ(ṽ) and π(8(ṽ)) are
represented by the same matrix in SL2(ks)⊂ GL(Wi )(ks).

A3.6. Proof of Lemma A.3. We note first that the statement of the lemma is equiv-
alent to the claim that the preimage of γ∨(−1) in Gsc has order 4. Indeed, if
the preimage of ηγ̃ (SO2) in Gsc is connected, then identifying SO2 with Gm we
obtain via pullback along ηγ̃ the nonsplit extension 1→ {±1} →Gm→ Gm→ 1,
and the element γ∨(−1) corresponds to the element −1 of the right copy of Gm ,
which evidently has two preimages of order 4. On the other hand, if the preimage
of ηγ̃ (SO2) in Gsc is disconnected, then the corresponding extension is the split
extension 1→ {±1} → {±1}×Gm→ Gm→ 1 and the element −1 ∈ Gm has two
lifts of order 2.

We have the element γ̃ ∈ 0̃ and the corresponding element γ ∈ 0. The chosen
base 1 of 0 in the discussion of Section A3.2 will be unimportant. We first claim
that there exists a maximal torus Ssc ⊂ Hsc, a Borel subgroup C containing Ssc,
and a root α of Hsc with respect to Ssc such that θ preserves the pair (Ssc,C) as
well as the root α and γ∨(−1)= α∨(−1). Indeed, choose a base 1 for 0 such that
the corresponding Kostant cascade M (see [Kostant 2012]) contains γ . For each
β ∈ M, choose a preimage β̃ ∈ 0̃. Let

g =
∏
β∈M

ηβ̃

[
i
2 1

−
1
2 −i

]
∈ Hsc.

Then one checks that Ssc :=Ad(g)Tsc is normalized by θ . If we transport the action
of θ on Ssc back to Tsc via the isomorphism Ad(g), we obtain the automorphism
Ad(g−1θ(g)) ◦ θ and one computes that Ad(g−1θ(g)) acts as the product of reflec-
tions

∏
β∈M sβ , which according to [Kostant 2012, Proposition 1.10] represents

the longest element of the Weyl group with respect to the basis 1. This shows
that Ad(g−1θ(g)) ◦ θ preserves the basis 1. It also evidently fixes the root γ . Let
α = Ad(g)γ , and let C be the Borel subgroup corresponding to the basis Ad(g)1.
Finally, α∨(−1)= γ∨(−1) follows from the fact that the element g ∈ Hsc centralizes
γ∨(−1) ∈ Hsc. Indeed, the image of ηβ̃ for β ∈ M \{γ } centralizes the image of γ∨,
while the image of ηγ̃ centralizes the element γ∨(−1). The claim is proved.

We are now interested in showing that the preimage of α∨(−1) in Gsc has
order 4. For this it is convenient to use again the equivalent formulation that the
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preimage of α∨(Gm) in Gsc is connected. By passing from γ to α we are now in
the more advantageous situation that this preimage belongs to the preimage in Gsc

of G ′ ∩ Ssc = Sθsc, which is a maximal torus. Call this maximal torus S̃ ⊂ Gsc. We
form the pullback diagram

1 // {±1} // S̃ // Sθsc
// 1

1 // {±1} // ? //

OO

Gm

α∨

OO

// 1

and would like to show that the bottom extension is not split. Passing to character
modules we obtain the pushout diagram

0 // X∗(Ssc)θ //

α∨

��

X∗(S̃)

��

// Z/2Z // 0

0 // Z // X∗(?) // Z/2Z // 0

and would still like to show that the bottom extension is not split. This is equivalent
to showing that for one, hence any, lift 1̇ ∈ X∗(?) of 1 ∈ Z/2Z, we have 21̇ ∈ Z\2Z.
This in turn is equivalent to showing that for one, hence any, lift 1̇ ∈ X∗(S̃) of
1 ∈ Z/2Z, we have α∨(21̇) /∈ α∨(2X∗(Ssc)θ ). Now X∗(Ssc) is the weight lattice
of the group Hsc with respect to the torus Ssc. Since α∨ is a coroot, we have
α∨(X∗(Ssc)θ )=Z. Our task is then to show that the image in Q of X∗(S̃) under α∨

is not contained in Z. But X∗(S̃) is equal to the weight lattice of the group Gsc

relative to the maximal torus S̃. We thus have to show that α∨∈ X∗(Ssc)
θ does not

belong to the coroot lattice of G ′.
To that end, we need to describe the root and coroot systems of G ′. Let

R ⊂ X∗(Ssc) and R∨⊂ X∗(Ssc) be the root and coroot systems of Hsc, and let
1⊂ R be the base given by the Borel subgroup C . We choose a nonzero root vector
Xβ ∈ hβ for each β ∈ 1, subject to the condition Xθβ = θXβ provided θβ 6= β.
For β ∈ 1 satisfying θβ = β, we have θXβ = εXβ with ε ∈ {1,−1}. Letting
{ω̌β | β ∈1} be the system of fundamental coweights, we set s ∈ S to be the product
of ω̌β(−1) for all β ∈1 with θβ=β and θXβ =−Xβ . Then s ∈ Sθ is of order 2 and
θ =Ad(s)θ0, with θ0 an automorphism of Hsc preserving the splitting (Ssc,C, {Xβ}).
The root system of G ′ is a subset R′⊂ X∗(Sθsc)= X∗(Ssc)θ . The duality between
X∗(Ssc) and X∗(Ssc) induces a duality between X∗(Ssc)θ and X∗(Ssc)

θ. The coroot
system of G ′ is a subset R′∨⊂ X∗(Ssc)

θ. The system R′⊂ X∗(Ssc)θ and its dual
system R′∨⊂ X∗(Ssc)

θ can be described using the results of [Steinberg 1968], which
are summarized in [Kottwitz and Shelstad 1999, §§1.1, 1.3]. As evident from the
discussion there, the root system A2n behaves differently from all other root systems,
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a phenomenon that manifests itself in the occurrence of restricted roots of type
R2 and R3. It is therefore convenient to treat the special case of A2n separately.
Fortunately, this special case is rather easy.

Assuming that R is of type A2n , we enumerate 1= {α1, . . . , α2n} with θ(αi )=

α2n+1−i . Since θ has no fixed points in1, we have θ0= θ . Thus the projection of1
to X∗(Ssc)θ forms a set of simple roots for R′. Let α′i ∈ R′ denote the projection
of αi . Then α′1, . . . , α

′

n−1 are of type R1, and the corresponding coroots are given
by α′∨i = α

∨

i +α
∨

2n+1−i . On the other hand, α′n is of type R2 and its coroot is given
by 2(α∨n +α

∨

n+1). It follows that the coroot lattice of G ′ is the sublattice of X∗(Ssc)
θ

spanned by the points {α∨1 + α
∨

2n, . . . , α
∨

n−1+ α
∨

n+2, 2(α∨n + α
∨

n+1)}. On the other
hand, we may assume without loss of generality that α is the highest root of R (by
making the same assumption on the root γ , bearing in mind that the highest root is
always part of the Kostant cascade). Then α∨ = α∨1 + · · ·+α

∨

2n evidently does not
belong to the coroot lattice of G ′. This completes the discussion of the case A2n .

The remaining root systems can now be treated uniformly, because all occurring
restricted roots are of type R1. According to the discussion in [Kottwitz and Shelstad
1999, §1.3], the root system R′ is given by the image of the set

Ṙ′ = {β ∈ R | θβ = β⇒ β(s)= 1}

under the natural projection X∗(Ssc)→ X∗(Ssc)θ . For the description of R′∨, we
have the following lemma.

Lemma A.4. For any element of β ′ ∈ R′ represented by β ∈ Ṙ′, the coroot β ′∨∈
X∗(Ssc)

θ is given by {
β∨ if θβ = β,
β∨+ θβ∨ if θβ 6= β.

(A-2)

Proof. Since β ′ is of type R1, we know that if θβ 6= β then θβ ⊥ β. According
to [Bourbaki 2002, Chapter VI, §1, No. 1], β ′∨ is the unique element of the dual
space of X∗(Ssc)θ ⊗Q with the properties 〈β ′∨, β ′〉 = 2 and sβ ′,β ′∨(R′)⊂ R′, where
sβ ′,β ′∨(x)= x−〈β ′∨, x〉β ′ is the reflection determined by β ′, β ′∨. We need to check
that the elements given in the statement of the lemma satisfy these properties. The
first property is immediate. For the second property we take β1, β2 ∈ Ṙ′ and let
β ′1, β

′

2 ∈ R′ be their images. Let β ′∨1 ∈ X∗(Ssc)
θ be given by (A-2). We need to

show that sβ ′1,β ′∨1 (β
′

2)∈ R′. If β2 is perpendicular to both β1 and θβ1, or if β ′1=±β
′

2,
then the claim is clear. We thus assume that this is not the case.

If β1 is fixed by θ , then sβ ′1,β ′∨1 (β
′

2) is the image of sβ1,β
∨

1
(β2). This element of R

belongs to Ṙ′, because it is fixed by θ precisely when β2 is, and in this case it kills s,
since both β1 and β2 do.

If β1 is not fixed by θ , but β2 is, then we have 〈β∨1 +θβ
∨

1 , β2〉=2〈β∨1 , β2〉=2ε 6=0
and conclude that sβ ′1,β ′∨1 (β

′

2) is the image of β2− 2εβ1, which coincides with the
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image of β2− εβ1− εθβ1. The latter element belongs to R, because β1 ⊥ θβ1. It is
furthermore fixed by θ and kills s, so belongs to Ṙ′.

Now assume that both β1, β2 are not fixed by θ . If 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉 are both
nonzero and have opposite signs, then sβ ′1,β ′∨1 (β

′

2)= β
′

2. If 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉

are both nonzero and have the same sign ε ∈ {1,−1}, then sβ ′1,β ′∨1 (β
′

2) is equal to the
image of β2− 2εβ1, which coincides with the image of β2− εβ1− εθβ1. As above,
this element belongs to R. It is, moreover, not θ -fixed, thus belongs to Ṙ′. It remains
to consider the cases where exactly one of 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉 is nonzero. We
will give the computation only in the case 〈β∨1 , β2〉 = 0, 〈θβ∨1 , β2〉 = −1, the other
cases being analogous. The element sβ ′1,β ′∨1 (β

′

2) ∈ X∗(Ssc)θ is equal to the image of
β2+ β1 ∈ R and we claim that this element is not θ-fixed. If it were, we’d have
β2 = θβ2+ θβ1−β1 and applying 〈θβ∨1 ,−〉 we would obtain −1= 0+ 2− 0. �

Armed with this lemma we complete the proof of Lemma A.3 as follows. We
have the element α∨∈ X∗(Ssc)

θ, which is a coroot for the group Hsc. We wish to
show that it does not belong to the coroot lattice for the group G ′. Assume the
contrary. Then inside of the lattice X∗(Ssc)

θ we have the equation α∨=
∑

niβ
′∨

i for
some integers ni and some roots β ′i ∈ R′. We choose for each β ′i a lift βi ∈ Ṙ′

and apply Lemma A.4, thereby obtaining

α∨ =
∑

niβ
∨

i +
∑

ni (β
∨

i + θβ
∨

i ),

where we have subdivided the set of {βi } into the cases corresponding to (A-2).
This equation holds inside the coroot lattice of Hsc. Since R is a simply laced root
system, the bijection R→ R∨, β 7→ β∨ extends to a Z-linear bijection from the
root lattice to the coroot lattice. This tells us that we have the equation

α =
∑

niβi +
∑

ni (βi + θβi )

in the root lattice of Hsc, i.e., in X∗(S). However, the right-hand side is a character
of S which kills the element s ∈ S. This would imply that α ∈ Ṙ′, which would then
imply that θ acts trivially on the root space hα . This is, however, false, because for
X = Ad(g)X γ̃ ∈ hα we have

θ(X)= Ad(g)Ad(g−1θ(g))θ(X γ̃ )= Ad(g)Ad ηγ̃

[
−i

−i

]
(−X γ̃−1)=−X.

The proof of Lemma A.3 is now complete.
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Furstenberg sets and Furstenberg schemes
over finite fields

Jordan S. Ellenberg and Daniel Erman

We give a lower bound for the size of a subset of Fn
q containing a rich k-plane

in every direction, a k-plane Furstenberg set. The chief novelty of our method
is that we use arguments on nonreduced subschemes and flat families to derive
combinatorial facts about incidences between points and k-planes in space.

1. Introduction

A central question in harmonic analysis is the Kakeya conjecture, which holds that
a subset S of Rn containing a unit line segment in every direction has Hausdorff
dimension n. Many refinements and generalizations of the Kakeya conjecture have
appeared over the years. For instance, one may loosen the condition on S, asking
only that there be a line segment in every direction whose intersection with S is
large in the sense of Hausdorff dimension.

Question 1.1 (Furstenberg set problem). Let S be a compact subset of Rn such
that, for every line `⊂Rn , there is a line parallel to ` whose intersection with S has
Hausdorff dimension at least c. What can be said about the Hausdorff dimension
of S?

This problem was introduced by Wolff [1999, Remark 1.5], based on ideas of
Furstenberg. Wolff showed that dim S >max

(
c+ 1

2 , cn
)
, and gave examples of S

with dim S = 3
2 c+ 1

2 .
More generally, we can ask the same question about k-planes:

Question 1.2 (k-plane Furstenberg set problem). Let S be a compact subset of Rn

such that, for every k-plane W ⊂ Rn , there is a k-plane parallel to W whose
intersection with S has Hausdorff dimension at least c. What can be said about the
Hausdorff dimension of S?
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supported by NSF Grant DMS-1302057.
MSC2010: primary 14G15; secondary 13P10, 42B25, 51E20.
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In this paper, we consider discrete and finite-field analogues of the k-plane
Furstenberg set problem.

Question 1.3 (k-plane Furstenberg set problem over finite fields). Let Fq be a finite
field, and let S be a subset of Fn

q such that, for every k-plane W ⊂ Fn
q , there is a

k-plane parallel to W whose intersection with S has cardinality at least qc. What
can be said about |S|?

We begin by recalling some known results about Question 1.3 from the case k= 1.
We write |S| & f (q, n, k, c) to mean that |S| > C f (q, n, k, c) for a constant C
which may depend on n, k but which is independent of q.

The method of Dvir’s proof of the finite field Kakeya conjecture [2009, Theo-
rem 1.5] shows immediately that

|S|& qcn, (1)

and a lower bound
|S|& qc+(n−1)/2 (2)

follows immediately by elementary combinatorial considerations, as we now explain.
The number of triples (L , P1, P2) where L is one of the hypothesized lines and P1

and P2 are points of S contained in L is at least q(n−1)+2c since at least qn−1 lines
are needed to cover all directions and each line contains at least qc points. But
the map sending (L , P1, P2) to (P1, P2) is an injection into S2; we conclude that
|S|& qc+(n−1)/2, as claimed.

In the other direction, Ruixiang Zhang [2015, Theorem 2.8] has produced exam-
ples showing that it is possible to have

|S|. q(n+1)(c/2)+(n−1)/2.

He conjectures that this upper bound is in fact sharp when q is prime. It is not sharp
in general: an example of Wolff [1999, Remark 2.1] shows that when q = p2 and
c = 1

2 it is possible to have
|S|. qn/2.

In particular, when q = p2 both lower bounds (1) and (2) are sharp at the critical
exponent c = 1

2 .
Much less is known about higher k. In [Ellenberg et al. 2010, Conjecture 4.13],

the first author, with Oberlin and Tao, proposed a k-plane maximal operator esti-
mate in finite fields. When k = 1, we prove the estimate [Ellenberg et al. 2010,
Theorem 2.1], which bounds the Kakeya maximal operator and generalizes Dvir’s
theorem. For general k it remains a conjecture. Its truth would imply that, for S
satisfying the hypothesis in Question 1.3,

|S|& qcn/k .
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The main goal of the present paper is to show that this proposed lower bound for
the k-plane Furstenberg problem is in fact correct.

Proposition 1.4. Let S be a subset of Fn
q . Let c ∈ [0, k]. Suppose that, for each

k-plane W ⊂ Fn
q , there is a k-plane V parallel to W with |S ∩ V | ≥ qc. Then

|S|> Cqcn/k

for some constant C depending only on n and k.

The condition c ∈ [0, k] in the statement is superfluous, since a k-plane has
at most qk points in all. We include it in order to emphasize the analogy with
Theorem 1.5. See Remark 1.6 for more discussion of this point.

The constant C is independent of c; this fact is a consequence of the geometric
nature of our proof, which in the end is not about subsets of Fn

q but about subschemes
of affine space over an arbitrary base field, as in Theorem 1.7.

In order to prove Proposition 1.4, we introduce an algebraic technique which is
familiar in algebraic geometry but novel in the present context; that of degeneration.

A subset of Fn
q can be thought of as a reduced 0-dimensional subscheme of the

affine space An/Fq . Once this outlook has been adopted, it is natural to pose the
Furstenberg set problem in a more general context, addressing all 0-dimensional
subschemes, not only the reduced ones.

Denote by R the polynomial ring Fq [x1, . . . , xn]. A 0-dimensional subscheme S
of An is defined by an ideal I ⊂ R such that R/I is a finite-dimensional vector space
over Fq . The scheme S is the affine scheme Spec R/I . When R/I is isomorphic to
a direct sum of fields, S is reduced and can be thought of as a set of points, and I
is the ideal of polynomials which vanish on the set of points.

By contrast, a typical nonreduced example is the “fat point” S defined by I =
(x1, . . . , xn)

d . We think of S as a copy of the origin which has been “thickened”
infinitesimally; to evaluate a function at S is to specify its values and all its partial
derivatives of degree at most d − 1. In particular, to say a polynomial f vanishes
at S is to say its partials of degree at most d − 1 all vanish at the origin 0, which is
exactly to say it belongs to the ideal I .

We denote dimFq R/I by |S|; when S is reduced (i.e., a set of points) then |S|
is the cardinality of the set of geometric points of S, just as the notation suggests.
When S is the fat point defined by I = (x1, . . . , xn)

d+1 then S/I has an Fq basis
consisting of all monomials in x1, . . . , xn of degree at most d. It follows that
|S| =

(n+d
d

)
.

Our main theorem is that the lower bound on the size of a Furstenberg set asserted
in Proposition 1.4 applies word for word to Furstenberg schemes.

Theorem 1.5. Let S be a 0-dimensional subscheme of An/Fq . Let c ∈ [0, k].
Suppose that, for each k-plane W ⊂ An defined over Fq , there is a k-plane V
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parallel to W with |S ∩ V | ≥ qc. Then

|S|> Cqcn/k

for some constant C depending only on n and k.

Remark 1.6. The condition c ∈ [0, k] is superfluous in Proposition 1.4, but not
in Theorem 1.5. The subscheme of A2 cut out by the ideal (x, yN ), for instance,
intersects the line x = 0 in degree N and every other line in degree 1. Note that
N can be much larger than q; once we leave the world of reduced schemes, there
is no a priori upper bound for the intersection of S with a line! In particular, the
union of q + 1 rotations of this scheme has |S| on order Nq and has |S ∩ V | ≥ N
for every Fq -rational line V ∈ A2. If N = qc and we allowed c> 1, we would have
|S| ∼ qc+1

≤ q2c, violating the theorem statement.

Why is Theorem 1.5 easier to prove than its special case Proposition 1.4? The
answer involves certain parameter spaces for Furstenberg set problems (constructed
in Section 4) that allow us to vary the collection of points S. The degenerate 0-
dimensional schemes form the boundary of this parameter space, and we can bound
various functions for all S by bounding them for these degenerate schemes. Then,
as happens very often in algebraic geometry, after overcoming an initial resistance
to degenerating to a nonsmooth situation, we discover that the degenerate situation
is actually easier than the original one.

Because our arguments are geometric in nature, they apply over a general field k,
not only finite fields. The k-planes through the origin in An — which we may think
of as the set of possible directions — is parametrized by the Grassmannian Gr(k, n).
Given m, k, and S, we let 6S

m,k ⊆ Gr(k, n)(k) denote the set of directions ω such
that there is some k-plane V in direction ω with |S ∩ V | ≥ m. We call such a
direction m-rich. Our key technical idea is to observe that the set of m-rich k-plane
directions is more naturally thought of as the set of k-points on a scheme X S

m,k ,
cut out by polynomial equations on the Grassmannian, and to closely study the
properties of those defining equations. We define X S

m,k precisely in Section 4. This
point of view leads to the following more flexible theorem, from which Theorem 1.5
will follow without much trouble.

Theorem 1.7. Let k be an arbitrary field and let S be a 0-dimensional subscheme
of An/k. Let X S

m,k ⊆ Gr(k, n) be the moduli space of directions of m-rich k-planes
for S. Then either

(1) X S
m,k = Gr(k, n) (that is, every k-plane direction is m-rich) and |S| is at least

C1mn/k , for a constant C1 depending only on n and k; or

(2) 6S
2m,k is contained in a hypersurface Z ⊆ Gr(k, n) of degree at most C2|S|/m,

for a constant C2 depending only on n and k.
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The connection between Theorem 1.7 and Theorem 1.5 involves a descending
induction argument to reduce to the case k = n − 1, combined with a simple
observation about Fq-points. Working over Fq , let k = n − 1 and m = qc and
assume that |S| = o(qcn/(n−1)). Then Theorem 1.7(2) implies that X S

m,n−1 lies in
a hypersurface of degree o(q). However, this would contradict the hypotheses of
Theorem 1.5, as no hypersurface of degree less than q can contain every Fq -point
of Gr(n− 1, n).

Remark 1.8. Our results do not rely on Dvir’s theorem [2009, Theorem 1.5], and
hence the special case of Theorem 1.5 when k = c = 1 yields what seems to us an
independent proof of Dvir’s theorem on Kakeya sets in finite fields.

Remark 1.9. The bounds in Theorem 1.5 are sharp for every c; take S to be the
fat point of degree qc supported at the origin, so that the intersection of S with
any k-plane is on order qck and |S| is on order qcn . The bounds in Proposition 1.4,
however, are not sharp, or at least are not sharp over the whole range c ∈ [0, k].
Already when k = 1 we see that the bound |S|& qcn fails to be sharp only when
c< 1

2 (and when q is prime, it fails to be sharp for c< 1, by a result of Zhang [2015,
Theorem 1.4].) The results of the present paper suggest that purely algebraic
arguments apply to 0-dimensional schemes over arbitrary fields and are effective at
controlling k-planes which are very rich in incidences, while more combinatorial
arguments, which apply only to point sets, may be stronger tools for bounding
incidences arising from k-planes which are not so rich in points.

Remark 1.10. The scheme-theoretic methods of this paper may seem very distant
from anything that could be of use in Euclidean problems. But there is an interesting
similarity between the degeneration method used here and the method used by Ben-
nett, Carbery, and Tao in their work on the multilinear Kakeya conjecture [Bennett
et al. 2006]. Their work required bounding an `p norm on a sum of characteristic
functions of thin tubes in different directions; one idea in their paper involves
sliding all these tubes towards 0 until they all intersect at the origin, and showing
that the quantities they are trying to bound only go up under that process. (See
especially [Bennett et al. 2006, Question 1.14].) An argument of this kind can also
be found in [Bennett et al. 2009]. Our method is in some sense very similar; the
main degeneration we consider is a dilation, where all points in S move to 0 and all
lines in direction ω slide to the line through 0 in direction ω. Our hope is that the
large existing body of work in this area of algebraic geometry may provide more
ideas for carrying out “degeneration” arguments in the Euclidean setting.

This paper is organized as follows. In Section 2 we outline some notation that
we will use throughout the paper. In Section 3 we give a detailed sketch of the
proof of Theorem 1.5. Section 4 contains much of the technical work of the paper,
as we construct the schemes X S

m,k and study some of their essential properties. In
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Section 5, we focus on the special case of when X S
m,k equals the entire Grassmannian,

as this plays a central role in our main results. Sections 6 and 7 then contain the
proofs of Theorems 1.5 and 1.7. In Section 8 we discuss an approach to the k-plane
restriction conjecture of [Ellenberg et al. 2010], and Section 9 concludes with a few
examples.

2. Notation and background

In this section we gather some of the notation that we will use throughout. For
reference, we also gather some of the notation from the introduction. Throughout,
k will denote an arbitrary field and Fq will denote a finite field of cardinality q . If
Z is a scheme over k and k′ is a field over k, then we write Z(k′) for the k′-valued
points of Z .

We use S to denote a 0-dimensional subscheme of An/k, and IS to denote its defin-
ing ideal, so that S = Spec k[x1, . . . , xn]/IS . We set |S| := dimk k[x1, . . . , xn]/IS .
If S is a 0-dimensional subscheme of An/k as above, and V is a linear space cut
out by linear forms `1, . . . , `s , we mean by S∩V the scheme-theoretic intersection
Spec k[x1, . . . , xn]/(IS+(`1, . . . , `s)). We say that V is m-rich for S if |S∩V |≥m.

We also review a few concepts about ideals. Let R be a graded k-algebra of
finite type and let J ⊆ R be an ideal. The radical of J , denoted

√
J , is the ideal

√
J = { f ∈ R | f n

∈ J for some n ≥ 0}.

The ideal
√

J contains all functions that vanish on the subset V (J )⊆ Z . The m-th
power of J , denoted J m , is the ideal generated by m-fold products of functions
from J :

J m
= 〈 f = f1 f2 · · · fm | fi ∈ J 〉 ⊆ R.

If J is prime, then we can define the m-th symbolic power of J , denoted J (m), to
be the J -primary component of J m . A similar definition is used for ideals J which
are not prime.

However, there is a simpler definition of symbolic powers in the cases arising in
this paper. Namely, if R is the homogeneous coordinate ring of a smooth, projective
subvariety Z ⊆ Pr , then we have the following geometric characterization of
symbolic powers due to Zariski and Nagata [Eisenbud 1995, §3.9]. Assume that
I ⊆ R is radical. Then the symbolic power I (m) equals the ideal of functions that
vanish with multiplicity m along the locus V (I )⊆ Z . In particular, if we write mx

for the homogeneous prime ideal in R corresponding to a point x ∈ V (I ), then

I (m) =
⋂

x∈V (I )

mm
x .

In general, we have I m
⊆ I (m), but not equality.
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3. Sketch of the proof

We begin with an overall sketch of the proof of Theorem 1.5. The idea is as follows.
Let S be a 0-dimensional subscheme of An . Then we can degenerate S by dilation to
a subscheme S0 of An which is supported at the origin, and which has |S0|= |S|. We
may think of S0 as the limit of t S as t goes to 0. If V is a k-plane with |S∩V | ≥ qc,
then |S0 ∩ V0| ≥ qc, where V0 is the k-plane through the origin parallel to V . In
particular, the Furstenberg condition on S implies that |S0 ∩ V0| ≥ qc for every
Fq -rational k-plane through the origin in An . The supremum over a parallel family
of k-planes has disappeared from the condition, which allows for an easy induction
argument reducing us to the case k = n − 1. Namely: given that Theorem 1.5
holds for k = n − 1, let W0 be a (k+1)-plane through the origin in An . Every
k-plane V0 through the origin in An satisfies |S0 ∩ V0| ≥ qc, so Theorem 1.5 tells
us that |S0 ∩W0| ≥ qc(k+1)/k for every choice of W0. Iterating this argument n− k
times gives us the desired bound |S0| ≥ qcn/k .

This leaves the proof of Theorem 1.5 in the hyperplane case. We prove this
proposition by considering a geometric version of the Radon transform. The Radon
transform may be thought of as a function fS on the Grassmannian Gr(n− 1, n)∼=
Pn−1, defined by

fS(V0)= |S0 ∩ V0|.

(Usually the Radon transform is thought of as a function on all hyperplanes, not
only those through the origin; in this case, since S0 is supported at the origin, the
Radon transform vanishes on those hyperplanes not passing through the origin.)

Unfortunately, the notion of real-valued function doesn’t transfer to the scheme-
theoretic setting very neatly; what works better is the notion of level set. Naively,
we might define

X S0
m,n−1 = {V0 ∈ Gr(n− 1, n) | |V0 ∩ S0| ≥ m}

as the set of m-rich hyperplanes through the origin.
It turns out, however, that to make the notion of Radon transform behave well

under degeneration, we need to think of the level set X S0
m,n−1 not as a subset of the

k-points of Gr(n−1, n), but as a subscheme of Gr(n−1, n). In fact, for easy formal
reasons, it is a closed subscheme. This viewpoint has the further advantage that
we can argue geometrically, without any reference to the field over which we are
working. We explain the definition of X S0

m,n−1 and its behavior under degeneration
of S in Section 4, which is where most of the technical algebraic geometry is to
be found.

We show in Proposition 5.1 that, for m sufficiently large relative to N (n−1)/n , the
level scheme X S0

m,n−1 is not the whole of Gr(n− 1, n). This argument involves a
further degeneration, a Gröbner degeneration from S0 to a member of a yet more
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restricted class of schemes called Borel-invariant subschemes. Thus, X S0
m,n−1, being

Zariski closed, is contained in a proper hypersurface. We bound the degree of this
hypersurface in part (2) of Theorem 1.7 (by means of explicit defining equations),
and this provides the final piece of the proof of Theorem 1.5.

4. The schemes X S
m,k

Beginning in this section, we work over an arbitrary field k and omit the field k
from most of the notation, for example writing An in place of An/k. It may be
useful for the reader to imagine that k = Fq .

Initially, we let S be a collection of points (a reduced 0-dimensional scheme)
in An . Let S0 be the degeneration of S by the dilation action. This can be defined
concretely as follows. Let I ⊂ k[x1, . . . , xn] be the ideal of polynomials vanishing
at S. If t is an element of k∗, then the ideal of functions vanishing at the dilation
St := t S is precisely

It = { f (t−1x1, . . . , t−1xn) | f ∈ I }.

We then ask what happens as “t goes to 0”. Of course, this doesn’t literally make
sense since k is not necessarily R or C, but may be a finite field or something
even more exotic. Nonetheless, if one thinks of t as getting “smaller”, than
f (t−1x1, . . . , t−1xn) will be “dominated” by its highest-degree term fd , a homo-
geneous polynomial. So the dilation I0 is defined to be the homogeneous ideal gener-
ated by the highest-degree terms of polynomials in I , and S0=Spec k[x1, . . . , xn]/I0

is the subscheme of An cut out by the vanishing of the polynomials of I0. It’s clear
that |St | = |S| for all t ∈ k∗; in fact, St is isomorphic to S. It turns out that S0,
while not typically isomorphic to S, does satisfy |S0| = |S|, as a consequence of
the Hilbert polynomial being constant in flat families.

Now let 6S
m,k ⊆ Gr(k, n)(k) denote the set of directions of all k-planes that

are m-rich for S. As observed in the first paragraph of Section 3, if S0 is the
degeneration of S by the dilation action, then 6S0

m,k will contain 6S
m,k . This follows

from the following standard lemma.

Lemma 4.1. Let V be a k-plane in An such that |S∩V | ≥m. Let V0 be the k-plane
through the origin parallel to V . Then |S0 ∩ V0| ≥ m.

Geometrically, we think of the rationale for Lemma 4.1 as follows: if V is a
k-plane with |S ∩ V | ≥ m, then for every t , the dilation t S is contained in the
plane tV . As t goes to 0, tV converges to the k-plane V0 parallel to V and through
the origin, and we find that |S0 ∩ V0| ≥ m.

Proof. We consider St ∩ Vt as a family of 0-dimensional schemes over A1
=

Spec(k[t]). When t 6= 0, the degree of the fiber is constant and equals |S ∩ V |. By
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semicontinuity (see [Hartshorne 1977, Theorem III.12.8] or Proposition 4.8 below)
we have |S0 ∩ V0| ≥ |S ∩ V |. �

We henceforth focus on the case on the case where S is a nonreduced 0-
dimensional scheme supported at the origin and defined by a homogeneous ideal
IS ⊆ k[x1, . . . , xn]. We let N := |S| = dimk k[x1, . . . , xn]/IS .

Constructing the schemes X S
m,k. In this section, and henceforth, we adopt a more

geometric point of view, replacing the set 6S
m,k with a moduli scheme X S

m,k of
m-rich k-plane directions, satisfying

X S
m,k(k)=6

S
m,k .

The key result can be summarized as follows.

Proposition 4.2. Fix integers m and k and fix a 0-dimensional scheme S supported
at the origin and defined by a homogeneous ideal I . There exists a closed subscheme
X S

m,k ⊆ Gr(k, n) such that the set X S
m,k(k) of k-rational points on X S

m,k is naturally
in bijection with set 6S

m,k of m-rich k-plane directions for S.
If we instead fix integers m, k and N , and let S vary among all such 0-dimensional

schemes of degree N , then the various X S
m,k can be realized as the fibers of a map

of schemes Ym,k→ H N , where H N stands for the Gm-equivariant Hilbert scheme
HilbN (An).

The proof, which is a standard construction in algebraic geometry, will use some
notions that may be unfamiliar to readers in other areas. For background, see [Bruns
and Herzog 1993, §4] about Hilbert functions and Hilbert polynomials and [Griffiths
and Harris 1978, Chapter 1.5] or [Kleiman and Laksov 1972] about Grassmannians.

Proof of Proposition 4.2. Let H N stand for the Gm-equivariant Hilbert scheme
HilbN (An). This scheme parametrizes homogeneous ideals J ⊆ k[x1, . . . , xn] such
that dimk k[x1, . . . , xn]/J = N ; equivalently, it parametrizes zero-dimensional
subschemes of An that are equivariant with respect to the Gm dilation action. (Note
that H N decomposes as a union of multigraded Hilbert schemes depending on the
Hilbert function of J . See [Haiman and Sturmfels 2004, Theorem 1.1] for details.)

We want to define an incidence scheme that parametrizes pairs (V, S) where V
is an m-rich k-plane for S. We will write [S] ∈ H N for the point corresponding
to S and we will similarly write [V ] ∈ Gr(k, n) for the class corresponding to a
k-plane V . We define our incidence scheme as follows. Let IH ⊆OH N [x1, . . . , xn]

be the ideal sheaf for the universal family over the Hilbert scheme. We write
OU :=OH N [x1, . . . , xn]/I for the structure sheaf of the universal family over the
Hilbert scheme. The ideal sheaf I defines a closed subscheme U ⊆ H N

×An whose
structure sheaf is OU .
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Consider the following diagram of various projections from H n
×An
×Gr(k, n):

H N
×An

ρ1
�� ρ2

''

H N
×Gr(k, n)

σ1

��
σ2 ''

H N An Gr(k, n)

There is a tautological sequence

0→ S→OGr(k,n)⊗W →Q→ 0

of vector bundles on Gr(k, n) of rank n− k, n, and k, respectively, where the fiber
of S over the point [V ] ∈ Gr(k, n) is the (n−k)-dimensional space of linear forms
vanishing at V . (Readers unfamiliar with the Grassmannian might see [Griffiths
and Harris 1978, Chapter 1.5]. Note that this reference uses Gr(k, n) to parame-
trize subbundles of dimension k, whereas we follow the convention that Gr(k, n)
parametrizes quotient bundles of dimension k, but there is a natural way to relate
these two descriptions.)

We now seek to define a map

8 : σ ∗2 S⊗ σ
∗

1 ρ2∗OU → σ ∗1 ρ2∗OU (3)

of vector bundles of ranks (n− k)N and N , respectively. The scheme Ym,k will be
defined as a particular degeneracy locus of 8. The map 8 will be built from two
maps µ and ν.

Write the vector space W as W ∼= 〈x1, . . . , xn〉. Identifying W with the space
of linear forms in k[x1, . . . , xn], we get a multiplication map W ⊗ OU → OU

such that xi ⊗OU → OU is given by multiplication by xi . This passes to a map
W ⊗ ρ2∗OU → ρ2∗OU and in turn to a map

µ :W ⊗ σ ∗1 ρ2∗OU → σ ∗1 ρ2∗OU .

To define ν we take the inclusion S → OGr(k,n) ⊗ W from the tautological
sequence and pull back by σ ∗2 to obtain ν : σ ∗2 S→OGr(k,n)⊗W .

Combining µ and ν, we have

σ ∗2 S⊗ σ
∗

1 ρ2∗OU
ν⊗id
−→OGr(k,n)⊗W ⊗ σ ∗1 ρ2∗OU ∼=W ⊗ σ ∗1 ρ2∗OU

µ
−→ σ ∗1 ρ2∗OU ,

and we define 8 in (3) as this composition.
We then define

Ym,k ⊆ Gr(k, n)× H N

by the vanishing of the (N−m+1) × (N−m+1) minors of 8. We claim that
the points of Ym,k in Gr(k, n)× H N are precisely those pairs ([V ], [S]) such that
|S ∩ V | ≥ m.
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To see this, we consider a fixed 0-dimensional scheme S such that |S| = N . We
then define X S

m,k as follows:

Definition 4.3. Fix m, k and S as above, with |S| = N . We define X S
m,k to be the

fiber of Ym,k over [S] ∈ H N :

X S
m,k

//

��

Ym,k

��
[S] // H N

The defining equations of X S
m,k are given by the (N−m+1)×(N−m+1) minors

of the map
8 : S⊗OS→OGr(k,n)⊗OS, (4)

which is a map of vector bundles on Gr(k, n). At a point [V ] ∈Gr(k, n) the cokernel
of8 defines the structure sheaf of S∩V . Thus, [V ]∈ X S

m,k if and only if the cokernel
has degree at least m, which is exactly what we wanted. In particular, as a set,

X S
m,k(k)= {[V ] | V is m-rich for S} ⊆ Gr(k, n)(k)=6S

m,k,

which is what we claimed above. �

Local structure. Fix k and S as above. We embed Gr(k, n) into P(
n
k)−1 via the

Plücker embedding, so that X S
m,k ⊆ P(

n
k)−1 for all m. See [Miller and Sturmfels

2005, Chapter 14.1] or [Griffiths and Harris 1978, Chapter 1.5] for background on
the Plücker embedding.

Definition 4.4. Throughout the remainder of this section, we will simplify notation
by assuming that we have fixed S and k. We can then let Jm be the ideal of
(N−m+1)× (N−m+1) minors of 8 defining X S

m,k , and we consider this ideal as
an ideal of the homogeneous coordinate ring of Gr(k, n). We also let Im :=

√
Jm

denote the radical of Jm .

Note that Jm ⊆ Im and that both ideals define the same closed subscheme, but
they may not be equal. In particular, it is possible that there could be low-degree
polynomials vanishing on X S

m,k (and hence lying in Im) which do not come from Jm .

Lemma 4.5. There is a constant C depending only on n and k such that the ideal Jm

is generated in degree at most C(|S|−m+1). It follows that Im contains an element
of degree at most C(|S| −m+ 1), i.e., that Xm lies on a hypersurface of degree at
most C(|S| −m+ 1).

Proof. Let N := |S|, so that we can identify OS with kN , and have

8 : S⊕N
→O⊕N

Gr(k,n).
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Let OGr(k,n)(1) be the Plücker line bundle on Gr(k, n). There is a constant d, de-
pending only on k and n, such that S⊗OGr(k,n)(d) is globally generated [Hartshorne
1977, Theorem 5.17]. If M := dim H 0(Gr(k, n),S ⊗OGr(k,n)(d)), then we have
a surjection

OGr(k,n)(−d)⊕M ·N
→ S⊕N .

We now take k × k minors of 8, with k = |S| −m + 1, which yields the ideal
sheaf Jm corresponding to the ideal Jm as the image of the map

k∧
8=

k∧
S⊕N
⊗

k∧
O⊕N

Gr(k,n)→OGr(k,n).

There is a natural surjection

k∧
OGr(k,n)(−d)⊕M ·N

⊗

k∧
(O⊕N

Gr(k,n))
∗
→

k∧
S⊕N
⊗

k∧
(O⊕N

Gr(k,n))
∗,

which in turn surjects onto Jm . This proves that Jm is generated in degree at
most d · k. Since Im ⊇ Jm , the second statement follows immediately. �

Lemma 4.6. Assume that the k-plane V satisfies |S ∩ V | ≥ m. Let mV be the
maximal ideal of the point [V ] ∈ Gr(k, n). If ` ∈ N with `≤ m, then

J` ⊆mm−`+1
V .

Proof. We localize the map 8 from (4) at the point [V ] to get an N (n−k)×N map
of free OGr,[V ]-modules. After choosing bases, we can write this as a matrix, and we
denote this by 8[V ]. Since V intersects S in degree m, it follows that 8[V ] has rank
N −m. We are over a local ring, so every entry of this matrix is either a unit or lies
in the maximal ideal mV . The matrix thus has a minor of size (N−m)× (N−m)
that is a unit, and so after inverting this element and performing row and column
operations, we can rewrite

8V =

(
IdN−m 0

0 A

)
,

where A is an (N (n−k)−(N−m))×m matrix consisting entirely of entries lying
in the maximal ideal (otherwise 8v would have rank N −m+ 1).

It follows that the ideal of (N−`+1)× (N−`+1)-minors of 8V is the same
as the ideal of (m−`+1) × (m−`+1) minors of A, and every such minor is a
determinant of entries lying in mV , and this yields the desired inclusion. �

Corollary 4.7. If m ≥ ` then J` belongs to the symbolic power I (m−`+1)
m .

Proof. Since the Grassmannian is smooth, this follows from Lemma 4.6 and the
Zariski–Nagata theorem. See also the discussion in Section 2. �
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Semicontinuity. The total parameter space Ym,k enables us to study properties
of X S

m,k as S varies in H N . We can assign X S
m,k a Hilbert polynomial in Q[t] via

the Plücker embedding of the Grassmannian. We compare polynomials in Q[t] by
saying that f (t) > g(t) if this is true for all sufficiently large t .

Proposition 4.8. Let Z ⊆ Pr
×V be a closed subscheme and let π : Z→ V be the

projection map. For v ∈ V we defined Zv as the scheme-theoretic fiber of π over v.
The Hilbert polynomial of the fibers of π are upper semicontinuous in the following
sense: for any fixed f (t) ∈Q[t], the set

{v ∈ V | the Hilbert polynomial of Zv is at least f (t)}

is a closed subset of V .

Proof. This is a standard fact but we include a short proof here for completeness.
Fix a Hilbert polynomial p(t) on Pr . The Gotzmann number provides a bound tp

such that, for any projective subscheme Z ′ ⊆ Pr with Hilbert polynomial p(t), the
Hilbert function and Hilbert polynomial of Z are equal in all degrees ≥ tp (see, e.g.,
[Bruns and Herzog 1993, Chapter 4.3]).

We may choose a flattening stratification for π , i.e., we may write V as a finite
disjoint union V =

⊔s
i=1 Vi such that the induced maps Z ×Pr×V Vi → Vi are all

flat. Since the Hilbert polynomial is constant in a flat family [Hartshorne 1977,
Theorem III.9.9], we see that only s distinct Hilbert polynomials appear among
the fibers of π . We set t0 to be the maximum of all of the Gotzmann numbers of
these Hilbert polynomials. Then for all t ≥ t0 and for all [S] ∈ H N , the Hilbert
polynomial of X S

m,k equals the Hilbert function in degrees t ≥ t0.
We next observe that insisting that the Hilbert function be at least a certain

value is a closed condition by [Hartshorne 1977, Theorem III.12.8]. Hence, for
any f (t) ∈ Q[t], the set of fibers whose Hilbert polynomial is at least f (t) is an
intersection of closed subschemes, and is thus a closed subscheme. �

In the present paper, we use Proposition 4.8 only through its easy corollary below.
We include Proposition 4.8 because we believe the more general formulation may
be useful in later applications of the techniques introduced in this paper.

Corollary 4.9. Let S⊆An
×A1 be a flat family of 0-dimensional schemes over A1.

Write St for the fiber of S over t ∈ A1. If X St
m,k = Gr(k, n) for all t 6= 0, then

X S0
m,k = Gr(k, n).

Proof. This amounts to the fact that Gr(k, n) has maximal Hilbert polynomial among
all closed subschemes of Gr(k, n). If R is the homogeneous coordinate ring of
Gr(k, n), then any closed subscheme of Gr(k, n) will be defined by a homogeneous
ideal J ⊆ R. For every degree d, the Hilbert function of R is an upper bound
for the Hilbert function of R/J , and it follows that the Hilbert polynomial of R —
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or equivalently the Hilbert polynomial of Gr(k, n)— is maximal as well. By
Proposition 4.8, it then follows that the subscheme W of A1 parametrizing those t
such that X St

m,k = Gr(k, n) is closed. But W is dense by hypothesis, so W is all
of A1. �

5. Criteria for X S
m,k = Gr(k, n)

One boundary case that will feature prominently in the proofs of both Theorem 1.5
and Theorem 1.7 is the case where X S

m,k = Gr(k, n) as schemes, or equivalently
when all k-planes (even those defined over field extensions of k) are m-rich for S.
This is impossible for a reduced 0-dimensional scheme, but it can happen when S
is nonreduced.

For instance, if S is the fat point defined by (x1, . . . , xn)
d+1 then every k-plane

will be m :=
(d+k

k

)
-rich. Observe that, in this case, |S| =

(d+n
n

)
≈ mn/k . This

suggests the following result, which gives a similar lower bound on |S| whenever
X S

m,k = Gr(k, n).

Proposition 5.1. Suppose that X S
m,k = Gr(k, n). Then there is a constant C de-

pending only on n and k such that |S| ≥ Cmn/k . More precisely, if m ≥
(b

k

)
then

|S| ≥
(b+(n−k)

n

)
.

Our proof of Proposition 5.1 relies on a further degeneration to a Borel-fixed
scheme, which we recall in Lemma 5.2 below. This degeneration is most easily
defined over an infinite field. Since the hypotheses and conclusions of the above
proposition are unchanged under field extension, we may prove this proposition
after extending the field k. Over a field k, we let B⊆GLn(k) be the Borel subgroup
consisting of invertible upper triangular matrices, and we let B act on k[x1, . . . , xn]

in the natural way. When k is infinite, then we say that a subscheme Z ⊆An is Borel-
fixed if Z is invariant under the action of B. We refer the reader to Sections 15
and 15.9 of [Eisenbud 1995], respectively, for an overview of term orders and
Gröbner basis techniques and for an introduction to Borel-fixed ideals.

Lemma 5.2. Let k be an infinite field and fix any 0-dimensional S supported at
the origin in An

k and defined by a homogeneous ideal I . Then there is a flat family
over A1 where the fiber over 0 ∈ A1

k is a Borel-fixed Sin and where every other fiber
is isomorphic to S via an isomorphism that extends to a linear automorphism of An

k.
Moreover, |Sin| = |S|.

Proof. Under the assumption that k is infinite, we can degenerate S to a Borel-fixed
subscheme via the following recipe. Fix a term order� satisfying x1� x2�· · ·� xn .
Choose a general element of B (this is where we use the assumption that k is infinite),
apply that element to I , and then take the initial ideal with respect to � to obtain a
new ideal Iin. The subscheme Sin ⊆An defined by Iin will be Borel-fixed [Eisenbud
1995, Theorem 15.20].
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The existence of the flat family is [Eisenbud 1995, Theorem 15.17]. The fact that
|Sin| = |S| is a consequence of flatness or of [Eisenbud 1995, Theorem 15.26]. �

Any Borel-fixed scheme Z ⊆ An
k will be fixed under the action of the diagonal

matrices, and hence it will be defined by some monomial ideal J . Moreover, the
monomials not in J ′ will be closed under the operation (called a Borel move) of
replacing x j with xi for i < j . We thus define a Borel-fixed set of monomials as a
collection of monomials satisfying this property, and where the complementary set
of monomials is closed under multiplication by each xi .

Lemma 5.3. (1) Let a, n ∈ N and let 3 be a Borel-fixed set of monomials in
x1, . . . , xn such that |3| ≥

(a
n

)
. Let 30 be the subset of 3 in which the power

of x1 is 0. Then

|3| − |30| ≥

(a−1
n

)
.

(2) Let 3 be a Borel-fixed set of monomials in x1, . . . , xn , and let 30 be the subset
of 3 in which the power of x1 is 0, and suppose |30| ≥

( b
n−1

)
. Then

|3| − |30| ≥

(b
n

)
.

Proof. For part (1) of the lemma, we argue by induction on n. For n = 1 the
assertion is clear: |3| − |30| = |3| − 1≥ a− 1.

Now we suppose the lemma holds in n− 1 variables. We denote by 3k the set
of monomials m in x2, . . . , xn such that xk

1 m lies in 3. (In particular, the definition
of 30 conforms with our existing notation.) We note that 3k is a Borel-fixed set of
monomials, so we can apply our inductive hypothesis. Plainly, 3k+1 ⊂3k .

Let m be a monomial in 3k and suppose mxi lies in 3k for some i ∈ {2, . . . , n}.
Then xk+1

1 m must also lie in3, since it differs from xk
1 mxi ∈3 by a Borel move. In

particular, m lies in 3k+1. Thus, any element in 3k\3k+1 must lie on the frontier
of 3k ; that is, mxi is not in 3k for any i ∈ {2, . . . , n}.

Suppose |30| ≥
( b

n−1

)
. Let 300 be the set of monomials in 30 in which the

power of x2 is 0. No two elements on the frontier of 30 can differ by a power of x2;
it follows that the cardinality of the frontier is at most |300|. Combining this with
the argument in the previous paragraph, we have

|31| = |30| − |30\31| ≥ |30| − |300| ≥

(b−1
n−1

)
,

where the latter inequality follows by applying the inductive hypothesis to 30.
Proceeding by induction, we have that |3k | ≥

(b−k
n−1

)
. Finally,

|3| − |30| =

∞∑
k=1

|3k | ≥

∞∑
k=1

(b−k
n−1

)
=

(b
n

)
. (5)
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We can now prove part (1) of the lemma. We have that |3| ≥
(a

n

)
. If |30| ≤

(a−1
n−1

)
,

then

|3| − |30| ≥

(a
n

)
−

(a−1
n−1

)
=

(a−1
n

)
and we are done. On the other hand, if |30| ≥

(a−1
n−1

)
, then (5) yields

|3| − |30| ≥

(a−1
n

)
.

So the desired conclusion holds in either case.
Part (2) of the lemma is immediate from (5) and the paragraph preceding it. �

Proof of Proposition 5.1. Without loss of generality, we may assume that k is an
algebraically closed field.

We first prove the statement in the special case when k = n− 1. Suppose that
X S

m,n−1 = Gr(n − 1, n). Let Sin be the 0-dimensional subscheme defined by a
Borel-fixed degeneration of the defining ideal of S, as in Lemma 5.2. Also by
Lemma 5.2, there is a flat family over A1 where the fiber over 0 ∈ A1 is Sin and
every other fiber is isomorphic to S via an isomorphism that extends to a linear
automorphism of An . Writing Sz for the fiber over a point z ∈ A1, the locus of z
such that X Sz

m,n−1 = Gr(n− 1, n) contains all t 6= 0, by the isomorphism between
Sz and S. By Corollary 4.9, that locus must contain 0 as well. In other words,
X Sin

m,n−1 = Gr(n− 1, n). Since |Sin| = |S|, it suffices to prove Proposition 5.1 in the
case of a Borel-fixed subscheme.

Let Sin be defined by the Borel-fixed monomial ideal J and let 3 be the set of
standard monomials for J , i.e., the monomials that do not lie in J . Let 30 ⊆ 3

be the set of standard monomials in the variables x2, . . . , xn . Since 30 is a basis
for k′[x1, . . . , xn]/(J, x1), we have that |30| is the degree of the intersection of Sin

with the hyperplane x1 = 0, whence |30| ≥ m by hypothesis. In fact, though we
won’t need this, it is not hard to see that for a Borel-fixed Sin, the hyperplane x1

has the minimal intersection with Sin among all hyperplanes, so that the equality
X S

m,n−1 = Gr(n− 1, n) is equivalent to the inequality |30| ≥ m.
Now suppose |30| ≥

( b
n−1

)
. Then

|3| = |30| + (|3| − |30|)≥
( b

n−1

)
+

(b
n

)
=

(b+1
n

)
,

where the inequality is Lemma 5.3(2). This proves Proposition 5.1 in the case
k = n− 1.

We now consider the general case. Assume that X S
m,k = Gr(k, n). We fix some

(k+1)-plane V through the origin. By hypothesis, |S∩V ′| ≥m for every k-plane V ′

through the origin; in particular, |S ∩ V ′| ≥ m for all V ′ contained in V . It follows
that X S∩V

m,k is the full Grassmannian Gr(k, V ). It follows from the k = n−1 case of
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Proposition 5.1 that |S ∩ V | ≥
(b+1

k+1

)
. This holds for every (k+ 1)-plane V through

the origin. In particular, taking m′ =
(b+1

k+1

)
, we have that X S

m′,k+1 = Gr(k + 1, n).
Iterating this argument yields the desired result. �

6. Proof of Theorem 1.7

Proof of Theorem 1.7. For part (1) of the theorem, we assume that X S
m,k =Gr(k, n).

We then apply Proposition 5.1 to obtain the theorem.
We now assume that X S

m,k 6=Gr(k, n). Then one of the (|S|−m+1)×(|S|−m+1)-
minors defining Jm is nonzero, and Corollary 4.7 implies that

Jm ⊆ I (m+1)
2m .

We next use a result of Hochster and Huneke, which generalizes a result of Ein,
Lazarsfeld, and Smith [Ein et al. 2001], to compare symbolic powers and ordinary
powers of the ideal I . If m is the irrelevant ideal for the homogeneous coordinate
ring R of the Grassmannian (i.e., the unique homogeneous maximal ideal in R,
which is generated by all of the linear forms in R), then [Hochster and Huneke
2002, Theorem 1.1(c)] implies that

mn+1 I (m+1)
2m ⊆ I2m

b(m+1)/nc.

Since Jm is generated in degree C(|S| − m + 1) by Lemma 4.5, it follows that
mn+1 Jm is generated in degree C(|S| −m+ 1)+ n+ 1. Thus I2m must have some
generators of degree at most (C(|S| −m+ 1)+ n+ 1)/b(m+ 1)/nc.

Now, if m + 1 < n then we can simply choose C2 = n and part (2) is trivial.
Otherwise, we can complete the proof of part (2) of the theorem by providing a
constant C2 depending only on n and k such that

C(|S| −m+ 1)+ n+ 1
b(m+ 1)/nc

≤ C2
|S|
m
,

noting that the expression on the left is well defined because the denominator is > 0.
This yields part (2) of the theorem. �

7. Proof of k-plane Furstenberg bound

Proof of Theorem 1.5. We first prove the theorem in the case k = n − 1. We
apply Theorem 1.7, setting m := 1

2qc. If X S
m,n−1 = Gr(n− 1, n) then we are done

by Theorem 1.7(1). Otherwise, Theorem 1.7(2) implies that X S
2m,n−1 lies in a

hypersurface of degree at most C2|S|/m. However, since X S
2m,n−1 contains all

Fq -rational points of Gr(n− 1, n), any such hypersurface must have degree at least
q + 1. It follows that

q + 1≤ C2
|S|
m
.
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Since m = 1
2qc we obtain

|S| ≥ C2(q + 1)
( 1

2qc)
≥ C2q1+c.

Since c ∈ [0, n− 1], we have 1+ c ≥ cn/(n− 1) and hence |S| ≥ C3qcn/(n−1) for
all sufficiently large q .

We can obtain the case of general k by an iterative argument exactly parallel
to the one in the proof of Proposition 5.1. Suppose that S is a 0-dimensional
subscheme of An/Fq . Without loss of generality we replace S by its dilation, so we
may suppose it is supported at 0 and invariant under Gm .

Assume that S has an m-rich k-plane in every direction. Since S is supported at
the origin, this is to say that |S ∩ V | ≥ m for every Fq -rational k-plane through the
origin. Fix some (k+ 1)-plane V through the origin. Then |S ∩ V ′| ≥ m for all V ′

contained in V . Now the proof given above of Theorem 1.5 in the case k = n− 1
implies that |S ∩ V |& m(k+1)/k , and this holds for every (k+ 1)-plane V . Iterating
the argument for k+ 2, k+ 3, . . . , n− 1, we get Theorem 1.5. �

Remark 7.1. Tracing the constants with a bit more care, one obtains the following
more precise lower bound, at least asymptotically in q . Fix any ε > 0. Assume that
|S ∩ V | ≥ qc/k! for every k-plane V ∈ Gr(k, n)(Fq). Then |S| ≥ (1− ε)qcn/k/n!
for q sufficiently large relative to ε.

The key point is that

qc

k!
≥

(
bqc/k
c

k

)
,

and hence by iteratively applying Proposition 5.1, we get that the intersection of S
with every hyperplane is at least

m :=
(
bqc/k
c

n−1

)
.

If X S
m,n−1 = Gr(n− 1, n) then we apply Proposition 5.1 again to obtain

|S| ≥
(
bqc/k
c

n

)
,

which grows like qcn/k/n! as q→∞, and hence is greater than (1− ε)qcn/k/n!
for q sufficiently large relative to ε. On the other hand, for X S

m,n−1 6= Gr(n− 1, n),
since X S

m,n−1 contains all of the Fq-points, the minimal degree of a hypersurface
containing X S

m,n−1 is at least q , and part (2) of Theorem 1.7 yields

q ≤
|S| −m+ n+ 2
b(m+ 1)/nc

.
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Using the fact that

m =
(
bqc/k
c

n−1

)
and q1+c(n−1)/k

≥ qcn/k,

we get the desired bound in this case as well.

8. Relation with the k-plane restriction conjecture

One may ask how far the methods of the present paper go towards proving the
k-plane restriction conjecture formulated in [Ellenberg et al. 2010], or even an
extension of that conjecture to a possibly nonreduced setting as in Theorem 1.5. One
immediate obstacle is that the most natural extension of the restriction conjecture is
false, even when k = 1, as we explain below.

The restriction conjecture concerns a certain maximal operator on real-valued
functions f on Fn

q . Namely: we define a function Tn,k on Gr(k, n) by assigning to a
k-plane direction ω the supremum, over all k-planes V parallel to ω, of

∑
v∈V | f (v)|.

Then the restriction conjecture proposes a bound for this operator:

‖Tn,k f ‖n . |Gr(k, n)(Fq)|
1/n
‖ f ‖n/k . (6)

One way to express this conjecture more geometrically is as follows. The bound
is invariant under scaling f , so we can scale f up until replacing f with a nearby
integer-valued function modifies the norm negligibly. Then we define the scheme S f

to be the union, over all x ∈ Fn
q , of a fat point of degree b f (x)1/k

c supported at x .
Thus,

|S f | ∼
∑

x

f (x)n/k
= ‖ f ‖n/k

n/k and |S f ∩ V | =
∑
v∈V

f (v),

so we can express Tn,k f (ω) as the supremum of |S f ∩V | over all planes V parallel
to ω. In other words, both sides of the conjectural inequality (6) are naturally
expressed in terms of the geometry of the scheme S f and its restriction to k-planes.
For a general 0-dimensional subscheme S ⊂ An , we write Tn,k(S) for the function
on Gr(k, n)(k) defined by

Tn,k(S)(ω)= sup
V ||ω
|S ∩ V |.

Then we can ask whether we have an inequality

‖Tn,k(S)‖n . |Gr(k, n)(Fq)|
1/n
|S|k/n (7)

for all 0-dimensional S; the case S = S f is more or less equivalent to the k-plane
restriction conjecture in [Ellenberg et al. 2010].

However, (7) does not hold for all S. For example, take k = 1, n = 2, and
let S be the scheme Spec Fq [x, y]/(x, yN ). That is, S is a scheme of degree N ,
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supported at the origin, which is contained in the line x = 0. Then T2,1(S) is N
in the vertical direction and 1 in all other directions; so ‖Tn,k(S)‖2 = (N 2

+ q)1/2,
while |S|k/n

= N 1/2. Then the desired inequality (7) becomes

(N 2
+ q)1/2 . (q + 1)1/2 N 1/2,

which holds only when N is small relative to q.
This is in some sense the same issue that arises in Remark 1.6, where our theorem

on Furstenberg schemes requires a condition c ∈ [0, k] which is automatically satis-
fied for Furstenberg sets. Something similar appears to be necessary to formulate
the correct restriction conjecture for schemes. For example: if S is actually of the
form S f and is contained in the line x = 0, it must be reduced, from which it follows
that |S| < q. It is an interesting question whether one can prove (7) under some
geometric conditions on S. Ideally, these conditions would be lenient enough to
include the schemes S f for all real-valued functions f . One natural such question
is as follows.

Question 8.1. Suppose S is a 0-dimensional subscheme of An/Fq which is con-
tained in a complete intersection of n hypersurfaces of degree Q. What upper
bounds on the schemes X S

m,k — say, on their Hilbert functions — can we obtain in
terms of |S| and Q?

Information about Question 8.1 would give insight into the case where f was an
indicator function of a set S, since in that case S is contained in An(Fq), which is a
complete intersection of the hypersurfaces xq

i − xi as i ranges from 1 to n.

9. Examples

Example 9.1. If |S| ≤ qc+α and c + α ≤ cn/k, then Theorem 1.7 implies that
all of the qc-rich k-planes of S must lie on a hypersurface of degree ≤ qα. For
instance, if |S| ≈ qc then all of the qc-rich k-planes of S must lie on a hypersurface
of bounded degree.

Example 9.2. Let k = 2 and n= 4, and let I be the monomial ideal whose quotient
ring has basis {1, x1, x2, x3, x4, x2

4}. Note that |S| = 6.
The source of 8 is a nontrivial vector bundle, and hence we cannot simply write

the map as a simple matrix. We thus consider the open subset of Gr(2, 4) where
the Plücker coordinate p12 is nonzero, and here we can write any 2-plane uniquely
as the vanishing set 

x1+
p23
p12

x3+
p24
p12

x4 = 0,

x2+
p13
p12

x3+
p14
p12

x4 = 0.
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Over this open subset, the map 8 can be written as a matrix

8=



1 x1 x2 x3 x4 x2
4 1 x1 x2 x3 x4 x2

4

1 0 0 0 0 0 0 0 0 0 0 0 0

x1 1 0 0 0 0 0 0 0 0 0 0 0

x2 0 0 0 0 0 0 1 0 0 0 0 0

x3
p23
p12

0 0 0 0 0 p13
p12

0 0 0 0 0

x4
p24
p12

0 0 0 0 0 p14
p12

0 0 0 0 0

x2
4 0 0 0 0 p24

p12
0 0 0 0 0 p14

p12
0


Recall that we compute X S

m,2 by the (|S|−m+1)-minors of 8. If m = 3 then we
get 4×4-minors of8which are all 0, and hence X S

3,2 contains every point in the open
subset p12 6= 0 and thus X S

3,2=Gr(2, 4). If m ≥ 5, then X S
m,2∩{p12 6= 0} =∅ since

the rank of 8 is 2. The case m = 4 is the most interesting, as then X S
4,2∩{p12 6= 0}

is defined by the ideal of 3× 3 minors of 8. This yields the ideal

J =
〈

p24

p12
,

p14

p12

〉
.

Thus, 6S
4,2 ∩ {p12 6= 0} is the set of all 2-planes of the form

x1+
p23
p12

x3 = 0,

x2+
p13
p12

x3 = 0.

Acknowledgments

We thank Terry Tao for introducing us to the question and for noting the similarity
between our method and that of [Bennett et al. 2006], and Ruixiang Zhang for
helpful discussions about the Furstenberg set problem. We also thank for David
Eisenbud for helpful conversations about Gröbner degenerations. We thank the
referee for thoughtful suggestions on improving the clarity of the paper.

References

[Bennett et al. 2006] J. Bennett, A. Carbery, and T. Tao, “On the multilinear restriction and Kakeya
conjectures”, Acta Math. 196:2 (2006), 261–302. MR 2275834 Zbl 1203.42019

[Bennett et al. 2009] J. Bennett, N. Bez, and A. Carbery, “Heat-flow monotonicity related to
the Hausdorff–Young inequality”, Bull. Lond. Math. Soc. 41:6 (2009), 971–979. MR 2575327
Zbl 1184.42001

[Bruns and Herzog 1993] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Studies in
Advanced Mathematics 39, Cambridge University Press, 1993. MR 1251956 Zbl 0788.13005

http://dx.doi.org/10.1007/s11511-006-0006-4
http://dx.doi.org/10.1007/s11511-006-0006-4
http://msp.org/idx/mr/2275834
http://msp.org/idx/zbl/1203.42019
http://dx.doi.org/10.1112/blms/bdp073
http://dx.doi.org/10.1112/blms/bdp073
http://msp.org/idx/mr/2575327
http://msp.org/idx/zbl/1184.42001
http://msp.org/idx/mr/1251956
http://msp.org/idx/zbl/0788.13005


1436 Jordan S. Ellenberg and Daniel Erman

[Dvir 2009] Z. Dvir, “On the size of Kakeya sets in finite fields”, J. Amer. Math. Soc. 22:4 (2009),
1093–1097. MR 2525780 Zbl 1202.52021

[Ein et al. 2001] L. Ein, R. Lazarsfeld, and K. E. Smith, “Uniform bounds and symbolic powers on
smooth varieties”, Invent. Math. 144:2 (2001), 241–252. MR 1826369 Zbl 1076.13501

[Eisenbud 1995] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Gradu-
ate Texts in Mathematics 150, Springer, New York, 1995. MR 1322960 Zbl 0819.13001

[Ellenberg et al. 2010] J. S. Ellenberg, R. Oberlin, and T. Tao, “The Kakeya set and maximal
conjectures for algebraic varieties over finite fields”, Mathematika 56:1 (2010), 1–25. MR 2604979
Zbl 1189.42010

[Griffiths and Harris 1978] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New
York, 1978. MR 507725 Zbl 0408.14001

[Haiman and Sturmfels 2004] M. Haiman and B. Sturmfels, “Multigraded Hilbert schemes”, J.
Algebraic Geom. 13:4 (2004), 725–769. MR 2073194 Zbl 1072.14007

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer,
New York, 1977. MR 0463157 Zbl 0367.14001

[Hochster and Huneke 2002] M. Hochster and C. Huneke, “Comparison of symbolic and ordinary
powers of ideals”, Invent. Math. 147:2 (2002), 349–369. MR 1881923 Zbl 1061.13005

[Kleiman and Laksov 1972] S. L. Kleiman and D. Laksov, “Schubert calculus”, Amer. Math. Monthly
79 (1972), 1061–1082. MR 0323796 Zbl 0272.14016

[Miller and Sturmfels 2005] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Gradu-
ate Texts in Mathematics 227, Springer, New York, 2005. MR 2110098 Zbl 1090.13001

[Wolff 1999] T. Wolff, “Recent work connected with the Kakeya problem”, pp. 129–162 in Prospects
in mathematics (Princeton, NJ), edited by H. Rossi, Amer. Math. Soc., Providence, RI, 1999.
MR 1660476 Zbl 0934.42014

[Zhang 2015] R. Zhang, “On configurations where the Loomis–Whitney inequality is nearly sharp
and applications to the Furstenberg set problem”, Mathematika 61:1 (2015), 145–161. MR 3333966
Zbl 06417234

Communicated by Ravi Vakil
Received 2015-04-20 Revised 2016-05-03 Accepted 2016-06-13

ellenber@math.wisc.edu Department of Mathematics, University of Wisconsin,
480 Lincoln Drive, Madison, WI 53706, United States

derman@math.wisc.edu Department of Mathematics, University of Wisconsin,
480 Lincoln Drive, Madison, WI 53706, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1090/S0894-0347-08-00607-3
http://msp.org/idx/mr/2525780
http://msp.org/idx/zbl/1202.52021
http://dx.doi.org/10.1007/s002220100121
http://dx.doi.org/10.1007/s002220100121
http://msp.org/idx/mr/1826369
http://msp.org/idx/zbl/1076.13501
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://msp.org/idx/mr/1322960
http://msp.org/idx/zbl/0819.13001
http://dx.doi.org/10.1112/S0025579309000400
http://dx.doi.org/10.1112/S0025579309000400
http://msp.org/idx/mr/2604979
http://msp.org/idx/zbl/1189.42010
http://msp.org/idx/mr/507725
http://msp.org/idx/zbl/0408.14001
http://dx.doi.org/10.1090/S1056-3911-04-00373-X
http://msp.org/idx/mr/2073194
http://msp.org/idx/zbl/1072.14007
http://dx.doi.org/10.1007/978-1-4757-3849-0
http://msp.org/idx/mr/0463157
http://msp.org/idx/zbl/0367.14001
http://dx.doi.org/10.1007/s002220100176
http://dx.doi.org/10.1007/s002220100176
http://msp.org/idx/mr/1881923
http://msp.org/idx/zbl/1061.13005
http://dx.doi.org/10.2307/2317421
http://msp.org/idx/mr/0323796
http://msp.org/idx/zbl/0272.14016
http://msp.org/idx/mr/2110098
http://msp.org/idx/zbl/1090.13001
http://msp.org/idx/mr/1660476
http://msp.org/idx/zbl/0934.42014
http://dx.doi.org/10.1112/S0025579314000357
http://dx.doi.org/10.1112/S0025579314000357
http://msp.org/idx/mr/3333966
http://msp.org/idx/zbl/06417234
mailto:ellenber@math.wisc.edu
mailto:derman@math.wisc.edu
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 10:7 (2016)

dx.doi.org/10.2140/ant.2016.10.1437

Local deformation rings for GL2 and a
Breuil–Mézard conjecture when ` 6= p

Jack Shotton

We compute the deformation rings of two dimensional mod l representations of
Gal(F/F) with fixed inertial type for l an odd prime, p a prime distinct from l,
and F/Qp a finite extension. We show that in this setting an analogue of the
Breuil–Mézard conjecture holds, relating the special fibres of these deformation
rings to the mod l reduction of certain irreducible representations of GL2(OF ).

1. Introduction

Let p be a prime and let F be a finite extension of Qp with absolute Galois group GF .
We study the (framed) deformation rings for two-dimensional mod l representations
of GF , where l is an odd prime distinct from p. More specifically, let E be a finite
extension of Ql with ring of integers O, uniformiser λ, and residue field F. Let

ρ : GF → GL2(F)

be a continuous representation. Then there is a universal lifting (or framed defor-
mation) ring R�(ρ) parametrising lifts of ρ. Our main result relates congruences
between irreducible components of Spec R�(ρ) to congruences between certain
representations of GL2(OF ), where OF is the ring of integers of F . Our method
is to give explicit equations for the components of Spec R�(ρ), which may be of
independent use.

If τ : IF→GL2(E) is a continuous representation that extends to a representation
of GF (an inertial type), then we say that a representation ρ : GF → GL2(E) has
type τ if its restriction to IF is isomorphic to τ . Say that an irreducible component
of Spec R�(ρ) has type τ if a Zariski dense subset of its E-points correspond
to representations of type τ . We define (Definition 4.1) a formal sum C(ρ, τ ) of
irreducible components of the special fibre Spec R�(ρ)⊗O F. For semisimple τ ,
this is obtained as the intersection with the special fibre of those components of
Spec R�(ρ) having type τ ; for nonsemisimple τ this must be slightly modified.
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To an inertial type τ we also associate an irreducible E-representation σ(τ) of
GL2(OF ), by a slight variant on the definition of [Henniart 2002] (see Section 3C).
For an irreducible F-representation θ of GL2(OF ), define m(θ, σ (τ )) to be the
multiplicity of θ as a Jordan–Hölder factor of the mod λ reduction of σ(τ). Then
we can state our main theorem:

Theorem 4.2. Let ρ : GF → GL2(F) be a continuous representation. For each
irreducible F-representation θ of GL2(OF ), there is a formal sum C(ρ, θ) of irre-
ducible components of Spec R�(ρ)⊗ F such that, for each inertial type τ , we have
the equality

C(ρ, τ )=
∑
θ

m(θ, σ (τ ))C(ρ, θ).

In fact the C(ρ, θ) are uniquely determined (at least for those θ which actually
occur in some σ(τ)).

This theorem is an analogue for mod l representations of GF of the Breuil–
Mézard conjecture [2002], which pertains to mod p representations of GQp . Our
statement is not in the language of Hilbert–Samuel multiplicities used in [Breuil
and Mézard 2002], but rather in the geometric language of [Emerton and Gee 2014].
The original conjecture of Breuil and Mézard was proved in most cases by Kisin
[2009a]; further cases were proved by Paškūnas [2015] by local methods, and the
full conjecture was proved when p > 3 in [Hu and Tan 2013]. The conjecture was
generalised to n-dimensional representations of GF in [Emerton and Gee 2014];
the only case known, outside of those just mentioned, is that of two-dimensional
potentially Barsotti–Tate representations (see [Gee and Kisin 2014]).

In the l 6= p setting, a comparison of special fibres of (very particular) local defor-
mation rings was used by Taylor [2008] to prove the change of level results needed
to obtain nonminimal automorphy lifting theorems. This is another motivation for
our result.

Our method of proof is to explicitly determine equations for deformation rings
of fixed type and, indeed, obtaining these explicit descriptions is another goal of
this paper. We reduce to the tamely ramified case, in which we use the relation

φσφ−1
= σ q ,

for φ ∈ GF a lift of Frobenius and σ ∈ IF a generator of tame inertia. Since we
are considering lifts ρ of fixed type, and so with fixed characteristic polynomial
of ρ(σ), we may use the Cayley–Hamilton theorem to reduce this equation to one
of degree at most two in the entries of ρ(φ) and ρ(σ). These explicit descriptions
show that the irreducible components of Spec R�(ρ)⊗E are always smooth (which
is also proved in [Pilloni 2008]) and that the reduced deformation rings in which the
semisimplification of the restriction to inertia is fixed are always Cohen–Macaulay
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(see Section 5E). It is natural to ask whether these properties persist beyond the
case of two-dimensional representations. We note that the generic fibres of our
local deformation rings have been studied in [Pilloni 2008; Reduzzi 2013], but their
methods say little about the integral structure.

In a forthcoming paper, we will extend Theorem 4.2 to the case of n-dimensional
representations using global methods.

The structure of this paper is as follows. In Section 2 we define the universal
deformation rings and show how to reduce their study to the case when ρ is tamely
ramified. We also prove some lemmas that will be useful in the calculations that
follow. In Section 3 we define the deformation rings with fixed inertial type that we
will need and discuss the construction of the representations σ(τ). In Section 4 we
state and prove the main theorem, modulo the calculations of Section 5 and results
of Section 6. Section 5 contains the calculations of explicit equations for local
deformation rings, divided into cases according to the value of q mod l. Finally, in
Section 6 we prove the results on the mod l reduction of the σ(τ) that are stated in
Section 3D (and used in the proof of Theorem 4.2).

2. Preliminaries

2A. Fields and Galois groups. Suppose that l 6= p are primes with l > 2.
Let F/Qp be a finite extension with ring of integers OF , maximal ideal pF ,

uniformiser $F , and residue field kF of order q. Let F have absolute Galois
group GF , inertia group IF , and wild inertia group PF . Let IF � IF/P̃F ∼= Zl be
the maximal pro-l quotient of IF , so that P̃F/PF ∼=

∏
l ′ 6=l,p Zl ′ . Note that P̃F is

normal in GF and write TF = GF/P̃F . The short exact sequence 1→ IF/P̃F →

TF → GF/IF → 1 splits, so that TF ∼= Zl o Ẑ. We fix topological generators σ of
this Zl and φ of this Ẑ such that φ is a lift of arithmetic Frobenius. Then the action
of Ẑ on Zl is given by

φσφ−1
= σ q . (1)

Let L/F be an unramified quadratic extension, with residue field kL .
Now let E/Ql be a finite extension with ring of integers O, residue field F

and uniformiser λ. Let ε : GF → Z×l be the l-adic cyclotomic character, and let
1 : GF → Z×l be the trivial character. If A is any O-algebra then we will regard
these as maps to A× via the structure maps Zl→O→ A.

Define two integers a and b by a = vl(q − 1) and b = vl(q + 1), where vl is the
l-adic valuation; at most one of a and b is nonzero since l is odd.

2B. Deformation rings. Suppose that M is an n-dimensional F-vector space and
that ρ : GF → GL(M) is a continuous representation. Let (ei )

n
i=1 be a basis for M ,

so that ρ gives a map ρ : GF → GLn(F).
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Let CO denote the category of artinian local O-algebras with residue field F,
and C∧O the category of complete noetherian local O-algebras with residue field F.
If A is an object of CO or C∧O, let mA be its maximal ideal. Define two functors

D(ρ), D�(ρ) : CO→ Set

as follows:

• D(ρ)(A) is the set of equivalence classes of (M, ι) where M is a free rank-n
A-module, ρ :GF→AutA(M) a continuous homomorphism, and ι:M⊗AF−→∼ M
an isomorphism commuting with the actions of GF .

• D�(ρ)(A) is the set of equivalence classes of (M, ρ, (ei )
n
i=1)where M is a free A-

module of rank n, ρ :GF→AutA(M) is a continuous homomorphism, and (ei )
n
i=1

is a basis of M as an A-module, such that the isomorphism ι : M ⊗A F −→∼ M
defined by ι : ei ⊗ 1 7→ ei commutes with the actions of GF .

In the first case, (M, ρ, ι) and (M ′, ρ ′, ι′) are equivalent if there is an isomorphism
α : M→ M ′, commuting with the actions of GF , such that ι= ι′ ◦α; in the second
case, (M, ρ, (ei )i ) and (M ′, ρ ′, (e′i )i ) are isomorphic if the map M→ M ′ defined
by ei 7→ e′i commutes with the actions of GF . There is a natural transformation of
functors D�(ρ)→ D(ρ) given by forgetting the basis.

Alternatively, when ρ is regarded as a homomorphism to GLn(F), we have the
equivalent definitions

D�(ρ)(A)= {ρ : GF → GLn(A) | ρ is continuous and lifts ρ}

and
D(ρ)(A)= D�(ρ)(A)/conjugacy by 1+Mn(mA).

The functor D(ρ) is not usually prorepresentable, but the functor D�(ρ) always
is (see, for example, [Kisin 2009b, 2.3.4]).

Definition 2.1. The universal lifting ring (or universal framed deformation ring)
of ρ is the object R�(ρ) of C∧O that prorepresents the functor D�(ρ). The universal
lift is denoted ρ�

: GF → GLn(R�(ρ)).

We recall a useful calculation (see, e.g., [Barnet-Lamb et al. 2014, Section 1.2]):

Lemma 2.2. The ring R�(ρ)[1/ l] is generically formally smooth of dimension n2.

The next lemma enables us to reduce to the case where the residual representation
is trivial on P̃F . Suppose that θ is an irreducible F-representation of P̃F . Then by
[Clozel et al. 2008, Lemma 2.4.11] there is a lift of θ to an O-representation of P̃F ,
which may be extended to an O-representation θ̃ of Gθ , where Gθ is the group
{g ∈ GF | gθg−1 ∼= θ}. For each irreducible representation θ of P̃F we pick such
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a θ̃ and a finite free O-module N (θ) on which P̃F acts as θ̃ . If M is a set-finite
O-module with a continuous action ρ of GF , then define

Mθ = HomP̃F
(θ̃ ,M).

The module Mθ has a natural continuous action ρθ of Gθ given by (g f )(v) =
g f (g−1v); the subgroup P̃F of Gθ acts trivially.

Lemma 2.3 (tame reduction). (1) Let M be a set-finite O-module with a continu-
ous action of GF . Then there is a natural isomorphism

M =
⊕
[θ ]

IndGF
Gθ
(N (θ)⊗O Mθ ),

where θ runs through a set of representatives for the GF -conjugacy classes of
irreducible representations of P̃F .

(2) The isomorphism of part (1) induces a natural isomorphism of functors:

D(ρ)−→∼
∏
[θ ]

D(ρθ ),

where θ runs through a set of representatives for the GF -conjugacy classes of
irreducible representations of P̃F .

(3) If R�(ρθ ) is the universal framed deformation ring for the representation ρθ
of Gθ/P̃F , then

R�(ρ)∼=

(⊗̂
[θ ]

R�(ρθ )
)
[[X1, . . . , Xn2−

∑
n2
θ
]],

where nθ = dim ρθ . This isomorphism lies above D(ρ) −→∼
∏
[θ ] D(ρθ ), the

isomorphism of part (2).

Proof. The first two parts are in [Clozel et al. 2008]: part (1) is Lemma 2.4.12
and part (2) is Corollary 2.4.13. Part (3) is the refinement to framed deformations
obtained by keeping track of a basis in the construction of part (1) of the proposition,
as in [Choi 2009, Proposition 2.0.5].

As [Choi 2009] is not easily available, we sketch the argument for part (3). Let
[θ1], [θ2], . . . be the GF -conjugacy classes of irreducible P̃F -representations. Pick
left coset representatives (gi j ) j for Gθi in GF . Write Ni for N (θi ), and choose an
O-basis ( fik)k of Ni .

Let A be an object of CO, M be a free rank n A-module with a continuous action
of GF , and Mθi be as above. Given (for each i) a basis (eil)

nθi
l=1 of Mθi , we can

produce a basis (ei jkl) j,k,l of

Mθi = A[GF ]⊗A[Gθ ] (Ni ⊗O Mθi )

defined by
ei jkl = gi j ⊗ fik ⊗ eil .
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Then (ei jkl)i, j,k,l is a basis of M .
Let F(A) be the set of Y = (Yi jkl,i ′ j ′k′l ′) which are n× n matrices of elements

of mA such that

Yi jkl,i ′ j ′k′l ′ = 0 if i = i ′ and j = j ′ = k = k ′ = 1

(so that n2
−
∑

n2
θi

“free” entries of Y remain). Then F defines a functor on CO
prorepresented by O[[X1, . . . , Xn2−

∑
n2
θ
]] (the variables X being simply an enumer-

ation of those Yi jkl,i ′ j ′k′l ′ which can be nonzero).
We then have a natural transformation of functors

F ×
∏
[θ]

D�(ρθ )→ D�(ρ)

taking the tuple (Y , (Mθi , ρθi , eil)i ) to the tuple(⊕
i

IndGF
Gθi
(Ni ⊗O Mθi ),

⊕
i

IndGF
Gθi
(θ̃i ⊗O ρθi ), (In +Y)(ei jkl)i, j,k,l

)
.

Then one can check (and this is what is done in [Choi 2009, Proposition 2.0.5])
that this is in fact an isomorphism, and so we get the claimed isomorphism of
prorepresenting objects. �

2C. Twisting.

Lemma 2.4. Suppose that χ : GF →O× is any character. Then there is a natural
isomorphism

R�(ρ)−→∼ R�(ρ⊗χ).

Moreover, if χ1 and χ2 satisfy χ1 = χ2 then they induce the same maps

R�(ρ)⊗ F−→∼ R�(ρ⊗χ i )⊗ F.

Proof. This follows easily from the isomorphism of functors

D�(ρ)→ D�(ρ⊗χ)

given by tensoring with χ (remembering that we are considering O-algebras). For
the last statement, observe that if the functors are restricted to F-algebras then the
isomorphism only depends on χ . �

Since every F-valued character lifts to O (using the Teichmüller lift) this shows
that R�(ρ)∼= R�(ρ⊗χ) for every χ : GF → F×.

We also need the calculation of the universal deformation ring of a character, to
which some of our calculations reduce. This is completely standard, but we include
it as a simple illustration of the method.
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Lemma 2.5. Let χ : GF → F× be a continuous character. Then

R�(χ)=
O[[X, Y ]]

((1+ X)la
− 1)

has la irreducible components, indexed by the la-th roots of unity. They are formally
smooth of relative dimension one over O.

Proof. By Lemma 2.4, we may take χ to be trivial. If χ is any lift of χ to an object
A of CO, then for g ∈ P̃F we must have χ(g)n = 1 for some n coprime to l, and
therefore χ(g) = 1, so that we are reduced to considering characters of TF . We
must have that χ(σ)q =χ(σ) and χ(σ)≡ 1 mod mA, and therefore that χ(σ)l

a
= 1.

We are then free to choose χ(φ). Writing χ(σ) = 1+ X and χ(φ) = 1+ Y , we
have shown that

D�(χ)(A)= HomC∧O

(
O[[X, Y ]]

((1+ X)la
− 1)

, A
)

functorially, and so the universal framed deformation ring is as claimed. �

2D. Multiplicities and cycles. Suppose that X is a noetherian scheme and that
F is a coherent sheaf on X . Let Y be the scheme-theoretic support of F , and
let d ≥ dim Y . Let Zd(X) be the free abelian group on the d-dimensional points
of X ; elements of Zd(X) are called d-dimensional cycles. If a ∈ X is a point
of dimension d write [a] for the corresponding element of Zd(X) and define the
multiplicity e(F, a) to be the length of Fa as an OY,a-module (this is zero if a 6∈ Y ).

Definition 2.6. The cycle Zd(F) associated to F is the element∑
a

e(F, a)[a] ∈ Zd(X).

If X = Spec A is affine and F = M̃ for a finitely generated A-module M , then
we will write Zd(M) for Zd(F).

If i : X→ X ′ is a closed immersion of X in a noetherian scheme X ′, then there is
a natural inclusion i∗ : Zd(X)→ Zd(X ′) for each d . For a coherent sheaf F on X
whose support has dimension at most d , we then have

i∗(Zd(F))= Zd(i∗(F)).

We will often use this compatibility without comment.
A cycle is effective if it is of the form

∑
na[a] for na≥ 0. We say that an effective

cycle C1 is a subcycle of an effective cycle C2 if C2−C1 is also effective.
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2E. A determinantal ring. For a, b, and c natural numbers, if I is the ideal gen-
erated by the a × a minors of a b × c matrix with independent indeterminate
entries over a Cohen–Macaulay ring A, then A/I is always Cohen–Macaulay (see
[Eisenbud 1995, Theorem 18.18]). We include a simple proof in the very special
case that we need below.

Proposition 2.7. Let k ≥ 2 be an integer and let A be either a field or a discrete
valuation ring. Let R = A[X1, . . . , Xk, Y1, . . . , Yk] and let I C R be the ideal
generated by the 2× 2 minors of(

X1 X2 · · · Xk

Y1 Y2 . . . Yk

)
.

Let S = R/I . Then S is a Cohen–Macaulay domain and is flat over A. It is
Gorenstein if and only if k = 2.

The same is true if we replace S by its completion S∧ at the “irrelevant” ideal
(X1, . . . , Xk, Y1, . . . , Yk).

Proof. Note that R and S are naturally graded A-algebras.
Suppose that A is a field. It is easy to see that Proj(S) is a smooth irreducible

projective variety over A of dimension k + 1 — it is covered by the open sets
{X i 6= 0} and {Yi 6= 0}, each of which is isomorphic to (A1

A \ {0})×Ak
A. Thus S

is a domain. We may extend A so that its cardinality is at least k+ 1, and choose
pairwise distinct α1, . . . , αk ∈ A×.

I claim that (X1 − α1Y1, . . . , Xk − αkYk, Y1 + · · · + Yk) is a regular sequence
in S. To see this, observe that Proj(S/(X1−α1Y1, . . . , X i −αi Yi )) is reduced (we
may check this on the affine pieces) and that its irreducible components are all of
the form

Proj
(

R
(X j −αi0Y j )1≤ j≤k + (X j , Y j )1≤ j≤i, j 6=i0

)
,

for 1≤ i0 ≤ i or of the form

Proj(S/(X1, . . . , X i , Y1, . . . , Yi )).

Now it is easy to check that X i+1−αi+1Yi+1 (if i < k) or Y1+ · · ·+ Yk (if i = k)
is a nonzerodivisor on each of these components, and so is a nonzerodivisor on
S/(X1−α1Y1, . . . , X i −αi Yi ) as required.

Now

S/((X i −αi Yi )i , Y1+ · · ·+ Yk)∼= A[Y2, . . . , Yk]/(Y2, . . . , Yk)
2

is Gorenstein if and only if k = 2, as required.
If A is a DVR then the following easy lemma (a specialisation of [Snowden

2011, Proposition 2.2.1]) gives the result.
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Lemma 2.8. If A is a DVR and S is a finitely generated A-algebra such that
S⊗ A/mA and S⊗ Frac A are domains of the same dimension, then S is flat over
A (that is, a uniformiser of A is a regular parameter in S).

The final statement of the proposition follows from the facts that both localisation
and completion preserve the properties of being Gorenstein, Cohen–Macaulay, or
A-flat; S∧ is a domain because its associated graded ring is S, which is a domain. �

3. Types

3A. Inertial types.
Definition 3.1. An inertial type τ (of dimension n) is an equivalence class of pairs
(rτ , Nτ ) such that:
• rτ : IF → GLn(E) is a representation with open kernel.

• Nτ is a nilpotent n× n matrix over E .

• (rτ , Nτ ) extends to a Weil–Deligne representation of GF .

In particular, Nτ commutes with the image of rτ . Two such pairs are equivalent if
they are conjugate by an element of GLn(E).

We say that a continuous representation ρ : GF → GLn(E) has inertial type τ if
the restriction to inertia of the associated Weil–Deligne representation is equivalent
to τ .

We define some particular two-dimensional types which will often arise. They
will all be of the form (r, N ) with r |P̃F

trivial, and are therefore determined by r(σ )
and N . Define:
• τζ,s by r(σ )=

(
ζ
0

0
ζ

)
and N =0, where ζ is an la-th root of unity (s is for “split”).

• τζ,ns by r(σ )=
(
ζ
0

0
ζ

)
and N =

( 0
0

1
0

)
where ζ is an la-th root of unity (ns is for

“nonsplit”).

• τζ1,ζ1 by r(σ ) =
(
ζ1
0

0
ζ2

)
and N = 0 where, ζ1 and ζ2 are distinct la-th roots

of unity.

• τξ by r(σ )=
(
ξ
0

0
ξ−1

)
and N = 0 where, ξ is a nontrivial lb-th root of unity.

To see that τξ is a type, note that if L/F is the unramified quadratic extension, then
there is a character of GL/P̃F mapping σ to ξ , which when induced to GF gives a
representation of type τξ .

3B. Deformation rings with fixed type.
Definition 3.2. Let τ be an inertial type. Then R�(ρ, τ ) is the maximal reduced,
l-torsion free quotient of R�(ρ) with the following property: if x : R�(ρ) →

GLn(E) is a continuous homomorphism such that the associated representation
ρx : GF → GLn(E) has type τ , then x factors through R�(ρ, τ ).
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The rings R�(ρ)⊗ F and R�(ρ, τ )⊗ F will occur very often, and so we denote
them respectively by R�(ρ) and R�(ρ, τ ).

From now on suppose that n = 2. Write τ = (rτ , Nτ ) and assume that E is large
enough that all of the roots of the characteristic polynomial of rτ lie in E . Let
R�(ρ, τ )◦ be the maximal quotient of R�(ρ) on which:

• If rτ is not scalar then, for all g ∈ IF , the characteristic polynomial of ρ�(g)
agrees with that of rτ .

• If rτ is scalar and Nτ = 0 then, for all g ∈ IF , ρ�(g) is scalar and agrees
with rτ .

• If rτ is scalar and Nτ 6= 0 then, for all g ∈ IF , the characteristic polynomial of
ρ�(g) agrees with that of rτ . Moreover, we have

q(tr ρ�(φ))2 = (q + 1)2 det(ρ�(φ)). (2)

It is clear that these quotients exist and that the conditions imposed are deforma-
tion problems for ρ.

Lemma 3.3. The ring R�(ρ, τ ) is a reduced l-torsion free quotient of R�(ρ, τ )◦.
If Nτ = 0, then we have that R�(ρ, τ ) is equal to the maximal reduced l-torsion

free quotient of R�(ρ, τ )◦.

Proof. The first part is clear unless rτ is scalar and Nτ 6= 0. In this case, we must
show that any representation ρ :GF→GL2(E) of type τ satisfies equation (2). The
Weil–Deligne representation (r, N ) corresponding to such a ρ satisfies r |IF = rτ
and N 6= 0. Then r(φ)N = q Nr(φ) implies that r(φ) preserves the line ker N and
the quotient E2/ ker N . If it acts as α on the former and β on the latter then we must
have α = qβ; as α and β are the eigenvalues of ρ(φ) equation (2) is easily verified.

The final claim follows from the simple observation that any E-point of R�(ρ, τ )◦

has associated Galois representation of type τ , except perhaps if rτ is scalar
and Nτ 6= 0. �

Remark 3.4. If R is a reduced, l-torsion free quotient of R�(ρ) such that R�(ρ, τ )

is a quotient of R, then R = R�(ρ, τ ) if and only if the closed points of type τ are
Zariski dense in Spec R[1/ l]. In our calculations, when this is true it will always
be clear by inspection.

3C. K-types. Let G = GL2(F), K = GL2(OF ), and for N ≥ 1 let K (N ) =
1 + M2(p

N
F ) and K0(N ) =

{(a
c

b
d

)
: c ∈ pN

F

}
. Let U0 = O×F and for N ≥ 1 let

UN = 1+pN
F . The exponent of a character χ of O×F is the smallest N ≥ 0 such that

χ is trivial on UN . If π is an irreducible admissible representation of GLm(F) (we
only need m = 1 and m = 2) over E , let rec(π) be the continuous representation of
WF over E associated to π under the local Langlands correspondence (normalised
so as to be preserved by automorphisms of E).
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For each two-dimensional inertial type τ = (rτ , Nτ ), we define an irreducible
representation σ(τ) by the following recipe:

• If τ = τ1,s , then σ(τ) is the trivial representation of K .

• If τ = τ1,ns , then σ(τ) is the inflation to K of the Steinberg representation St
of GL2(kF ).

• If τ = (1⊕ rec(ε)|IF , 0) for a nontrivial character ε of F× of exponent N , then

σ(τ)= IndK
K0(N ) ε,

where ε
((a

c
b
d

))
= ε(a).

• If τ = (rec(π)|IF , 0) for a cuspidal representation π of GL2(F), then by
[Bushnell and Henniart 2006, Theorem 15.5] there is a certain subgroup J ⊂G,
containing the centre of G and compact modulo centre, and a representation
3 of J such that

π = c-IndG
J 3.

By conjugating, we may suppose that the maximal compact subgroup J 0 of J
is contained in K . We then have

σ(τ)= IndK
J 0(3|J 0).

• If τ = τ ′⊗ rec(χ)|IF , then σ(τ)= σ(τ ′)⊗ (χ |U0 ◦ det).

This is a slightly modified version of the construction in [Henniart 2002] — the
construction there only depends on rτ , and agrees with ours whenever rτ is not
scalar. The following is an easy consequence of [Henniart 2002]:

Proposition 3.5. If σ(τ) is contained in an irreducible admissible representation π
of GL2(F) and rec(π) = (r, N ), then r |IF

∼= rτ and either N ∼= Nτ or Nτ 6= 0
and N = 0.

If π is infinite-dimensional, then the converse is true.

3D. Reduction of types. Suppose that r : IF→GL2(F) is such that r extends to GF .

Definition 3.6. The set L(r) is the set of types τ such that there exists a represen-
tation ρ : GF → GL2(OE) of type τ satisfying

ρ|IF
∼= r .

If r |P̃F
is nonscalar then we abuse notation and also write L(r) for the set of r

such that (r, 0) ∈ L(r), as in this case every element of L(r) is of this form.

Lemma 3.7. Suppose that r is trivial on P̃F . Then each element of L(r) is one of
the types τζ,s , τζ,ns , τζ1,ζ2 , τξ defined in Section 3A.
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Proof. Suppose that ρ : GF → GL2(OE) is of type τ and is such that ρ|IF
∼= r .

As r |P̃F
is trivial, ρ must also be trivial on P̃F and its type is determined by the

eigenvalues of ρ(σ) and by a nilpotent matrix N commuting with ρ(σ). Now, the
fundamental relation φσφ−1

= σ q shows that the eigenvalues of ρ(σ) are the same
(but perhaps in a different order) as those of ρ(σ)q , and this implies that they are
(q2
− 1)-th roots of unity. Moreover, they are congruent to 1 modulo the maximal

ideal of OE , and so must in fact be either la-th or lb-th roots of unity (recall that
at most one of a and b is nonzero, since l 6= 2). If they are distinct la-th roots of
unity, then N must be zero and τ = τζ1,ζ2 ; if they are equal la-th roots of unity then
τ = τζ,s or τζ,ns ; if they are lb-th roots of unity then they must be ξ and ξq

= ξ−1

for an lb-th root of unity ξ . Moreover the case ξ = 1 has already been dealt with
and so we may assume that ξ 6= 1, in which case N = 0 and τ = τξ . �

Lemma 3.8. (1) Suppose that r |P̃F
is irreducible. There is a lift r of r to GL2(E),

which we fix. Then L(r) = {r ⊗ χ}χ as χ runs over the set of characters
χ : IF → E× which extend to GF and reduce to the trivial character.

(2) Suppose that r |P̃F
∼= (r1 ⊕ r2)|P̃F

where r1 and r2 are distinct characters
of GF . There are lifts r1 and r2 of r1 and r2 to E×, which we fix. Then
L(r) = {(r1|IF ⊗ χ1)⊕ (r2|IF ⊗ χ2)}χ1,χ2 where χ1, χ2 run over all pairs of
characters IF → E× which extend to GF and reduce to the trivial character.

(3) Suppose that r |P̃F
∼= (r1 ⊕ r c

1)|P̃F
where r1 and r c

1 are distinct characters
of GL which are conjugate by an element of GF (recall that L/F is the
unramified quadratic extension). There is a lift r1 of r1 to E×. Then L(r) =
{(r1|IF ⊗χ)⊕ (r

c
1 |IF ⊗χ

c)}χ as χ runs over all characters IF → E× which
extend to GL and reduce to the trivial character.

Proof. This follows from Proposition 5.1 below; the ingredients in the proof of that
proposition are Lemma 2.3 (reduction to the tame case) and Lemma 2.4 (lifting
ring of a character). �

Lemma 3.9. If τ = (r, 0) is an inertial type with r |P̃F
nonscalar, then σ(τ) is

irreducible. If τ ′ is any other inertial type, then σ(τ ′) contains σ(τ) if and only if
τ ′ ∈ L(r) (in which case σ(τ)∼= σ(τ ′)).

Proof. These are the results of Propositions 6.4 and 6.5. �

If τ = (r, N ) with r |P̃F
scalar, then σ(τ) need not be irreducible. We give the

(well-known) analysis of these σ(τ) in Section 6A. For now, we just give names to
the following representations of GL2(kF ) (and hence, by inflation, of K ) over F

• the trivial representation, 1,

• the Steinberg representation, St (irreducible if q 6≡ −1 mod l),

• if q≡−1 mod l, the cuspidal (but not supercuspidal) subrepresentation π1 of St.
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4. The “Breuil–Mézard conjecture”

Let ρ : GF → GL2(F) be a continuous representation, and suppose that E is
sufficiently large that

• every subrepresentation of ρ⊗ F is already defined over F,

• E contains all of the (q2
− 1)-th roots of unity,

• for every τ ∈ L(ρ|IF ), σ(τ) is defined over E .

We state our analogue of the Breuil–Mézard conjecture when l 6= p. By Lemma 2.2
and the fact that R�(ρ, τ ) is defined to be O-flat, we have

dim R�(ρ, τ )≤ 4.

Definition 4.1. We associate to each type τ = (r, N ) a cycle C(ρ, τ ) ∈ Z4(R�(ρ))

as follows:

• If N = 0, set
C(ρ, τ )= Z4(R�(ρ, τ )).

• If N 6= 0 (in which case r must be scalar) let τ ′ = (r, 0) and set

C(ρ, τ )= Z4(R�(ρ, τ ))+ Z4(R�(ρ, τ ′)).

Theorem 4.2. For each irreducible F-representation θ of GL2(OF ), there is an
effective cycle C(ρ, θ) ∈ Z4(R�(ρ)) such that, for any inertial type τ , we have an
equality of cycles

C(ρ, τ )=
∑
θ

m(θ, σ (τ ))C(ρ, θ), (3)

where m(θ, σ (τ )) is the multiplicity of θ as a Jordan–Hölder factor of σ(τ) and the
sum runs over all θ .

Proof. We proceed case by case, using the results of Section 3D and of Sections 5
and 6A below.

Suppose that ρ|P̃F
is nonscalar. Then by Lemma 3.9, the representations σ(τ)

for τ ∈ L(ρ|IF ) are all irreducible and isomorphic to a common irreducible repre-
sentation, which we call θ0. By Corollary 5.2, R�(ρ) has a unique minimal prime,
denoted a, which has dimension 4. So we have

Z4(Spec(R�(ρ)))= Z · [a].

Define C(ρ, θ0)= [a] and C(ρ, θ)= 0 for θ 6= θ0. By Corollary 5.2,

C(ρ, τ )= [a] = C(ρ, θ0)

if τ ∈ L(ρ|P̃F
), otherwise

C(ρ, τ )= 0.
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In other words, for all τ we have

C(ρ, τ )=
∑
θ

m(θ, σ (τ ))C(ρ, θ),

as required.
If ρ|P̃F

is scalar, then we may twist ρ by a character of GF and apply Lemma 2.4
and so suppose for the rest of the proof that ρ|P̃F

is trivial.
If q 6≡ ±1 mod l, then L(ρ|IF )⊂ {τ1,s, τ1,ns}. By the discussion of Section 6A,

we have that
σ(τ1,s)= 1 and σ(τ1,ns)= St

are irreducible and nonisomorphic, and that neither is a Jordan–Hölder factor of
any other σ(τ). So the fact that we can define the C(ρ, θ) so as to satisfy (3) is a
triviality, as there are no relations amongst the σ(τ) for different τ . We work out
what the C(ρ, θ) are explicitly: for θ 6= 1 or St we define C(ρ, θ)= 0. Otherwise,
there are four cases to consider:

• If ρ(φ) has eigenvalues with ratio not in {1,±q} then by Proposition 5.3 there
is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1)= [anr ], C(ρ,St)= [anr ].

• If ρ is an extension of the trivial character by itself then by Proposition 5.5
part 1 there is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1)= [anr ], C(ρ,St)= [anr ].

• If ρ is a nonsplit extension of the trivial character by the cyclotomic character
then by Proposition 5.5 part 2 there is a unique minimal prime aN of R�(ρ).
In this case, define

C(ρ,1)= 0, C(ρ,St)= [aN ].

• If ρ is the direct sum of the trivial character and the cyclotomic character then
by Proposition 5.5 part 2 there are two minimal primes of R�(ρ), denoted
there by anr and aN . In this case, define

C(ρ,1)= [anr ], C(ρ,St)= [anr ] + [aN ].

It is then easy to verify that equation (3) holds; we just do the last case. We see
from Proposition 5.5 part 2 that

C(ρ, τ1,s)= [anr ] = C(ρ,1), C(ρ, τ1,ns)= [anr ] + [aN ] = C(ρ,St),

and C(ρ, τ )= 0 for all other τ , exactly as required by (3).
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If q ≡−1 mod l, then L(ρ|IF )⊂
⋃
ξ {τ1,s, τ1,ns, τξ } for ξ a nontrivial lb-th root

of unity. By the discussion of Section 6A, we have that

σ(τ1,s)= 1, σ (τξ )= π1, σ (τ1,ns)
ss
= 1⊕π1,

where 1 and π1 are irreducible and nonisomorphic, and are not Jordan–Hölder
factors of any other σ(τ). For θ 6= 1 or π1 we define C(ρ, θ)= 0. Otherwise, there
are four cases to consider:

• If ρ(φ) has eigenvalues with ratio not in {±1} then by Proposition 5.3 there is
a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1)= [anr ], C(ρ, π1)= 0.

• If ρ is an extension of the trivial character by itself then by Proposition 5.6
part 1 there is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1)= [anr ], C(ρ, π1)= 0.

• If ρ is a nonsplit extension of the trivial character by the cyclotomic character
then by Proposition 5.6 part 2a there is a unique minimal prime, denoted aN

in that proposition, of R�(ρ, τ1,ns), which we regard as a prime of R�(ρ). In
this case, define

C(ρ,1)= 0, C(ρ, π1)= [aN ].

• If ρ is the direct sum of the trivial character by the cyclotomic character then
in Proposition 5.6 part 2b three four-dimensional primes of R�(ρ) are defined,
denoted there anr , aN and aN ′ . In this case, define

C(ρ,1)= [anr ], C(ρ, π1)= [aN ] + [aN ′].

It is then easy to verify that (3) holds using Proposition 5.3 in the first case and
Proposition 5.6 parts 1, 2a, and 2b in the second, third, and fourth cases; again we
just do the fourth case, which is the most complicated. Equation (3) is equivalent
to the equations

C(ρ, τ1,s)= C(ρ,1) = [anr ],

C(ρ, τ1,ns)= C(ρ,1)+ C(ρ, π1)= [anr ] + [aN ] + [aN ′],

C(ρ, τξ )= C(ρ, π1) = [aN ] + [aN ′],

and

C(ρ, τ )= 0 if τ 6∈
⋃
ξ {τ1,s, τ1,ns, τξ }.

But by Proposition 5.6 part 2b we have
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C(ρ, τ1,s)= Z4(R̄(ρ, τ1,s)) = [anr ],

C(ρ, τ1,ns)= Z4(R̄(ρ, τ1,s))+ Z4(R̄(ρ, τ1,ns))= [anr ] + [aN ] + [aN ′],

C(ρ, τξ )= Z4(R̄(ρ, τξ )) = [aN ] + [aN ′],

and
C(ρ, τ )= 0 if τ 6∈

⋃
ξ {τ1,s, τ1,ns, τξ },

as required.
If q ≡ 1 mod l, then L(ρ|IF )⊂

⋃
ζ,ζ1,ζ2
{τζ,s, τζ,ns, τζ1,ζ2} for ζ , ζ1 and ζ2 (possi-

bly trivial) la-th roots of unity with ζ1 6= ζ2. By the discussion of Section 6A, we
have that

σ(τζ,s)= 1, σ (τζ,ns)= St, σ (τζ1,ζ2)= 1⊕St,

where 1 and St are irreducible and nonisomorphic, and are not Jordan–Hölder
factors of any other σ(τ). For θ 6= 1 or St we define C(ρ, θ)= 0. Otherwise, there
are four cases to consider:

• If ρ(φ) has eigenvalues with ratio not in {±1} then by Proposition 5.3 there is
a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1)= [anr ], C(ρ,St)= [anr ].

• If ρ is a ramified extension of the trivial character by itself then by Proposition
5.8 part 1 there is a unique minimal prime aN of R�(ρ, τ1,ns) which we regard
as a four-dimensional prime of R�(ρ). In this case, define

C(ρ,1)= 0, C(ρ,St)= [aN ].

• If ρ is a unramified extension of the trivial character by itself then by Proposition
5.8 parts 2 and 3 there are four-dimensional primes of R�(ρ)which are denoted
there by [anr ] and [aN ]. In this case, define

C(ρ,1)= [anr ], C(ρ,St)= [anr ] + [aN ].

It is then easy to verify that (3) holds using Proposition 5.3 in the first case,
Proposition 5.8 part 1 in the second case, and Proposition 5.8 parts 2 and 3 in the
third case (according as ρ is split or not); again we just do the third case, which is
the most complicated. Equation (3) is equivalent to the equations

C(ρ, τζ,s)= C(ρ,1) = [anr ],

C(ρ, τζ,ns)= C(ρ,St) = [anr ] + [aN ],

C(ρ, τζ1,ζ2)= C(ρ,1)+ C(ρ,St)= [anr ] + [anr ] + [aN ],

and
C(ρ, τ )= 0 if τ 6∈

⋃
ζ,ζ1,ζ2
{τζ,s, τζ,ns, τζ1,ζ2}.
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But by Proposition 5.8 parts 2 and 3 we have:

C(ρ, τζ,s)= Z4(R̄(ρ, τζ,s)) = [anr ],

C(ρ, τζ,ns)= Z4(R̄(ρ, τζ,s))+ Z4(R̄(ρ, τ1,ns))= [anr ] + [aN ],

C(ρ, τζ1,ζ2)= Z4(R̄(ρ, τζ1,ζ2)) = 2[anr ] + [aN ],

and
C(ρ, τ )= 0 if τ 6∈

⋃
ζ,ζ1,ζ2
{τζ,s, τζ,ns, τζ1,ζ2},

as required. �

Remark 4.3. Although the definition of C(ρ, τ ) may seem ad-hoc, it in fact
has the following natural interpretation: it is the reduction modulo λ of the cy-
cle in Z4(R�(ρ)) obtained by taking the Zariski closure of the closed points
x ∈ Spec R�(ρ)[1/ l] such that rec−1(ρx)|K contains σ(τ).

Remark 4.4. We conjecture that Theorem 4.2 remains true when l = 2.

5. Calculations

Let ρ : GF → GL2(F) be a continuous representation. The aims of this section
are to give explicit presentations for the rings R�(ρ, τ ) and to compute the cycles
Z(R�(ρ, τ ))∈Z4(Spec R�(ρ)). We continue to assume that E is sufficiently large,
as defined at the start of the previous section.

5A. Simple cases. When ρ|P̃F
is not scalar, then Lemma 2.3 allows us to determine

the universal framed deformation rings. Recall that if r : IF → GL2(F) is a repre-
sentation that extends to GF then we have defined the set L(r) of types that lift r .

Proposition 5.1. If ρ|P̃F
is irreducible, then

R�(ρ)∼=O[[X, Y, Z1, Z2, Z3]]/((1+ X)l
a
− 1).

The la irreducible components of Spec R�(ρ) are precisely the Spec R�(ρ, τ ) for
τ ∈ L(ρ|IF ).

If ρ|P̃F
is a sum of distinct characters which extend to GF , then

R�(ρ)∼=O[[X1, X2, Y1, Y2, Z1, Z2]]/((1+ X1)
la
− 1, (1+ X2)

la
− 1).

The l2a irreducible components of Spec R�(ρ) are precisely the Spec R�(ρ, τ )

for τ ∈ L(ρ|IF ).
If ρ|P̃F

is a sum of distinct characters which are conjugate by the nontrivial
element of GL \GF , then

R�(ρ)∼=O[[X, Y, Z1, Z2, Z3]]/((1+ X)l
b
− 1).
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The lb irreducible components of Spec R�(ρ) are precisely the Spec R�(ρ, τ )

for τ ∈ L(ρ|IF ).

Proof. This follows straightforwardly from Lemma 2.3. Suppose first that ρ|P̃F

is irreducible. Then there is a unique irreducible representation θ of P̃F such
that ρθ (in the notation of Lemma 2.3) is nonzero. For that θ , ρθ is an unramified
one-dimensional representation of GF . So by Lemmas 2.3 and 2.5

R�(ρ)∼= R�(ρθ )[[Z1, Z2, Z3]] ∼=O[[X, Y, Z1, Z2, Z3]]/((1+ X)l
a
− 1).

We have ρ� ∼= θ̃ ⊗χ� where χ� is the universal character GF → R�(ρθ )
×.

Suppose now that ρ|P̃F
= θ1⊕ θ2 for distinct characters θ1 and θ2. Suppose first

that the θi are not GF -conjugate. As in Lemma 2.3, we pick O-characters θ̃1 and θ̃2

of GF lifting and extending θ1 and θ2. Then (in the notation of Lemma 2.3) ρθ1 and
ρθ2 are both unramified characters. By Lemmas 2.3 and 2.5

R�(ρ)∼= (R�(ρθ1)⊗̂R�(ρθ2))[[Z1, Z2]]

∼=O[[X1, X2, Y1, Y1, Z1, Z2]]/((1+ X1)
la
− 1, (1+ X2)

la
− 1).

We have
ρ� ∼= θ̃1⊗χ

�
1 ⊕ θ̃2⊗χ

�
2 ,

where each χ�
i is the universal character over R�(ρθi ).

Suppose finally that θ1 and θ2 are GF -conjugate. We take θ = θ1; then Gθ = GL

where L is a quadratic extension of F . In fact, since P̃F ⊂GL and l is odd, we must
have that GL is the unramified quadratic extension of F . As in Lemma 2.3, pick an
O-character θ̃ of GL lifting and extending θ . Then (in the notation of Lemma 2.3)
ρθ is an unramified character of GL . By Lemmas 2.3 and 2.5

R�(ρ)∼= R�(ρθ )[[Z1, Z2, Z3]]

∼=O[[X, Y, Z1, Z2, Z3]]/((1+ X)l
b
− 1),

since vl(q2
− 1)= lb. We have

ρ� ∼= IndGF
GL
(θ̃ ⊗χ�),

where χ� is the universal character over R�(ρθ ).
We show that f : Spec(R�(ρ, τ )) 7→ τ is a bijection from the set of irreducible

components of Spec(R�(ρ)) to L(ρ|IF ). It is easy to see that f is an injection
(from our explicit expressions for ρ�). The type of the E-points of Spec(R�(ρ, τ ))

is constant on irreducible components, so to show that a particular τ is in the image
of f it suffices to produce a lift of ρ to E of type τ . Each τ ∈ L(ρ|IF ) is, by
definition, the type of a lift of some ρ ′ with ρ ′|IF

∼= ρ|IF . But it is clear from the
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calculations above that the image of f only depends on ρ|IF , and so f is surjective
as required. �

Corollary 5.2. If ρ|P̃F
is not scalar, then R�(ρ) has a unique minimal prime a,

which has dimension 4. For τ an inertial type we have that

Z4(R�(ρ, τ ))= [a]

if τ ∈ L(ρ|P̃F
) and Z4(R�(ρ, τ ))= 0 otherwise.

We may now assume that ρ|P̃F
is scalar; after a twist (invoking [Clozel et al.

2008, Lemma 2.4.11] to extend the character occurring in ρ|P̃F
to the whole Galois

group), we may assume that ρ|P̃F
is trivial, so that any lift of ρ|P̃F

is also trivial.
In this case, then, ρ|IF is inflated from a representation of the (procyclic) pro-l
group IF/P̃F over a field of characteristic l. Any irreducible representation in
characteristic l of an l-group is trivial, and so ρ|IF must be an extension of the
trivial representation by the trivial representation. Now, because φσφ−1

= σ q ,
ρ(φ) maps the subspace of fixed vectors of ρ(σ) to itself; therefore, ρ must be an
extension of unramified characters. That is, there is a short exact sequence

0→ χ1→ ρ→ χ2→ 0

for unramified characters χ1 and χ2. Such an extension corresponds to an element
of H 1(GF , χ1χ

−1
2 ); by a simple calculation with the local Euler characteristic

formula and local Tate duality, this cohomology group is nonzero if and only if
χ1 = χ2 or χ1 = χ2ε. So we can easily deal with the case where neither of these
two possibilities can occur.

Proposition 5.3. Suppose that ρ|P̃F
is trivial and that ρ(φ) has eigenvalues α, β ∈F

with α/β 6∈ {1, q, q−1
}. Then

R�(ρ)∼=
O[[A, B, P, Q, X, Y ]]

((1+ P)la
− 1, (1+ Q)la

− 1)
,

and ρ�(σ ) is diagonalizable with eigenvalues 1+ P and 1+ Q.
For ζ an la-th root of unity (possibly equal to 1), we have that

R�(ρ, τζ,s)=O[[A, B, P, Q, X, Y ]]/(1+ P − ζ, 1+ Q− ζ )
∼=O[[A, B, X, Y ]]

is formally smooth of relative dimension 4 over O and that R�(ρ, τζ,ns) = 0. If
q ≡ 1 mod l and ζ1, ζ2 are distinct la-th roots of unity, then

R�(ρ, τζ1,ζ2)=
O[[A, B, P, Q, X, Y ]]

(2+ P + Q− ζ1− ζ2, P Q− (ζ1− 1)(ζ2− 1))

∼=O[[A, B, P, X, Y ]]/(1+ P − ζ1)(1+ P − ζ2).
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For all other τ , R�(ρ, τ )= 0.
The ideal anr defining R�(ρ, τ1,s) is the unique minimal prime of R�(ρ). We have

Z4(R�(ρ, τ ))=


[anr ] if τ = τζ,s,
2[anr ] if τ = τζ1,ζ2,

0 if τ = τζ,ns .

Proof. First note that, by the above cohomology calculation, ρ(σ) must be trivial.
Let α and β be lifts of α and β to O. Suppose that A is an object of CO and

that M is a free A-module of rank 2 with a continuous action of GF given by
ρ : GF → AutA(M), reducing to ρ modulo mA. Suppose that the characteristic
polynomial of ρ(φ) is (X −α− A)(X −β − B), where A, B ∈mA — note that by
Hensel’s lemma the characteristic polynomial does have roots in A reducing to α
and β. Then there is a decomposition

M = (ρ(φ)−α− A)M ⊕ (ρ(φ)−β − B)M.

Here it is crucial that α + A, β + B and, α − β + A− B are all invertible in A.
If vα, vβ is a basis of eigenvectors of ρ(φ) in M ⊗ F and vα, vβ is a basis of M
lifting vα, vβ then there are unique X, Y ∈mA such that vα + Xvβ , vβ + Yvα are
eigenvectors of ρ(φ). Moreover, replacing (vα, vβ) by (µvα, µvβ) for µ ∈ 1+mA
does not change X and Y .

Therefore we may assume that ρ(φ)=
(
α
0

0
β

)
and that

ρ(φ)=

(
1 X
Y 1

)−1(
α+A 0

0 β+B

)(
1 X
Y 1

)
,

ρ(σ ) =

(
1 X
Y 1

)−1(
1+P R

S 1+Q

)(
1 X
Y 1

)
,

where ρ determines X, Y, P, R, S, Q ∈mA uniquely. The equation φσφ−1
= σ q

implies that(
α+A 0

0 β+B

)(
1+P R

S 1+Q

)(
α+A 0

0 β+B

)−1

=

(
1+P R

S 1+Q

)q

.

Looking at the top right and bottom left entries gives that R = S = 0. Then
looking at the diagonal entries gives that (1+ P)q−1

= (1+ Q)q−1
= 1, which is

equivalent to (1+ P)l
a
= (1+ Q)l

a
= 1. Thus

R�(ρ)∼=
O[[A, B, P, Q, X, Y ]]

((1+ P)la
− 1, (1+ Q)la

− 1)
.

The possible inertial types are τζ,s and τζ1,ζ2 (τζ,ns cannot occur since all lifts
are diagonalisable). Clearly R�(ρ, τζ,s) is defined by the equations 1 + P =
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1+Q = ζ . The ring R�(ρ, τζ1,ζ2)
◦ is cut out by the equations 2+ P+Q = ζ1+ ζ2,

(1+ P)(1+Q)= ζ1ζ2 and the redundant equations (1+ P)l
a
= (1+Q)l

a
= 1. But

R�(ρ, τζ1,ζ2)
◦ ∼=O[[A, B, P, X, Y ]]/((1+ P − ζ1)(1+ P − ζ2))

is reduced and λ-torsion free and so is equal to R�(ρ, τζ1,ζ2).
For the reduction modulo λ, simply note that

R�(ρ)= F[[A, B, P, Q, X, Y ]]/(P la
, Qla

),

R�(ρ, τζ,s)= F[[A, B, P, Q, X, Y ]]/(P, Q),

and

R�(ρ, τζ1,ζ2)= F[[A, B, P, Q, X, Y ]]/(P2, Q2, P + Q).

So anr = (P, Q) is the unique minimal prime of R�(ρ) and the multiplicities are
as claimed. �

We extract the first half of the proof of this proposition for future use:

Lemma 5.4. If ρ(φ) has distinct eigenvalues, we may assume that it is diagonal. In
that case, there exists a unique matrix

( 1
Y

X
1

)
∈GL2(R�(ρ)), reducing to the identity

modulo the maximal ideal, such that ρ�(φ) =
( 1

Y
X
1

)−1
8
( 1

Y
X
1

)
for a diagonal

matrix 8. �

5B. q 6≡ ±1 mod l . Suppose that q 6≡ ±1 mod l. By Proposition 5.3, we have
already dealt with the cases in which the eigenvalues of ρ(φ) are not in the ratio 1
or q±1. All other cases are dealt with by the following (after twisting and conjugat-
ing ρ). Note that, by Lemma 3.7, the only possible types when ρ|P̃F

is trivial are
τ1,s and τ1,ns .

Proposition 5.5. Suppose that q 6≡ ±1 mod l, and that ρ|P̃F
is trivial.

(1) Suppose ρ(σ) is trivial, and ρ(φ)=
( 1

0
y
1

)
for y ∈ F. Then R�(ρ, τ1,s)= R�(ρ)

is formally smooth of relative dimension 4 over O, while R�(ρ,τ1,ns)= 0.

(2) Suppose that ρ(σ)=
( 1

0
x
1

)
and ρ(φ)=

(q
0

0
1

)
.

If x 6=0, then R�(ρ, τ1,ns)= R�(ρ) is formally smooth of relative dimension
4 over O, while R�(ρ, τ1,s)= 0.

If x = 0 then

R�(ρ)∼=O[[X1, . . . , X5]]/(X1 X2).

The quotients by the two minimal primes are R�(ρ, τ1,s) and R�(ρ, τ1,ns),
so that both are formally smooth of relative dimension 4 over O. The mini-
mal primes anr and aN of R�(ρ) which respectively define R�(ρ, τ1,s) and
R�(ρ, τ1,ns) are distinct.
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Proof. For the first part, write

ρ�(σ )=

(
1+A B

C 1+D

)
, ρ�(φ)=

(
1+P y+R

S 1+Q

)
,

where y is a lift of y (taken to be zero if y = 0) and A, B,C, D, P, Q, R, S ∈m.
Let I = (A, B,C, D). Considering the equation ρ�(φ)ρ�(σ )= ρ�(σ )qρ�(φ)

modulo the ideal Im gives equations Cy ≡ (q − 1)A, B + Dy ≡ q Ay + q B,
C ≡ qC , and (q − 1)D + qCy ≡ 0, all modulo Im. As q 6≡ 1 mod l we find
that I = Im. Therefore, by Nakayama’s lemma, I = 0 and ρ� is unramified. So
R�(ρ) = R�(ρ, τ1,s) ∼= O[[P, Q, R, S]] as claimed. Note that this proof is still
valid if q ≡−1 mod l.

The proof of the second part is similar. By Lemma 5.4, we may write

ρ�(σ )=

(
1 X
Y 1

)−1(
1+A x+B

C 1+D

)(
1 X
Y 1

)
,

ρ�(φ)=

(
1 X
Y 1

)−1(
q(1+P) 0

0 1+Q

)(
1 X
Y 1

)
,

with x a lift of x (taken to be zero if x = 0) and A, B,C, D, X, Y, P, Q ∈m.
Let I = (A,C, D). Considering the relation φσφ−1

= σ q modulo Im and
applying Nakayama’s lemma as before now yields A = C = D = 0 (using that
q2
6≡ 1 mod l). The relation (not modulo any ideal) gives that (x+ B)(P−Q)= 0,

and it is easy to see if this equality holds then the given formulae for ρ� do indeed
define a representation so that

R�(ρ)=
O[[B, P, Q, X, Y ]]
((x + B)(P − Q))

.

If x 6= 0 then this implies that P = Q. Then R�(ρ)=O[[B, P, X, Y ]]. It is clear
that R�(ρ)= R�(ρ, τ1,ns), and the proposition follows.

If x = 0 then, writing U = P − Q, we have R�(ρ)=O[[B, P,U, X, Y ]]/(BU ).
In these coordinates, it is clear from the description of ρ� that

R�(ρ, τ1,s)= R�(ρ)/(B) and R�(ρ, τ1,ns)= R�(ρ)/(U ).

The proposition follows. �

5C. q ≡ −1 mod l . Suppose that q ≡ −1 mod l. By Proposition 5.3 we have
already dealt with the cases in which the eigenvalues of ρ(φ) are not in the ratio
1 or −1. All other cases are dealt with by the following result (after twisting and
conjugating ρ). By Lemma 3.7, the only possible types when ρ|P̃F

is trivial are
τ1,s , τ1,ns , and τξ for ξ a nontrivial lb-th root of unity.

Proposition 5.6. Suppose that q ≡−1 mod l and that ρ|P̃F
is trivial.



Local deformation rings for GL2 1459

(1) Suppose that ρ(σ)=
( 1

0
0
1

)
and ρ(φ)=

( 1
0

y
1

)
for y ∈ F. Then

R�(ρ, τ1,s)= R�(ρ)

is formally smooth of relative dimension 4 over O, while

R�(ρ, τ1,ns)= R�(ρ, τξ )= 0.

If anr is the unique minimal prime of R�(ρ), then we have

Z4(R�(ρ, τ ))=


[anr ] if τ = τ1,s,

0 if τ = τ1,ns,

0 if τ = τξ .

(2) Suppose that ρ(σ)=
( 1

0
x
1

)
and ρ(φ)=

(q
0

0
1

)
for x ∈ F.

(a) If x 6= 0, then R�(ρ, τ1,ns) and R�(ρ, τξ ) are formally smooth of relative
dimension 4 over O, while R�(ρ, τ1,s) = 0. If aN is the prime ideal of
R�(ρ) cutting out R�(ρ, τ1,ns) then we have

Z4(R�(ρ, τ ))=


0 if τ = τ1,s,

[aN ] if τ = τ1,ns,

[aN ] if τ = τξ .
(4)

(b) If x = 0, then R�(ρ, τ1,s) is formally smooth of relative dimension 4
over O and

R�(ρ, τ1,ns)∼=
O[[X1, . . . , X6]]

((X1, X3)∩ (X2, X3− (q + 1)))

is a non-Cohen–Macaulay ring of relative dimension 4 over O. Its spec-
trum is the scheme theoretic union of two formally smooth components
that do not intersect in the generic fibre. Lastly,

R�(ρ, τξ )∼=
O[[X1, . . . , X5]]

(X1 X2− (ξ − ξ−1)2)

is a complete intersection domain of relative dimension 4 over O with
formally smooth generic fibre. If anr is the prime of R�(ρ) corresponding
to R�(ρ, τ1,s) and aN , a

′

N are the prime ideals of R�(ρ) corresponding
to the two minimal primes of R�(ρ, τ1,ns), then we have

Z4(R�(ρ, τ ))=


[anr ] if τ = τ1,s .

[aN ] + [aN ′] if τ = τ1,ns,

[aN ] + [aN ′] if τ = τξ .
(5)

Proof. The proof of the first part is identical to that of Proposition 5.5, part 1.
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For the second part, by Lemma 5.4 we may write

ρ�(σ )=

(
1 X
Y 1

)(
1+A x+B

C 1+D

)(
1 X
Y 1

)
,

ρ�(φ)=

(
1 X
Y 1

)(
−(1+P) 0

0 1+Q

)(
1 X
Y 1

)
,

with x a lift of x (taken to be zero if x = 0) and A, B,C, D, X, Y, P, Q ∈m.
Firstly, it is clear that R�(ρ, τ1,s)= 0 if x 6= 0 and, if x = 0, that

R�(ρ, τ1,s)∼=O[[P, Q, X, Y ]].

Next we deal with τ1,ns . On R�(ρ, τ1,ns) we have the equations

tr(ρ�(σ ))= 2,

det(ρ�(σ ))= 1,

q tr(ρ(φ))2 = (q + 1)2 det(ρ(φ)),

and

ρ�(φ)ρ�(σ )ρ�(φ)−1
= ρ�(σ )q .

The first two of these may be rewritten as

A =−D and A2
+ (x + B)(C)= 0

and the third can be written as

(q + 1+ P + q Q)(q + 1+ Q+ q P)= 0.

By the Cayley–Hamilton theorem, (ρ�(σ )−1)2 = 0 on R�(ρ, τ1,ns)
◦; it follows

that ρ�(σ )q −1= q(ρ�(σ )−1) on R�(ρ, τ1,ns)
◦ and so the relation φσφ−1

= σ q

together with D =−A yields the equation(
A −(x+B) 1+P

1+Q
−C 1+Q

1+P −A

)
=

(
q A q(x+B)
qC −q A

)
.

Equating coefficients and using that 2 and q − 1 are invertible we obtain that
A = D = 0 and that

(x + B)(q + 1+ q Q+ P)= 0, (6)

C(q + 1+ Q+ q P)= 0, (7)

(x + B)C = 0, (8)

(q + 1+ Q+ q P)(q + 1+ q Q+ P)= 0 (9)

is a complete set of equations cutting out R�(ρ, τ1,ns)
◦ (the last two equations

being, respectively, the conditions on det(ρ�(σ )) and on ρ�(φ)).
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If x 6= 0 then these equations are equivalent to q + 1+ q Q+ P = 0 and C = 0
and so we see that

R�(ρ, τ1,ns)∼=O[[B, P, X, Y ]].

If x = 0 then the left hand sides of the four equations given generate the ideal

I = (B, q + 1+ Q+ q P)∩ (C, q + 1+ q Q+ P)

in O[[B,C, P, Q, X, Y ]]. Since O[[B,C, P, Q, X, Y ]]/I is reduced and λ-torsion
free and a Zariski dense set of its E-points have type τ1,ns , it is equal to R�(ρ, τ1,ns).
After the change of variables

X3 =
q(q + 1+ Q+ q P)
(q − 1)(1+ P)

, (X1, X2, X4, X5, X6)= (B,C, P, X, Y )

we get the presentation given in the proposition.
Let

S =
O[[X1, X2, X3]]

(X1, X3)∩ (X2, X3− (q + 1))
.

Then S has dimension two. We show that S is not Cohen–Macaulay; the same is
then true for R�(ρ, τ1,ns). Now λ is a nonzerodivisor in S, and

S/λ=
F[[X1, X2, X3]]

(X1 X2, X1 X3, X2 X3, X2
3)
.

The maximal ideal of S/λ is annihilated by X3, and X3 6= 0 in S/λ. So S/λ, and
hence S, is not Cohen–Macaulay. The remaining statements about R�(ρ, τ1,ns)

are clear.
Now suppose that τ = τξ . On R�(ρ, τξ ) we have

tr(ρ�(σ ))= ξ + ξ−1,

det(ρ�(σ ))= 1,

and

ρ�(φ)ρ�(σ )ρ�(φ)−1
= ρ�(σ )q .

The first two of these may be rewritten as

A+ D = ξ + ξ−1
− 2 and AD− (x + B)C = 2− ξ − ξ−1.

By the Cayley–Hamilton theorem, (ρ�(σ )− ξ)(ρ�(σ )− ξ−1)= 0. As

T q
≡ ξ + ξ−1

− T mod (T − ξ)(T − ξ−1)

in Z[T ], the relation φσφ−1
= σ q yields(

1+A −(x+B) 1+P
1+Q

−C 1+Q
1+P 1+D

)
=

(
ξ+ξ−1

−1−A −(x+B)
−C ξ+ξ−1

−1−D

)
.
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Equating coefficients and combining with the equation det(ρ�(σ ))= 1 we get

A = D =
ξ + ξ−1

2
− 1, (10)

(x + B)(P − Q)= 0, (11)

C(P − Q)= 0, (12)

4(x + B)C = (ξ − ξ−1)2. (13)

If x 6=0 then these equations are equivalent to P=Q and C= (ξ−ξ−1)2/(4(x+B)),
so that

R�(ρ, τξ )∼=O[[X, Y, B, P]].

If x = 0, then the equations imply that

0= BC(P − Q)=
(
ξ − ξ−1

2

)2

(P − Q)

and hence that P = Q, as R�(ρ, τξ ) is λ-torsion free by definition. Thus

R�(ρ, τξ )∼=
O[[X, Y, B,C, P]]
(4BC − (ξ − ξ−1)2)

.

The remaining statements about R�(ρ, τξ ) are clear.
Now we calculate the various Z4(R�(ρ, τ )). For part 1, this is trivial. For part 2,

we have computed each R�(ρ, τ ) as a quotient of the ring F[[A,B,C,D,P,Q,X,Y ]]
by an ideal which we call I (τ ). We see that if x 6= 0 then I (τ1,ns) = I (τξ ), and
R�(ρ, τ1,s)= 0, from which (4) follows. If x = 0 then

I (τ1,s)= (A, B,C, D),

I (τ1,ns)= (A, D, BC, B(Q− P),C(Q− P), (Q− P)2),

and

I (τξ )= (A, D, BC, Q− P).

The minimal primes above these I (τ ) in F[[A, . . . , Y ]] are anr = (A, B,C, D),
aN = (A,C, D, Q− P) and aN ′ = (A, B, D, Q− P); the multiplicities in (5) are
then easily verified. �

Remark 5.7. When ρ is unramified and ρ(φ) =
(q

0
0
1

)
, the ring R�(ρ, τ1,ns) is

not Cohen–Macaulay. However the ring R�(ρ, unip), which is defined to be
the maximal reduced quotient of R�(ρ) on which ρ�(σ ) is unipotent (so that
Spec R�(ρ, unip) is the scheme-theoretic union in Spec R�(ρ) of Spec R�(ρ, τ1,s)

with Spec R�(ρ, τ1,ns)), is Cohen–Macaulay. Indeed it is easy to see from the proof
that

R�(ρ, unip)∼=
O[[X1, . . . , X6]]

(X1 X2, X1(X3− (q + 1)), X2 X3)
,
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which is Cohen–Macaulay ((λ, X1+ X2+ X3, X4, X5, X6) is a regular sequence).

5D. q ≡ 1 mod l . Suppose that q ≡ 1 mod l. By Proposition 5.3 we have already
dealt with the cases in which the eigenvalues of ρ(φ) are distinct. All other cases
are dealt with by the following (after twisting and conjugating ρ). Note that by
Lemma 3.7, the only possible types when ρ|P̃F

is trivial are τζ,s , τζ,ns and τζ1,ζ2

for ζ any la-th root of unity and ζ1, ζ2 any distinct la-th roots of unity.

Proposition 5.8. Suppose that q ≡ 1 mod l and that ρ|P̃F
is trivial. Suppose that

ρ(σ)=
( 1

0
x
1

)
and ρ(φ)=

(1
0

y
1

)
for x, y ∈ F.

(1) If x 6=0 then R�(ρ, τζ,s)=0, while R�(ρ, τζ,ns) and R�(ρ, τζ1,ζ2) are formally
smooth over O of relative dimension 4.

If aN is the four-dimensional prime of R�(ρ) corresponding to R�(ρ, τ1,ns)

then we have

Z4(R�(ρ, τ ))=


0 if τ = τζ,s,
[aN ] if τ = τζ,ns,

[aN ] if τ = τζ1,ζ2 .

(14)

(2) If x = 0 and y 6= 0, then R�(ρ, τζ,s) and R�(ρ, τζ,ns) are formally smooth
over O of relative dimension 4 while

R�(ρ, τζ1,ζ2)
∼=O[[X1, . . . , X5]]/(X2

1 X2− (ζ1− ζ2)
2)

is a complete intersection domain of relative dimension 4 over O.
If anr and aN are the prime ideals of R�(ρ) corresponding to R�(ρ, τ1,s)

and R�(ρ, τ1,ns) respectively, then

Z4(R�(ρ, τ ))=


[anr ] if τ = τζ,s,
[aN ] if τ = τζ,ns,

2[anr ] + [aN ] if τ = τζ1,ζ2 .

(15)

(3) If x= y=0, then R�(ρ, τζ,s) is formally smooth over O of relative dimension 4
while R�(ρ, τζ,ns) and R�(ρ, τζ1,ζ2) are non-Gorenstein Cohen–Macaulay
domains of relative dimension 4 over O.

Both R�(ρ, τζ,s) and R�(ρ, τζ,ns) are domains; let the corresponding
primes of R�(ρ) be anr and aN respectively. Then

Z4(R�(ρ, τ ))=


[anr ] if τ = τζ,s,
[aN ] if τ = τζ,ns,

2[anr ] + [aN ] if τ = τζ1,ζ2 .

(16)

Proof. Write

ρ�(σ )=

(
1+A x+B

C 1+D

)
, ρ�(φ)=

(
1+P y+R

S 1+Q

)
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with A, B, C , D, P , Q, R, and S ∈ m and x , y lifts of x , y (taken to be zero
if x or y = 0).

First, we have that R�(ρ, τζ,s)= 0 if x 6= 0 and

R�(ρ, τζ,s)∼=O[[P, Q, R, S]]

otherwise.
Next, we look at R�(ρ, τζ1,ζ2) for ζ1 and ζ2 distinct la-th roots of unity. The

condition that ρ�(σ ) has characteristic polynomial (t − ζ1)(t − ζ2) is equivalent to
the equations

A+ D = ζ1+ ζ2− 2 and AD− (x + B)C = (ζ1− 1)(ζ2− 1).

Since (t − ζ1)(t − ζ2) | tq−1
− 1, by the Cayley–Hamilton theorem we have

ρ�(σ )q = ρ�(σ )

on R�(ρ, τζ1,ζ2)
◦. So the relation φσφ−1

= σ q yields(
1+A x+B

C 1+D

)(
1+P y+R

S 1+Q

)
=

(
1+P y+R

S 1+Q

)(
1+A x+B

C 1+D

)
.

Equating coefficients, eliminating D and writing U = P − Q and F = A− D =
2A− (ζ1+ ζ2− 2) we see that R�(ρ, τζ1,ζ2) is the reduced, l-torsion-free quotient
of O[[B,C, F, P, R, S,U ]] by the relations

(x + B)S = (y+ R)C, (17)

F(y+ R)=U (x + B), (18)

F S =UC, (19)

(ζ1− ζ2)
2
= F2

+ 4(x + B)C. (20)

If x 6= 0 then these equations are equivalent to U = F(y + R)(x + B)−1,
C = 1

4((ζ1− ζ2)
2
− F2)(x + B)−1, and S = C(y+ R)(x + B)−1 so that

R�(ρ, τζ1,ζ2)
∼=O[[B, F, P, R]].

If x = 0 and y 6= 0, then F = BU (y + R)−1 and C = BS(y + R)−1 will be a
solution to equations (17)–(20) provided that

(ζ1− ζ2)
2
=

(
B

y+ R

)2

(U 2
+ 4(y+ R)S).

Writing (X1, . . . , X5)= (B(y+ R)−1,U 2
+ 4(y+ R)S, P, R,U ) we get

R�(ρ, τζ1,ζ2)
∼=

O[[X1, . . . , X5]]

X2
1 X2− (ζ1− ζ2)2
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as claimed. The other statements about R�(ρ, τζ1,ζ2) follow easily.
If x = y = 0, then let A=O[[B,C, F, P, R, S,U ]] and I CA be the ideal

I = ((ζ1− ζ2)
2
− F2

− 4BC, BS−C R, F R− BU, F S−CU ).

Note that the ideal

J = (BS−C R, F R− BU, F S−CU )

is generated by the 2× 2 minors of
( B

R
C
S

F
U

)
. So, by Proposition 2.7, A/J is a

Cohen–Macaulay, non-Gorenstein domain. Since F2
− 4BC is not zero in the

domain A/J ⊗ F, (λ, F2
− 4BC) is a regular sequence in A/J . Hence (F2

−

4BC − (ζ1 − ζ2)
2, λ) is a regular sequence in A/J , and therefore A/I is O-flat,

Cohen–Macaulay and non-Gorenstein. It is reduced because it is Cohen–Macaulay
and, as we shall show in the next paragraph, generically reduced.

To show that A/I is irreducible, it suffices to show that X = Spec(A/I ⊗ E) is
irreducible. This follows if we can show that X is formally smooth and connected.
As F2

−4BC 6= 0 on X , it is covered by the affine open subsets UB = {B 6= 0} and
UF = {F 6= 0}. By the argument used in the x 6= 0 case, UB is formally smooth. A
similar argument works for UF , the projection map

p : X → Spec
(

O[[F, B,C,U, P]]
(F2+ 4BC − (ζ1− ζ2)2)

⊗ E
)

is an isomorphism from UF onto an open subscheme, but the right hand side is
easily seen to be formally smooth. Hence X is formally smooth. Note that the
composition of the map p with the projection away from U is a continuous map
with connected fibres and connected image, which admits a continuous section
(obtained by taking R = S =U = 0); it follows that X is connected, as required.
Since X is formally smooth it is certainly reduced; therefore A/I is generically
reduced (as it is O-flat), just as we claimed above.

Now we turn to R�(ρ, τζ,ns). By Lemma 2.4 we may assume that ζ = 1. The
condition that the characteristic polynomial of ρ�(σ ) be (t − 1)2 is equivalent to
the equations

A+ D = 0 and AD− (x + B)C = 0.

Writing T = P + Q and U = P − Q the condition that

q tr(ρ�(φ))2 = (q + 1)2 det(ρ�(φ))

becomes

(q − 1)2(T + 2)2 = (q + 1)2(U 2
+ 4(y+ R)S).
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Since tq
− 1≡ q(t − 1) mod (t − 1)2, the Cayley–Hamilton theorem shows that

ρ�(σ )q − 1= q(ρ�(σ )− 1)

on R�(ρ, τ1,ns). From φσφ−1
= σ q we therefore get the equation

(φ− 1)(σ − 1)− (σ − 1)(φ− 1)= (q − 1)(σ − 1)φ

on R�(ρ, τ1,ns). Equating coefficients and substituting D=−A we get the equations

A2
+ (x + B)C = 0, (21)

(q − 1)2(T + 2)2 = (q + 1)2(U 2
+ 4(y+ R)S), (22)

C(y+ R)− S(x + B)= (q − 1)(A(1+ P)+ (x + B)S), (23)

U (x + B)− 2A(y+ R)= (q − 1)(A(y+ R)+ (x + B)(1+ Q)), (24)

2AS−CU = (q − 1)(C(1+ P)− AS), (25)

S(x + B)−C(y+ R)= (q − 1)(C(y+ R)− A(1+ Q)). (26)

After replacing P with (T +U )/2 and Q with (T −U )/2, this is a complete set of
equations for R�(ρ, τ1,ns) in O[[A, B,C, R, S, T,U ]].

We replace equations (23) and (26) by their sum and difference

(q − 1)(AU + (x + B)S+C(y+ R))= 0, (27)

(q + 1)(C(y+ R)− (x + B)S)= (q − 1)A(2+ T ). (28)

As R�(ρ, τ1,ns) is λ-torsion free, (27) implies that

AU + (x + B)S+C(y+ R)= 0. (29)

We could also write this equation as tr((σ − 1)φ)= 0.
Putting α(T )= ((q − 1)(2+ T ))/(q + 1), we find that (21), (22), (24), (25) and

(28)+(29) may respectively be rewritten as

A2
+ (x + B)C = 0,

4(y+ R)S+ (U −α(T ))(U +α(T ))= 0,

2A(y+ R)− (x + B)(U −α(T ))= 0,

2AS−C(U +α(T ))= 0,

2C(y+ R)+ A(U −α(T ))= 0,

2(x + B)S+ A(U +α(T ))= 0.

Let I be the ideal of O[[A, B,C, R, S, T,U ]] generated by these equations and
let R′ = O[[A, B,C, R, S, T,U ]]/I , so that R�(ρ, τ1,ns) is the maximal reduced
l-torsion free quotient of R′.
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If x 6= 0 then C , U , and S are uniquely determined by A, B, R, and T so that

R�(ρ, τ1,ns)∼=O[[A, B, R, T ]].

If y 6= 0, then S, C , and A are uniquely determined by B, R, T , and U so that

R�(ρ, τ1,ns)∼=O[[B, R, T,U ]].

If x = y = 0, so that x = y = 0, observe that

R′ ∼=
B

J0+ J1
,

where
B =O[[X1, . . . , X4, Y1, . . . , Y4, T ]],

the ideal J0 is generated by the 2× 2 minors of(
X1 X2 X3 X4

Y1 Y2 Y3 Y4

)
and J1 = (X1 + Y2, X3 − Y4 + 2(q − 1)/(q + 1)). (The change of variables is
X1 = A, X2 = B, Y1 = C , Y2 = −A, X3 = −2R/(2+ T ), Y4 = 2S(2+ T ), Y3 =

(U−α(T ))/(2+T ), and X4= (U+α(T ))/(2+T ).) Then, by Proposition 2.7, B/J0

is a Cohen–Macaulay non-Gorenstein domain. Moreover, (λ, X1+ Y2, X3− Y4)

may be checked to be a regular sequence on B/J0. Therefore (X1+ Y2, X3+ Y4+

2(q−1)/(q+1), λ) is also regular, and so B/(J0+ J1) is Cohen–Macaulay, O-flat,
and not Gorenstein. The same is then true for R′.

We show that R′⊗ F is a domain, which implies that R′ is a domain. Let I be
the image of I in F[[A, B,C, R, S, T,U ]]. Then I is homogeneous so gr(R′⊗F)=

F[A, B,C, R, S, T,U ]/I and it suffices to check that this is a domain (by [Eisenbud
1995, Corollary 5.5]). It is therefore sufficient to check that Proj(gr(R′ ⊗ F)) is
reduced and irreducible. But it is easy to check this on the usual seven affine pieces.
This argument is from [Taylor 2009].

Next we show that R�(ρ, τ1,ns) is reduced. In fact, we show that

Y = Spec(R�(ρ, τ1,ns)⊗ E)

is formally smooth, which implies that R�(ρ, τ1,ns) is reduced because it is Cohen–
Macaulay and O-flat. For ?= B, C , R, S, U−α(T ), or U+α(T ) let U?={? 6=0}⊂Y
be the corresponding affine open subscheme. Then the U? are an affine open cover
of Y . For ?= B, C , R or S we see that U? is formally smooth by the same argument
as for the cases x 6= 0 and y 6= 0 above. For UU±α(T ), the projection morphism

p : UU−α(T )→ Spec
(

O[[C, R, S, T ]]
4RS− (U +α(T ))(U −α(T ))

⊗ E
)
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is an isomorphism onto an open subscheme. But the right hand scheme is easily
seen to be formally smooth as required.

Finally we calculate the Z4(R(ρ, τ )). We do this when x = y = 0, as the other
cases are similar but easier. We have written each R�(ρ, τ ) as the quotient of
F[[A, B,C, R, S, T,U ]] by an ideal which we call I (τ ). Recall the presentations

I (τζ,s)= (A, B,C),

I (τζ,ns)= (A2
+BC, 4RS+U 2, 2C R+AU, 2BS+AU, 2AR−BU, 2AS−CU ),

I (τζ1,ζ2)= (A
2
+ BC, BS−C R, 2AR− BU, 2AS−CU )

(using that A+ D = 0 in R�(ρ, τ ) for each τ , we have eliminated D and written
F = A− D = 2A). We have already shown that I (τζ,s) and I (τζ,ns) are prime —
they are the ideals denoted anr and aN in the statement of the theorem. It is clear that

Z4(R�(ρ, τζ,s))= [anr ], Z4(R�(ρ, τζ,ns))= [aN ].

Suppose that p is a prime ideal of F[[A, B,C, R, S, T,U ]] containing I (τζ1,ζ2). We
show that p contains anr or aN . If B,C ∈ p then A ∈ p as A2

+ BC ∈ I (τζ1,ζ2) and
we have anr ⊂ p. Otherwise, suppose that B 6∈ p. As A2

+ BC ∈ p, either both
A and C are in p or neither is. If A,C ∈ p then from 2AR− BU ∈ p we deduce
that U ∈ p, while from BS−C R ∈ p we deduce that S ∈ p. It is then easy to see
that aN ⊂ p. If A, B,C 6∈ p then because B(2C R+ AU ) and C(2BS+ AU ) are in
I (τζ1,ζ2) we see that 2C R+AU, 2BS+AU ∈p. This implies that A(4RS+U 2)∈p,
and so 4RS+U 2

∈ p and hence aN ⊂ p as required.
To finish, it is easy to check that

e(R�(ρ, τζ1,ζ2), anr )= 2 and e(R�(ρ, τζ1,ζ2), aN )= 1,

and so we get Equation (16). �

5E. Cohen–Macaulayness. If τ0 is a semisimple representation of IF over E , let
R(ρ, τ0)

′ be the maximal reduced and l-torsion-free quotient of R(ρ) all of whose
E-points give rise to representations ρ of GF with ρ|ss

IF
∼= τ0. Then I claim that

R(ρ, τ0)
′ is always Cohen–Macaulay. Indeed, if τ0 is nonscalar then this is proved

above. If τ0 is scalar, then we may twist and assume that it is trivial. If q 6≡±1 mod l,
this follows from Proposition 5.5. If q ≡ 1 mod l then we can deduce the claim
from Proposition 5.8 together with [Eisenbud 1995, Exercise 18.13], which says
that if R/I and R/J are d-dimensional Cohen–Macaulay quotients of a noetherian
local ring R, and dim R/(I + J ) = d − 1, then R/(I ∩ J ) is Cohen–Macaulay
if and only if R/(I + J ) is. We take R = R�(ρ), and I and J to be the ideals
cutting out R�(ρ, τs) and R�(ρ, τns) respectively. Then R/I and R/J are Cohen–
Macaulay, and R/(I + J ) is a quotient of the formally smooth ring R/I by the
single equation q tr(ρ�(φ))2 = (q + 1)2 det(ρ�(φ)), and so is Cohen–Macaulay.
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Therefore R/(I ∩ J ) is Cohen–Macaulay as required. When q ≡ −1 mod l the
claim follows from Proposition 5.6 unless ρ is the direct sum of the trivial and
cyclotomic characters, in which case we use Remark 5.7.

For n-dimensional representations the unrestricted framed deformation ring
R�(ρ) is always Cohen–Macaulay (in fact, a complete intersection; this is due to
David Helm, building on work of Choi [2009]). It is natural to wonder whether
the rings obtained by fixing the semisimplified restriction to inertia are always
Cohen–Macaulay. Note that they are not always Gorenstein.

For a discussion of how the Cohen–Macaulay property of local deformation rings
can be used to show that certain global Galois deformation rings are flat over O,
see [Snowden 2011, Section 5].

6. Reduction of types — proofs.

The aim of this section is to analyse the reduction modulo l of the K -types σ(τ)
defined in Section 3, and in particular to prove Lemma 3.9.

6A. The essentially tame case. Suppose that τ = (rτ , Nτ ) where rτ is a tamely
ramified, semisimple representation of IF . Then σ(τ) is inflated from a represen-
tation of GL2(kF ). We will always use the same notation for a representation of
GL2(kF ) and its inflation to GL2(OF ). For this subsection let G = GL2(kF ), let B
be the subgroup of upper-triangular matrices, let U be the subgroup of unipotent
elements of B, let Z be the centre of G, and fix an embedding α : k×L ↪→ G. Fix
a nontrivial additive character ψ of U . Then we have (see, e.g., [Bushnell and
Henniart 2006, Chapter 6]):

• If rτ = (rec(χ̃)⊕ rec(χ̃))|IF and Nτ 6= 0, where χ̃ |O×F is inflated from a character
χ of k×F , then σ(τ) = (χ ◦ det)⊗ St, where St is the Steinberg representation
of G.

• If rτ = (rec(χ̃)⊕ rec(χ̃))|IF and Nτ = 0, where χ̃ |O×F is inflated from a character
χ of k×F , then σ(τ)= χ ◦ det.

• If rτ = (rec(χ̃1)⊕ rec(χ̃2))|IF , where χ̃1|O×F
and χ̃2|O×F

are inflated from distinct
characters χ1 and χ2 of k×F , then

σ(τ)= µ(χ1, χ2) := IndG
B (χ1⊗χ2).

• If rτ = (IndGF
GL

rec(θ̃))|IF where θ̃ |O×L is inflated from a character θ of k×L which
is not equal to its Gal(kL/kF ) conjugate θ c, then

σ(τ)= πθ := IndG
ZU (θ |Zψ)− IndG

α(k×L )
θ

(this virtual representation is a genuine irreducible representation that is indepen-
dent of the choice of ψ).



1470 Jack Shotton

The only isomorphisms between these representations are of the formµ(χ1, χ2)∼=

µ(χ2, χ1) and πθ ∼= πθ c .
We want to understand the reductions of these representations modulo l, for

this see [Helm 2010]. We will use analogous notation for representations of G in
characteristic zero and in characteristic l; hopefully this will not cause confusion.

If q 6≡ ±1 mod l, then reduction modulo l is a bijection between irreducible
Fl-representations of G and irreducible E-representations of G, as G has order
q(q + 1)(q − 1)2 which is coprime to l.

If q ≡ 1 mod l, then the distinct irreducible representations of GL2(kF ) over F

are χ ◦det and St⊗(χ ◦det) for χ : k×F → F×, µ(χ1, χ2) for χ1, χ2 : k×F → F× a pair
of distinct characters, and πθ for θ : k×L → F× a character which is not isomorphic
to its conjugate. The notation is all entirely analogous to the characteristic zero
case. Once again, the only isomorphisms are µ(χ1, χ2)∼= µ(χ2, χ1) and πθ ∼= πθc .
The reductions of the characteristic zero representations are:

• χ ◦ det= χ ◦ det.

• St⊗χ ◦ det= St⊗(χ ◦ det).

• µ(χ1, χ2)= µ(χ1, χ2) if χ1 6= χ2.

• µ(χ1, χ2)= (χ ◦ det)⊕St⊗(χ ◦ det) if χ1 = χ2 = χ .

• π θ = πθ .

For the last of these, we must observe that θ/θ c is a character of k×L /k×F , a group
which has order q+1 and so coprime to l (as l > 2). Therefore if θ 6= θ c then θ 6= θ c.

If q ≡ −1 mod l, then the distinct irreducible representations are χ ◦ det for
χ : k×F → F×, µ(χ1, χ2) for χ1, χ2 : k×F → F× unordered pair of distinct characters,
πθ for θ : k×L → F× a character which is not isomorphic to its conjugate, and
(χ ◦det)⊗π1 for χ : k×F → F× a character. This last needs some explanation, π1 is
the reduction modulo l of πθ for any character θ : k×L /k×F → E× which is not equal
to θ c but whose reduction modulo l is trivial. Once again, the only isomorphisms
are µ(χ1, χ2) ∼= µ(χ2, χ1) and πθ ∼= πθ c . The reductions of the characteristic 0
representations are:

• χ ◦ det= χ ◦ det.

• µ(χ1, χ2)= µ(χ1, χ2).

• π θ = πθ if θ 6= θ c.

• π θ = π1⊗ (θ |k×F
◦ det) if θ = θ c.

• St⊗χ ◦ det has π1⊗ (χ ◦ det) as a submodule with quotient χ ◦ det.

In particular, comparing this analysis with Lemma 3.8 shows:
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Lemma 6.1. If τ = (r, 0) and τ ′ = (r ′, 0) are scalar on PF but not on P̃F , then
σ(τ) and σ(τ ′) are irreducible and are isomorphic if and only if r ≡ r ′ mod l.

6B. The wild case. If τ = (r, 0) and all twists of r are wildly ramified (we say that τ
is “essentially wildly ramified”), then the following lemma will allow us to show that
σ(τ) is irreducible. If ρ is a Zl-representation of a group H , we write ρ for ρ⊗ Fl .

Lemma 6.2. Suppose that H C J ⊂ K are profinite groups such that H is open
in K , H has pro-order coprime to l, and J/H is an abelian l-group. Suppose that λ
is a Zl-representation of J , and write η for the restriction of λ to H. Suppose that η
(and hence λ) is irreducible. Suppose that if g ∈ K intertwines η, then g ∈ J . Then

(1) The representations of J extending η are precisely λi =λ⊗νi as νi run through
the characters of J/H. There is an isomorphism IndJ

H η⊗ E ∼=
⊕

i λi . The
unique Fl-representation extending η is λ, and all of the Jordan–Hölder factors
of IndJ

H η are isomorphic to λ.

(2) A Fl-representation ρ of J contains λ as a subrepresentation if and only if it
contains λ as a quotient.

(3) The representations IndK
J λi and IndK

J λ are irreducible.

Proof.

(1) In characteristic 0 we argue as follows. First note that the representations λi are
distinct, otherwise λ|H would have a nonscalar endomorphism, contradicting
Schur’s lemma. By Frobenius reciprocity, the λi are distinct irreducible con-
stituents of IndJ

H η. Since the sum of their dimensions is dim IndJ
H η, they are

the only irreducible constituents. By Frobenius reciprocity, any representation
extending η must occur in IndJ

H η and so must be one of the λi , as required.
In characteristic l, first note that λ is irreducible since the pro-order of H is
coprime to l. It follows from this and the fact that νi is trivial for all i that the
Jordan–Hölder factors of IndJ

H η are isomorphic to λ. Frobenius reciprocity
then implies that λ is the unique irreducible representation of J extending H .

(2) It follows from part 1 that HomJ (λ, ρ) 6= 0 if and only if HomJ (IndJ
H η, ρ) 6= 0.

By Frobenius reciprocity, this is equivalent to HomH (η, ρ) 6= 0. But by the
assumption on the pro-order of H , Fl-representations of H are semisimple,
and so this is equivalent to HomH (ρ, η) 6= 0, which by the same argument is
equivalent to HomJ (ρ, IndJ

H η) 6= 0.

(3) First, note that dim HomK (IndK
J λ, IndK

J λ)= 1, by Mackey’s decomposition
formula and the assumption that elements of K \ J do not intertwine η. Now
suppose that ρ is an irreducible subrepresentation of IndK

J λ. By Frobenius
reciprocity and part 2 we may deduce that ρ is also an irreducible quotient of
IndK

J λ. The composition IndK
J λ� ρ ↪→ IndK

J λ is then a nonzero element
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of HomK (IndK
J λ, IndK

J λ), and is therefore scalar. But this is only possible if
ρ = IndK

J λ, as required. The statement about IndK
J λi follows. �

Proposition 6.3. Let τ = (r, 0) be an essentially wildly ramified inertial type. Then
there exists a subgroup J ⊂ K , an irreducible representation λ of J , and a subgroup
J̃ C J , such that ( J̃ , J, K , λ) satisfy the hypotheses on (H, J, K , λ) in Lemma 6.2
and such that σ(τ)= IndK

J λ.
In particular, σ(τ) is irreducible.

Proof. Suppose first that r is the restriction to IF of a reducible representation of GF .
Then σ(τ)= IndK

K0(N ) ε⊗ (χ ◦det) for a character ε of O×F of exponent N ≥ 2 and
a character χ of O×F . Let J = K0(N ), and let

J̃ =
{(

a b
c d

)
∈ J : a has order coprime to l modulo pF

}
.

Then J̃ , J , and ε satisfy all the required hypotheses — the only one to check is
that ε| J̃ is not intertwined by any element of K \ J . We deduce this (in somewhat
circular fashion) from the irreducibility of IndK

J (ε), since this is shorter than a direct
proof. If g ∈ K intertwines ε| J̃ , then Hom J̃∩g J̃ g−1(ε, ε

g) 6= 0. By Mackey’s formula

dim
(
Hom J̃ (ε, IndK

J̃
ε)
)
=

∑
g∈ J̃\K/ J̃

dim Hom J̃∩g J̃ g−1(ε, ε
g).

The left hand side is in turn equal to dim HomK (IndK
J̃
ε, IndK

J̃
ε). But IndK

J̃
ε =⊕

i IndK
J εi where εi are the characters of J extending ε| J̃ , and by the appendix to

[Breuil and Mézard 2002], these IndK
J εi are irreducible and distinct. Therefore the

left hand side is equal to (J : J̃ ). The right hand side has a contribution of 1 from
each g ∈ J/ J̃ , and therefore from no other g, as required.

Now suppose that r is the restriction to IF of an irreducible representation of GF .
Then σ(τ)= IndK

J λ for an irreducible representation λ of J extending an irreducible
representation η of a pro-p normal subgroup J 1 of J (see [Bushnell and Henniart
2006, Sections 15.5, 15.6 and 15.7] — note that our J is the maximal compact
subgroup of their Jα , but our J 1 agrees with their J 1

α ). We have J/J 1
= k×, where

k is the residue field of a quadratic extension of F , and so J has a normal subgroup
J̃ of pro-order coprime to l such that J/ J̃ is an l-group. Then ( J̃ , J, K , λ) satisfy
all the required hypotheses — the intertwining statement follows from [Bushnell
and Henniart 2006, 15.6 Proposition 2]. �

Proposition 6.4. Let τ = (r, 0) and τ ′ = (r ′, 0) be inertial types that are not scalar
on P̃F . If r ≡ r ′ mod l, then σ(τ) and σ(τ ′) are isomorphic.

Proof. If either of r and r ′ is (after a twist) tamely ramified, then so is the other and
this is contained in Lemma 6.1. Otherwise, by Lemma 3.8, we are in one of the
following cases:
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(1) r = (χ1⊕χ2)|IF for characters χ1 and χ2 of GF that are distinct on PF , and
r ′ = (χ ′1⊕χ

′

2)|IF for characters χ ′1 and χ ′2 of GF with χi ≡ χ
′

i for i = 1, 2.

(2) r = (IndGF
GL
ξ)IF and r ′ = (IndGF

GL
ξ ′)IF for wildly ramified characters ξ and ξ ′

of GL such that ξ ≡ ξ ′, and such that ξ |P̃F
does not extend to GF .

(3) r |P̃F
is irreducible and r ′ = r ⊗χ for a character χ of IF that extends to GF

and such that χ ≡ 1 mod l.

In the first case, we may write χi = rec(εi ) and χ ′i = rec(ε′i ) with εi and ε′i
characters of F× such that εi ≡ ε

′

i mod l and such that ε= ε1/ε2 has exponent N ≥1.
Since ε′ = ε′1/ε

′

2 also has exponent N , we have

σ(τ)= ε2⊗ IndK
K0(N ) ε

≡ ε′2⊗ IndK
K0(N ) ε

′ mod l

= σ(τ ′).

In the second case, by twisting we may reduce to the case where (L/F, rec−1(ξ))

is an unramified minimal admissible pair [Bushnell and Henniart 2006, § 19.6].
Then, following through the explicit construction of [Bushnell and Henniart 2006,
SS 19.3 and 19.4] we see that there are

(1) a simple stratum (A, n, α)with associated compact open subgroups J1⊂ J ⊂K ,
with J1 pro-p and J/J1 ∼= k×L ,

(2) a representation η of J 1 and extensions λ and λ′ of η to J such that IndK
J (λ)=

σ(τ) and IndK
J (λ
′)= σ(τ ′).

Indeed, up to conjugacy, (A, n, α), J1, and η are determined by rec−1(ξ)|U 1
L
=

rec−1(ξ ′)|U 1
L
. The representations λ and λ′ are defined in terms of rec−1(ξ) and

rec−1(ξ ′) by the formulae of [Bushnell and Henniart 2006, 19.3.1 and Corol-
lary 19.4] (together with the correction factor of paragraph 34.4, an unramified
twist 1ξ , that makes no difference to the argument). It is clear from these that if
ξ ≡ ξ ′ then λ≡ λ′ as required.

In the final case, r ′ = r ⊗ χ for a character χ of IF that extends to GF . By
compatibility of τ 7→ σ(τ) with twisting,

σ(τ ′)= σ(τ)⊗ rec−1(χ) ◦ det
≡ σ(τ) mod l

as required. �

Proposition 6.5. Let τ = (r, 0) and τ ′ = (r ′, 0) be inertial types that are not scalar
on P̃F . If σ(τ) and σ(τ ′) are isomorphic, then r ≡ r ′ mod l.

Proof. If one of r and r ′ has a twist which is trivial on PF , then so does the other
and in this case the proposition follows from Lemma 6.1.
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Otherwise we may, by twisting, assume that σ(τ) and σ(τ ′) satisfy l(σ )≤ l(σ⊗χ )
for all characters χ of O×F (the definition of l(σ ) is as in [Bushnell and Henniart
2006, § 12.6]). In this case σ(τ) and σ(τ ′) contain the same, nonempty, sets of
fundamental strata (because this only depends on the restriction to pro-p subgroups).

If one of σ(τ) and σ(τ ′) contains a split fundamental stratum [Bushnell and
Henniart 2006, 13.2] then so does the other. In this case, [Bushnell and Henniart
2006, Corollary 13.3] implies that they cannot be cuspidal types and so we have

σ(τ)= IndK
K0(N )(ε) and σ(τ ′)= IndK

K0(N ′)(ε
′)

for some ε and ε′ of exponents N and N ′. It is easy to see that in fact we must
have N = N ′. From Lemma 6.2 we deduce that ε ≡ ε′ mod l, and so τ ≡ τ ′ mod l
as required.

Otherwise, σ(τ)= IndK
J λ and σ(τ ′)= IndK

J λ
′ for a simple stratum (A, n, α)with

associated groups J 1
⊂ J and representations λ and λ′ extending the representation

η of J . From Lemma 6.2 we deduce that λ′ = λ⊗η for a character η of J/J 1 with
η ≡ 1 mod l.

If A is unramified, then by the reverse of the argument in the second case of the
previous proposition we see that τ = (IndGF

GL
ξ)|IF and τ = (IndGF

GL
ξ)|IF for ξ and ξ ′

characters of GL with ξ |IL ≡ ξ
′
|IL , whence the result.

If A is ramified, then η can be regarded as a character of J/J 1 ∼= k×M = k×F with
η ≡ 1 mod l for some ramified quadratic extension M/F . I claim that there is a
character χ of O×F with η = χ ◦ det and χ ≡ 1 mod l. Indeed, as l > 2 we can take
the inflation to O×F of the character χ of k×F satisfying χ ≡ 1 mod l and χ2

= η.
Then σ(τ)= σ(τ ′)⊗ (χ ◦ det) and so

τ = τ ′⊗ rec(χ)
≡ τ ′ mod l,

as required. �
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Generalized Kuga–Satake theory
and rigid local systems, II:
rigid Hecke eigensheaves

Stefan Patrikis

We use rigid Hecke eigensheaves, building on Yun’s work on the construction
of motives with exceptional Galois groups, to produce the first robust examples
of “generalized Kuga–Satake theory” outside the Tannakian category of motives
generated by abelian varieties. To strengthen our description of the “motivic”
nature of Kuga–Satake lifts, we digress to establish a result that should be of
independent interest: for any quasiprojective variety over a (finitely generated)
characteristic-zero field, the associated graded of the weight filtration on its
intersection cohomology arises from a motivated motive in the sense of André,
and in particular from a classical homological motive if one assumes the standard
conjectures. This extends work of de Cataldo and Migliorini.

1. Background: generalized Kuga–Satake theory

The aim of this paper is to produce nontrivial examples of the generalized Kuga–
Satake theory proposed in [Patrikis 2014b]. The classical Kuga–Satake construction
is a miracle of Hodge theory that associates to any complex K3 surface X a complex
abelian variety KS(X) and an inclusion of Q-Hodge structures

H 2(X,Q)⊂ H 1(KS(X),Q)⊗2.

This construction takes its clearest conceptual form within the motivic Galois
formalism. Let Mhom

C
denote the category of pure motives over C for homological

equivalence. Assuming the standard conjectures, this is a neutral Tannakian category
over Q with fiber functor given by Betti cohomology:

HB :Mhom
C → VectQ .
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Let Ghom
C
= Aut⊗(HB) denote the corresponding Tannakian group. Then we can

phrase the Kuga–Satake construction as follows: the motive H 2(X) admits a
(symmetric) polarization, hence (normalizing by a Tate-twist to weight zero) cor-
responds to a motivic Galois representation ρ : Ghom

C
→ SO(H 2

B (X)(1)).
1 The

motive H 1(KS(X)) then is the motivic Galois representation corresponding to the
composite r ◦ ρ̃ in the diagram

GSpin(H 2
B (X)(1))

r
//

��

GL(C+(H 2
B (X)(1)))

Ghom
C

ρ̃
88

ρ

// SO(H 2
B (X)(1))

(1)

in which ρ̃ is a suitable lift of ρ, and r is the natural representation of GSpin
on the even Clifford algebra. The strongest possible version of the Kuga–Satake
construction is the statement that such a lift ρ̃ exists; this is far from known at
present, as it implicitly includes deep cases of the Lefschetz standard conjecture.
A weaker, but still highly nontrivial, analogue is known when Ghom

C
is replaced by

the motivic Galois group of André’s category of motives for motivated cycles; see
[André 1996a].

But the formulation itself is highly suggestive, pointing towards deep and largely
unexplored generalizations, some of whose essential difficulties are orthogonal to the
usual impenetrable conjectures of algebraic and arithmetic geometry — Lefschetz,
Hodge, Tate, etc. In what follows we will work with motives over number fields
and their `-adic realizations, rather than motives over C and their Hodge–Betti
realizations, but there are analogues of the results of this paper in the latter setting.
We now state a conjecture that captures the most refined form of a “generalized Kuga–
Satake theory” for motives over number fields. For two number fields F and E ,
we let MF,E denote the category of motives for motivated cycles over F with
coefficients in E ; it is (unconditionally) neutral Tannakian over E , and by choosing
an embedding F ↪→ C, the (E-linear) Betti fiber functor gives us its motivic Galois
group GF,E (see [André 1996b] for background).

Conjecture 1.1 (see Section 4.3 of [Patrikis 2014b]). Let H̃ → H be a surjection
of linear algebraic E-groups whose kernel is equal to a central torus in H̃, and let

ρ : GF,E → H

be a motivic Galois representation. Then if either F is totally imaginary, or the
“Hodge numbers” of ρ satisfy the (necessary) parity condition of [Patrikis 2015,

1That this motivic Galois representation should be special orthogonal, rather than merely orthogo-
nal, is nontrivial; it follows from work of André [1996a].
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Proposition 5.5], then there exists a finite extension E ′/E and a lifting

H̃E ′

��

GF,E ′
ρ⊗E E ′

//

ρ̃
::

HE ′

of motivic Galois representations.

For a leisurely overview of this conjecture, see the introduction to [Patrikis
2014a]; for a detailed discussion of the arithmetic evidence, see [Patrikis 2014b].
Even working with motivated rather than homological motives, this conjecture is
highly refined: in the classical setting of diagram (1), the existence of such a ρ̃
requires not only the existence of KS(X), but also the full force of the theorem
of Deligne–André that Hodge cycles on abelian varieties are motivated.2 At first
approximation, though, we can replace Conjecture 1.1 with the following variant:

Definition 1.2. Setting 0F = Gal(F/F) for an algebraic closure F of F, we let
ρ : 0F → H(Q`) be a geometric Galois representation valued in an arbitrary linear
algebraic group H over Q`.

• We say that ρ is weakly motivic if there exists a faithful representation
r : H ↪→GL(Vr ) such that r ◦ρ is isomorphic to the (ι : E ↪→Q`)-realization
Hι(M) of some object M of MF,E .

• Suppose that we are given such a weakly motivic ρ : 0F → H(Q`), and let ρ̃
be a geometric lift to H̃ :

H̃(Q`)

��

0F

ρ̃
<<

ρ
// H(Q`)

(2)

(That such geometric lifts typically exist is [Patrikis 2014b, Theorem 3.2.10]
and [Patrikis 2015, Proposition 5.5].)3 We say that ρ̃ satisfies the generalized
Kuga–Satake property if it is weakly motivic as an H̃-representation.

2For F = C, that is. When F is a number field, the existence of ρ̃ requires the Tate conjecture for
abelian varieties, and rather delicate descent arguments — see [Patrikis 2014b, §4.2].

3This should be contrasted with the situation in which the kernel of H̃ → H is finite, where
geometric lifts, even after allowing a finite base change on F, need not exist: for a simple example,
consider the case SL2 → PGL2 in which ρ is the projective representation associated to the Tate
module of an elliptic curve (or even more simply, consider multiplication by N > 1 on Gm , and let ρ
be the cyclotomic character). For the full story, see [Wintenberger 1995].
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In sum, our aim in establishing certain cases of this “generalized Kuga–Satake
property” is to verify (motivated refinements of) certain cases of the Fontaine–Mazur
conjecture.

With this framework in place, we can introduce the particular setting of this
paper. Our aim is to study certain families of weakly motivic ρ : 0F → H(Q`) for
which it is possible to find lifts ρ̃ : 0F → H̃(Q`) satisfying the generalized Kuga–
Satake property. Outside of the context of the classical Kuga–Satake construction,
where ρ is the representation on H 2(XF ,Q`), for X/F a K3 surface — or closely
related examples in which the motives in question are still generated by motives
of abelian varieties4 — there were no nontrivial examples of such a lifting until
[Patrikis 2014a]. But that paper is restricted to low-dimensional examples in which
H̃ = GSpin5→ H = SO5, and relies heavily on low-dimensional coincidences in
the Dynkin classification. Thus the primary desiderata for our examples are that:

(D.1) the motives in question not lie in the Tannakian subcategory of MF generated
by abelian varieties and Artin motives;

(D.2) the examples exist in arbitrary rank, or at least for “interesting” groups H ;

(D.3) the lift ρ̃ should not be realizable within the Tannakian category of geometric
representations generated by ρ, characters, and Artin representations.

We make explicit this last desideratum just to point out that for some choices of H̃,
for instance H̃ = H×Gm , the existence of a weakly motivic lift ρ̃ is completely triv-
ial. Condition (D.3) is a way to ensure the results we prove have nontrivial content.

The examples of this paper meet all three criteria of interest. For our ρ we
take the remarkable weakly motivic Galois representations constructed in [Yun
2014a, Theorem 4.2, Proposition 4.6]. Let us recall a somewhat simplified version
of the main result of [Yun 2014a]. Let G be a split, simple, simply connected
group of type A1, Dn with n even, G2, E7, or E8, and let G∨ denote the split
Q-form of its dual group. We have to say a word about the coefficients of the Galois
representations and motives. For definiteness, fix an embedding Q ↪→Q`, implicit
whenever we take “the” `-adic realization of a motive with coefficients in Q, and
let i be a square-root of −1 in Q. All the local systems considered can be arranged
to have coefficients in the (possibly trivial) extension Q′` =Q`(i). The motives will
have coefficients in the subfield Q′ ⊂Q given by

Q′ =

{
Q in types D4m , G2, E8,
Q(i) in types A1, D4m+2, E7.

(3)

There is a certain two-fold cover (2)ZG � ZG (see Definition 4.1 and Lemma 4.2)
of the center ZG of G — regard (2)ZG as a group scheme over Q — and we call a

4For an “axiomatic” generalization of this context, see [André 1996a], which, for instance, further
allows X to be a hyperkähler variety, or a cubic four-fold.
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character
χ : (2)ZG(Q)→Q×

odd if it is nontrivial on the kernel of (2)ZG→ ZG .

Theorem 1.3 [Yun 2014a]. For any odd character χ : (2)ZG(Q)→Q×, there exists
a local system

ρχ : π1(P
1
Q−{0, 1,∞})→ G∨(Q′`)

whose geometric monodromy group is G∨, except in type D2m , in which case the
geometric monodromy group is SO4m−1. For all number fields F such that

F ⊇
{

Q if G is of type D4m , G2, or E8,
Q(
√
−1) if G is of type A1, D4m+2, or E7,

and all specializations t :Spec F→P1
−{0, 1,∞}, the pullback ρχ,t :0F→G∨(Q′`)

is weakly motivic. To be precise, the composition of ρχ,t with the quasiminuscule
representation of G∨ is isomorphic to the Q′`-realization of an object of MF,Q′ .

We can now state the first main result of this paper. There is a minor technicality in
the phrasing of this theorem that results very naturally from the way the geometric
Satake isomorphism descends to number fields — see Section 4B for a careful
explanation. Namely, for any connected reductive group H, let ρ∨ denote the
usual half-sum of the positive coroots (for any choice of based root datum), and set
H1= (H×Gm)/〈(2ρ∨(−1)×−1)〉. In the case H =G∨, to avoid cluttered notation
we write G∨1 for (G∨)1; this should not cause any confusion. Yun’s construction is
most naturally viewed as the construction of a local system

ρχ : π1(P
1
Q−{0, 1,∞})→ G∨1 (Q

′

`)= (G
∨
×Gm)(Q

′

`)

in which the G∨ component is as in Theorem 1.3, and the Gm component is the
cyclotomic character; the equality here uses the fact that G is simply connected.

Theorem 1.4. Let H̃ � G∨ be any surjection of split connected reductive groups
with kernel equal to a central torus in H̃. Then:

(1) There exists a local system ρ̃χ : π1(P
1
Q(
√
−1)−{0, 1,∞})→ H̃1(Q

′

`) lifting ρχ ,
i.e., such that the diagram

H̃1(Q
′

`)

��

π1(P
1
Q(
√
−1)−{0, 1,∞})

ρ̃χ
66

ρχ
// G∨1 (Q

′

`)

commutes. When G is of type D4m , we may replace Q(
√
−1) by Q in this

assertion.
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(2) For all number field specializations t : Spec F → P1
− {0, 1,∞} (assuming

F⊃Q(
√
−1) in types A1, D4m+2, and E7), ρ̃χ,t is weakly motivic, i.e., satisfies

the generalized Kuga–Satake property.

The real content of this result is for G of types D2m and E7. When π1(G)= {1}
(types G2, E8), there can never be any generalized Kuga–Satake lift satisfying
criterion (D.3). In type A1, the construction is not completely trivial, but the
motives in question are generated by abelian varieties and Artin motives, so fail
to satisfy our criterion (D.1).5 But in the essential cases of types D2m and E7,
all of our desiderata are met, the key point being that, for suitable choice of H̃,
the group H̃1 has irreducible representations restricting to each of the minuscule
representations of the simply connected cover G∨sc of G∨; these are representations
not possessed by the original (adjoint) group G∨. See Section 6 for details.

We now briefly summarize the approach to constructing the lifted local systems ρ̃χ
(see the beginning of Section 2 for more orientation). Yun’s ρχ is constructed as the
eigen-local system associated to a Hecke eigensheaf on a certain moduli space Bun
of G-bundles on P1 with level structure at the points {0, 1,∞}. Simply put, we
enlarge the center of the semisimple group G to form a reductive group G̃ (whose
dual group G̃∨ plays the role of H̃ above); then we study an analogous moduli
space B̃un of G̃-bundles with level structure, and show that Yun’s eigensheaves can
be extended to eigensheaves on B̃un. The weakly motivic nature of the lifts ρ̃χ,t is
realized in the (restricting to the interesting cases in type A1, D2m , E7) minuscule
representations of G̃∨ (or rather, of G̃∨1 ); as in [Yun 2014a], the motives themselves
are closely related to the (intersection) cohomology of certain open subvarieties of
affine Schubert varieties.

To put this approach in perspective, let us note that it is a geometric analogue of
the classical automorphic construction parallel to the lifting problem (2). Namely,
extending an automorphic representation of G to G̃ heuristically corresponds to
lifting a representation LF → G∨(C) of the “automorphic Langlands group” LF

to G̃∨(C). We are carrying out an analogue for certain Hecke eigensheaves, being
careful to retain hold of the explicit “motivic” nature of the corresponding eigen-
local systems.

In fact, we prove something considerably stronger than Theorem 1.4, strengthen-
ing the “motivic” result even in Yun’s original context. Rather than showing (as in
Theorem 1.4(2)) that the ρ̃χ,t (or ρχ,t ) are weakly motivic, we show (Theorem 6.1)
that, for any finite-dimensional representation r of H̃1, r ◦ ρ̃χ,t is motivated. The
content of this assertion is the following: the arguments showing that ρχ,t and
ρ̃χ,t are weakly motivic rest on the fact that quasiminuscule and minuscule affine

5Also, in this case, a more elementary construction of the lift can be achieved using Katz’s theory
[1996] of rigid local systems; this is a simple case of the strategy of [Patrikis 2014a].
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Schubert varieties have very mild singularities (punctual in the quasiminuscule case;
none at all in the minuscule case). For such varieties (and their close cousins that
appear in the proof), we can in quite elementary terms describe their intersection
cohomology groups as the `-adic realizations of motivated motives. The claim that
all r ◦ ρ̃χ,t are motivated depends on a similar description, but for varieties with
singularities as bad as those of any affine Schubert variety. This essentially means
we need a “motivated” description of the intersection cohomology IH∗(Yk̄,Q`) of
an arbitrarily singular, and not necessarily projective, variety Y over a characteristic-
zero field k; to be precise, since motivated motives do not reflect “mixed” behavior,
we prove such an assertion for the associated weight graded GrW

•
IH∗(Yk̄,Q`). This

is deduced as a consequence of a stronger “motivated” variant of the decompo-
sition theorem, and especially from a “motivated support decomposition” — see
Theorem 8.13 and Corollary 8.14. Here is the specialized statement for intersection
cohomology:

Theorem 1.5 (compare Corollary 8.15). Let k be a finitely generated field of
characteristic zero, and let Y/k be any quasiprojective variety. Then there is
an object M ∈Mk whose `-adic realization is isomorphic as a 0k-representation to
GrW

i IHm(Yk̄,Q`). If 0 is a finite group scheme over k acting on Y, and e ∈
Q[0(k̄)]0k is an idempotent, then for any embedding Q ↪→ Q` there is an object
of Mk,Q whose (Q ↪→ Q`)-realization is isomorphic as a 0k-representation to
GrW

i e(IHm(Yk̄,Q`)).
The same holds for intersection cohomology with compact supports.

When Y is projective, in which case IHm(Yk̄,Q`) is pure of weight m, and k
is algebraically closed, this6 is a recent result of de Cataldo and Migliorini [2014,
Theorem 3.2.2], part of their beautiful series of papers (see for instance [de Cataldo
and Migliorini 2005; 2010; de Cataldo 2012]) reestablishing the decomposition
theorem and its associated mixed Hodge-theoretic package by “geometric”, rather
than “sheaf-theoretic”, methods. These papers chart a fundamental advance in
our understanding of the geometry of perverse sheaves, and I expect there will
be many more, and far deeper, motivic applications than the one here. Since
the arguments establishing Theorem 1.5 are independent of those of the rest of
this paper, I refer the reader to Section 7A for a fuller introduction, and for an
overview of the approach to Theorem 1.5. Also see Remark 8.16 for additional
applications, such as a p-adic de Rham comparison isomorphism for intersection
cohomology.

6Not exactly, of course, since as we have phrased the result the theorem is vacuous for k alge-
braically closed; in that case substitute for the `-adic cohomology the collection of Betti, de Rham,
and `-adic realizations.
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2. Bundles with level structure

Before plunging into the technical details, we give a little more orientation for the
reader not familiar with Yun’s argument. The principle underlying Yun’s strategy is
that, for a suitable reductive group G and a careful choice of level structure (i.e.,
ramification), there will be an essentially unique automorphic form on G over the
function field F = Fq((t)). The usual double coset space

G(F) \G(AF )/
∏

x

G(Ox),

the product taken over closed points of X, and Ox the complete local ring at x ,
on which automorphic forms are defined admits an interpretation as the Fq -points
of the moduli stack BunG of G-bundles on P1. Appropriate moduli spaces of
bundles with level structure then have Fq -points corresponding to taking other level
structures in the above double quotient. The general aspiration of (“classical”)
geometric Langlands is to upgrade these automorphic functions to perverse sheaves
(via Grothendieck’s function-sheaf correspondence) on the appropriate moduli stack
of bundles. The automorphic interpretation plays no direct role in Yun’s work,
but it serves as motivation. Setting the motivation aside, the problem becomes
one of finding level structures corresponding to some moduli space Bun whose
simple perverse sheaves can be explicitly described (in fact, what is described
in Yun’s case is a subset of “odd” perverse sheaves). To construct eigen-local
systems associated to any of these perverse sheaves, one needs to know that they
are Hecke eigensheaves. It is here that the uniqueness properties of the construction
are absolutely essential: the classical analogue to keep in mind is the statement
that in a one-dimensional space of classical modular forms, every element must
be a Hecke eigenform! The motivic nature of the resulting local systems is only
revealed by carefully tracing through the construction.

The present section reviews facts about spaces of bundles with level structure.
The next section then lays out carefully the construction of Yun’s moduli space
Bun, and of the enlarged moduli space B̃un essential to our generalization; this
latter space will be chosen to make as easy as possible a comparison of perverse
sheaves on the two spaces.

We now proceed to the formal exposition. In this section only, we allow G to be
any connected reductive group over a field k, and X to be any smooth projective
geometrically connected curve over k. Our aim is to review a construction from
[Yun 2011, §4.2] of moduli spaces of G-bundles on X with level structure at a finite
set S = {x1, . . . , xn} ⊂ X (k) of k-points. Here and throughout, we denote by LG
and L+G the “abstract” loop group and positive loop group of G, i.e., the functors
of k-algebras given by R 7→ G(R((t))) and R 7→ G(R[[t]]) (a group ind-scheme
and pro-algebraic group, respectively, over k), where t is a formal parameter. Now
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let x be a closed point of X, and denote by Ox the complete local ring of X at x ,
with residue field κ(x) and fraction field Kx . Then we denote by L x G and L+x G
the functors R 7→ G(R⊗̂κ(x)Kx) and R 7→ G(R⊗̂κ(x)Ox).

Definition 2.1. Let BunG,S,∞→ Ringk be the stack associated to the following
prestack Bunpre

G,S,∞ over k: for any k-algebra R, Bunpre
G,S,∞(R) is the groupoid of

triples (α,P, τ ) where:
• α = (αxi )i=1,...,n is a collection of local coordinates αxi : R[[t]] −→∼ Oxi (here

we regard xi as an R-point xi : Spec R→ XR and take the formal completion
of XR along the graph 0(xi )).

• P is a G-torsor on XR .

• τ = (τxi )i=1,...,n is a collection of full level structures

τxi : G×Dxi −→
∼ P|Dxi

,

where Dxi = Spec(Oxi ).

Let AutO denote the pro-algebraic group of continuous automorphisms of k[[t]].
The semidirect product

(LG oAutO)n

acts on the right on BunG,S,∞ as follows.

Definition 2.2. For g= (gi )i=1,...,n ∈G(R((t)))n and σ = (σi )i=1,...,n ∈Aut(R[[t]])n,
and (α,P, τ ) ∈ Bunpre

G,S,∞(R), let (g, σ ) act on (α,P, τ ) by

Rg,σ (α,P, τ )= (α ◦ σ,Pg, τ g),

where:
• α ◦ σ = (αxi ◦ σi )i .

• Pg is the G-bundle on XR obtained by gluing P|XR−
⋃

i 0(xi ) to the trivial G-
bundles on the completions Dxi = Oxi along the punctured discs D×xi

via the
isomorphisms

G×D×xi

αxi ◦gi◦α
−1
xi

−−−−−→G×D×xi

τxi
−→P|D×xi

.

• τ g
= (τ

g
xi )i=1,...,n consists of the tautological trivializations of Pg over each Dxi

coming from the definition of Pg.

At each of the points xi , we now fix a pro-algebraic subgroup Pi of LG that is
stable under the action of AutO; we additionally require that, for some integer m,
Pi should contain the subgroup

I(m)= {g ∈ L+G : g ≡ 1 (mod tm)}

in finite codimension.
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Definition 2.3. Having fixed S = {x1, . . . , xn} and P1, . . . , Pn as above, we define
BunG,S(P1, . . . , Pn) to be the stack associated to the quotient prestack

R 7→ BunG,S,∞(R)/
n∏

i=1

(Pi oAutO)(R).

When there is no risk of confusion, we omit the subscript S from the notation and
simply write BunG(P1, . . . , Pn).

Note that since the action of (LG oAutO)n does not necessarily preserve the
isomorphism class of the G-torsor P on XR , the moduli space BunG,S(P1, . . . , Pn)

need not have a projection to BunG . The action does not alter P|XR−
⋃

i 0(xi ), however,
so an object of BunG,S(P1, . . . , Pn)(R) does yield a well-defined G-torsor on this
complement. Also, the category BunG,S(P1, . . . , Pn) has a tautological object
given by taking the image of an object of Bunpre

G,S,∞(k) given by the trivial bundle
with its tautological level structures and any fixed choice of local coordinates αxi .
(For any two such choices, the resulting objects of BunG,S,∞(k) become uniquely
isomorphic modulo the AutnO-action.)

Lemma 2.4. BunG,S(P1, . . . , Pn) is an algebraic stack locally of finite type.

Proof. This follows exactly as in [Yun 2014a, Corollary 4.2.6], by first deducing
the result for

BunG,S(I1(m), . . . , In(m))

from the (well-known) result for BunG , and from there deducing the case of
BunG,S(P1, . . . , Pn). �

Just as in [Yun 2014a, Lemma 4.2.5], we also have:

Lemma 2.5. For each i = 1, . . . , n, let

�xi = NLG(Pi )/Pi .

Then there is a right-action of �xi on BunG,S(P1, . . . , Pn).

Finally, we can replace any Pi by some finite cover, still acting on BunG,S,∞ on
the right through Pi ; Lemmas 2.4 and 2.5 continue to hold.

Remark 2.6. For the reader’s convenience, we put this statement in its classical
context: Let

2 := G(F) \G(AF )/

(∏
x 6=xi

G(Ox)×
∏

i

Pi

)
.

Then on automorphic forms f : 2→ Q` over a function field F , we have the
usual action by Hecke correspondences arising from decomposing the double coset
PiwPi into single cosets. But when w normalizes Pi , the Hecke action comes from
an actual automorphism (right-translation) of the moduli space 2.
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3. Our setting

Now we describe in detail the moduli spaces of G-bundles studied in this paper,
taking [Yun 2014a] as our starting point. Let G be a split (almost-)simple simply
connected group over k, satisfying the following two hypotheses:

• G is oddly laced;

• −1 belongs to the Weyl group WG of G.

Explicitly, we take G to be a split simple simply connected group of type A1, D2n ,
G2, E7, or E8 in the Dynkin classification. In fact, as we will see, the results of
this paper are only nontrivial when the simply connected and adjoint forms of G
differ — so for all practical purposes, we are working with types A1, D2n , and E7.

Let G̃ be a split connected reductive group over k with derived group equal to G,
so that the quotient G̃/G = S is a torus; call the quotient map ν : G̃ → S. Fix
a maximal torus T̃ of G̃ and a Borel subgroup B̃ containing T̃, likewise giving
T = T̃ ∩ G, B = B̃ ∩ G, and determining based root data for G̃ and G, and an
explicit Weyl group WG defined in terms of T. We denote by Z̃ and ZG the centers
of G̃ and G, and we let Z̃0 be the identity component of Z̃ . Note that in all cases
under consideration ZG = ZG[2]. The cases of particular interest for us — in which
there is a nontrivial Kuga–Satake lifting problem — are those in which ZG 6= {1},
namely types A1, D2n , and E7. From now on we

assume the characteristic of k is not 2. (4)

In particular, ZG is a discrete group scheme over k, and the order of the kernel
of the isogeny Z̃ � S is invertible in k. Our first task is to define the moduli
spaces of G̃-bundles on X = P1 with level structure that will supply us with Hecke
eigensheaves. We first recall the construction in [Yun 2014a]. Yun works with
the following conjugacy class of parahoric subgroups in LG (see [Yun 2014a,
§§2.2–2.3]). In the apartment A(T ) associated to T of the building of LG, we can
choose as origin the point corresponding to the subgroup L+G, with the resulting
identification A(T ) ∼= X•(T )⊗ R. Then under this identification 1

2ρ
∨ lies in a

unique facet, and we let P1
2ρ
∨ be the parahoric subgroup associated to this facet.

More precisely, Bruhat–Tits theory provides, for any facet a in the building of LG,
a smooth group scheme Pa over k[[t]] with connected fibers whose generic fiber
is G ×Spec k Spec k((t)). We define Pa to be the pro-algebraic subgroup of LG
representing the functor (of k-algebras)

R 7→ Pa(R[[t]]).

We then apply this construction to the case where a is the facet containing 1
2ρ
∨. Let

K denote the maximal reductive quotient of P1
2ρ
∨ ; since G is simply connected, K is
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connected. Moreover, Yun shows [2014a, §2.5] that K has a canonical connected
double cover:

Definition 3.1. Let (2)K denote the connected double cover of K, so there is an
exact sequence

1→ µker
2 →

(2)K → K → 1.

Note that our notation differs from that of [Yun 2014a, §2.5], where this group is
denoted K̃ ; we reserve (̃∗) for groups associated with the enlargement G̃ of G.

We now define the particular moduli stacks of interest, beginning with the ones
used in [Yun 2014a]. Let P0⊂ L0G be the parahoric subgroup in the conjugacy class
of P1

2ρ
∨ that contains the Iwahori I0 ⊂ L+0 G, defined in terms of B. Moreover, let

(2)P0 = P0×K0
(2)K0,

and let P+0 denote the pro-unipotent radical of P0. Next let P∞ be the parahoric
in the conjugacy class of P1

2ρ
∨ that contains the Iwahori Iop

∞ ⊂ L+
∞

G defined in
terms of Bop. Finally, let I1 ⊂ L+1 G denote the Iwahori subgroup defined again in
terms of B. In the notation of Section 2, we now let S = {0, 1,∞} ⊂ P1(k); for
later reference, we let X0 be the variety P1

− S over k. The primary object of study
in [Yun 2014a] is the moduli space (see Definition 2.3)

Bun= BunG(
(2)P0, I1, P∞).

This sits in the diagram

Bun+

��

// BunG(P+0 , P∞)

�� ((

Bun // BunG(
(2)P0, P∞) // BunG(P0, P∞)

(5)

in which Bun+ = BunG(P+0 , I1, P∞). The vertical maps are (2)K0-torsors, and the
square is 2-cartesian. Note too that the fibers of horizontal arrows in the square are
isomorphic to the flag variety flG of G.

Next we modify these constructions to define the corresponding moduli stacks
of G̃-bundles on X. There are various ways of doing this; we take care to choose
the new level structures so that the moduli spaces in the G and G̃ cases are most
easily compared.

Definition 3.2. Let P̃∞ be the subgroup scheme of L∞G̃ generated by P∞ and
L+
∞
(Z̃0). Let P̃0(1) be the subgroup scheme of L0G̃ generated by P0 and the

pro-algebraic group Z̃0(1) defined as the kernel of reduction modulo t (a local
coordinate at zero),

Z̃0(1)= ker(L+0 (Z̃
0)→ Z̃0).
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Note that P̃0(1) is isomorphic to the direct product P0× Z̃0(1): the restriction
of ν to ν : Z̃0

→ S can be identified with a product of maps Gm→Gm , each given
by multiplication by some n ∈ {±1,±2}, so (working one coordinate at a time), for
any x ∈ R[[t]], the equation

1= ν(1+ t x)= 1+ ntx + (higher order terms)

forces x = 0, since we have assumed (see (4)) that 2 is invertible in k. Moreover, the
pro-unipotent radical of P̃0(1) is P+0 · Z̃

0(1), so the maximal reductive quotient of
P̃0(1) is also K0. In particular, we can form the analogous group (2)P̃0(1) by
pullback.

Finally, let Ĩ1 denote the Iwahori subgroup associated to B̃ in L+1 G̃. With this
notation in place, we introduce our main object of study:

Definition 3.3. Let B̃un denote the algebraic stack BunG̃(
(2)P̃0(1), Ĩ1, P̃∞).

Similarly setting B̃un+=BunG̃(P
+

0 ·Z̃
0(1), Ĩ1, P̃∞), we then have the G̃-analogue

of the basic diagram (5):

B̃un+

��

// BunG̃(P
+

0 · Z̃
0(1), P̃∞)

�� ))

B̃un // BunG̃(
(2)P̃0(1), P̃∞) // BunG̃( P̃0(1), P̃∞)

(6)

Here the vertical maps are still (2)K0-torsors, the diagram is 2-cartesian, and again
the fibers of the horizontal arrows in the square are copies of flG .

We now must recall the Birkhoff decomposition and uniformization results for G-
(or G̃-) bundles on X = P1. Consider the “trivial G-bundle on A1 with tautological
P0-level structure” P0

A1 ; to be precise, P0
A1 is defined as in Section 2, and is not

literally a G-bundle on A1. Likewise, let P̃0
A1 be the trivial G̃-bundle on A1 with

tautological P̃0(1) level structure at zero. Let 00 and 0̃0 denote the group ind-
schemes of automorphisms of P0

A1 and P̃0
A1 , respectively. Also let W aff denote

the affine Weyl group X•(T )o WG , and let W̃ = X•(T̃ )o WG denote the Iwahori–
Weyl group of G̃. The Weyl group of the reductive quotient K∞ of P∞ can be
identified with a subgroup of W aff: take the subgroup generated by simple reflections
that fix the alcove of P∞. The same holds for the reductive quotient K0 of P0 and
its Weyl group, and in both cases we write the resulting subgroup of W aff as WK .

Lemma 3.4. There are isomorphisms of stacks

[00 \ L∞G/P∞] −→∼ BunG(P0, P∞), (7)

[0̃0 \ L∞G̃/ P̃∞] −→∼ BunG̃( P̃0(1), P̃∞), (8)
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and Birkhoff decompositions

L∞G(k̄)=
∐

WK \W aff/WK

00(k̄)wP∞(k̄), (9)

L∞G̃(k̄)=
∐

WK \W̃/WK̃

00(k̄)w P̃∞(k̄). (10)

Proof. See [Yun 2014a, §3.2.2] and [Heinloth et al. 2013, Proposition 1.1]. �

It follows easily from diagram (6) that π0(B̃un) is naturally in bijection with
π0(BunG̃( P̃0(1), P̃∞)); this is in turn in bijection (since G is simply connected)
with

π0(BunG̃)
ν
−→
∼
π0(BunS)←−

∼ π0(L∞S/L+
∞

S)←−∼ X•(S).

We can describe the connected components of B̃un in terms of this uniformiza-
tion. First note that replacing P0 and 00 with (2)P0 and (2)00, and P̃0(1) and 0̃0

with (2)P̃0(1) and (2)0̃0, we get obvious analogues of Lemma 3.4. Then, for
each w ∈ WK \ W̃/WK we obtain an object P̃w of BunG̃(

(2)P̃0(1), P̃∞)(k) by
gluing P̃0

A1 with Ad(w) P̃∞; and we can make the corresponding construction of
Pw ∈BunG(

(2)P0, P∞) for w ∈W aff. The stabilizers of Pw and P̃w are, respectively,

StabG
w = (00 ∩wP∞w−1)×K0

(2)K0, (11)

StabG̃
w = (0̃0 ∩w P̃∞w−1)×K0

(2)K0. (12)

In other words, BunG(
(2)P0, P∞) has a stratification by substacks [{Pw}/StabG

w];
likewise, BunG̃(

(2)P̃0(1), P̃∞) has a stratification by substacks [{P̃w}/StabG̃
w]. By

taking the preimages in Bun and B̃un, we obtain stratifications by substacks that we
denote Bunw (forw∈WK \W aff/WK) and B̃unw (forw∈WK \W̃/WK), respectively.
For w = λowG ∈ W̃ = X•(T̃ )o WG , the substack B̃unw lies in the component
corresponding to ν ◦ λ ∈ X•(S). In particular, we can identify the connected
component of B̃un containing the tautological object P1 as

B̃un0
=

∐
w=λowG∈WK \W̃/WK

λ∈X•(T )

B̃unw =
∐

w∈WK \W aff/WK

B̃unw.

Taking the associated G̃-bundle defines a map Bun → B̃un, and for w in
WK \W aff/WK it respects the above stratifications, yielding a map Bunw→ B̃unw.
The crucial point is the following:

Proposition 3.5. The map Bun→ B̃un0 is an equivalence, i.e., an isomorphism of
stacks.
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Proof. We check this stratum by stratum. It suffices to show that, for all w in
X•(T )o WG =W aff

⊂ W̃ , we have StabG
w = StabG̃

w , i.e., that the natural map

00 ∩wP∞w−1
→ 0̃0 ∩w P̃∞w−1

is an isomorphism. For a k-algebra R, an element of (0̃0∩w P̃∞w−1)(R) gives rise
fppf-locally on R to an equation of the form p0z0 =wz∞ p∞w−1 with p0 ∈ P0(R),
z0 ∈ Z̃0(1)(R), p∞ ∈ P∞(R), and z∞ ∈ L+

∞
(Z̃0). Applying ν, we find ν(z0) =

ν(z∞); but since 1+ t R[[t]]∩ R[[t−1
]]
×
= {1}, we see that ν(z0)= ν(z∞)= 1. This

forces (as in the argument following Definition 3.2, by our assumption on char(k))
z0 = 1, and z∞ ∈ P∞(R). We may as well then assume z∞ = 1 (incorporating z∞
into p∞), and so we actually have an equality p0 = wp∞w−1 bearing witness to
an element of (00 ∩wP∞w−1)(R). This implies that

00 ∩wP∞w−1
→ 0̃0 ∩w P̃∞w−1

is an epimorphism, and, as it is obviously injective, we are done. �

4. The eigensheaves

4A. Construction of the eigensheaves. In this section, we combine the equiva-
lence Bun−→∼ B̃un0 of Proposition 3.5 with the analysis of the sheaf theory of Bun
carried out in [Yun 2014a, Theorem 3.2] to produce our desired Hecke eigensheaves
on B̃un. The key simplification arises from applying Lemma 2.5 at the point x = 1,
where we have taken Ĩ1 level structure. In this case we identify the group �1 with
the stabilizer in W̃ of the alcove corresponding to the standard Iwahori Ĩ1, and
ν :�1 −→

∼ X•(S) also identifies �1 with π0(B̃un). For γ ∈�1, we denote by

Tγ : B̃un→ B̃un

the action given by Lemma 2.5. Writing B̃unγ for the connected component
corresponding to γ , we see that Tγ induces isomorphisms

Tγ : B̃un0
−→∼ B̃unγ .

In particular, all connected components of B̃un are isomorphic (compare [Heinloth
et al. 2013, Corollary 1.2]).7 The idea is to take Yun’s construction of a perverse
Hecke eigensheaf on Bun−→∼ B̃un0, and then use the (“ramified Hecke operators”)
Tγ to propagate the eigensheaf to the other connected components of B̃un. We
begin by reviewing Yun’s construction [2014a, §3]. The tautological object in
BunG(P0, P∞) (with automorphism group K0) has preimage in Bun equivalent to

7Note that this is a special, and highly simplifying, feature of our particular context; for contrast,
observe that the degree-0 and degree-1 connected components of BunGL2 (X = P1 still) are not
isomorphic, since no degree-1 vector bundle has GL2 as its automorphism group.
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a quotient [(2)K0 \flG], for a suitable action of K0 on flG (see [Yun 2014a, §3.2.4]).
The group K0 acts on flG with finitely many orbits, so there is a unique open orbit
U ⊂ flG , giving open embeddings

[
(2)K0 \U ] ⊂ [(2)K0 \flG] ⊂ Bun .

As in [Yun 2014a, §3.2.5], we fix a point u0 ∈U (Z[1/N ]) (for some N sufficiently
large, and for an integral model of U arising from extending K0 and G to split
reductive group schemes over some Z[1/M]), and

denote by u0 ∈U (k) the induced k-point
for all k of sufficiently large characteristic. (13)

This choice is in effect from now on. As an element of U (k) ⊂ flG(k), u0 corre-
sponds to a Borel subgroup B0 ⊂G over k which is in general position with respect
to K0:

Definition 4.1. Let A denote the finite group scheme B0 ∩ K0 over k. Let (2)A
denote the double cover of A given by pullback along (2)K0 � K0.8 Finally, let
Z((2)A) denote the center of (2)A.

Recall the following results [Yun 2014a, §2.6] on the structure and representation
theory of the finite 2-group (2)A(k̄). Recall that we have set

Q′ =

{
Q if G is of type D4n , G2, or E8,
Q(i) if G is of type A1, D4n+2, or E7,

(14)

and have also set Q′` = Q`(i). All sheaves considered will be Q′`-sheaves. In
parallel to this condition on the coefficients, we impose the following restriction on
the field of definition k, in effect for the rest of this paper:

√
−1 ∈ k for G of type A1, D4m+2, or E7. (15)

Lemma 4.2. Assume k satisfies condition (15), so that 0k acts trivially on Z((2)A)(k̄).

(1) (2)ZG = Z((2)A).

(2) Restriction to (2)ZG(k̄) gives a bijection between irreducible odd representa-
tions of (2)A(k̄) and odd characters of Z((2)A(k̄)):

IrrQ(
(2)A(k̄))odd −→

∼ Hom
(
Z((2)A)(k̄),Q×

)
odd = Hom

(
Z((2)A)(k̄),Q′×

)
odd. (16)

(3) If k is a finite field, local field, or number field, then for each odd χ :
Z((2)A)(k̄)→Q′× the corresponding irreducible representation Vχ of (2)A(k̄)
descends to an irreducible representation of (2)A(k̄)o0k , whose coefficients
can be taken to be Q(i).

8Note that this is what Yun denotes Ã.
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Proof. The first claim is [Yun 2014a, Lemma 2.6(2)]. The second claim is elemen-
tary: the inverse of the isomorphism (16) is given by inducing the central character,
up to some multiplicity. The third claim is a variant of [Yun 2014a, Lemma 2.7],
whose proof is not complete.9 The obstruction to descending Vχ to a representation
of (2)A(k̄)o0k is a class in H 2(0k,Q×). This Galois cohomology group vanishes
for the claimed k; this is elementary for k finite, and for local and especially number
fields it is a beautiful theorem of Tate [Serre 1977, Theorem 4]. The argument
showing the descended Vχ can be defined with Q(i) coefficients as in [Yun 2014a,
Lemma 2.7]. �

For clarity, we collect in one place the various conditions in effect on the field of
definition k:

Definition 4.3. Consider any odd central character χ : Z((2)A)(k̄)→ Q′×, with
associated irreducible representation Vχ of (2)A(k̄). Let k be any field satisfying
conditions (13) and (15), and moreover for which Vχ satisfies the conclusion of
Lemma 4.2(3). Then, from now on, let Vχ denote a fixed choice of descent to an
irreducible representation of (2)A(k̄)o0k , with Q(i) coefficients.

We now recall the crucial result analyzing the sheaf theory of Bun, or, in our case,
B̃un0. Throughout, for an algebraic stack X over a field k, we will write Db(X)

for the derived category of bounded complexes of Q′`-sheaves with constructible
cohomology, as in [Laszlo and Olsson 2008] (if we need to specify another field of
coefficients, Q` for instance, we will write Db(X,Q`)). Recall [Yun 2014a, §3.3.1]
the subcategory

Db(Bun)odd ⊂ Db(Bun)

of odd sheaves, on which µker
2 = ker((2)K0→ K0) acts by the sign character. We

can similarly define Db(B̃un)odd, since µker
2 is also contained in the automorphism

group of every object of B̃un. For future reference, let us also note a refinement of
this observation: the automorphism group of every object of BunG̃( P̃0(1), Ĩ1, P̃∞)
contains the center ZG of G, and likewise the automorphism group of every object
of B̃un contains the double cover (pullback under (2)K0→ K0) (2)ZG of ZG . We
can therefore decompose Db(B̃un) into a direct sum of categories Db(B̃un)ψ ,
indexed over characters ψ : (2)ZG → Q×` . We, of course, will be interested in
the corresponding decomposition of Db(B̃un)odd into a direct sum over the odd
characters ψ .

We recall the main result analyzing odd sheaves on Bun. Let j : [(2)K0\U ] ↪→Bun
denote the open inclusion.

9Namely, that argument uses the incorrect assertion that H2(0,Q×) = 0 for 0 a finite group
isomorphic to a direct sum of Z/2Zs.
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Theorem 4.4 [Yun 2014a, Theorem 3.2]. Assume G is the split simple simply
connected group of type A1, D2n , E7, E8, or G2. Then the restriction

j∗ : Db(Bun)odd→ Db([(2)K0 \U ])odd

is an equivalence of categories with quasi-inverse given by j! = j∗.

The analysis of connected components of B̃un then implies:

Corollary 4.5. For all γ ∈�1, consider the composite

jγ = Tγ ◦ j : [(2)K0 \U ] ↪→ B̃unγ .

Then the restriction

j∗γ : D
b(B̃unγ )odd→ Db([(2)K0 \U ])odd

is an equivalence with inverse jγ,! = jγ,∗.

Assume k is as in Definition 4.3. We can now define the hoped-for eigensheaves
on B̃un over k, starting from Yun’s construction on Bun. Fix an odd character
(recall equation (16))

χ : Z((2)A)(k̄)→Q′×, (17)

to which we have associated (Lemma 4.2 and Definition 4.3) an irreducible represen-
tation Vχ of (2)A(k̄)o0k having χ as central character. By [Yun 2014a, Lemma 3.3],
Vχ ⊗Q(i) Q′` is isomorphic to the pullback under u0 of a geometrically irreducible
local system

Fχ ∈ Loc(2)K0(U,Q′`)odd,

which we view as an object of Db([(2)K0 \U ])odd. Yun’s eigensheaf is then, by
[Yun 2014a, Theorem 4.2],

j!(Fχ )= j∗(Fχ ) ∈ Db(Bun)odd.

Definition 4.6. Assume k is as in Definition 4.3. Let χ : Z((2)A(k̄))→ Q×` be
any odd character. We let Aχ ∈ Db(B̃un)odd be the perverse sheaf on B̃un whose
restriction Aγχ , for all γ ∈�1, to B̃unγ is given by

Aγχ = Aχ |B̃unγ = jγ,!Fχ = jγ,∗Fχ .

That is, we make the only definition compatible with the requirement that A0
χ

be Yun’s eigensheaf, and that Aχ be eigen for the ramified Hecke operators Tγ at
1 ∈ X.
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4B. Geometric Satake equivalence. We recall a convenient form of the geometric
Satake equivalence. See [Mirković and Vilonen 2007] and [Yun 2014a, §4.1] for
more background. Let G be any split connected reductive group over k (G will of
course eventually be either G or G̃). Let GrG = LG/L+G as usual denote the affine
Grassmannian of G. The main result of [Mirković and Vilonen 2007] describes
the category Satgeom

G of (L+G)k̄-equivariant perverse sheaves on GrG,k̄ as follows:
Satgeom

G admits a convolution product making it a neutral Tannakian category over
Q` with fiber functor

H∗ : Satgeom
G → VectQ`

, K 7→ H∗(GrG,k̄,K). (18)

This fiber functor induces an equivalence

Satgeom
G −→∼ Rep(G∨), (19)

where we write G∨ for the (split form over Q` of the) dual group of G. We need
a version of Satgeom

G over k rather than k̄. It is natural for us to deviate from [Yun
2014a, §4.1] and instead follow the suggestion of [Heinloth et al. 2013, Remark 2.9]
and [Frenkel and Gross 2009, §2]. Recall that the simple objects of Satgeom

G are given
by the intersection cohomology sheaves of the affine Schubert varieties GrG,≤λ. For
all dominant λ ∈ X•(T ), we write

jλ : GrG,λ ↪→ GrG

for the inclusion of the L+G-orbit containing tλ. Then by definition the intersection
cohomology sheaf of the closure GrG,≤λ of GrG,λ is

ICλ = jλ,!∗Q`[〈2ρ, λ〉],

the shift reflecting that the dimension of GrG,λ is 〈2ρ, λ〉. We will define SatG
to be the full subcategory of perverse sheaves on GrG consisting of finite direct
sums of arbitrary Tate twists ICλ(m), for all λ ∈ X•(T )+ and m ∈ Z. Note that,
in contrast to [Yun 2014a, §4.1], we do not normalize the weights of the ICλ to
be zero; this bookkeeping device frees us from having to choose a square-root
of the cyclotomic character,10 and it ensures that the local systems we eventually
construct will specialize (at points of X0(K ), for K/Q` finite) to de Rham Galois
representations. Adapting the argument of [Yun 2014a, §4.1] to our normalization,
a result of Arkhipov and Bezrukavnikov [2009, §3] implies that SatG is closed under
convolution: to be precise, we have

ICλ ∗ ICµ ∼=
⊕
ν

ICν(〈ν− λ−µ, ρ〉)⊕mν
λ,µ

10Which of course cannot be done over k = Q, although it is possible over many quadratic
extensions of Q.
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for some multiplicities mν
λ,µ. Note that 〈ν−λ−µ, ρ〉 is an integer, since only ν for

which there is an inclusion of highest-weight representations Vν ↪→ Vµ⊗Vλ, and in
particular for which λ+µ− ν lies in the root lattice, will appear on the right-hand
side. We would like to combine the tensor functor

H∗k̄ : SatG→ Satgeom
G

H∗
−→Rep(G∨) (20)

with a mechanism for keeping track of the weight and Tate twist. Thus we define a
fully faithful tensor functor

H∗w : SatG→ Rep(G∨×Gm)

by additively extending the assignment on simple objects

ICλ(n) 7→ H∗k̄ (ICλ(n))�
(
z 7→ z〈2ρ,λ〉−2n).

Composing with the canonical fiber functor ω of Rep(G∨ × Gm), this yields a
surjective homomorphism G∨×Gm→ Aut⊗(ω ◦ H∗w) whose kernel{
(g, z) ∈ G∨×Gm : for all dominant λ ∈ X•(T ) and all n ∈ Z,

g acts on Vλ by z2n−〈2ρ,λ〉}
is clearly equal to the subgroup 〈(2ρ(−1),−1)〉 ⊂ G∨×Gm . That is, we have a
tensor equivalence SatG −→∼ Rep(G∨1 ), where (following [Frenkel and Gross 2009])

G∨1 = (G
∨
×Gm)/〈(2ρ(−1),−1)〉. (21)

Note that if G is simply connected, then G∨1 is isomorphic to G∨ × Gm , since
2ρ(−1)= 1.

4C. Geometric Hecke operators. We briefly recall the definition of geometric
Hecke operators in our context, as well as the notion of a Hecke eigensheaf. Recall
that the Hecke stack H̃k associated to B̃un is the category of tuples (R, x,P,P ′, ι)
where:
• R is a k-algebra;

• x ∈ X0(R);

• P and P ′ are objects of B̃un(R);

• ι is an isomorphism of P and P ′ away from the graph of x .

Projecting such data to (R, x,P) (the map
←−
h ) or (R, x,P ′) (the map

−→
h ) gives a

correspondence diagram

H̃k
←−
h
yy

−→
h
%%

B̃un× X0 B̃un× X0
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As explained in [Yun 2014a, §4.1.3] (using the fact that
−→
h and

←−
h are locally

trivial fibrations in the smooth topology, with fibers isomorphic to GrG̃ — see
[Heinloth et al. 2013, Remark 4.1]), or slightly differently in [Yun 2013, §4.3.1],
for each K ∈ SatG̃ there is an object KH̃k ∈ Db(H̃k,Q`) whose restriction to each
geometric fiber of

−→
h is isomorphic to K. As usual, the (universal) geometric Hecke

operator is the functor

T : SatG̃ ×Db(B̃un× X0)→ Db(B̃un× X0),

(K,F) 7→
−→
h !
(←−

h ∗(F)⊗Q`
KH̃k

)
.

(22)

The induced functor
SatG̃→ End(Db(B̃un× X0)) (23)

is monoidal. When the input from Db(B̃un× X0) is of the form F �Q` for some
F ∈ Db(B̃un), we write

TK(F)= T(K,F �Q`).

Finally, recall the definition of a Hecke eigensheaf:

Definition 4.7. Let F be an object of Db(B̃un). We say that F is a Hecke eigensheaf
if there exists

• a tensor functor Ẽ : SatG̃→ Loc(X0);

• a system of isomorphisms, for all K ∈ SatG̃ ,

εK : TK(F)−→∼ F � Ẽ(K),

satisfying compatibility conditions that will not concern us (see [Gaitsgory
2007, following Proposition 2.8]).

In this case we call Ẽ the eigen-local system of F .

4D. Proof of the eigensheaf property. Recall that we have fixed a point

u0 : Spec k→U.

We also write u0 for the induced maps Spec k→ [(2)K0 \U ] ⊂ B̃un0
⊂ B̃un. For

all γ ∈�1, we can compose with Tγ to obtain

uγ : Spec k→ B̃unγ .

From Corollary 4.5, we obtain equivalences

(uγ × id)∗ : Db(B̃unγ × X0)odd −→
∼ D(2)A(X

0)odd, (24)

where (2)A acts trivially on X0. The strategy for proving that Aχ is an eigensheaf
(χ as in (17)) is to show that, for all γ ∈�1 and all K ∈ SatG̃ , (uγ × id)∗TK(Aχ )
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is concentrated in a single perverse degree. Such sheaves Aχ can then be explicitly
described via Corollary 4.5 and an analogue of [Yun 2014a, Lemma 3.4]. In
preparation for this computation, note that the Tγ,! and T∗γ commute with the TK.
Informally, this is the statement that “Hecke operators at different places commute”;
more formally, the stack H̃k carries an�1-action compatible with its two projections
←−
h and

−→
h . Furthermore, the spread-out sheaves KH̃k (for all K ∈ SatG̃) are �1-

equivariant, so we find that

(uγ × id)∗TK(Aχ )∼= (u0× id)∗(Tγ × id)∗TK(Aχ )

∼= (u0× id)∗TK(T
∗

γ Aχ )∼= (u0× id)∗TK(Aχ ). (25)

Now consider the following diagram, where declaring the squares cartesian defines
the new objects G̃R and G̃RU

γ :

G̃RU
γ

ωU
γ

zz

jγ
// G̃R

ω
}}

//

π

��

H̃k

−→
h
��

[
(2)K0 \U ]

jγ
// B̃un X0

u0×id
// B̃un× X0

(26)

Here ω is the remaining projection corresponding to
←−
h on H̃k. Note that G̃R is

the analogue of the Beilinson–Drinfeld Grassmannian in this context.11 Let us also
denote by

πU
γ : G̃RU

γ → X0

the composite π ◦ jγ . Repeated application of proper base change yields

(u0× id)∗TK( jγ,!Fχ )= (u0× id)∗
−→
h !
(←−

h ∗( jγ,!Fχ )⊗KH̃k
)

∼= π
U
γ,!

(
ωU,∗
γ (Fχ )⊗KG̃R

)
, (27)

where KG̃R denotes the pullback of KH̃k to G̃R. The sheaf KG̃R[1] is perverse (recall
that the fibers of KG̃R at x ∈ X0 are copies of K), and Fχ is a local system (in
cohomological degree zero), so ωU,∗

γ (Fχ )⊗KG̃R[1] is perverse. Our immediate
aim is to show that each (u0× id)∗TK( jγ,!Fχ )[1] is a perverse sheaf on X0. Any
object K of SatG̃ is a direct sum of simple objects, so we may assume K is simple
and therefore supported on some GrG̃,≤λ, λ ∈ X•(T̃ ). The corresponding KG̃R is
then supported on a corresponding substack G̃R≤λ, which pulls back in diagram (26)
to a substack G̃RU

γ,≤λ of G̃RU
γ .

11Note that we continue to adhere to the notational pattern of using (̃∗) to denote the G̃-version of
an object that could similarly be defined for G. Our notation is, as a result, not always consistent with
that of [Yun 2014a]: for instance, G̃RU denotes there (the version for G of) what we will call GU

below (see diagram (36)).
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We now come to the crucial geometric lemma. We note that Yun has found
[2014b, Lemma 4.4.7] an argument that applies much more generally; the following,
an elaboration of [Yun 2014a, Lemma 4.8] will suffice for us.

Lemma 4.8. For all γ ∈�1, the map πU
γ : G̃RU

γ,≤λ→ X0 is affine.

Proof. Since [(2)K0 \U ] ⊂ [(2)K0 \ flG] is affine, we may replace G̃RU
γ,≤λ with the

preimage of

[
(2)K0 \flG]

jγ
−→ B̃unγ .

Let us call this preimage G̃Rfl
γ,≤λ. By construction as the preimage of B(K0) ⊂

BunG̃( P̃0(1), P̃∞) (under the morphism (28) below), and using Lemma 3.1 of [Yun
2014a], G̃Rfl

γ (resp. G̃Rfl
γ,≤λ) is the nonvanishing locus of a nonzero section s of a line

bundle L on G̃Rγ (resp. G̃Rγ,≤λ). It suffices to show the line bundle in question
is ample. By [Lazarsfeld 2004, Proposition 1.7.8], this can be checked on geometric
fibers, since the morphism G̃Rγ,≤λ→ X0 is proper. Thus, let x : Spec K → X0 be
a geometric point of X0, and consider the section x∗s of x∗L. The fiber G̃Rγ,≤λ,x
is isomorphic to the γ component, truncated by λ of the affine Grassmannian GrG̃ ;
we denote this by Grγ

G̃,≤λ
. We claim that x∗L is ample on Grγ

G̃
, so in particular

its restriction to the closed subscheme Grγ
G̃,≤λ

is ample. This claim results from the
following two assertions:

• Pic(Grγ
G̃
)∼= Z;

• x∗s is a nonzero global section of x∗L (which by the previous item must then
be ample).

The first item follows from [Faltings 2003, Corollary 12]. That result shows that
Pic(GrG)∼= Z (for G our simply connected group), but the same then follows for
each connected component of GrG̃ . To be absolutely precise: consider, along with
the affine Grassmannian, the affine flag variety FlG̃ = LG̃/ Ĩ , where Ĩ denotes
the Iwahori. The connected components Fl0G̃ and Gr0

G̃ are, up to taking reduced
subschemes, isomorphic to their semisimple counterparts FlG and GrG (see, e.g.,
[Pappas and Rapoport 2008, Proposition 6.6]). As in Section 4A, the different
components of FlG̃ are isomorphic via ramified Hecke operators Fl0G̃

Tγ
−→Flγ

G̃
. In

addition, Pic(Gr0
G̃) is isomorphic to the subgroup of Pic(Fl0G̃) corresponding to the

unique minimal parahoric P properly containing Ĩ but not contained in L+G̃ (see
the proof of [Faltings 2003, Corollary 12]); by the same argument, Pic(Grγ

G̃
) can

be described inside of Pic(Flγ
G̃
) as the subspace spanned by the natural O(1) on

Tγ (P)/ Ĩ . For the second item, recall that the pair (L, s) is the pullback along the
composite

G̃Rγ → B̃unγ
T−1
γ
−→
∼

B̃un0
→ BunG̃( P̃0(1), P̃∞)0←−∼ BunG(P0, P∞), (28)
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where the original section is nonvanishing on the locus BK0 ⊂ BunG(P0, P∞)
corresponding to the tautological object. It suffices then to show that the geometric
fibers of G̃Rγ over BK0× X0 are nonempty. To see this, note that H̃k→ B̃un× X0

has geometric fibers isomorphic to GrG̃ . Choosing an element P of the fiber
over (Pu0, x) that lies in the γ component of GrG̃ , we are done: the isomorphism
ι : P|X−{x} −→∼ Pu0 |X−{x} automatically implies that P projects to an object isomor-
phic to the tautological object of BunG(P0, P∞). �

With Lemma 4.8 in hand, we can prove the main result of this section:

Theorem 4.9. For all odd characters χ : Z((2)A)→Q×` , Aχ is a Hecke eigensheaf.

Proof. Since ωU,∗
γ (Fχ )⊗KG̃R[1] is perverse, and πU

γ is affine,

(u0× id)∗TK( jγ,!Fχ )∼= πU
γ,!

(
ωU,∗
γ (Fχ )⊗KG̃R

)
∈

pD≥1(X0).

But by Corollary 4.5, this is also

(u0× id)∗TK( jγ,∗Fχ )∼= π!
(
ω∗ jγ,∗(Fχ )⊗KG̃R

)
. (29)

There is a natural isomorphismω∗◦ jγ,∗−→∼ jγ,∗◦ωU,∗
γ ; as in the proof of [Yun 2014a,

Proposition 4.7], this follows from the fact that
←−
h is a locally trivial fibration in the

smooth topology. Thus, identifying π!=π∗ on the support of KG̃R (π : G̃R≤λ→ X0

is proper), and using the projection formula and the Leray spectral sequence, we
can carry on the identification (29) as

(u0× id)∗TK( jγ,!Fχ )∼= π∗
(
( jγ,∗ωU,∗

γ Fχ )⊗KG̃R
)
∼= π

U
γ,∗

(
ωU,∗
γ Fχ ⊗KG̃R

)
. (30)

(This is just the obvious variant of [Yun 2014a, (4.19)].) Since πU
γ is affine, we can

dually conclude that

(u0× id)∗TK( jγ,!Fχ ) ∈ pD≤1(X0), (31)

hence that (u0× id)∗TK( jγ,!Fχ )[1] is perverse. Consequently, (u0× id)∗TK(Aχ )[1]
is perverse.

Now, for each component B̃unγ of B̃un, we apply [Yun 2014a, Lemma 3.4] to
(uγ × id)∗TK(Aχ ) to conclude

TK(Aχ )|B̃unγ×X0 ∼=

⊕
ψ :Z((2)A)→Q×`

ψ is odd

( jγ,!Fψ)�
(
V ∗ψ ⊗ (uγ × id)∗TK(Aχ )ψ

)(2)A
= ( jγ,!Fχ )�

(
V ∗χ ⊗ (uγ × id)∗TK(Aχ )

)(2)A, (32)

where for the second equality we use the fact that the Hecke operators TK carries
the subcategory Db(B̃un)ψ to Db(B̃un×X0)ψ for any ψ : (2)ZG→Q×` (recall from
Lemma 4.2 that Z((2)A) is equal to the double cover (2)ZG→ ZG of ZG = ZG[2]).
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We have already observed that (uγ × id)∗TK(Aχ ) ∼= (u0× id)∗TK(Aχ ) is inde-
pendent of γ ; we conclude that

TK(Aχ )∼= Aχ �
(
V ∗χ ⊗ (u0× id)∗TK(Aχ )

)(2)A, (33)

and we claim that Aχ is a Hecke eigensheaf with “eigenvalue”

Ẽχ : SatG̃→ Loc(X0), K 7→
(
V ∗χ ⊗ (u0× id)∗TK(Aχ )

)(2)A. (34)

That is, what remains to show is that Ẽχ (K) is in fact a local system, and that Ẽχ is
a tensor functor satisfying the conditions of Definition 4.7. This follows (by the
monoidal property of the Hecke operators) by the same argument as [Heinloth et al.
2013, §4.2], since we have seen that

(
V ∗χ ⊗ (u0× id)∗TK(Aχ )

)(2)A lies in perverse
degree one. �

To summarize:

Corollary 4.10. Assume k is as in Definition 4.3. For every odd character χ :
Z((2)A)(k̄)→ Q×` , the object Aχ of Db(B̃un)odd given by Aχ |B̃unγ = jγ,!(Fχ ) is a
Hecke eigensheaf with eigen-local system

Ẽχ : SatG̃→ Loc(X0,Q′`),

giving rise by the Tannakian formalism to a monodromy representation (recall the
notation from equation (21))

ρ̃χ : π1(X0)→ G̃∨1 (Q
′

`).

The restriction of Ẽχ to the full subcategory SatG ⊂ SatG̃ is naturally isomorphic to
the eigen-local system (there denoted E ′χ ) of [Yun 2014a, Theorem 4.2].

Moreover, if K = ICλ(m) is simple, then Ẽχ (K) is pure of weight 〈2ρ, λ〉− 2m.

Proof. We have established everything except the purity claim, which follows from
the argument of Theorem 4.9. Namely, equations (29) and (30) imply that Ẽχ (K) is
mixed of weights ≤ and ≥ 〈2ρ, λ, 〉− 2m (by [Deligne 1980]). �

Consequently, we have a commutative diagram

G̃∨1 (Q
′

`)

��

π1(X0)

ρ̃χ
::

ρχ
// G∨1 (Q

′

`)

in which ρχ (of course, these monodromy representations are only well-defined up
to G̃∨ or G∨ conjugation) is Yun’s local system.
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5. The motives

Having established the Hecke eigensheaf property, we can now describe the local
systems Ẽχ (K) for all K ∈ SatG̃ . We continue to assume k is as in Definition 4.3;
in particular, the k-group scheme Z((2)A) is discrete. Let us fix a dominant weight
λ ∈ X •(T̃∨) = X•(T̃ ), and restrict to the case of K = ICλ. In this case the sheaf
KH̃k is supported on a substack H̃k≤λ, and the sheaf

←−
h ∗(A0

χ )⊗KH̃k

is supported on the locus of (P,P ′, x, ι), where P ∈ B̃un0 and P and P ′ are in relative
position ≤ λ, i.e., ev(P,P ′, ι, x) lies in the ≤ λ strata of [(L+G̃ \LG̃/L+G̃)/AutO].
This forces P ′ to lie in the component B̃unν◦λ, where, recall, ν : G̃→ S is the multi-
plier character. It follows that to compute TK(A0

χ ) we can restrict
←−
h : H̃k≤λ→ B̃un

to the preimage of B̃un0, and thus consider instead the correspondence diagram

H̃k≤λ|←−h−1(B̃un0)
←−
h

yy

−→
h

''

B̃un0 B̃unν◦λ× X0

In terms of this diagram, we find that

TK(A0
χ )−→
∼ Aν◦λχ � Ẽχ (K). (35)

Recall that we are trying to describe Ẽχ (K). The argument is that of [Yun 2014a,
Lemma 4.3], except we have to keep track of the different connected components.
Pulling back (35) by (uν◦λ× id), we obtain, just as in (26) and (27), a diagram with
cartesian squares

G̃U
≤λ

{{

υ0
// G̃RU

uν◦λ,≤λ
ωU

uν◦λ

zz

// G̃Ruν◦λ,≤λ
ωuν◦λ

zz

//

��

H̃k≤λ|←−h−1(B̃un0)

−→
h
��

Spec k
u0
// [
(2)K0 \U ] // B̃un0 X0 uν◦λ×id

// B̃unν◦λ× X0

(36)

and, letting πU
uν◦λ denote the composite map G̃RU

uν◦λ,≤λ→ X0, we obtain an identifi-
cation

Vχ ⊗ Ẽχ (K)∼= (uν◦λ× id)∗TK(A0
χ )
∼= π

U
uν◦λ,!

(
ωU,∗

uν◦λ(Fχ )⊗KG̃R
)
. (37)

(We will write KG̃R for the pullback of KH̃k to either of G̃Ruν◦λ,≤λ or G̃RU
uν◦λ,≤λ.)

Also let
πG̃U
≤λ
: G̃U
≤λ→ X0
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denote the corresponding projection. We now exploit the fact that G̃U
≤λ carries a

((2)A× (2)A)-action; for clarity, the first copy, acting via the pullback on the
←−
h

(or as here, ωuν◦λ) projection, will be denoted (2)A(1), and the second copy, acting
via pullback on the

−→
h projection, will be denoted (2)A(2). Decomposing the regular

representation of (2)A, we obtain a (2)A(1)-equivariant isomorphism

(υ0,∗Q
′

`)odd ∼=
⊕

χ :Z((2)A)→Q×`
χ is odd

V ∗χ ⊗ωU,∗
uν◦λFχ .

Here (2)A(1) acts on V ∗χ . Since the isomorphism (37) is (2)A(2)-equivariant (acting
on Vχ on the left-hand side, and on the right-hand side since KG̃R is the pullback of
KH̃k), we obtain a ((2)A× (2)A)-equivariant isomorphism(

πG̃U
≤λ,!
υ∗0KG̃R

)
odd
∼=
(
πU

uν◦λ,!υ0,!(υ
∗

0KG̃R)
)

odd

∼=

⊕
χ :Z((2)A)→Q×`

χ is odd

V ∗χ ⊗πU
uν◦λ,!

(
ωU,∗

uν◦λFχ ⊗KG̃R
)

∼=

⊕
χ :Z((2)A)→Q×`

χ is odd

V ∗χ ⊗ Vχ ⊗ Ẽχ (K). (38)

Writing Q′`[
(2)A]χ for the ((2)A× (2)A)-equivariant local system on Spec k corre-

sponding to the representation V ∗χ ⊗ Vχ of the group

((2)A(k̄)× (2)A(k̄))o0k,
12

we summarize what we have shown (compare [Yun 2014a, Lemma 4.3]):

Lemma 5.1. There is a canonical isomorphism of ((2)A× (2)A)-equivariant local
systems on X0 (

πG̃U
≤λ,!
υ∗0KG̃R

)
odd
∼=

⊕
χ :Z((2)A)→Q×`

χ is odd

Q′`[
(2)A]χ ⊗ Ẽχ (K). (39)

In particular, the left-hand side is a local system.

It is explained in [Yun 2014a, §3.3.4] how to take the invariants of an equivariant
perverse sheaf under a (not necessarily discrete) finite group scheme. Applying this
we have:

12Equivalently, regarding Q′
`
[
(2)A(k̄)] as a ((2)A(k̄)× (2)A(k̄))-module via (a1, a2) · a = a1aa−1

2 ,
and extracting the constituent where Z((2)A(2)) acts by χ .
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Corollary 5.2. For all K ∈ SatG̃ and all odd χ : Z((2)A)→Q×` , there is an isomor-
phism of local systems on X0

Ẽχ (K)∼=
(
Q′`[

(2)A]∗χ ⊗
(
πG̃U
≤λ,!
υ∗0KG̃R

)
odd

)(2)A×(2)A.
6. The case of minuscule weights

We now want to make this description of Ẽχ (K) explicit. Our ultimate goal is the
following:

Theorem 6.1. Let k be Q or Q(
√
−1) according to whether G is of type D4n , G2,

E8 or A1, D4n+2, E7. Consider any odd χ : Z((2)A)→Q×` and any K∈SatG̃ . Let F
be any number field containing k. Then, for any point t ∈ X0(F), the specialization

ρ̃χ,K,t : π1(Spec F) t
→π1(X0)

ρ̃χ
−→ G̃∨1 (Q

′

`)→ GL(H∗w(K))

(where the representation of G̃∨1 is that induced by K under the Satake isomorphism,
as in Section 4B) is, as an 0F -representation, isomorphic to the Q′`-realization of
an object of MF,Q′ .

The case of K corresponding to a quasiminuscule weight is considered in [Yun
2014a, §4.3]. Although our discussion is valid for any G̃ as in Section 3, there are
certain cases in which it is uninteresting: for instance, if G = SL2, we gain nothing
by taking G̃ = SL2×Gm ; however, by taking G̃ =GL2, we gain the representations
of SL2=G∨sc (the simply connected cover of G∨), and it is these new representations
that will be of interest. Just as in the classical setting, the Kuga–Satake abelian
variety is found via the spin representation of Spin21, while the motive of the K3
arises from the standard 21-dimensional representation.

To show that ρ̃χ,K,t arises from an object of MF,Q′ demands a significant di-
gression into understanding intersection cohomology of varieties with arbitrarily
bad singularities. A good first approximation to understanding the motivic nature
of ρ̃χ,t : 0F → G̃∨1 (Q

′

`) is to verify this after composition with a single faithful
finite-dimensional representation of G̃∨1 (i.e., to show ρ̃χ,t is weakly motivic in the
sense of Definition 1.2). That is what we will do in this section.

First, we make a robust choice of G̃, such that G̃∨ has representations restricting
to each of the minuscule representations of G∨sc. For instance, we can take:

• (A1) G̃ = GL2.

• (E7) Let c denote the nontrivial element of ZG = µ2. Then take

G̃ = (G×Gm)/〈(c,−1)〉.

• (Dn , n even) Let c and z be generators of ZG ∼= µ2×µ2. Then take

G̃ = (G×Gm ×Gm)/〈(c,−1, 1), (z, 1,−1)〉.
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Each minuscule representation of G∨sc
13 extends to an irreducible representation

of G̃∨, and then to an irreducible representation of G̃∨1 . Taking a direct sum, we
obtain a faithful family of representations

rmin : G̃
∨

1 → GL(Vmin), (40)

and set ourselves the goal of showing that each rmin ◦ ρ̃χ,t is motivated. The full
force of Theorem 6.1 is considerably deeper (it is new even in Yun’s original setting),
so in the present section we will only treat the case of these minuscule weights,
which has the added advantage that the relevant geometry — of the corresponding
affine Schubert varieties — is especially simple.

We begin, however, with some generalities: continue to let K ∈ SatG̃ be any
irreducible object of the form K = ICλ, λ ∈ X •(T̃∨) (the discussion will apply
equally well to K of the form ICλ(m), but we take m = 0 to simplify the notation).
What we denoted above by KG̃R[1] is the intersection complex of G̃RU

uν◦λ,≤λ (or the
same before restricting to U ). Since the map

υ0 : G̃
U
≤λ→ G̃Ruν◦λ,≤λ

is étale, υ∗0KG̃R[1] is again the intersection complex of G̃U
≤λ. Recall that the

stratification of the affine Grassmannian induces one for the Beilinson–Drinfeld
Grassmannian:

G̃Ruν◦λ,≤λ =
∐
µ≤λ

µ dominant

G̃Ruν◦λ,µ.

The terms on the right-hand side are defined by replacing H̃k≤λ by H̃kµ in (36).
Note that ν ◦µ = ν ◦ λ since λ−µ ∈ X•(T ) lies in the coroot lattice of G. The
dense open locus G̃Ruν◦λ,λ is smooth over X0: fiberwise it is the smooth stratum
GrG̃,λ of GrG̃,≤λ. We write G̃U

λ and G̃U
<λ for the preimages in G̃U

≤λ of G̃Ruν◦λ,λ and∐
µ<λ G̃Ruν◦λ,µ.
Taking the t-fiber (t ∈ X0(F)) of the isomorphism in Lemma 5.1, we obtain a

(quasi-)isomorphism

IHc(G̃
U
≤λ,t)odd ∼=

⊕
χ odd

Q′`[
(2)A]χ ⊗ ρ̃χ,K,t . (41)

Let us explain the notation. For any irreducible variety Y over a field F, the
intersection complex ICY is a perverse sheaf in cohomological degrees [−dim Y, 0].
It is pure of weight dim Y. We denote by IHc(Y ) the complex R0c(ICY ) on Spec F ;
it lies in cohomological degrees [−dim Y, dim Y ], and is pure of weights ≤ dim Y.
As usual, we then define the compactly supported intersection cohomology IHi

c(YF )

13These are, in the three cases: the standard representation of SL2, the 56-dimensional representa-
tion of E7, and the standard (2n-dimensional) and two half-spin representations of Spin2n .
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(a 0F -representation) as H i−dim Y(IHc(Y )) (note the degree shift). We also observe
that while (compactly supported) intersection cohomology is not in general functo-
rial for (proper) morphisms of varieties, it is for (proper) étale morphisms: ICG̃U

≤λ,t

is still ((2)A× (2)A)-equivariant, as is the isomorphism (41). Now as in [Yun 2014a,
§4.3.2], we let eχ ∈Q′[(2)A(k̄)× (2)A(k̄)]0k be the idempotent whose action on the
((2)A(k̄)× (2)A(k̄))-module Q′[(2)A(k̄)] projects to the component Q′[(2)A]χ and then
onto the line spanned by id∈End(Vχ ) (a direct factor of the representation Q′[(2)A]χ
after restricting to the diagonal copy (2)A(k̄) ↪→ (2)A(k̄)× (2)A(k̄)). Explicitly,

eχ =
1

|(2)A(k̄)× (2)A(k̄)|

∑
(a1,a2)

θχ (a1a−1
2 )(a1, a2),

where θχ denotes the character of the (2)A(k̄)-representation Vχ .

Proposition 6.2. Let K = ICλ ∈ SatG̃ , let χ : Z((2)A) → Q×` be odd, and let
t ∈ X0(F) for any number field F containing k. Then

ρ̃χ,K,t ∼= GrW
〈2ρ,λ〉

(
eχ IH〈2ρ,λ〉c (G̃U

≤λ,t)
)
.

Proof. Apply eχ to equation (41), noting that the right-hand side is concentrated in
degree zero. Since we have seen that Ẽχ (ICλ) is pure of weight 〈2ρ, λ〉, the claim
is immediate. �

Proposition 6.2 reduces Theorem 6.1 to a special case of the following general
theorem:

Theorem 6.3. Let k be a finitely generated field of characteristic zero, and let
Y/k be a quasiprojective variety. Then, for all i, r ∈ Z, GrW

i (IH
r
c(Y )) is as a

0k-representation isomorphic to the `-adic realization of an object of Mk .
Next consider the case in which Y is acted on by a finite k-group scheme 0.

Let e ∈ Q[0(k̄)]0k be an idempotent. Fix an embedding Q ↪→ Q`. Then, for all
i, r ∈ Z, GrW

i (e IHr
c(Y,Q`)) is as a 0k-representation isomorphic to the (Q ↪→Q`)-

realization of an object of Mk,Q.

Remark 6.4. See Section 7A for what is meant by the weight gradings GrW
•

. Note
that in the application we only need the case i = r .

Theorem 6.3 will be proven in Corollary 8.15. For the remainder of this section,
we content ourselves with showing that ρ̃χ,t is weakly motivic. Thus, it suffices to
assume that λ restricts to a minuscule weight of G∨sc. In this case, GrG̃,≤λ = GrG̃,λ
has nonsingular reduced part, so that

ρ̃χ,ICλ,t
∼= GrW

〈2ρ,λ〉
(
eχ H 〈2ρ,λ〉c (G̃U

λ,t)
)
.

That the right-hand side is isomorphic to the `-adic realization of an object of
MF,Q′ follows from the standard description (originating in [Deligne 1971a]) of
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the weight filtration on the cohomology of a smooth variety, via the Leray spectral
sequence for its inclusion into a smooth compactification with boundary given by a
smooth normal crossings divisor. See [Yun 2014a, §4.3.1] or [Patrikis and Taylor
2015, discussion between Remark 2.6 and Lemma 2.7] for this equivariant version.
We conclude:

Corollary 6.5. For all choices of G̃ as in Section 3, there exists a faithful finite-
dimensional representation r : G̃∨1 ↪→ GL(Vr ) such that, for all number field
specializations Spec F t

→ X0 with F satisfying condition (15),

r ◦ ρ̃χ,t : 0F → GL(Vr ⊗Q′`)

is isomorphic to the Q′`-realization of an object of MF,Q′ . For all G, we may
choose G̃ and r such that r |G∨sc

is isomorphic to the direct sum of all the minuscule
representations of G∨sc.

In particular, the lifts ρ̃χ,t of Yun’s ρχ,t satisfy the generalized Kuga–Satake
property of Definition 1.2.

7. Intersection cohomology is motivated

7A. Overview. In the remaining sections, which are logically independent of the
rest of the paper, we prove Theorem 6.3. Let k be a field of characteristic zero,
and fix an algebraic closure k̄ of k. As usual, let 0k = Gal(k̄/k). Let Y/k be any
quasiprojective variety. If Y is irreducible of dimension dY , we can form the `-adic
intersection cohomology groups

IHr+dY (Y )= H r (Yk̄, ICY |Yk̄
),

as well as their analogues with compact supports, IHr+dY
c (Y ). If Y is reducible,

the definitions need a little more care, working component by component; see
[de Cataldo 2012, §4.6] for an explanation. The intersection complex ICYk̄

is
0k-equivariant, so 0k acts on IH∗(Y ) and IH∗c(Y ). Since we do not assume Y
is projective, these 0k-representations are not pure; in particular, Theorem 6.3
cannot hold for the groups IH∗c(Y ) themselves. Thus we first need to make sense
of the weight filtration on IH∗c(Y ), in order even to speak of the 0k-representations
GrW
•

IH∗c(Y ).
There are two basic templates, one “sheaf-theoretic” and one “geometric”, for

endowing the cohomology of a variety with a weight filtration. The models for
the former approach are [Deligne 1980; Beı̆linson et al. 1982]; the models for the
latter are [Deligne 1971b; 1974]. The latter approach typically depends on having
resolution of singularities over the field k, and is consequently restricted to char-
acteristic zero; but when available, it yields more robust, because more “motivic”,
results. Thus we will explain, at least for k finitely generated over Q, how to give
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an a priori “sheaf-theoretic” sense to GrW
•

IH∗(Y ), but then our main aim will be to
give a “geometric” construction, as part of the proof of Theorem 6.3, that recovers
the sheaf-theoretic definition of the 0k-representations GrW

•
IH∗c(Y ). Let us begin

then by recalling the sheaf-theoretic construction of a weight filtration on IH∗c(Y ).
Since we work with k of characteristic zero, the basic case of positive charac-

teristic addressed in [Deligne 1980; Beı̆linson et al. 1982] is not sufficient. But
the results of those papers have been extended in a form suitable for our purposes,
and indeed much more generally than we require, in [Huber 1997; Morel 2012].14

Namely, the intersection complex ICY is a horizontal, pure perverse sheaf in the
sense of [Morel 2012, §2], and [Morel 2012, Théorème 3.2, Proposition 6.1] implies
that IH∗c(Y ) (likewise IH∗(Y )) carries a unique weight filtration W•. In particular,
this means that each GrW

r IH∗c(Y ) is pure of weight r in the following sense: the
underlying lisse sheaf on Spec k arises by base change from a lisse sheaf G on
some smooth subalgebra A ⊂ k, of finite-type over Z, and with Frac(A)= k; and
for all specializations at closed points x of Spec A, x∗G is pure of weight r in the
usual finite field sense. This characterizing property will hold for the output of our
geometric construction; this is verified step-by-step as the construction proceeds.

We now outline the approach to Theorem 6.3. By Poincaré duality for intersection
cohomology (which is 0k-equivariant), we may restrict to the case of IH∗(Y ).
First, we remark that the basic difficulty, and interest, of this problem is that both
intersection cohomology and weight filtrations are a priori “sheaf-theoretically”
defined. The theorem shows that these sheafy constructions can in fact be realized
just by playing with the cohomology of smooth projective varieties. There are two,
essentially orthogonal, special cases of this problem:

• Y may be smooth but nonprojective. In this case, IHr (Y )= H r (Yk̄,Q`), and the
result follows from the geometric approach of [Deligne 1971b]; namely, if Y is a
smooth compactification of Y with Y \ Y equal to a union of smooth divisors Dα

with normal crossings, then the (E3-degenerate) Leray spectral sequence for the
inclusion Y ⊂ Y yields a description of GrW

•
H r (Yk̄,Q`) in terms of the divisors Dα

and their various (smooth, projective) intersections; see Theorem 7.2(3) below, for
a slight rephrasing.

• Y may be projective but singular. In this case, the result, when k is algebraically
closed,15 has been proven by de Cataldo and Migliorini. We briefly describe the two

14The basic notions of horizontal sheaf, perverse t-structure on the “derived” category of horizontal
sheaves, and weights for horizontal sheaves are developed in, respectively, Sections 1, 2, and 3 of
[Huber 1997]. Morel’s paper builds on these foundations, generalizing the results of [Huber 1997] to
any finitely generated k, and establishing a sort of six operations functoriality for complexes having
weight filtrations.

15In this case one should work not just with `-adic cohomology but also with (compatible) Betti
and de Rham realizations, in order for the assertion to have any content.
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crucial geometric inputs (assume for this informal description that k is algebraically
closed). Let f : X→ Y be a resolution of singularities. Roughly speaking, IH∗(Y )
occurs as a “main term” in H∗(X,Q`) = H∗(Y, f∗Q`) corresponding (via the
decomposition theorem) to the summand of f∗Q` in perverse degree dim X and
supported along the open dense stratum (the nonsingular locus) Y 0 of Y. The first
key result is that the perverse (Leray) filtration on H∗(Y, f∗Q`) admits [de Cataldo
2012, Theorem 3.3.5] a remarkable geometric description in terms of a suitably
generic “flag filtration”. The second is that the factor of f∗Q` supported along Y 0

can, at least in cohomology, also be extracted “geometrically” — this follows from
the novel approach to the decomposition theorem pioneered by de Cataldo and
Migliorini in a series of papers (see [de Cataldo and Migliorini 2014, §1.3.3] for a
precise statement).

Our task is to fuse these two approaches, and to get everything to work over
an arbitrary (not algebraically closed) field k of characteristic zero. The chief
obstruction to getting the relevant arguments of [de Cataldo and Migliorini 2014]
to work over any k is that the “generic flags” mentioned above would need to be
defined k-rationally. This it turns out is not so hard to achieve, using Bertini’s
theorem over k and, crucially, the fact that flag varieties are rational, so that any
Zariski open set over k necessarily has k-points.

Rather more complicated is integrating the approaches of [Deligne 1971b] and
[de Cataldo and Migliorini 2014] in order to prove Theorem 6.3 for any quasipro-
jective Y. The basic difficulty is that, since motivated motives are only defined
in the pure case, the argument (resting on [Deligne 1971b]) in the smooth case
is not obviously “functorial in Y”. Fortunately, it can be upgraded to one that is,
using the results of [Guillén and Navarro Aznar 2002] on the existence of “weight
complexes” of motivated motives whose cohomology computes GrW

•
H∗(Y ) for any

k-variety Y. We will also use a version for cohomology with compact supports — due
independently to Gillet and Soulé [1996] and Guillén and Navarro, it is somewhat
simpler, but not suited for describing the perverse Leray filtration as in [de Cataldo
2012], even for cohomology with compact supports. It is crucial, however, that we
exploit both theories: the inductive construction of the support decomposition as
in [de Cataldo and Migliorini 2014, Proposition 2.2.1] requires having motivated
versions both of pullback in H∗ and pullback for proper morphisms in H∗c (note
that these two kinds of pullbacks are not related by Poincaré duality; one cannot be
formally reduced to the other). Once this setup is in place, however, the arguments
of [de Cataldo and Migliorini 2014] go through mutatis mutandis. We consequently
establish stronger results on finding “motivated” splittings of the perverse Leray
filtration, and a motivated support decomposition, closely in parallel to the main
results of [de Cataldo and Migliorini 2014] — see Theorem 8.13 and Corollary 8.14,
which should be regarded as the main results of this half of the paper.
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Notation 7.1. Except where we explicitly allow more general fields, from now
on k will be a finitely generated field extension of Q. Whenever we speak of
the weight grading GrW

•
on various cohomology groups of a variety over k, the

grading is unique, and can be shown to exist by [Morel 2012, Théorème 3.2,
Proposition 6.1]. As before, Mk denotes André’s category of motives for motivated
cycles over k (with Q-coefficients). For a smooth projective variety X over k,
we write H(X) for the canonical object of Mk associated to X. Finally, given a
map of varieties f : X→ Y, we always mean the derived functors when we write
f∗, f!, etc.

7B. Weight-graded motivated motives associated to smooth varieties. Here is the
theorem of Guillén and Navarro Aznar, specialized to the precise statement we
require:16

Theorem 7.2 (see Théorème 5.10 of [Guillén and Navarro Aznar 2002]). Let k
be a field of characteristic zero, and let Sch/k denote the category of finite-type
separated k-schemes. Then there exists a contravariant functor

h : Sch/k→ K b(Mk), (42)

valued in the homotopy category of bounded complexes in Mk , such that:

(1) If X is a smooth projective k-scheme, then h(X) is naturally isomorphic to the
canonical motivated motive H(X) associated to X.

(2) If X is a smooth projective k-scheme, and D=
⋃t
α=1 Dα is a normal crossings

divisor equal to the union of smooth divisors Dα, we can form a cubical
diagram of smooth projective varieties

S•(D)→ X,

where, for every nonempty subset 6 ⊂ {1, . . . , t}, S6(D) is the (smooth)
intersection D6 =

⋂
α∈6 Dα, with the obvious inclusion maps S6(D) →

S6′(D) whenever 6′ ⊂ 6. Using the covariant functoriality arising from
Gysin maps, we can then associate a cubical diagram h∗(S•(D)→ X) in Mk ;
to be precise, h∗(S6(D)) is the object of Mk

h(D6)(dim D6),

with the Gysin maps h∗(S6(D)) → h∗(S6′(D)) whenever 6′ ⊂ 6. Then
h(X\D) is isomorphic to the simple complex associated to this cubical diagram
(see the proof for what this means):

h(X \ D)∼= s(h∗(S•(D)→ X))(−dim X). (43)

16They prove something stronger, with Chow motives in place of motivated motives.
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(3) In particular, h(X \D) is a complex whose degree-r homology17 Hr (h(X \D))
is an object of Mk whose `-adic realization is given by (for k finitely generated
over Q)

H`(Hr (h(X \ D)))∼=
⊕

q

GrW
q+r Hq((X \ D)k̄,Q`).

Proof. Except for the third assertion, this is all explicitly in [Guillén and Navarro Az-
nar 2002, Théorème 5.10]. The remaining claim follows from the usual description
[Deligne 1971b] of the weight gradeds for H∗((X \ D)k̄,Q`): ignoring for no-
tational convenience the Tate twists, the degree-r term h(X \ D)r (to be precise,
after the identification of equation (43)) is

⊕
|6|=r h(D6), with the boundary map

h(X \ D)r → h(X \ D)r−1 given by an alternating sum of Gysin maps. The `-adic
realization of this complex can be identified (up to a sign in the boundary maps, at
least — see [Guillén and Navarro Aznar 1990, (1.8) Proposition]) with the complex

· · · → Kr =
⊕

q

E−r,q+r
1

⊕
q d−r,q+r

1
−−−−−→ Kr−1 =

⊕
q

E−r+1,q+r
1 → · · ·

built out of the E1 terms of the (weight) spectral sequence of the filtered complex
(bête filtration)

E−r,q+r
1 = Hq(X k̄,GrW

r j∗Q`)=⇒ Hq(X k̄, j∗Q`)= Hq((X \ D)k̄,Q`).

This spectral sequence degenerates at the E2 page (by the yoga of weights), and its
E2 terms then give the weight gradeds of Hq((X \D)k̄,Q`); part (3) of the theorem
follows. �

This is not a full description of the result of Guillén and Navarro Aznar, but it
contains the two points of interest for us: the explicit description of the objects
Hr (h(X \ D)), and in particular their connection with the weight filtration on
H∗((X \ D)k̄,Q`); and, crucially, the fact that h is functorial. In particular, for any
morphism φ :U→V in Sch/k, we get, for all r , morphisms Hr (h(V ))→Hr (h(U ))
in Mk .

Here is the compact-supports version:

Theorem 7.3 [Gillet and Soulé 1996, Theorem 2; Guillén and Navarro Aznar 2002,
Théorème 5.2]. Let k be a field of characteristic zero, and let Schc/k denote the
category of separated finite-type k-schemes with morphisms given by proper maps.
Then there exists a contravariant functor

W : Schc/k→ K b(Mk) (44)

such that:
17We use homological conventions here.



1512 Stefan Patrikis

(1) If X is a smooth projective k-scheme, then W (X) is naturally isomorphic to
the canonical motivated motive H(X) associated to X.

(2) If X is a smooth projective k-scheme, and D=
⋃t
α=1 Dα is a normal crossings

divisor equal to the union of smooth divisors Dα , then W (X \D) is isomorphic
to the simple complex (we now use cohomological conventions and normalize
W (X \ D) to live in cohomological degrees [0, t])

H(X)→
⊕
α

H(Dα)→ · · · →
⊕
|6|=s

H(D6)→ · · · (45)

with coboundaries given by an alternating sum of restriction maps H(D6′)→

H(D6) whenever 6′ ⊂6. (See [Gillet and Soulé 1996, Proposition 3].)

(3) In particular, W(X\D) is a complex whose degree-s cohomology H s(W(X\D))
is an object of Mk whose `-adic realization is given by (for k finitely generated
over Q)

H`(H s(W (X \ D)))∼=
⊕

p

GrW
p H p+s

c ((X \ D)k̄,Q`).

In the setting of parts 2 and 3 of Theorems 7.2 and 7.3, let U = X \ D. Poincaré
duality for U descends to a duality relation in Mk between the cohomologies of the
complexes h(U ) and W (U ). Before stating it, we introduce a little more notation:

Definition 7.4. Let Hq
r (h(U )) be the canonical summand of Hr (h(U )) in Mk of

weight q + r . Let W p(U ) be the canonical complex of weight-p summands of the
terms of W (U ), and let H s(W p(U )) be the degree-s cohomology.

Remark 7.5. The object Hq
r (h(U )) of Mk has `-adic realization GrW

q+r Hq(Uk̄,Q`).
The object H s(W p(U )) of Mk has `-adic realization GrW

p H p+s
c (Uk̄,Q`).

Lemma 7.6. Let U = X \ D as above, and assume U is equidimensional of dimen-
sion d. Then there is a canonical isomorphism in Mk

Hq
r (h(U ))

∨ ∼= H r (W 2d−q−r (U ))(d). (46)

Proof. Poincaré duality for each D6 induces a perfect duality between h(U )s
and W (U )s (the degree-s terms of each complex) for all s. The Gysin maps
H(D6′)(d − |6′|)→ H(D6)(d − |6|) are Poincaré dual to the pullback maps
H(D6)→ H(D6′) for all 6 ⊂6′, and we can deduce perfect dualities (in Mk)

Hs(h(U ))∨ ∼= H s(W (U ))(d).

The result follows from decomposing these dualities into each of their graded
components. �
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8. The perverse Leray filtration

8A. Relation to flag filtrations. In this section we recall the beautiful and funda-
mental result of de Cataldo and Migliorini that describes the perverse Leray filtration
for a map of varieties in terms of a certain flag filtration — see [de Cataldo and
Migliorini 2010] and, for the specific result we use, Theorem 3.3.5 of [de Cataldo
2012]. These results are worked out over an algebraically closed field of char-
acteristic zero, and so our first aim in this section is to check the analogue for
any k ⊃Q.

We first recall the Jouanolou trick.

Definition 8.1. Let Y be a variety over k. An affinement of Y is a map Y p
→ Y in

Sch/k with Y an affine k-scheme, such that p is a torsor for some vector bundle
on Y.

Proposition 8.2 [Jouanolou 1973, Lemme 1.5]. Suppose Y ∈ Sch/k is quasipro-
jective. Then an affinement of Y exists.

Jouanolou’s result in fact holds for arbitrary quasiprojective schemes, but we are
only interested in the case of varieties over k.

Now let f : X → Y be a morphism of k-varieties. It induces the (increasing)
perverse Leray filtration on H∗(X k̄,Q`) via

P f
j (H

∗(X k̄,Q`))= im
(
H∗(Yk̄,

pτ≤ j f∗Q`)→ H∗(Yk̄, f∗Q`)
)

⊆ H∗(Yk̄, f∗Q`)= H∗(X k̄,Q`). (47)

Here pτ≤ j denotes perverse truncation.18 We make the analogous definition of the
perverse Leray filtration on H∗c (X k̄,Q`), replacing f∗Q` by f!Q` (the only case of
interest to us will be when f is proper, so f∗ = f!).

Theorem 8.3 [de Cataldo 2012, Theorem 3.3.5]. Assume k = k̄ is an algebraically
closed field of characteristic zero. Let f : X→ Y be a morphism in Sch/k with Y
quasiprojective. Let p : Y→ Y be an affinement of Y of relative dimension d(p),19

and choose a closed embedding Y ↪→ AN of Y into some affine space. Let

A• = {∅= A−N−1 ⊂ A−N ⊂ · · · ⊂ A0 = AN
}

18It is defined for the complex f∗Q` on Y itself, and we omit the base change to k̄ in the notation
of these cohomology groups.

19If Y is not connected, d(p) is a function π0(Y )→ Z; we can always reduce to the case of
connected Y, so do not dwell on this.
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be a full flag of affine linear sections of AN, and form the cartesian diagram

X•

r•

!!i•
//

��

X
p
//

��

X

f

��

Y• //

��

Y
p
//

��

Y

A• // AN

(48)

We define the associated (increasing) flag filtrations

FA•
j H∗(X k̄,Q`)= ker

(
r∗
− j : H

∗(X k̄,Q`)→ H∗((X− j )k̄,Q`)
)

(49)

and (see Remark 8.4)

FA•
j H∗c (X k̄,Q`)= im

(
r!, j : H∗c ((X j )k̄,Q`)→ H∗c (X k̄,Q`)

)
. (50)

Then, for a general flag A•,

P f
j Hq(X k̄,Q`)= FA•

1+d(p)−q+ j Hq(X k̄,Q`) (51)

and
P f

j Hq
c (X k̄,Q`)= FA•

j−q−d(p)H
q
c (X k̄,Q`). (52)

Remark 8.4. (1) Let us spell out the construction of the maps r!, j . There is a
canonical identification

H k
c (X k̄,Q`)∼= H k

c (Xk̄, p!Q`)∼= H k+2d(p)
c (Xk̄,Q`)(d(p)),

and then adjunction gives maps

H k
c ((X− j )k̄, i !

− j Q`)→ H k
c (Xk̄,Q`).

As part of the definition of “general position”, we may assume the X− j are smooth,
so by cohomological purity these adjunction maps are identified with (Gysin) maps

H k−2 j
c ((X− j )k̄,Q`)(− j)→ H k

c (Xk̄,Q`).

The “corestriction” maps r!,− j are then given by the composites

H k+2d(p)−2 j
c ((X− j )k̄,Q`)(d(p)− j)→ H k+2d(p)

c (Xk̄,Q`)(d(p))→ H k
c (X k̄,Q`).

Important for our purposes is that these are precisely the maps Poincaré dual to the
pullback maps arising from the maps X− j → X.
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(2) We need to specify what is meant by a general flag; this will be done in
Section 8B. What matters for our purposes is that there exists a Zariski open, dense
subspace Flaggen inside the variety Flag of full (affine linear) flags in AN such that
all points A• ∈ Flaggen(k) are “general”.

(3) Note that the degree shift between the perverse and flag filtrations depends
on the degree (q above) of cohomology. We will ultimately work one degree
of cohomology at a time, and all that matters for us is that some shift of the
flag filtration agrees with the perverse filtration. To extract the exact degree shift
j 7→ 1+ d(p)− q+ j , use [de Cataldo 2012, Theorem 3.3.5, (3.8), Example 3.1.6,
and (3.16)], and similarly for cohomology with compact supports.

We now explain why this result can be refined k-rationally, so that the diagram (48)
for which the conclusion of Theorem 8.3 holds can be taken to be a diagram in
Sch/k. In the process, we will say more explicitly what is meant by a “general” flag
in the case of proper f : X→ Y (this case is somewhat simpler — see [de Cataldo
2012, Remark 3.2.13] — and it is all we need).

8B. Stratifications. To define “general” flags, we need to say something about
stratifications. From now on we will consider a proper map f : X→ Y of varieties
over k with Y quasiprojective. For the purposes of Theorem 8.3, we need only
find a stratification 6 of Y such that f∗Q` is 6-constructible. That is, we require
a decomposition Y =

⊔
σ∈6 Yσ of Y into locally closed, irreducible, nonsingular

varieties such that f∗Q`|Yσ is lisse for all σ . This is easily arranged; note that the
strata Yσ may be irreducible but not geometrically connected. Then we can deduce:

Corollary 8.5. Let k be a field of characteristic zero, and let f : X → Y be a
proper morphism in Sch/k with Y quasiprojective. Then there exists a diagram (48)
defined over k for which the conclusions (51) and (52) of Theorem 8.3 hold.

Proof. Choose as before an affinement p :Y→Y and an embedding Y ↪→AN, and let
Flag denote the variety over k of full affine linear flags in AN. Fix a stratification 6
of Y such that f∗Q` is 6-constructible, and pull it back to a stratification p−16

of Y . We then consider full flags

{A−N ⊂ · · · ⊂ A−1 ⊂ AN
}

such that A−1 intersects every stratum Yσ transversally; and, refining each A−1∩Yσ
to the disjoint union of its connected components, A−2 intersects the induced
stratification of Y ∩A−1 transversally; and so on, inductively. By Bertini’s theorem
in exactly the form [Jouanolou 1979, Théorème 6.3(2)], applied inductively to
each of the (smooth) strata in each Y ∩A−i , the collection of such flags defines
a Zariski open (over k) dense subset Flaggen

⊂ Flag. Since Flag is a rational
variety (for instance, by Bruhat decomposition), and k has characteristic zero,
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Flaggen(k) is nonempty. The corollary then follows by the proof of [de Cataldo
2012, Theorems 3.3.1 and 3.3.5]. �

So that we can directly invoke the results of [de Cataldo and Migliorini 2014],
in what follows we will make further demands on the stratification, as explained
in Section 1.3.2 of that paper. For a fixed proper map f : X → Y, we consider
stratifications of X and Y as the disjoint unions of smooth, locally closed, irreducible
(over k) subvarieties, such that every stratum of X maps smoothly and surjectively
onto a stratum of Y. Organizing the strata of Y by dimension, we write Y =

⊔dim Y
l=0 Sl ,

where Sl has pure dimension l. Each Sl is a disjoint union of smooth and irreducible
components of dimension l; these irreducible components need not be geometrically
irreducible, but that does not affect our arguments. We then have Zariski open
(dense) subsets Ul =

⊔
m≥l Sm , and we get associated closed and open immersions

αl : Sl ↪→Ul (closed) and βl :Ul+1 ↪→Ul (open), with Ul = Sl tUl+1. For more
background on these stratifications, see [de Cataldo and Migliorini 2005, §3.2].

8C. Motivated perverse Leray filtration. By Corollary 8.5, the perverse Leray
filtrations on H∗(X k̄,Q`) and H∗c (X k̄,Q`) have been 0k-equivariantly identified
with certain flag filtrations, given in terms of maps of k-varieties X→ X− j . With
an eye toward our final application, in which case f : X→ Y will be a resolution
of singularities of Y, we continue to assume f is proper, but also require that
X is nonsingular and irreducible,20 and we use Theorem 7.2, Lemma 7.6 and
Corollary 8.5 to define the “perverse Leray filtration” on the motivated motives
Hr (h(X)) and H s(W (X)). Consider a diagram (48) over k for which the conclusion
of Theorem 8.3 holds. Since h : Sch/k → K b(Mk) is a functor, we obtain a
commutative diagram

h(X)
r∗
−i
//

r∗
−i−1

((

h(X−i )

��

h(X−i−1)

in K b(Mk). Recall that since Mk is canonically weight-graded (it has Künneth
projectors), we can apply the composite functor Hq

r given by taking cohomology Hr

of this diagram and projecting to the weight-(q + r) component for any q ∈ Z,
obtaining a commutative diagram in Mk

Hq
r (h(X))

r∗
−i
//

r∗
−i−1

**

Hq
r (h(X−i ))

��

Hq
r (h(X−i−1))

20The irreducibility assumption is only for convenience in certain intermediate results, in which,
for instance, we wish to invoke Poincaré duality without complicating the notation. Eventually, we
extend component by component to the reducible case.
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Recall that the `-adic realization of Hq
r (h(X)) is (by Theorem 7.2) isomorphic to

GrW
q+r Hq(X k̄,Q`); this accounts for the notation.

Definition 8.6. The perverse Leray filtration of Hq
r (h(X)) is defined to be

P f
j Hq

r (h(X))=ker
{
r∗
−(1+d(p)−q+ j) :H

q
r (h(X))→Hq

r (h(X−(1+d(p)−q+ j)))
}
. (53)

The gradeds for the perverse filtration, still objects of Mk , are then denoted

GrP
f

j Hq
r (h(X))= P f

j Hq
r (h(X))/P

f
j−1 Hq

r (h(X)).

Remark 8.7. Our indexing convention is somewhat different from that of de Cataldo
and Migliorini (compare [de Cataldo and Migliorini 2005, Definition 2.2.2]).

Now, we already have a definition (equation (47)) of P f on Hq(X k̄,Q`) before
passing to the weight gradeds; the two versions of P f are compatible in the following
sense:

Lemma 8.8. The `-adic realization H`
(
P f

j Hq
r (h(X))

)
is isomorphic to

GrW
q+r P

f
j Hq(X k̄,Q`),

and likewise with GrP
f

j in place of P f
j .

Proof. The `-adic realization functor is exact, and the maps on cohomology induced
by the morphisms X•→ X are strict for the associated weight filtrations, so this
follows from the choice of X• as in Corollary 8.5. �

We also need a “motivated” description of the perverse Leray filtration in com-
pactly supported cohomology, i.e., a filtration by submotives on each H s(W p(X)).
Taking our cue from Remark 8.4, we formally define a filtration on Hq

r (h(X))∨ by(
Hq

r (h(X))/P
f

j Hq
r (h(X))

)∨
⊂ Hq

r (h(X))
∨, (54)

and then invoke duality to define:

Definition 8.9. The perverse Leray filtration of H s(W p(X)) is defined to be

P f
j H r (W 2 dim X−q−r (X))

=
(
Hq

r (h(X))/P
f
− j+2 dim X−1 Hq

r (h(X))
)∨
(−dim X)

⊆ Hq
r (h(X))

∨(−dim X)−→∼ H r (W 2 dim X−q−r (X)). (55)

We check that this definition is compatible with the usual one in cohomology:

Lemma 8.10. The `-adic realization H`
(
P f

j H r (W 2 dim X−q−r (X))
)

is canonically
isomorphic to

GrW
2 dim X−q−r P

f
j H 2 dim X−q

c (X k̄,Q`),

and likewise with GrP
f

j in place of P f
j .



1518 Stefan Patrikis

Proof. By the description (Remark 8.4) of r!,− j as the map Poincaré dual to r∗
− j , we

see that Poincaré duality for X induces a duality (here F• denotes the flag filtrations
for general flags)(

Fj Hq(X k̄,Q`)
)∨ ∼= (H 2 dim X−q

c (X k̄,Q`)/F− j H 2 dim X−q
c (X k̄,Q`)

)
(dim X),

i.e.,(
P f
−l+2 dim X−1 Hq(X k̄,Q`)

)∨
∼=
(
H 2 dim X−q

c (X k̄,Q`)/P
f

l H 2 dim X−q
c (X k̄,Q`)

)
(dim X).

The lemma follows by passing to GrW
•

. �

By definition, we obtain the following duality in Mk , a motivated analogue of
[de Cataldo and Migliorini 2014, §1.3.3(12)]:

GrP
f

j H r (W 2 dim X−q−r (X))×GrP
f

− j+2 dim X Hq
r (h(X))→Q(−dim X). (56)

We next check a functoriality property of these motivated perverse Leray filtrations.

Lemma 8.11. Suppose
T //

g
��

X

f
��

Y

is a commutative diagram in Sch/k. Then the pullback maps Hq
r (h(X))→Hq

r (h(T ))
induce morphisms (in Mk)

P f
j Hq

r (h(X))→ Pg
j Hq

r (h(T )).

If g factors as T γ
→ Z ι
→Y with ι a closed immersion, then the filtrations Pγ

•
and Pg

•

on H∗(Tk̄,Q`), or on Hq
r (h(T )), coincide.

If T → X is proper, then the proper pullback H s(W p(X))→ H s(W p(T )) also
preserves the perverse Leray filtrations (55).

Proof. Since the `-adic realization functor on Mk is exact, it suffices to check the
statement in cohomology. Here it is elementary — see for instance [de Cataldo and
Migliorini 2005, Remark 4.2.3]. For the second statement, use the fact that ι∗ is
exact for the perverse t-structure (so commutes with perverse truncation). �

8D. Motivated support decomposition. Now we proceed as in [de Cataldo and
Migliorini 2014, Proposition 2.2.1] to establish a “motivated support decomposition”
of the GrP

f

j Hq
r (h(X)), corresponding to the support decomposition of the perverse

sheaf pH j( f∗Q`). We begin by checking that the desired support decomposition
exists k-rationally. Continue to let f : X→ Y be our proper map of quasiprojective
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varieties over k with X nonsingular. Let Y =
⊔dim Y

l=0 Sl be a stratification for f as
in Section 8B, with the collection of closed and open immersions

Sl
αl
−→Ul

βl
←−Ul+1. (57)

Lemma 8.12. In the above setting, there is a canonical isomorphism in Perv(Y )

pH j( f∗Q`[dim X ])−→∼
dim Y⊕
l=0

ICSl

(
α∗l H−l(pH j( f∗Q`[dim X ]))

)
, (58)

where the α∗l H−l(pH j( f∗Q`[dim X ])) are (geometrically semisimple) local systems
on Sl . Replacing αl by the inclusion S ιS

−→ Sl
αl
−→Ul of an irreducible (= connected)

component S of Sl , we obtain the refined k-rational support decomposition

pH j( f∗Q`[dim X ])

−→∼

dim Y⊕
l=0

⊕
S∈π0(Sl )

ICS

(
(αl ◦ ιS)

∗H−l(pH j( f∗Q`[dim X ]))
)
. (59)

Proof. The second claim follows from the first, so we focus on establishing (58).
This statement in Perv(Yk̄) is a precise form — see [de Cataldo and Migliorini
2005, Theorem 2.1.1(c)] — of the semisimplicity assertion of the decomposition
theorem, so it suffices to check that the map in equation (58) can be defined in
Perv(Y ). For notational simplicity, denote the perverse sheaf pH j( f∗Q`[dim X ])
on Y simply by K. We follow closely the argument of [de Cataldo and Migliorini
2005, Lemma 4.1.3], and, as there, the claim will follow from the following assertion:
for all l = 0, . . . , dim Y, there is a canonical isomorphism

K |Ul −→
∼ βl!∗(K |Ul+1)⊕ H−l(K |Ul )[l].

We now explain this isomorphism, which itself follows from the corresponding
geometric statement in [de Cataldo and Migliorini 2005, Lemma 4.1.3, §6]. The
second projection comes from the truncation triangle

τ≤−l−1K |Ul → τ≤−l K |Ul → H−l K |Ul [l]
+1
−→,

whose middle term is canonically K |Ul , and whose right-hand term is perverse (by
the support conditions in the definition of perverse sheaves; see [de Cataldo and
Migliorini 2005, §4.1]).

To define the first projection, recall the successive truncation description of
intermediate extension as

τ≤−l−1βl∗β
∗

l K |Ul
∼= βl!∗(K |Ul+1).
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This suggests applying Hom(K |Ul , · ) to the truncation triangle

τ≤−l−1βl∗β
∗

l K |Ul → τ≤−lβl∗β
∗

l K |Ul → H−l(βl∗β
∗

l K |Ul )[l]
+1
−→ .

There is a canonical map

K |Ul

a
77

τ≤−l K |Ul

∼
oo // τ≤−lβl∗β

∗

l K |Ul

and to construct the projection K |Ul → βl!∗(K |Ul+1), it suffices to check that the
image of a in

Hom(H−l(K |Ul ), H−l(βl∗β
∗

l K |Ul ))−→
∼ Hom(K |Ul , H−l(βl∗β

∗

l K |Ul )[l])

(recall τ≤−l K |Ul −→
∼ K |Ul ) is zero. But we can check whether a map of constructible

sheaves on Y is zero by passing to Yk̄ , so the geometric assertion [de Cataldo and
Migliorini 2005, §6] implies our corresponding arithmetic assertion. �

We have maneuvered into a position to invoke the argument of [de Cataldo and
Migliorini 2014, Proposition 2.2.1] to prove:

Theorem 8.13. Let f : X→ Y be a proper map of quasiprojective varieties over k
with X nonsingular. Then, for each triple of integers j , q , r , there exists a decompo-
sition in Mk

GrP
f

j Hq
r (h(X))−→∼

dim Y⊕
l=0

⊕
S∈π0(Sl )

GrP
f

j,S Hq
r (h(X)) (60)

whose `-adic realization is the output of applying GrW
q+r Hq(Yk̄, • ) to the splitting

of equation (59).21

The same holds for cohomology with compact supports, i.e., for the motives
GrP

f

j H s(W p(X)).

Proof. When X is projective, this is established in [de Cataldo and Migliorini
2014, Theorem 3.2.2], via the argument of Proposition 2.1.1 of the same paper; the
impediment to that argument going through for nonprojective X is dealt with by
our systematic use of the motivated motives Hq

r (h(X)) and H s(W p(X)). We do
not repeat the proof, but we will remark on the key points. The argument proceeds
by induction on dim X ; the inductive step is achieved by using [de Cataldo and
Migliorini 2014, equations (13) and (14)] to define the summands GrP

f

j,S Hq
r (h(X)) in

terms of already-defined terms for lower-dimensional X. Note that it is essential that
we have at our disposal motives corresponding both to cohomology without supports
(the Hq

r (h(X))) and to cohomology with compact supports (the H s(W p(X))), with

21Rather, the slight relabeling of this splitting that results from replacing f∗Q`[dim X ] in (59)
with f∗Q`.
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their respective pullback functorialities (Theorems 7.2 and 7.3) and the duality
(Lemma 7.6 and equation (56)) relating them. �

The corresponding result in [de Cataldo and Migliorini 2014] uses the relative
hard Lefschetz theorem to obtain an absolute Hodge splitting (in the case k = k̄) of
H∗(X k̄,Q`) corresponding to the full splitting of f∗Q` given by the decomposition
theorem, rather than as here merely the support decomposition in a particular
perverse degree; a similar strengthening can be established in our context, which
we now briefly sketch, although it is not needed for our primary goal, Theorem 6.3.
For X as in the theorem, consider as usual a smooth compactification X with
X \ X =

⋃
α Dα equal to a union of smooth divisors with normal crossings. We

may assume X is projective, and then take η to be a hyperplane line bundle arising
from some projective embedding. The required motivated version of the relative
hard Lefschetz theorem is that there are isomorphisms⋃

η j
: GrP

f

− j+dim X Hq
r (h(X))−→∼ GrP

f

j+dim X Hq+2 j
r (h(X))( j). (61)

To construct this isomorphism, note first that we can pull η back to any of the
intersections D6=

⋂
α∈6 Dα and obtain a morphism of complexes h(X)→h(X)(1).

This comes from the projection formula: writing η6 for the pullback of η to D6 ,
we have, for any inclusion ι : D6 ↪→ D6′ ,

ι∗(a ∪ η6)= ι∗(a)∪ η6′,

i.e., cup-product with η commutes with the boundary (Gysin) maps of the complex
h(X). Passing to cohomology, η induces maps

η : Hq
r (h(X))→ Hq+2

r (h(X))(1).

The required compatibility

η : P f
j Hq

r (h(X))→ P f
j+2 Hq+2

r (h(X))(1)

with the perverse filtrations follows directly from Definition 8.6. We therefore
have constructed the maps appearing in (61); that they are isomorphisms, as are
the corresponding maps for each term of the support decomposition, then follows
as usual from the corresponding statement in cohomology. The formalism of
“hard Lefschetz triples” [de Cataldo and Migliorini 2014, §1.3.4] in the abelian
category Mk allows us to enhance Theorem 8.13 with the following:

Corollary 8.14. The choice of η gives rise to a distinguished splitting

Hq
r (h(X))−→∼

⊕
j

GrP
f

j Hq
r (h(X))

of the motivated perverse Leray filtration.
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Of course, Mk is semisimple, so we already knew that some splitting exists. The
combination of Theorem 8.13 and Corollary 8.14 can be regarded as a “motivated
decomposition theorem”. Finally, we reach the motivating application:

Corollary 8.15 (includes Theorem 6.3 above). Let Y/k be any quasiprojective
variety. Then there is an object M ∈Mk whose `-adic realization is isomorphic
as a 0k-representation to GrW

i IHq(Yk̄,Q`). If A is a finite group scheme over k
acting on Y, and e ∈ Q[A(k̄)]0k, then for any embedding Q ↪→ Q` there is an
object of Mk,Q whose (Q ↪→Q`)-realization is isomorphic as a 0k-representation
to GrW

i e(IHq(Yk̄,Q`)).
The same holds for intersection cohomology with compact supports.

Proof. We can assume Y is irreducible. Let f : X→ Y be a resolution of singular-
ities; X is then irreducible of dimension dim X. For the motive M having `-adic
realization GrW

q+r IHq(Yk̄,Q`), we can take

M = GrP
f

dim X,Y sm Hq
r (h(X)),

where Y sm denotes the smooth locus of Y. (Compare [de Cataldo and Miglior-
ini 2014, Remark 1.4.2], noting that we have normalized the perverse filtration
differently than they do.)

For the equivariant statement, take f : X→ Y to be an A-equivariant resolution
of singularities; for the existence of these resolutions, including our case in which A
is not necessarily a discrete group scheme, see, e.g., [Kollár 2005, Proposition 9.1].
By Lemma 8.11, each γ ∈ 0(k̄) induces an automorphism of GrP

f

dim X Hq
r (h(X k̄)).

For e ∈Q[A(k̄)]0k, we obtain (after extending scalars to Q) an endomorphism of
GrP

f

dim X Hq
r (h(X)). That this endomorphism preserves the canonical submotive

(Theorem 8.13)

GrP
f

dim X,Y sm Hq
r (h(X))⊂ GrP

f

dim X Hq
r (h(X))

is then verified by checking the corresponding statement for `-adic realizations.
The statement for compact supports follows similarly, or by now invoking

Poincaré duality. �

Remark 8.16. (1) The motive underlying GrW
i IHk(Yk̄,Q`) is canonical in the

following sense. The only ambiguity in its construction is that we may take a
second resolution f ′ : X ′→ Y before applying the argument of Corollary 8.15.
But any two resolutions of singularities can be dominated by a third, and so the
functoriality property of Lemma 8.11 implies that by passing through this third
resolution we can deduce an isomorphism in Mk

GrP
f

dim X,Y sm Hq
r (h(X))∼= GrP

f ′

dim X ′,Y sm Hq
r (h(X

′)).
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To be precise, if we take a resolution f ′′ : X ′′→ Y dominating the resolutions f
and f ′, we compare the intersection cohomology motives coming from f and f ′′,
f ′ and f ′′, and thus f and f ′. As just noted, Lemma 8.11 provides a canonical

(pullback) map

GrP
f

j Hq
r (h(X))→ GrP

f ′′

j Hq
r (h(X

′′)),

for all j (likewise for f ′). We take j = dim Y, and decompose the source and target
according to Theorem 8.13; our task is to show that the respective Y sm-summands
map isomorphically to one another. But this may be checked after taking (exact)
`-adic realizations, where it follows from the fact that f and f ′′ are isomorphisms
over Y sm (hence so is the map X ′′→ X ), and that ICY is the unique summand (in the
decomposition theorem) of pH 0( f∗Q`[dim Y ]) and pH 0( f ′′

∗
Q`[dim Y ]) supported

on Y sm.

(2) In particular, Corollary 8.15 completes the proof of Theorem 6.1.

(3) Let us now take k to be a finite extension of Qp, with ` = p. Let Y/k be a
projective variety — this way we avoid discussing weight filtrations, and in particular
do not have to be concerned that k is not finitely generated over Q — so that
IHq(Yk̄,Qp) has underlying motive GrP

f

dim X,Y sm(Hq(X)), where f : X→ Y is any
resolution of singularities. By Remark 8.16(1), we can then canonically define the
intersection de Rham cohomology of Y/k to be the de Rham realization (a filtered
k-vector space) of the motive GrP

f

dim X,Y sm(Hq(X)), and by general properties of Mk

we obtain a p-adic de Rham comparison isomorphism, compatible with morphisms
of motivated motives.

(4) Finally, taking k to be a totally real field, [Patrikis and Taylor 2015, Corollary B]
extends from smooth projective varieties over k with Hodge-regular cohomology
in some degree to arbitrary projective varieties over k with Hodge-regular in-
tersection cohomology in some degree. Here we use the theorems of Gabber
that {IHq(Yk̄,Q`)}` forms a weakly compatible system of pure 0k-representations.
Consequently, these compatible systems (in the regular case) are strongly compatible,
and the corresponding L-functions admit meromorphic continuation to the whole
complex plane, with the expected functional equation. Is it possible to construct
examples of such singular varieties Y ? Note that Yun’s construction in type G2

and D2n (the latter regarded as SO4n−1-valued) do give families of examples of
potentially automorphic motives — this is a special case of the examples arising
from Katz’s theory, as discussed in [Patrikis and Taylor 2015, §2]. The lifts of Yun’s
examples constructed in Corollary 4.10 are no longer Hodge-Tate regular, so no
further examples of potentially automorphic motives result from the constructions
of the present paper.
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and categorifying partial flag varieties

Laurent Demonet and Osamu Iyama

We describe a categorification of the cluster algebra structure of multihomoge-
neous coordinate rings of partial flag varieties of arbitrary Dynkin type using
Cohen–Macaulay modules over orders. This completes the categorification of
Geiss, Leclerc and Schröer by adding the missing coefficients. To achieve this,
for an order A and an idempotent e ∈ A, we introduce a subcategory CMe A of
CMA and study its properties. In particular, under some mild assumptions, we
construct an equivalence of exact categories (CMe A)/[Ae] ∼= SubQ for an injective
B-module Q, where B := A/(e). These results generalize work by Jensen, King
and Su concerning the cluster algebra structure of the Grassmannian Grm(C
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1. Introduction

Geiss, Leclerc and Schröer [Geiss et al. 2008] introduced a cluster algebra structure
on some subalgebra Ã of the multihomogeneous coordinate ring C[F] of the partial
flag variety F = F(1, J ) corresponding to a Dynkin diagram 1 and a set J of
vertices of 1. They proved that Ã = C[F] in type A, and conjectured that the
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equality holds after an appropriate localization for any Dynkin type (see Section 6 for
more details). This structure generalizes previously known cases of Grassmannians,
introduced for Gr2(Cn) by Fomin and Zelevinsky [2003] (see also [Berenstein et al.
2005]) and generalized by Scott [2006] for Grk(Cn).

In the same paper, Geiss, Leclerc and Schröer introduced a partial categorification
of this cluster algebra structure on Ã . A crucial role is played by the preprojective
algebra 5 of type 1 and a certain full subcategory Sub QJ of mod5 which is
Frobenius and stably 2-Calabi–Yau. More precisely, they introduced a cluster
character ϕ̃ : Sub QJ → Ã which gives a bijection

{reachable indecomposable rigid objects in Sub QJ } /∼=
1–1
←→{cluster variables and coefficients of Ã} \ {1j | j ∈ J },

where 1 j is the prinicipal generalized minor corresponding to j ∈ J .
One of the aim of this paper is to look for a stably 2-Calabi–Yau category

extending Sub QJ whose reachable indecomposable rigid objects correspond to
cluster variables and all coefficients of Ã . Jensen, King and Su [Jensen et al. 2016]
achieved this in the case of classical Grassmannians (i.e., 1 = An for n ≥ 0 and
#J = 1) by using orders (see also [Baur et al. 2016] for an interpretation in terms
of dimer models). In this article, we extend their method to any arbitrary Dynkin
diagram 1 and arbitrary set of vertices J.

Throughout the introduction, for simplicity, let R := k[[t]] be the formal power
series ring over an arbitrary field k. For an R-order A (i.e., an R-algebra that is free of
finite rank as an R-module), we denote by CM A the category of Cohen–Macaulay
modules over A (i.e., A-modules that are free of finite rank over R). For an
idempotent e ∈ A, we define

CMe A := {X ∈ CM A | eX ∈ proj(eAe)}.

We prove the following result:

Theorem A (Theorems 6.10 and 6.12). Let 1 be a Dynkin diagram, and J be
a set of vertices of 1. Then, there exist a C[[t]]-order A, an idempotent e ∈ A
such that CMe A is Frobenius and stably 2-Calabi–Yau, and a cluster character
ψ : CMe A→ Ã such that
(a) ψ induces a bijection between

• isomorphism classes of reachable indecomposable rigid objects of CMe A,
• cluster variables and coefficients of Ã ,

(b) ψ induces a bijection between
• isomorphism classes of reachable basic cluster tilting objects of CMe A,
• clusters of Ã .

Moreover, it commutes with mutation of cluster tilting objects and mutation of
clusters.



Lifting preprojective algebras to orders and categorifying partial flag varieties 1529

To prove Theorem A, we generalize techniques introduced by Jensen, King and
Su [Jensen et al. 2016] for Grassmannians in type A (see also [Demonet and Luo
2016b] for Grassmannians of 2-dimensional planes in type A). Meanwhile, we
need to prove general results on orders.

The study of Cohen–Macaulay modules (also known as lattices) over orders is
a classical subject in representation theory. We refer to [Auslander 1978; Curtis
and Reiner 1981; Leuschke and Wiegand 2012; Simson 1992; Yoshino 1990] for
a general background on this subject. We also refer to [Amiot et al. 2015; Araya
1999; Demonet and Luo 2016a; 2016b; Herschend et al. 2014; de Thanhoffer de
Völcsey and Van den Bergh 2010; Iyama and Takahashi 2013; Kajiura et al. 2007;
2009; Keller and Reiten 2008] for recent results about connections with tilting
theory and cluster categories.

We consider an R-order A and an idempotent e ∈ A such that B := A/(e)
is finite-dimensional over k. Let K := k((t)) be the fraction field of R, let U :=
HomA(B, Ae⊗R (K/R)) and let SubU be the category of B-submodules of objects
U n for n ≥ 0. We consider the exact full subcategory

mode A := {X ∈mod A | eX ∈ proj(eAe)}

of mod A. Under this setting, we prove the following generalization of a result of
[Jensen et al. 2016].

Theorem B (Theorem 2.2). Assume that Ae is injective in CMe A and has injective
dimension at most 1 in mode A. Then U is injective in mod B and there is an
equivalence of exact categories

B⊗A− : (CMe A)/[Ae] −→∼ SubU.

In particular, if e and g are idempotents of an R-order A such that B = A/(e) is
finite-dimensional and Ae∼=HomR(g A, R) as left A-modules, then the hypotheses
of Theorem B are satisfied and U is the injective B-module corresponding to the
idempotent g (see Theorem 2.1). Let us give a motivating example:

Example. For n ≥ 1, we consider the pair (A, e) defined as

A :=
[

R R
(tn) R

]
and e :=

[
1 0
0 0

]
.

We have Ae ∼= HomR((1− e)A, R) and B = A/(e) ∼= k[t]/(tn). So according to
Theorem B,

(CMe A)/[Ae] ∼= SubU =mod B.

Notice that here CM(eAe)= proj(eAe), so CMe A = CM A. We can illustrate this
fact by drawing the Auslander–Reiten quivers of CM A and mod B:
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CMe A :

B⊗A−
��

modB :

[
R
(tn)

]
//

[
R

(tn−1)

]
t
oo

//

[
R

(tn−2)

]
t
oo

//
···

t
oo

//

[
R
(t)

]
t

oo
//

[
R
R

]
t

oo

k[t]/(t)
t
// k[t]/(t2)oo

t
//
···oo

t
// k[t]/(tn−1)oo

t
// k[t]/(tn)oo

where projective-injective objects are leftmost and rightmost in the first row and
only rightmost in the second row. On the other objects, the Auslander–Reiten
translation acts as the identity.

As an application of Theorem B, we get the following, which is fundamental for
Theorem A:

Corollary C (Corollary of Theorem 2.1). Let B be a finite-dimensional self-
injective k-algebra. We define a Gorenstein order A over R = k[[t]] and an
idempotent e of A by

A := B⊗k

[
R R

t R R

]
and e :=

[
1 0
0 0

]
.

Then we have an equivalence of exact categories (CMe A)/[Ae] ∼= mod B, which
induces a triangle equivalence CMe A ∼=modB between stable categories.

Additionally, we prove a categorical version of Theorem B in the context of
exact categories:

Theorem D (Theorem 4.7). Let E be an exact category which is Hom-finite over a
field k. We suppose that

• (A,B) and (B, C) are torsion pairs in E ;

• E has enough projective objects, which belong to C;

• there exists a projective object P in E which is injective in C and satisfies
A= add P;

• B is an abelian category whose exact structure is compatible with that of E .

Then, there is an equivalence of exact categories

C/[A] −→∼ SubU,

where U is an (explicitly constructed) injective object of B.

Notice that we need and we prove more general versions of Theorems B and D,
with more technical hypotheses and more precise conclusions.

The structure of this paper is as follows. In Section 2, we explain main results
about orders over an arbitrary complete discrete valuation ring R, and provide more
general and more detailed versions of Theorem B. We also give a systematic way
to construct pairs (A, e) satisfying the hypotheses of Theorem B for a prescribed
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algebra B. The results of Section 2 are proven in Section 5. In Section 3, we recall
the basics of exact categories and we give sufficient conditions for an ideal quotient
category E/[F] of an exact category E by a subcategory F of projective-injective
objects to inherit the exact structure of E . In Section 4, we give extended versions
of Theorem D. Finally, in Section 6, we prove Theorem A.

2. Main results

2A. Orders. Let R be a complete discrete valuation ring and K be its field of
fractions. Let A be an R-order, i.e., an R-algebra which is free of finite rank
as an R-module. We denote by f.l. A the full subcategory of mod A consisting
of finite-length A-modules, or equivalently A-modules which are of finite length
over R. Recall that, in this context, a finitely generated A-module X is (maximal)
Cohen–Macaulay if the following equivalent conditions are satisfied:

(i) X is free (of finite rank) as an R-module;

(ii) HomA(f.l. A, X)= 0, or equivalently soc X = 0;

(iii) Ext1A(X,HomR(A, R)) = 0, or equivalently, ExtiA(X,HomR(A, R)) = 0 for
any i > 0.

We denote by CM A the exact full subcategory of mod A consisting of Cohen–
Macaulay A-modules. Since A is an R-order, both A and HomR(A, R) are in CM A.
It is clear from (ii) that (f.l. A,CM A) is a torsion pair in mod A, which can be seen
as coming from the cotilting A-module HomR(A, R).

For an idempotent e of A, we consider a full subcategory of CM A:

CMe A := {X ∈ CM A | eX ∈ proj(eAe)}.

This is clearly closed under extensions, and hence forms an exact category naturally.
If eAe is a hereditary order (i.e., gl.dim eAe = 1), then CMe A = CM A holds
because CM(eAe)= proj(eAe).

Our first main theorem, generalizing [Jensen et al. 2016], is the following one:

Theorem 2.1. Let A be an R-order, and e be an idempotent of A. Assume that the
following conditions are satisfied:

• B := A/(e) satisfies lengthR B <∞.

• There is an idempotent g ∈ A such that add Ae = addHomR(g A, R) as
A-modules.

Then the following assertions hold:

(a) We have an equivalence of exact categories

F = B⊗A− : (CMe A)/[Ae] −→∼ Sub Qg,
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where Qg is the injective B-module associated with the image of the idempotent
g in B.

(b) A quasi-inverse of F is HomR(�A HomR(−, K/R), R), where �A is the
syzygy over A.

We assume in addition that the following hypotheses hold:

• There exists an idempotent f ∈ A such that add A f = addHomR(eA, R) as
A-modules.

• eAe is a Gorenstein order.

Then the following conclusions hold:

(c) The module Qg is a projective B-module satisfying add Qg = add B f .

(d) If A ∈ CMe A, then Sub Qg = Sub B.

We suppose in addition that A and HomR(A, R) are in CMe A.

(e) The order A is Gorenstein if and only if B is Iwanaga–Gorenstein of dimension
at most 1, i.e., inj.dim B B ≤ 1 and inj.dim BB ≤ 1.

(f) If the conditions in (e) are satisfied, then we have triangle equivalences

CMe A ∼= SubQg = SubB,

where CMe A := (CMe A)/[A] and SubB = (Sub B)/[B].

Corollary C presented in the introduction is an immediate consequence of
Theorem 2.1 as it is immediate that Ae∼=HomR(g A, R) for g := 1− e in that case.
In this paper, a more general version of Theorem 2.1 plays an important role. Again
let A be an R-order and e an idempotent of A. Let

mode A := {X ∈mod A | eX ∈ proj(eAe)}.

We consider the following conditions:

(E1) Ae is injective in CMe A, or equivalently, Ext1A(CMe A, Ae)= 0;

(E2) Ext2mode A(mode A, Ae)= 0;

(E2)+ Ext2A(mode A, Ae)= 0.

We recall the definition of the ExtiE in Section 3 for exact categories E . For a
subcategory E of mod A, notice that ExtiE is not necessarily the restriction of ExtiA,
except for i = 1. In Lemma 5.7, we prove the following implications:

• We have (E2)+
⇒ (E2).

• If Ae = HomR(g A, R) for some idempotent g ∈ A, then (E1) and (E2)+ are
satisfied.

• If (E1) is satisfied and A ∈ CMe A, then (E2)+ is satisfied.
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Theorem 2.1 follows from the next result:

Theorem 2.2. Let A be an R-order and e an idempotent of A such that B := A/(e)
satisfies lengthR B <∞. Then:

(a) (add Ae,mod B) and (mod B,CMe A) are torsion pairs in mode A.

(b) Let E1 := {X ∈mode A | Ext1A(X, Ae)= 0}. We have an equivalence

B⊗A− : E1/[Ae] −→∼ mod B. (2-1)

If (E1) is satisfied, then the following assertion holds:

(c) Let U :=HomA(B, Ae⊗R (K/R))∈mod B, where K is the fraction field of R.
The equivalence (2-1) restricts to an equivalence

B⊗A− : (CMe A)/[Ae] −→∼ SubU. (2-2)

If (E1) and (E2) are satisfied, then the following assertions hold:

(d) U is an injective B-module.

(e) (2-1) and (2-2) are equivalences of exact categories, where E1/[Ae] and
(CMe A)/[Ae] inherit canonically the exact structure of E1 and CMe A (see
Section 3).

(f) The exact categories E1, CMe A, mode A and SubU have enough projective
objects and enough injective objects.

(g) Let P be a projective cover of soc U as a B-module. Then, we have the equality
E1 = {X ∈mode A | HomA(P, X)= 0}.

2B. Change of orders. We give a systematic method to construct pairs of orders
and their idempotents which satisfy the conditions (E1) and (E2).

Let A be an R-order, e an idempotent of A and B a factor algebra of A/(e). We
suppose that the following two conditions are satisfied:

(C1) lengthR B <∞;

(C2) B ∈ Sub(Ae⊗R (K/R)).

Let modB
e A be the category of all X ∈ mod A such that there exists an exact

sequence
0→ P→ X→ Y → 0

with P ∈ add Ae and Y ∈mod B. Let CMB
e A := CM A∩modB

e A and consider the
condition:

(C3) Ext1A(CM
B
e A, Ae)= 0.
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We will construct a new order A′ under this setting. Thanks to (C2), there is
a monomorphism ι : B ↪→ (Ae⊗R (K/R))⊕`. Applying Ae⊕`⊗R − to the exact
sequence 0→ R→ K → K/R→ 0 and taking a pullback via ι, we get a short
exact sequence

0→ P→ B̃→ B→ 0

with P ∈ add Ae and B̃ ∈ CM A. We clearly have B̃ ∈ CMB
e A. Using (C3), one can

check B̃ is independent of the choice of ι up to a direct summand in add Ae (see
Theorem 4.1(a)). Let

W := Ae⊕ B̃ and A′ := EndA(W ).

We can regard naturally e as an idempotent of A′. Notice that A′ is uniquely defined
up to Morita equivalence.

Theorem 2.3. We assume that (C1), (C2) and (C3) hold. Then the following
assertions hold:

(a) We have a canonical isomorphism B ∼= A′/(e) of R-algebras.

(b) We have (E1) holds, that is, Ext1A′(CMe A′, A′e)= 0, and (E2)+ holds, that is,
Ext2A′(mode A′, A′e)= 0.

(c) Let U :=HomA′(B, A′e⊗R (K/R))∈mod B. Then U is an injective B-module
and we have an equivalence of exact categories

B⊗A′ − : (CMe A′)/[A′e] −→∼ SubU.

(d) The class of short exact sequences of mod A with three terms in modB
e A gives

the structure of an exact category on modB
e A. The same holds for CMB

e A. For
these structures, the functors

HomA(W,−) :mod A→mod A′ and W ⊗A′ − :mod A′→mod A

induce quasi-inverse equivalences of exact categories between modB
e A and

mode A′ on the one hand, and between CMB
e A and CMe A′ on the other hand.

(e) We have a commutative diagram

CMe A′
B⊗A′−

//

W⊗A′− o
��

SubU� _

��

CMB
e A

B⊗A−
// mod B

where all functors induce isomorphisms of Ext1 and the left side is an equiva-
lence of exact categories for the exact structure on CMB

e A given in (d).

Let us finally introduce a simple criterion for (C1), (C2) and (C3) to be satisfied:
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Lemma 2.4. Let A be an R-order, e an idempotent of A and B a factor algebra
of A/(e). Let us assume that there exists an idempotent g ∈ A such that Ae ∼=
HomR(g A, R). Then (C3) holds. Moreover, if (C1) holds, then (C2) holds if and
only if (1− g) soc B = 0.

We will prove Lemma 2.4 at the end of Section 5C.
In the rest of this subsection we give an example illustrating Theorem 2.3. Let

B =5 be the preprojective algebra of type A3 over a field k. In other terms

5= k
(

1
α1
(( 2

α2
((

β1

hh 3
β2

hh

)/
(α1β1, α2β2−β1α1, β2α2).

This algebra can also be realized as the following subquotient of the matrix algebra
M3(k[ε]):

5=

k[ε]/(ε) k[ε]/(ε) k[ε]/(ε)
(ε)/(ε2) k[ε]/(ε2) k[ε]/(ε)
(ε2)/(ε3) (ε)/(ε2) k[ε]/(ε)

.
Let us define R := k[[t]] and S := R[ε]. The R-order considered in Corollary C is

A :=



S/(ε) S/(ε) S/(ε) S/(ε) S/(ε) S/(ε)
(ε)/(ε2) S/(ε2) S/(ε) (ε)/(ε2) S/(ε2) S/(ε)
(ε2)/(ε3) (ε)/(ε2) S/(ε) (ε2)/(ε3) (ε)/(ε2) S/(ε)
(t)/(tε) (t)/(tε) (t)/(tε) S/(ε) S/(ε) S/(ε)
(tε)/(tε2) (t)/(tε2) (t)/(tε) (ε)/(ε2) S/(ε2) S/(ε)
(tε2)/(tε3) (tε)/(tε2) (t)/(tε) (ε2)/(ε3) (ε)/(ε2) S/(ε)


.

In Figure 1, we draw the Auslander–Reiten quiver of CMe A, with notations

i j := (t iε j )/(t iε j+1),

i j := (t iε j )/(t iε j+2),

i j — i j :=
{
(p, q) ∈ i j × i j

∣∣ p− q ∈ t · i j
}
.

Thus, the identity of S induces a map i j→ i ′ j ′ if and only if ( j, i)≥ ( j ′, i ′) for the
lexicographic order and analogous rules can be computed for i j . All arrows are
induced by multiplications by an element of S, which is ±1 when it is not specified.

Let e3, e2, e1, g1, g2 and g3 be the idempotents corresponding, in this order, to
the rows of the matrix. They satisfy

Aei ∼= HomR(gi A, R) and Agi ∼= HomR(ei A, R)
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02
02
02
02
02
02

��

tε−1
//

01
01
01
11
11
11

��
01
02
03
11
12
03

��

02
02
02
02
02
12

??

��

oo

01
01
02
11

11 + 02
02

��

??

oo

01
01
01
01
11
11

oo

02
02
03
02
02
03

//

ε−1

;;

02 01
02 02
02 03
02 11
02 02
12 03

??

��

//

01
01
02
11
11
12

//

01
01
02
11

11 + 02
12

??

��

zz
01
01
02
01

11 + 02
02

??

��

//oo

01
01
02
01
01
02

gg

02
02
02
02
12
12

??

01
02
03
11
02
03

??

��

oo

01
01
02
01

11 + 02
12

??

oo

��

00
01
02
10
11
02

oo

01
02
03
01
02
03

??

tε−1
//

00
01
02
10
11
12

??

Figure 1. Auslander–Reiten quiver of CMe A.

3
2

1

��

// Ae1

��

3

��

2
1

??

��

oo 3
2

��

??

oo 1oo

2
1 3
2

//
77

2
1 3

??

��

// Ae2 // 2

??

��

vv

1 3
2

??

��

//oo 2
1 3
2gg

1

??

2
3

??

��

oo 1
2

??

oo

��

3oo

1
2
3

??

// Ae3

??

Figure 2. Auslander–Reiten quiver of CMe A. Objects are repre-
sented by their image by F except objects of add Ae.
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as A-modules. We fix the idempotent e = e1+ e2+ e3. According to Corollary C,
we have an equivalence of exact categories

(CMe A)/[Ae] ∼=mod5.

In Figure 2, we draw the Auslander–Reiten quiver of CMe A, replacing objects
which are not in add Ae by their image by F in SubU =mod5 (here U =5). We
obtain the Auslander–Reiten quiver of mod5 by removing framed objects. The
general relation between Auslander–Reiten quivers of CMe A and SubU will be
discussed in [Demonet and Iyama ≥ 2016].

We explain the way to compute the minimal preimage of an object of SubU
by F in this example. First, we know that preimages of simple modules Si are
coradicals of indecomposable direct summands of Ae. Thus, we find

F(S◦1)∼= S1, F(S◦2)∼= S2, F(S◦3)∼= S3,

where

S◦1 =



S/(ε)
S/(ε)
S/(ε)
S/(ε)
(t)/(tε)
(t)/(tε)


, S◦2 =



S/(ε)
S/(ε2)

(ε)/(ε2)

(t)/(tε)
(t, ε)/(ε2)

(tε)/(tε2)


, S◦3 =



S/(ε)
(ε)/(ε2)

(ε2)/(ε3)

(t)/(tε)
(tε)/(tε2)

(ε2)/(ε3)


.

Let us calculate the preimage X◦ of 2
1 3 by F . There exists a pullback diagram

0 // Ae1⊕ Ae3 // S◦1 ⊕ S◦3� _

��

// S1⊕ S3� _

��

// 0

0 // Ae1⊕ Ae3 // X◦

����

// 2
1 3

//

����

0

S2 S2

which permits us to get

X◦ =



S/(ε) S/(ε)
S/(ε) (ε)/(ε2)

S/(ε) (ε2)/(ε3)

S/(ε) (t)/(tε)
S/(ε) (ε)/(ε2)

(t)/(tε) (ε2)/(ε3)


,
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3
2

1

��

��

3

��

2
1

AA

//oo A′e′3 // 3
gg

2
1 3

AA

��

1

AA

2
3

��

oo // A′e′1 // 1
ww

1
2
3

AA

YY

01
03
03
03
01
01

&&

tε−1

��

02
02
12
12
02
02 ��

01
03
03
03
01
11

AA

**

oo

01
01
11
11
01
01

rr 01
01
11
11
01
11

88

02 01
02 03
12 03
02 03
02 01
02 11

AA

��

00
02
12
02
10
10

**

01
03
03
03
11
11

AA 02
02
12
02
02
02

&&

oo

88
00
02
02
02
10
10

ll

02
02
02
02
02
02

AA

tε−1

OO

Figure 3. Auslander–Reiten quiver of CMe′ A′. In the left diagram,
objects are represented by their image by F except objects of add A′e′.

where

[S/(ε) — (ε)/(ε2)] :=
{
(x, εy) ∈ S/(ε)× (ε)/(ε2)

∣∣ x − y ∈ t · S/(ε)
}
.

Now, we apply Theorem 2.3. Let e′ := e1 + e3 and B ′ := 5/(β1α1). As a
B-module,

B ′ ∼= 1
2
3
⊕ 2

1 3 ⊕
3

2
1

.

Thanks to Lemma 2.4, B ′ and e′ satisfy the hypotheses of Theorem 2.3. Then,
keeping notations of this subsection, we have

W = Ae1⊕ Ae3⊕ Ag1⊕ X◦⊕ Ag3.

Then, A′ := EndA(W ) is easy to compute:

A′ =



S/(ε) S/(ε) S/(ε) S/(ε) S/(ε) S/(ε)
(ε2)/(ε3) S/(ε) S/(ε) S/(ε) (ε2)/(ε3) (ε2)/(ε3)

(tε2)/(tε3) (t)/(tε) S/(ε) (t)/(tε) (ε2)/(ε3) (ε2)/(ε3)

(ε2)/(ε3) (t)/(tε) S/(ε) S/(ε) (ε2)/(ε3) (ε2)/(ε3)

(t)/(tε) S/(ε) S/(ε) S/(ε) S/(ε) S/(ε)
(t)/(tε) (t)/(tε) S/(ε) S/(ε) (t)/(tε) S/(ε)


,
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where

[S/(ε) — S/(ε)] :=
{
(x, y) ∈ S/(ε)× S/(ε)

∣∣ x − y ∈ t · S/(ε)
}
.

Thanks to Theorem 2.3, we have (CMe′ A′)/[Ae′] is equivalent to the subcategory
of mod5 consisting of modules whose socle is supported at vertices 1 and 3. To
illustrate this fact, we give two representations of the Auslander–Reiten quiver of
CMe′ A′ in Figure 3.

2C. Notations. In this paper, if f : X→ Y and g : Y → Z are two morphisms in
a category, we write f g : X→ Z for the composed morphism.

Let Ab be the category of abelian groups. For an additive category A, an
A-module is a contravariant additive functor F : A → Ab. We say that an
A-module F is finitely generated if there exists an epimorphism of A-modules
HomA(A, X)→ F for some X ∈A.

3. Results on exact categories

The aim of this section is to study ideal quotient categories E/[F] of an exact
category E by a full subcategory F consisting of projective-injective objects. More
precisely, we study conditions for E/[F] to inherit the exact structure of E . In
particular, we prove that it is the case if and only if admissible monomorphisms
and epimorphisms are mapped to categorical monomorphisms and epimorphisms
by the canonical projection E→ E/[F]. This is a particular case of Theorem 3.6.

3A. Preliminaries about exact categories. We recall here main definitions and
elementary results about exact categories. We consider an additive category E
endowed with a family S of pairs of morphisms ( f, g) of E , where f is a kernel
of g and g is a cokernel of f . We denote such a pair by

0→ X f
−→ Y g

−→ Z→ 0,

and for ( f, g)∈S, we call ( f, g) an admissible short exact sequence, f an admissible
monomorphism and g an admissible epimorphism. We call (E,S) an exact category
if it satisfies the following axioms due to Quillen [1973] and modified by Keller
[1990, Appendix A]:

(Ex0) S is stable under isomorphisms and contains split short exact sequences of
the form

0→ X
[idX 0]
−−−−→ X ⊕ Z

[
0

idZ

]
−−−−→ Z→ 0.

(Ex1) The composition of two admissible epimorphisms is an admissible epimor-
phism.
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(Ex1)op The composition of two admissible monomorphisms is an admissible
monomorphism.

(Ex2) For any admissible short exact sequence

0→ X f
−→ Y g

−→ Z→ 0

and morphism v : Z ′→ Z , we can form a pullback diagram, i.e., a commutative
diagram of the form

0 // X
f ′
// Y ′

v′
��

g′
// Z ′

v
��

// 0

0 // X
f
// Y g

// Z // 0

where the first row is an admissible short exact sequence.

(Ex2)op For any admissible short exact sequence

0→ X f
−→ Y g

−→ Z→ 0

and morphism u : X → X ′, we can form a pushout diagram, i.e., a commutative
diagram of the form

0 // X
f
//

u
��

Y
u′
��

g
// Z ′ // 0

0 // X ′
f ′
// Y ′

g′
// Z // 0

where the second row is an admissible short exact sequence.

We often write E instead of (E,S) when we consider only one exact structure
on E . When not specified, we use the terms short exact sequence, monomorphism
and epimorphism for admissible short exact sequence, admissible monomorphism,
admissible epimorphism, respectively. In contrast, we use categorical monomor-
phism or categorical epimorphism for a monomorphism or epimorphism which is
not necessarily admissible.

We will use freely the following easy facts about exact categories:

• In (Ex2), we have the admissible short exact sequence

0→ Y ′
[v′ g′]
−−−→ Y ⊕ Z ′

[ g
−v

]
−−−→ Z→ 0.

• In (Ex2), if v is an admissible epimorphism, then so is v′ and Ker v= (Ker v′)g′.

• In (Ex2), if v is an admissible monomorphism, then so is v′ and Coker v′ =
g(Coker v).
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• In (Ex2)op, we have the admissible short exact sequence

0→ X
[u f ]
−−−→ X ′⊕ Y

[ f ′
−u′
]

−−−−→ Y ′→ 0.

• In (Ex2)op, if u is an admissible epimorphism, then so is u′ and Ker u′= (Ker u) f .

• In (Ex2)op, if u is an admissible monomorphism, then so is u′ and Coker u =
f ′(Coker u′).

• If a morphism is an admissible monomorphism and an admissible epimorphism,
then it is an isomorphism.

• If, in a morphism of short exact sequences, the left and right components are
both admissible monomorphisms or epimorphisms, then the middle one is as
well.

• In (Ex2) and (Ex2)op, the diagrams are uniquely determined up to unique iso-
morphisms.

Let us recall the following definition:

Definition 3.1. A functor F between exact categories (E,S) and (E ′,S ′) is exact
if F(S)⊂ S ′. An object X ∈ E is projective if HomE(X,−) is exact, and injective if
HomE(−, X) is exact. We say that E has enough injective objects if for any X ∈ E
there exists a short exact sequence 0→ X → I → Y → 0 in S such that I is
injective. We say that E has enough projective objects if for any X ∈ E there exists
a short exact sequence 0→ Y → P→ X→ 0 in S such that P is projective.

Recall that these notions permit the definition of extension functors ExtiE which
satisfy the expected properties, either from Yoneda’s structure of long exact se-
quences, or using projective resolutions if E has enough projective objects, or using
injective resolutions if E has enough injective objects, or more generally using the
derived category of E .

Throughout this paper, we will use the following definition:

Definition 3.2. Let E and E ′ be exact categories and F :E→E ′ an exact functor. We
say that F is exact bijective if the induced morphism Ext1E(−,−)→Ext1E ′(F−, F−)
is an isomorphism. We say that F is an equivalence of exact categories if it is an
exact bijective equivalence of categories (or, equivalently, an exact equivalence of
categories with an exact quasi-inverse).

A typical example of exact bijective functor arises when E is a full exact subcat-
egory of E ′ (i.e., a full subcategory which is closed under extensions).

Remark 3.3. Assume F : E→ E ′ is a dense and exact bijective functor. Then:

(a) For any X ∈ E , we have X is projective if and only if FX is projective, and
the dual statement holds for injectivity.
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(b) E has enough projective objects if and only if E ′ has enough projective objects,
and the dual statement holds for injectivity.

(c) E is Frobenius if and only if E ′ is Frobenius.

We give an elementary result about second extension groups:

Proposition 3.4. Let F : E→ E ′ be an exact bijective functor. Then, it induces a
canonical natural monomorphism Ext2E(−,−) ↪→ Ext2E ′(F−, F−).

Proof. The existence of a map ϕ : Ext2E(−,−)→ Ext2E ′(F−, F−) is immediate.
We consider an admissible 4-term exact sequence ξ : 0→ X→ Y1→ Y2→ Z→ 0
which, by definition, comes from two short exact sequences

ξ1 : 0→ X→ Y1→ Y → 0 and ξ2 : 0→ Y → Y2
u
−→ Z→ 0.

Suppose that ξ ∈ KerϕZ ,X . Applying HomE(−, X) and HomE ′(F−, FX) to ξ2

gives a commutative diagram of exact sequences:

Ext1E(Y2, X) // Ext1E(Y, X) // Ext2E(Z , X)
ϕZ ,X
��

Ext2E (u,X)
// Ext2E(Y2, X)

��

Ext1E ′(FY2,FX) // Ext1E ′(FY,FX) // Ext2E ′(FZ ,FX) // Ext2E ′(FY2,FX)

By the definition of Yoneda product, ξ ∈Ker Ext2E(u, X), so an easy diagram chase
gives ξ = 0. �

Let us define important concepts:

Definition 3.5. Let E be a Krull–Schmidt additive category and E ′ ⊂ E an additive
subcategory. Then:

(a) We say that f : X → Y in E is left minimal if for any g ∈ EndE(Y ) such
that f g = f , the map g is invertible, or equivalently, if for any idempotent
e ∈ EndE(Y ), we have f e = f implies e = idY.

(b) We say that g : Y → X in E is right minimal if for any f ∈ EndE(Y ) such
that f g = g, the map f is invertible, or equivalently, if for any idempotent
e ∈ EndE(Y ), we have eg = g implies e = idY.

(c) We say that f : X→ X ′ in E is a left E ′-approximation (of X ) if X ′ ∈ E ′ and
any morphism from X to any object of E ′ factors through f .

(d) We say that g : X ′→ X in E is a right E ′-approximation (of X ) if X ′ ∈ E ′ and
any morphism from any object of E ′ to X factors through g.

Notice that, in the situation of the previous definition, if an object X ∈ E
admits a left E ′-approximation, then it admits a left minimal E ′-approximation
which is unique up to isomorphism, and an analogous statement holds for right
E ′-approximations.
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3B. Exact ideal quotients of an exact category. Let (E,S) be an exact category
and E ′ a full subcategory of E which is closed under extensions. Then (E ′,S ′) forms
an exact category for the family S ′ of all admissible exact sequences in S whose
terms belong to E ′.

We denote by F a subcategory of E satisfying Ext1E(F, E ′) = Ext1E(E ′,F) = 0.
Let S ′F be the class of pairs of morphisms in E ′/[F] which are isomorphic to a pair
in π(S ′), where π : E ′→ E ′/[F] is the canonical functor.

Theorem 3.6. The following are equivalent:

(i) (E ′/[F],S ′F ) is exact.

(ii) For any admissible monomorphism f of (E ′,S ′), the map π( f ) is a categorical
monomorphism in E ′/[F], and the dual statement holds for epimorphisms.

In this case, π : E ′→ E ′/[F] is automatically exact bijective.

Proof. (i)⇒ (ii) is trivial. Let us prove the converse. Let us first check that any
( f̄ , ḡ) ∈ S ′F is a kernel-cokernel pair. By (ii), f̄ is a monomorphism and ḡ is an
epimorphism. By definition, we can lift ( f̄ , ḡ) to ( f, g) ∈ S ′. Suppose that f̄ h̄ = 0
for some morphism h̄ of E ′/[F]. By definition, it means that there is a commutative
diagram in E of the form

0 // X
f
//

h′
��

Y
g
//

h
��

Z // 0

F
f ′
// Z ′

with F ∈ F . As Ext1E(Z , F)= 0, there exists u : Y → F such that h′ = f u. Thus,
h = u f ′ + gv for some v : Z → Z ′ and h̄ = ḡv̄ holds. This proves that ḡ is a
cokernel of f̄ . Dually, we prove that f̄ is a kernel of ḡ.

Let us check axioms of exact categories one by one:

(Ex0): This is obvious.

(Ex1): Suppose that ḡ : X→ X ′ and ḡ′ : X ′→ X ′′ are epimorphisms in S ′F . It is easy
to check that we can lift them to admissible epimorphisms g : X⊕F1→ X ′⊕F2 and
g′ : X ′⊕ F3→ X ′′⊕ F4 of E ′. Thus ḡḡ′ can be lifted to an admissible epimorphism
X ⊕ F1⊕ F3→ X ′′⊕ F2⊕ F4 in E ′ using (Ex1) in (E ′,S ′). By definition, ḡḡ′ is
then an epimorphism in S ′F .

(Ex1)op: This is the dual of the previous item.

(Ex2): Let ḡ : Y → Z be an epimorphism in S ′F and v̄ : Z ′→ Z be a morphism
in E ′/[F]. Without loss of generality, we can suppose that they come from lifts
g : Y → Z and v : Z ′→ Z in E ′, where g is an admissible epimorphism. Thus, we
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can complete the pair to a pullback diagram

Y ′
g′
//

v′
��

Z ′

v
��

Y g
// Z

in E ′, where g′ is an admissible epimorphism. Then 0→ Y ′→ Z ′⊕ Y → Z→ 0
is in S ′, and its projection to E ′/[F] is in S ′F . Thus the diagram is also a pullback
diagram in E ′/[F], and ḡ′ is an epimorphism in S ′F .

(Ex2)op: This is the dual of the previous item.

We have finished proving the equivalence. Let us check that the projection
π : E ′ → E ′/[F] is exact bijective. First of all, for X, Z ∈ E ′, the induced map
Ext1E ′(Z , X)→Ext1E ′/[F](π Z , πX) is clearly surjective. To prove that it is injective,
let us consider a short exact sequence

0→ X f
−→ Y g

−→ Z→ 0, (3-1)

which splits in E ′/[F]. By definition, it means that there is g′ : Z → Y and two
morphisms u : Z → F and v : F→ Z with F ∈ F such that idZ = g′g+ uv. As
Ext1E(F, X) = 0, there exists v′ : F → Y such that v = v′g. Thus idZ = (g′ +
uv′)g holds, and (3-1) splits in E ′. Therefore Ext1E ′(Z , X)→ Ext1E ′/[F](π Z , πX) is
injective. �

In the rest of this section we give sufficient conditions for Theorem 3.6(ii) to
hold. For two subcategories B and C of E , we denote by C↘ B the full subcategory
of E consisting of X such that for any complex Y g

−→ B f
−→ X with B ∈ B and

Y ∈ E ′, there exists a morphism of complexes

Y
g
//

��

B
f
//

��

X

C
g′
// B ′

f ′
// X

with B ′ ∈ B and C ∈ C. Notice that, if X ∈ E has a right B-approximation whose
pseudo-kernel is in C, then X ∈ [C↘ B]. Also notice that [E ′↘ B] = E holds since
we can choose f ′ = f and g′ = g. Dually, we denote by B↗ C the full subcategory
of E consisting of X such that for any complex X f

−→ B g
−→ Y with B ∈ B and

Y ∈ E ′, there exists a morphism of complexes

X // B ′ //

��

C

��

X
f
// B g

// Y
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with B ′ ∈ B and C ∈ C. As before, if X ∈ E has a left B-approximation whose
pseudo-cokernel is in C, then X ∈ [B↗ C]. Also, we get [B↗ E ′] = E . We get the
following corollary:

Corollary 3.7. Let P and I be the full subcategories of E consisting of objects X
satisfying Ext1E(X, E ′)= 0 and Ext1E(E ′, X)= 0 respectively. If

E ′ ⊂ (F ↗ [I↘ F])∩ ([F ↗ P] ↘ F)

then (E ′/[F],S ′F ) is an exact category.

Proof. We need to prove Theorem 3.6(ii). We do it for admissible monomorphisms.
Let 0→ X f

−→ Y g
−→ Z→ 0 be a short exact sequence in S ′, and let u : X ′→ X be

a morphism such that ū f̄ =0 in E/[F]. Then u f = f ′u′ holds for some f ′ : X ′→ F ′

and u′ : F ′→ Y with F ′ ∈ F .
Suppose first that X ′ ∈ [F ↗ P]. By definition, we can complete a commutative

diagram

X ′ α
// F

β
//

v′
��

P
v′′
��

X ′

u
��

f ′
// F ′

u′
��

u′g
// Z

0 // X
f
// Y g

// Z // 0

with αβ= 0 and F ∈F and P ∈P . As Ext1E(P, X)= 0, we know v′′= g′′g for some
g′′ : P→Y and we easily get v′u′=βg′′+ f ′′ f for some f ′′ : F→ X. We deduce that
α f ′′ f =αv′u′−αβg′′=u f . As f is a monomorphism, α f ′′=u and therefore ū= 0.

Let us now suppose that X ′ ∈ E ′. As Z ∈ ([F ↗ P] ↘ F), we can complete the
following commutative diagram

A α
// F

β
// Z

X ′

u
��

f ′
//

v

OO

F ′

u′
��

u′g
//

v′

OO

Z

0 // X
f
// Y g

// Z // 0

with αβ= 0 and F ∈F and A∈ [F↗P]. Then, as Ext1E(F, X)= 0, we get β=β ′g
with β ′ : F→ Y and, as f is the kernel of g, there exists α′ : A→ X such that αβ ′=
α′ f . As A ∈ [F↗P] and ᾱ′ f̄ = 0, by the first part of the argument, ᾱ′ = 0. On the
other hand, by an easy diagram chase, there exists w : F ′→ X such that u′= v′β ′+
w f . So we get u f = f ′u′= f ′v′β ′+ f ′w f = vαβ ′+ f ′w f = vα′ f + f ′w f . As f is
a monomorphism, we deduce that u= vα′+ f ′w. Thus ū= 0 holds since ᾱ′= 0. �
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In the rest of this section, we give three special cases as an application. Notice
that the first case recovers Chen’s result [2012, Theorem 3.1] for E ′ = E .

Corollary 3.8. (a) If , for any X ∈E ′, there exist left and right F-approximations f
and f ′ and pseudo-cokernel g and pseudo-kernel g′

X f
−→ F X g

−→ P X and IX
g′
−→ FX

f ′
−→ X

such that P X
∈ P and IX ∈ I then (E ′/[F],S ′F ) is an exact category.

(b) If , for any X ∈ E ′, there exists a left F-approximation X → F X which is a
categorical epimorphism, then (E ′/[F],S ′F ) is an exact category.

(c) If , for any X ∈ E ′, there exists a right F-approximation FX → X which is a
categorical monomorphism, then (E ′/[F],S ′F ) is an exact category.

Proof. (a) Let X→ F→ Y be a complex where X, Y ∈ E ′ and F ∈ F . It is easy to
complete the following commutative diagram

X // F X //

��

P X

��

X // F // Y

so E ′ ⊂ [F ↗ P]. Thus we have E = [E ′↘ F] ⊂ ([F ↗ P] ↘ F). Dually we have
E = (F ↗ [I↘ F]).

(b) By the same argument as the beginning of (a), we get E ′ ⊂ [F ↗ 0]. So

E ′⊂[F↗0]⊂(F↗[I↘F]) and E=[E ′↘F]⊂([F↗0]↘F)⊂([F↗P]↘F).

(c) This is the dual of (b). �

3C. On some Frobenius subcategories of exact categories. When we have an
admissible monomorphism f : X → Y in an exact category, we say X is an
admissible subobject of Y. Dually we define an admissible factor object. For
a full subcategory E ′ of an exact category E , we denote by Sub E ′ the smallest
full subcategory of E which is closed under admissible subobjects and contains
add E ′.

We recall that an exact category is Frobenius if it has enough injective objects,
enough projective objects and they coincide. This subsection is devoted to proving
the following result.

Proposition 3.9. Let E be an exact category which has enough projective objects
and enough injective objects. Let U be a subcategory of injective objects in E
satisfying U = addU, and let D := SubU . Assume that projective objects of E and
those of D coincide. Then the following assertions hold:

(a) D is closed under extensions.
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(b) D is Frobenius if and only if the following conditions are satisfied:

• U is projective-injective in E for any U ∈ U .
• Each projective object of E has injective dimension at most 1 and each

injective object of E has projective dimension at most 1.

(c) If the conditions in (b) are satisfied, then U is the category of projective-
injective objects in E .

Part (a) is an easy consequence of the horseshoe lemma. Let us start with the
following lemma:

Lemma 3.10. Assume any object in U is projective in E . Let 0→ E→ E ′ f
−→ I→0

be an exact sequence in E with I injective. Then

HomE(D, f ) : HomE(D, E ′)→ HomE(D, I )

is an epimorphism.

Proof. Take a morphism g : D→ I with D ∈ D. Then there exists an admissible
monomorphism i : D → U with U ∈ U . Since I is injective in E , there exists
s :U→ I such that g = is. Since U is projective in E , there exists t :U→ E ′ such
that s = t f :

0 // E // E ′
f
// I // 0

D
g

;;

i
// U

s
OO

t

cc

Since g = i t f , we have the assertion. �

Let us now prove the proposition.

Proof of Proposition 3.9(b). “⇒” Suppose that D is Frobenius. Note that our
assumptions imply that projective objects in E , projective objects in D and injective
objects in D coincide.

Fix any U ∈ U . Then U is injective in E by our assumption, and hence U is
injective also in D. Therefore U is projective in E by the remark above.

Let P be a projective object in E . Then P is projective-injective in D. Since our
assumptions imply �E(E)⊂ D, we have

Ext2E(E, P)= Ext1E(�E(E), P)= 0.

Thus P has injective dimension at most 1 in E .
Let I be an injective object in E . We take an exact sequence

0→�E(I )→ P f
−→ I → 0 (3-2)
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with a projective object P in E . Our assumptions imply P ∈D and �E(I ) ∈D. We
apply HomE(D,−) to (3-2) to get the exact sequence

HomE(D, P)→ HomE(D, I )→ Ext1E(D, �E(I ))→ Ext1E(D, P)= 0.

By Lemma 3.10, we have Ext1E(D, �E(I ))= 0. Thus �E(I ) is projective-injective
in D so projective in E , and the assertion follows.

“⇐” Let P be a projective object in D. By our assumptions, P is projective in E ,
and there exists an exact sequence 0→ P→ I 0

→ I 1
→ 0 with injective objects

I 0, I 1 in E . Applying HomE(D,−), we have an exact sequence

HomE(D, I 0)→ HomE(D, I 1)→ Ext1E(D, P)→ Ext1E(D, I 0)= 0.

By Lemma 3.10, we have Ext1E(D, P)= 0. Thus P is injective in D.
Let I be an injective object in D. Since �E(E) ⊂ D, we have Ext2E(E, I ) =

Ext1E(�E(E), I )= 0. Thus I has injective dimension at most 1 in E . Now we take
an exact sequence

0→ I →U → E→ 0 (3-3)

with U ∈ U and E ∈ E . Since U is injective in E , so is E . Thus E has projective
dimension at most 1 in E . Since U is projective in E , so is I. Thus I is projective
in D.

Since E has enough projective objects and �E(E)⊂ D holds, D also has enough
projective objects. It remains to prove that D has enough injective objects. Fix
D ∈ D and take an exact sequence 0→ D→U → E→ 0 with U ∈ U and E ∈ E .
Since E has enough injective objects by our assumption, there exists an exact
sequence 0→ E→ I → E ′→ 0 with an injective object I in E and E ′ ∈ E . Let
0→ P1→ P0→ I→ 0 be a projective resolution of I in E . We have a commutative
diagram of exact sequences:

0

��

0

��

0 // P1 // X //

��

E

��

// 0

0 // P1 // P0

��

// I //

��

0

E ′

��

E ′

��

0 0
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Since P0 ∈ D, the middle column shows X ∈ D. On the other hand, we have the
following commutative diagram of exact sequences:

0

��

0

��

P1

��

P1

��

0 // D // Y //

��

X

��

// 0

0 // D // U //

��

E //

��

0

0 0

As P1 is projective-injective in D, the middle column splits and Y ∼= U ⊕ P1 is
injective in D. The middle row gives an injective hull of D in D. �

Proof of Proposition 3.9(c). Let P be a projective-injective object in E . Then it
belongs to D, and there is a short exact sequence 0→ P → U → E → 0 with
U ∈ U and E ∈ E . Since P is injective in E , this sequence splits. Thus P belongs
to U . �

4. Equivalences arising from torsion pairs on exact categories

Throughout this section, we assume the following:

• E is an exact category which is Krull–Schmidt.

• (A,B) is a torsion pair of E ; that is, the following conditions are satisfied:
– A and B are full subcategories of E such that HomE(A,B)= 0.
– For any E ∈ E , there exists an exact sequence 0→ A→ E→ B→ 0 with

A ∈A and B ∈ B.

Then A is closed under taking extensions and admissible factor objects, and B is
closed under taking extensions and admissible subobjects. On the other hand, the
natural inclusion functor B→ E has a left adjoint functor F : E→ B. This is dense
and induces a dense functor

F : E/[A] → B.

4A. Basic properties of F : E/[A] → B. We consider the full subcategories of E
defined by

E1 = {X ∈ E | Ext1E(X,A)= 0},

E2 = {X ∈ E | Ext1E(X,A)= 0, Ext2E(X,A)= 0}.

The subsection is devoted to proving the following result:
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Theorem 4.1. We have the following assertions:

(a) The functor F : E1/[A] → B is fully faithful.

(b) The essential image of F : E1/[A] → B is the subcategory consisting of B ∈ B
such that Ext1E(B,A) is a finitely generated Aop-module.

(c) If Ext1E(A,B)= 0, then F : E2→ B is exact bijective.

(d) If any object in A is projective in E , then E2/[A] inherits canonically the exact
structure of E2 and F : E2/[A] → B is exact bijective.

We denote by T : E→A the right adjoint functor of the inclusion functor A→ E .
Then for any E ∈ E , there exists a short exact sequence

0→ T E f
−→ E g

−→ F E→ 0

in E with T E ∈ A and F E ∈ B. Clearly f is a right A-approximation and g is a
left B-approximation.

The proof of Theorem 4.1 is divided into Lemmas 4.2, 4.3, 4.5 and 4.6.

Lemma 4.2. The functor F :E1→B induces a fully faithful functor F :E1/[A]→B.

Proof. Fix X, Y ∈ E1. By applying HomE(X,−) to the short exact sequence
0→ T Y → Y → FY → 0, we obtain the short exact sequence

0→ HomE(X, T Y )→ HomE(X, Y )→ HomE(X, FY )→ Ext1E(X, T Y )= 0,

where the last equality follows from X ∈ E1. So

HomE(X, FY )∼=
HomE(X, Y )

HomE(X, T Y )
= HomE/[A](X, Y ),

where we use the fact that the first arrow of T Y → Y is a right A-approximation.
On the other hand, using adjunction we have an isomorphism

HomE(FX, FY )∼= HomE(X, FY ).

Thus the assertion follows. �

Next we prove the following observation.

Proposition 4.3. The following conditions are equivalent for B ∈ B:

(i) B belongs to the essential image of F : E1→ B.

(ii) Ext1E(B,A) is a finitely generated Aop-module.

This follows immediately from the following result for Krull–Schmidt exact cat-
egories, which is a generalization of [Auslander and Reiten 1991, Proposition 1.4].

Lemma 4.4. Let X be a Krull–Schmidt exact category, and Y a subcategory of X
which is closed under extensions and direct summands. For X ∈ X , the following
conditions are equivalent:
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(i) There exists an exact sequence 0 → Y → Z → X → 0 with Y ∈ Y and
Ext1X (Z ,Y)= 0.

(ii) Ext1X (X,Y) is finitely generated Yop-module.

We include a proof for the convenience of the reader.

Proof. (i)⇒ (ii): Applying HomX (−,Y) to the short exact sequence 0→ Y →
Z→ X→ 0, we obtain the exact sequence

HomX (Y,Y)→ Ext1X (X,Y)→ Ext1X (Z ,Y)= 0.

Thus Ext1X (X,Y) is a finitely generated Yop-module.

(ii)⇒ (i): There exists a projective cover ϕ :HomX (Y,Y)→ Ext1X (X,Y) since Y
is Krull–Schmidt. Let

0→ Y f
−→ Z g

−→ X→ 0

be a short exact sequence represented by ϕ(idY ) ∈ Ext1X (X, Y ). Since ϕ is right
minimal, f belongs to radX , and hence g is right minimal. To prove Ext1X (Z ,Y)=0,
it suffices to show that any exact sequence

0→ Y ′→W s
−→ Z→ 0 (4-1)

with Y ′ ∈ Y splits. We have the following commutative diagram of exact sequences:

0

��

0

��

Y ′

��

Y ′

��

0 // Y ′′ //

��

W //

s
��

X // 0

0 // Y
f
//

��

Z
g
//

��

X // 0

0 0

where Y ′′ ∈ Y because Y is extension-closed. As ϕ is an epimorphism, we have the
following commutative diagram of exact sequences:

0 // Y
f
//

��

Z
g
//

t
��

X // 0

0 // Y ′′ // W // X // 0

As g is right minimal, ts : Z→ Z is invertible. Therefore the sequence (4-1) splits. �

Lemma 4.5. Suppose that Ext1E(A,B)= 0. Then the functor F : E2→ B is exact
bijective.
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Proof. Let X, Y ∈ E2. By applying HomE(X,−) to the short exact sequence
0→ T Y → Y → FY → 0, we have the isomorphism

Ext1E(X, Y )∼= Ext1E(X, FY ),

as ExtiE(X, T Y )= 0 holds for i = 1, 2. Applying HomE(−, FY ) to the short exact
sequence 0→ TX→ X→ FX→ 0, we have an isomorphism

Ext1E(FX, FY )∼= Ext1E(X, FY )

as ExtiE(TX, FY )= 0 holds for i = 0, 1. Thus we have

Ext1B(FX, FY )= Ext1E(FX, FY )∼= Ext1E(X, Y ). �

Lemma 4.6. Suppose that any object in A is projective in E . Then E2/[A] inherits
canonically the exact structure of E2, and the functor F : E2/[A] → B is exact
bijective.

Proof. Any object X ∈E has a right A-approximation TX→ X which is a categorical
monomorphism, and we have

Ext1E(A, E2)= Ext1E(E2,A)= 0

by our assumptions. Therefore Corollary 3.8(c) gives an exact structure on E2/[A].
Applying Lemma 4.5, we have

Ext1B(FX, FY )∼= Ext1E2
(X, Y )= Ext1E2/[A](X, Y ),

which shows the assertion. �

4B. When there is a torsion pair (B,C). In this subsection, we further assume
(B, C) is a torsion pair in E for

C := {X ∈ E | HomE(B, X)= 0}.

The following result gives a description of the image of the functor F : C→ B.

Theorem 4.7. Assume that the following conditions are satisfied:

• B is an abelian category whose exact structure is compatible with that of E .

• Ext1E(B, A) is a finitely generated B-module for any A ∈A∩ C.

Then we have the following assertions.

(a) For any A ∈A∩ C, there exists a short exact sequence

0→ A→ C A
→U A

→ 0

with U A
∈ B, C A

∈ C and Ext1E(B,C A) = 0. Moreover, it is unique up to
isomorphism.
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(b) Let D := Sub{U A
| A ∈ A ∩ C}. Then F : E → B induces a dense functor

F : C→ D.

Assume Ext2E(B,A∩ C)= 0.

(c) U A is an injective object in B for any A ∈A∩ C.

(d) D is closed under taking extensions in E , and therefore forms an exact category.

(e) Assume C ⊂ E2 and that any object in A is projective in E . Then C/[A] inherits
canonically the exact structure of C and F : C/[A] → D is an equivalence of
exact categories.

Proof. (a) By the dual of Lemma 4.4, we get a short exact sequence

0→ A f
−→ X g

−→U A
→ 0

for some U A
∈ B such that Ext1E(B, X)= 0 and with f left minimal. We only have

to prove X ∈ C. Since (B, C) is a torsion pair, there exists an exact sequence

0→ B i
−→ X→ C→ 0

with B ∈B and C ∈ C. Now we consider the following commutative diagram, where
Ker ig exists in B by our assumption:

0 // A // X
g
// U A // 0

0 // Ker ig //

OO

B
ig
//

i

OO

U A

Since A ∈ C, we have Ker ig = 0. Thus ig is a monomorphism, and we can form
the following commutative diagram with Coker ig ∈ B by our assumption:

0

��

0

��

B
i
��

B
ig
��

0 // A
f
// X

g
//

��

U A //

p
��

0

0 // A // C //

��

Coker ig //

��

0

0 0

The upper horizontal sequence gives a projective cover ϕ : HomE(B,U A) →

Ext1E(B, A) (see the proof of Lemma 4.4). The lower horizontal sequence gives a
morphism ψ : HomE(B,Coker ig)→ Ext1E(B, A), which is an epimorphism since



1554 Laurent Demonet and Osamu Iyama

ϕ = HomE(B, p)ψ . Since Coker ig ∈ B and ϕ is a projective cover, p has to be an
isomorphism. Thus we have B = 0 and X ∼= C ∈ C.

As B∩ C = 0, the morphism A→ C A is left minimal and it implies easily the
uniqueness.

(b) First we prove F(C) ⊂ D. For any C ∈ C, there exists an exact sequence
0→ A→ C → B → 0 with B = FC ∈ B and A = T C ∈ A. Clearly we have
A ∈A∩ C. Let 0→ A→ C A

→U A
→ 0 be the exact sequence in (a). Then we

have a commutative diagram

0 // A // C //

��

B //

f
��

0

0 // A // C A // U A // 0

By our assumption, f has a kernel g : Ker f → B in E with Ker f ∈ B. Since the
above diagram is pullback, g factors through C ∈ C. Thus g= 0 holds, and hence f
is a monomorphism. Therefore 0→ B f

−→U A
→ Coker f → 0 is a short exact

sequence in E by our assumption, and B ∈ D holds.
Next we prove that the functor F : B→ D is dense. For any D ∈ D, there exist

exact sequences

0→ D→U A
→ X→ 0 and 0→ A→ C A

→U A
→ 0

with A∈A∩C, U A
∈B, C A

∈C and Ext1E(B,C A)=0. Then we have a commutative
diagram

0

��

0

��

0 // A // Y //

��

D //

��

0

0 // A // C A //

��

U A //

��

0

X

��

X

��

0 0

of exact sequences. Since C A
∈ C, we have Y ∈ C by the middle vertical sequence.

Therefore D = FY belongs to F(C).

(c) Applying HomE(B,−) to the short exact sequence 0→ A→ C A
→U A

→ 0,
we have an exact sequence

0= Ext1E(B,C A)→ Ext1E(B,U
A)→ Ext2E(B, A)= 0.

Therefore Ext1E(B,U A)= 0; that is, U A is injective in B.
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(d) This is an immediate consequence of (c) and the horseshoe lemma.

(e) By Theorem 4.1(a) and (d), the functor F : E2/[A]→B is fully faithful and exact
bijective. By C ⊂ E2, using (b) and (d), we have an equivalence F : C/[A] → D of
exact categories. �

4C. Frobenius properties. As in Section 4B, we suppose that (B, C) is a torsion
pair. We define U := add{U A

| A ∈ A ∩ C} and as in Theorem 4.7, D := SubU .
The following result gives a sufficient condition for the categories C and D to be
Frobenius.

Theorem 4.8. Assume that the following conditions are satisfied:

• B is an abelian category whose exact structure is compatible with that of E
and has enough projective objects and enough injective objects.

• A⊂ C holds, and any object in A is projective in E and injective in C.

• Ext1E(B, A) is a finitely generated B-module for any A ∈A.

• Ext1E(P,A) is a finitely generated Aop-module for any projective object P in B.

Then we have the following assertions:

(a) E has enough projective objects and enough injective objects. Moreover, the
following conditions are equivalent:
(i) Projective objects of B and D coincide.

(ii) Projective objects of C and E coincide.

Suppose that the equivalent conditions in (a) are satisfied. Then the following
assertions hold:

(b) C and D have enough projective objects.

(c) Any object in A has injective dimension at most 1 in E . Therefore all assertions
in Theorem 4.7 hold.

(d) The following conditions are equivalent:
(i) C is a Frobenius category whose exact structure is compatible with that

of E .
(ii) D is a Frobenius category whose exact structure is compatible with that

of E .
(iii) Any object in U is projective-injective in B. Moreover, each projective

object of B has injective dimension at most 1 and each injective object of
B has projective dimension at most 1.

(e) If the conditions in (d) are satisfied, then the category of projective-injective
objects in B is U .

We start with preparing the following:



1556 Laurent Demonet and Osamu Iyama

Lemma 4.9. For any projective object P in B, there exists a projective object X
in E such that P = FX.

Proof. By Lemma 4.4, there exists a short exact sequence 0→ A→ X→ P→ 0
with A∈A and Ext1E(X,A)= 0. Applying HomE(−,B), we have an exact sequence

0= Ext1E(P,B)→ Ext1E(X,B)→ Ext1E(A,B)= 0.

Thus Ext1E(X,B) = 0 holds. Since Ext1E(X,A) = 0, we have Ext1E(X, E) = 0.
Thus X is a projective object in E satisfying P = FX. �

Now we are ready to prove Theorem 4.8.

Proof of Theorem 4.8. (a) For any X ∈ E , there exists a short exact sequence
0→ A→ X→ B→ 0 with A = TX ∈A and B = FX ∈ B. Then A is projective
in E by our assumption. Thanks to the horseshoe lemma, to show that X has a
projective cover in E , it suffices to show that any B ∈ B has a projective cover in E .

By our assumption, there exists a projective cover f : P→ B in B. By Lemma 4.9,
there exists a projective cover g : P ′→ P in E . Then the composition g f : P ′→ B
gives a projective cover of B in E .

In the same way, to prove that E has enough injective objects, it is enough to
prove that any A ∈ A and any B ∈ B admits an injective hull in E . For B ∈ B, it
admits an injective hull I in B. As (A,B) is a torsion pair in E and Ext1E(A, E)= 0,
we know I is injective in E . For A ∈A, the object C A defined in Theorem 4.7(a)
is an injective hull of A by the same argument. So we proved that E has enough
injective objects.

(ii)⇒ (i): Suppose that projective objects of C and E coincide.
Let P be a projective object in B. By Lemma 4.9, there exists a projective

object X in E such that P = FX. Since X belongs to C by our assumption, we have
P ∈ F(C)⊂ D. Thus P is a projective object in D.

Let P be a projective object in D. Since B has enough projective objects by our
assumption, there exists a projective cover f : X→ P in B. Since X belongs to D
by the above argument, f splits. Thus P is projective in B.

(i)⇒ (ii): Suppose that projective objects of B and D coincide.
Let P be a projective object in E . Let 0→ X → P ′ f

−→ FP→ 0 be an exact
sequence with a projective object P ′ in B. Then P ′ ∈ D by our assumption. By
Theorem 4.7(b), there exists an exact sequence 0→ A i

−→C p
−→ P ′→ 0 with

A ∈ A and C ∈ C. Since Ext1E(C,A) = 0 holds by our assumption, we have a
commutative diagram:

0 // A⊕ T P[
α

1T P

]
��

[
i
0

0
1T P

]
// C ⊕ T P[

β
u
]

��

[ p
0

]
// P ′

f
��

// 0

0 // T P u
// P

v
// FP // 0
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As
[
α

1T P

]
and f are (admissible) epimorphisms,

[
β
u

]
is also one. Since P is projective

in E , we know
[
β
u

]
splits. Thus P is a direct summand of C ⊕ T P , which belongs

to C by our assumption T P ∈A⊂ C.
Conversely, let Q be a projective object in C. Let us consider its projective

cover P in E . We get the short exact sequence

0→�E Q→ P→ Q→ 0.

According to the previous discussion, P ∈ C. Thus, we get that �E Q ∈ C. Hence,
as Q is projective in C, the short exact sequence splits and Q is projective in E .

(b) We now suppose that the conditions in (a) are satisfied. Since E has enough
projective objects which belong to C, we get that C has enough projective objects.
By a similar argument, D has enough projective objects.

(c) All projective objects of E belong to C by our assumption. Therefore �E(E)⊂ C
holds. Since any object in A is injective in C by our assumption, we have

Ext2E(E,A)= Ext1E(�E(E),A)= 0.

Thus the first assertion follows. In particular we have Ext2E(B,A∩ C)= 0, and the
second assertion follows.

(d)–(e) Thanks to Theorems 3.6 and 4.7(e), F : C→ C/[A] → D is exact bijective.
So C is Frobenius if and only if D is Frobenius by Remark 3.3. Hence (i)⇔(ii) in
(d) is proven. The remaining assertions follow by applying Proposition 3.9 to B. �

5. Equivalences arising from orders and their idempotents

As in Section 2A, let R be a complete discrete valuation ring and K be its field of
fractions. Fix an R-order A. Consider functors

Di := Ext1−i
R (−, R) :mod A↔mod Aop

for i = 0, 1. They restrict to dualities

D1=HomR(−, R) :CM A←−→∼ CM Aop and D0=Ext1R(−, R) : f.l. A←−→∼ f.l. Aop

and satisfy D0(CM A)= D1(f.l. A)= 0. In view of the characterizations of CM A
given at the beginning of Section 2, it is immediate that CM A admits the projective
generator A and the injective cogenerator D1 A. Since the injective resolution of
the R-module R is given by 0→ R→ K → K/R→ 0, we get an isomorphism
D0 ∼= HomR(−, K/R) on f.l. A. Recall the following useful lemma:

Lemma 5.1. If X ∈ CM A, then we have a monomorphism X ↪→ X ⊗R K and
Ext1A(f.l. A, X ⊗R K )= 0.



1558 Laurent Demonet and Osamu Iyama

Proof. For Y ∈ f.l. A, let E := Ext1A(Y, X ⊗R K ). Since X ⊗R K is a K -vector
space, so is E . Since Y is annihilated by some nonzero element in R, so is E .
These imply E = 0. �

For an object X ∈CM A, let corad X ∈CM A be maximal among A-submodules Y
of X ⊗R K such that X ⊂ Y and Y/X is semisimple. We define cotop X :=
(corad X)/X. Notice that X ⊗R K is not finitely generated as an A-module (so
X ⊗R K /∈ CM A) if X ∈ CM A is nonzero. Notice also that D1(X ⊗R K )= 0.

We often use the following lemma:

Lemma 5.2. Let X ∈ CM A. The following hold:

(a) We have cotop X = soc(X ⊗R (K/R)).

(b) The functor D1 induces an order-reversing bijection

{X ⊂ Y ⊂ X ⊗R K | Y/X ∈ f.l. A} 1–1
←→{Y ′ ⊂ D1 X | (D1 X)/Y ′ ∈ f.l. Aop

}.

(c) There are isomorphisms corad X ∼= D1 rad D1 X and cotop X ∼= D0 top D1 X of
A-modules.

(d) If 0→ X → Y → S → 0 is a short exact sequence with Y ∈ CM A and a
semisimple A-module S, then there is a unique canonical commutative diagram

0 // X // Y //
� _

��

S //
� _

��

0

0 // X // corad X // cotop X // 0.

(e) For a simple A-module S, we have Ext1A(S, X) 6= 0 if and only if S is a direct
summand of cotop X.

Proof. Parts (a) and (b) are immediate and the first isomorphism of (c) is a conse-
quence of (b). The second isomorphism of (c) is obtained by applying HomR(−, R)
to the short exact sequence 0 → rad D1 X → D1 X → top D1 X → 0. For (d),
applying the functor −⊗R K to the short exact sequence, we get X⊗R K ∼= Y⊗R K.
Therefore X ⊂ Y ⊂ X ⊗R K. By the maximality of corad X, we have Y ⊂ corad X
and the result follows.

(e) The implication “⇐” is immediate. Let us show “⇒”. Consider a nonsplit exact
sequence 0→ X→ Y→ S→ 0. For any simple module S′, applying HomA(S′,−),
we get an exact sequence 0→ HomA(S′, Y )→ HomA(S′, S)→ Ext1A(S

′, X). It is
easy to conclude in any case that HomA(S′, Y )= 0, so Y ∈ CM A. Therefore, we
can apply (d) so S is a summand of cotop X. �

For logical reasons, we give the proof of Theorem 2.1 after that of Theorem 2.2.
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5A. Proof of Theorem 2.2. As in Theorem 2.2, we consider an idempotent e of
an R-order A such that B := A/(e) has finite length over R. As mod B ⊂ f.l. A,
D0 restricts to a duality mod B←−→∼ mod Bop. We will separate the proof in five
statements.

Proposition 5.3. We have a torsion pair (add Ae,mod B) in mode A.

Proof. Since B= A/(e), we have HomA(add Ae,mod B)= 0. For any X ∈mode A,
we have an exact sequence

Ae⊗eAe eX f
−→ X→ B⊗A X→ 0 (5-1)

in mode A. Since eX ∈ proj(eAe), we have Ae⊗eAe eX ∈ add Ae. Multiplying the
sequence (5-1) by e on the left, we see that e Ker f = 0 so Ker f is in mod B. On
the other hand, Ker f is a submodule of Ae⊗eAe eX ∈ add Ae, so Ker f ∈ CM A.
Consequently we have Ker f = 0. Now the sequence (5-1) shows the desired
assertion. �

Thanks to Proposition 5.3, we have two functors T : mode A → add Ae and
F :mode A→mod B and a functorial exact sequence 0→ TX→ X→ FX→ 0
for X ∈mode A. We prove the following easy statement:

Lemma 5.4. If X ∈CMe A, then FX ⊂HomA(B, TX⊗R (K/R))⊂ TX⊗R (K/R)
and soc FX ⊂ cotop TX.

Proof. The inclusion HomA(B, TX ⊗R (K/R))⊂ TX ⊗R (K/R) is obvious. Ap-
plying −⊗R K on the short exact sequence 0→ TX→ X→ FX→ 0, we get that
TX ⊗R K ∼= X ⊗R K so X ⊂ TX ⊗R K canonically. Thus we get a commutative
diagram of short exact sequences

0 // TX // X //
� _

��

FX //
� _

��

0

0 // TX // TX ⊗R K // TX ⊗R (K/R) // 0

where the second line is obtained by applying TX ⊗R − to 0 → R → K →
K/R→ 0. Thus FX ⊂ TX ⊗R (K/R). As FX ∈ mod B, we deduce that FX ⊂
HomA(B, TX ⊗R (K/R)). The latter assertion follows from Lemma 5.2(a). �

Proposition 5.5. We have a torsion pair (mod B,CMe A) in mode A.

Proof. Since any X ∈mod B has finite length, we have HomA(mod B,CMe A)= 0.
For any X ∈mode A, there exists an exact sequence

0→ T → X→ F→ 0

in mod A such that lengthR T <∞ and F ∈ CM A. Multiplying e from the left, we
have an exact sequence

0→ eT → eX→ eF→ 0
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with lengthR(eT ) < ∞ and eX ∈ proj(eAe). Thus eT = 0 holds, and we have
T ∈mod B. On the other hand, eF = eX ∈ proj(eAe) shows F ∈ CMe A. Thus the
assertion follows. �

Now we can apply Theorems 4.1, 4.7 and 4.8 to

E :=mode A, A := add Ae, B :=mod B and C := CMe A.

In this context, it is possible to compute explicitly the short exact sequence given
in Theorem 4.7(a). For P ∈ add Ae, let

U P
:= HomA(B, P ⊗R (K/R)) ∈mod B

and define U :=U Ae. For any X ∈ CM A, we define

B-cotop X := HomA(B, cotop X).

In other terms, B-cotop X is the biggest B-module included in cotop X. We also
define B-corad X as the A-module satisfying

X ⊂ B-corad X ⊂ corad X and B-cotop X ∼= (B-corad X)/X.

Lemma 5.6. Let P ∈ add Ae. The following hold:

(a) There is a short exact sequence 0→ P → C P
→ U P

→ 0 in mod A with
C P
∈ CMe A and Ext1A(mod B,C P)= 0.

Conversely, if 0→ P → C ′ → U ′ → 0 is a short exact sequence with
C ′ ∈ CMe A, U ′ ∈ mod B and Ext1A(mod B,C ′) = 0, then it is isomorphic to
the above short exact sequence.

(b) We have an isomorphism soc U P ∼= B-cotop P of B-modules.

Proof. (a) Applying P⊗R− to the short exact sequence 0→ R→ K→ K/R→ 0,
we obtain the short exact sequence 0→ P→ P ⊗R K → P ⊗R (K/R)→ 0 with
Ext1A(f.l. A, P⊗R K )= 0 thanks to Lemma 5.1. Taking the pullback by the natural
inclusion U P

⊂ P ⊗R (K/R), we get the following commutative diagram of short
exact sequences:

0

��

0

��

0 // P // C P //

��

U P //

��

0

0 // P // P ⊗R K //

��

P ⊗R (K/R) //

��

0

Y

��

Y

��

0 0
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Since U P is the maximal B-module included in P ⊗R (K/R), and mod B is
closed under extensions in mod A, we get HomA(mod B, Y ) = 0. Then applying
HomA(mod B,−) to the second column, we find the exact sequence

0= HomA(mod B, Y )→ Ext1A(mod B,C P)→ Ext1A(mod B, P ⊗R K )= 0.

Thus Ext1A(mod B,C P)= 0 holds.
Now we prove the converse part. Applying HomA(U ′,−) to the former sequence,

we get a surjection HomA(U ′,U P) � Ext1A(U
′, P) so there is a commutative

diagram:
0 // P // C ′

f
��

// U ′

g
��

// 0

0 // P // C P // U P // 0

In the same way, there are f ′ : C P
→ C ′ and g′ :U P

→U ′ making a commutative
diagram in the converse direction. Then f f ′ − idC ′ factors through U ′, hence
f f ′ = idC ′ . Similarly, f ′ f = idC P . Hence, f and g are isomorphisms.

(b) By Lemma 5.2, cotop P = soc(P ⊗R (K/R)). Applying HomA(B,−) to both
sides, we obtain HomA(B, cotop P)=HomA(B, soc(P⊗R (K/R)))= soc U P. �

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. (a) This follows from Propositions 5.3 and 5.5.

(b) This follows from Theorem 4.1(a) and (b) as Ext1A(Y, Ae) is a finitely generated
right (eAe)-module for any Y ∈mod B.

(c) Our assumption (E1) implies CMe A⊂E1. Thus the functor F : (CMe A)/[Ae]→
mod B is fully faithful by (a). It gives an equivalence F : (CMe A)/[Ae] → SubU
by Theorem 4.7(b) and Lemma 5.6.

(d) This follows from (E2) and Theorem 4.7(c).

(e) Thanks to (E2), E1 = E2 so, using Theorem 4.1(d), (2-1) and (2-2) are equiva-
lences of exact categories.

(f) It is classical that SubU has enough projective objects and enough injective
objects (see [Demonet and Iyama ≥ 2016] for a detailed argument). Using (e) and
Remark 3.3(b), it immediately implies that CMe A has enough projective objects
and enough injective objects. In the same way, as mod B has enough injective
objects and enough projective objects, E1 has the same property. Then mode A has
enough projective objects and enough injective objects by Theorem 4.8(a).

(g) For any X ∈mode A, as (mod B,CMe A) is a torsion pair, there is a short exact
sequence

0→ Z→ X→ Y → 0,
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where Z ∈ mod B and Y ∈ CMe A. Applying HomA(−, Ae) to this sequence, we
find the exact sequence

0= Ext1A(Y, Ae)→ Ext1A(X, Ae)→ Ext1A(Z , Ae)→ Ext2A(Y, Ae)= 0.

So X ∈ E1 if and only if Ext1A(Z , Ae)= 0. There is a short exact sequence

0→ soc Z→ Z→ Z/ soc Z→ 0,

and applying HomA(−, Ae) to it, we find the exact sequence

0→ Ext1A(Z/ soc Z , Ae)→ Ext1A(Z , Ae)→ Ext1A(soc Z , Ae)→ 0,

so Ext1A(Z , Ae)= 0 if and only if Ext1A(Z/ soc Z , Ae)= Ext1A(soc Z , Ae)= 0. By
Lemma 5.2(e), for a simple B-module S, we have Ext1A(S, Ae)= 0 if and only if
S is not a direct summand of B-cotop Ae if and only if S /∈ SubU if and only if
HomA(P, S)= 0, where P is the projective cover of soc U in mod B. As Z is of
finite length over R, an easy induction gives that Ext1A(Z , Ae) = 0 if and only if
HomA(P, Z)= 0 if and only if HomA(P, X)= 0. �

In the following lemma, we give sufficient conditions for (E1) and (E2):

Lemma 5.7. (a) We have the implication (E2)+
⇒ (E2).

(b) If Ae = HomR(g A, R) for some idempotent g ∈ A, then (E1) and (E2)+ are
satisfied.

(c) If (E1) is satisfied and A ∈ CMe A, then (E2)+ is satisfied.

Proof. (a) This directly follows from Proposition 3.4.

(b) In this case, Ext1A(CM A, Ae)= 0, so (E1) is clearly satisfied. If X ∈mod A, it
is immediate that its syzygy �X is in CM A so Ext2A(X, Ae)= Ext1A(�X, Ae)= 0.
Therefore, (E2)+ holds.

(c) For X ∈ mode A, consider the projective cover 0→ �X → P→ X → 0. As
eX ∈ proj(eAe), the short exact sequence 0→ e�X → eP → eX → 0 splits.
Moreover, as A ∈ CMe A, we have eP ∈ proj(eAe) so �X ∈ CMe A. So, by (E1),
Ext2A(X, Ae)= Ext1A(�X, Ae)= 0 and (E2)+ holds. �

We complete this subsection by giving basic relations between indecomposable
injective objects of CMe A and their B-cotops. Let

O := {P ∈ ind Ae | B-cotop P 6= 0}.

Notice that part (a) of Lemma 5.8 is a generalization of a well-known property of
cotops in CM A.

Lemma 5.8. Let I ∈ CMe A satisfying Ext1A(CMe A, I ) = 0. Then the following
hold:

(a) If I is indecomposable, then B-cotop I is either 0 or simple.
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(b) B-cotop I = 0 if and only if Ext1A(mod B, I )= 0.

(c) For any short exact sequence 0→ I i
−→ X

p
−→ Y → 0, where i is a radical

map, X ∈ CMe A and Y ∈ mode A, the map i factors as I ⊂ B-corad I ↪→ X
and soc Y ∼= B-cotop I.

(d) If (E1) is satisfied, there are commuting bijections

O

B-cotop ++

HomA(B,−⊗R(K/R))
// indU

soc
��

ind(soc U )

Proof. (a) Thanks to Lemma 5.2(c), cotop I ∼= D0 top D1 I, so we only have to
show that the Aop-module HomAop(B, top D1 I ) is 0 or simple. Suppose that
HomAop(B, top D1 I ) is not 0 or simple. We have two distinct maximal sub-
modules X1, X2 ⊂ D1 I such that S1 := (D1 I )/X1 and S2 := (D1 I )/X2 are
simple Bop-modules. By applying HomR(−, R) on the short exact sequence
0→ X1→ D1 I → S1→ 0, we get the short exact sequence

0→ I ι1
−→ D1 X1→ D0S1→ 0,

and therefore eι1 : eI → e(D1 X1) is an isomorphism and D1 X1 ∈ CMe A. In the
same way, eι2 : eI→ e(D1 X2) is an isomorphism and D1 X2 ∈ CMe A. We also get
a nonsplit short exact sequence 0→ Y → X1⊕ X2→ D1 I→ 0. Applying D1 to it,
we get a short exact sequence 0→ I → D1(X1⊕ X2)→ D1Y → 0. Multiplying
by e, we get the short exact sequence

0→ eI
[eι1 eι2]
−−−−→ e(D1 X1)⊕ e(D1 X1)→ e(D1Y )→ 0,

which splits as eι1 and eι2 are isomorphisms. Thus 0→ I → D1(X1 ⊕ X2)→

D1Y → 0 is a nonsplit short exact sequence in CMe A. It is a contradiction as
Ext1A(CMe A, I )= 0.

(b) Thanks to Lemma 5.2(e), a simple B-module S is a direct summand of B-cotop I
if and only if Ext1A(S, I ) 6= 0. Thus B-cotop I = 0 if and only if Ext1A(S, I )= 0 for
any simple B-module S if and only if Ext1A(mod B, I )= 0.

(c) Thanks to Proposition 5.3, soc Y ∈ mod B. Consider the sequence 0→ I →
p−1(soc Y )→ soc Y → 0. Thanks to Lemma 5.2(d), we have soc Y ↪→ B-cotop I.

We will prove, for each direct summand I ′ of I, that B-corad I ′ (⊂ X ⊗R K ) is
included in X. Consider the short exact sequence 0→ I ′→ X→ Y ′→ 0 induced
by the inclusion I ′ ⊂ I. As i is radical, this short exact sequence does not split and
we get Y ′ /∈ CMe A and soc Y ′ 6= 0. Pulling back 0→ I ′→ X → Y ′→ 0 along
soc Y ′⊂ Y ′, we get a short exact sequence 0→ I ′→ X ′→ soc Y ′→ 0 with X ′⊂ X
so X ′ ∈ CMe A. Using (a) and Lemma 5.2(d), we obtain soc Y ′ ∼= B-cotop I ′ and
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therefore X ′= B-corad I ′⊂ X. Finally B-corad I ⊂ X and therefore B-cotop I ↪→Y.
As B-cotop I is semisimple, B-cotop I ↪→ soc Y. So B-cotop I ∼= soc Y.

(d) First of all, thanks to (a) and Lemma 5.6(b), B-cotop induces a surjection
from O to ind(soc U ). Let us prove that it is injective. Suppose that P, P ′ ∈ O
satisfy S := B-cotop P = B-cotop P ′ and consider the short exact sequences

0→ P f
−→ B-corad P g

−→ S→ 0 and 0→ P ′
f ′
−→ B-corad P ′

g′
−→ S→ 0.

Multiplying them by e, we get B-corad P, B-corad P ′ ∈ CMe A. So, applying
HomA(B-corad P,−) to the second short exact sequence, we get a morphism
u : B-corad P→ B-corad P ′ such that g = ug′. Symmetrically, we get a morphism
u′ : B-corad P ′→ B-corad P such that g′ = u′g. So g = uu′g and, as g is right
minimal, uu′ is an isomorphism. Similarly, u′u is an isomorphism so B-corad P ∼=
B-corad P ′ and P ∼= P ′. We proved that B-cotop is injective on O.

That HomA(B,−⊗R (K/R)) : O → addU is well-defined is a direct conse-
quence of the definition of U . The commutativity of the diagram is immediate by
Lemma 5.2(a). As U is injective, soc : indU → ind(soc U ) is bijective. �

The following proposition is used to categorify cluster algebras in Section 6.

Proposition 5.9. If (E1) is satisfied, then the following assertions hold:

(a) If X ∈ CMe A does not have nonzero direct summands in add Ae, then TX ∈
addO. Moreover, B-corad TX ⊂ X and B-cotop TX ∼= soc FX.

(b) Let 0→ X→Y→ Z→0 be a short exact sequence with X, Z ∈CMe A without
nonzero direct summands in add Ae. Then the maximal direct summand Y1

of Y in add Ae is the module satisfying Y1 ∈ addO and soc FX ⊕ soc F Z ∼=
soc FY ⊕ B-cotop Y1.

Proof. (a) Since TX→ X is radical, the result follows from Lemma 5.8(c).

(b) Decompose Y = Y0⊕ Y1. Recall that T = Ae⊗eAe e− is exact on mode A. As
TX is projective, we get

T Y0⊕ Y1 = T Y ∼= TX ⊕ T Z ∈ addO

by (a). Again by (a), we get

soc F X ⊕ soc F Z ∼= B-cotop TX ⊕ B-cotop T Z ∼= B-cotop T Y0⊕ B-cotop Y1

∼= soc FY0⊕ B-cotop Y1 ∼= soc FY ⊕ B-cotop Y1. �

5B. Proof of Theorem 2.1. (a) Since Ae ∈ addHomR(g A, R), the conditions (E1)
and (E2) are satisfied by Lemma 5.7 and cotop Ae = top Ag by Lemma 5.2(c). By
Theorem 2.2, we have an equivalence of exact categories

B⊗A− : (CMe A)/[Ae] ∼= SubU
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and U is an injective B-module. Thanks to Lemma 5.6(b), we have soc U ∼=
B-cotop Ae ∼= HomA(B, top Ag). Thus U ∼= Qg.

(b) For M ∈ Sub Qg, let us consider a projective cover of D0 M in mod Aop:

0→�A D0 M→ P→ D0 M→ 0.

We have P ∈ add g A. Applying HomR(−, R), we get the short exact sequence

0→ D1 P→ D1�A D0 M→ M→ 0.

We have D1 P ∈ add Ae so D1�A D0 M ∈ CMe A and F(D1�A D0 M)∼= M thanks
to this sequence.

(c) Let us assume first that Ae, A f and Ag are basic. In particular Ae ∼= D1(g A),
A f ∼= D1(eA) as A-modules and eAe ∼= D1(eAe) as left (eAe)-modules. We
have eA f ∼= eD1(eA)= D1(eAe)∼= eAe as left (eAe)-modules. So A f ∈ CMe A
and T (A f ) = Ae ⊗eAe eA f ∼= Ae. Moreover, using the short exact sequence
0→ T (A f )→ A f → F(A f )→ 0 and Lemma 5.4, we get

soc B f = soc F(A f )⊂ B-cotop T (A f )∼= B-cotop Ae ∼= top Bg,

so B f ⊂ D0(gB). Dually, we get an inclusion gB ⊂ D0(B f ) by exchanging the
role of f and g. By comparing lengths over R of gB and B f , we deduce that
B f ∼= D0(gB)= Qg.

If Ae, A f or Ag are not basic, we take basic parts e′, f ′ and g′ of e, f and g
and we get B f ′ ∼= Qg′ . Thus add B f = add B f ′ = add Qg′ = add Qg.

(d) Since A ∈ CMe A, we have B = F A ∈ Sub Qg. Thus Sub Qg = Sub B holds
by (c).

(e) All assumptions in Theorem 4.8 are satisfied. Moreover, since A ∈ C, the
projective objects in E =mode A and C = CMe A are projective A-modules, and the
equivalent conditions of Theorem 4.8 (a) are satisfied. Thus applying Theorem 4.8(d)
(i)⇔ (iii), B is Iwanaga–Gorenstein of dimension at most 1 if and only if CMe A
is Frobenius. As A and D1 A are in CMe A, we get that A is Gorenstein if and
only if add A = add D1 A if and only if CMe A is Frobenius, and the result fol-
lows.

(f) In this case, (CMe A)/[Ae] ∼= Sub B is an equivalence of Frobenius categories.
Thus, since CMe A coincides with the stable category of (CMe A)/[Ae], we have a
triangle equivalence CMe A ∼= SubB. �

5C. Proof of Theorem 2.3. By construction, we have an exact sequence

0→ PW →W → B→ 0 (5-2)

with W = Ae⊕ B̃ ∈CM A and PW = Ae⊕P ∈ add Ae. Clearly we have W ∈CMB
e A

and PW = Ae⊗eAeeW. We set A′ :=EndA(W ) and we identify e with the idempotent
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of A′ which is the projection on the summand Ae of W. Thus, we can identify
eAe and eA′e. We shall prove (a) in Proposition 5.11, (b) in Proposition 5.15 and
(d) in Proposition 5.12. Then all hypotheses of Theorem 2.2 are satisfied and the
assertion (c) follows. Finally, (e) is an easy consequence of Proposition 5.12.

Lemma 5.10. (a) We have W e = Ae and W (1− e)= B̃ as A-modules.

(b) We have W eA′ = PW . Thus PW and B have a structure of A′ op-modules such
that (5-2) is an exact sequence of (A, A′)-bimodules.

(c) We have W/W eA′ ∼= B as (A, A′)-bimodules.

(d) We have eA′ = eW , and this is a projective (eAe)-module and a projective
A′op-module.

(e) We have B⊗A W ∼= B as (B, A′)-bimodules.

Proof. (a) This is clear from the definition.

(b) Since W e = Ae, we have W eA′ =
∑

f ∈EndA(W ) f (Ae) = Ae⊗eAe eW = PW .
The map PW →W is clearly a morphism of (A, A′)-bimodules.

(c) This is a clear consequence of (b).

(d) We have eA′ = HomA(Ae,W )= eW . Clearly eA′ is a projective A′op-module.
Moreover eW = ePW is a projective (eAe)-module since PW ∈ add Ae.

(e) Applying B⊗A− to the short exact sequence (5-2), we get the exact sequence
of (B, A′)-bimodules

B⊗A PW → B⊗A W → B⊗A B→ 0.

Since B ⊗A PW ∈ add(B ⊗A Ae) = add(Be) = {0} and B ⊗A B ∼= B, we get the
result. �

Proposition 5.11. We have an isomorphism A′/(e) ∼= B of R-algebras and an
isomorphism W ⊗A′ B ∼= B of (A, B)-bimodules.

Proof. Applying HomA(W,−) to (5-2), we have an exact sequence

0→ HomA(W, PW )→ A′→ HomA(W, B)→ Ext1A(W, PW ),

where Ext1A(W, PW ) = 0 by PW ∈ add Ae, W ∈ CMB
e A and our assumption

Ext1A(CM
B
e , Ae) = 0. Since HomA(Ae, B) = 0, applying HomA(−, B) to (5-2),

we have HomA(W, B)= EndA(B)= B and (e)= HomA(W, PW ). Thus A′/(e)=
A′/HomA(W, PW )= HomA(W, B)= B.

We have W ⊗A′ B =W/W eA′ = B by Lemma 5.10(c). �

In particular, we can regard mod B as full subcategory of both mod A′ and mod A.
Now we consider the adjoint pair (G, H) given by

H :=HomA(W,−) :mod A→mod A′ and G :=W⊗A′− :mod A′→mod A.
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The main result about these functors is:

Proposition 5.12. The class of short exact sequences of mod A with three terms
in modB

e A gives the structure of an exact category on modB
e A. The same holds

for CMB
e A. For these structures, the adjoint pair (G, H) gives quasi-inverse

equivalences of exact categories between modB
e A and mode A′, which restrict to

quasi-inverse equivalences of exact categories between CMB
e A and CMe A′.

The first step of the proof consists of the following lemma.

Lemma 5.13. (a) H and G give quasi-inverse equivalences between add Ae and
add A′e.

(b) We have commutative diagrams

mod A H
// mod A′ mod A mod A′G

oo

mod B

ff 88

mod B

ff 88

Proof. (a) This is clear: H(Ae) = HomA(W, Ae) = A′e and G(A′e) ∼= W e = Ae
by Lemma 5.10(a).

(b) Fix X ∈mod B. Applying HomA(−, X) to (5-2), we have an exact sequence

0→ HomA(B, X)→ H X→ HomA(PW , X),

where HomA(PW , X)= 0 by PW ∈ add Ae and X ∈mod B. Thus we have

H X ∼= HomA(B, X)∼= X.

On the other hand, we have

G(X)=W ⊗A′ X =W ⊗A′ (B⊗A′ X)
Proposition 5.11
= B⊗A′ X = X. �

Lemma 5.14. (a) We have TorA′
1 (Y, X)= TorB

1 (Y ⊗A′ B, X) for any X ∈ mod B
and Y ∈ CM A′op.

(b) We have TorA′
1 (W, X)= 0 for any X ∈mode A′.

Proof. For Y ∈ CM A′op, take an exact sequence

0→�Y i
−→ P→ Y → 0 (5-3)

of A′op-modules with P ∈ proj A′op. We will show that

0→�Y ⊗A′ B
i⊗1B
−−−→ P ⊗A′ B→ Y ⊗A′ B→ 0 (5-4)

is exact. Consider the exact sequence

A′e⊗eA′e eA′ j
−→ A′→ B→ 0

of (A′, A′)-bimodules. Applying Y ⊗A′ −, we have an exact sequence

0→ K → Y e⊗eA′e eA′
1Y⊗ j
−−−→ Y → Y ⊗A′ B→ 0.
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Since (1Y ⊗ j)e : (Y e ⊗eA′e eA′)e → Y e is an isomorphism, we have K e = 0.
Thus K is a Bop-module. Since eA′ ∈ proj(eA′e) by Lemma 5.10(d), we get
Y e⊗eA′e eA′ ∈ CM A′op. Therefore K = 0.

Applying the same argument to P ∈ CM A′op and �Y ∈ CM A′op, we have the
following commutative diagram of exact sequences:

0

��

0 // �Y e⊗eA′e eA //

��

�Y //

��

�Y ⊗A′ B //

i⊗1B
��

0

0 // Pe⊗eA′e eA //

��

P //

��

P ⊗A′ B //

��

0

0 // Y e⊗eA′e eA //

��

Y //

��

Y ⊗A′ B //

��

0

0 0 0

By the snake lemma, i ⊗ 1B is injective. Thus (5-4) is exact.

(a) For X ∈mod B, applying −⊗A′ X to (5-3) and −⊗B X to (5-4) and comparing
them, we have a commutative diagram of exact sequences:

0 // TorA′
1 (Y, X) // �Y ⊗A′ X // P ⊗A′ X

0 // TorB
1 (Y ⊗A′ B, X) // (�Y ⊗A′ B)⊗B X // (P ⊗A′ B)⊗B X

Thus the assertion follows.

(b) First, we assume X ∈mod B. Since W ∈ CM A′op, by (a) and Proposition 5.11,
we have

TorA′
1 (W, X)∼= TorB

1 (W ⊗A′ B, X)∼= TorB
1 (B, X)= 0.

Now we assume X ∈mode A′. Then there exists an exact sequence 0→ P→ X→
Y → 0 with P ∈ add A′e and Y ∈ mod B. Applying W ⊗A′ −, we have an exact
sequence

0= TorA′
1 (W, P)→ TorA′

1 (W, X)→ TorA′
1 (W, Y )= 0.

Thus the assertion follows. �

Proof of Proposition 5.12. (i) First we show H(mode A)⊂mode A′.
For X ∈mode A, we get, using Lemma 5.10(a),

eH(X)= HomA(W e, X)= HomA(Ae, X)= eX ∈ proj(eAe)= proj(eA′e).

(ii) Next we show G(mode A′) ∈modB
e A.
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For X ∈mode A′, take an exact sequence

0→ P→ X→ Y → 0 (5-5)

with P ∈ add A′e and Y ∈mod B. Applying G, we have a short exact sequence

0→ G P→ G X→ GY → 0 (5-6)

by Lemma 5.14(b). Since G P ∈add Ae and GY =Y ∈mod B thanks to Lemma 5.13,
we have G X ∈modB

e A′.

(iii) We now show H G ∼= idmode A′ and G H ∼= idmodB
e A.

Applying H to (5-6) and comparing with (5-5), we have a commutative diagram
of exact sequences

0 // P //

��

X //

��

Y //

��

0

0 // H G P // H G X // H GY

where vertical arrows are of the form x 7→ (w 7→ w⊗ x). Since the left and the
right vertical maps are isomorphisms, so is the middle one.

By a similar argument, one can show G H ∼= idmodB
e A.

(iv) Next we show that H :modB
e A→mode A′ and G :mode A′→modB

e A preserve
short exact sequences. In particular, modB

e A has the desired exact structure.
The functor G is exact thanks to Lemma 5.14(b). Consider a short exact sequence

0→ X → Y → Z → 0 in mod A with three terms in modB
e A. We get an exact

sequence 0→ H X→ HY → H Z→C→ 0 with C ∈mod A′. As G is right exact
and by (iii), we deduce W⊗A′C=GC=0, so eC=eW⊗A′C=0 by Lemma 5.10(d),
so C ∈mod B. Hence by Lemma 5.13(b), C = 0 so 0→ H X→ HY → H Z→ 0
is exact in mode A′.

(v) We now show that the equivalences restrict to CMB
e A ∼= CMe A′.

Clearly H(CMB
e A)⊂ CMe A′ holds. It is enough to show that, if X ∈modB

e A
satisfies H X ∈ CMe A′, then X ∈ CM A. Let Y be a finite-length submodule of X.
Then the inclusion Y ⊂ X gives an injection HY ⊂ H X. Since HY has finite length
and H X ∈ CMe A′, we have HY = 0.

Let 0→ P i
−→X→ Z→0 be an exact sequence with P ∈add Ae and Z ∈mod B.

Since Y ∩ P = 0, we have that Y is a submodule of Z . In particular Y ∈ mod B.
Since HY = 0, we have Y = 0 by (iii). Thus X ∈ CM A. �

Proposition 5.15. We have (E1), that is, Ext1A′(CMe A′, A′e) = 0, and (E2)+, that
is, Ext2A′(mode A′, A′e)= 0.

Proof. (E1): Let 0→ A′e→ X→ Y → 0 be an exact sequence with Y ∈ CMe A′.
Applying G and using Lemma 5.14(b), we have an exact sequence 0→ G(A′e)→
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G X → GY → 0. It splits since Ext1A(GY, Ae) = 0 by our assumption. Since
G : CMe A′→ CMB

e A is an equivalence, the original sequence splits. Thus the
assertion follows.

(E2)+: Since we have A′ ∈ CMe A′ by Lemma 5.10(d), syzygies of modules in
mode A′ belong to CMe A′. Thus the assertion follows from (E1). �

We finish this subsection by proving Lemma 2.4.

Proof of Lemma 2.4. As Ae ∼= D1(g A) is injective in CM A and CMB
e A ⊂ CM A,

we get (C3).
To prove the second part of the statement, let us prove that if (C1) holds, then

for a finite-length A-module M , we have M ∈ Sub(Ae ⊗R (K/R)) if and only
if (1− g) soc M = 0. As Ae is injective in CM A and syzygies of all modules
are Cohen–Macaulay, we have Ext2A(mod A, Ae) = 0. By Lemma 5.1, we have
Ext1A(f.l. A, Ae⊗R K )=0. So applying HomA(f.l. A,−) to the short exact sequence

0→ Ae→ Ae⊗R K → Ae⊗R (K/R)→ 0,

we get Ext1A(f.l. A, Ae⊗R (K/R))= 0. Moreover, by Lemma 5.2(a), we get that
soc(Ae⊗R (K/R)) is the semisimple module corresponding to g.

If M ∈ Sub(Ae⊗R (K/R)) then soc M ∈ add soc(Ae⊗R (K/R)) follows imme-
diately, and thus the first implication is satisfied. Conversely, if (1− g) soc M = 0,
then there exists an injection soc M ↪→ (Ae ⊗R (K/R))⊕`. Then, by applying
HomA(−, (Ae⊗R (K/R))⊕`) to the short exact sequence

0→ soc M→ M→ M/ soc M→ 0
and using Ext1A(M/ soc M, Ae⊗R (K/R))= 0, there is an injection M ↪→ (Ae⊗R

(K/R))⊕`, and so we have proved the converse implication. �

6. Cluster algebra structure on coordinate rings of partial flag varieties

The aim of this section is to apply results in previous sections to categorify the
cluster algebra structure of the multihomogeneous coordinate rings C[F] of the
partial flag variety F = F(1, J ) corresponding to a Dynkin diagram 1 and a
set J of vertices of 1 by using the category of Cohen–Macaulay modules. To be
more precise, recall that Geiss, Leclerc and Schröer [2008] introduced a cluster
algebra Ã ⊂ C[F]. They proved that Ã = C[F] in type An . In general, they
conjecture that Ã[6−1

J ] = C[F][6−1
J ], where 6J is the set of principal generalized

minors corresponding to nonminuscule weights (see Definition 6.3 of principal
generalized minors), and they prove the conjecture in type D4.

The main result of this section (Theorem 6.12) consists of completing Geiss,
Leclerc and Schröer’s partial categorification of Ã . Their categorification, given
in Theorem 6.6, uses the preprojective algebra 5 = 5(1) over C and the full
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subcategory Sub QJ of mod5, where QJ is the direct sum of indecomposable
injective 5-modules corresponding to vertices in J. Recall that a Frobenius cat-
egory E is said to be stably 2-Calabi–Yau if there is a bifunctorial isomorphism
Ext1E(X, Y ) ∼= D Ext1E(Y, X) and that Sub QJ is stably 2-Calabi–Yau. Moreover,
an object X in E is called rigid if Ext1E(X, X)= 0 and it is called cluster tilting if
add X = {Y ∈ E | Ext1E(Y, X)= 0}.

6A. The categorification of Geiss, Leclerc and Schröer. We recall briefly the
results of [Geiss et al. 2008] concerning the categorification of cluster algebra
structures on multihomogeneous coordinate rings of partial flag varieties. We start by
fixing a simple simply connected complex algebraic group G with Dynkin diagram
1. We fix a maximal torus H ⊂ G and two opposite Borel subgroups B, B− ⊂ G
satisfying B ∩ B− = H (for more details about Lie theoretical background, see
[Borel 1991; Lakshmibai and Gonciulea 2001]). For a vertex i of 1, we fix

xi (t) := exp(tei ) and yi (t) := exp(t fi ),

the one-parameter subgroups of B and B− corresponding to the Chevalley genera-
tors ei and fi of the Lie algebra of G. Following notations of [Geiss et al. 2008], we
define K to be the complement of J. The parabolic subgroup BK of G is the sub-
group generated by B and yi for i ∈K, and the opposite parabolic subgroup B−K of G
is the subgroup generated by B− and xi for i ∈K. The partial flag variety F can be re-
alized as F = B−K \G. Let NK be the unipotent radical of BK , that is, the subgroup of
unipotent elements of the maximal solvable normal subgroup of BK. Then, it is a clas-
sical result that NK ⊂G induces an embedding NK ⊂F as a dense affine open subset.

Example 6.1. If 1= A4 and J = {1, 3}, we have K = {2, 4}, G = SL5(C) and

B−K =


∗ 0 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

⊂ G and NK =


1 ∗ ∗ ∗ ∗
0 1 0 ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 0
0 0 0 0 1

,
and it is immediate that B−K \G parametrizes naturally flags of C5 of type (1, 3).

Let i = (i1, i2, . . . , i`) be a sequence of vertices of 1, let k = (k1, k2, . . . , k`)
be a sequence of nonnegative integers and let t = (t1, t2, . . . , t`) be a sequence of
variables. We define
• i k, the sequence of indices obtained from i by repeating kj times i j ;

• tk
:= tk1

1 tk2
2 · · · t

k`
` ;

• k! := k1!k2! · · · k`!;

• xi (t) := xi1(t1)xi2(t2) · · · xi`(t`).
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For a vertex i of 1, we denote by Si the simple 5-module corresponding to i .
Then, for M ∈mod5, we denote by 8M,i the variety of composition series of M
of type i , that is,

8M,i :=
{
0= M0 ⊂ M1 ⊂ · · · ⊂ M` = M

∣∣ ∀ j,Mj/M j−1 ∼= Si j

}
,

realized within the appropriate product of Grassmannians. Finally χ is the Euler
characteristic.

Using Lusztig’s semicanonical basis [2000], Geiss, Leclerc and Schröer [Geiss
et al. 2005] define functions in the coordinate ring C[N ] = C[N∅] by the following
result:

Theorem 6.2 ([Lusztig 2000; Geiss et al. 2005]). Let M ∈mod5. There exists a
unique function ϕM in C[N ] satisfying

ϕM(xi (t))=
∑
k∈N`

χ(8M,i k)
tk

k!

for any reduced word i of an element of the Weyl group of type 1.

In [Geiss et al. 2005], they also prove that

• ϕY⊕Z = ϕYϕZ for any Y, Z ∈mod5;

• if Y and Z are indecomposable such that dim Ext15(Y, Z)= 1 and

0→ Y →U → Z→ 0 and 0→ Z→U ′→ Y → 0

are two nonsplit short exact sequences, then ϕYϕZ = ϕU +ϕU ′ .

In other terms, ϕ is a so-called cluster character.
In [Geiss et al. 2008], the authors prove that Sub QJ categorifies via ϕ and the

canonical projection C[N ]� C[NK ] a cluster algebra A⊂ C[NK ]. They prove in
type An and D4 that A= C[NK ] and they conjecture it to be true in any case.

Let us introduced generalized principal minors (see [Fomin and Zelevinsky
1999]):

Definition 6.3. For a vertex i of 1, the corresponding principal generalized minor
is defined on G as the unique function 1i satisfying

1i (x−x0 x+)=1i (x0)

for x− ∈ B−, x0 ∈ H and x+ ∈ B, and1i |H : H→C∗ is the multiplicative character
corresponding to the fundamental weight indexed by i .

It is known that F = B−K \G is embedded in a product of projective spaces
indexed by J (in type An , a product of usual Grassmannians). Thus, we can define
the multihomogeneous coordinate ring C[F], graded by NJ. Each of the 1j is
homogeneous of degree (0, . . . , 0, 1, 0, . . . , 0), where 1 is at position j and NK is
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the open dense affine subset of F defined by NK = {x ∈ F | ∀ j ∈ J,1j (x) 6= 0},
so there is a dehomogenization map C[F]� C[NK ] defined by mapping 1j to 1.
For any f ∈ C[NK ], there is a unique homogeneous f̃ ∈ C[F] such that π( f̃ )= f
and the multidegree of f̃ is minimal for the order induced by fundamental weights
[Geiss et al. 2008, Lemma 2.4].

Example 6.4. We continue Example 6.1. In this case, 11 corresponds to the
upper-left coefficient and 13 corresponds to the determinant of the upper-left
(3× 3)-submatrix. Then B−K \G is a closed subset of Gr1(C5)×Gr3(C

5), by mapping
M ∈ B−K to the subspaces generated by the first row on the one hand and the first
three rows on the second hand. So, as usual, thanks to Plücker coordinates, we have

F ⊂ Gr1(C
5)×Gr3(C

5)⊂ P(C(
5
1))×P(C(

5
3)).

Then, we have two affine subspaces N{1}c of Gr1(C5) and N{3}c of Gr3(C5) defined
by the nonvanishing of the leftmost determinants, which are Plücker coordinates and
correspond to 11 and 13 as functions over G. Moreover, NK = (N{1}c×N{3}c)∩F .

In order to extend the cluster algebra A⊂ C[NK ] to a cluster algebra Ã⊂ C[F]
by adding coefficients1j corresponding to the multihomogenization, Geiss, Leclerc
and Schröer prove the following theorem.

Theorem 6.5 [Geiss et al. 2008, 10.1]. If Y, Z ∈ Sub QJ , then ϕ̃Y⊕Z = ϕ̃Y ϕ̃Z . If
Y, Z ∈ Sub QJ satisfy dim Ext15(Y, Z)= 1, and

0→ Y →U → Z→ 0 and 0→ Z→U ′→ Y → 0

are nonsplit short exact sequences, then

ϕ̃Y ϕ̃Z = ϕ̃U

∏
j∈J

1
αj
j + ϕ̃U ′

∏
j∈J

1
βj
j ,

where
αj =max

(
0, dim Hom5(S j ,U ′)− dim Hom5(S j ,U )

)
,

βj =max
(
0, dim Hom5(S j ,U )− dim Hom5(S j ,U ′)

)
.

To construct Ã using Theorem 6.5, Geiss, Leclerc and Schröer constructed an
explicit cluster tilting object in Sub QJ that they call initial. A cluster tilting object
in Sub QJ is called reachable if it is obtained from the initial one by successive
mutations. An indecomposable rigid object is called reachable if it is a direct
summand of a reachable cluster tilting object. Their result can be stated as follows.

Theorem 6.6 [Geiss et al. 2008, Theorem 10.2]. (a) There is a cluster algebra
Ã⊂ C[F] such that

• coefficients of Ã are c̃ for each coefficient c of A and 1j for each j ∈ J ;
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• clusters of Ã are

{x̃1, x̃2, . . . , x̃`} t {1j | j ∈ J }

for each cluster {x1, x2, . . . , x`} of A.

(b) There is a bijection X 7→ ϕ̃X between
• isomorphism classes of reachable indecomposable rigid objects of Sub QJ ;
• cluster variables and coefficients of Ã except 1j for j ∈ J.

(c) There is a bijection
⊕`

k=1 Tk 7→ {ϕ̃T1, ϕ̃T2, . . . , ϕ̃T`} t {1j | j ∈ J } between
• isomorphism classes of reachable basic cluster tilting objects of Sub QJ ;
• clusters of Ã .

Moreover, it commutes with mutation of cluster tilting objects and mutation of
clusters.

6B. Categorification of the cluster algebra structure of C[F] using CMe A. We
keep the setting of the beginning of this section, and we fix R := C[[t]]. Our aim is
to categorify C[F(1, J )] by a category CMe A, where A is an R-order and e ∈ A
is an idempotent. We denote by g = gJ the idempotent of 5 corresponding to
the set J. We also define IJ := Hom5(5/(g),5), which is the biggest ideal of 5
satisfying gIJ = 0. We observe that

• injective modules corresponding to j ∈ J in mod5 and mod5/IJ coincide;

• 5/IJ ∈ Sub QJ ⊂mod5/IJ ⊂mod5.

We define pairs (A, e) permitting the categorification.

Definition 6.7. A pair (A, e), where A is an R-order and e ∈ A is an idempotent
models (1, J ) if

• B := A/(e)∼=5(1)/IJ as C-algebras;

• Ext1A(CMe A, Ae)=0, that is, (E1) holds, and Ext2mode A(mode A, Ae)=0, that
is, (E2) holds;

• B-cotop induces a bijection from ind Ae to ind(soc QJ ).

Using the last condition of Definition 6.7, if (A, e) models (1, J ), we can
decompose e as sum of primitive orthogonal idempotents e =

∑
j∈J ej in such a

way that for every j ∈ J,
B-cotop Aej ∼= Sj , (6-1)

where, as before, Sj is soc Q j (not top Aej ).
In this context, we have the following equivalence of categories:

Lemma 6.8. If (A, e) models (1, J ), then B ⊗A − restricts to an exact bijective
functor F : CMe A→ Sub QJ , which induces an equivalence of exact categories
(CMe A)/[Ae] → Sub QJ .
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Proof. Thanks to Theorem 2.2(d) and (e), F := B⊗A− : CMe A→ SubU induces
an equivalence of exact categories (CMe A)/[Ae] → SubU for some injective
B-module U, so F is exact bijective. By Lemma 5.8(d), we have U ∼= QJ ; hence
the statement holds. �

We start by proving the following proposition by applying the method of change
of orders given in Theorem 2.3.

Proposition 6.9. Assume that (A, e) models (1, J ). Then, for any subset J ′of J,
there exists an order A′, explicitly constructed from A, and an idempotent e′ of A′

such that (A′, e′) models (1, J ′).

Proof. First of all, using indices of (6-1), let e′ =
∑

j∈J ′ ej . Define B := 5/IJ

and B ′ :=5/IJ ′ . Then B ′ is a quotient of A/(e′). Let us check that (A, e′) and B ′

satisfy the hypotheses of Theorem 2.3. First of all, (C1) is clear. By Lemma 6.8,
Q J ′ ∼= FX for some X ∈ CMe A without nonzero direct summands in add Ae.
Moreover, according to Proposition 5.9(a), B-cotop TX ∼= soc Q J ′ so TX ∼= Ae′.
Therefore, thanks to Lemma 5.4, we get

B ′ ∈ Sub Q J ′ ⊂ Sub(Ae′⊗R (K/R));

hence (C2) is satisfied. It is immediate that CMB ′
e′ A ⊂ CMe A so, thanks to (E1),

we get (C3) Ext1A(CM
B ′
e′ A, Ae′)= 0.

We apply Theorem 2.3 to the pair (A, e′) and B ′ to get an explicit order A′. Let
us show that (A′, e′) models (1, J ′). We have B ′ ∼= A′/(e′) by Theorem 2.3(a).
Moreover, (A′, e′) satisfies (E1) and (E2)+ by Theorem 2.3(b), so it also satisfies (E2).
It remains to check for j ∈ J ′ that B ′-cotop(A′ej )∼= Sj . Thanks to Proposition 5.12
and Lemma 5.13, applying H to 0→ Aej→ B-corad(Aej )→ Sj→ 0 gives a short
exact sequence 0→ A′ej → H(B-corad(Aej ))→ Sj → 0 which does not split.
Moreover, H(B-corad(Aej )) ∈ CMe′ A′ so Sj is a summand of B ′-cotop(A′ej ). So,
thanks to Lemma 5.8, B ′-cotop(A′ej )∼= Sj . �

As a consequence, we obtain the following important result of this paper:

Theorem 6.10. For any Dynkin diagram 1 and any set J of vertices of 1, there
exists a pair (A, e) which models (1, J ).

Proof. As 5 is self-injective, thanks to Corollary C, there exist an order A and an
idempotent e of A such that A/(e)∼=5 as C-algebras and D1(Ae)∼= (1− e)A as
right A-modules. So it is immediate that (A, e) models (1,10), where 10 is the
set of vertices of 1. Then, Proposition 6.9 allows us to conclude immediately. �

Notice that the pair (A, e) in Theorem 6.10 is not unique. We will construct in
[Demonet and Iyama ≥ 2016] other possibilities than the one considered in this
paper.
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We now fix a pair (1, J ) and a pair (A, e) modeling it. We will prove that
CMe A categorifies the cluster algebra structure of Ã . From now on, we consider
F : CMe A → Sub QJ as in Lemma 6.8. Since the category Sub QJ is stably
2-Calabi–Yau, CMe A is also stably 2-Calabi–Yau. We now extend the character ϕ̃
to CMe A:

Definition 6.11. For Y ∈ CMe A, we define ψY ∈ Ã as follows. If Y does not
have nonzero direct summands in add Ae, then ψY := ϕ̃FY . For j ∈ J, we define
ψAej :=1j , and we extend the definition to CMe A by the property ψY⊕Z =ψYψZ .

The following main result of this subsection improves Theorem 6.6 of Geiss,
Leclerc and Schröer:

Theorem 6.12. (a) ψ induces a bijection between
• isomorphism classes of reachable indecomposable rigid objects of CMe A;
• cluster variables and coefficients of Ã .

(b) ψ induces a bijection between
• isomorphism classes of reachable basic cluster tilting objects of CMe A;
• clusters of Ã .

Moreover, it commutes with mutation of cluster tilting objects and mutation of
clusters.

We start by proving that ψ is a cluster character, extending Theorem 6.5:

Proposition 6.13. (a) If Y, Z ∈ CMe A, then ψY⊕Z = ψYψZ .

(b) If Y, Z ∈ CMe A are indecomposable and dim Ext1A(Y, Z)= 1 (or equivalently
dim Ext1A(Z , Y )= 1), we have ψYψZ = ψU +ψU ′ , where

ξ1 : 0→ Y →U → Z→ 0 and ξ2 : 0→ Z→U ′→ Y → 0

are two nonsplit short exact sequences.

We need the following lemma, stated without proof in [Geiss et al. 2008], which
can also be seen as a corollary of the much more general [Geiss et al. 2011,
Proposition 12.4]. For the sake of convenience, we give a direct proof.

Lemma 6.14. For any j ∈ J, at least one of the following complexes is exact:

Hom5(Sj ,Fξ1) : 0→Hom5(Sj ,FY )→Hom5(Sj ,FU )→Hom5(Sj ,F Z)→ 0,

Hom5(Sj ,Fξ2) : 0→Hom5(Sj ,F Z)→Hom5(Sj ,FU ′)→Hom5(Sj ,FY )→ 0.

Proof. Applying F to ξ1 and ξ2, we get short exact sequences Fξ1 and Fξ2.
Applying Hom5(Sj ,−) to Fξ1 and Fξ2, it is enough to show that at least one of
the induced morphisms

Hom5(Sj , F Z)→ Ext15(Sj , FY ) and Hom5(Sj , FY )→ Ext15(Sj , F Z)
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vanishes. Without loss of generality, suppose that there exists f : Sj ↪→ F Z such
that the induced extension in Ext15(Sj , FY ) is nonzero. We deduce that

Ext15( f, FY ) : Ext15(F Z , FY )→ Ext15(Sj , FY )

is nonzero, so injective as dim Ext15(F Z , FY )= 1. As 5 is stably 2-Calabi–Yau,
we get that

Ext15(FY, f ) : Ext15(FY, Sj )→ Ext15(FY, F Z)

is surjective, so there is a pushout diagram

0 // Sj

f
��

// M //

��

FY // 0

0 // F Z // FU ′ // FY // 0

the second row of which is the image by F of the short exact sequence given in
Proposition 6.13(b). So, as Ext15(Sj , Sj )= 0, any g : Sj → FY factors through M ,
and hence through FU ′. Therefore, the map Hom5(Sj , FY ) → Ext15(Sj , F Z)
vanishes. �

Proof of Proposition 6.13. (a) It is an obvious consequence of the property for ϕ̃
and our definition of ψ .

(b) Consider decompositions U ∼= U0⊕U1 and U ′ ∼= U ′0⊕U ′1, where U1 and U ′1
are maximal direct summands contained in add Ae. Thanks to Proposition 5.9(b),
we have

U1 =
⊕
j∈J

(Aej )
aj+bj−cj and U ′1 =

⊕
j∈J

(Aej )
aj+bj−c′j ,

where, for j ∈ J,

• aj = dim Hom5/Ij (Sj , FY )= dim Hom5(Sj , FY );

• bj = dim Hom5/Ij (Sj , F Z)= dim Hom5(Sj , F Z);

• ci = dim Hom5/Ij (Sj , FU )= dim Hom5(Sj , FU );

• c′i = dim Hom5/Ij (Sj , FU ′)= dim Hom5(Sj , FU ′).

By Lemma 6.14, using the αj and βj of Theorem 6.5, we have aj + bj − cj =

max(0, c′j − cj )= αj and aj + bj − c′j = βj . Thus, Theorem 6.5 implies

ψYψZ = ϕ̃FY ϕ̃F Z = ϕ̃FU

∏
j∈J

1
αj
j + ϕ̃FU ′

∏
j∈J

1
βj
j

= ψU0ψU1 +ψU ′0ψU ′1 = ψU +ψU ′ . �

Now, we can deduce the proof of Theorem 6.12:
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Proof of Theorem 6.12. By Theorem 6.6, it is enough to note that F :CMe A→SubU
induces a bijection between isomorphism classes of basic cluster tilting objects. This
is immediate as F induces a triangle equivalence CMe A ∼= SubU. More precisely,
basic cluster tilting objects of CMe A are of the form Ae⊕T , where T has no direct
summand in add Ae, and the indecomposable direct summands of T correspond
bijectively to the indecomposable direct summands of FT . �
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A fibered power theorem
for pairs of log general type

Kenneth Ascher and Amos Turchet

Let f : (X, D)→ B be a stable family with log canonical general fiber. We prove
that, after a birational modification of the base B̃→ B, there is a morphism from
a high fibered power of the family to a pair of log general type. If in addition the
general fiber is openly canonical, then there is a morphism from a high fibered
power of the original family to a pair openly of log general type.

1. Introduction

We work over an algebraically closed field of characteristic 0.
Analyzing the geometry of fibered powers of families of varieties has been pivotal

in showing that well known conjectures in Diophantine geometry imply uniform
boundedness of rational points on algebraic varieties of general type. Caporaso,
Harris, and Mazur showed in a celebrated paper [Caporaso et al. 1997] that various
versions of Lang’s conjecture imply uniform boundedness of rational points on
curves of general type. More precisely, they show that, assuming Lang’s conjecture,
for every number field K and integer g ≥ 2, there exists an integer B(K , g) such
that no smooth curve of genus g≥ 2 defined over K has more than B(K , g) rational
points. Similar statements were proven for the case of surfaces of general type in
[Hassett 1996], and eventually all positive-dimensional varieties of general type
in [Abramovich 1997a] and [Abramovich and Voloch 1996]. The essence of these
papers is a purely algebro-geometric statement: the proof of a “fibered power
theorem”, which analyzes the behavior of families of varieties of general type.

The goal of our current research program is to apply birational geometry and
moduli theory to show that the Vojta–Lang conjecture (see Conjecture 1.3) implies
uniform boundedness of stably integral points (see [Abramovich 1997b]) on varieties
of log general type. In short, our objective is to generalize the uniformity results
mentioned above from varieties of general type to pairs of log general type. The
first step is a generalization of the fibered power theorem alluded to above to the
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context of pairs, and we take the goal of this paper to be the proof of the following
theorem:

Theorem 1.1. Let (X, D)→ B be a stable family with integral and log canonical
general fiber over a smooth projective variety B. Then after a birational modifica-
tion of the base B̃→ B, there exists an integer n > 0, a positive-dimensional pair
(W̃, 1̃) of log general type, and a morphism (X̃n

B, D̃n)→ (W̃, 1̃).

Moreover, with an additional assumption on the singularities of the general fiber,
we can avoid a modification of the base:

Theorem 1.2. Let (X, D)→ B be a stable family with integral, openly canonical,
and log canonical general fiber (see Definition 1.6) over a smooth projective
variety B. Then there exists an integer n > 0, a positive-dimensional pair (W,1)
openly of log general type, and a morphism (Xn

B, Dn)→ (W,1).

We state two theorems to satisfy the two competing definitions of log general
type, one which often appears in birational geometry, and one which is useful for
arithmetic applications. To remove any ambiguity, we refer to the former as a
pair of log general type, and the latter as a pair openly of log general type. See
Definitions 1.4 and 1.5 for precise definitions.

Next, we wish to briefly outline how the previous theorem can be used for
arithmetic applications. The analogue of Lang’s conjecture in the setting of pairs is
the following conjecture, due to Vojta and reformulated using ideas of Lang.

Conjecture 1.3 (Vojta–Lang). Let K be a number field and let S be a finite set of
places of K . Let (X, D) be a pair openly of log general type defined over K . Then
the set of S-integral points of X \ D is not Zariski dense.

Given a stable family, Theorem 1.2 gives a morphism from a high fibered power of
this family to a pair (W,1) openly of log general type. Conjecture 1.3 then predicts
that the integral points of W \1 are not Zariski dense. This allows us to prove in
a forthcoming article uniformity results for integral points on higher-dimensional
pairs of log general type assuming that the Vojta–Lang conjecture holds.

Definition 1.4. A pair (X, D) of a proper variety X and an effective Q-divisor D
is of log general type if

• (X, D) has log canonical singularities, and

• ωX (D) is big.

For applications to arithmetic (in forthcoming work) it will be useful to consider
the following.

Definition 1.5. Let X be a quasiprojective variety and let X̃→ X be a desingular-
ization. Let X̃ ⊂ Y by a projective embedding and suppose D = Y \ X̃ is a divisor
of normal crossings. Then X is openly of log general type if ωY (D) is big.
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This second definition is independent of both the choice of the desingularization
as well as the embedding; it is also a birational invariant. Definitions 1.4 and 1.5
are equivalent if the pair (X, D) has log canonical singularities and one considers
the variety X \ (D ∪Sing(X)).

Just to reiterate, we will refer to Definition 1.4 by saying (X, D) is a pair of log
general type. We will refer to Definition 1.5 by stating that the pair is openly of log
general type, as the definition is motivated by considering the complement X \ D.
Throughout the course of this paper, we will take care to specify which definition
we are using.

Definition 1.6. By openly canonical, we mean that the variety X \D has canonical
singularities.

For definitions of canonical, log canonical singularities, and stable pairs, see
Definitions 2.2 and 2.6.

Ideas of proof. To prove Theorem 1.1, we show that it suffices to prove this:

Theorem 4.12. Let (X, D)→ B be a stable family with integral and log canonical
general fiber over a smooth projective variety B. Suppose that the variation of
the family f is maximal (see Definition 2.9). Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) of the pair by a finite group of automorphisms is of log
general type.

Similarly, to prove Theorem 1.2, it suffices to prove the following:

Theorem 4.9. Let f : (X, D)→ B be a stable family with integral, openly canoni-
cal, and log canonical general fiber over a smooth projective variety B. Suppose
that the variation of the family f is maximal. Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) is openly of log general type.

For a definition of maximal variation, see Definition 2.9.
We then obtain Theorem 1.2 by means of Theorem 1.1 and Theorem 4.12. More

specifically, we show that there is a birational transformation (W̃, 1̃)→ (W,1)
such that (W̃, 1̃) manifests (W,1) as a pair openly of log general type.

The main tool of this paper is a recent result of Kovács–Patakfalvi which says that
given a stable family with maximal variation f : (X, Dε)→ B where the general
fiber is Kawamata log terminal (klt), then for large m the sheaf f∗(ω f (Dε))

m is big
[Kovács and Patakfalvi 2015, Theorem 7.1]. Here, the divisor Dε denotes the divisor
with lowered coefficients (1− ε)D for a small rational number ε. Unfortunately
their result does not hold for log canonical pairs; see Example 7.5 of [Kovács and
Patakfalvi 2015]. As a result, since D is not assumed to be Q-Cartier, one obstacle
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of this paper is showing that bigness of ωXn
B
(Dε,n) for some n large enough allows

you to conclude bigness of ωXn
B
(Dn). To do so, one must first take a Q-factorial

dlt modification, followed by a relative log canonical model. The ideas here are
present in Propositions 2.9 and 2.15 of [Patakfalvi and Xu 2015]. See Remark 3.5
for a more detailed discussion.

Finally, we must guarantee that the fibered powers are not too singular. A priori,
it is unclear if taking high fibered powers to ensure the positivity of ωXn

B
(Dn) leads

to a pair with good singularities. This is ensured by the following statement.

Proposition 4.4. Let f : (X, D) → B be a stable family with integral and log
canonical general fiber over a smooth projective variety B. Then for all n > 0, the
fibered powers (Xn

B, Dn) have log canonical singularities.

This also works after taking quotients by finite groups of automorphisms:

Corollary 4.10. Let f : (X, D)→ B be an slc family with integral and log canonical
general fiber over a smooth projective variety B. Then for n large enough, the
quotient pair (Xn

B/G, Dn/G) also has log canonical singularities.

In fact, although we do not use it in this paper, we prove:

Proposition 4.6. The total space of the fiber product of stable families over a stable
base is stable.

The main result we seek then follows via the above methods after applying
standard tools from moduli theory.

Previous work. The general ideas present in this paper originated in the work
of Caporaso, Harris, and Mazur, who showed in [Caporaso et al. 1997] that the
fibered power theorem is true for families of curves of general type, i.e., families
with general fiber smooth curves of genus g ≥ 2. More precisely, they proved the
following theorem.

Theorem 1.7 [Caporaso et al. 1997, Theorem 1.3]. Let f : X → B be a proper
morphism of integral varieties whose general fiber is a smooth curve of genus g ≥ 2.
Then for n sufficiently large, Xn

B admits a dominant rational map h : Xn
B→W to a

positive-dimensional variety of general type W.

In this same paper, the authors conjectured that this result is actually true for
families of varieties of general type of arbitrary dimension. However, they focused
only on the case of curves, as their results relied upon the nice description of a
compact moduli space parametrizing mildly singular objects: the moduli space of
genus g stable curves, Mg. After Alexeev, Kollár, and Shepherd-Barron constructed
a moduli space parametrizing stable surfaces analogous to that of stable curves,
Hassett [1996] showed that the correlation theorem was also true for families
of surfaces of general type. Abramovich [1997a] later proved the fibered power
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theorem for varieties of general type of arbitrary dimension, using an analogue of
semistable reduction.

Abramovich and Matsuki [2001] proved a fibered power theorem for principally
polarized abelian varieties, using Alexeev’s compact moduli space. This was
a generalization of some prior results which considered pairs of elliptic curves
and their origins; see [Pacelli 1997; 1999; Abramovich 1997b]. Furthermore,
Abramovich and Matsuki remark that the result should in fact be true for stable
pairs (X, D), and so we take this as the goal of this paper.

Finally, although we hope that this result will be of interest in its own right from
the viewpoint of geometry, there are numerous applications to arithmetic, namely to
the study of integral points on pairs of log general type, assuming the Lang–Vojta
conjecture. This approach was taken in all the papers mentioned above and we
obtain similar results in this direction (to appear).

Outline.
• Section 2: Preliminary definitions and notation.
• Section 3: We prove that ωXn

B
(Dn) is big for a stable family of maximal variation

with log canonical general fiber, and that the fibered power theorem holds for max
variation families when the general fiber is both openly canonical and log canonical.
• Section 4: Some results on singularities, namely we analyze the singularities of
fibered powers and study the affect of group quotients, and we prove the fibered
power theorem for log canonical general fiber in the case of max variation.
• Section 5: We prove the full fibered power theorems by reducing to families of
maximal variation.

2. Preliminaries and notation

Birational geometry.

Definition 2.1. A line bundle L on a proper variety X is called big if the global
sections of Lm define a birational map for m > 0. A Cartier divisor D is called big
if OX (D) is big.

From the point of view of birational geometry and the minimal model program,
it has become convenient and standard to work with pairs. We define a pair (X, D)
to be a variety X along with an effective R-divisor D =

∑
di Di which is a linear

combination of distinct prime divisors.

Definition 2.2. Let (X, D) be a pair where X is a normal variety and K X + D is
Q-Cartier. Suppose that there is a log resolution f : Y → X such that

KY +
∑

aE E = f ∗(K X + D),
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where the sum goes over all irreducible divisors on Y . We say that (X, D) is

• canonical if all aE ≤ 0,

• log canonical (lc) if all aE ≤ 1, and

• Kawamata log terminal (klt) if all aE < 1.

Remark 2.3. In particular, for a klt pair, the coefficients di in the decomposition
D =

∑
di Di are all strictly < 1. Similarly, for a lc pair, the coefficients are ≤ 1.

Definition 2.4. A pair
(
X, D=

∑
di Di

)
is semilog canonical (slc) if X is reduced,

K X + D is Q-Cartier, and

(1) the variety X satisfies Serre’s condition S2,

(2) X is Gorenstein in codimension one, and

(3) if ν : Xν
→ X is the normalization, then the pair

(
Xν,

∑
diν
−1(Di )+ D∨

)
is

log canonical, where D∨ denotes the preimage of the double locus on Xν.

Remark 2.5. Semilog canonical singularities can be thought of as the extension of
log canonical singularities to nonnormal varieties. The only difference is that a log
resolution is replaced by a good semiresolution.

Definition 2.6. A pair (X, D) of a proper variety X and an effective Q-divisor D,
is a stable pair if

• the line bundle ωX (D) is ample and

• the pair (X, D) has semilog canonical singularities.

We assume that all of our families of pairs satisfy Kollár’s condition. To be
precise, we define a stable family as follows. Let X be a variety and F an OX -
module. The dual of F is denoted F?

:= HomX (F,OX ) and we define the m-th
reflexive power of F to be the double dual (or reflexive hull) of the m-th tensor
power of F :

F [m] := (F⊗m)??.

Definition 2.7. An slc family is a flat morphism f : (X, D)→ B such that

• each fiber (Xb, Db) is an slc pair,

• ω f (D)[m] is flat, and

• (Kollár’s condition) for every base change τ : B ′ → B, given the induced
morphism ρ : (XB ′, DB ′)→ (X, D) we have that the natural homomorphism

ρ∗(ω f (D)[m])→ ω f ′(D)[m]

is an isomorphism.

We say that f : (X, D)→ B is a stable family if in addition to the above, each
(Xb, Db) is a stable pair. Equivalently, KXb + Db is ample for every b ∈ B.
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Moduli space of stable pairs. Constructing the moduli space of stable pairs, de-
noted below by Mh , has been a difficult task. A discussion of the construction of
the moduli space Mh is not necessary for this paper, but for sake of completeness
we note that there exists a finite set of constants, which we denote by h, that allows
for a compact moduli space. As long as the coefficients di appearing in the divisor
decomposition are all > 1

2 , there are no issues and we do in fact have a well defined
moduli space. There is no harm in assuming this outright, which leads to the
following:

Assumption 2.8. The coefficients of the divisors considered are always > 1
2 .

We refer the reader to [Kollár 2010] or to the introduction of [Kovács and
Patakfalvi 2015] for more details.

Variation of moduli. Given a stable family f : (X, D)→ B, we obtain a canonical
morphism

φ : B→ Mh

sending a point b∈ B to the point of the moduli space Mh of stable pairs, classifying
the fiber (Xb, Db). This motivates the following definition.

Definition 2.9. A family has maximal variation of moduli if the corresponding
canonical morphism is generically finite.

Equivalently, the above definition means that the family is a truly varying family,
diametrically opposed to one which is isotrivial, where the fibers do not vary at all.

Notation. Given a morphism of pairs f : (X, D)→ B, we denote by (Xn
B, Dn)

the unique irreducible component of the n-th fiber product of (X, D) over B
dominating B. We define Dn to be the divisor Dn :=

∑n
i=1 π

∗

i (D) where the maps
πi : (Xn

B, Dn)→ B denote the projections onto the i-th factors. We denote by fn

the maps fn : (Xn
B, Dn)→ B. Finally, we denote by Dε the divisor (1− ε)D and

by Dε,n the sum Dε,n :=
∑n

i=1 π
∗

i (Dε).

3. Positivity of the relative anticanonical sheaf

Recall that to prove that the pair (Xn
B, Dn) is a pair of log general type, we must

show that

(a) ωXn
B
(Dn) is big, and

(b) the pair (Xn
B, Dn) has log canonical singularities.

We also remind the reader that we will demonstrate in Section 4 that Theorem 4.12
implies Theorem 1.1. Therefore, in this section we assume that the variation of our
family is maximal. More precisely, the goal of this section is to prove the following
proposition, tackling property (a).
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Proposition 3.1. Let f : (X, D)→ B be a stable family with maximal variation
over a smooth, projective variety B with integral and log canonical general fiber.
Then for n sufficiently large, the sheaf ωXn

B
(Dn) is big.

As mentioned in the introduction, we will prove this by means of a slightly
weaker statement:

Proposition 3.2. Let f : (X, Dε)→ B be a stable family with maximal variation
over a smooth, projective variety B with klt general fiber. Then for n sufficiently
large, the sheaf ωXn

B
(Dε,n) is big.

Our proof of Proposition 3.2 requires a recent theorem of Kovács and Patakfalvi:

Theorem 3.3 [Kovács and Patakfalvi 2015, Theorem 7.1 and Corollary 7.3]. If
f : (X, Dε)→ B is a stable family with maximal variation over a normal, projective
variety B with klt general fiber, then f∗(ω f (Dε)

m) is big for m large enough.
Moreover, ω f (Dε) is big.

Let S[n] denote the reflexive hull of the n-th symmetric power of a sheaf. Then
the above theorem is equivalent to saying that, under the hypotheses, for any ample
line bundle H on B there exists an integer n0 such that

S[n0]( f∗(ω f (Dε)
m))⊗ H−1 (1)

is generically globally generated. We desire to show that this implies Proposition 3.2;
this essentially follows from Proposition 5.1 of [Hassett 1996], but we include the
proof for completeness to show how it extends to the case of pairs. We begin with
a lemma.

Lemma 3.4. Let f : (X, D)→ B be a stable family over a smooth projective variety
B such that the general fiber has log canonical singularities. Then for all n > 0, the
following formula holds:

ωXn
B
(Dn)

[m]
= π∗1ω f (D)[m]⊗ · · ·⊗π∗nω f (D)[m]⊗ f ∗n ω

m
B .

Proof. Recall that the relative dualizing sheaf satisfies the equation

ω fn (Dn)= π
∗

1ω f (D)⊗ · · ·⊗π∗nω f (D),

where π j denotes the projection π j : Xn
→ X to the j -th factor. Since B is smooth

we obtain
ωXn

B
(Dn)

[m]
= ω fn (Dn)

[m]
⊗ f ∗n ω

m
B .

Since f : (X, D)→ B is a stable family, there exists an integer m such that for all
b ∈ B, the sheaf ω f (D)[m]|Xb is locally free. Moreover, since this sheaf is locally
free on each fiber, ω f (D)[m] is also locally free for this m. We claim that

ωXn
B
(Dn)

[m]
= π∗1ω f (D)[m]⊗ · · ·⊗π∗nω f (D)[m]⊗ f ∗n ω

m
B .
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Both sides of the equation are reflexive — the left-hand side by construction, and the
right-hand side because it is the tensor product of locally free sheaves. Therefore,
to prove the equivalence, we must show the two sides agree on an open set whose
complement has codimension at least two. Consider the locus consisting of both
the general fibers, which are log canonical and hence Q-Gorenstein, as well as the
nonsingular parts of the special fibers. Note that the complement of this locus is
of codimension at least two, because the singular parts of the special fiber are of
codimension one, thus of at least codimension two in the total space. �

Proof of Proposition 3.2. Let m ∈ Z be such that both ω f (Dε)
[m] is locally free and

f∗(ω f (Dε)
m) is big. First note that for n large enough, the sheaf

( f∗(ω f (Dε)
m))[n]⊗ H−1

is generically globally generated. This follows since by Proposition 5.2 of [Hassett
1996], for an r-dimensional vector space V, each irreducible component of the
reflexive hull of the m-th tensor power of V is a quotient of a representation
S[q1](V )⊗· · ·⊗ S[qk ](V ), where k = r !. Using this, we prove that ωXn

B
(Dε,n) is big

for large n. To do so, it suffices to show that there are on the order of mn dim Xη+b

sections of ωXn
B
(Dε)

[m], where b = dim B and Xη denotes the general fiber.
By Lemma 3.4,

ωXn
B
(Dε,n)

[m]
= π∗1ω f (Dε)

[m]
⊗ · · ·⊗π∗nω f (Dε)

[m]
⊗ f ∗n ω

m
B .

The sheaf ω f (Dε) has good positivity properties — it is big by Corollary 7.3 of
[Kovács and Patakfalvi 2015], but the sheaf ωB is somewhat arbitrary and could
easily prevent ωXn

B
(Dε,n) from being big. However, taking high enough powers of

X allows the positivity of ω f (Dε) to overcome the possible negativity of ωB .
Applying ( fn)∗ gives, via the projection formula,

( fn)∗(ωXn
B
(Dε,n)

[m])= ( f∗(ω f (Dε)
[m]))n ⊗ωm

B ,

which is also a reflexive sheaf by Corollary 1.7 of [Hartshorne 1980]. More
specifically, it is the pushforward of a reflexive sheaf under a proper dominant
morphism. Then the inclusion map ω f (Dε)

m
→ ω f (Dε)

[m] induces a map of
reflexive sheaves:

( f∗ω f (Dε)
m)[n]→ ( f∗ω f (Dε)

[m])n = ( fn)∗(ωXn
B
(Dε,n)

[m])⊗ω−m
B ,

which is an isomorphism at the generic point of B.
Let H be an invertible sheaf on B such that H ⊗ωB is very ample. Then we can

choose n so that ( f∗ω f (Dε)
m)[n]⊗ H−m is generically globally generated for all

admissible values of m. But then

( f∗ω f (Dε)
m)[n]⊗ H−m

= ( fn)∗(ωXn
B
(Dε,n)

[m])⊗ (H ⊗ωB)
−m
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is also generically globally generated for the same m.
This sheaf has rank on the order of mn dim Xη , so there are at least this many

global sections. By our assumption on H , we have that (H⊗ωB)
m has on the order

of mb sections varying horizontally along the base B. By tensoring, we obtain that
the sheaf

( fn)∗(ωXn
B
(Dε,n))

[m]

has on the order of mn dim Xη+b global sections, and therefore ωXn
B
(Dε,n) is big. �

Remark 3.5. Proposition 3.2 assumed that the general fiber (Xb, Db) had klt
singularities, but to prove Theorem 1.1 as stated, we must allow the general fiber to
have log canonical singularities. Unfortunately, we cannot just raise the coefficients
of D so that the pair has log canonical singularities, via twisting by εD to conclude
that ωXn

B
(Dn) is also big. This is because we do not know that the divisor D is

Q-Cartier. We remedy this situation with a Q-factorial divisorial log terminal (dlt)
modification (see Section 1.4 of [Kollár 2013] for an overview of dlt models), as
explained below.

First, the definition of a dlt pair:

Definition 3.6. Let (X, D) be a log canonical pair such that X is normal and
D =

∑
di Di is the sum of distinct prime divisors. Then (X, D) is divisorial log

terminal (dlt) if there exists a closed subset Z ⊂ X such that

(1) X \ Z is smooth and D|X\Z is an snc divisor;

(2) if f : Y → X is birational and E ⊂ Y is an irreducible divisor such that
centerX E ⊂ Z , then the discrepancy a(E, X, D) < 1.

See Definition 2.25 in [Kollár and Mori 1998] for a definition of the discrepancy
of a divisor E with respect to a pair (X, D).

Roughly speaking, a pair (X, D) is dlt if it is log canonical, and it is simple
normal crossings at the places where it is not klt. The following theorem of Hacon
guarantees the existence of dlt modifications.

Theorem 3.7 [Kollár and Kovács 2010, Theorem 3.1]. Let (X, D) be a pair of
a projective variety X and a divisor D =

∑
di Di with coefficients 0 ≤ di ≤ 1,

such that K X + D is Q-Cartier. Then (X, D) admits a Q-factorial mini dlt model
f min
: (Xmin, Dmin)→ (X, D).

The upshot here is that, starting with a log canonical pair (X, D) we can obtain
a model which is dlt and Q-factorial.

The statement that we will actually apply follows from [Patakfalvi and Xu 2015,
Proposition 2.9]:

Proposition 3.8. Let f : (X, D)→ B be a stable family over a smooth variety B.
Assume that the general fiber (Xb, Db) has log canonical singularities and that the
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variation of the family is maximal. Then for each 0 < ε � 1 there exists a pair
(Z ,1ε), an effective divisor 1 on Z , and a morphism p : Z→ X such that

(a) K Z +1= p∗(K X + D),

(b) (Z ,1ε) is klt,

(c) g : (Z ,1ε)→ B is a stable family,

(d) the variation of g is maximal, and

(e) 1−1ε is an effective divisor such that Supp(ε1)⊂ Ex(p)∩Supp(p−1
∗
1).

Sketch of proof. The rough idea is to take a Q-factorial dlt modification of X , and
then shrink the resulting divisor so that the new pair (Z̃ , 1̃ε) is klt. Finally, taking
the relative log canonical model of (Z̃ , 1̃ε)→ X yields a stable family with klt
general fiber and maximal variation. �

We are now in position to prove the main statement of this section, Proposition 3.1,
whose proof is inspired by Proposition 2.15 of [Patakfalvi and Xu 2015].

Proof of Proposition 3.1. We begin with a stable family with maximal variation
f : (X, D)→ B such that the generic fiber is log canonical. The goal is to show
that ωXn

B
(Dn) is big for n sufficiently large.

First take p̃ : Z̃ → X to be a Q-factorial dlt modification of X , and let 1̃
be a divisor on Z̃ such that p̃∗(K X + D) = K Z̃ + 1̃. Since Z̃ is Q-factorial by
construction, we can lower the coefficients of the divisor 1̃ by 0< ε� 1, a rational
number, to obtain a klt pair (Z̃ , 1̃ε).

Define p : Z → X to be the relative log canonical model of (Z̃ , 1̃ε) → X .
Denoting the induced morphism by q : Z̃ 99K Z , we define 1 to be the pushforward
1= q∗(1̃). By Proposition 3.8, the new family g : (Z ,1ε)→ B is a stable family
with maximal variation such that the generic fiber is klt. Thus, by Proposition 3.2,
for n large enough, ωZn

B
(1ε,n) is big.

Moreover, since (Z ,1ε)→ X is the relative log canonical model of (Z̃ , 1̃ε)→ X ,
pluri-log canonical forms on Z̃ are the pullbacks of pluri-log canonical forms on Z .
From this we conclude that ωZ̃n

B
(1̃ε,n) is also big. Now since Z̃ is Q-factorial,

we know that ε1 is a Q-Cartier divisor. This property allows us to enlarge the
coefficients of 1̃. Recall that ε1 is effective by Proposition 3.8(e), and thus
ωZ̃n

B
(1̃n) is big as well.

Since p̃ : Z̃→ X is a birational morphism and p̃∗(KX + D)= K Z̃ + 1̃, pulling
back pluri-log canonical forms through p̃ preserves the number of sections. Thus,
we finally conclude that ωXn

B
(Dn) is big. �

Finally, we prove the following theorem for pairs openly of log general type.

Theorem 3.9. Let f : (X, D)→ B be a stable family with integral, openly canoni-
cal, and log canonical general fiber over a smooth projective variety B. Suppose that
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the variation of the family f is maximal. Then ωXn
ss
(Dss

n ) is big, where (Xn
ss, Dss

n )

denotes the n-th fibered power of the weak semistable model of the pair (X, D).

Proof. Consider the diagram

(Xss, Dss) (X̃ , D̃)= X ×B1 B (X, D)

1⊂ B1 B1 B

φ

πss

σ

g f

where (Xss, Dss)→ B1 denotes the weak semistable model (see Definition 0.4 of
[Karu 1999]) of the family (X, D)→ B, and 1 ⊂ B1 denotes the discriminant
divisor over which the exceptional lies. Such a model exists by [Karu 1999]. Since
taking the weak semistable model gives a pair which is at worst openly canonical
and log canonical, we are not required to take a resolution of singularities. This
is because, by definition of both openly canonical and log canonical singularities,
sections of ωXss(D

ss) give regular sections of logarithmic pluricanonical sheaves of
any desingularization.

More precisely, we have

φ∗(ωg(D̃))= ωπss(D
ss
+ E)⊂ ωπss(D

ss
+π∗ss(1)).

Let π∗ss1 = 1
ss. Then since ωg(D̃) is big by Theorem 3.3, so is ωg(D̃ − 1

n1
ss).

Taking fibered powers, as in Proposition 3.1, shows that ωX̃n
B1
(D̃n(−1

ss
n )) is also

big. Moreover,

φ∗n
(
ωX̃n

B1
(D̃n(−1

ss
n ))
)
⊂ ωXn

ss
(Dss

n )(1
ss
n −1

ss
n )= ωXn

ss
(Dss

n )

is big. �

The definition of openly of log general type then implies that we have actually
shown the following.

Theorem 3.10. Let f : (X, D)→ B be a stable family with integral, openly canon-
ical, and log canonical general fiber over a smooth projective variety B. Suppose
that the variation of the family f is maximal. Then there exists an integer n > 0
such that (Xn

B, Dn) is openly of log general type.

4. Singularities

The purpose of this section is to prove that if we begin with a pair (X, D) with
log canonical singularities, then fibered powers (Xn

B, Dn) also have log canonical
singularities for all n > 0. As the following example shows, it is necessary to
restrict the singularities, as there exist varieties Y such that ωY is big, but Y is not
of general type!
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Example 4.1. Let Y be the projective cone over a quintic plane curve C . Then ωY

is big (even ample), but Y is birational to P1
×C , which has Kodaira dimension

κ(P1
×C)=−∞. So although ωY is big, Y is not openly of log general type.

The following proposition is a version of log inversion of adjunction.

Proposition 4.2 [Patakfalvi 2016, Lemma 2.12]. The total space of an slc family
over an slc base has slc singularities.

This result immediately extends to products of slc families.

Corollary 4.3. The total space of the product of slc families over an slc base also
has slc singularities.

Proof. Let f : (X1, D1)→ B and g : (X2, D2)→ B be two slc families over an
slc base B. Then the product family g : (X,1)→ B is the total space of an slc
family over either of the factors. Therefore both the product family as well as its
total space have slc singularities by Proposition 4.2. �

Inductively, this shows that the fibered powers (Xn
B, Dn) have semilog canonical

singularities. The statement that we will actually use to prove our result is the
following:

Proposition 4.4. Let f : (X, D) → B be a stable family with integral and log
canonical general fiber over a smooth projective variety B. Then for all n > 0, the
fibered powers (Xn

B, Dn) have log canonical singularities.

Proof. By Proposition 4.2, the total space of the family (X, D) is slc. In fact, we will
show that it is actually log canonical, which is equivalent to showing that (X, D) is
normal. Recall that to show that the pair (X, D) is normal, it suffices to show that
it is regular in codimension one (abbreviated R1) and satisfies Serre’s condition S2.
Since the general fiber has log canonical singularities, the fibers (Xb, Db) are R1
over the general point of the base B. Over the special fibers, the singularities are of
at least codimension one in the fiber, and are thus at least codimension two in the
total space. Therefore, it follows that the total space (X, D) is R1. Finally, the pair
(X, D) is S2 by definition, since it has semilog canonical singularities.

Therefore, by Corollary 4.3, for all n > 0 the fibered powers (Xn
B, Dn) also have

log canonical singularities. �

In fact, the following stronger statements are also true. Although we do not use
them in this paper, we hope that they may be of interest to readers.

Proposition 4.5. The fiber product of two stable families is a stable family.

Proof. This result essentially follows from Proposition 2.12 in [Bhatt et al. 2013].
We reproduce the argument for the convenience of the reader.

Let f : (X, D)→ B and g : (Y, E)→ B be two stable families, and denote the
fiber product family by h : (Z , F)→ B. Since both families f and g are flat of finite
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type with S2 fibers by assumption, and since we are assuming Kollár’s condition,
by Proposition 5.1.4 of [Abramovich and Hassett 2011] we have that ω[k]X/B(D) is
flat over B. Moreover, by Lemma 2.11 of [Bhatt et al. 2013] we have that

p∗Xω
[k]
X/B(D)⊗ p∗Yω

[k]
Y/B(E)

is a reflexive sheaf on the product. By Lemma 2.6 of [Hassett and Kovács 2004],
the above sheaf is isomorphic to ω[k]Z/B(F) on an open subset whose complement
has codimension at least two, and therefore we conclude that

ω
[k]
Z/B(F)= p∗Xω

[k]
X/B(D)⊗ p∗Yω

[k]
Y/B(E).

Moreover, Kollár’s condition holds, as by assumption both components of this fiber
product commute with arbitrary base change. Choosing a sufficient index k, namely
the least common multiple of the index of the factors, we see that ωZ/B(F) is a
relatively ample Q-line bundle, and thus we conclude that h : (Z , F)→ B is also a
stable family. �

Proposition 4.6. The total space of the fiber product of stable families over a stable
base is stable.

Proof. By Proposition 2.15 in [Patakfalvi and Xu 2015] (see also [Fujino 2012,
Theorem 1.13]), if f : (X, D) → (B, E) is a stable family whose variation is
maximal over a normal base, then ω f (D) is nef. First we note that it suffices to
prove the statement over a normal base, since nef is a property which is decided on
curves. Since normalization is a finite birational morphism, nonnegative intersection
with a curve is preserved. Thus, we wish to show that this statement is true without
the assumption that the variation of f is maximal. Let B ′→ B be a finite cover of
the base so that the pullback family f ′ : (X ′, D′)→ B ′ maps to g : (U,D)→ T ,
a family of maximal variation. In this case ω f ′(D′) is nef, as it is the pullback of
ωg(D) which is nef. Since ω f ′(D′) is the pullback of ω f (D) by the finite morphism
X ′→ X , the projection formula implies that ω f (D) is nef as well. This shows that
the sheaf ω f (D) is nef, regardless of whether the variation of f is maximal or not.
Then since ω f (D) is nef and f -ample, and since the base is stable, ωB(E) is ample.
Therefore, we can conclude that ωX (D+ f ∗E)= ω f (D)⊗ f ∗ωB(E) is ample. �

The next theorem, which we actually need, follows from Propositions 3.1 and 4.4.

Theorem 4.7. Let (X, D)→ B be a stable family with integral and log canonical
general fiber and maximal variation over a smooth projective variety B. Then there
exists an integer n > 0 such that the pair (Xn

B, Dn) is of log general type.

Proof. By Proposition 3.1, we have that ωXn
B
(Dn) is big, and by Proposition 4.4,

the fibered powers (Xn
B, Dn) have log canonical singularities. �
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To prove the stronger Theorem 4.12, we must show that what we have proven
also works after taking the quotient by a group of automorphisms. This is precisely
the content of Proposition 4.8 and Corollary 4.11 below.

This claim essentially follows from the work of various authors in previous
papers in the subject. The approach is present in, for example, Lemma 3.2.4 of
[Abramovich and Matsuki 2001] as well as Lemma 2.4 of [Pacelli 1999]. We
reproduce the statement in our case below.

Proposition 4.8. Let (X, D) be openly of log general type. There exists a positive
integer n such that the pair (Xn

B, Dn)/G is also openly of log general type.

Proof. Let H ⊂ X be the locus of fixed points of the action of G ⊆Aut(X, D). Let
IH denote the corresponding sheaf of ideals. We have seen before that ω f (D) is
big. Then, for sufficiently large k, we have that the sheaf

ω f (D)⊗k
⊗ f ∗ω⊗k

B ⊗ I |G|H

is big. If we pass to the k-th fibered power, we have that

(ωX k
B
(Dk))

⊗k
⊗ f ∗k ω

⊗k
B ⊗

k∏
i=1
π−1I |G|H

is also big.
Regarding the above product, we have

∏k
i=1 π

−1
i I |G|H ⊂

(∑k
i=1 π

−1
i I |G|H

)k, and
the latter ideal vanishes to order at least k|G| on the fixed points of the action of G.
Moreover, we have that

(ω fk (Dk))
⊗k
⊗π∗k ω

⊗k
B = (ωX k

B
(Dk))

⊗k.

This allows us to conclude that for n � 0, there are enough invariant sections
of ωX k

B
(Dk)

⊗n vanishing on the fixed point locus to order at least n|G|.
Now let

r : (X ,D)→ (X k
B, Dk)

be an equivariant good resolution of singularities such that r−1(Dk) = D. Note
that such a resolution is guaranteed by Hironaka [1977]. Since X \ D does not
necessarily have canonical singularities away from the general fiber, we have
introduced exceptional divisors in the resolution that will alter sections of ωX (D).
To fix this, we simply apply the methods used in the proof of Theorem 3.9 — namely,
twist by some small negative multiple of the divisor 1 containing the exceptional.

To conclude the result, it suffices to show that invariant sections of (ωX k
B
(Dk))

⊗n

vanishing on the fixed point locus to order at least n|G| descend to sections of the
pluri-log canonical divisors of a good resolution of the quotient pair (Xn

B/G, Dn/G).
Denote by q : (X ,D)→ (X/G,D/G) the morphism to the quotient, and let

φ : (X̃/G, D̃/G)→ (X/G,D/G)
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denote a good resolution. Then Lemma 4 from [Abramovich 1997b] tells us
that the invariant sections of ωX (D)⊗n vanishing on the fixed point locus to order
≥ n|G| come from sections of the pluri-log canonical divisors of a desingularization,
i.e., sections of ωX̃ (D̃)⊗n. Therefore, for n sufficiently large, the quotient pair
(Xn

B, Dn)/G is openly of log general type. �

This also proves the following theorem:

Theorem 4.9. Let f : (X, D)→ B be a stable family with integral, openly canoni-
cal, and log canonical general fiber over a smooth projective variety B. Suppose
that the variation of the family f is maximal. Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) is openly of log general type.

Furthermore, combining Proposition 4.8 with Proposition 4.4 yields:

Corollary 4.10. Let f : (X, D)→ B be an slc family with integral and log canonical
general fiber over a smooth projective variety B. Then for n large enough, the
quotient pair (Xn

B/G, Dn/G) also has log canonical singularities.

This then gives an analogue to Proposition 4.8 for pairs of log general type.

Corollary 4.11. Let (X, D) be a pair of log general type. There exists a positive
integer n such that the pair (Xn

B, Dn)/G is also a pair of log general type.

Thus we have completed the proof of the following theorem.

Theorem 4.12. Let (X, D)→ B be a stable family with integral and log canonical
general fiber over a smooth projective variety B. Suppose that the variation of
the family f is maximal (see Definition 2.9). Let G be a finite group such that
(X, D)→ B is G-equivariant. Then there exists an integer n > 0 such that the
quotient (Xn

B/G, Dn/G) of the pair by a finite group of automorphisms is of log
general type.

Proof. This follows from Theorem 4.7 and Corollary 4.11. �

The next and final section shows how to reduce the proof of the Theorem 1.1 to
Theorem 4.12. Then, we show that Theorem 1.2 follows from Theorem 1.1.

5. Proof of Theorems 1.1 and 1.2 — reduction to the case of max variation

The final section of this paper is devoted to reducing the proofs of our two main
theorems to the case of maximal variation. We will use the existence of a tautological
family over a finite cover of our moduli space to show that, after a birational
modification of the base, the pullback of a stable family with integral and log
canonical general fiber has a morphism to the quotient of a family of maximal
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variation by a finite group. Then using the fact that our result holds for families of
maximal variation, we will conclude that, after a modification of the base, a high
fibered power of the pullback of a stable family with integral and log canonical
general fiber has a morphism to a pair of log general type.

Finally, we show that if we add the assumption that the general fiber of our
family is openly canonical and log canonical, we can avoid taking a modification
of the base to prove Theorem 1.2.

Remark 5.1. As we will be using the moduli space of stable pairs Mh , we remind
the reader that we are in the situation of Assumption 2.8.

Unfortunately the moduli space Mh that we are working with does not carry a
universal family. The following lemma gives a tautological family, which can be
thought of as an approximation of a universal family.

Lemma 5.2 [Kovács and Patakfalvi 2015, Corollary 5.19]. There exists a tautolog-
ical family (T ,D) over a finite cover � of the moduli space Mh of stable log pairs.
That is, there exists a variety �, a finite surjective map φ :�→ Mh , and a stable
family T →� such that φ(x)= [(Tx ,Dx)].

Proposition 5.3. Let f : (X, D)→ B be a stable family such that the general
fiber is integral and has log canonical singularities. Then there exists a birational
modification of the base B̃→ B, and a morphism (X̃ , D̃)→ B̃ to (T6̃, D̃)/G, the
quotient of a family of maximal variation by a finite group G

Proof. Let f : (X, D)→ B be a stable family such that the general fiber is integral
and has log canonical singularities. In particular, we do not assume that the variation
of f is maximal. There is a well defined canonical morphism B→ Mh . Call the
image of this morphism 6. Over this 6 lies the universal family (T6,D). Since
Mh is a stack, the maps (X, D)→ (T6,D) and B→6 factor through the coarse
spaces 6 and (T 6,D). The general fiber of (T 6,D)→6 is simply (S, DS)/K ,
where (S, DS) is a pair of log general type and K is the finite automorphism group.

Unfortunately there is no control on the singularities of 6— if the singularities
are not too mild, the fibered powers (T n

6 ,Dn) have no chance of having log canonical
singularities. To remedy this we take a resolution of singularities. Using Lemma 5.2,
we take a Galois cover followed by an equivariant resolution of singularities to
obtain 6̃→ 6. Call the Galois group of this cover H . Then over 6̃, we have a
tautological family (T6̃, D̃). Here the general fiber is simply (S, DS), a pair of log
general type.

Consider the quotient map 6̃→ 6̃/H . Taking the pullback of (T 6,D) through
6̃/H yields (T6̃/H , D̃′). Letting G be the group G = H × K , we can construct the
following diagram:
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(T6̃, D̃) (T6̃, D̃)/G (T6̃/H , D̃′) (T 6,D) T

6̃ 6̃/H 6̃/H 6 Mh

ν

We claim that the map ν : (T6̃, D̃)/G→ (T6̃/H , D̃′) is actually the normalization
of (T6̃/H , D̃′). First note that (T6̃, D̃)/G is normal, and that the morphism ν is finite
as the morphism (T6̃, D̃)→ (T 6,D) is. Therefore, to prove ν is the normalization
of (T6̃/H , D̃′), it suffices to prove that ν is birational. To do so, consider the
following diagram:

(T6̃, D̃) (T6̃, D̃)/H ((T6̃, D̃)/H)/K = (T6̃, D̃)/G

6̃ 6̃/H 6̃/H

From this diagram it is clear that the general fiber of (T6̃, D̃)/G→ 6̃/H is precisely
(S, DS)/K — the quotient by H identifies fibers and the quotient by K removes
the automorphisms. Since the map ν is an isomorphism over the generic fibers, ν is
a birational map and thus is the normalization of (T6̃/H , D̃′).

The pair (X, D) does not map to (T6̃/H , D̃′). Instead, take a modification of the
base B̃→ B, where B̃= B×6 6̃/H . Then the pullback (X̃ , D̃)maps to (T6̃/H , D̃′).
Since (X̃ , D̃) is normal and ν is the normalization, we see that (X̃ , D̃) also maps
to (T6̃, D̃)/G. Finally, because the family (T6̃, D̃)/G→ 6̃/H is the quotient of a
family of maximal variation by a finite group, we have completed the proof of the
proposition. �

Proof of Theorem 1.1. Let (T6̃, D̃) denote the tautological family of maximal
variation obtained in the proof of Proposition 5.3. Passing to n-th fibered powers,
Theorem 4.12 guarantees that (T n

6̃
, D̃n) is of log general type. By Corollary 4.11,

(T n
6̃
, D̃n)/G is also of log general type for n sufficiently large. Thus the proof of

Theorem 1.1 follows from Proposition 5.3, as we have shown that after modifying
the base, we obtain a morphism from a high fibered power of our family to a pair
of log general type. �

Finally, we prove Theorem 1.2, the fibered power theorem for pairs openly of
log general type.

Proof of Theorem 1.2. The proof essentially follows from the proof of Proposition 5.3.
Assuming that the general fiber is openly canonical and log canonical, Theorem 4.9
shows that, for n sufficiently large, the pair (T n

6̃
, D̃n)/G is openly of log general type.

As there is a birational morphism (T n
6̃
, D̃n)/G→ (T n

6,Dn), it follows that (T n
6,Dn)
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is also openly of log general type. Therefore, we have constructed a morphism
from a high fibered power of our family to a pair openly of log general type, and
have thus completed the proof of the theorem. The upshot here is that we do not
have to modify the base of our starting family. �
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