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We present an effective criterion to determine if a normal analytic compactifica-
tion of C2 with one irreducible curve at infinity is algebraic or not. As a byproduct
we establish a correspondence between normal algebraic compactifications of C2

with one irreducible curve at infinity and algebraic curves contained in C2 with
one place at infinity. Using our criterion we construct pairs of homeomorphic
normal analytic surfaces with minimally elliptic singularities such that one of the
surfaces is algebraic and the other is not. Our main technical tool is the sequence
of key forms — a “global” variant of the sequence of key polynomials introduced
by MacLane [1936] to study valuations in the “local” setting — which also extends
the notion of approximate roots of polynomials considered by Abhyankar and
Moh [1973].

1. Introduction

Algebraic compactifications of C2 (i.e., compact algebraic surfaces containing C2)
are in a sense the simplest compact algebraic surfaces. The simplest among these are
the primitive compactifications, i.e., those for which the complement of C2 (a.k.a.
the curve at infinity) is irreducible. It follows from a famous result of and Van de
Ven that up to isomorphism, P2 is the only nonsingular primitive compactification
of C2. In some sense a more natural category than nonsingular algebraic surfaces
is the category of normal algebraic surfaces1. In this article we tackle the problem
of understanding the simplest normal algebraic compactifications of C2:

Question 1.1. What are the normal primitive algebraic compactifications of C2?

MSC2010: primary 14J26; secondary 32J05, 14E15, 14E05.
Keywords: algebraicity, compactifications, one place at infinity, valuations,

1This is true for example from the perspective of valuation theory: the irreducible components
of the curve at infinity of a normal compactification X of C2 correspond precisely to the discrete
valuations on C[x, y] which are centered at infinity with positive dimensional center on X . Therefore
X is primitive and normal if and only if X corresponds to precisely one discrete valuation centered at
infinity on C[x, y].
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We give a complete answer to this question; in particular, we characterize
both algebraic and nonalgebraic primitive compactifications of C2. Our answer
is equivalent to an explicit criterion for determining algebraicity of (analytic)
contractions of a class of curves: indeed, it follows from well-known results of
Kodaira, and independently of Morrow, that any normal analytic compactification
X of C2 is the result of contraction of a (possibly reducible) curve E from a
nonsingular surface constructed from P2 by a sequence of blow-ups. On the other
hand, a well-known result of Grauert completely and effectively characterizes all
curves on a nonsingular analytic surface which can be analytically contracted:
namely it is necessary and sufficient that the matrix of intersection numbers of the
irreducible components of E is negative definite. It follows that the question of
understanding algebraicity of analytic compactifications of C2 is equivalent to the
following question.

Question 1.2. Let π : Y → P2 be a birational morphism of nonsingular complex
algebraic surfaces and L ⊆ P2 be a line. Assume π restricts to an isomorphism on
π−1(P2

\ L). Let E be the exceptional divisor of π (i.e., E is the union of curves
on Y which map to points in P2) and E1, . . . , EN be irreducible curves contained
in E . Let E ′ be the union of the strict transform L ′ (on Y ) of L and all components
of E excluding E1, . . . , EN . Assume E ′ is analytically contractible; let π ′ : Y→ Y ′

be the contraction of E ′. When is Y ′ algebraic?

Question 1.1 is equivalent to the N = 1 case of Question 1.2. We give a complete
solution (Theorem 4.1) to this case of Question 1.2. Our answer is in particular
effective, i.e., given a description of Y (e.g., if we know a sequence of blow ups
which construct Y from P2, or if we know precisely the discrete valuation ν on
C(x, y) associated to the unique curve on Y \C2 which does not get contracted),
our algorithm determines in finite time if the contraction is algebraic. In fact the
algorithm is a one-liner: “Compute the key forms of ν. Y ′ is algebraic if and
only if the last key form is a polynomial.” The only previously known effective
criteria for determining the algebraicity of contraction of curves on surfaces was the
well-known criteria of Artin [1962] which states that a normal surface is algebraic
if all its singularities are rational. We refer the reader to [Morrow and Rossi 1975;
Brenton 1977; Franco and Lascu 1999; Schröer 2000; Bădescu 2001; Palka 2013]
for other criteria — some of these are more general, but none is effective in the
above sense. Moreover, as opposed to Artin’s criterion, ours is not numerical, i.e.,
it is not determined by numerical invariants of the associated singularities. We give
an example (in Section 2) which shows that in fact there is no topological, let alone
numerical, answer to Question 1.2 even for N = 1.

As a corollary of our criterion, we establish a new correspondence between
normal primitive algebraic compactifications of C2 and algebraic curves in C2 with
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one place at infinity2 (Theorem 4.3). Curves with one place at infinity have been
extensively studied in affine algebraic geometry (see, e.g., [Abhyankar and Moh
1973; 1975; Ganong 1979; Russell 1980; Nakazawa and Oka 1997; Suzuki 1999;
Wightwick 2007]), and we believe the connection we found between these and
compactifications of C2 will be useful for the study of both3.

Our main technical tool is the sequence of key forms, which is a direct analogue of
the sequence key polynomials introduced by MacLane [1936]. The key polynomials
were introduced (and have been extensively used — see, e.g., [Moyls 1951; Favre
and Jonsson 2004; Vaquié 2007; Herrera Govantes et al. 2007]) to study valuations
in a local setting. However, our criterion shows how they retain information about
the global geometry when computed in “global coordinates.”

The example in Section 2 shows that algebraicity of Y ′ from Question 1.2 can
not be determined only from the (weighted) dual graph (Definition 3.25) of E ′.
However, at least when N = 1, it is possible to completely characterize the weighted
dual graphs (more precisely, augmented and marked weighted dual graphs — see
Definition 3.26) which correspond to only algebraic contractions, those which
correspond to only nonalgebraic contractions, and those which correspond to both
types of contractions (Theorem 4.4). The characterization involves two sets of
semigroup conditions (S1-k) and (S2-k). We note that the first set of semigroup
conditions (S1-k) are equivalent to the semigroup conditions that appear in the
theory of plane curves with one place at infinity developed in [Abhyankar and Moh
1973; Abhyankar 1977; 1978; Sathaye and Stenerson 1994].

Finally we would like to point that Question 1.1 is equivalent to a two dimensional
Cousin-type problem at infinity: let O1, . . . , ON ∈ P2

\C2 be points at infinity. Let
(u j , v j ) be coordinates near O j , ψj (u j ) be a Puiseux series (Definition 3.2) in u j ,
and r j be a positive rational number, 1≤ j ≤ N .

Question 1.3. Determine if there exists a polynomial f ∈ C[x, y] such that for
each analytic branch C of the curve f = 0 at infinity, there exists j , 1 ≤ j ≤ N ,
such that

• C intersects L∞ at O j ,

• C has a Puiseux expansion v j = θ(u j ) at O j such that ordu j (θ −ψj )≥ r j .

On our way to understand normal primitive compactifications of C2, we solve
the N = 1 case of Question 1.3 (Theorem 4.7).

Remark 1.4. We use Puiseux series in an essential way in this article. However,
instead of the usual Puiseux series, from Section 3 onward, we almost exclusively

2Let C ⊆ C2 be an algebraic curve, and let C ′ be the closure of C in P2 and σ : C→ C ′ be the
desingularization of C ′. C has one place at infinity if and only if |σ−1(C ′ \C)| = 1.

3For example, we use this connection in [Mondal 2013b] to solve completely the main problem
studied in [Campillo et al. 2002].
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work with descending Puiseux series (a descending Puiseux series in x is simply a
meromorphic Puiseux series in x−1 — see Definition 3.4). The choice was enforced
on us “naturally” from the context — while key polynomials and Puiseux series are
natural tools in the study of valuations in the local setting, when we need to study
the relation of valuations corresponding to curves at infinity (on a compactification
of C2) to global properties of the surface, key forms and descending Puiseux series
are sometimes more convenient.

1A. Organization. We start with an example in Section 2 to illustrate that the
answer to Question 1.2 can not be numerical or topological. The construction
also serves as an example of nonalgebraic normal Moishezon surfaces4 with the
“simplest possible” singularities (see Remark 2.1). In Section 3 we recall some
background material and in Section 4 we state our results. The rest of the article
is devoted to the proof of the results of Section 4. In Section 5 we recall some
more background material needed for the proof; in particular in Section 5A we state
the algorithm to compute key forms of a valuation from the associated descending
Puiseux series, and illustrate the algorithm via an elaborate example (we note that
this algorithm is essentially the same as the algorithm used in [Makar-Limanov
2015] for a different purpose). In Section 6 we build some tools for dealing with
descending Puiseux series and in Section 7 we use these tools to prove the results
from Section 4. The appendices contain proof of two lemmas from Section 6 — the
proofs were relegated to the appendix essentially because of their length.

2. Algebraic and nonalgebraic compactifications with homeomorphic
singularities

Let (u, v) be a system of “affine” coordinates near a point O ∈ P2 (“affine” means
that both u = 0 and v= 0 are lines on P2) and L be the line {u = 0}. Let C1 and C2

be curve-germs at O defined respectively by f1 := v
5
−u3 and f2 := (v−u2)5−u3.

For each i , let Yi be the surface constructed by resolving the singularity of Ci at
O and then blowing up 8 more times the point of intersection of the (successive)
strict transform of Ci with the exceptional divisor. Let E∗i be the last exceptional
curve, and E ′(i) be the union of the strict transform L ′i (on Yi ) of L and (the strict
transforms of) all exceptional curves except E∗i .

Note that the pairs of germs (C1, L) and (C2, L) are isomorphic via the map
(u, v) 7→ (u, v+ u2). It follows that “weighted dual graphs” (Definition 3.25) of
the E ′(i) are identical; they are depicted in Figure 1, left (we labeled the vertices
according to the order of appearance of the corresponding curves in the sequence
of blow-ups). It is straightforward to compute that the matrices of intersection

4Moishezon surfaces are analytic surfaces for which the fields of meromorphic functions have
transcendence degree 2 over C.
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Figure 1. Singularity of Y ′i . Left: weighted dual graph of E ′(i).
Right: weighted dual graph of the minimal resolution of the singu-
larity of Y ′i .

numbers of the components of the E ′(i) are negative definite, so that there is a
bimeromorphic analytic map Yi → Y ′i contracting E ′(i). Note that each Y ′i is a
normal analytic surface with one singular point Pi . It follows from the construction
that the weighted dual graphs of the minimal resolution of singularities of Y ′i are
identical (see Figure 1, right), so that the numerical invariants of the singularities
of the Y ′i are also identical.

In fact it follows (from, e.g., [Neumann 1981, Section 8]) that the singularities
of the Y ′i are also homeomorphic. However, Theorem 4.1 and Example 3.19 imply
that Y ′1 is algebraic, but Y ′2 is not.

Remark 2.1. It is straightforward to verify that the weighted dual graph presented
in Figure 1, right, is precisely the graph labeled D9,∗,0 in [Laufer 1977]. It then
follows from [Laufer 1977] that the singularities at Pi are Gorenstein hypersurface
singularities of multiplicity 2 and geometric genus 1, which are also minimally
elliptic (in the sense of [Laufer 1977]). Minimally elliptic Gorenstein singularities
have been extensively studied (see, e.g., [Yau 1979; Ohyanagi 1981; Némethi
1999]), and in a sense they form the simplest class of nonrational singularities5.
Since having only rational singularities implies algebraicity of the surface [Artin
1962], it follows that the surface Y ′2 we constructed above is a normal nonalgebraic
Moishezon surface with the “simplest possible” singularity.

It follows from [Laufer 1977, Table 2] that the singularity at the origin of
z2
= x5
+ xy5 (Figure 2) is of the same type as the singularity of each Y ′i , 1≤ i ≤ 2.

3. Background I

Here we compile the background material needed to state the results. In Section 5
we compile further background material that we use for the proof.

Notation 3.1. Throughout the rest of the article we use X to denote C2 with
coordinate ring C[x, y] and X (x,y) to denote the copy of P2 such that X is embedded

5Indeed, every connected proper subvariety of the exceptional divisor of the minimal resolution
of a minimally elliptic singularity is the exceptional divisor of the minimal resolution of a rational
singularity [Laufer 1977].
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Figure 2. The singularity of z2
= x5
+ xy5 at the origin (whirling dervish).

into X (x,y) via the map (x, y) 7→ [1 : x : y]. We also denote by L∞ the line at
infinity X (x,y)\X , and by Q y the point of intersection of L∞ and (the closure of) the
y-axis. Finally, if ω0, . . . , ωn are positive integers, we denote by Pn(ω0, . . . , ωn)

the complex n-dimensional weighted projective space corresponding to weights
ω0, . . . , ωn .

3A. Meromorphic and descending Puiseux series.

Definition 3.2 (meromorphic Puiseux series). A meromorphic Puiseux series in a
variable u is a fractional power series of the form

∑
m≥M amum/p for some m,M ∈Z,

p ≥ 1 and am ∈ C for all m ∈ Z. If all exponents of u appearing in a meromorphic
Puiseux series are positive, then it is simply called a Puiseux series (in u). Given a
meromorphic Puiseux series φ(u) in u, write it in the form

φ(u)= · · ·+ a1uq1/p1 + · · ·+ a2uq2/(p1 p2)+ · · ·+ aluql/(p1 p2···pl )+ · · · ,

where q1/p1 is the smallest noninteger exponent, and for each k, 1 ≤ k ≤ l, we
have ak 6= 0, pk ≥ 2, gcd(pk, qk) = 1, and the exponents of all terms with order
between qk/(p1 · · · pk) and qk/(p1 · · · pk+1) (or, if k = l, all terms of order above
1/(p1 · · · pl)) belong to 1/(p1 · · · pk)Z. Then the pairs (q1, p1), . . . , (ql, pl), are
called the Puiseux pairs of φ and the exponents qk/(p1 · · · pk), 1≤ k ≤ l, are called
characteristic exponents of φ. The polydromy order [Casas-Alvero 2000, Chapter 1]
of φ is p := p1 · · · pl , i.e., the polydromy order of φ is the smallest p such that
φ ∈ C((u1/p)). Let ζ be a primitive p-th root of unity. The conjugates of φ are

φ j (u) := · · · + a1ζ
jq1 p2···pl uq1/p1 + · · ·+ a2ζ

jq2 p3···pl uq2/(p1 p2)

+ · · ·+ alζ
jql uql/(p1 p2···pl )+ · · ·
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for 1≤ j ≤ p (i.e., φ j is constructed by multiplying the coefficients of terms of φ
with order n/p by ζ jn).

We recall the standard fact that the field of meromorphic Puiseux series in u is
the algebraic closure of the field C((u)) of Laurent polynomials in u:

Theorem 3.3. Let f ∈ C((u))[v] be an irreducible monic polynomial in v of de-
gree d. Then there exists a meromorphic Puiseux series φ(u) in u of polydromy
order d such that

f =
d∏

i=1

(v−φi (u)),

where the φi are conjugates of φ.

Definition 3.4 (descending Puiseux series). A descending Puiseux series in x
is a meromorphic Puiseux series in x−1. The notions regarding meromorphic
Puiseux series defined in Definition 3.2 extend naturally to the setting of de-
scending Puiseux series. In particular, if φ(x) is a descending Puiseux series
and the Puiseux pairs of φ(1/x) are (q1, p1), . . . , (ql, pl), then φ has Puiseux
pairs (−q1, p1), . . . , (−ql, pl), polydromy order p := p1 · · · pl , and characteristic
exponents −qk/(p1 · · · pk) for 1≤ k ≤ l.

Notation 3.5. We use C〈〈x〉〉 to denote the field of descending Puiseux series in x .
For φ ∈ C〈〈x〉〉 and r ∈ R, we denote by [φ]>r the descending Puiseux polynomial
(i.e., descending Puiseux series with finitely many terms) consisting of all terms of
φ of degree > r . If ψ is also in C〈〈x〉〉, then we write

φ ≡r ψ ⇐⇒ [φ]>r = [ψ]>r ⇐⇒ degx(φ−ψ)≤ r.

The following is an immediate Corollary of Theorem 3.3:

Theorem 3.6. Let f ∈ C[x, x−1, y]. Then there are (up to conjugacy) unique
descending Puiseux series φ1, . . . , φk in x , a unique nonnegative integer m and
c ∈ C∗ such that

f = cxm
k∏

i=1

∏
φi j is a

conjugate
of φi

(y−φi j (x)).

3B. Divisorial discrete valuation and semidegree. Let σ : Ỹ 99K Y be a birational
correspondence of normal complex algebraic surfaces and C be an irreducible
analytic curve on Ỹ . Then the local ring OỸ ,C of C on Ỹ is a discrete valuation
ring. Let ν be the associated valuation on the field C(Y ) of rational functions on Y ;
in other words ν is the order of vanishing along C . We say that ν is a divisorial
discrete valuation on C(Y ); the center of ν on Y is σ(C \ S), where S is the set of
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points of indeterminacy of σ (the normality of Y ensures that S is a discrete set, so
that C \ S 6=∅). Moreover, if U is an open subset of Y , we say that ν is centered
at infinity with respect to U if and only if σ(C \ S)⊆ Y \U .

Definition 3.7 (semidegree). Let U be an affine variety and ν be a divisorial discrete
valuation on the ring C[U ] of regular functions on U which is centered at infinity
with respect to U . Then we say that δ := −ν is a semidegree on C[U ].

The following result, which connects semidegrees on C[x, y] with descending
Puiseux series in x , is a reformulation of [Favre and Jonsson 2004, Proposition 4.1].

Theorem 3.8. Let δ be a semidegree on C[x, y]. Assume that δ(x) > 0. Then there
is a descending Puiseux polynomial (i.e., a descending Puiseux series with finitely
many terms) φδ(x) (unique up to conjugacy) in x and a (unique) rational number
rδ < ordx(φδ) such that for every f ∈ C[x, y],

δ( f )= δ(x) degx( f (x, φδ(x)+ ξ xrδ )), (3-1)

where ξ is an indeterminate.

Definition 3.9. In the situation of Theorem 3.8, we say that φ̃δ(x, ξ) :=φδ(x)+ξ xrδ

is the generic descending Puiseux series associated to δ. Moreover, if X is an
analytic compactification of X = C2 and Z ⊆ X \C2 is a curve at infinity such
that δ is the order of pole along Z , then we also say that φ̃δ(x, ξ) is the generic
descending Puiseux series associated to Z .

Example 3.10. If δ is a weighted degree in (x, y)-coordinates corresponding to
weights p for x and q for y with p, q positive integers, then the generic descending
Puiseux series corresponding to δ is φ̃δ = ξ xq/p. Note that if we embed C2

=

Spec C[x, y] into the weighted projective space P2(1, p, q) via (x, y) 7→ [1 : x : y],
then δ is precisely the order of the pole along the curve at infinity.

Example 3.11. Recall the setup of the example from Section 2. Then the Ci have
Puiseux expansions v = ψi (u) at O , where

ψ1(u)= u3/5, ψ2(u)= u3/5
+ u2.

Now note that (x, y) := (1/u, v/u) are coordinates on P2
\ L ∼= C2, and with

respect to (x, y) coordinates the C1 has a descending Puiseux expansion of the
form y = xψ1(1/x) = x2/5. Similarly, C2 has a descending Puiseux expansion
of the form y = xψ2(1/x) = x2/5

+ x−1. Let δi be the order of pole along E∗i ,
1≤ i ≤ 2. Then the generic descending Puiseux series corresponding to δ1 and δ2

are respectively of the form

φ̃δ1(x, ξ1)= x2/5
+ ξ1x−6/5, φ̃δ2(x, ξ2)= x2/5

+ x−1
+ ξ2x−6/5. (3-2)



Algebraicity of normal analytic compactifications of C2 1649

Definition 3.12 (formal Puiseux pairs of generic descending Puiseux series). Let δ
and φ̃δ(x, ξ) := φδ(x)+ ξ xrδ be as in Definition 3.9. Let the Puiseux pairs of φδ
be (q1, p1), . . . , (ql, pl). Express rδ as ql+1/(p1 · · · pl pl+1) where pl+1 ≥ 1 and
gcd(ql+1, pl+1)= 1. The formal Puiseux pairs of φ̃δ are (q1, p1), . . . , (ql+1, pl+1),
with (ql+1, pl+1) being the generic formal Puiseux pair. Note that

(1) δ(x)= p1 · · · pl+1,

(2) it is possible that pl+1 = 1 (whereas every other pk is ≥ 2).

3C. Geometric interpretation of generic descending Puiseux series. In this sub-
section we recall from [Mondal 2016] the geometric interpretation of generic
descending Puiseux series. We keep the conventions introduced in Notation 3.1.

Definition 3.13. An irreducible analytic curve germ at infinity on X is the image γ
of an analytic map h from a punctured neighborhood 1′ of the origin in C to X
such that |h(s)|→∞ as |s|→ 0 (in other words, h is analytic on 1′ and has a pole
at the origin). If X is an analytic compactification of X , then there is a unique point
P ∈ X \ X such that |h(s)| → P as |s| → 0. We call P the center of γ on X , and
write P = limXγ .

Let X be a primitive normal analytic compactification of X with an irreducible
curve C∞ at infinity. Let σ : X (x,y) 99K X be the natural bimeromorphic map, and
let Y be a resolution of indeterminacies of σ , i.e., Y is a nonsingular rational surface
equipped with analytic maps π : Y → X (x,y) and π ′ : Y → X such that π ′ = σ ◦π .
Let L ′

∞
be the strict transform of L∞ ⊆ X (x,y) on Y and Q′y ∈ L ′

∞
be (the unique

point) such that π(Q′y)= Q y . Let P∞ := π ′(Q′y) ∈ C∞.

Proposition 3.14 [Mondal 2016, Proposition 3.5]. Let δ be the order of pole
along C∞, φ̃δ(x, ξ) be the generic descending Puiseux series associated to δ
and γ be an irreducible analytic curve germ on X. Then limX γ ∈ C∞ \ {P∞} if
and only if γ has a parametrization of the form

t 7→ (t, φ̃δ(t, ξ)|ξ=c+ l.d.t.) for |t | � 0

for some c ∈ C, where l.d.t. means lower degree terms (in t).

Remark-Definition 3.15. We call P∞ a center of P2-infinity on X. P∞ is in fact
unique in the case of “generic” primitive normal compactifications of C2 (we do
not use this uniqueness in this article, so we state it without a proof):

• If X ∼= P2(1, 1, q) for some q > 0, then every point of C∞ is a center of
P2-infinity on X .

• If X ∼= P2(1, p, q) for some p, q > 1, then X has two singular points, and
these are precisely the centers of P2-infinity on X .
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• In all other cases, there is a unique center of P2-infinity on X — it is precisely
the unique point on X which has a nonquotient singularity.

3D. Key forms of a semidegree. Let δ be a semidegree on C[x, y] such that
δ(x) > 0. Pick k > 1 such that δ(y/xk) < 0. Set (u, v) := (1/x, y/xk). Then
ν :=−δ is a discrete valuation on C[u, v] which is centered at the origin. It follows
that ν can be completely described in terms of a finite sequence of key polynomials
in (u, v) [MacLane 1936]. The key forms of δ that we introduce in this section are
precisely the analogue of key polynomials of ν. We refer to [Favre and Jonsson
2004, Chapter 2] for the properties of key polynomials that we used as a model for
our definition of key forms.

Definition 3.16 (key forms). Let δ be a semidegree on C[x, y] such that δ(x)>0. A
sequence of elements g0, g1, . . . , gn+1 ∈ C[x, x−1, y] is called the sequence of key
forms for δ if the following properties are satisfied with η j := δ(gj ), 0≤ j ≤ n+ 1:

(P0) η j+1 < αjη j =
∑ j−1

i=0 βj,iηi for 1≤ j ≤ n, where
(a) αj =min{α ∈ Z>0 : αη j ∈ Zη0+ · · ·+Zη j−1} for 1≤ j ≤ n,
(b) the βj,i are integers such that 0≤ βj,i <αi for 1≤ i < j ≤ n (in particular,

only the βj,0 are allowed to be negative).

(P1) g0 = x , g1 = y.

(P2) For 1≤ j ≤ n, there exists θ j ∈ C∗ such that

gj+1 = gαj
j − θ j g

βj,0
0 · · · g

βj, j−1
j−1 .

(P3) Let z1, . . . , zn+1 be indeterminates and η be the weighted degree on B :=
C[x, x−1, z1, . . . , zn+1] corresponding to weights η0 for x and η j for z j , where
1≤ j ≤ n+ 1 (i.e., the value of η on a polynomial is the maximum “weight”
of its monomials). Then for every polynomial g ∈ C[x, x−1, y],

δ(g)=min{η(G) : G(x, z1, . . . , zn+1) ∈ B, G(x, g1, . . . , gn+1)= g}. (3-3)

The properties of key forms of semidegrees compiled in the following theorem are
straightforward analogues of corresponding (standard) properties of key polynomials
of valuations.

Theorem 3.17. (1) Every semidegree δ on C[x, y] such that δ(x)> 0 has a unique
and finite sequence of key forms.

(2) Conversely, given g0, . . . , gn+1 ∈ C[x, x−1, y] and integers η0, . . . , ηl+1 with
η0 > 0 which satisfy properties (P0)–(P2), there is a unique semidegree δ on
C[x, y] such that the gj are key forms of δ and η j = δ(gj ), 0≤ j ≤ n+ 1.

(3) (Recall Notation 3.1.) Assume σ : X∗ → X (x,y) is a composition of point
blow-ups and E∗ ⊆ X∗ is an exceptional curve of σ . Let δ be the order of pole
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along E∗. Assume δ(x) > 0. Then the following data are equivalent: given any
one of them, there is an explicit algorithm to construct the others in finite time.

(a) A minimal sequence of points on successive blow-ups of X (x,y) such that
σ factors through the composition of these blow-ups and E∗ is the strict
transform of the exceptional curve of the last blow-up.

(b) A generic descending Puiseux series of δ.
(c) The sequence of key forms of δ.

(4) Let δ be a semidegree on C[x, y] such that δ(x) > 0. Let

φ̃δ(x, ξ) := φδ(x)+ ξ xrδ

be the generic descending Puiseux series and let gn+1 be the last key form of δ.
Then the descending Puiseux factorization of gn+1 is of the form

gn+1 =
∏
ψ j is a

conjugate
of ψ

(y−ψ j (x))

for some ψ ∈ C〈〈x〉〉 such that ψ ≡rδ φδ (see Notation 3.5).

Example 3.18. Let δ be the weighted degree from Example 3.10. The key forms
of δ are g0 = x and g1 = y.

Example 3.19. Let δ1 and δ2 be the semidegrees from Example 3.11. Then the
key forms of δ1 are x, y, y5

− x2. On the other hand the key forms of δ2 are
x, y, y5

− x2, y5
− x2
− 5x−1 y4 (see Algorithm 5.1 for the general algorithm to

compute key forms from generic descending Puiseux series).

Definition 3.20 (essential key forms). Let δ be a semidegree on C[x, y] such
that δ(x) > 0, and let g0, . . . , gn+1 be the key forms of δ. Pick the subsequence
j1, j2, . . . , jm of 1, . . . , n consisting of all jk such that αjk > 1 (where αjk is as in
property (P0) of Definition 3.16). Set

fk :=


g0 = x if k = 0,
gjk if 1≤ k ≤ m,
gn+1 if k = m+ 1.

We say that f0, . . . , fm+1 are the essential key forms of δ.

The following properties of essential key forms follow in a straightforward
manner from the defining properties of key forms.

Proposition 3.21. (Let the notation be as in Definition 3.20.) Let φ̃δ(x, ξ) be the
generic descending Puiseux series of δ and (q1, p1), . . . , (ql+1, pl+1) be the formal
Puiseux pairs of φ̃δ. Then:

(1) l = m, i.e., the number of essential key forms of δ is precisely l + 1.
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(2) Set ωk := δ( fk), 0≤ k ≤ l + 1. Then the sequence ω0, . . . , ωl+1 depends only
on the formal Puiseux pairs of φ̃δ . More precisely, with p0 := q0 := 1, we have

ωk =

{
p1 · · · pl+1 if k = 0,
pk−1ωk−1+ (qk − qk−1 pk)pk+1 · · · pl+1 if 1≤ k ≤ l + 1.

(3-4)

(3) Let α1, . . . , αn+1 be as in property (P0) of key forms. Then

αj =

{
pk if j = jk, 1≤ k ≤ l + 1,
1 otherwise.

(4) Pick j , 0 ≤ j ≤ n + 1. Assume jk < j < jk+1 for some k, 0 ≤ k ≤ l. Then
δ(gj ) is in the group generated by ω0, . . . , ωk .

Definition 3.22. We call ω0, . . . , ωl+1 of Proposition 3.21 the sequence of essential
key values of δ.

Example 3.23. Let δ1, δ2 be as in Examples 3.11 and 3.19. Then all the key forms
of δ1 are essential, and the essential key values are ω0 = δ1(x)= 5, ω1 = δ1(y)= 2,
ω2= δ1(y5

−x2)= 2. The key forms of δ2 are x, y, y5
−x2
−5x−1 y4. The sequence

of essential key values of δ2 is the same as that of δ1.

3E. Resolution of singularities of primitive normal compactifications. Given two
birational algebraic surfaces Y1, Y2, we say that Y1 dominates Y2 if the birational
map Y1 99K Y2 is in fact a morphism. Let X be a primitive normal analytic com-
pactification of X := C2 and π : Y → X be a resolution of singularities of X . We
say that π or Y is P2-dominating if Y dominates P2. The resolution π is a minimal
P2-dominating resolution of singularities of X if up to isomorphism (of algebraic
varieties) Y is the only P2-dominating resolution of singularities of X which is
dominated by Y .

Theorem 3.24. Every primitive normal analytic compactification of C2 has a
unique minimal P2-dominating resolution of singularities.

We have not found any proof of Theorem 3.24 in the literature. We give a proof
in [Mondal 2013a] (using Theorem 4.1 of this article). In this section we recall
from [Mondal 2016] a description of the dual graphs of minimal P2-dominating
resolutions of singularities of primitive normal analytic compactifications of C2.

Definition 3.25. Let E1, . . . , Ek be nonsingular curves on a (nonsingular) surface
such that for each i 6= j , either Ei ∩ E j =∅, or Ei and E j intersect transversally
at a single point. Then E = E1 ∪ · · · ∪ Ek is called a simple normal crossing curve.
The (weighted) dual graph of E is a weighted graph with k vertices V1, . . . , Vk

such that

• there is an edge between Vi and V j if and only if Ei ∩ E j 6=∅,

• the weight of Vi is the self intersection number of Ei .



Algebraicity of normal analytic compactifications of C2 1653

−u1
1 −ut1

1 −u0
2− 1 −u1

2

−v
r1
1

−v2
1

−v1
1

−utm−1
m−1 −u0

m − 1 −u1
m

−v
rm−1
m−1

−v2
m−1

−v1
m−1

−utm
m −e

−vrm
m

−v2
m

−v1
m

Figure 3. 0̃ Ẽq, Ẽp,m,e.

Usually we will abuse the notation, and label Vi also by Ei .

Definition 3.26. Let X be a primitive normal analytic compactification of X := C2

and π :Y→ X be a resolution of singularities of X such that Y \X is a simple normal
crossing curve. The augmented dual graph of π is the dual graph (Definition 3.25)
of Y \ X . If Y is P2-dominating, we define the augmented and marked dual graph
of π to be its augmented dual graph with the strict transforms of the curves at
infinity on P2 and X marked (e.g., by different colors or labels).

Given a sequence (q̃1, p̃1), . . . , (q̃n, p̃n) of pairs of relatively prime integers, and
positive integers m, e such that 1 ≤ m ≤ n, we denote by 0̃ Ẽq, Ẽp,m,e the weighted
graph in Figure 3, where the right-most vertex in the top row has weight −e, and
the other weights satisfy: u0

i , v
0
i ≥ 1 and u j

i , v
j
i ≥ 2 for j > 0, and are uniquely

determined from the continued fractions

p̃i

q ′i
= u0

i −
1

u1
i −

1

. . .−
1

uti
i

,
q ′i
p̃i
= v0

i −
1

v1
i −

1

. . .−
1

v
ri
i

, (3-5)

where q ′1 := q1 and q ′i := q̃i − q̃i−1 p̃i if i 6= 1.

Remark 3.27. 0̃ Ẽq, Ẽp,m,1 is the weighted dual graph of the exceptional divisor of
the minimal resolution of an irreducible plane curve singularity with Puiseux pairs
(q̃1, p̃1), . . . , (q̃m, p̃m) (see, e.g., [Mendris and Némethi 2005, Section 2.2]).

Theorem 3.28 [Mondal 2016, Proposition 4.2, Corollary 6.3]. Let X be a primitive
normal compactification of X := Spec C[x, y] ∼= C2.

(1) If X is nonsingular, then X ∼= P2.

(2) Assume X is singular. Let φ̃δ(x, ξ) be the generic descending Puiseux series
(Definition 3.9) associated to E∗ := X \ X and (q1, p1), . . . , (ql+1, pl+1)
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be the formal Puiseux pairs of φ̃(x, ξ) (Definition 3.12). Define (q̃i , p̃i ) :=

(p1 · · · pi − qi , pi ), 1≤ i ≤ l + 1.

(a) After a (polynomial) change of coordinates of C2 if necessary, we may
assume that q1 < p1 and either l = 0 or q1 > 1.

(b) Assume (2a) holds. If pl+1 > 1, then the augmented and marked dual
graph of the minimal P2-dominating resolution of singularities of X is as
in Figure 4, left, where the strict transform of the curve at infinity on P2

(resp. X ) is marked by L (resp. E∗).
(c) Assume (2a) holds. If pl+1=1, then (l≥1, and) the augmented and marked

dual graph of the minimal P2-dominating resolution of singularities of X
is as in Figure 4, right, where the strict transform of the curve at infinity
on P2 (resp. X ) is marked by L (resp. E∗).

(3) Conversely, let 0≤ l, and (q1, p1), . . . , (ql+1, pl+1) be pairs of integers such
that

(a) pk ≥ 2, 1≤ k ≤ l,
(b) pl+1 ≥ 1,
(c) q̃k := p1 · · · pk − qk > 0, 1≤ k ≤ l + 1,
(d) gcd(pk, qk)= 1, 1≤ k ≤ l + 1.

Assume moreover that (2a) holds, i.e., either l = 0 or ql+1 > 1. Define
ω0, . . . , ωl+1 as in (3-4). Let

0 Ep,Eq :=

{
the graph from Figure 4, left if pl+1 > 1,
the graph from Figure 4, right if pl+1 = 1.

(3-6)

Then 0 Ep,Eq is the augmented and marked dual graph of the minimal P2-
dominating resolution of singularities of a primitive normal analytic com-
pactification of C2 if and only if ωl+1 > 0.

1− u0
1

L

−u1
1 −u0

2− 1

−v1
1

−1

E∗

−v1
l+1

0̃ Ẽq, Ẽp,l+1,1

1− u0
1

L

−u1
1 −u0

2− 1

−v1
1

−2

−v1
l

0̃ Ẽq, Ẽp,l,2

−2 −2 −1
E∗

ql −ql+1−1
vertices

pl+1 > 1 pl+1 = 1

Figure 4. Augmented and marked dual graph for the minimal P2-
dominating resolutions of singularities of primitive normal analytic
compactifications of C2.
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Remark 3.29. Let X be a primitive normal analytic compactification of C2
=

Spec C[x, y] and 0 be the augmented and marked dual graph for the minimal P2-
dominating resolution of singularities of X . Theorem 3.28 and identity (3-5) imply
that 0 determines, and is determined by, the formal Puiseux pairs of the generic
descending Puiseux series associated to the curve E∗ at infinity on X . Let δ be
the semidegree on C[x, y] corresponding to E∗. Proposition 3.21 then implies that
the δ-value of essential key forms of δ are also uniquely determined by 0; we call
these the essential key values of 0.

4. Main results

Consider the setup of Question 1.2. Assume N = 1. Choose coordinates (x, y) on
P2
\ L . Let δ be the semidegree on C[x, y] associated to E1 (i.e., δ is the order of

pole along E1) and let g0, . . . , gn+1 ∈ C[x, x−1, y] be the key forms of δ.

Theorem 4.1 (answering Question 1.2 in the case N = 1). The following are
equivalent:

(1) Y ′ is algebraic.

(2) gj is a polynomial, 0≤ j ≤ n+ 1.

(3) gn+1 is a polynomial.

If any of these conditions holds, then Y ′ is isomorphic to the closure of the image
of C2 in the weighted projective variety Pn+2(1, δ(g0), . . . , δ(gn+1)) under the
mapping (x, y) 7→ [1 : g0 : · · · : gn+1].

Remark 4.2. To ask Question 1.2 we need to determine if the given curve E ′ is
analytically contractible. We would like to point out that in addition to the direct
application of Grauert’s criterion, the contractibility of E ′ can be determined in
terms of the semidegrees associated to E1, . . . , EN [Mondal 2016, Theorem 1.4].
In particular, in the N = 1 case, E ′ of Question 1.2 is analytically contractible if
and only if δ(gn+1) > 0 (where δ and gn+1 are as above).

We now state the correspondence between primitive normal algebraic compacti-
fications of C2 and algebraic curves in C2 with one place at infinity.

Theorem 4.3. Let X be a primitive normal analytic compactification of C2. Let
P ∈ X \C2 be a center of a P2-infinity on X (Remark-Definition 3.15). Then the
following are equivalent:

(1) X is algebraic.

(2) There is an algebraic curve C in C2 with one place at infinity such that P is
not on the closure of C in X.
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Figure 5. Augmented and marked dual graph of the minimal P2-
dominating resolution of singularities of Y ′i from Section 2.

Let δ be the semidegree on C[x, y] corresponding to the curve at infinity on X , and
g0, . . . , gn+1 ∈ C[x, x−1, y] be the sequence of key forms of δ. If either (1) or (2) is
true, then gn+1 is a polynomial, and defines a curve C as in (2).

Now we come to the question of characterization of augmented and marked dual
graphs of the resolution of singularities of primitive normal analytic compactifi-
cations of C2. For a primitive normal analytic compactification X of C2, let 0X
be the augmented and marked dual graph (from Theorem 3.28) associated to the
minimal P2-dominating resolution of singularities of X . Let G be the collection
of 0X as X varies over all primitive normal analytic compactifications of C2; note
that assertions (2) and (3) of Theorem 3.28 give a complete description of G. Pick
0 ∈G. Let (q1, p1), . . . , (ql+1, pl+1) be the formal Puiseux pairs, and ω0, . . . , ωl+1

be the sequence of essential key values of 0 (Remark 3.29). Fix k, 1≤ k ≤ l. The
semigroup conditions for k are:

pkωk ∈ Z≥0〈ω0, . . . , ωk−1〉, (S1-k)

(ωk+1, pkωk)∩Z〈ω0, . . . , ωk〉 = (ωk+1, pkωk)∩Z≥0〈ω0, . . . , ωk〉, (S2-k)

where (ωk+1, pkωk) := {a ∈ R : ωk+1 < a < pkωk} and Z≥0〈ω0, . . . , ωk〉 (respec-
tively, Z〈ω0, . . . , ωk〉) denotes the semigroup (respectively, group) generated by
linear combinations of ω0, . . . , ωk with nonnegative integer (respectively, integer)
coefficients.

Theorem 4.4. (1) 0 = 0X for some primitive normal algebraic compactification
X of C2 if and only if the semigroup conditions (S1-k) hold for all k, 1≤ k ≤ l.

(2) 0 = 0X for some primitive normal nonalgebraic compactification X of C2 if
and only if either (S1-k) or (S2-k) fails for some k, 1≤ k ≤ l.

Remark-Example 4.5. Note that if (S1-k) holds for all k, 1 ≤ k ≤ l, but (S2-k)
fails for some k, 1 ≤ k ≤ l, then Theorem 4.4 implies that there exist primitive
normal analytic compactifications X1, X2 of C2 such that X1 is algebraic, X2 is
not algebraic, and 0 = 0X1

= 0X2
. Indeed, that is precisely what happens in the

setup of Section 2: let 0 be the augmented and marked dual graph corresponding
to the minimal P2-dominating resolution of singularities of the Y ′i (Figure 5). It
follows from (3-2) that the formal Puiseux pairs associated to 0 are (2, 5), (−6, 1);
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in particular l = 1. Example 3.23 implies that the sequence of essential key values
of 0 is (5, 2, 2). It is straightforward to verify that (S1-k) is satisfied for k = 1. On
the other hand,

3 ∈ (2, 10)∩Z〈5, 2〉 \Z≥0〈5, 2〉

so that (S2-k) is violated for k = 1. This implies that 0 corresponds to both
algebraic and nonalgebraic normal compactifications of C2, as we have already
seen in Section 2.

Remark-Example 4.6. We state some straightforward corollaries of Theorem 4.4
and of the fact — a special case of [Herzog 1970, Proposition 2.1] — that if p, q
are relatively prime positive integers, then the greatest integer not belonging to
Z≥0〈p, q〉 is pq − p− q .

(1) Pick relatively prime positive integers p, q such that p> q . Then 0p,q (defined
as in (3-6)) corresponds to only algebraic compactifications of C2.

(2) Pick integers p, q, r such that p, q are relatively prime, p > q > 0 and q > r .
Set l := 1, (q1, p1) := (q, p), (q2, p2) := (r, 1). Then (3-4) implies that ω0= p,
ω1= q and ω2= (p−1)q+r . Assertion (3) of Theorem 3.28 therefore implies
that 0 Ep,Eq corresponds to a compactification of C2 if and only if (p−1)q+r > 0.
So assume q > r >−(p− 1)q.

(a) If r ≥ −p, then 0 Ep,Eq corresponds to only algebraic compactifications
of C2.

(b) If −p > r > −(p − 1)q, then 0 Ep,Eq corresponds to both algebraic and
nonalgebraic compactifications of C2.

(3) Let p1, q1, p2 be integers such that p1> q1> 1, p2≥ 2, p1 is relatively prime
to q1, and p2 is relatively prime to p1q1− p1− q1. Set

q2 := p1q1− p1− q1− q1(p1− 1)p2, q3 := q2− 1, p3 := 1.

In this case ω0 = p1 p2, ω1 = q1 p2, ω2 = p1q1− p1− q1 and ω3 = p2ω2− 1.
It follows that (S1-k) fails for k = 2 and therefore 0 Ep,Eq corresponds to only
nonalgebraic compactifications of C2.

Finally we formulate our answer to Question 1.3 in the case N = 1. Consider
O ∈ L∞ := P2

\C2. Let (u, v) be coordinates near O , ψ(u) be a Puiseux series
in u, and r be a positive rational number. After a change of coordinates near
O if necessary, we may assume that the coordinate of O is (0, 0) with respect
to the (u, v)-coordinates, and (x, y) := (1/u, v/u) is a system of coordinates on
P2
\ L∞ ∼= C2. Let

φ(x) := xψ(1/x).
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Note that φ(x) is a descending Puiseux series in x . Let ξ be an indeterminate, and
define, following Notation 3.5,

φ̃(x, ξ) := [φ(x)]>1−r + ξ x1−r .

Let δ be the semidegree on C[x, y] with generic descending Puiseux series φ̃, and
let g0, . . . , gn+1 ∈ C[x, x−1, y] be the key forms of δ (see Algorithm 5.1 for the
algorithm to determine key forms of δ from φ̃).

Theorem 4.7 (answering Question 1.3 in the case N = 1). The following are
equivalent:

(1) There exists a polynomial f ∈ C[x, y] such that for each analytic branch C of
the curve f = 0 at infinity,
• C intersects L∞ at O ,
• C has a Puiseux expansion v = θ(u) at O such that ordu(θ −ψ)≥ r .

(2) gj is a polynomial, 0≤ j ≤ n+ 1.

(3) gn+1 is a polynomial.

If any of these conditions holds, gn+1 satisfies the properties of f from condition (1).

5. Background II: notions required for the proof

In this section we collect more background material we use in the proof of the
results stated in Section 4.

5A. Key forms from descending Puiseux series. Let δ be a semidegree on C[x, y]
such that δ(x) > 0. Assume the generic descending Puiseux series for δ is

φ̃δ(x, ξ) :=
k′0∑

j=1

a0 j xq0 j + a1xq1/p1 + · · ·+ a2xq2/(p1 p2)+ · · ·

+ al xql/(p1 p2···pl )+ ξ xql+1/(p1 p2···pl+1),

where (q1, p1), . . . , (ql+1, pl+1) are the formal Puiseux pairs of φ̃δ (Definition 3.12),
k ′0 ≥ 0, and q01 > · · ·> q0k′0 are integers greater than q1/p1. Let

g0 = x, g1 = y, . . . , gn+1 ∈ C[x, x−1, y]

be the key forms of δ. Recall from Proposition 3.21 that precisely l + 2 of the key
forms of δ are essential. Let 0 = j0 < · · · < jl+1 = n+ 1 be the subsequence of
(0, . . . , n) consisting of indices of essential key forms of δ.

Algorithm 5.1 (construction of key forms from descending Puiseux series; cf. the
algorithm in [Makar-Limanov 2015]).
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1. Base step. Set j0 := 0, g0 := x , g1 := y. Also define p0 := 1. Now assume

(i) g0, . . . , gs have been calculated, s ≥ 1,

(ii) j0, . . . , jk have been calculated, k ≥ 0,

(iii) jk < s ≤ jk+1.

2. Inductive step for (s, k). Let

ω̃s := degx(gs |y=φ̃δ(x,ξ)), c̃s := coefficient of x ω̃s in gs |y=φ̃δ(x,ξ).

Case 2.1: If c̃s ∈ C[ξ ] \C, then set n := s− 1, jk+1 := s, and stop the process.

Case 2.2: Otherwise if ω̃s ∈1/(p0 · · · pk)Z, then there are unique integers βs
0,· · ·, β

s
k

and unique c ∈ C∗ such that

(1) 0≤ βs
i < pi for 1≤ i ≤ k,

(2)
∑k

i=0 β
s
i ω̃ ji = ω̃s , and

(3) the coefficient of x ω̃s in cg
βs

0
j0 · · · g

βs
k

jk |y=φ̃δ(x,ξ) is c̃s .

Then set gs+1 := gs − cg
βs

0
j0 · · · g

βs
k

jk , and repeat the inductive step for (s+ 1, k).

Case 2.3: Otherwise

ω̃s ∈
1

p0 · · · pk+1
Z \

1
p0 · · · pk

Z,

and there are unique integers βs
0, · · · , β

s
k and unique c ∈ C∗ such that

(1) 0≤ βs
i < pi for 1≤ i ≤ k,

(2)
∑k

i=0 β
s
i ω̃ ji = pk+1ω̃s , and

(3) the coefficient of x ω̃s in cg
βs

0
j0 · · · g

βs
k

jk |y=φ̃δ(x,ξ) is (c̃s)
pk+1 .

Then set jk+1 := s, gs+1 := g pk+1
s − cg

βs
0

j0 · · · g
βs

k
jk , and repeat the inductive step for

(s+ 1, k+ 1).

Example 5.2. Let φ̃δ(x, ξ) := x3
+ x2
+ x5/3

+ x + x−13/6
+ x−7/3

+ ξ x−8/3. The
formal Puiseux pairs of φ̃δ are (5, 3), (−13, 2), (−16, 1). We compute the key
forms of δ following Algorithm 5.1: by definition we have g0 = x , g1 = y, j0 = 0.
Since the exponents of x in the first two terms of ψ̃δ are integers, subsequent
applications of Case 2.2 of Algorithm 5.1 implies that the next two key forms are
g2 = y− x3 and g3 = y− x3

− x2. Note that

g3|y=ψ̃δ = x5/3
+ x + x−13/6

+ x−7/3
+ ξ x−8/3, (5-1)

In the notation of Algorithm 5.1, we have ω̃3 = 5/3 6∈ Z. It follows that j1 = 3.
Since

g3
3|y=ψ̃δ = x5

+ 3x13/3
+ 3x11/3

+ x3
+ 3x7/6

+ 3x + 3ξ x2/3
+ l.d.t., (5-2)
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(where l.d.t. denotes terms with smaller degree in x), Case 2.3 of Algorithm 5.1
implies that g4 = g3

3 − x5. Now note that 13/3= 1+ 2 · (5/3) and 11/3= 2+ 5/3,
so that (5-1) and (5-2) imply that

g4|y=ψ̃δ = 3x
(
g3|y=ψ̃δ − x − x−13/6

− x−7/3
− ξ x−8/3)2

+ 3x2(g3|y=ψ̃δ − x − x−13/6
− x−7/3

− ξ x−8/3)
+ x3
+ 3x7/6

+ 3x + 3ξ x2/3
+ l.d.t.

= 3xg2
3|y=ψ̃δ − 3x2g3|y=ψ̃δ + x3

+ 3x7/6
+ 3x + 3ξ x2/3

+ l.d.t.

Repeated applications of Case 2.2 of Algorithm 5.1 then imply that

g5 = g4− 3xg2
3, g6 = g4− 3xg2

3 − 3x2g3, g7 = g4− 3xg2
3 − 3x2g3− x3.

Note that
g7|y=ψ̃δ = 3x7/6

+ 3x + 3ξ x2/3
+ l.d.t. (5-3)

Since ω̃7 =
7
6 6∈

1
3 Z, following Case 2.3 of Algorithm 5.1 we have j2 = 7. Since

p2 = 2, we compute

g2
7|y=ψ̃δ = 9x7/3

+ 18x13/6
+ 18ξ x11/6

+ l.d.t.,

Since 7
3 =−1+ 2 · 5

3 + 0 · 7
6 and 13

6 = 1+ 0 · 5
3 +

7
6 , identities (5-1) and (5-3) imply

that

g2
7|y=ψ̃δ = 9x−1(g3|y=ψ̃δ − x − x−13/6

− x−5/2
− ξ x−8/3)2

+ 6x
(
g7|y=ψ̃δ − 3x − 3ξ x2/3

− l.d.t.
)
+ 18ξ x11/6

+ l.d.t.

= 9x−1g2
3|y=ψ̃δ + 6xg7|y=ψ̃δ − 18x2

+ 18ξ x11/6
+ l.d.t.

Cases 2.3 and 2.2 of Algorithm 5.1 then imply that the next key forms are

g8= g2
7−9x−1g2

3, g9= g2
7−9x−1g2

3−6xg7, g10= g2
7−9x−1g2

3−6xg7+18x2.

Since
g10|y=ψ̃δ = 18ξ x11/6

+ l.d.t.,

Case 2.1 of Algorithm 5.1 implies that g10 is the last key form of δ, and n = 9,
j3 = 10. In particular, note that there are precisely 4 essential key forms (namely
g0, g3, g7, g10) of δ, as predicted by Proposition 3.21.

The assertions of the following proposition are straightforward implications of
Algorithm 5.1.

Proposition 5.3. Let δ be a semidegree on C[x, y] such that δ(x) > 0. Let
g0, . . . , gn+1 be key forms and φ̃δ(x, ξ) := φδ(x)+ ξ xrδ be the generic descending
Puiseux series of δ,
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(1) Let n∗ ≤ n and let δ∗ be the unique semidegree such that the key forms of
δ∗ are g0, . . . , gn∗+1 and δ∗(gj ) = δ(gj )/e, 0 ≤ j ≤ n∗ + 1, where e :=
gcd

(
δ(g0), . . . , δ(gn∗+1)

)
. Then δ∗ has a generic descending Puiseux series of

the form
φ̃δ∗(x, ξ)= φ∗(x)+ ξ xr∗,

where

(a) r∗ ≥ rδ, and
(b) φ∗(x)= [φδ(x)]>r∗ .

(2) Let αi , 1 ≤ i ≤ n, be the smallest positive integer such that αiδ(gi ) is in the
(abelian) group generated by δ(g0), . . . , δ(gi−1). Fix m, 0 ≤ m ≤ n. Recall
that each gi is an element in C[x, x−1, y] which is monic in y. The following
are equivalent:

(a) gi is a polynomial, 0≤ i ≤ m+ 1.
(b) For each i , 1 ≤ i ≤ m, the semigroup generated by δ(g0), . . . , δ(gi−1)

contains αiδ(gi ).

5B. Degree-like functions and compactifications. In this subsection we recall
from [Mondal 2014b] the basic facts of compactifications of affine varieties via
degree-like functions. Recall that X = C2 in our notation; however the results in
this subsection remain valid if X is an arbitrary affine variety.

Definition 5.4. A map δ : C[X ] \ {0} → Z is called a degree-like function if

(1) δ( f + g) ≤ max{δ( f ), δ(g)} for all f, g ∈ C[X ], with < in the preceding
inequality implying δ( f )= δ(g).

(2) δ( f g)≤ δ( f )+ δ(g) for all f, g ∈ C[X ].

Every degree-like function δ on C[X ] defines an ascending filtration {F δ
d }d≥0

on C[X ], where F δ
d := { f ∈ C[X ] : δ( f )≤ d}. Define

C[X ]δ :=
⊕
d≥0

F δ
d , gr C[X ]δ :=

⊕
d≥0

F δ
d/F

δ
d−1.

Remark 5.5. For every f ∈C[X ], there are infinitely many “copies” of f in C[X ]δ ,
namely the copy of f in F δ

d for each d ≥ δ( f ); we denote the copy of f in F δ
d by

( f )d . If t is a new indeterminate, then

C[X ]δ ∼=
∑
d≥0

F δ
d td ,

via the isomorphism ( f )d 7→ f td . Note that t corresponds to (1)1 under this
isomorphism.
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We say that δ is finitely generated if C[X ]δ is a finitely generated algebra over C

and that δ is projective if in addition F δ
0 = C. The motivation for the terminology

comes from the following straightforward result.

Proposition 5.6 [Mondal 2014b, Proposition 2.8]. If δ is a projective degree-like
function on C[X ], then X δ

:= Proj C[X ]δ is a projective compactification of X.
The hypersurface at infinity X δ

∞
:= X δ

\ X is the zero set of the Q-Cartier divisor
defined by (1)1 and is isomorphic to Proj gr C[X ]δ . Conversely, if X is any projective
compactification of X such that X \ X is the support of an effective ample divisor,
then there is a projective degree-like function δ on C[X ] such that X δ ∼= X.

Remark 5.7. A semidegree, which we already defined in Section 3B, is a degree-
like function which always satisfies property (2) of Definition 5.4 with an equality.

The following proposition (which is straightforward to prove) is a special case
of [Mondal 2014b, Theorem 4.1].

Proposition 5.8. Let δ be a projective degree-like function on C[X ], and X δ be
the corresponding projective compactification from Proposition 5.6. Assume δ is
a semidegree. Then X δ is a normal variety and X δ

∞
:= X δ

\ X is an irreducible
codimension-one subvariety. Moreover, there is a positive integer dδ such that δ
agrees with dδ times the order of pole along X δ

∞
.

6. Some preparatory results

In this section we develop some preliminary results to be used in Section 7 for the
proofs of our main results.

Convention 6.1. Let y1, . . . , yk be indeterminates. From now on we write Ak , Ãk ,
R, R̃ to denote respectively C[x, x−1, y1, . . . , yk], C〈〈x〉〉[y1, . . . , yk], C[x, x−1, y],
C〈〈x〉〉[y]. Below we frequently deal with maps Ak→ R. We always (unless there
is a misprint!) use upper-case letters F,G, . . . for elements in Ak and corresponding
lower-case letters f, g, . . . for their images in R.

6A. The “star action” on descending Puiseux series.

Definition 6.2. Let φ =
∑

j a j xq j/p
∈ C〈〈x〉〉 be a descending Puiseux series with

polydromy order p and r be a multiple of p. Then for all c ∈ C we define

c ?r φ :=
∑

j

a j cq j r/pxq j/p.

For 8 =
∑

α∈Zk
≥0
φα(x)y

α1
1 · · · y

αk
k ∈ Ãk , the polydromy order of 8 is the lowest

common multiple of the polydromy orders of all the nonzero φα . Let r be a multiple
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of the polydromy order 8. Then we define

c ?r 8 :=
∑
α

(c ?r φα)y
α1
1 · · · y

αk
k .

Remark 6.3. It is straightforward to see that in the case that c is an r-th root of
unity (and r is a multiple of the polydromy order of φ), c ?r φ is a conjugate of φ
(cf. Remark-Notation 6.5).

The following properties of the ?r operator are straightforward to see:

Lemma 6.4. (1) Let p be the polydromy order of 8 ∈ Ãk , d and e be positive
integers, and c ∈ C. Then c ?pde 8= ce ?pd 8= cde ?p 8.

(2) Let 8 j =
∑

j φ j,α(x)y
α1
1 · · · y

αk
k ∈ Ãk for j = 1, 2, and r be a multiple of the

polydromy order of each nonzero φ j,α. Then

c ?r (81+82)= (c ?r 81)+ (c ?r 82),

c ?r (8182)= (c ?r 81)(c ?r 82).

(3) Let π : Ãk→ R̃ be a C-algebra homomorphism defined by x 7→ x and

yj 7→ f j ∈ R for 1≤ j ≤ k.

Let 8=
∑

α φα(x)y
α1
1 · · · y

αk
k ∈ Ãk , let r be a multiple of the polydromy order

of each nonzero φα, and µ be a (not necessarily primitive) r-th root of unity.
Then π(µ ?r 8)= µ?r π(8). �

Remark-Notation 6.5. If φ is a descending Puiseux series in x with polydromy
order p, then we write

fφ :=
∏
φ j is a

conjugate
of φ

(
y−φ j (x)

)
=

p−1∏
j=0

(
y− ζ j ?p φ(x)

)
∈ R̃, (6-1)

where ζ is a primitive p-th root of unity. If f ∈C[x, y], then its descending Puiseux
factorization (Theorem 3.6) can be described as follows: There are unique (up to
conjugacy) descending Puiseux series φ1, . . . , φk , a unique nonnegative integer m,
and c ∈ C∗ such that

f = cxm
k∏

i=1

fφi .

Let (q1, p1), . . . , (ql, pl) be Puiseux pairs of φ. Set p0 := 1. For each k, 0≤ k ≤ l,
we write

f (k)φ :=

p0 p1···pk−1∏
j=0

(y− ζ j ?p φ(x)), (6-2)
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where ζ is a primitive (p1 · · · pl)-th root of unity. Note that f (l)φ = fφ , and for each
m, n, 0≤ m < n ≤ l,

f (n)φ =

p0 p1···pn−1∏
j=0

(
y− ζ j ?p φ(x)

)
=

pm+1···pn−1∏
i=0

p0 p1···pm−1∏
j=0

(
y− ζ i p0 p1···pm+ j ?p φ(x)

)
=

pm+1···pn−1∏
i=0

ζ i p0 p1···pm ?p

(p0 p1···pm−1∏
j=0

(
y− ζ j ?p φ(x)

))

=

pm+1···pn−1∏
i=0

ζ i p0 p1···pm ?p ( f (m)φ ). (6-3)

6B. “Canonical” preimages of polynomials and their comparison.

Lemma 6.6 (“canonical” preimages of elements in C〈〈x〉〉[y]). Let p0 := 1, and
p1, . . . , pk−1 be positive integers, and π : Ak→ R be a ring homomorphism which
sends x 7→ x and yj 7→ f j , where f j is monic in y of degree p0 · · · p j−1, 1≤ j ≤ k.
Then π induces a homomorphism Ãk → R̃ which we also denote by π . If f is a
nonzero element in R̃, then there is a unique Fπf ∈ Ãk such that

(1) π(Fπf )= f , and

(2) degyj
(Fπf ) < p j for all j , 1≤ j ≤ k− 1.

Moreover, if f is monic in y of degree p1 · · · pk−1d for some integer d, then

(3) Fπf is monic in yk of degree d,

(4) if the coefficient of xα yβ1
1 · · · y

βk
k in Fπf − yd

k is nonzero, then
j∑

i=1

p0 · · · pi−1βi < p1 · · · pj for all j, 1≤ j ≤ k− 1,

and
k∑

i=1

p0 · · · pi−1βi < p1 · · · pk−1d.

Finally,

(5) if each of f, f1, . . . , fk is in C[x, y] (resp. R), then Fπf is in C[x, y1, . . . , yk]

(resp. Ak).

Proof. This results from an application of Theorem 2.13 of [Abhyankar 1977]. �
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Now assume δ is a semidegree on C[x, y] such that δ(x)> 0. Assume the generic
descending Puiseux series for δ is

φ̃δ(x, ξ) := φδ(x)+ ξ xrδ

= · · ·+a1xq1/p1+· · ·+a2xq2/(p1 p2)+· · · +al xql/(p1···pl )+ξ xql+1/(p1···pl+1),

where (q1, p1), . . . , (ql+1, pl+1) are the formal Puiseux pairs of φ̃δ. Let g0 = x ,
g1 = y, . . . , gn+1 ∈ R be the sequence of key forms of δ and gj0, . . . , gjl+1 be the
subsequence of essential key forms. For 0≤ k ≤ l + 1, define

fk := gjk , ωk := δ( fk). (6-4)

Lemma 6.7. f1 has the form y− a polynomial in x. If 1≤ k ≤ l, one can write

fk+1 = f pk
k −

mk∑
i=0

ck,i f
β i

k,0
0 · · · f

β i
k,k

k

where

(1) mk ≥ 0,

(2) ck,i ∈ C∗ for all i , 0≤ i ≤ mk ,

(3) the β i
k, j are integers such that 0≤ β i

k, j < pj for 1≤ j ≤ k and 0≤ i ≤ mk ,

(4) β0
k,k = 0,

(5) pkωk =
∑k−1

j=0 β
0
k, jω j >

∑k
j=0 β

1
k, jω j > · · ·>

∑k
j=0 β

mk
k, jω j > ωk+1.

Proof. Combine property (P2) of key forms, assertion (3) of Proposition 3.21, and
the defining property of essential key forms (Definition 3.20). �

Let π : Al+1 → R be the C-algebra homomorphism which maps x 7→ x and
yk → fk , 1 ≤ k ≤ l + 1, and let πk := π |Ak : Ak → R, 1 ≤ k ≤ l + 1. Let ω be
the weighted degree on Al+1 corresponding to weights ω0 for x and ωk for yk ,
1≤ k ≤ l + 1. We will often abuse the notation and write π and ω respectively for
πk and ω|Ak for each k, 1≤ k ≤ l + 1. Define

Fk+1 :=

{
y1 if k = 0,

y pk
k −

∑mk
i=0 ck,i xβ

i
k,0 y

β i
k,1

1 · · · y
β i

k,k
k if 1≤ k ≤ l,

(6-5)

where the ck,i and β i
k, j are as in Lemma 6.7. Note that F1 ∈ A1 and Fk ∈ Ak−1 for

2≤ k ≤ l + 1. Moreover, π(Fk)= fk for each k, 1≤ k ≤ l + 1.

Lemma 6.8. Fix k, 1≤ k ≤ l + 1.

(1) Let H1, H2 be two monomials in Ak such that degyj
(H)< pj for all j , 1≤ j≤k.

Then ω(H1) 6= ω(H2).

(2) Suppose H ∈ Ak is such that degyj
(H) < pj for all j , 1 ≤ j ≤ k. Then

δ(π(H))= ω(H).
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Proof. Assertion (3) of Proposition 3.21 implies that for each j , 1≤ j ≤ k, pj is the
smallest positive integer such that pjω j is in the group generated by ω0, . . . , ω j−1.
This immediately implies assertion (1). For assertion (2), write H =

∑
i≥1 Hi ,

where the Hi are monomials in Ak . By assertion (1) we may assume w.l.o.g. that
ω(H) = ω(H1) > ω(H2) > · · · . Since δ(π(yj )) = δ( f j ) = ω j = ω(yj ) for each
j , 1 ≤ j ≤ k, it follows that δ(π(Hi ))= ω(Hi ) for all i . It then follows from the
definition of degree-like functions (Definition 5.4) that δ(π(H))=ω(H1)=ω(H).

�

Lemma 6.9. For each k, 1≤ k ≤ l + 1, define

rk :=
qk

p1 p2 · · · pk
, (6-6)

φk := [φδ]>rk . (6-7)

Define fφk ∈ R̃ as in (6-1). Also define

Fφk :=

{
Fπ1

fφ1
∈ Ã1 for k = 1,

Fπk−1
fφk
∈ Ãk−1 for 2≤ k ≤ l + 1.

Then:

(a) δ( fφk )= ωk .

(b) F1 = Fφ1 = y1.

(c) For k ≥ 1, Fk+1 is precisely the sum of all monomial terms T (in x, y1, . . . , yk)
of Fφk+1 such that ω(T ) > ωk+1.

Proof. We compute δ( fφk ) using (3-1). Let p̃k := p1 · · · pk−1. It is straightforward to
see that φk has precisely p̃k conjugates φk,1, . . . , φk, p̃k , and degx(φ̃δ(x, ξ)−φk, j (x))
equals r1 for (p1− 1)p2 · · · pk−1 of the φk, j , equals r2 for (p2− 1)p3 · · · pk−1 of
the φk, j , and so on. Identity (3-1) then implies that

δ( fφk )= δ(x)
p̃k∑

j=1

degx(φ̃δ(x, ξ)−φk, j (x))

= p1 · · · pl+1

(
(p1− 1)p2 · · · pk−1

q1

p1
+ (p2− 1)p3 · · · pk−1

q2

p1 p2
+ · · ·

+ (pk−1− 1)
qk−1

p1 · · · pk−1
+

qk

p1 · · · pk

)
.

A straightforward induction on k then yields that

δ( fφk )= pk−1δ( fφk−1)+ (qk − qk−1 pk)pk+1 · · · pl+1.

Identity (3-4) then implies that δ( fφk )=ωk , which proves assertion (a). Assertion (b)
follows immediately from the definitions. We now prove assertion (c). Fix k,
1 ≤ k ≤ l. Let F̃ be the sum of all monomial terms T (in x, y1, . . . , yk) of Fφk+1
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such that ω(T ) > ωk+1, i.e., Fφk+1 = F̃ + G̃ for some G̃ ∈ Ãk with ω(G̃)≤ ωk+1.
It follows that

δ(π(F̃))= δ(π(Fφk+1)−π(G̃))≤max{δ(π(Fφk+1)), δ(π(G̃))}

≤max{δ( fφk+1), ω(G̃)} ≤ ωk+1.

On the other hand, δ(π(Fk+1))= δ( fk+1)= ωk+1. It follows that

δ(π(F̃−Fk+1))=δ(π(F̃)−π(Fk+1))≤max{δ(π(F̃)),δ(π(Fk+1))}=ωk+1. (6-8)

Now, (6-5) and the defining properties of Fφk in Lemma 6.6 imply that H := F̃−Fk+1

satisfies the hypothesis of assertion (2) of Lemma 6.8, so that δ(π(F̃ − Fk+1))=

ω(F̃ − Fk+1). Inequality (6-8) then implies that

ω(F̃ − Fk+1)≤ ωk+1. (6-9)

But the construction of F̃ and assertion (5) of Lemma 6.7 imply that all the mono-
mials that appear in F̃ or Fk+1 have ω-value greater than ωk+1. Therefore (6-9)
implies that F̃ = Fk+1, as required to complete the proof. �

The proof of the next lemma is long, and we put it in Appendix A.

Lemma 6.10. Fix k, 0≤ k ≤ l. Pick ψ ∈C〈〈x〉〉 such that ψ ≡rk+1 φδ; in particular,
the first k Puiseux pairs of ψ are (q1, p1), . . . , (qk, pk). As in (6-2), define

f (k)ψ :=

p0 p1···pk−1∏
j=0

(
y− ζ j ?q ψ(x)

)
,

where q is the polydromy order of ψ and ζ is a primitive q-th root of unity. Define

F (k)ψ :=


Fπ1

f (0)ψ

∈ Ã1 for k = 0,

Fπk

f (k)ψ

∈ Ãk for 1≤ k ≤ l.
(6-10)

Then
ω(F (k)ψ − Fk+1)≤ ωk+1.

6C. Implications of polynomial key forms. We continue with the notation of
Section 6B. Let ξ1, . . . , ξl+1 be new indeterminates, and for each k, 1≤ k ≤ l + 1,
let δk be the semidegree on C[x, y] corresponding to the generic degreewise Puiseux
series

φ̃k(x, ξk) := φk(x)+ ξk xrk ,

i.e., δk(x)= p1 · · · pk and for each f ∈ C[x, y] \ {0},

δk( f (x, y))= δk(x) degx
(

f (x, φ̃k(x, ξk))
)
. (6-11)

The following lemma follows from a straightforward examination of Algorithm 5.1.
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Lemma 6.11. For each k, 1≤ k ≤ l + 1, the following hold:

(1) The key forms of δk are g0, g1, . . . , gjk .

(2) The essential key forms of δk are f0, . . . , fk .

(3) δk(gj )=
δ(gj )

pk+1···pl+1
, 0≤ j ≤ jk . �

Fix k, 1≤ k ≤ l+1. In this subsection we assume condition (Polynomialk) below
is satisfied, and examine some of its implications.

All the key forms of δk are polynomials. (Polynomialk)

Lemma 6.12. Assume (Polynomialk) holds. Then δ(gj )≥ 0 for 0≤ j ≤ jk − 1.

Proof. This follows from combining assertion (2) of Proposition 5.3 with assertion
(3) of Lemma 6.11. �

Let Ck := C[x, y1, . . . , yk] ⊆ Ak . Since the gj are polynomial for 0 ≤ j ≤ jk ,
Algorithm 5.1 implies that the F j (defined in (6-5)) are also polynomial for 0≤ j ≤k;
in particular, F1 ∈ C1 and F j+1 ∈ C j , 1 ≤ j ≤ k− 1. For 1 ≤ j ≤ k− 1, let H j+1

be the leading form of F j+1 with respect to ω, i.e.,

H j+1 := y pj
j − c j,0xβ

0
j,0 y

β0
j,1

1 · · · y
β0

j, j−1
j−1 , 1≤ j ≤ k− 1. (6-12)

Let ≺ be the reverse lexicographic order on Ck , i.e., xβ0 yβ1
1 · · · y

βk
k ≺ xβ

′

0 y
β ′1
1 · · · y

β ′k
k

if and only if the right-most nonzero entry of (β0−β
′

0, . . . , βk −β
′

k) is negative.
The following lemma is the main result of this subsection. Its proof is long, and

we put it in Appendix B.

Lemma 6.13. Assume (Polynomiall+1) holds. Then

(1) (Recall the notation of Section 5B.) Define

Sδ :=
⊕
d∈Z

F δ
d ⊇ C[x, y]δ.

Then Sδ is generated as a C-algebra by (1)1, (x)ω0, (y1)ω1, . . . , (yl+1)ωl+1 .

(2) Let Jl+1 be the ideal in Cl+1 generated by the leading weighted homogeneous
forms (with respect to ω) of polynomials F ∈ Cl+1 such that δ(π(F)) < ω(F).
Then Bl+1 := (Hl+1, . . . , H2) is a Gröbner basis of Jl+1 with respect to ≺.

7. Proof of the main results

In this section we give proofs of Theorems 4.1, 4.3, 4.4 and 4.7.

Proof of Theorem 4.7. The implication (2)⇒ (3) is obvious. We prepare the ground
for the rest with an easily seen reformulation:
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Lemma 7.1. Assertion (1) of Theorem 4.7 is equivalent to the following assertion:

(1′) There exists a polynomial f ∈ C[x, y] such that for each analytic branch C of
the curve f = 0 at infinity,

• C intersects L∞ at O , and
• C has a descending Puiseux expansion y = θ(x) at O such that degx(θ−φ)

is at most 1− r . �

Assertion (4) of Theorem 3.17 implies that if gn+1 is a polynomial, then gn+1

satisfies the properties of f from (1′); in particular (3)⇒ (1′). To finish the proof of
Theorem 4.7 it remains to prove that (1′)⇒ (2). So assume (1′) holds. We proceed
by contradiction, i.e., we also assume that there exists m, 1≤m ≤ n, such that gm+1

is not a polynomial, and show that this leads to a contradiction. By assertion (1) of
Proposition 5.3, we may (and will) assume that m = n.

We adopt the notation of Sections 6B and 6C. In particular, we write φ̃δ(x, ξ)
and φδ(x), rδ for φ̃(x, ξ) and [φ(x)]>1−r , 1 − r , respectively, and we denote
by (q1, p1), . . . , (ql+1, pl+1) the formal Puiseux pairs of φ̃δ. We also denote by
gj0, . . . , gjl+1 the sequence of essential key forms, and set fk := gjk , 0≤ k ≤ l + 1.

Let f ∈ C[x, y] be as in (1′). By assumption f has a descending Puiseux
factorization of the form

f = a
M∏

m=1

fψm (7-1)

for some a ∈ C∗ and ψ1, . . . , ψm ∈ C〈〈x〉〉 such that

ψm ≡rδ φδ, for each m, 1≤ m ≤ M, (7-2)

where the fψm are defined as in (6-1). Without loss of generality we may (and will)
assume that a = 1.

At first we claim that l ≥ 1. Indeed, assume to the contrary that l = 0. Then

φ̃δ(x, ξ)= h(x)+ ξ xrδ

for some h ∈C[x, x−1
]. Since gn+1 is not a polynomial, assertion (2) of Proposition

5.3 implies that h(x) = h1(x)+ h2(x), where h1 ∈ C[x], h2 ∈ C[x−1
] \ C, and

0> degx(h2(x)) > rδ . Let e := − degx(h2(x)) > 0 and y′ := y−h1(x). Then (7-1)
implies that f is a product of elements in C〈〈x〉〉[y′] of the form y′−ψm,i (x) for
ψm,i ∈ C〈〈x〉〉 such that each ψm,i (x) = h2(x)+ l.d.t., where l.d.t. denotes terms
with degree smaller than ordx(h2) < −e. It is then straightforward to see that
f 6∈ C[x, y′] = C[x, y], which contradicts our choice of f . It follows that l ≥ 1, as
claimed.
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Let Fk , 1 ≤ k ≤ l + 1, be as in (6-5). Fix m, 1 ≤ m ≤ M . Then (7-2) and
Lemma 6.10 imply that

F (l)ψm
= Fl+1+ F̃m, (7-3)

where F̃m ∈ Ãl := C〈〈x〉〉[y1, . . . , yl] and ω(F̃m) ≤ ωl+1. Let sm denote the poly-
dromy order of ψm and µm be a primitive sm-th root of unity. Identity (7-2) implies
that tm := sm/(p1 p2 · · · pl) is a positive integer. Therefore (6-3) and assertion (3)
of Lemma 6.4 imply that

fψm =

tm−1∏
j=0

µ
j p1···pl
k ?sm ( f (l)ψm

)=

tm−1∏
j=0

µ j p1···pl
m ?sm (πl(Fl+1+ F̃m))=πl(Gm), (7-4)

where

Gm :=

tm−1∏
j=0

(
Fl+1+µ

j p1···pl
m ?sm (F̃m)

)
∈ B̃l . (7-5)

Recall that Fl+1 = y pl
l −

∑ml
i=1 cl,i xβ

i
l,0 y

β i
l,1

1 · · · y
β i

l,l
l . Since by our assumption all

the key forms but the last one are polynomials, it follows from assertion (2) of
Proposition 5.3 that β i

l,0 ≥ 0 for all i < ml , but β i
ml ,0 < 0; set

ω′l+1 := ω(x
β

ml
l,0 y

β
ml
l,1

1 · · · y
β

ml
l,l

l )=

l∑
i=0

β
ml
l,i ωi . (7-6)

Then ω′l+1 > ωl+1 and therefore we may express Gm as

Gm =

tm−1∏
j=0

(
y pl

l −

ml∑
i=0

cl,i xβ
i
l,0 y

β i
l,1

1 · · · y
β i

l,l
l −Gm, j

)
, (7-7)

for some Gm, j ∈ B̃l with ω(Gm, j ) < ω
′

l+1. Identities (7-1), (7-4) and (7-7) imply
that f = πl(F) for some F ∈ Ãl of the form

F =
M ′∏

m′=1

(
y pl

l −

ml∑
i=0

cl,i xβ
i
l,0 y

β i
l,1

1 · · · y
β i

l,l
l −G ′m′

)
, (7-8)

where ω(G ′m′) < ω
′

l+1 for all m′, 1≤ m′ ≤ M ′. Let

G :=

{
F − yM ′ pl

l if ml = 0,

F −
(
y pl

l −
∑ml−1

i=0 cl,i xβ
i
l,0 y

β i
l,1

1 · · · y
β i

l,l
l

)M ′ otherwise.

Recall from assertion (4) of Lemma 6.7 that β0
l,l = 0. It follows that the leading

weighted homogeneous form of G with respect to ω is
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Lω(G)

=


−cl,0xβ

0
l,0 y

β0
l,1

1 · · · y
β0

l,l−1
l−1 if ml = 0, M ′ = 1,∑M ′

i=1
(M ′

i

)
(−cl,0)

i y(M
′
−i)pl

l x iβ0
l,0 y

iβ0
l,1

1 · · · y
iβ0

l,l−1
l−1 if ml = 0, M ′ > 1,

M ′cl,ml (y
pl
l −cl,0xβ

0
l,0 y

β0
l,1

1 · · · y
β0

l,l−1
l−1 )M ′−1xβ

ml
l,0 y

β
ml
l,1

1 · · · y
β

ml
l,l

l otherwise.

(7-9)

Since πl(F) = f ∈ C[x, y], it follows that g := πl(G) is also a polynomial in
x and y. Assertion (1) of Lemma 6.13 then implies that there is a polynomial
G̃ ∈ Cl := C[x, y1, . . . , yl] such that πl(G̃) = g and ω(G̃) = δl(g). In particular,
ω(G̃)≤ ω(G).

Claim 7.2. ω(G̃)= ω(G).

Proof. Let≺ be the reverse lexicographic monomial ordering on Cl from Section 6C
and let α be the smallest positive integer such that xαLω(G) is a polynomial. Then
(7-9) implies that the leading term of xαLω(G) with respect to ≺ is

LT≺(xαLω(G))

=


−cl,0 y

β0
l,1

1 · · · y
β0

l,l−1
l−1 if ml = 0, M ′ = 1,

−cl,0 M ′y(M
′
−1)pl

l x (M
′
−1)|β0

l,0|y
β0

l,1
1 · · · y

β0
l,l−1

l−1 if ml = 0, M ′ > 1,

M ′cl,ml y
(M ′−1)pl+β

ml
l,l

l y
β

ml
l,1

1 · · · y
β

ml
l,l−1

l−1 otherwise.

(7-10)

Assume contrary to the claim that ω(G) > ω(G̃) = δl(g). Then xαLω(G) ∈ Jl ,
where Jl is the ideal from assertion (2) of Lemma 6.13. Assertion (2) of Lemma 6.13
then implies that there exists j , 1≤ j ≤ l − 1, such that y p j

j = LT≺(H j+1) divides
LT≺(xαLω(G)). But this contradicts the fact that βml

l, j ′ < p j ′ for all j ′, 1≤ j ′≤ l−1
(assertion (3) of Lemma 6.7) and completes the proof of the claim. �

Let Jl and α be as in the proof of Claim 7.2. Note that Lω(xαG̃) 6∈ Jl by
our choice of G̃. Therefore, after “dividing out” G̃ by the Gröbner basis Bl of
Lemma 6.13 (which does not change ω(G̃)) if necessary, we may (and will) assume
that

y p j
j does not divide any of the monomial

terms of Lω(xαG̃) for any j , 1≤ j ≤ l − 1.
(7-11)

Since πl(xαG−xαG̃)=0, it follows that Lω(xαG−xαG̃)∈ Jl . Since ω(G)=ω(G̃)
by Claim 7.2, it follows that H∗ := Lω(xαG)−Lω(xαG̃) ∈ Jl . Let

H := LT≺(Lω(xαG)) and H̃ := LT≺(Lω(xαG̃)).

Since G̃ ∈ C[x, y1, . . . , yl], it follows that degx(H̃)≥ α. On the other hand, (7-10)
implies that degx(H) = α + β

0
ml ,0 < α. It follows in particular that H 6= H̃ and

LT≺(H∗) = max≺{H,−H̃}. Then (7-10) and (7-11) imply that y p j
j = LT≺(H j )

does not divide LT≺(H∗) for any j , 1 ≤ j ≤ l − 1. This contradicts assertion (2)
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of Lemma 6.13 and finishes the proof of the implication (1′)⇒ (2), as required to
complete the proof of Theorem 4.7. �

Proof of Theorem 4.1. Theorem 4.7 implies that (2) ⇔ (3). Now assume (2) is
true. Note that δ( f ) > 0 for each nonconstant f ∈ C[x, y] (since such an f must
have a pole at the irreducible curve E ′1 := π

′(E1)⊆ Y ′); so that the ring Sδ defined
in Lemma 6.13 is precisely the ring C[x, y]δ from Section 5B. Assertion (1) of
Lemma 6.13 and Proposition 5.8 then imply that Y ′ is isomorphic to the closure
of the image of C2 in the weighted projective variety Pl+2(1, δ( f0), . . . , δ( fl+1))

under the mapping (x, y) 7→ [1 : f0 : · · · : fl+1]. In particular this shows (2)⇒ (1).
It remains to show that (1)⇒ (2). So assume that Y ′ is algebraic. Recall the

setup of Proposition 3.14. We can identify Y ′ with X and E ′1 with C∞ (where
X and C∞ are as in Proposition 3.14). Let P∞ ∈ C∞ be as in Proposition 3.14.
Since Y ′ is algebraic, there exists a compact algebraic curve C on Y ′ such that
P∞ 6∈C . Let f ∈C[x, y] be the polynomial that generates the ideal of C in C[x, y].
Proposition 3.14 then implies that f satisfies the condition of property (1′) from
Lemma 7.1. Theorem 4.7 and Lemma 7.1 then show that (2) is true, as required. �

Proof of Theorem 4.3. Let δ be the semidegree on C[x, y] corresponding to the
curve at infinity on X , φ̃δ(x, ξ) be the associated generic descending Puiseux
series, and g0, . . . , gn+1 ∈ C[x, x−1, y] be the key forms. If X is algebraic, then
Theorem 4.1 implies that gn+1 is a polynomial. Proposition 3.14 and assertion (4)
of Theorem 3.17 then imply that gn+1 = 0 defines a curve C as in assertion (2) of
Theorem 4.3. This proves the implication (1) ⇒ (2), and also the last assertion
of Theorem 4.3. It remains to prove the implication (2)⇒ (1). So assume there
exists f ∈ C[x, y] such that C := { f = 0} is as in (2). Proposition 3.14 implies
that f satisfies the condition of property (1′) from Lemma 7.1. Then Lemma 7.1,
Theorem 4.7 and Theorem 4.1 imply that X is algebraic, as required. �

Proof of Theorem 4.4. The (⇒) direction of assertion (1) follows from Theorem 4.1
and assertion (2) of Proposition 5.3. For the (⇐) implication, note that assertion
(3) of Proposition 3.21 and Property (P0) of key forms imply for each k, 1≤ k ≤ l,
that

pkωk =

k−1∑
j=0

β ′k, jω j ,

where the β ′k, j are integers such that 0 ≤ β ′k, j < pj for 1 ≤ j < k. Define g0
k ,

0≤ k ≤ l + 1, by

g0
k =


x if k = 0,
y if k = 1,
(g0

k−1)
pk−1 −

∏k−2
j=0(g

0
j )
β ′k−1, j if 2≤ k ≤ l + 1.
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Assertion (2) of Theorem 3.17 implies that there is a unique semidegree δ0 on
C[x, y] such that its key forms are g0

0, . . . , g0
l+1 and δ0(g0

k ) = ωk , 0 ≤ k ≤ l + 1.
Since ωl+1 > 0 (assertion (3) of Theorem 3.28) it follows that δ0 defines a primitive
normal compactification X0 of C2 (Remark 4.2). It follows from Proposition 3.21
that (qk, pk), 1 ≤ k ≤ l + 1, are uniquely determined in terms of ω0, . . . , ωl+1.
Therefore 0 is precisely the augmented and marked dual graph associated to the
minimal P2-dominating resolution of singularities of X0. Now, if (S1-k) holds for
each k, 1 ≤ k ≤ l, then each β ′k,0 is nonnegative, so that each g0

k is a polynomial.
Theorem 4.1 then implies that X0 is algebraic, which proves the (⇐) implication
of assertion (1).

Now we prove assertion (2). For the (⇒) implication, pick a nonalgebraic
normal primitive compactification X of C2 such that 0 = 0X . Let δ be the order
of pole along the curve at infinity on X . Theorem 4.1 implies that at least one of
the key forms of δ is not a polynomial. Assertions (2) and (4) of Proposition 3.21
and assertion (2) of Proposition 5.3 now imply that either (S1-k) or (S2-k) fails,
as required. It remains to prove the (⇐) implication of assertion (2). Let g0

k ,
0≤ k ≤ l+1, be as in the preceding paragraph. If (S1-k) fails for some k, 1≤ k ≤ l,
take the smallest such k. Then by construction g0

k is not a polynomial, so that X0

is not algebraic (Theorem 4.1), as required. Now assume that (S1-k) holds for
all k, 1 ≤ k ≤ l, but there exists k, 1 ≤ k ≤ l, such that (S2-k) fails; let k be the
smallest such integer. Pick ω̃ ∈ (ωk+1, pkωk)∩Z〈ω0, . . . , ωk〉 \Z≥0〈ω0, . . . , ωk〉.
Then it is straightforward to see that there exist integers β̃0, . . . , β̃k such that β̃0< 0,
0≤ β̃j < pj , 1≤ j < k, and

ω̃ =

k−1∑
j=0

β̃jω j .

Define g1
i , where 0≤ i ≤ l + 2, by

g1
i =


g0

i if 0≤ i ≤ k+ 1,
g0

k+1−
∏k

j=0(g
0
j )
β̃j if i = k+ 2,

(g1
i−1)

pi−2 −
∏k

j=0(g
1
j )
β ′i−2, j

∏i−2
j=k+2(g

1
j )
β ′i−2, j−1 if k+ 3≤ i ≤ l + 2.

The same arguments as in the proof of assertion (1) imply that there is a primitive
normal compactification X1 of C2 such that:

• g1
0, . . . , g1

l+2 are the key forms of the semidegree δ1 corresponding to its curve
at infinity, and

δ1(g1
i )=


ωi if 0≤ i ≤ k,
ω̃ if i = k+ 1,
ωi−1 if k+ 2≤ i ≤ l + 2.
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• 0 is the augmented and marked dual graph associated to the minimal P2-
dominating resolution of singularities of X1.

Since g1
k+2 is not a polynomial, X1 is not algebraic (Theorem 4.1), as required to

complete the proof of assertion (2). �

Appendix A: Proof of Lemma 6.10

Notation A.1. Fix k, 1≤ k ≤ l+1. For F ∈ Ãk and µ ∈R, we write [F]>µ for the
sum of all monomial terms H of F such that ω(H) > µ.

Lemma A.2. Fix k, 1≤ k ≤ l. Pick ψ1, ψ2 ∈ C〈〈x〉〉 and µ≤ ωk ∈ R. Assume

(1) the first k Puiseux pairs of each ψj are (q1, p1), . . . , (qk, pk).

Assumption (1) implies that we can define F (k−1)
ψj

, F (k)ψj
, 1≤ j ≤ 2, as in Lemma 6.10.

Assume

(2) [F (k−1)
ψ1
]>µ = [F

(k−1)
ψ2
]>µ, and

(3) [F (k−1)
ψj
]>ωk = [Fk]>ωk for each j , 1≤ j ≤ 2.

Then [F (k)ψ1
]>(pk−1)ωk+µ = [F

(k)
ψ2
]>(pk−1)ωk+µ.

Proof. Let

Ã :=
{

Ã1 if k = 1,
Ãk−1 otherwise.

Assumptions (2) and (3) imply that there exists G ∈ Ã with ω(G)≤ ωk such that
for both j , 1≤ j ≤ 2,

F (k−1)
ψj

= Fk +G+G j

for some G j ∈ Ã with ω(G j )≤µ. Fix j , 1≤ j ≤ 2. Let mj be the polydromy order
of ψj and µ j be a primitive mj -th root of unity. Then identity (6-3) and assertion (3)
of Lemma 6.4 imply that

f (k)ψj
=

pk−1∏
i=0

µ
i p1···pk−1
j ?mj ( f (k−1)

ψj
)= πk−1(G∗j ),

where

G∗j :=
pk−1∏
i=0

µ
i p1···pk−1
j ?mj (F

(k−1)
ψj

)=

pk−1∏
i=0

µ
i p1···pk−1
j ?mj (Fk +G+G j )

=

pk−1∏
i=0

(
Fk +µ

i p1···pk−1
j ?mj G+µi p1···pk−1

j ?mj G j
)

=

pk−1∏
i=0

(
Fk +µ

i p1···pk−1 ?m G+µi p1···pk−1
j ?mj G j

)
,
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m is the polydromy order of G (Definition 6.2), and µ is a primitive m-th root of
unity (the last equality is an implication of assertion (1) of Lemma 6.4). Let

G j,0 :=

pk−1∏
i=0

(
yk +µ

i p1···pk−1 ?m G+µi p1···pk−1
j ?mj G j

)
∈ Ãk . (A-1)

Note that πk(G j,0) = f (k)ψj
= πk(F

(k)
ψj
). Now we construct F (k)ψj

from G j,0 via
constructing a sequence of elements G j,0,G j,1, . . . as follows:

• For β := (β1, . . . , βk) ∈ Zk
≥0, define

|β|k−1 :=

k−1∑
j=1

p0 · · · p j−1βj .

Consider the well order ≺∗k−1 on Zk
≥0 defined as follows: β ≺∗k−1 β

′ if and
only if

(1) |β|k−1 < |β
′
|k−1, or

(2) |β|k−1 = |β
′
|k−1 and the left-most nonzero entry of β −β ′ is negative.

• Assume G j,N has been constructed, N ≥ 0. Express G j,N as

G j,N =
∑
β∈Zk

≥0

gj,N ,β(x)y
β1
1 · · · y

βk
k

and define

E j,N :=
{
β ∈ Zk

≥0 : gj,N ,β 6= 0 and βi ≥ pi for some i, 1≤ i ≤ k− 1
}
.

• If E j,N =∅, then stop.
• Otherwise pick the maximal element β∗ = (β∗1 , . . . , β

∗

k ) of E j,N with respect
to ≺∗k−1, and the maximal i∗, 1≤ i∗ ≤ k− 1, such that β∗i∗ ≥ pi∗ , and set

G j,N+1 =
∑
β 6=β∗

gj,N ,β(x)y
β1
1 · · · y

βk
k + gj,N ,β∗(x)

×

∏
i 6=i∗

(yi )
β∗i (yi )

β∗i∗−pi∗ (yi+1− (Fi+1− y pi∗

i∗ )). (A-2)

Assertion (c) of Lemma 6.9 and assertion (4) of Lemma 6.6 imply that all the
“new” exponents of (y1, . . . , yk) that appear in G j,N+1 are smaller (with respect
to ≺∗k−1) than β∗, and it follows that the sequence of G j,N ’s stops at some finite
value N ∗ of N .

Claim A.2.1. G j,N∗ = F (k)ψj
.

Proof. Indeed, (A-2) implies that πk(G j,N∗) = πk(G j,0) = f (k)ψj
. Since we must

have E j,N∗ =∅ for G j,N∗ to be the last element of the sequence of G j,N ’s, G j,N∗

satisfies the characterizing properties of F (k)ψj
= Fπk

f (k)ψj

from Lemma 6.6. �
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Now note that, for each i , 1≤ i≤k−1, every monomial term in yi+1−(Fi+1−y pi
i )

has ω-value smaller than or equal to ω(y pi
i ) (assertion (5), Lemma 6.7). It then

follows from (A-1) and (A-2) that G j has no effect on [G j,N ]>(pk−1)ωk+µ for any N ,
i.e., [G1,N ]>(pk−1)ωk+µ = [G2,N ]>(pk−1)ωk+µ for all N . Claim A.2.1 then implies
the lemma. �

Corollary A.3. Let

ωi, j := ωi + q j p j+1 · · · pl+1− qi pi+1 · · · pl+1 for 1≤ i ≤ j ≤ l + 1.

Fix j , 0 ≤ j ≤ l. Let ψ ∈ C〈〈x〉〉 be such that ψ ≡r j+1 φ j+1 (where r1, . . . , rl+1

and φ1, . . . , φl+1 are as in (6-6) and (6-7), respectively). Then for all i such that
0≤ i ≤ j ,

[F (i)ψ ]>ωi+1, j+1 = [F
(i)
φ j+1
]>ωi+1, j+1 .

Proof. At first we consider the i=0 case. Equation (6-1) implies that f (0)ψ = y−ψ(x)
and f (0)φk+1

= y−φk+1(x). Then (6-10) implies that

F (0)ψ = y1+φ1(x)−ψ(x), F (0)φk+1
= y1+φ1(x)−φ j+1(x).

It follows that

ω(F (0)ψ − F (0)φ j+1
)= ω0 degx(φ j+1(x)−ψ(x))

≤ p1 · · · pl+1r j+1 = q j+1 p j+2 · · · pl+1 = ω1, j+1.

It follows that the corollary is true for i = 0 and all j , 0≤ j ≤ l.
Now we start the proof of the general case. We proceed by induction on j . It

follows from the preceding discussion that the corollary is true for j = 0. So assume
it holds for 0 ≤ j ≤ j ′ ≤ l − 1. To show that it holds for j = j ′+ 1, we proceed
by induction on i . By the same reasoning, we may assume that it also holds for
j = j ′+ 1 and 0≤ i ≤ i ′ ≤ j ′. Pick ψ such that ψ ≡r j ′+2

φ j ′+2. Then applying the
induction hypothesis with j = j ′+ 1 and i = i ′, we have

[F (i
′)

ψ ]>ωi ′+1, j ′+2
= [F (i

′)
φ j ′+2
]>ωi ′+1, j ′+2

. (A-3)

On the other hand, since ψ ≡ri ′+1
φi ′+1, we can apply the induction hypothesis with

j = i ′ and i = i ′ to obtain

[F (i
′)

ψ ]>ωi ′+1,i ′+1
= [F (i

′)
φi ′+1
]>ωi ′+1,i ′+1

.

Similarly, since φ j ′+2 ≡ri ′+1
φi ′+1, we have

[F (i
′)

φ j ′+2
]>ωi ′+1,i ′+1

= [F (i
′)

φi ′+1
]>ωi ′+1,i ′+1

.

Since ωi ′+1,i ′+1 = ωi ′+1, it follows that

[F (i
′)

ψ ]>ωi ′+1
= [F (i

′)
φ j ′+2
]>ωi ′+1

= [F (i
′)

φi ′+1
]>ωi ′+1

. (A-4)
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Identities (A-3), (A-4) and assertion (c) of Lemma 6.9 imply thatψ and φ j ′+2 satisfy
the hypotheses of Lemma A.2 with µ = ωi ′+1, j ′+2 and k = i ′ + 1. Lemma A.2
therefore implies that

[F (i
′
+1)

ψ ]>µ′ = [F
(i ′+1)
φ j ′+2
]>µ′,

where µ′ = (pi ′+1− 1)ωi ′+1+ωi ′+1, j ′+2. It is straightforward to check using (3-4)
that µ′ = ωi ′+2, j ′+2, as required to complete the induction. �

Proof of Lemma 6.10. Since ωk+1 = ωk+1,k+1 and F (k)φk+1
= Fφk+1 , Lemma 6.10 is

simply a special case of Corollary A.3. �

Appendix B: Proof of Lemma 6.13

We freely use the notation of Section 6C.

Proof of assertion (1) of Lemma 6.13. Since f0 = x and each f j , 1≤ j ≤ l + 1, is
monic in y with degy( f j ) = p0 · · · p j−1 (where p0 := 1), it is straightforward to
see that each polynomial f ∈C[x, y] can be represented as a finite sum of the form

f =
∑
β∈Zl+2

≥0

aβ f β0
0 · · · f βl+1

l+1 ,

where for each β = (β0, . . . , βl+1), we have aβ ∈ C and βj < pj , 1 ≤ j ≤ l. It
suffices to show that

δ( f )=max{δ( f β0
0 · · · f βl+1

l+1 ) : cβ 6= 0}.

We compute δ( f ) via identity (3-1). Assertion (4) of Theorem 3.17 implies that

f j |y=φ̃δ(x,ξ) =

{
c∗j x

ω j/ω0 + l.d.t. for 0≤ j ≤ l,
(c∗l+1ξ + cl+1)xωl+1/ω0 + l.d.t. for j = l + 1,

(B-1)

where c∗j ∈C∗, 0≤ j ≤ l, cl+1 ∈C, and l.d.t. denotes terms with lower degree in x .
Let d :=max{δ( f β0

0 · · · f βl+1
l+1 ) : aβ 6= 0} and B := {β : aβ 6= 0, δ( f β0

0 · · · f βl+1
l+1 )= d}.

It follows that
f |y=φ̃δ(x,ξ) = c(ξ)xd/ω0 + l.d.t., (B-2)

where

c(ξ) :=
∑
β∈B

aβ(c∗l+1ξ + cl+1)
βl+1

l∏
j=0

(c∗j )
βj . (B-3)

Now, assertion (1) of Lemma 6.8 implies that for two distinct elements β, β ′ of B,
βl+1 6= β

′

l+1. Identity (B-3) then implies that c(ξ) 6= 0, so that (B-2) implies that
δ( f )= d , as required to complete the proof of assertion (1). �

For each j , 0≤ j≤ l+1, let� j ⊆Z be the semigroup generated byω0, . . . , ω j ; re-
call that for j ≥ 1, condition (Polynomial j ) implies that � j−1⊆Z≥0 (Lemma 6.12).
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Lemma B.1. Assume (Polynomiall+1) holds. Fix j , 1 ≤ j ≤ l. Let J j+1 be the
ideal in C j generated by H2, . . . , H j+1. Let t be an indeterminate. Then

C j/J j+1 ∼= C[� j ] ∼= C[tω0, . . . , tω j ],

via the mapping x 7→ tω0 and yi 7→ bi tωi , 1≤ i ≤ j , for some b1, . . . , b j ∈ C∗.

Proof. We proceed by induction on j . For j = 1, identity (6-12) and assertions (4)
and (5) of Lemma 6.7 imply that

C1/J 2 = C[x, y1]/〈y
p1
1 − c1,0xq1〉 ∼= C[t p1, tq1],

where t is an indeterminate and the isomorphism maps x 7→ t p1 and y1 7→ c1/p1
1,0 tq1 ,

where c1/p1
1,0 is a p1-th root of c1,0 ∈C∗. Since ω0= p1 p2 · · · pl and ω1=q1 p2 · · · pl ,

this proves the lemma for j = 1. Now assume that the lemma is true for j − 1,
2≤ j ≤ l, i.e., there exists an isomorphism

C j−1/J j ∼= C[tω0, . . . , tω j−1]

which maps x 7→ tω0 and yi 7→ bi tωi , 1≤ i ≤ j −1 for some b1, · · · , b j−1 ∈C∗. It
follows that

C j/J j+1 = C j−1[y j ]/〈J j , y pj
j − c j,0xβ

0
j,0 y

β0
j,1

1 · · · y
β0

j, j−1
j−1 〉

∼= C[tω0, . . . , tω j−1, yj ]/〈y
pj
j − c̃t pjω j 〉

for some c̃ ∈ C∗ (the last isomorphism uses assertion (5) of Lemma 6.7). Since
pj =min{α ∈ Z>0;αω j ∈ Zω0+ · · ·+Zω j−1} (assertion (3) of Proposition 3.21),
it follows that

C[tω0, . . . , tω j−1, yj ]/〈y
pj
j − c̃t pjω j 〉 ∼= C[tω0, . . . , tω j ]

via a map which sends yj 7→ (c̃)1/pj tω j (where (c̃)1/pj is a pj -th root of c̃), which
completes the induction. �

Let z be an indeterminate and Ĉl+1 := Cl+1[z] = C[z, x, y1, . . . , yl+1]. Let ω̂
be the weighted degree on Ĉl+1 such that ω̂(z) = 1 and ω̂|Cl+1 = ω. Equip Ĉ l+1

with the grading determined by ω̂. Let Sδ be as in assertion (1) of Lemma 6.13 and
π̂ : Ĉl+1→ Sδ be the map which sends z 7→ (1)1, x 7→ (x)ω0 , and yj 7→ ( f j )ω j ,
1≤ j ≤ l+1. Assertion (1) implies that π̂ is a surjective homomorphism of graded
rings. Let I be the ideal generated by (1)1 in Sδ and Ĵl+1 := π̂

−1(I )⊆ Ĉl+1.

Claim B.2. Ĵl+1 is generated by B̂l+1 := (Hl+1, . . . , H2, z).

Proof. Let J l+1 be the ideal of Cl as defined in Lemma B.1, and Ĵ ′l+1 be the ideal
of Ĉl+1 generated by J l+1 and z. It is straightforward to see that Ĵ ′l+1 ⊆ Ĵl+1.
Lemma B.1 implies that

Ĉl+1/ Ĵ ′l+1
∼= C[tω0, . . . , tωl , yl+1].
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Let R :=C[tω0, . . . , tωl , yl+1]. Then Sδ/I ∼= Ĉl+1/ Ĵl+1∼= R/p for some prime ideal
p of R. Now, it follows from the construction of Sδ that dim(Sδ)= 3. Since I is
the principal ideal generated by a nonzero divisor in Sδ , it follows that dim(R/p)=
dim(Sδ/I )= 2. Since R is an integral domain of dimension 2, we must have p= 0,
which implies the claim. �

Proof of assertion (2) of Lemma 6.13. Since Jl+1 = Ĵl+1 ∩Cl+1, Claim B.2 shows
that Bl+1 generates Jl+1. Therefore, to show that Bk is a Gröbner basis of Jk with
respect to ≺k , it suffices to show that running a step of Buchberger’s algorithm
with Bl+1 as input leaves Bl+1 unchanged. We follow Buchberger’s algorithm
as described in [Cox et al. 1997, Section 2.7], which consists of performing the
following steps for each pair of Hi , Hj ∈ Bl+1, 2≤ i < j ≤ l + 1:

Step 1: Compute the S-polynomial S(Hi ,Hj ) of Hi and Hj . The leading terms of
Hi and Hj with respect to≺ are respectively LT≺(Hi )= y pi−1

i−1 and LT≺(Hj )= y p j−1
j−1 ,

so that the S-polynomial of Hi and Hj is

S(Hi ,Hj ) := y p j−1
j−1 Hi − y pi−1

i−1 Hj

= − (ci−1,0xβ
0
i−1,0 y

β0
i−1,1

1 · · · y
β0

i−1,i−2
i−2 )y p j−1

j−1

+ (c j−1,0xβ
0
j−1,0 y

β0
j−1,1

1 · · · y
β0

j−1, j−2
j−2 )y pi−1

i−1 .

Step 2: Divide S(Hi ,Hj ) by Bk and if the remainder is nonzero, then adjoin it
to Bl+1. Since i < j , the leading term of S(Hi ,Hj ) is

LT≺(S(Hi ,Hj ))=−(ci−1,0xβ
0
i−1,0 y

β0
i−1,1

1 · · · y
β0

i−1,i−2
i−2 )y p j−1

j−1 .

Since β0
i−1, j ′ < p j ′ for all j ′, 1≤ j ′ ≤ i−1 (assertion (3) of Lemma 6.7), it follows

that Hj is the only element of Bl+1 such that LT≺(Hj ) divides LT≺(S(Hi ,Hj )).
The remainder of the division of S(Hi ,Hj ) by Hj is

S1 := S(Hi ,Hj )+ (ci−1,0xβ
0
i−1,0 y

β0
i−1,1

1 · · · y
β0

i−1,i−2
i−2 )Hj

= (c j−1,0xβ
0
j−1,0 y

β0
j−1,1

1 · · · y
β0

j−1, j−2
j−2 )Hi ,

so that the leading term of S1 is

LT≺(S1)= (c j−1,0xβ
0
j−1,0 y

β0
j−1,1

1 · · · y
β0

j−1, j−2
j−2 )y pi−1

i−1 .

It follows as in the case of S(Hi ,Hj ) that Hi is the only element of Bl+1 whose
leading term divides LT≺(S1). Since Hi divides S1, the remainder of the division
of S1 by Hi is zero, and it follows that the remainder of the division of S(Hi ,Hk)

by Bk is zero. Consequently Step 2 concludes without changing Bl+1.
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It follows from the preceding paragraphs that running one step of Buchberger’s
algorithm keeps Bl+1 unchanged, and consequently Bl+1 is a Gröbner basis of Jl+1

with respect to ≺ [Cox et al. 1997, Theorem 2.7.2]. This completes the proof of
assertion (2) of Lemma 6.13. �
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