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A vanishing theorem
for weight-one syzygies

Lawrence Ein, Robert Lazarsfeld and David Yang

We give a criterion for the vanishing of the weight-one syzygies associated to a
line bundle B in a sufficiently positive embedding of a smooth complex projective
variety of arbitrary dimension.

Introduction

Inspired by the methods of Voisin [2002; 2005], Ein and Lazarsfeld [2015] recently
proved the gonality conjecture of [Green and Lazarsfeld 1986], asserting that one
can read off the gonality of an algebraic curve C from the syzygies of its ideal in
any one embedding of sufficiently large degree. They deduced this as a special
case of a vanishing theorem for the asymptotic syzygies associated to an arbitrary
line bundle B on C , and conjectured that an analogous statement should hold on a
smooth projective variety of any dimension. The purpose of this note is to prove
the conjecture in question.

Turning to details, let X be a smooth complex projective variety of dimension n,
and set

Ld = d A+ P,

where A is ample and P is arbitrary. We always assume that d is sufficiently large
so that Ld is very ample, defining an embedding

X ⊆ PH 0(X, Ld)= Prd.

Given an arbitrary line bundle B on X , we wish to study the weight-one syzygies
of B with respect to Ld for d � 0. More precisely, let S = Sym H 0(X, Ld) be the
homogeneous coordinate ring of PH 0(X, Ld), and put

R = R(X, B; Ld)=
⊕

m

H 0(X, B+mLd).
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Thus R is a finitely generated graded S-module, and hence has a minimal graded
free resolution E• = E•(B; Ld):

0 // Erd
// · · · // E2 // E1 // E0 // R // 0,

where E p =
⊕

S(−ap, j ). As customary, denote by Kp,q(X, B; Ld) the finite-
dimensional vector space of degree p+ q minimal generators of E p, so that

E p(B; Ld)=
⊕

q

Kp,q(X, B; Ld)⊗C S(−p− q).

We refer to elements of this group as p-th syzygies of B with respect to Ld of
weight q. When B =OX we write simply Kp,q(X; Ld), which — provided that d
is large enough so that Ld is normally generated — are the vector spaces describing
the syzygies of the homogeneous ideal IX ⊂ S of X in PH 0(X, Ld).

The question we address involves fixing B and asking when it happens that

Kp,q(X, B; Ld)= 0 for d � 0.

When q = 0 or q ≥ 2 the situation is largely understood thanks to results of Green
[1984a; 1984b] and Ein and Lazarsfeld [1993; 2012]. (See Remark 1.10 for a
summary.) Moreover in this range the statements are uniform in nature, in that
they don’t depend on the geometry of X or B. However as suggested in [Ein and
Lazarsfeld 2012, Problem 7.1], for Kp,1(X, B; Ld) one can anticipate more precise
asymptotic results that do involve geometry. This is what we establish here.

Recall that a line bundle B on a smooth projective variety X is said to be p-jet
very ample if for every effective zero-cycle

w = a1x1+ · · ·+ as xs

of degree p+ 1=
∑

ai on X , the natural map

H 0(X, B)→ H 0(X, B⊗OX/m
a1
1 · · ·m

as
s )

is surjective, where mi ⊆OX is the ideal sheaf of xi . So for example if p = 1 this
is simply asking that B be very ample. When dim X = 1 the condition is the same
as requiring that B be p-very ample — i.e., that every subscheme ξ ⊂ X of length
p+ 1 imposes independent conditions in H 0(X, B)— but in higher dimensions it
is a stronger condition.

Our main result is

Theorem A. If B is p-jet very ample, then

Kp,1(X, B; Ld)= 0 for d � 0.
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The statement was conjectured in [Ein and Lazarsfeld 2015, Conjecture 2.4],
where the case dim X = 1 was established.

It is not clear whether one should expect that p-jet amplitude is equivalent to the
vanishing of Kp,1(X, B; Ld) for d � 0. However we prove:

Theorem B. Suppose that there is a reduced (p + 1)-cycle w on X that fails to
impose independent conditions on H 0(X, B). Then

Kp,1(X, B; Ld) 6= 0 for d � 0.

In general, the proof of Theorem A will show that if H 1(X, B)= 0, then the jet
amplitude hypothesis on B is equivalent when d � 0 to the vanishing of a group
that contains Kp,1(X, B; Ld) as a subspace (Remark 1.8).

When B = KX is the canonical bundle of X , Theorem A translates under a mild
additional hypothesis into a statement involving the syzygies of Ld itself.

Corollary C. Assume that H i (X,OX ) = 0 for 0 < i < n, or equivalently that
X ⊆ Prd is projectively Cohen–Macaulay for d � 0.

(i) The canonical bundle KX of X is very ample if and only if

Krd−n−1,n(X; Ld)= 0 for d � 0.

(ii) If KX is p-jet very ample, then

Krd−n−p,n(X; Ld)= 0 for d � 0.

When n=dim X =1, this (together with Theorem B) implies Krd−c,1(X; Ld) 6=0
for d � 0 if and only if X admits a branched covering X → P1 of degree ≤ c,
which is the statement of the gonality conjecture established in [Ein and Lazarsfeld
2015].

The proof of Theorem A occupies Section 1. It follows very closely the strategy
of [Ein and Lazarsfeld 2015], which in turn was inspired by the ideas of Voisin
[2002; 2005]. However instead of working on a Hilbert scheme or symmetric
product, we work on a Cartesian product of X , using an idea that goes back in a
general way to Green [1984b]. For the benefit of nonexperts, we outline now the
approach in some detail in the toy case p = 0.1

Keeping notation as above, it follows from the definition that K0,1(X, B; Ld)= 0
if and only if the multiplication map

H 0(X, B)⊗ H 0(X, Ld)→ H 0(X, B⊗ Ld) (∗)

1This was in fact the train of thought that led us to the arguments here and in [Ein and Lazarsfeld
2015].
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is surjective: in fact, K0,1 is its cokernel. A classical way to study such maps is
to pass to the product X × X and then restrict to the diagonal. Specifically, (∗) is
identified with the homomorphism

H 0(X × X, pr∗1 B⊗ pr∗2 Ld)→ H 0(X × X, pr∗1 B⊗ pr∗2 Ld ⊗O1) (∗∗)

arising from this restriction. Thus the vanishing K0,1(X, B; Ld) = 0 is implied
by the surjectivity of (∗∗). Green [1984b] observed that there is a similar way to
tackle the Kp,1 for p≥ 1: one works on the (p+2)-fold product X p+2

= X× X p+1

and restricts to a suitable union of pairwise diagonals (Proposition 1.1). This is
explained in Section 1, and forms the starting point of our argument. Although
not strictly necessary we give a new proof of Green’s result here that clarifies its
relation to other approaches.

There remains the issue of actually proving the surjectivity of (∗∗) for d � 0
provided that B is 0-jet very ample, i.e., globally generated. For this one starts with
the restriction

pr∗1 B→ pr∗1 B⊗O1

of sheaves on X × X and pushes down to X via pr2. There results a map of vector
bundles

evB : H
0(X, B)⊗C OX → B

on X which is given by evaluation of sections of B. Note that evB is surjective as
a map of bundles if and only if B is globally generated. The surjectivity in (∗) or
(∗∗) is then equivalent to the surjectivity on global sections of the map

H 0(X, B)⊗ Ld → B⊗ Ld

obtained from twisting evB by Ld .
Suppose now that B is 0-jet very ample. The setting MB = ker(evB), we get an

exact sequence

0→ MB→ H 0(X, B)⊗C OX → B→ 0

of sheaves on X . Serre vanishing implies that

H 1(X,MB ⊗ Ld)= 0

for d � 0, and by what we have just said this means that K0,1(X, B; Ld)= 0. The
proof of Theorem A in general proceeds along analogous lines. We construct a
torsion-free sheaf EB = Ep+1,B of rank p+1 on X p+1 whose fiber at (x1, . . . , x p+1)

is identified with

H 0(X, B⊗OX/m1 · · ·mp+1),
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where mi ⊆OX is the ideal sheaf of xi . This comes with an evaluation map

evp+1,B : H 0(X, B)⊗C OX p+1 → EB

which is surjective (as a map of sheaves) if and only if B is p-jet very ample.2

Green’s criterion for the vanishing of Kp,1(X, B; Ld) turns out to be equivalent to
the surjectivity of the map on global sections resulting from twisting evp+1,B by a
suitable ample divisor Nd on X p+1 deduced from Ld , and this again follows from
Serre vanishing.

Returning to the case p = 0, the argument just sketched actually proves more.
Namely for arbitrary B one has an exact sequence

0→ ker(evB)→ H 0(X, B)⊗C OX → B→ coker(evB)→ 0,

and so Serre vanishing shows conversely that if B is not 0-jet very ample then

Kp,1(X, B; Ld)= H 0(X, coker(evB)⊗ Ld) 6= 0 (∗∗∗)

for d � 0. Unfortunately this does not generalize when p ≥ 1 because the com-
putations on X p+1 lead to groups that contain Kp,1(X, B; Ld) as summands, but
may contain other terms as well. (Said differently, Green’s criterion is sufficient but
not necessary for the vanishing of Kp,1.) To prove a nonvanishing statement such
as Theorem B, one needs a geometric interpretation of Kp,1 itself. Voisin [2002;
2005] achieves this by working on a Hilbert scheme — which has the advantage
of being smooth when dim X = 2 — while Yang [2014] passes in effect to the
symmetric product.3 We follow the latter approach for Theorem B: we exhibit a
sheaf on Symp+1(X) whose twisted global sections compute Kp,1(X, B; Ld), and
we show that it is nonzero provided that there is a reduced cycle that fails to impose
independent conditions on H 0(X, B). Then we can argue much as in the case p= 0
just described. This is the content of Section 2.

1. Proof of Theorem A

This section is devoted to the proof of Theorem A from the introduction.
We start by describing the set-up. As above, X is a smooth complex projective

variety of dimension n, and we consider the (p+ 2)-fold product

Y def
= X × X p+1

of X with itself. For 0≤ i < j ≤ p+ 1 denote by

πi, j : Y → X × X

2Note that the fiber of B at a point x ∈ X is identified with B⊗OX /mx , i.e., E1,B = B.
3Roughly speaking, one is picking out Kp,1 inside Green’s construction as the space of invariants

under a suitable action of the symmetric group.
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the projection of Y onto the product of the i and j factors. We write 1i, j ⊆ Y for
the pull-back of the diagonal 1⊆ X × X under πi, j , so that 1i, j consists of those
points y = (x0, x1, . . . , x p+1) ∈ Y with xi = x j .

The basic idea — which goes back to Green [1984b] and has been used repeatedly
since (e.g., [Inamdar 1997; Bertram et al. 1991; Lazarsfeld et al. 2011; Hwang and
To 2013; Yang 2014]) — is to relate syzygies on X to a suitable union of pairwise
diagonals on Y . Specifically, let

Z = Z p+1 =10,1 ∪ · · · ∪10,p+1 ⊆ X × X p+1 (1-1)

be the union of the indicated pairwise diagonals, considered as a reduced subscheme.
We denote by

q : Z→ X, σ : Z→ X p+1 (1-2)

the indicated projections.
The importance of this construction for us is given by:

Proposition 1.1. Let L and B be respectively base-point-free and arbitrary line
bundles on X , and assume ( for simplicity) that H 1(X, L) = 0. If the restriction
homomorphism

H 0(Y, B � L�p+1)→ H 0(Y, (B � L�p+1) | Z) (1-3)

is surjective, then
Kp,1(X, B; L)= 0.

The Proposition was essentially established for instance in [Yang 2014], but it is
instructive to give a direct argument. We start with a lemma that will also be useful
later:

Lemma 1.2. Writing IZ/Y for the ideal sheaf of Z in Y , one has

IZ/Y = I10,1/Y · I10,2/Y · · · I10,p+1/Y =

p+1⊗
j=1

π∗0, j I1/X×X .

Sketch of Proof. This is implicit in [Li 2009, Theorem 1.3], but does not appear
there explicitly so we very briefly indicate an argument. The statement is étale
local, so we can assume X = An . By looking at a suitable subtraction map, as in
[Lazarsfeld et al. 2011, (1-3)], it then suffices to prove the analogous statement for
Y = X p+1 with Z being the union of the “coordinate planes”

L i = {(x1, . . . , xi , . . . , x p+1) | xi = 0 ∈ An
} = {An

}× . . .×{0}× . . .×{An
} ⊆ Y

(1≤ i ≤ p+ 1). For this one can proceed by induction on p, writing out explicitly
the equations defining each L i . �



A vanishing theorem for weight-one syzygies 1971

Remark 1.3. This is the essential place where we use the hypothesis that X is
smooth. We do not know whether the statement of the Lemma remains true for
singular X .

Proof of Proposition 1.1. To begin with, it is well known (see [Green 1984a]) that
Kp,1(X, B; L) is the cohomology of the Koszul-type complex

3p+1 H 0(L)⊗ H 0(B)→3p H 0(L)⊗ H 0(B+ L)→3p−1 H 0(L)⊗ H 0(B+2L).

Moreover this cohomology can in turn be interpreted geometrically in terms of
the vector bundle ML on X defined (as in the introduction) as the kernel of the
evaluation map

evL : H 0(L)⊗C OX → L .

Specifically, ML sits in an exact sequence of vector bundles

0→ ML → H 0(L)⊗OX → L→ 0 (?)

on X , and then Kp,1(X, B; L)= 0 if and only if the sequence

0→3p+1 ML ⊗ B→3p+1 H 0(L)⊗ B→3p ML ⊗ L ⊗ B→ 0 (??)

deduced from (?) is exact on global sections. (See for instance [Green and Lazarsfeld
1986, Lemma 1.10] or [Lazarsfeld 1989].)

On the other hand, consider on X × X the exact sequence

0→ I1⊗ pr∗2 L→ pr∗2 L→ L ⊗O1→ 0.

As in the introduction, this pushes down via pr1 to (?). Therefore one finds from
Lemma 1.2 and the Künneth formula that

q∗(IZ/Y ⊗ B � L�p+1)=
(⊗p+1

ML

)
⊗ B,

and moreover the R1q∗ vanishes thanks to our hypothesis that H 1(L)= 0.4

Writing

N = coker
(⊗p+1

ML →
⊗p+1

H 0(L)
)
,

4The Künneth theorem in play here is the following: let V1→ S, . . . , Vr → S be mappings of
schemes over a field, and suppose that Fi is a quasicoherent sheaf on Vi that is flat over S. Write

pi : V1×S · · · ×S Vr → Vi , p : V1×S · · · ×S Vr → S

for the natural maps. Then

p∗(p∗1 F1⊗ · · ·⊗ p∗r Fr )= p1,∗F1⊗ · · ·⊗ pr,∗Fr

as sheaves on S, with analogous Künneth-type computations of the R j p∗. See for instance [Kempf
1980, Theorem 14] for a simple proof when S is affine, and [EGA III2 1963, Theorem 6.7.8] for the
general case.
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it follows that

q∗((B � L�p+1) | Z)=N ⊗ B,

and hence the surjectivity of (1-3) is equivalent to asking that

0→
(⊗p+1

ML

)
⊗ B→

(⊗p+1
H 0(L)

)
⊗ B→N ⊗ B→ 0 (? ? ?)

be exact on global sections. But since we are in characteristic zero, the exact
sequence (??) is a summand of this, and the lemma follows. �

Remark 1.4. The argument just completed shows that if in addition H 1(X, B)= 0
then (1-3) is surjective if and only if

H 1
(

X,
(⊗p+1

ML

)
⊗ B

)
= 0.

It remains to relate these considerations to the jet-amplitude of B. To this end,
keeping notation as in (1-2), set

EB = Ep+1,B = σ∗(q∗B).

This is a torsion-free sheaf of rank p+ 1 on X p+1 (since it is the push forward of a
line bundle under a finite mapping of degree p+ 1), and one has:

Lemma 1.5. (i) Fix a point

ξ = (x1, . . . , x p+1) ∈ X p+1,

the xi being (possibly nondistinct) points of X , and denote by EB |ξ the fiber of
EB at ξ . Then there is a natural identification

EB |ξ = H 0(X, B⊗OX/m1 · · ·mp+1),

where mi ⊆OX is the maximal ideal of xi .

(ii) There is a canonical injection

H 0(X, B) ↪→ H 0(X p+1, EB),

giving rise to a homomorphism

evB = evp+1,B : H 0(X, B)⊗C OX p+1 → EB .

of sheaves on X p+1. Under the identification in (i), evB is given fiberwise by
the natural map

H 0(X, B)→ H 0(X, B⊗OX/(m1 · · ·mp+1)
)
.
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(iii) The homomorphism (1-3) is identified with the map on global sections arising
from the sheaf homomorphism

H 0(X, B)⊗C L�p+1
→ EB ⊗ L�p+1. (1-4)

on X p+1 determined by twisting evB by L�p+1.

(iv) The mapping evp+1,B is surjective as a homomorphism of sheaves on X p+1 if
and only if B is p-jet very ample.

Proof. For (i), consider the diagram

Z

σ !!

� � ⊆
// X × X p+1

pr2yy

X p+1

(1-5)

and fix ξ = (x1, . . . , x p+1) ∈ X p+1. The scheme-theoretic fiber σ−1(ξ) lives
naturally as a subscheme of X , and Lemma 1.2 implies that it is in fact the scheme
defined by the ideal sheaf

m1 · · ·mp+1 ⊆OX .

Therefore, thanks to the projection formula, the fiber EB |ξ of EB at ξ is identified
with

pr2,∗
(
B⊗OX/(m1 · . . . ·mp+1)

)
= H 0(X, B⊗OX/(m1 · · ·mp+1)

)
,

as claimed. For (ii), note that in any event

H 0(X p+1, EB)= H 0(X p+1, σ∗q∗B)= H 0(Z , q∗B).

On the other hand, each of the irreducible components of Z maps via projection
onto X , and this gives an inclusion

q∗ : H 0(X, B)→ H 0(Z , q∗B)= H 0(X × X p+1, (pr∗1 B)|Z
)
.

It is evident from the construction that fiber by fiber evB is as described, and (iv) is
then a consequence of the fact that a morphism of sheaves is surjective if and only
it is so on each fiber. Finally, statement (iii) follows from the construction of EB

and evB . �

Remark 1.6. Using the resolution of OZ appearing in [Yang 2014, p. 4], one can
show that in fact

H 0(X p+1, EB)= H 0(X, B).

However this isn’t necessary for the argument.
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Remark 1.7. The reader familiar with [Ein and Lazarsfeld 2015] or Voisin’s Hilbert
schematic approach to syzygies will recognize that Z→ X p+1 plays the role of the
universal family over the Hilbert scheme, and that Proposition 1.1 is the analogue
of [Voisin 2002, Lemma 1, p. 369]. The sheaf Ep+1,B plays the role of the vector
bundle E p+1,B on the symmetric product appearing in [Ein and Lazarsfeld 2015].

Just as in [Ein and Lazarsfeld 2015], the main result now follows immediately
from Serre vanishing.

Proof of Theorem A. Assuming that B is p-jet very ample, so that evp+1,B is
surjective, let Mp+1,B denote its kernel:

0→Mp+1,B→ H 0(B)⊗OX p+1 → EB→ 0.

To show that Kp,1(X, B; Ld) = 0 it suffices, thanks to Proposition 1.1 and its
interpretation in terms of (1-4), to prove that

H 1(X p+1,Mp+1,B ⊗ L�p+1
d )= 0

for d � 0. But this follows immediately from Serre vanishing. �

Remark 1.8. It follows from the argument just completed that if L = Ld then the
surjectivity in Proposition 1.1 holds for d � 0 if and only if B is p-jet very ample.
In particular, in view of Remark 1.4 this means that if H 1(X, B)= 0 then the p-jet
very amplitude of B is equivalent to the vanishing

H 1
(

X,
(⊗p+1

MLd

)
⊗ B

)
= 0 for d � 0.

Proof of Corollary C. Under the stated hypothesis on X , the groups in question
are Serre dual to Kp,1(X, B; Ld) for d � 0 (see [Green 1984a, §2]). If B fails to
be very ample, then a simple argument as in [Eisenbud et al. 2006, Theorem 1.1]
shows that K1,1(X, B; Ld) 6= 0 for d� 0, and therefore the corollary follows from
the main theorem. �

Remark 1.9. In the case of curves, Rathmann [2016] has given a very interesting
argument that leads to an essentially optimal effective version of the asymptotic
results of [Ein and Lazarsfeld 2015]: in fact, it suffices that H 1(L)= H 1(L−B)=0.
In this spirit, it would be very interesting to find an effective estimate for the positivity
of L to guarantee the vanishing of Kp,1(X, B; L) when B is p-jet very ample.

Remark 1.10 (other Koszul cohomology groups). To conclude this section, we
briefly summarize what is known about the groups Kp,q(X, B; Ld) for q 6= 1.
Specifically, fix B. Then for d � 0:

(i) Kp,q(X, B; Ld)= 0 for q ≥ n+ 2.
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(ii) One has

Kp,0(X, B; Ld) 6= 0⇐⇒ 0≤ p ≤ r(B), and

Kp,n+1(X, B; Ld) 6= 0⇐⇒ rd − n− r(KX − B)≤ p ≤ rd − n.

(iii) If q ≥ 2, then Kp,q(X, B; Ld)= 0 when p ≤ O(d).

(iv) For 1≤ q ≤ n, Kp,q(X, B; Ld) 6= 0 for

O(dq−1)≤ p ≤ rd − O(dn−1).

Statement (i) is a consequence of Castelnuovo–Mumford regularity, while (ii) is due
to Green and others. (See [Green 1984a, §3; Ein and Lazarsfeld 2012, Corollary 3.3,
§5].) Assertion (ii) follows for instance from [Ein and Lazarsfeld 1993], while (iv)
is the main result of [Ein and Lazarsfeld 2012]. Furthermore, it is conjectured in
[Ein and Lazarsfeld 2012] that if q ≥ 2, then Kp,q(X, B; Ld)= 0 for p ≤ O(dq−1).

2. A nonvanishing theorem

This section is devoted to the proof of Theorem B from the introduction. Recall the
statement:

Theorem 2.1. Assume that the nonsingular projective variety X carries an effective
(p+1)-cyclew= x1+· · ·+x p+1 consisting of p+1 distinct points x1, . . . , x p+1∈ X
that fail to impose independent conditions on H 0(X, B). Then

Kp,1(X, B; Ld) 6= 0 for d � 0.

The argument is somewhat technical, so before launching into it we would like
to outline the rough strategy. As in the case p = 0 discussed in the introduction, in
principle we would like to find a map of sheaves on Symp+1(X) depending on B —
say aB :A1→A2 — having the property that

Kp,1(X, B; Ld)= coker
(
H 0(A1⊗N (Ld))→ H 0(A2⊗N (Ld))

)
, (2-1)

where N (Ld) is a line bundle whose positivity grows suitably with d . Ideally — as
in equation (∗∗∗) from the introduction — we would be able to see that aB cannot
be surjective as a map of sheaves if B is not p-jet very ample, and then one could
hope to apply Serre vanishing to conclude that Kp,1(X, B; Ld) cannot vanish for
d � 0. Unfortunately we do now know whether such a construction is possible.
Instead, what we do in effect is to use the ideas of Yang [2014] to construct a
map αB , and show that the nonvanishing of Kp,1 is implied by the nonvanishing
of a certain quotient sheaf of A2. We show that a reduced (p+ 1)-cycle that fails
to impose independent conditions on H 0(X, B) must appear in the support of this
quotient, and this leads to the stated nonvanishing.
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We start by recalling the results of Yang [2014] interpreting Kp,1 as an equivariant
cohomology group. Consider then a very ample line bundle L on the smooth
complex projective variety X . Then the symmetric group Sp+1 acts in two ways on
the bundle L�p+1 on X p+1, namely via the symmetric and the alternating characters.
Denote these Sp+1-bundles on X p+1 by

L�p+1,sym and L�p+1,alt, (2-2)

respectively. Now let Sp+1 act on X × X p+1 via the trivial action on the first factor,
so that the union of pairwise diagonals Z ⊆ X × X p+1 defined in (1-1) becomes an
Sp+1-subspace. It is established in [Yang 2014, Theorem 3] that if

H i (X,mL)= H i (X, B+mL)= 0 for i,m > 0, (2-3)

then Kp,1(X, B; L) is identified with the cokernel of the restriction mapping

H 0
Sp+1
(X×X p+1, pr∗1 B⊗pr∗2 L�p+1,alt)→H 0

Sp+1
(Z, pr∗1 B⊗pr∗2 L�p+1,alt

⊗OZ ) (2-4)

on Sp+1-equivariant cohomology groups.5 One can think of this as a precision and
strengthening of Proposition 1.1. Following the line of attack of Section 1, the plan
is to study these groups by modding out by the symmetric group and pushing down
to the symmetric product.

To this end, denote by Symp+1(X) the (p+1)-st symmetric product of X , which
we view as parametrizing zero-cycles of degree p+ 1, and write

π : X p+1
→ Symp+1(X)

5For the theory of equivariant cohomology groups and pushforwards, see [Grothendieck 1957,
Chapter 5]. What we need can be summarized as follows. Let G be a finite group acting on a complex
projective variety V , and suppose a coherent sheaf F on X together with an action of G on F are
given. Then one can define equivariant cohomology groups H j

G(V, F). While this isn’t how they are
initially constructed, one can show that

H j
G(V, F)= H j (V, F)G ,

the group on the right being the G-invariant subspace of H j (V, F) under the natural action of G on
this cohomology group [Grothendieck 1957, p. 202], and for practical purposes one can take this as
the definition. Writing

π : V → V/G def
= W,

one also has an action of G on π∗F . The G-equivariant direct image of F can be interpreted as

πG
∗ F = (π∗(F))G ,

and one can show that

H j
G(V, F)= H j (W, πG

∗ F).
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for the quotient map. The equivariant pushforward of the line bundles in (2-2)
determine respectively a line bundle and torsion-free sheaf of rank one

Sp+1(L)
def
= π

Sp+1
∗ (L�p+1,sym), Np+1(L)

def
= π

Sp+1
∗ (L�p+1,alt)

on Symp+1(X). One has

H 0(Symp+1(X),Sp+1(L)
)
= Symp+1 H 0(X, L),

H 0(Symp+1(X),Np+1(L)
)
=3p+1 H 0(X, L),

and for any line bundle A on X :

S(L ⊗ A)= S(L)⊗S(A), N (L ⊗ A)=N (L)⊗S(A). (2-5)

Moreover S(A) is ample if A is.

Proof of Theorem 2.1. Note to begin with that the symmetric group Sp+1 acts on
each of the spaces appearing in diagram (1-5). Taking the quotients yields the
diagram

Z = X ×Symp(X)

σ ((

� � ⊆
// X ×Symp+1(X)

p2vv

Symp+1(X)

(2-6)

where σ is the addition map,

p1 : X ×Symp+1(X)→ X, p2 : X ×Symp+1(X)→ Symp+1(X)

are the projections, and the inclusion on the top line is given by (x, w) 7→ (x, x+w).
One has

(1×π)Sp+1
∗ (pr∗1 B⊗ pr∗2 L�p+1,alt)= p∗1 B⊗ p∗2 N (L).

Now define

G(B; L)= (1×π)Sp+1
∗ (pr∗1 B⊗ pr∗2 L�p+1,alt

⊗OZ ).

Pushing forward the restriction to Z gives rise to a natural surjective mapping

ε(B; L) : p∗1 B⊗ p∗2 N (L)→ G(B; L) (2-7)

of sheaves on X ×Symp+1(X). Thanks to [Grothendieck 1957, §5.2], the groups
appearing in (2-4) are given by the global sections of the sheaves in (2-7), and hence
under the vanishing hypothesis (2-3), Kp,1(X, B; L) is computed as the cokernel

Kp,1(X, B; L)= coker
(
H 0(ε(B; L))

)
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on global sections determined by ε(B; L). Hence we are reduced to showing
that under the hypothesis of the theorem, ε(B; Ld) cannot be surjective on global
sections when d � 0.

The next step is to form and study the push-forward of (2-7) to Symp+1(X). To
begin with, define F(B; L)= p2,∗G(B; L) and δ(B; L)= p2,∗ε(B; L). This gives
rise to a morphism

δ(B; L) : H 0(X, B)⊗C N (L)→ F(B; L)

of sheaves on Symp+1(X) with the property that

Kp,1(X, B; L)= coker
(
H 0(δ(B, L))

)
.

We wish to study the geometry of this mapping assuming that B does not impose
independent conditions on all reduced cycles. We assert that there is a natural
homomorphism

t :
(

p∗1 B⊗ p∗2 N (L)⊗OZ

)
→ G(B; L) (2-8)

which is an isomorphism on the smooth locus of Z . Grant this for the time being.
By the projection formula one has

p2,∗
(

p∗1 B⊗ p∗2 N (L)⊗OZ

)
= σ ∗(p∗1 B)⊗N (L),

and then taking direct images in (2-7) and (2-8), one arrives at a diagram

H 0(X, B)⊗C N (L) e⊗1
//

δ(B;L)
))

σ ∗(p∗1 B)⊗N (L)

s
��

F(B; L)

(2-9)

where s is an isomorphism over the smooth locus of Symp+1(X).
Now fix a reduced zero-cycle w ∈ Symp+1(X) that fails to impose independent

conditions on H 0(X, B), and let ξ ⊆ X be the corresponding subscheme of length
p+ 1. We can identify the fiber of the morphism

e : H 0(X, B)⊗OSymp+1(X)→ σ(p∗1 B)

appearing in (2-9) at w with the evaluation H 0(X, B)→ H 0(X, B⊗Oξ ). Writing
K = coker(e), so that

coker(e⊗ 1)= K⊗N (L),

it follows that w ∈ supp(K ⊗ N (L)). But thanks to (2-5) and Serre vanishing,
σ ∗(p∗1 B)⊗N (Ld) is globally generated and

H 0(σ(p∗1 B)⊗N (Ld)
)
→ H 0(K⊗N (Ld)

)
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is surjective when d� 0. On the other hand, s is an isomorphism in a neighborhood
of w since w is reduced, and it then follows that the map

H 0(K⊗N (Ld)
)
→ H 0(coker(δ(B; Ld))

)
is nonzero when d � 0. In other words, we have a commutative diagram

H 0(B)⊗ H 0(N (Ld)) //

δ(B;Ld ) ))

H 0
(
σ(p∗1 B)⊗N (Ld)

)
// //

�� ))

H 0
(
K⊗N (Ld)

)
6=0
��

H 0(F(B; Ld)) // H 0
(
coker(δ(B; Ld))

)
,

with exact top row, in which the right-hand diagonal mapping, and hence also the
bottom homomorphism, are nonzero. Therefore δ(B; Ld) cannot be surjective on
global sections when d � 0, as required.

It remains to construct the homomorphism t appearing in (2-8). To this end, let

Ẑ = Z ×X×Symp+1(X) (X × X p+1).

The projection formula gives an isomorphism

(1×π)∗
(
(pr∗1 B⊗ pr∗2 L�p+1,alt)⊗OẐ

)
=
(
(1×π)∗(pr∗1 B⊗ pr∗2 L�p+1,alt)

)
⊗OZ ,

which, upon taking Sp+1 invariants, yields

(1×π)Sp+1
∗

(
pr∗1 B⊗ pr∗2 L�p+1,alt

⊗OẐ
)
=
(

p∗1 B⊗ p∗2N (L)
)
⊗OZ .

On the other hand, as a set Ẑ consists of those points

(x0, (x1, . . . , x p+1)) ∈ X × X p+1

having the property that x0 appears in the cycle x1+ · · ·+ x p+1. In other words, Ẑ
and Z coincide set-theoretically. Since Z is reduced this implies that Z = Ẑred, and
in particular Z is a subscheme of Ẑ . Thus there is a natural surjective map

(pr∗1 B⊗ pr∗2 L�p+1,alt)⊗OẐ → (pr∗1 B⊗ pr∗2 L�p+1,alt)⊗OZ

which is an isomorphism over the smooth locus of Z , and taking direct images
gives (2-8). �

Remark 2.2. It would be very interesting to give a necessary and sufficient con-
dition for the nonvanishing of Kp,1(X, B; Ld) for d � 0. Keeping the notation of
the previous proof, the issue is to determine when δ(B; L) has a nonzero cokernel.
It is conceivable that the failure of B to be p-jet very ample suffices, but the
question seems somewhat difficult to analyze. Already the case dim X = 2 would
be interesting.
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Remark 2.3. Recall that a line bundle B on a smooth variety X is said to be p-very
ample if every finite subscheme of length p+1 imposes independent conditions on
H 0(X, B). When dim X = 1 this is the same as jet-amplitude, but when dim X ≥ 2
it is a strictly weaker condition in general. A quick way to see this is to recall that
if A is an ample line bundle on a smooth surface X , then Bp = KX + (p+ 3)A is
always p-very ample thanks to a theorem of Beltrametti, Francia and Sommese
[1989]. On the other hand, the p-jet amplitude of Bp for p� 0 would imply that the
Seshadri constant ε(A; x) is very close to 1 for every point x ∈ X (see [Lazarsfeld
1997, Proposition 5.10]). Hence any line bundle A for which there exist points with
small Seshadri constant gives rise to examples of the required sort.
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