Vol. 10, No. 9, 2016

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11, 1 issue

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Cluster algebras and category $\mathscr{O}$ for representations of Borel subalgebras of quantum affine algebras

David Hernandez and Bernard Leclerc

Vol. 10 (2016), No. 9, 2015–2052
DOI: 10.2140/ant.2016.10.2015
Abstract

Let O be the category of representations of the Borel subalgebra of a quantum affine algebra introduced by Jimbo and the first author. We show that the Grothendieck ring of a certain monoidal subcategory of O has the structure of a cluster algebra of infinite rank, with an initial seed consisting of prefundamental representations. In particular, the celebrated Baxter relations for the 6-vertex model get interpreted as Fomin–Zelevinsky mutation relations.

Keywords
quantum affine algebras, cluster algebras, category $\mathscr{O}$, monoidal categorification, Baxter relations\lower5pt\hbox
Mathematical Subject Classification 2010
Primary: 17B37
Secondary: 13F60, 17B10, 82B23
Milestones
Received: 19 April 2016
Accepted: 9 August 2016
Published: 22 November 2016
Authors
David Hernandez
Institut de Mathématiques de Jussieu-Paris Rive Gauche
Université Paris-Diderot Paris 7
Bâtiment Sophie Germain, Case 7012
75205 Paris Cedex 13
France
Bernard Leclerc
Laboratoire de Mathématiques Nicolas Oresme
Université de Caen Basse-Normandie
14032 Caen
France