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Structure of Hecke algebras
of modular forms modulo p

Shaunak V. Deo

Generalizing the recent results of Bellaïche and Khare for the level-1 case, we
study the structure of the local components of the shallow Hecke algebras (i.e.,
Hecke algebras without Up and U` for all primes ` dividing the level N ) acting
on the space of modular forms modulo p for 00(N ) and 01(N ). We relate them
to pseudodeformation rings and prove that in many cases, the local components
are regular complete local algebras of dimension 2.

1. Introduction

The p-adic Hecke algebra acting on modular forms of level N of all weights, which
is generated by the Hecke operators away from Np, has been well studied in the
past due to its connection with p-adic families of modular forms and deformation
rings of Galois representations (see [Emerton 2011] for the precise definition and
more details). One can similarly define a mod p Hecke algebra acting on modular
forms modulo p of level N (in the sense of Serre and Swinnerton-Dyer) of all
weights. The main aim of this paper is to study the structure of these Hecke algebras
acting on modular forms modulo p and their relation with suitable deformation
rings in characteristic p. These objects were previously studied by Jochnowitz
[1982], Khare [1998], Nicolas and Serre [2012a; 2012b], and Bellaïche and Khare
[2015]. In this article, we generalize, with minor changes, the results Bellaïche and
Khare [2015] proved for p ≥ 5 and N = 1.

Before proceeding further, we fix some notation. In all of this paper, we fix
a prime number p > 3 and a positive integer N ≥ 1 not divisible by p. We
shall denote by K a finite extension of Qp, by O the ring of integers of K , by
p the maximal ideal of O, by π the generator of p and by F the finite residue
field of O. We call GQ,Np the Galois group of a maximal algebraic extension
of Q unramified outside {` s.t. `|Np} ∪ {∞} over Q. For a prime q not dividing
Np, we denote by Frobq ∈ GQ,Np a Frobenius element at q. We denote by c a
complex conjugation in GQ,Np. We write GQ`

for Gal(Q`/Q`) for every prime
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` dividing Np. There are natural maps i` : GQ`
→ GQ,Np, well defined up to

conjugacy. For every prime ` dividing Np, we write I` for the inertia subgroup of
GQ`

. For a representation ρ of GQ,Np, we shall denote by ρ|GQ`
the composition

of i` with ρ: this is a representation of GQ`
, well defined up to an isomorphism.

We denote by ωp : GQ,Np→ F∗ the cyclotomic character modulo p.
We will now define the Hecke algebra that we want to study and the space of

modular forms on which it acts. For the rest of the introduction, 0 means either
01(N ) or 00(N ) and 0(M) means either 01(M) or 00(M) accordingly. Following
[Bellaïche and Khare 2015] (henceforth abbreviated as [BK]), we shall denote
by S0k (O) the module of cuspidal modular forms of weight k for 0 with Fourier
coefficients in O. We see it as a submodule of O[[q]] by the q-expansion. We
denote by S0

≤k(O) the submodule
∑i=k

i=0 S0i (O) of O[[q]]. Note that this sum is
direct (see [BK, Section 1.2]). We denote by S0

≤k(F) the image of S0
≤k(O) under the

reduction map O[[q]] → F[[q]], which reduces each coefficient of a power series in
O[[q]] modulo p. Thus, S0

≤k(F)=
∑i=k

i=0 S0i (F), where S0i (F) is the space of cuspidal
modular forms of weight i for 0 over F in the sense of Serre and Swinnerton-Dyer,
i.e., it is the image of S0i (O) under the reduction map considered above. The map
S0
≤k(O)/pS0

≤k(O)→ S0
≤k(F) is surjective but not an isomorphism in general. Let

S0(O)=
∞⋃

k=0

S0
≤k(O) and S0(F)=

∞⋃
k=0

S0
≤k(F).

All the modules considered above have a natural action of the Hecke operators Tn

for (n, Np)= 1. We denote by T0k the O-subalgebra of EndO(S0≤k(O)) generated
by the Tn’s with (n, Np)= 1. We denote by A0k the F-subalgebra of EndF(S0≤k(F))

generated by the Tn’s with (n, Np) = 1. From the relations between the Hecke
operators, we see that T0k or A0k is generated by the Hecke operators Tq and Sq for
primes q not dividing Np (see [BK, Section 1.2] for more details). Here, Sq is the
operator acting on forms of weight k as the multiplication by 〈q〉qk−2, where 〈q〉 is
the diamond operator corresponding to q .

We have a natural morphism of F-algebras T0k /pT0k → A0k , which is surjective,
but in general not an isomorphism. We set

T0 = lim
←−−

T0k and A0 = lim
←−−

A0k .

Thus, the Hecke algebras T0 and A0 act on S0(O) and S0(F), respectively. We
obtain a surjective map T0/pT0→ A0 from the surjective maps considered above.
We call A0 the Hecke algebra modulo p of level 0 and this is the central object of
our study.

The rings T0 and A0 are complete and semilocal. Actually, if F is large enough,
then, by the existence of Galois representations attached to eigenforms and by the
Deligne–Serre lifting lemma, the maximal ideals, and hence the local components of
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both T0 and A0 , are in bijection with the set of isomorphism classes of 0-modular
Galois representations ρ :GQ,Np→GL2(F) (see [BK, Section 1.2] for more details).
Here and below, 0-modular means that ρ is the semisimplified reduction of a stable
lattice for the Galois representation ρ : GQ,Np→ GL2(K ) attached by Deligne to
an eigenform in S0(O). Observe that, since ρ is odd, if ρ is irreducible, then it
is absolutely irreducible. We define T0ρ and A0ρ to be the local components of T0

and A0 corresponding to a 0-modular representation ρ. These rings are complete
local rings. The surjective map T0/pT0 → A0 sends T0ρ /pT0ρ onto A0ρ . As A0

(resp. T0) is semilocal and an inverse limit of artinian rings, A0 (resp. T0) splits
into the product of its local components. Thus, it is enough to study the structure
of each local component to understand the structure of A0 , once we determine the
number of its local components.

The advantage of working with the local components is that one can relate
them to suitable deformation rings. By gluing pseudorepresentations attached to
modular eigenforms of level 0 lifting the system of eigenvalues corresponding to
a 0-modular representation ρ, one gets a pseudorepresentation of GQ,Np taking
values in A0ρ and deforming (tr ρ, det ρ). Let R̃0

ρ be the universal deformation ring
with constant determinant of the pseudorepresentation (tr ρ, det ρ) in the category of
local, profinite F-algebras with residue field F. The pseudorepresentation obtained
above induces a local, surjective morphism R̃0

ρ → A0ρ when either 0 = 00(N )
or p -φ(N ) and 0 = 01(N ). Otherwise, it induces a local, surjective map R̃0

ρ→

(A01(N )
ρ )red. See Section 2 for more details.
We define a 0-modular representation ρ to be unobstructed if the tangent space

of R̃0
ρ has dimension 2. If ρ is irreducible and p -φ(N ), then ρ is unobstructed in

our sense if and only if it is unobstructed in the sense of Mazur [1989, Section 1.6].
But our notion is weaker than Mazur’s notion if p |φ(N ). See Section 10, where
the notion of unobstructedness is studied in detail.

We prove the following results concerning the Hecke algebra A0ρ and its relation
with the deformation ring R̃0

ρ :

Theorem 1. Let 0 = 01(N ) or 00(N ). If ρ is a 0-modular representation, then
both R̃0

ρ and A0ρ have Krull dimension at least 2.

Theorem 2. Suppose either 0 = 00(N ) or p -φ(N ) and 0 = 01(N ). If ρ is a
0-modular representation which is unobstructed, then the morphism R̃0

ρ → A0ρ
is an isomorphism, and A0ρ is isomorphic to a power series ring in two variables
F[[x, y]]. If p |φ(N ) and ρ is an unobstructed 01(N )-modular representation, then
the morphism R̃0

ρ→ (A01(N )
ρ )red is an isomorphism, and (A01(N )

ρ )red is isomorphic
to a power series ring in two variables F[[x, y]].

In the last section, we shall give some conditions under which a 01(N )-modular
representation ρ is unobstructed and the corresponding local component A01(N )

ρ
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is not reduced: see Proposition 27 and Proposition 28. We shall also give some
examples of nonreduced Hecke algebras: see the remarks and discussion after
Proposition 28.

Remark. (1) Our approach to prove Theorem 1 and Theorem 2 does not depend
on whether ρ is irreducible or not. This is mainly because the results that we
use from deformation theory of Galois representations are available for both
reducible and irreducible ρ’s. So, the proof does not become simpler when ρ
is irreducible.

(2) Note that from Theorem 2, it follows that if ρ is a00(N )-modular representation
which is unobstructed and if p -φ(N ), then the natural restriction morphism
A01(N )
ρ → A00(N )

ρ is an isomorphism. In fact, if p -φ(N ), then this happens
for any 00(N )-modular representation ρ. Indeed, fixing such a ρ, we see
that the corresponding system of eigenvalues for the diamond operators is
trivial. As p -φ(N ), by Hensel’s lemma, any system of eigenvalues lifting ρ
is trivial for the diamond operators. Hence, the diamond operators act trivially
on S01(N )(O)ρ . Therefore, S01(N )(O)ρ = S00(N )(O)ρ . So, T01(N )

ρ and T00(N )
ρ

are isomorphic. Thus, A01(N )
ρ and A00(N )

ρ are isomorphic for all the 00(N )-
modular representations ρ if p does not divide φ(N ). However, this argument
breaks down if p divides φ(N ).

Theorem 3. Assume that ρ is a 01(N )-modular representation coming from a
newform of level N and is absolutely irreducible after restriction to the Galois
group of Q(ζp). If `|N , p |`2

− 1 and ρ|GQ`
is unramified, then assume `2

|N.
If `|N , p |`− 1, and ρ|GQ`

is reducible, ramified and not a sum of two ramified
characters, then assume that the highest power of ` dividing N is greater than the
highest power of ` dividing the Artin conductor of ρ. If ρ|GQp

is reducible, assume,
in addition, that ρ|GQp

is not isomorphic to χ⊗
(

1 ∗
0 1

)
nor to χ⊗

( 1 ∗
0 ωp

)
, where χ is

any character GQp → F∗. Then A01(N )
ρ has Krull dimension 2. Moreover, (R̃0

ρ)
red

is isomorphic to (A01(N )
ρ )red.

Similarly, if ρ is a 00(N )-modular representation satisfying the hypotheses as
above, then A00(N )

ρ has Krull dimension 2. Moreover, if p does not divide φ(N ),
then (R̃0

ρ)
red is isomorphic to (A00(N )

ρ )red.

These results are generalizations of Theorem III, Theorem I and Theorem II
of [BK], respectively. Note that, it is possible to have mod p deformation rings
with constant determinant which are nonreduced, but we do not know of any such
examples.

Remark. If p - N , then we know that the module of mod p modular forms for
01(N ) is the same as the module of mod p modular forms for 01(Npe) for e ≥ 1
(see the remark after Corollary I.3.6 on page 23 of [Gouvêa 1988] for more details).
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Hence, the corresponding mod p Hecke algebras are also the same. So, even though
we are assuming that p - N , all the theorems that we prove for mod p Hecke algebras
for 01(N ) above will still be true without this assumption on N.

Note that, Theorem 2 easily follows from Theorem 1 and the definition of
unobstructed.

The idea of the proof of Theorem 1 is similar to the idea used in proving
Theorem III in [BK]. So, we try to find a relation between the characteristic-0
Hecke algebra T0ρ with the characteristic-p Hecke algebra A0ρ . However, there are
some difficulties, such as S0(O)⊗O F not being isomorphic to S0(F), in comparing
them directly. To overcome this problem, like Bellaïche and Khare [2015], we
also work with the divided congruence modules of Katz. Using the results of
Katz and the methods of [BK], we get the relation between characteristic-0 and
characteristic-p full Hecke algebras, i.e., the relation between the characteristic-0
and characteristic-p Hecke algebras generated by the Hecke operators Tq , q Sq for
primes q not dividing Np, U` for primes ` dividing N and Up.

Now, we need to analyze how the addition of the U` and Up operators changes
our Hecke algebras in characteristic 0 and p. We can control the change caused by
the Up operator in a similar way to that done in the level-1 case in [BK]. This allows
us to get a relation between Hecke algebras in characteristic 0 and p generated by
Hecke operators away from p. Note that, the proof for the N = 1 case finishes
at this step. However, for N > 1, we still need to study the effect of adding the
extra operators U` for primes ` dividing N to our original Hecke algebras. This
differentiates the case of N > 1 from N = 1. In this direction, we prove that in
characteristic 0, if ρ is new, i.e., if ρ is not 0(N ′)-modular for any proper divisor
N ′ of N , then the operator U` acting on S0(O)ρ is integral over T0ρ for every
prime ` dividing N . This gives us the finiteness of the U`’s over the mod p Hecke
algebra automatically for a new ρ and, along with the Gouvêa–Mazur infinite fern
argument, leads us to Theorem 1 in those cases. Finally, we prove that if ρ is
also a 0(M)-modular representation for some M dividing N , then the natural map
A0ρ → A0(M)ρ is surjective using the pseudorepresentation attached to it and the
Chebotarev density theorem. Theorem 1 in the case where ρ is new, along with the
surjectivity established above, leads us to Theorem 1 for all the local components
of the mod p Hecke algebra. We would like to point out that, in contrast with [BK],
our method does not give the precise kernel of the map T0ρ → A0ρ in all the cases
while proving Theorem 1. However, in many cases, we can find the kernel up to
some nilpotence.

To prove Theorem 3, we need to use a result of Böckle and flatness of T01(N )
ρ

over the Iwasawa algebra O[[T ]] which is proved in the same way as in [BK]. This,
along with Theorem 1, would imply the first part of Theorem 3. We prove, using
techniques and results similar to the ones sketched in the previous paragraph, that
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the map T01(N )
ρ /(p, T )→ A01(N )

ρ has nilpotent kernel if ρ satisfies the hypotheses
of Theorem 3. We use it, along with the results of Böckle, to conclude the second
part of Theorem 3 for the 01(N ) case. The theorem for the 00(N ) case then follows
easily from the theorem for the 01(N ) case.

Finally, we would like to remark on a possible generalization of these results
to the case of Hilbert modular forms. A well behaved theory for mod p Hilbert
modular forms with arbitrary weights, which includes a lot of tools and facts for
mod p modular forms that we use, is available (see the works of Andreatta and
Goren [2005] for more details). Moreover, an analogue of the Gouvêa–Mazur
infinite fern argument is also true for certain local components of the p-adic Hecke
algebra acting on the space of Hilbert modular forms due to work of Chenevier
[2011, Theorem 5.9]. However, contrary to the case of modular forms, the theory
of divided congruence modules of Katz, and properties of Hecke operators acting
on them, is not known for Hilbert modular forms. We expect results similar to
what we have proved above to hold for Hilbert modular forms once we know the
theory of divided congruence modules of Hilbert modular forms and the infinite
fern argument for all the local components. The results will depend on the space of
mod p Hilbert modular forms we consider. For instance, we expect the lower bound
on the Krull dimension of the mod p Hecke algebra for Hilbert modular forms of
parallel weights to be 2, while the corresponding lower bound for the mod p Hecke
algebra for Hilbert modular forms of arbitrary weights to be 2n, where n is the
degree of extension of the totally real field over Q.

2. Deformation rings and Hecke algebras

The goal of this section is to relate mod p Hecke algebras with appropriate defor-
mation rings.

Using [Bellaïche 2012b, Step 1 of the proof of Theorem 1], which is essentially an
argument of gluing pseudorepresentations attached to modular eigenforms of a fixed
level and all weights, we get the following lemma (see also [BK, Proposition 2]):

Lemma 4. Let 0 be either 00(N ) or 01(N ). For a 0-modular representation ρ,
there exists a unique continuous pseudorepresentation

(τ0, δ0) : GQ,Np→ T0ρ

such that τ0(c)= 0, τ0(Frobq)= Tq and δ0(Frobq)= q Sq for all the primes q not
dividing Np. We have

τ0 (mod mT0ρ
)= tr ρ and δ0 (mod mT0ρ

)= det ρ.

By composing (τ0, δ0) with the natural morphism T0ρ → A0ρ , we get a pseudorep-
resentation (τ̃0, δ̃0) : GQ,Np→ A0ρ lifting (tr ρ, det ρ).
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A deformation (t, d) of a pseudorepresentation (t̄, d̄) is called a deformation
with constant determinant if d = d̄ .

Lemma 5. If 0 = 00(N ) or if p -φ(N ) and 0 = 01(N ), then for a 0-modular rep-
resentation ρ, (τ̃0, δ̃0) is a deformation of (tr ρ, det ρ) with constant determinant.

Proof. Let q be a prime not dividing Np. Note that, in the 00(N ) case, Sq acts as
multiplication by qk−2 on a weight k modular form with Fourier coefficients in O.
If two modular forms of level N are congruent modulo p, then their weights are
congruent modulo p − 1. So, Sq acts like a constant on S00(N )(F)ρ for every ρ.
Since δ̃0(Frobq)= q Sq and the set of Frobq for primes q not dividing Np is dense
in GQ,Np, we get that δ̃0 is constant and we are done in the 00(N ) case.

Applying the same reasoning to the 01(N ) case, we get that, for every prime q
not dividing Np, Sq acts like cq〈q〉 on S01(N )(F)ρ , where cq is an invertible constant.
Since Sq ∈ A01(N )

ρ , it follows that 〈q〉 ∈ A01(N )
ρ for every prime q not dividing Np. If

p does not divide φ(N ), then the order of every diamond operator 〈q〉 is coprime to p.
We have chosen F to be large enough so that it contains all the mod p system of eigen-
values. Thus, by Hensel’s lemma, 〈q〉, and hence Sq , will be constant in A01(N )

ρ for
every ρ and every prime q not dividing Np. Therefore, δ̃0 is constant in the 01(N )
case if p does not divide φ(N ), by the same argument as in the 00(N ) case. �

If p |φ(N ), then the determinant δ̃0 may not be constant. See Section 10 for
more details. If the order of 〈q〉 is pe, then (〈q〉−1)pe

= 0 in A01(N )
ρ . Therefore, in

(A01(N )
ρ )red, we have 〈q〉 = 1 for all such 〈q〉. Thus, from the proof of the lemma

above, it follows that if p |φ(N ), then the determinant

(δ̃01(N ))red
: GQ,Np→ ((A01(N )

ρ )red)∗

is constant.
Let Rρ be the universal deformation ring of the pseudorepresentation (tr ρ, det ρ)

in the category of local profinite O-algebras with residue field F, R̃ρ be the corre-
sponding universal deformation ring mod p and R̃0

ρ be the corresponding universal
deformation ring mod p with constant determinant (see [Chenevier 2014; BK,
Section 1.4] for more details regarding the existence and properties of these rings).
For a 0-modular representation ρ, the pseudorepresentation (τ0, δ0) defines a local
morphism Rρ→ T0ρ which is the identity, modulo their maximal ideals. Similarly,
we get a local morphism R̃ρ→ A0ρ . From the previous paragraphs, we see that the
morphism R̃ρ→ A0ρ factors through R̃0

ρ if 0=00(N ) or if p -φ(N ) and 0=01(N ).
However, this is not true in general. But, from the above discussion, we see that for
a 01(N )-modular representation ρ, the map R̃ρ→ (A01(N )

ρ )red factors through R̃0
ρ .

All the morphisms considered above are surjective. Indeed, for a prime q not divid-
ing Np, the images of the trace and the determinant, coming from the universal pseu-
dorepresentation of Frobq , under the morphisms above are Tq and q Sq , respectively.
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3. Relation between the full Hecke algebras in characteristic 0 and p

The goal of this section is to obtain a relation, similar to [BK, Proposition 16],
between the full Hecke algebras, but for both the cases, 01(N ) and00(N ). We follow
the approach of [BK]. We briefly recall, without proofs, some important results of
the theory of divided congruences of Katz needed for our purpose. Then, we state
some results about the comparisons of various Hecke algebras; these are similar to
the results given in Sections 3–6 of [BK], and since their proofs are more or less the
same, we do not give them in full detail here. Instead, we mostly refer readers to the
proofs of corresponding results in [BK] and provide some additional details when
required. In this section, we follow the notation of [BK] for the divided congruence
modules and the Hecke algebras along with an additional index representing the
level. For instance, D01(N )(O) will represent the divided congruence module of
cuspidal forms for 01(N ) over O. These modules and the Hecke algebras acting on
them are defined in exactly the same way as their level-1 counterparts in [BK] after
making appropriate level changes. The main references for this section are [Katz
1975; Hida 1986; BK]. Throughout this section, 0 means either 01(N ) or 00(N ).

3.1. The divided congruence modules of Katz. In this and the following subsec-
tion, we quickly list all the results that are needed from the theory of divided
congruence modules. These results are the level-N counterparts of the results that
appear in [BK].

We now define the divided congruence modules of Katz. Let S0
≤k(K ) be the

subspace of K [[q]] given by
∑i=k

i=0 S0i (K ), where S0i (K ) is the space of cusp forms
of weight i and level 0 with Fourier coefficients in K , which is identified as a
subspace of K [[q]] via q-expansions. Let D0

≤k(O) be the O-submodule of O[[q]]
given by the intersection of S0

≤k(K ) with O[[q]]. These modules are called divided
congruence modules because they capture congruences between cusp forms of
different weights (see Remark 3 of Section 2 of [BK] for more details). We define
D0
≤k(F) as the image of D0

≤k(O) under the reduction map O[[q]] → F[[q]]. Let

D0(O)=
∞⋃

k=0

D0
≤k(O) and D0(F)=

∞⋃
k=0

D0
≤k(F).

We call D0(O) the divided congruence module of cuspidal forms of level 0 and
D0(F) the divided congruence module of cuspidal forms modulo p of level 0. See
Section 2 of [BK] for more details.

Lemma 6. The natural map D0
≤k(O)⊗O F→ D0

≤k(F) is an isomorphism.

Proof. If f ∈ D0
≤k(O) lies in the kernel of the natural surjective map

D0
≤k(O)→ D0

≤k(F),
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then f/π lies in both S0
≤k(K ) and O[[q]]. Hence, it lies in D0

≤k(O) which implies
the lemma. See the proof of Lemma 5 of [BK]. �

We now recall, without proof, two theorems of Katz which relate the divided
congruence module of cuspidal forms mod p of level 0 with the space of mod p
cuspforms of level 0:

Proposition 7 [Katz 1975, Corollary 1.7]. (1) There exists a unique action of
Z∗p × (Z/NZ)∗ on D01(N )(O), denoted by ((x, y), f ) 7→ (x, y). f , such that
for (x, y) ∈ Z∗p× (Z/NZ)∗, and f ∈ S01(N )

k (O)⊂ D01(N )(O),

(x, y). f = xk
〈y〉 f.

(2) There exists a unique action of Zp
∗ on D00(N )(O) denoted by (x, f ) 7→ x . f

such that for x ∈ Z∗p, and f ∈ S00(N )
k (O)⊂ D00(N )(O),

x . f = xk f.

Theorem 8 [Katz 1975, Section 4]. The space S0(F) is the space of invariants of
1+ pZp acting on D0(F).

See also [Hida 1986, Theorem 1.1].
The two results of Katz recalled in this subsection are proved only for p > 3.

We do not know whether they also hold for p = 2, 3.

3.2. Hecke operators on the divided congruence modules. On D0(O) we can
define the Hecke operators Tq and Sq , for primes q not dividing Np, and U`, for
primes ` dividing N . Their action on the q-expansions is given in the same way
as it is given on the q-expansions of the classical modular forms. See the proof of
Corollary-and-Definition 7 of [BK] and [Hida 1986, page 243] for more details.

Now we introduce partially full Hecke algebras which are generated by the U`’s
for every prime ` dividing N along with the Tn’s for (n, Np)= 1. We denote these
Hecke algebras by supplementing the index with pf. Thus, T0,pf

k is the O-subalgebra
of EndO(S0≤k(O)) generated by the Tn’s with (n, Np) = 1 and U`’s with prime `
dividing N , while A0,pf

k is the F-subalgebra of EndF(S0≤k(F)) generated by the Tn’s
with (n, Np)= 1 and U`’s with prime ` dividing N . We can consider the projective
limits

T0,pf
= lim
←−−

T0,pf
k , A0,pf

= lim
←−−

A0,pf
k .

Lemma 9. (1) The subalgebra of EndO(D0
≤k(O)) generated by the Hecke oper-

ators Tq , Sq for primes q not dividing Np and U` for primes ` dividing N is
naturally isomorphic to T0,pf

k .

(2) The subalgebra of EndO(D0
≤k(O)) generated by the Hecke operators Tq , Sq

for primes q not dividing Np is naturally isomorphic to T0k .
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Proof. Both parts of the lemma follow from the observations that S0
≤k(O) is a

cotorsion submodule of D0
≤k(O) and that the action of Hecke operators on D0

≤k(O)
extends their action on S 0

≤k(O). Indeed, as S0
≤k(O) is a cotorsion submodule

of D0
≤k(O), if f ∈ D0

≤k(O), then πn f ∈ S0
≤k(O) for some n which implies that a

Hecke operator vanishing on S0
≤k(O) also vanishes on D0

≤k(O). See the proof of
Lemma 8 of [BK] for more details. �

Lemma 10. (1) The homomorphism φ : Z∗p → EndO(D01(N )(O)), defined by
φ(x) f = (x, 1). f for f ∈ D01(N )(O), takes values in the subalgebra T01(N )

and hence, in T01(N ),pf.

(2) The homomorphism φ : Z∗p→ EndO(D00(N )(O)), defined by φ(x) f = x . f for
f ∈ D00(N )(O), takes values in the subalgebra T00(N ) and hence, in T00(N ),pf.

Proof. The proof of part (1) is almost the same as the proof of Lemma 9 of [BK].
We only need to change the last step of the proof slightly, so we sketch it briefly here.
Following the same proof, we see that T01(N ) is a closed subset of EndO(D01(N )(O))
under the weak topology, and the map φ : Z∗p→ EndO(D01(N )(O)) is continuous
for the weak topology. For a prime q which does not divide Np and is 1 (mod N ),
one has φ(q)= q2Sq ∈T01(N ), since 〈q〉 is the trivial operator as q is 1 (mod N ). If
x ∈ Z∗p, there exists, by the Chinese remainder theorem and Dirichlet’s theorem on
primes in arithmetic progressions, a sequence of primes qn , (different from primes
dividing Np) that are 1 (mod N ), that converges to x p-adically. Hence, φ(qn)

converges to φ(x) in EndO(D01(N )(O)). Therefore, φ(x) ∈ T01(N ). The proof of
part (2) is the same as the proof of Lemma 9 of [BK]. �

Let 3 be the Iwasawa algebra O[[1+ pZp]]. By choosing a topological generator
of 1+ pZp, say 1+ p, one gets an isomorphism3'O[[T ]]. Under this isomorphism,
the maximal ideal m3 of3 gets mapped to (π, T ). We get a morphism ψ :3→T0

of O-algebras from the group homomorphism φ : 1+ pZp → (T0)∗. Using the
morphism ψ , we can consider T0 as a 3-algebra.

3.3. Divided congruence modules of level 00(Np) and 01(Np). In this subsec-
tion, we consider the divided congruence modules of cuspidal forms for levels
00(Np) and 01(Np). They are defined in the same way as in the level-N case after
just changing the level. For the rest of this section, 0 still means 00(N ) or 01(N )
and 0(p) means either 00(Np) or 01(Np) accordingly.

Proposition 11. The closures of D0(O) and D0(p)(O) in O[[q]] provided with the
topology of uniform convergence, are equal.

Proof. See [Gouvêa 1988, Proposition I.3.9] and Section 1 of [Hida 1986]. �

Corollary 12. There is an isomorphism preserving q-expansions of

D0(p)(O)⊗O F' D0(F).
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Corollary 13. The algebras T0(p),pf and T0,pf are naturally isomorphic, as are
also the algebras T0(p) and T0.

Proof. The natural restriction maps between the Hecke algebras of level Np and
N are isomorphisms because their action is continuous and the modules on which
they act have the same closure. See the proof of Corollary 13 of [BK] for more
details. �

3.4. Full Hecke algebras. In this subsection, we consider full Hecke algebras,
i.e., the Hecke algebras generated by all the operators Tq , Sq for primes q with
(q, Np) = 1, U` for primes ` dividing N and Up. So, T0(p),full

k , D A0,full
k and

A0,full
k are the Hecke algebras generated by the Hecke operators Tq , Sq for primes q

with (q, Np)= 1, U` for primes ` dividing N and Up acting on D0(p)
≤k (O), D0

≤k(F)

and S0
≤k(F), respectively. We denote by T0(p),full, D A0,full and A0,full the full Hecke

algebras acting on D0(p)(O), D0(F) and S0(F), respectively, which are obtained by
taking the inverse limits over the weights k of appropriate Hecke algebras, as before.

Proposition 14 (perfect duality). The pairings

T0(p),full
k × D0(p)

≤k (O)→O, D A0,full
k × D0

≤k(F)→ F, A0,full
k × S0

≤k(F)→ F,

given by (t, f ) 7→ a1(t f ), are perfect.

Proof. This is well known but we recall the proof here. Suppose f ∈ D0(p)
≤k (O)

is such that a1(t f ) = 0 for all t ∈ T0(p),full
k . This means a1(Tn f ) = an( f ) = 0

for all n coprime to Np, a1(U` f ) = a`( f ) = 0 for all primes ` dividing N and
a1(Up f ) = ap( f ) = 0. Thus, we have an( f ) = 0 for all n which implies f = 0.
Now, suppose t ∈ T0(p),full

k is such that a1(t f ) = 0 for all f ∈ D0(p)
≤k (O). This

means a1(s(t f ))= a1(t (s f ))= 0 for all s ∈ T0(p),full
k . Thus, from the previous part,

we get that t f = 0 for all f ∈ D0(p)
≤k (O) which means t = 0. The proof for other

cases goes in the exact same way. �

Corollary 15. The map T0(p),full
k → D A0,full

k induces an isomorphism

T0(p),full
k ⊗O F−→∼ D A0,full

k .

Hence, we get an isomorphism T0(p),full
⊗O F' D A0,full.

Proof. By the perfect duality above and Lemma 6, we see that the rank of the
torsion-free O-module T0(p),full

k and the dimension of D A0,full
k as an F-vector space

are the same, which implies the result. See the proof of Corollary 15 of [BK] for
more details. �

The composition3→T0,pf
→T0(p),full defines a3-algebra structure on T0(p),full.

Proposition 16. T0(p),full/m3T0(p),full
' A0,full.
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Proof. The proposition follows from Theorem 8 (a theorem of Katz that we recalled
in Section 3.1), the perfect duality and its corollary above. See the proof of
Proposition 16 of [BK] for more details. �

4. Relation between the components of Partial and Full Hecke algebras

Throughout this section 0 means either 01(N ) or 00(N ) and 0(p) means either
01(Np) or 00(Np) accordingly. Recall that we have a direct product decomposition
T0=

∏
T0ρ and a direct sum decomposition S0(O)=

⊕
S0(O)ρ , where the product

and sum are taken over all the 0-modular representations. Note that, S0(O)ρ is
the intersection of the subspace of S0(Qp) generated by the eigenforms lifting the
system of eigenvalues corresponding to ρ with S0(O). The decompositions above
are such that T0ρ is also the largest quotient of T0 which acts faithfully on S0(O)ρ .
Let T0,pf

ρ be the largest quotient of T0,pf which acts faithfully on S0(O)ρ . Define
A0,pf
ρ in a similar way.
Note that, since D0(O) contains S0(O) as a cotorsion submodule, we have a direct

sum decomposition D0(O)=
⊕

D0(O)ρ similar to that of S0(O). Moreover, T0,pf
ρ

and T0ρ are the largest of quotients of T0,pf and T0 respectively, acting faithfully
on D0(O)ρ .

By a result of Serre and Tate (see [Jochnowitz 1982, Lemma 4.4]), the subalgebras
of T0(p),full and A0,full generated by the Hecke operators Tq , Sq for primes q not
dividing Np and Up are semilocal and the local components of both of them
are in bijection with the set of F-valued systems of eigenvalues of the Hecke
operators Tq , Sq for primes q not dividing Np and Up appearing in S0(F). Hence,
they are in bijection with the pairs (ρ, λ), where ρ :GQ,Np→GL2(F) is a 0-modular
representation attached to some eigenform f ∈ S0(F) and λ is the eigenvalue of Up

on f (see [Jochnowitz 1982]).
So, we get a direct sum decomposition D0(p)(O)=

⊕
D0(p)(O)ρ,λ similar to

that of S0(O) seen above. Now, let us define T
0(p),full
ρ,λ to be the largest quotient of

T0(p),full acting faithfully on D0(p)(O)ρ,λ and A0,full
ρ,λ to be the largest quotient of

A0,full acting faithfully on S0(F)ρ,λ.
We get, using the Chinese remainder theorem and the definitions above, the

product decompositions T0(p),full
=
∏

T
0(p),full
ρ,λ , and T0,pf

=
∏

T0,pf
ρ . Similarly,

we get product decompositions of A0,full and A0,pf. Here, the products are finite
products as the pairs (ρ, λ) are finitely many.

Proposition 17. (1) For a 0-modular representation ρ, one has a natural isomor-
phism of A0,pf

ρ -algebras A0,pf
ρ [[Up]] ' A0,full

ρ,0 .

(2) For a 0-modular representation ρ, one has a natural isomorphism of T0,pf
ρ -

algebras T0,pf
ρ [[Up]] ' T0(p),full

ρ,0 .
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Proof. The first part of this proposition is proved by Jochnowitz [1982, Theorem 6.3].
The proof of the second part of the proposition is the same as that of Proposition 17
of [BK], where they adapt the proof of Jochnowitz in characteristic 0, which relies
on the interplay between the operators Up and V . Here, V is the operator which
sends

∑
anqn to

∑
anq pn . The same argument works here. �

5. Finiteness of T0,pf
ρ over T0ρ for new ρ

Throughout this section, 0 means either 01(N ) or 00(N ) and 0(M) means either
01(M) or 00(M) accordingly. Let us call a 0-modular representation ρ new if it is
not 0(M)-modular for any proper divisor M of N . Thus, the system of eigenvalues
of the Hecke operators corresponding to ρ does not have a nontrivial eigenspace in
S0(M)(F) for any proper divisor M of N . Let S0,new

k (Qp) be the O-submodule of
S0k (Qp) consisting of new modular forms of weight k and level 0. Let

S0,new
≤k (Qp)=

k∑
i=0

S0,new
i (Qp) and S0,new(Qp)=

∞⋃
k=0

S0,new
≤k (Qp).

The following lemma follows directly from the discussion above and the description
of S0(O)ρ given in the previous section:

Lemma 18. If ρ is a new0-modular representation, then S0(O)ρ is an O-submodule
of S0,new(Qp).

Now we recall a well-known result regarding the Galois representations attached
to level-N newforms:

Lemma 19 [Emerton et al. 2006, Lemma 2.6.1]. Let f be a classical newform of
tame level N over Qp. Let ρ f be the p-adic Galois representation attached to f
and let Vf denote its underlying space. Let ` be a prime dividing N and let a`( f )
be the U` eigenvalue of f . Let (Vf )I` be the vector space of I` coinvariants of Vf .
Then the following are equivalent:

(1) a`( f ) is a nonunit,

(2) a`( f )= 0,

(3) (Vf )I` = 0.

If these equivalent conditions do not hold, then we have that (Vf )I` is one
dimensional and a`( f ) is equal to the eigenvalue of Frob` acting on this line.

Proposition 20. If ρ is a new 0-modular representation, then T0,pf
ρ is finite over T0ρ .

More precisely, U` ( for every `|N ) is integral over T0ρ of degree at most 2. If one
of the following condition holds:

(1) 0 = 00(N ) and there does not exist a prime ` such that `‖N and p |`+ 1.
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(2) 0 = 01(N ) and if there exists a prime ` such that p |`2
− 1 and `‖N , then

p |`+ 1 and det ρ(I`) 6= 1.

then T0,pf
ρ = T0ρ .

Proof. Let 0 = 00(N ). Since ρ is new, we know, from Lemma 18, that

S0(O)ρ ⊂ S0,new(Qp).

Now, T0,pf
ρ is the largest quotient of T0,pf which acts faithfully on S0(O)ρ . Let `

be a prime dividing N . By Theorem 5 of [Atkin and Lehner 1970], if `2 divides N ,
then U` acts like 0 on S0,new

k (Qp) and if `‖N , then U 2
` acts like `k−2 on S0,new

k (Qp).
Hence, if `2 divides N , then U` acts like 0 on S0(O)ρ and if `‖N , then U 2

` acts
like `−2φ(`) on S0(O)ρ , where φ : Z∗p→ T0ρ is the map considered in Lemma 10.
Thus, if `2

|N , then U` = 0, and if `‖N , then U 2
` − `

−2φ(`)= 0 in T0,pf
ρ .

Suppose `‖N and let f be a newform of level 00(N ) lifting the system of
eigenvalues corresponding to ρ. Let π` be the `-component of the automorphic
representation corresponding to f and ρ f be the p-adic Galois representation
attached to f . As `2 - N , π` is either principal series or special (see [Carayol 1989,
Section 1.2]). So, it follows from the local Langlands correspondence, that ρ f |GQ`

is either a direct sum of two characters or a nontrivial extension of a character by
its cyclotomic twist (see Sections 3 and 5 of [Weston 2004]). As f is a newform of
level 0, the Artin conductor of ρ f is N (the level of f ). Since `‖N , the exponent
of ` appearing in the Artin conductor of ρ f is exactly 1 which means (ρ f )

I` , the
subspace of ρ f on which I` acts trivially, is one dimensional. So, if ρ f |GQ`

is a
direct sum of two characters, then one of them is unramified and the other is tamely
ramified. Otherwise, ρ f |GQ`

is a nontrivial extension of an unramified character
by its cyclotomic twist. As f is a modular form of level 00(N ), its nebentypus is
trivial, which means det ρ f (I`)= 1. This implies that ρ f |GQ`

is not a direct sum of
two characters and hence, ρ f |GQ`

'
( εpχ ∗

0 χ

)
, where ∗ is nonzero and ramified, χ is

an unramified character and εp is the p-adic cyclotomic character of GQ`
.

As a`( f ), the U` eigenvalue of f , is nonzero, by Lemma 19 above, it is the
eigenvalue of Frob` acting on (ρ f )I` . Thus, a`( f ) = χ(Frob`). Let x be a lift of
Frob` in GQ`

. Note that

tr(ρ f ◦ i`(x))= εpχ(Frob`)+χ(Frob`)= (`+ 1)χ(Frob`)= (`+ 1)a`( f ),

which means a`( f ) = tr(ρ f ◦ i`(x))/(`+ 1). Suppose p - `+ 1, which implies
that ` + 1 is a unit in T0ρ . Then on every newform f of level 0 lifting ρ, the
action of U` coincides with the action of (τ0 ◦ i`)(x)/(`+ 1), which lies in T0ρ
as `+ 1 is a unit in T0ρ . As ρ is new, every eigenform of level 0 lifting ρ is a
newform. This implies that U` − (τ

0
◦ i`)(x)/(`+ 1) acts like 0 on S0(O)ρ and

hence, U` = (τ
0
◦ i`)(x)/(`+1) in T0,pf

ρ . Therefore, U` ∈ T0ρ if `‖N and p - `+1.
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Note that, T0,pf
ρ is generated by the Hecke operators U` over T0ρ . So, by com-

bining the discussion of the last two paragraphs, we get that T0,pf
ρ = T0ρ if there

does not exist a prime ` such that `‖N and p |`+ 1. Otherwise, we have U` ∈ T0ρ
if either `2

|N or p - `+ 1 and U 2
` − `

−2φ(`)= 0 if `‖N . Therefore, we conclude
that T0,pf

ρ is a finite extension of T0ρ .
Let 0 = 01(N ). There is a continuous pseudorepresentation

(τ0, δ0) : GQ,Np→ T0ρ

such that τ0(Frobq)= Tq , δ0(Frobq)= q Sq for primes q not dividing Np. Hence,
we get a continuous pseudorepresentation (t, d) : GQ,Np→ T0,pf

ρ since T0ρ ⊂ T0,pf
ρ .

For every prime ` dividing N , let us choose an element g` of GQ`
which gets

mapped to Frob` under the quotient map GQ`
→ GQ`

/I`. We have already fixed a
natural map i` : GQ`

→ GQ,Np. Hence, we get a pseudorepresentation

(t ◦ i`, d ◦ i`) : GQ`
→ T01(N ),pf

ρ .

Now, consider the characteristic polynomial Q`(x) of g` which is defined by

Q`(x)= x2
− (t ◦ i`)(g`)x + (d ◦ i`)(g`).

Let f be a newform of level N lifting the system of eigenvalues corresponding
to ρ. Denote by ρ f the p-adic Galois representation attached to f and by a`( f )
its U` eigenvalue. By Lemma 19, if a`( f ) = 0, then U` kills f . If a`( f ) 6= 0,
then a`( f ) is the root of the characteristic polynomial Pf (x) of ρ f ◦ i`(g`). But
Q`(U`) f = Pf (a`( f )) f = 0. Thus, in this case, Q`(U`) kills f . We will now
determine if it is possible to have two newforms f and g of level N lifting ρ
such that a`( f ) 6= 0 but a`(g) = 0 or equivalently (by Lemma 19), (ρ f )I` is one
dimensional but (ρg)I` = 0.

Let f be a newform of level 0 lifting ρ as above and π` be the `-component of
the automorphic representation corresponding to f . So, π` is one of the following:
principal series, special and supercuspidal (see [Weston 2004, Section 3]). As f
is a newform, the Artin conductor of ρ f is N (the level of f ). Suppose `|N but
`2 - N . Then, from the analysis carried out in the 00(N ) case above, we see that
ρ f |GQ`

is either a sum of an unramified character and a tamely ramified character
or a nontrivial extension of an unramified character by its cyclotomic twist. Hence,
the space (ρ f )I` of I` coinvariants is also one dimensional. Therefore, if `‖N , then
for every newform f of level 0 lifting ρ, (ρ f )I` is one dimensional and hence,
a`( f ) 6= 0.

Now suppose `2
|N , and moreover, the space of I` coinvariants of ρ f is one

dimensional. So, the exponent of ` appearing in the Artin conductor of ρ f is at
least 2. This means that π` is not special, as otherwise (ρ f )I` being one dimensional
will imply that ρ f |GQ`

is a nontrivial extension of an unramified character by its
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cyclotomic twist, and hence, the exponent of ` appearing in the Artin conductor
of ρ f is 1. The nontriviality of (ρ f )I` also implies that π` is not extraordinary
supercuspidal (see the proof of [Weston 2004, Proposition 3.2] for more details).
Suppose π` is supercuspidal but not extraordinary. Then, by the local Langlands
correspondence,

ρ f |GQ`
= IndGQ`GK

χ,

where K is a quadratic extension of Q`, GK is the absolute Galois group of K ,
χ is a character of GK taking values in Qp and moreover, ρ f is irreducible (see
Section 3 of [Weston 2004]). But as (ρ f )I` is one dimensional, we get that χ is
an unramified character of GK . However, since the maximal unramified extension
of K is an abelian extension of Q`, this implies that ρ f |GQ`

is a sum of two
characters, contradicting the hypothesis that ρ f |GQ`

is irreducible. Hence, π` is
not supercuspidal. Therefore, π` is principal series which means that ρ f |GQ`

is a
sum of two characters χ1 and χ2. Moreover, (ρ f )I` 6= 0 implies that one of them is
unramified, while `2

|N implies that the other is wildly ramified. Without loss of
generality, suppose χ1 is wildly ramified and χ2 is unramified.

Thus, ρ|GQ`
= χ1 ⊕ χ2, where χ1 and χ2 are the reductions of χ1 and χ2 in

characteristic p, respectively. Note that, χ2 is unramified while χ1 is wildly ramified
as ` 6= p. Let g be another newform of level 0 lifting ρ and π ′` be the `-component
of the automorphic representation corresponding to g. If π ′` is special, then ρg|GQ`

is a nontrivial extension of a character by the cyclotomic twist of itself. This
would imply that both χ1 and χ2 are either unramified or ramified, which is not
the case. Hence, π ′` is not special. If π ′` is extraordinary supercuspidal, then ρ|I`
is irreducible as p ≥ 5 (see proof of [Weston 2004, Proposition 3.2]). So, π ′` is
not extraordinary supercuspidal. If π ′` is supercuspidal but not extraordinary, then
ρg|GQ`

is induced from a character of the absolute Galois group of a quadratic
extension of Q`. Moreover, the subspace of ρg fixed by I` is trivial. But the
subspace of ρ fixed by I` is one dimensional. Thus, the exponent of ` in the Artin
conductor of ρg is greater than the exponent of ` in the Artin conductor of ρ (see
[Carayol 1989, Section 1.1]). But [Carayol 1989, Proposition 2], along with the
assumption that π ′` is supercuspidal, implies that ρ is unramified at ` which gives
us a contradiction. Therefore, π ′` is not supercuspidal.

This means that π ′` is principal series and hence, ρg|GQ`
is a sum of two characters,

say χ ′1 and χ ′2. Without loss of generality, suppose χ ′1 is a lift of χ1 and χ ′2 is a
lift of χ2. As χ1 is wildly ramified, the Artin conductor of χ1 is same as the Artin
conductor of χ ′1 and the Artin conductor of χ1 (see [Carayol 1989, Section 1.2]).
As the exponent of ` in the Artin conductor of ρ f is the sum of the exponents of `
in the Artin conductors of χ1 and χ2 and its exponent in the Artin conductor of
ρg is the sum of its exponents in the Artin conductors of χ ′1 and χ ′2. As both f
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and g are newforms of level N , the exponents of ` in the Artin conductors of ρ f

and ρg are same. This implies that the Artin conductors of χ2 and χ ′2 are same,
which means that χ ′2 is also unramified. In particular, we see that (ρg)I` is one
dimensional. As a consequence, we see that if f is a newform of level 0 lifting
ρ and (ρ f )I` is one dimensional, then, for every newform g of level 0 lifting ρ,
(ρg)I` is one dimensional.

Let us continue with the assumption that there is a newform f0 of level 0 lifting
ρ such that (ρ f0)I` is one dimensional. Observe that in this case, from the discussion
so far, we get that for every newform g of level 0 lifting ρ, ρg|GQ`

is reducible and
moreover, at least one character appearing in the semisimplification of ρg|GQ`

is
unramified. Thus, (ρ|GQ`

)ss
= α⊕β, where (ρ|GQ`

)ss is the semisimplification of
ρ|GQ`

and α and β are characters of GQ`
such that at least one of them is unramified.

Note that, both α and β are defined over F. Indeed, both α|I` and β|I` take values in
F as one of them is unramified and det(ρ) is defined over F. So it follows from the
previous discussion that the image of I` under ρ in GL2(F) is abelian and hence,
is upper-triangular under a suitable basis. Therefore, since I` is normal in GQ`

, it
follows that if ρ is ramified at `, then under the same basis, the image of GQ`

under
ρ in GL2(F) is also upper-triangular, which implies that both α and β are defined
over F. If ρ is unramified at `, then ρ is reducible as it is new. As ρ is semisimple,
it follows that both α and β are defined over F.

Suppose α 6= β. Then, by [Bellaïche and Chenevier 2009, Theorem 1.4.4,
Chapter 1], T0ρ [GQ`

]/
(
ker(τ0 ◦ i`(GQ`

))
)

is a generalized matrix algebra (GMA)
of the form (

T0ρ B
C T0ρ

)
, (1)

where B and C are finitely generated T0ρ -modules contained in the total fraction
ring of T0ρ , and the diagonal entries reduce to α and β modulo the maximal ideal
of T0ρ . Moreover, BC ⊂ T0ρ and it is an ideal of T0ρ . Let us call it I .

For a newform f of level 0 lifting ρ, let φ f :T
0
ρ →Qp be the map which sends a

Hecke operator to its f -eigenvalue and denote its kernel by Pf . From the previous
paragraph, we see that the 2 dimensional pseudocharacter τ0 ◦ i` of GQ`

is a sum of
two characters modulo Pf and hence, is reducible modulo Pf for every newform f
of level 0 lifting ρ. Therefore, by [Bellaïche and Chenevier 2009, Proposition 1.5.1,
Chapter 1], it follows that I ⊂ Pf for every newform f of level 0 lifting ρ. This
means that if x ∈ I , then x( f ) = 0 for every newform f of level 0 lifting ρ. As
every eigenform of level 0 lifting ρ is a newform, we see that I = 0. Thus, the
projection on the diagonal entries of the GMA (1) above gives two characters α̃
and β̃ of GQ`

taking values in T0ρ such that, α̃ is a deformation of α, while β̃ is a
deformation of β.
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As at least one of α and β is unramified; without loss of generality, assume
that β is unramified. Suppose α is ramified. Then, it follows, from the analysis
above, that for a newform f of level 0 lifting ρ, ρ f |GQ`

is a direct sum of an
unramified character and a ramified character. As α is ramified, the unramified
character appearing in ρ f |GQ`

is a lift of β and hence, it is the image of β̃ modulo Pf .
This means that the reduction of β̃ modulo Pf gives an unramified character for
every newform f of level 0 lifting ρ. Hence, by the reasoning used in the previous
paragraph, we see that β̃ is an unramified character of GQ`

. By Lemma 19, it
follows that for every newform f of level 0 lifting ρ, the U` eigenvalue of f is the
reduction of β̃(Frob`) modulo Pf . Thus, U`− β̃(Frob`) annihilates every newform
f of level 0 lifting ρ. Therefore, U` = β̃(Frob`) in T0,pf

ρ and hence, U` ∈ T0ρ as
β̃(Frob`) ∈ T0ρ .

Now, suppose α is also unramified. This means that for a newform f of level 0
lifting ρ, ρ f |GQ`

is either a nontrivial extension of an unramified character by its
cyclotomic twist or a direct sum of an unramified character and a tamely ramified
character and in both cases, `‖N (see [Carayol 1989, Proposition 2]). Moreover, in
the second case, p |`−1. Suppose ρ f |GQ`

is a direct sum of an unramified character
and a tamely ramified character. Let ε be the nebentypus of f . Note that,

det(ρ f (I`))= ε((Z/`Z)∗) 6= 1,

but its reduction is 1 in characteristic p. So, by [Carayol 1989, Proposition 3], there
exists a newform g of level 0 lifting ρ such that ε′((Z/`Z)∗)= 1, where ε′ is the
nebentypus of g. Thus, ρg|GQ`

is a nontrivial extension of an unramified character
by its cyclotomic twist. This means that either α/β or β/α is the cyclotomic
character ωp. But as p |`− 1, ωp(Frob`)= 1 and hence, ωp is the trivial character.
However, this means that α = β, which contradicts our assumption that α 6= β.
Therefore, we get that, if α is unramified, then ρ f |GQ`

is a nontrivial extension of
an unramified character by the cyclotomic twist of itself for every newform f of
level 0 lifting ρ. By [Carayol 1989, Proposition 3] and the discussion above, it
follows that p - `− 1, for otherwise there would exist a newform g lifting ρ such
that det(ρg(I`)) 6= 1, which gives a contradiction.

As α is also unramified, we saw above that either α/β or β/α is ωp. If both of
them are ωp, then ω2

p = 1, which means p |`2
−1. As p - `−1, we get that p |`+1

if both of them are ωp. Suppose p - `+ 1, which implies that exactly one of them
is ωp. Without loss of generality, assume α/β is ωp. Now in this case, the image of
α̃ is the cyclotomic twist of the image of β̃ modulo Pf for every newform f of level
0 lifting ρ. Thus, for every such newform f , GQ`

acts by the image of β̃ modulo
Pf on (ρ f )I` . Hence, the U` eigenvalue of f is the reduction of β̃(Frob`) modulo
Pf for every newform f of level 0 lifting ρ. Therefore, by the reasoning used in
the previous case, we see that U` = β̃(Frob`) in T0,pf

ρ which means that U` ∈ T0ρ .
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Now suppose that there exists a newform f0 of level 0 lifting ρ such that
(ρ f0)I` = 0, which means U` f0 = 0. Then, by our analysis above, it follows that
`2
|N and U` f = 0 for all newforms f of level 0 lifting ρ. As ρ is new of level 0,

we get, by the reasoning used above, that U` = 0 in T0,pf
ρ .

From the discussion so far, we see that for a prime ` dividing N , U` ∈ T0ρ if one
of the following conditions hold:

(1) `2
|N ,

(2) `‖N and p - `2
− 1,

(3) `‖N , p |`+ 1 and det ρ(I`) 6= 1.

Otherwise, Q`(U`) kills every newform f of level N lifting ρ. Since ρ is new,
every eigenform of level N lifting ρ is a newform. This implies that either U` ∈ T0ρ
or Q`(U`)= 0 for every prime ` dividing N . Since the pseudorepresentation (t, d)
takes values in T0ρ , it follows that for every prime ` dividing N , Q`(x) is a monic
polynomial with coefficients in T0ρ . Hence, U` is integral over T0ρ for every prime
` dividing N of degree at most 2. Therefore, T0,pf

ρ is finite over T0ρ and moreover,
T0,pf
ρ = T0ρ if `‖N and p |`2

− 1 implies that p |`+ 1 and det ρ(I`) 6= 1 as T0,pf
ρ

is generated by these U`’s over T0ρ . �

Remark. (1) Note that, the proof given above for the 01(N ) case works for the
00(N ) case as well. But we give a different proof because it gives us a more
precise result in the 00(N ) case and it is also simpler than the proof in the
01(N ) case.

(2) Even though we do a detailed analysis in the 01(N ) case above, it is not
really necessary just to prove that U` is integral over T01(N )

ρ . Indeed, by the
reasoning used in the last paragraph of the proof above, we can easily prove
that U`Q`(U`)= 0, which proves that U` is integral over T01(N )

ρ . For most of
our purposes, we only need the result that U` is integral over T01(N )

ρ . But we
give this detailed analysis to obtain a more precise result which is helpful in
getting a more precise version of Theorem 3 in some cases (see the remark
after the proof of Theorem 3).

6. The case of ρ which is not new

Throughout this section 0 means either 01(N ) or 00(N ) and 0(M) means either
01(M) or 00(M) accordingly. Let ρ be a 0-modular representation which is not
new. Thus, the system of F-valued eigenvalues corresponding to ρ has a nontrivial
eigenspace in S0(M)(F) for some proper divisor M of N . Let us denote by Mρ the
smallest divisor of N such that the system of F-valued eigenvalues corresponding
to ρ has a nontrivial eigenspace in S0(Mρ)(F). Note that, ρ is then a new 0(Mρ)-
modular representation.
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Lemma 21. If ρ is a 0-modular representation which is not new, then the natural
map of local algebras r : A0ρ → A0(Mρ)

ρ obtained by restriction is surjective.

Proof. First note that S0(Mρ)(F)ρ ⊂ S0(F)ρ . Hence, using this inclusion, we obtain a
natural map r : A0ρ → A0(Mρ)

ρ by restriction. Its image Im(r) is complete and hence,
closed. It contains all the Hecke operators Tq and q Sq (considered as operators
on S0(Mρ)(F)ρ) for all the primes q not dividing Np. There is a continuous pseu-
dorepresentation (τ̃0(Mρ), δ̃0(Mρ)) :GQ,Mρ p→ A0(Mρ)

ρ and Im(r) contains the Hecke
operators Tq = τ̃

0(Mρ)(Frobq) for primes q not dividing Np. By the Chebotarev den-
sity theorem, the set of Frobq for primes q not dividing Np is dense in GQ,Mρ p. Since
τ̃0(Mρ) is continuous and Im(r) is closed, it contains τ̃0(Mρ)(g) for every g∈GQ,Mρ p.
It also contains q Sq = δ̃

0(Mρ)(Frobq) for all the primes q not dividing Np. As δ̃0(Mρ)

is continuous and Im(r) is closed, by the Chebotarev density theorem, we see that
it contains δ̃0(Mρ)(g) for every g ∈ GQ,Mρ p. For every prime q not dividing Mρ ,
we have τ̃0(Mρ)(Frobq)= Tq and δ̃0(Mρ)(Frobq)= q Sq . Hence, we see that Im(r)
contains Tq , q Sq for all the primes q not dividing Mρ p. Thus, Im(r) is a closed
subalgebra of A0(Mρ)

ρ containing all of its generators. Hence, Im(r)= A0(Mρ)
ρ . �

7. Proof of Theorem 1

Throughout this section0 means either01(N ) or00(N ), 0(p)means either01(Np)
or 00(Np) accordingly and 0(M) means 01(M) or 00(M) accordingly. As we
noted before, the natural map T0,pf

→
∏

T0,pf
ρ is an isomorphism and it lifts the

natural map T0→
∏

T0ρ . The corresponding statement for A0,pf and A0 is also
true. The natural surjective map T0,pf

→ A0,pf sends T0,pf
ρ onto A0,pf

ρ . The natural
surjective map T0(p),full

→ A0,full takes T
0(p),full
ρ,λ onto A0,full

ρ,λ .
Thus, from Proposition 16 and the discussion above, it follows that A0,full

ρ,0 is
isomorphic to T

0(p),full
ρ,0 /m3T

0(p),full
ρ,0 . By Proposition 17, T

0(p),full
ρ,0 = T0,pf

ρ [[Up]]

and A0,full
ρ,0 = A0ρ [[Up]]. Thus, A0,pf

ρ is isomorphic to T0,pf
ρ /m3T0,pf

ρ . As the ideal
m3 is generated by two elements, the Hauptidealsatz implies that

dim A0,pf
ρ ≥ dim T0(p),pf

ρ − 2.

Suppose ρ is a new 0-modular representation. Then, we have proved so far that
T0,pf
ρ is a finite extension of T0ρ . Observe that T0ρ is mapped onto A0ρ under the

surjective map T0,pf
ρ → A0,pf

ρ . This follows from the fact that the map between the
partially full Hecke algebras is obtained by first reducing the partially full Hecke
algebra in characteristic 0 modulo p to get an action on D0(F)ρ and then restricting
it to the subspace S0(F)ρ . Hence, we see that A0,pf

ρ is finite over A0ρ .
Therefore, dim A0,pf

ρ = dim A0ρ and dim T0,pf
ρ = dim T0ρ . By the Gouvêa–Mazur

infinite fern argument, we see that dim T0ρ ≥ 4 (see [Emerton 2011, Corollary 2.28;
Gouvêa and Mazur 1998, Theorem 1]). Hence, dim A0ρ ≥ dim T0ρ − 2≥ 2.
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Now suppose that ρ is not a new 0-modular representation. Thus, as remarked
before, there exists a proper divisor Mρ of N such that ρ is a new 0(Mρ)-modular
representation (we can take it to be the smallest divisor of N such that the eigenspace
corresponding to the system of eigenvalues corresponding to ρ is nonzero in
S01(Mρ)(F)). If Mρ = 1, then we know that dim A0(Mρ)

ρ = 2 by Theorem III of
[BK]. If Mρ > 1, then since ρ is a new 0(Mρ)-modular representation, repeat-
ing the argument given in the previous paragraph for A0(Mρ)

ρ and T0(Mρ)
ρ gives

dim A0(Mρ)
ρ ≥ 2. (We can do this since, all the results till the previous section are

valid for any level not divisible by p. This condition is satisfied by Mρ as it divides
N which is coprime to p.) Thus, in any case, we see that dim A0(Mρ)

ρ ≥ 2. By
Lemma 21, we have a surjective map A0ρ → A0(Mρ)

ρ . Hence, dim A0ρ ≥ 2 when
ρ is not a new 0-modular representation. Thus, Theorem 1 is proved for all the
0-modular representations ρ.

8. Proof of Theorem 3

Theorem 22 (Böckle, Diamond–Flach–Guo, Gouvêa–Mazur, Kisin). Under the
hypotheses of Theorem 3, the natural map Rρ→ T01(N )

ρ is an isomorphism between
local rings of dimension 4.

Proof. If ρ is a 01(N )-modular representation which also satisfies the hypotheses
of Theorem 3, then mimicking the proof of Theorem 18 of [BK] gives the result
of the theorem. We can mimic the argument since, under all these assumptions,
the infinite fern argument of Gouvêa–Mazur and [Böckle 2001, Theorems 2.8, 3.1
and 3.9; Diamond 1996, Theorem 1.1; Diamond et al. 2004, Theorem 3.6; Kisin
2004, Main Theorem], which are the key ingredients of the proof of Theorem 18 of
[BK], hold. Note that the Hecke algebra appearing in [Böckle 2001, Theorem 3.9]
is of a higher level N ′ such that N |N ′ and N and N ′ have the same prime factors
(see the discussion after [Böckle 2001, Theorem 2.7] for more details). But the
hypotheses of Theorem 3, along with [Carayol 1989, Proposition 2], ensure that all
eigenforms of level N ′ lifting ρ arise from newforms of level dividing N , which
means that the natural restriction map T01(N ′)

ρ → T01(N )
ρ is an isomorphism. �

Lemma 23. Under the hypotheses of Theorem 3, the algebra T01(N )
ρ is flat over 3

for the structure of 3-algebra on T01(N )
ρ defined at the end of Section 3.2.

Proof. The proof is similar to that of Lemma 19 of [BK], but we need to make a
few changes. Let ρ be a 01(N )-modular representation. If the p-primary part of
(Z/NZ)∗ is

∏i=n
i=1 Z/pei Z, then the universal deformation ring of det ρ is

Rdet ρ =3[Y1, . . . , Yn]/(Y
pe1

1 − 1, . . . , Y pen
n − 1). (2)

Thus, if p does not divide φ(N ), then Rdet ρ = 3. Using the same arguments as
used in the proof of [BK, Lemma 19], we get that Rρ is flat over Rdet ρ . Since Rdet ρ
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is finite and free over 3, it is also flat over 3. So, we get that Rρ is flat over 3. To
verify that the map 3→ Rρ→ T01(N )

ρ is the same as the map 3→ T01(N )
ρ given

at the end of Section 3.2, we first show that it is true for all the primes q ∈ 1+ pZp

which are 1 (mod N ). This is shown in exactly the same way as it is showed for all
the primes q ∈ 1+ pZp in the proof of [BK, Lemma 19]. Since we are choosing the
primes which are 1 (mod N ), the nebentypus is trivial at those primes and hence, we
can use the argument used in the proof of [BK, Lemma 19] without modifications.
By Dirichlet’s theorem on primes in arithmetic progressions, we know that the set
of all such primes is dense in 1+ pZp. Thus, by continuity, we see that the two
maps considered above are the same. Under the hypotheses of Theorem 3, the map
Rρ→ T01(N )

ρ is an isomorphism. Hence, we conclude that T01(N )
ρ is flat over 3 for

the 3-algebra structure defined on T01(N )
ρ at the end of Section 3.2. �

There is a surjective map T01(N )
ρ → A01(N )

ρ whose kernel contains m3T01(N )
ρ by

Proposition 16. Hence, we get a surjective map T01(N )
ρ /m3T01(N )

ρ → A01(N )
ρ . Since

T01(N )
ρ is flat over3 by Lemma 23, it follows, from [Eisenbud 1995, Theorem 10.10],

that the Krull dimension of T01(N )
ρ /m3T01(N )

ρ is equal to dim T01(N )
ρ −2= 4−2= 2.

Thus, the Krull dimension of A01(N )
ρ is at most 2. But, by Theorem 1, the dimension

of A01(N )
ρ is at least 2. Hence, the dimension of A01(N )

ρ is exactly 2. This concludes
the proof of first part of Theorem 3 for the 01(N ) case.

Let us assume that ρ satisfies the hypothesis of Theorem 3 and is also new.
Then we have proved that T01(N ),pf

ρ is an integral extension of T01(N )
ρ and A01(N ),pf

ρ

is an integral extension of A01(N )
ρ . By Proposition 16, we see that the kernel

of the natural map T01(N ),pf
→ A01(N ),pf is m3T01(N ),pf. Thus, the kernel of the

natural map T01(N )
ρ → A01(N )

ρ is contained in every prime ideal of T01(N ),pf
ρ contain-

ing m3T01(N ),pf
ρ . Hence, by the going-up theorem, the kernel is contained in every

prime ideal of Tρ
01(N ) containing m3T01(N )

ρ . Therefore, the natural surjective map
(T01(N )
ρ /m3T01(N )

ρ )red
→ (A01(N )

ρ )red is an isomorphism. Under the hypothesis of
Theorem 3, the surjective map Rρ→T01(N )

ρ is an isomorphism. Thus, from the proof
of Lemma 23, it follows that (R̃0

ρ)
red is isomorphic to (Rρ/m3Rρ)red (this follows

from the fact that the universal deformation ring of det ρ is given by Equation (2)
and hence, its maximal ideal is Rad(m3)) and the map Rρ → T01(N )

ρ considered
above induces an isomorphism (R̃ρ0)red

→ (Tρ
01(N )/m3Tρ

01(N ))red. As seen before,
we have a surjective map (R̃0

ρ)
red
→ (A01(N )

ρ )red and this map factors through
(Tρ

01(N )/m3Tρ
01(N ))red. Since both the maps (R̃0

ρ)
red
→ (Tρ

01(N )/m3Tρ
01(N ))red and

(Tρ
01(N )/m3Tρ

01(N ))red
→ (A01(N )

ρ )red are isomorphisms, we see that (R̃0
ρ)

red is iso-
morphic to (A01(N )

ρ )red under the map mentioned above.
Now suppose ρ satisfies the hypotheses of Theorem 3 but is not new. Note

that, while proving the theorem for a new ρ of level N , we use the result that
T01(N ),pf
ρ is an integral extension of T01(N )

ρ to prove that the kernel of the surjective
map T01(N )

ρ → A01(N )
ρ is nilpotent modulo m3T01(N )

ρ , which in turn implies the
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isomorphism between (Tρ01(N )/m3Tρ
01(N ))red and (A01(N )

ρ )red. This, along with the
isomorphism between Rρ and T01(N )

ρ , gives us the isomorphism between (R̃0
ρ)

red

and (A01(N )
ρ )red. In the present situation, we know that Rρ and T01(N )

ρ are isomorphic.
So, to prove the theorem in the current case, it suffices to prove that T01(N ),pf

ρ is an
integral extension of T01(N )

ρ . To prove this, we will first compare the Artin conductor
of ρ with the level N and then do a case by case analysis using the technique used
in the proof of Proposition 20. Let C be the Artin conductor of ρ. Recall that we
assume ρ to be semisimple. As there exists a newform of level N giving rise to ρ,
we see that N = C

∏
rv(r), where the product is over finitely many primes r and

v(r)≤ 2 for every r (see [Carayol 1989, Proposition 2] and the discussion before
it). Note that the product may include some divisors of C .

Let ` be a prime dividing N . So, if f is an eigenform of level N lifting the system
of eigenvalues associated to ρ, then f comes from a newform g of level M such
that the highest power of ` dividing N/M is at most 2. Thus, f (z)=

∑i=r
i=1 g(di z),

where the di ’s are some divisors of N/M . Now we will analyze the action of U` on
f case by case to find a monic polynomial with coefficients in T01(N )

ρ satisfied by U`.

Case 1. `|M but ` - N/M : In this case, ` - di for all i and hence, f is new at `.
Therefore, from the proof of Proposition 20, we see that U`Q`(U`)( f )= 0, where
Q`(x) is the characteristic polynomial of a lift of Frob` in GQ,Np, as considered in
the proof of Proposition 20.

Case 2. `|M and `‖N/M : In this case, for every i either `‖di or ` - di and g is an
eigenform for U`. So, U` f is an eigenform of level N/`, which is also new at ` if
it is nonzero. So, by the same logic as in the previous case, U`Q`(U`)(U` f )= 0.

Case 3. `|M and `2
|N/M : In this case, for every i either ` - di or ` divides di with

multiplicity at most 2 and g is an eigenform for U`. So, U 2
` f is an eigenform of

level N/`2 and it is new at ` when it is nonzero. Thus, we get U`Q`(U`)(U 2
` f )= 0.

Case 4. ` - M and ` - di for all i : If ` - M and ` - d , then it follows directly from the
description of the action of T` and U` on the q-expansions of modular forms, along
with the assumption that g is an eigenform of level M , that U` stabilizes the subspace
of modular forms of level Md` generated by g(dz) and g(`dz) (see [Bellaïche
2010, Lemma III.7.2] and the discussion around it). Moreover, the characteristic
polynomial of U` over this subspace is

(
U 2
` − tr ρg(Frob`)U` + det ρg(Frob`)

)
,

where ρg is the p-adic Galois representation of GQ,Mp attached to g. Thus, in this
case, we get that Q`(U`)( f )= 0.

Case 5. ` - M and ` divides at least one of the di ’s: Note that, U`g(di z) is an
eigenform of level N/` if `‖di and U 2

` g(di z) is an eigenform of level N/`2 if `2
|di .

This means that for all i , one of g(di z), U`g(di z) or U 2
` g(di z) is an eigenform

of level coprime to `. So, by case 4, we have Q`(U`)(U 2
` g(di z)) = 0 for all i as
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both Q`(U`)(U`g(di z))= 0 and Q`(U`)(g(di z))= 0 imply Q`(U`)(U 2
` g(di z))= 0.

Hence, we have Q`(U`)(U 2
` f )= 0.

From the previous paragraphs, we conclude that, if f is an eigenform of level
N lifting ρ, then (U 3

` Q`(U`)) f = 0, which means U 3
` Q`(U`) = 0. As Q`(x) is

a monic polynomial with coefficients in T01(N )
ρ , U` is integral over T01(N )

ρ for all
primes ` dividing N . Therefore, T01(N ),pf

ρ is an integral extension of T01(N )
ρ and

A01(N ),pf
ρ is an integral extension of A01(N )

ρ . Now using the argument used for the
new case above, we get that (R̃0

ρ)
red is isomorphic to (A01(N )

ρ )red. This concludes
the proof of the second part of Theorem 3 for the 01(N ) case.

Let ρ be a 00(N )-modular representation which satisfies the hypothesis of
Theorem 3. Then, by the arguments above, it follows that A01(N )

ρ has Krull di-
mension 2 and (A01(N )

ρ )red is isomorphic to (R̃0
ρ)

red. We have a natural surjective
map A01(N )

ρ → A00(N )
ρ . By Theorem 1, the Krull dimension of A00(N )

ρ is at least 2.
Hence, we conclude that the Krull dimension of A00(N )

ρ is exactly 2. If p does
not divide φ(N ), then as observed in the introduction, the natural surjective map
A01(N )
ρ → A00(N )

ρ is an isomorphism. Hence, we get that (A00(N )
ρ )red is isomorphic

to (R̃0
ρ)

red. Thus, Theorem 3 is proved in the 00(N ) case.

Remark. Let ρ be a 01(N )-modular representation satisfying the hypothesis of
Theorem 3 and assume p -φ(N ). Moreover, assume that if `‖N and p |`+ 1, then
det ρ(I`) 6= 1. Hence, from the proof of Proposition 20 and the proof of Theorem 1,
we see that the kernel of the map T01(N )

ρ → A01(N )
ρ is m3T01(N )

ρ . As p -φ(N ), the
kernel of the surjective map Rρ→ R̃0

ρ is m3Rρ . As ρ satisfies the hypotheses of
Theorem 3, we get that Rρ ' T01(N )

ρ . Hence, by combining all the observations
above, we see that the natural surjective map R̃0

ρ → A01(N )
ρ is an isomorphism.

Thus, for this case, we get a stronger statement than Theorem 3.

9. Proof of Theorem 2

Throughout this section 0 means either 00(N ) or 01(N )with p -φ(N ). Assume that
ρ is an unobstructed 0-modular representation. So, by assumption, the cotangent
space of R̃0

ρ has dimension 2 and this implies that its Krull dimension is at most 2.
We have a surjective morphism R̃0

ρ→ A0ρ . The Krull dimension of A0ρ is at least 2
by Theorem 1. Hence, the Krull dimension of R̃0

ρ is exactly 2 and it is a regular
local ring of dimension 2. Therefore, by [Eisenbud 1995, Proposition 10.16], it is
isomorphic to F[[x, y]]. Hence, the surjective map R̃0

ρ → A0ρ is an isomorphism.
This proves Theorem 2 for the cases considered above.

If ρ is an unobstructed 01(N )-modular representation and p |φ(N ), then we
have a surjective morphism R̃0

ρ→ (A01(N )
ρ )red. By Theorem 1, the Krull dimension

of A01(N )
ρ , and hence also of (A01(N )

ρ )red, is at least 2. Therefore, the argument used
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in the previous paragraph proves Theorem 2 in this case as well. This completes
the proof of Theorem 2 in all the cases.

10. Unobstructed modular representations

In this section, we study 01(N )-modular representations to determine if and when
they can be unobstructed. If ρ is irreducible, then ρ is unobstructed in our sense if
and only if H 1(GQ,Np, ad0ρ) has dimension 2 (see [BK, Section 1.4]). By Tate’s
global Euler characteristic formula, we see that dim H 1(GQ,Np, ad0ρ) ≥ 2 with
equality if and only if H 2(GQ,Np, ad0ρ)= 0. If p does not divide φ(N ), then this
is equivalent to H 2(GQ,Np, adρ)= 0, as adρ = 1⊕ ad0ρ and, by the global Euler
characteristic formula, H 2(GQ,Np, 1)= 0. Thus, in this case, ρ is unobstructed in
our sense if and only if it is unobstructed in the sense of Mazur [1989, Section 1.6].
The study of such unobstructed representations is carried out in [Weston 2004;
2005] when p does not divide φ(N ).

However, if ρ is irreducible and p divides φ(N ), then the global Euler character-
istic formula tells us that H 2(GQ,Np, 1) 6= 0 and hence, H 2(GQ,Np, adρ) 6= 0. Thus,
we see that ρ is always obstructed in the sense of Mazur if p |φ(N ) (see [Weston
2004, Theorem 4.5]). However, it is not clear a priori if ρ can be unobstructed in our
sense when p |φ(N ). We devote most of this section to study the unobstructedness
of reducible and irreducible ρ’s when p |φ(N ).

Throughout this section, we assume that p |φ(N ) unless otherwise stated. Note
that, as p - N and p |φ(N ), there exists at least one prime divisor ` of N such that
p |`− 1, i.e., ` ≡ 1 (mod p). Let C be the category of local profinite F-algebras.
Let Dρ be the functor from C to Set of deformations of the pseudorepresentation
(tr ρ, det ρ) and D0

ρ be its subfunctor of deformations with constant determinant.

Proposition 24. If p |φ(N ), then every reducible 01(N )-modular representation is
obstructed.

Proof. Let ρ be a reducible 01(N )-modular representation. Up to a twist, ρ is of the
form 1⊕χ where χ is an odd character of GQ,Np taking values in F. The character
χ is odd because ρ is odd. By the main theorem of [Bellaïche 2012a], we have the
following exact sequence involving the tangent space of Dρ :

0→ Tan(D1⊕ Dχ )
i
−→ Tan(Dρ)→ H 1(GQ,Np, χ)⊗ H 1(GQ,Np, χ

−1)→ H 2(GQ,Np, 1)2.

Here, Dχ and D1 are the deformation functors of χ and 1 as characters of GQ,Np,
and i is the map which sends a pair of deformations (α, β) of (χ, 1) on F[ε]/(ε2)

to the deformation α+β of tr ρ = 1+χ .
Let γ be an element of H 1(GQ,Np, χ)⊗H 1(GQ,Np, χ

−1) which is the image of
some deformation (t, d) of (tr ρ, det ρ) to F[ε]/(ε2). Thus, d is a deformation of
det ρ=χ and hence, an element of Tan(Dχ )⊂Tan(D1⊕Dχ ). Thus, subtracting the
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image of this element under the map i from (t, d) gives us an element of Tan(D0
ρ)

whose image in H 1(GQ,Np, χ)⊗ H 1(GQ,Np, χ
−1) is still γ . Therefore, we have

an exact sequence:

0→Tan((D1⊕Dχ )
0)

i
−→Tan(D0

ρ)→H 1(GQ,Np, χ)⊗H 1(GQ,Np, χ
−1)→H 2(GQ,Np, 1)2.

Here, (D1⊕ Dχ )
0 is the subfunctor of D1⊕ Dχ parameterizing the deformations

(α, β) of (1, χ) such that αβ is constant.
Observe that, dim H 1(GQ,Np, 1)= n+1, where n is the number of prime divisors

of N which are 1 mod p. Hence, dim Tan((D1 ⊕ Dχ )
0) = n + 1. Since, i is an

injective map, we get dim Tan(D0
ρ)≥ n+ 1. Thus, if n ≥ 2, then dim Tan(D0

ρ)≥ 3.
Hence, ρ is obstructed when n ≥ 2, i.e., when there are at least two primes dividing
N which are 1 mod p.

Let us now assume that n = 1. Thus, there is a unique prime ` which divides
N and which is 1 mod p. In this case, dim H 1(GQ,Np, 1)= 2 and by Tate’s global
Euler characteristic formula, dim H 2(GQ,Np, 1) = 1. From the exact sequence
above, we get that

dim Tan(D0
ρ)≥ 2+ dim H 1(GQ,Np, χ) dim H 1(GQ,Np, χ

−1)− 2 dim H 2(GQ,Np, 1).

We shall distinguish between two cases:

First case. χ |GQ`
= 1: Note that ωp|GQ`

= 1, since `≡ 1 (mod p).
If χ 6= ωp, then, by the Greenberg–Wiles version of Poitou–Tate duality [Wash-

ington 1997, Theorem 2], we get that

dim H 1(GQ,Np, χ)≥ dim H 1(GQ` , χ |GQ`
)− dim H 0(GQ` , χ |GQ`

)

+ dim H 1(GQp , χ |GQp
)− dim H 0(GQp , χ |GQp

).

As `≡ 1 (mod p), dim H 1(GQ`
, 1)= 2. By the local Euler characteristic formula,

dim H 1(GQp , χ |GQp
)− dim H 0(GQp , χ |GQp

)= 1+ dim H 2(GQp , χ |GQp
)≥ 1.

Since, χ |GQ`
= 1, we see that dim H 1(GQ,Np, χ)≥ 2− 1+ 1= 2.

If χ = ωp, then, using the Kummer exact sequence, we get that a class in
H 1(GQ,Np, ωp) is represented by a cocycle of the form g 7→ g(α)/α, with α ∈Q,
α p
∈Q and vq(α

p)= 0 for all primes q - Np (See [Washington 1997, Section 1]
for more details). Hence, dim H 1(GQ,Np, ωp)= n′, where n′ = number of distinct
prime factors of Np. Hence, dim H 1(GQ,Np, ωp)≥ 2. Since, χ−1

|GQ`
= 1 as well,

the same argument gives us dim H 1(GQ,Np, χ
−1)≥ 2.

Combining all the above calculations yields dim Tan(D0
ρ)≥ 2+(2)(2)−2(1)= 4.

Hence, if n = 1 and χ |GQ`
= 1, then ρ is obstructed.

Second case. χ |GQ`
6= 1: As χ |GQ`

6= 1, ωp⊗χ 6= 1. Thus, H 0(GQ`
, χ |GQ`

)= 0,
H 2(GQ`

, χ |GQ`
) = H 0(GQ`

, ωp ⊗ χ |GQ`
) = 0 and hence, H 1(GQ`

, χ |GQ`
) = 0.
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Similarly, we get that H 1(GQ`
, χ−1
|GQ`

)= 0. Thus, the calculations done in the
first case do not imply that dim Tan(D0

ρ) > 2 which is required to prove that ρ is
obstructed.

Assume that ρ is unobstructed. So, the dimension of the tangent space of R̃0
ρ is 2.

By Theorem 1, its Krull dimension is at least 2. Hence, R̃0
ρ is isomorphic to F[[x, y]],

the power series ring in two variables. Let (tuniv, duniv) be the universal pseudorep-
resentation with constant determinant in characteristic p deforming (tr ρ, det ρ).

By [Bellaïche and Chenevier 2009, Theorem 1.4.4, Chapter 1],

R̃0
ρ[GQ`

]/(ker(tuniv
◦ i`(GQ`

)) is a GMA of the form
(

R̃0
ρ B

C R̃0
ρ

)
,

where B and C are finitely generated R̃0
ρ-modules and the diagonal entries reduce

to 1 and χ modulo the maximal ideal of R̃0
ρ . By [Bellaïche and Chenevier 2009,

Theorem 1.5.5, Chapter 1], we get injective maps (B/m R̃0
ρ
B)∗ ↪→ Ext1GQ`

(χ, 1)
and (C/m R̃0

ρ
C)∗ ↪→ Ext1GQ`

(1, χ). Since we have

H 1(GQ`
, χ |GQ`

)= H 1(GQ`
, χ−1
|GQ`

)= 0,

it implies that Ext1GQ`
(χ, 1) = Ext1GQ`

(1, χ) = 0 and hence, B = C = 0. Thus,
tuniv
◦ i`(GQ`

)= κ1+ κ2, where κ1 and κ2 are characters of GQ`
taking values in

(R̃0
ρ)
∗ and are deformations of 1 and χ , respectively. Therefore, tuniv

◦ i` factors
through Gab

Q`
, the abelianization of GQ`

.
By local class field theory, Gab

Q`
= Z∗` × Ẑ. Let pe be the highest power of p

dividing `− 1. Let a ∈ Gab
Q`

be the unique element of order pe. Since, a has order
pe and F[[x, y]] does not have any nontrivial element of order p, it follows that
κ1(a) = κ2(a) = 1. Let b be a lift of a in GQ`

. Hence, tuniv
◦ i`(b) = 2, i.e., it is

constant. Hence, t ◦ i`(b) = 2 for any deformation t of tr ρ as a pseudocharacter
of GQ,Np with constant determinant in characteristic p. But it is easy to construct
an explicit such deformation t with t ◦ i`(b) 6= 2.

Indeed, to construct such a deformation, first observe that the maximal pro-p
subgroup Gab,p

Q,Np of Gab
Q,Np is Z/peZ× Zp. Consider a deformation 1̃ of 1 as a

character of GQ,Np to R = F[[x]][y]/(y pe
− 1) which maps Gab,p

Q,Np → 1+m R in
the following way: the topological generator of Zp is mapped to 1+ x and the
generator of Z/peZ is mapped to y. The character χ/1̃, which we will denote
by χ̃ , is a deformation of χ . Let ρ̃ = 1̃⊕ χ̃ . Thus, (tr ρ̃, det ρ̃) is a deformation of
(tr ρ, det ρ) to R with constant determinant. We claim that tr(ρ̃ ◦ i`(b)) 6= 2.

To prove the claim, first consider the map iab
` : Gab

Q`
→ Gab

Q,Np induced from
i` by passing to the abelianizations of both the groups. By class field theory,
Gab

Q,Np =
∏

Z∗q , where the product is taken over primes q which divide Np. By the
local-global compatibility of class field theory, the Z∗` component of Gab

Q,Np, lies
in the image of Z∗` ⊂ Gab

Q`
under the map iab

` . Thus, the unique element of Gab
Q,Np
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of order pe is iab
` (a). Therefore,

tr(ρ̃ ◦ i`(b))= 1̃(iab
` (a))+ χ̃(i

ab
` (a))= y+ y−1.

If y+ y−1
= 2, then it would imply (y− 1)2 = 0. But this relation does not hold

in R. Hence, tr(ρ̃ ◦ i`(b)) 6= 2 and our claim is proved.
Thus, we get a contradiction to our hypothesis that ρ is unobstructed. Therefore,

in this case as well, ρ is obstructed.

Therefore, combining all the results above, we get that if ρ is a reducible 01(N )-
modular representation and if p |φ(N ), then ρ is obstructed. �

Remark. Now suppose that ρ is a reducible 01(N )-modular representation and p
does not divide φ(N ). Up to a twist, ρ = 1⊕χ . If p -φ(N ), then

dim H 1(GQ,Np, 1)= 1,

and Tate’s global Euler characteristic formula implies that H 2(GQ,Np, 1)= 0. The
exact sequence of [Bellaïche 2012a] considered on page 25 implies

dim Tan(D0
ρ)= 1+ dim H 1(GQ,Np, χ) dim H 1(GQ,Np, χ

−1).

If χ = ωp, then by the Kummer theory argument above, it follows that the number
of distinct prime divisors of Np is dim H 1(GQ,Np, ωp) and hence, greater than 1.
Hence, if χ = ωp, ωp

−1, then dim Tan(D0
ρ) > 2, so in this case ρ is obstructed. If

χ 6= ωp, ωp
−1, then by the Greenberg–Wiles version of Poitou–Tate duality, we

get that
k+ 1≤ dim H 1(GQ,Np, χ)≤ k+ 1+ dim A(χ−1ωp)

and
k ′+ 1≤ dim H 1(GQ,Np, χ

−1)≤ k ′+ 1+ dim A′(χωp),

where k is the number of prime divisors ` of N such that χ |GQ`
= ωp|GQ`

, k ′ is
the number of prime divisors ` of N such that χ−1

|GQ`
= ωp|GQ`

, A(χ−1ωp) is
the part of the p-torsion subgroup of the class group of the totally real abelian
extension F of Q fixed by Ker(χ−1ωp) on which Gal(F/Q) acts by χ−1ωp and
A′(χωp) is the part of the p-torsion subgroup of the class group of the totally real
abelian extension F ′ of Q fixed by Ker(χωp) on which Gal(F ′/Q) acts by χωp.

Proposition 25. Suppose p |φ(N ). Let ρ be an absolutely irreducible 01(N )-
modular representation such that ρ|GQ`

is reducible for at least one prime ` dividing
N which is 1 mod p. Then, ρ is obstructed.

Proof. Let ρ be an absolutely irreducible 01(N )-modular representation. By
[Weston 2005, Lemma 2.5], we have

dimF H 2(GQ,Np, adρ)= dimF X
1(GQ,Np, ωp⊗ adρ)+6q |Np dimF H 0(GQq , ωp⊗ adρ).
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Note that adρ = 1⊕ ad0ρ. By Tate’s global Euler characteristic formula, we get
that dimF H 2(GQ,Np, 1)= n, where n = number of prime divisors of N which are
1 mod p. For a prime q, dimF H 0(GQq , ωp) is 1 if q is 1 mod p and 0, otherwise.
By removing the contributions of the trivial representation from both sides of the
formula above, we get

dimF H 2(GQ,Np, ad0ρ)=dimF X
1(GQ,Np, ωp⊗ad0ρ)+6q |Np dimF H 0(GQq , ωp⊗ad0ρ).

Now, let ` be a prime dividing N such that `− 1 is divisible by p. Suppose that
ρ|GQ`

is reducible. Thus, ρ|GQ`
is an extension of a character χ1 by a character χ2. If

χ1 6= χ2, then, by Tate’s local Euler characteristic formula, Ext1GQ`
(χ1, χ2)= 0. So,

ρ|GQ`
= χ1⊕χ2 and ad0ρ|GQ`

= 1⊕χ1χ2
−1
⊕χ1

−1χ2. As p |`−1, ωp(GQ`
)= 1

and H 0(GQ`
, ωp ⊗ ad0ρ) = H 0(GQ`

, ad0ρ) and in this case, both of them are
nonzero. Hence, if χ1 6= χ2, then, by the formula above, H 2(GQ,Np, ad0ρ) 6= 0 and
ρ is obstructed.

If χ1= χ2= χ , then ρ|GQ`
is either χ⊕χ or a nontrivial extension of χ by itself.

If ρ|GQ`
= χ ⊕χ , then clearly 1⊂ ad0ρ. If ρ|GQ`

is a nontrivial extension of χ by
itself, then choose a basis of ρ such that ρ(GQ`

) is upper triangular and identify
ad0ρ with the subspace of trace 0 matrices of M2(F). Then, GQ`

acts trivially on
the subspace of ad0ρ generated by the element

(
0 1
0 0

)
. Thus, 1⊂ ad0ρ in this case

also. Therefore, if χ1 = χ2, then

H 0(GQ` , ωp⊗ ad0ρ)= H 0(GQ` , ad0ρ) 6= 0

and hence, by the formula above, H 2(GQ,Np, ad0ρ) 6= 0, which implies that ρ is
obstructed. This concludes the proof of Proposition 25. �

We would like to determine the cases when the situation considered as above
would arise, i.e., when ρ|GQ`

would be reducible. Note that, if f is an eigenform
of level N and ρ f is the Galois representation attached to it, then we know all the
possible descriptions of ρ f |GQ`

for a prime ` dividing N . So, we will now analyze
all the possible descriptions of ρ f |GQ`

for an eigenform f lifting ρ to determine
which of them will make ρ obstructed and when can they arise. This will give us
some conditions on ρ which will force it to be obstructed.

Let f be an eigenform of level N lifting ρ, ` be a prime dividing N which
is 1 mod p, ρ f be the p-adic Galois representation attached to f and π` be the
`-component of the automorphic representation associated to f . If π` is either
principal series or special, then by the local Langlands correspondence, we see
that ρ f |GQ`

, and hence ρ|GQ`
, is reducible (see Sections 3 and 5 of [Weston 2004]

for a similar analysis). This implies that ρ is obstructed. In particular, if `|N but
`2 - N , then we know that π` is either special or principal series (see [Carayol 1989,
Section 1.2]). If (ρ)I` , the subspace of ρ on which I` acts trivially, is nonzero, then
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clearly ρ|GQ`
is reducible. If there exists an eigenform f of level M which lifts

ρ such that there exists at least one prime divisor ` of N which is 1 mod p and
which does not divide M , then ρ is unramified at ` and hence, ρ|GQ`

is reducible.
Therefore, in these cases, ρ is obstructed.

On the other hand, if π` is supercuspidal, then, as ` 6= 2, it follows, from
the local Langlands correspondence, that ρ f |GQ`

is induced from a character χ
of GK = Gal(Q`/K ), where K is a quadratic extension of Q` and moreover,
ρ f |GQ`

is irreducible (see the proof of Proposition 3.2 of [Weston 2004]). Let
χσ be the Gal(K/Q`)-conjugate character of χ . So, ρ f |GK ' χ ⊕ χ

σ . If ρ|GQ`

is reducible, then clearly χ = χσ , where χ and χσ are the reductions of χ and
χσ in characteristic p, respectively. This means that χ/χσ factors through the
maximal abelian pro-p quotient of GK . But it follows, from local class field theory
and the assumption that p |`− 1, that the maximal abelian pro-p extension of K
is also abelian over Q`. So, if χ/χσ factors through the maximal abelian pro-p
quotient of GK , then it implies that ρ f |GQ`

= IndGQ`GK
χ is reducible, contradicting

the hypothesis that it is irreducible. Thus, we see that if π` is supercuspidal and
p |`− 1, then ρ|GQ`

is not reducible. In summary we have:

Corollary 26. Suppose p |φ(N ). Let ρ be an absolutely irreducible01(N )-modular
representation satisfying one of the following conditions:

(1) There exists at least one prime ` which is 1 mod p such that `|N and `2 - N.

(2) There exists an eigenform f of level M which lifts ρ such that there is at least
one prime divisor ` of N which is 1 mod p and which either does not divide M
or divides M with multiplicity 1.

(3) The subspace (ρ)I` is nontrivial.

Then, ρ is obstructed.

The only case which remains to be considered is when ρ|GQ`
is irreducible for

all the prime divisors ` of N which are 1 mod p. Let ρ be such a 01(N )-modular
representation. In this case, H 0(GQ`

, ωp⊗ad0ρ)= H 0(GQ`
, ad0ρ)= 0 for all such

primes `. Note that, if f is any eigenform which lifts ρ, then the local component
π` of the automorphic representation associated to f is supercuspidal at all such
primes. The analysis of contributions coming from p and other prime divisors of N
in the formula above, which are not 1 mod p, is done in [Weston 2004, Sections 3–5;
2005, Section 3] to give conditions for vanishing of corresponding H 0’s. We can
assume that those conditions hold as well so that we can ignore those primes. Note
that these conditions neither depend on each other nor put any restrictions on each
other. So assuming them together does not yield any immediate contradiction. Now,
moreover assume that ρ does not come from a weight 1 modular form. We need
this hypothesis to use the results of Section 3 of [Diamond et al. 2004]. We will
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analyze the only remaining group X1(GQ,Np, ωp ⊗ ad0ρ) in this case following
the approach of Weston [2004; 2005].

Let g be an eigenform such that ρg is a minimally ramified lift of ρ (such a lift
does exist; see [Diamond et al. 2004, Section 3.2]). Hence, it is an eigenform of
level N and its weight k lies between 2 and p − 1. Let K be a finite extension
of Qp generated by the eigenvalues of g, O be its ring of integers and m be its
maximal ideal. Denote by Aρg the module (K/O)3 on which GQ,Np acts via ad0ρg.
We define H 1

∅(GQ, Aρg ) as in [Diamond et al. 2004, Section 2.1] (see also [Weston
2005, Section 2.2]).

By [Diamond et al. 2004, Theorem 2.15], we get that

H 1
f (GQ, ρg)= H 1

f (GQ, ρg(1))= 0,

where ρg(1) is the Tate twist of ρg and H 1
f (GQ, ρg), H 1

f (GQ, ρg(1)) are the Bloch–
Kato Selmer groups defined as in Section 2.1 of [Diamond et al. 2004]. It follows,
from [Weston 2005, Lemma 2.6], that

dimF X
1(GQ,Np, ωp⊗ ad0ρ)≤ dimF H 1

∅(GQ, Aρg )[m],

where H 1
∅(GQ, Aρg )[m] is the m-torsion of H 1

∅(GQ, Aρg ). Now, [Diamond et al.
2004, Theorem 3.7] implies that the length of H 1

∅(GQ, Aρg ) is vm(η∅g ). Here, vm
is the m-adic valuation and η∅g is the congruence ideal of g defined in [Diamond
et al. 2004, Section 1.7]. From the proof of [Weston 2005, Proposition 4.2], we see
that vm(η∅g ) > 0 if and only if m is a congruence prime for g, i.e., if there exists an
eigenform h which lifts ρ and which is not a Galois conjugate of g.

Let ε be the nebentypus of g. Let ψ be a character of (Z/NZ)∗ whose order is a
power of p (there exists such a character as p |φ(N )). Thus, ε andψε have the same
reduction modulo m. Hence, from [Carayol 1989, Proposition 3], it follows that there
exists an eigenform h of level N and nebentypus ψε which lifts ρ. If h is a Galois
conjugate of g, then ε((Z/NZ)∗) and ψε((Z/NZ)∗) will be Galois conjugates of
each other. Since, g is a minimal lift of ρ, the p-part of ε((Z/NZ)∗) is trivial. But
the p-part of ψε((Z/NZ)∗) is nontrivial as ψ is a character of p-power order. So,
they can’t be Galois conjugates of each other. Therefore, g and h are not Galois
conjugates of each other. Thus, m is a congruence prime for g and H 1

∅(GQ, Aρg ) 6=0.
However, this does not ensure that X1(GQ,Np, ωp⊗ ad0ρ) is nonzero because we
do not know whether the injection X1(GQ,Np, ωp ⊗ ad0ρ)→ H 1

∅(GQ, Aρg )[m]

given in the proof of Lemma 2.6 of [Weston 2005], which we used in the last
paragraph, is an isomorphism, and in general it is very difficult to prove such a
result (see [Weston 2005, Lemma 2.6, Remark 2.7] and the discussion preceding
them for more details). But, based on the calculations above, we do expect that
X1(GQ,Np, ωp⊗ ad0ρ) is nonzero.
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Let us consider the modular representations coming from a weight-1 modular
form. In the proposition below, we do not put the condition p |φ(N ). For a number
field L with ring of integers OL , we denote by A(L)[p] the p-torsion subgroup of
the class group of L and we let

U(L)= ker
(

O∗L
(O∗L)p →

(∏
v | p

O∗Lv
(O∗Lv )

p

))
.

Proposition 27. Let ρ be a 01(N )-modular representation coming from a regular
modular form f of weight 1 which has either RM or CM by F (see [Bellaïche and
Dimitrov 2016] for the definition of regular). Let H be the extension of Q which is
fixed by Ker(ad0ρ). Moreover, assume the following conditions:

(1) If `|N and p |`+ 1, then ` does not stay inert in F.

(2) If ` is a prime divisor of N , then ρ|GQ`
is irreducible.

(3) A(F)[p] = 0 and HomG(A(H)[p], ad0ρ)= 0.

(4) HomG(U(F), ad0ρ)= 0 and if F is imaginary, then HomG(U(H), ad0ρ)= 0.

Then, ρ is unobstructed.

Proof. Note that, ρ= IndGQ
GF
δ, where F is a quadratic extension of Q which is either

real or imaginary and δ : GF → F∗ is a character, as it comes from a weight-1 form
which has RM or CM. Let Gal(F/Q) = G ′ = {1, σ }. As f is a regular weight-1
eigenform, ρ f |GQp

= χ1⊕χ2, where χ1 and χ2 are distinct, unramified characters
from GQp → (Qp)

∗. So, F and the fixed field H of Ker(ad0ρ) are unramified at p.
From the hypothesis (2) above, we see that all prime divisors ` of N are either inert
or ramified in F .

Thus, from above, it follows that ad0ρ = ε⊕ IndGQ
GF
χ , where ε is the character

of GQ of order 2 corresponding to F and χ = δ/δσ . So

H 1(GQ,Np, ad0ρ)= H 1(GQ,Np, ε)⊕ H 1(GQ,Np, IndGQ
GF
χ).

We will analyze each part of this sum separately. We mostly follow the notation of
[Bellaïche and Dimitrov 2016].

First, we will look at the group H 1(GQ,Np, ε) appearing above. From the
inflation-restriction sequence, we see that H 1(GQ,Np, ε)= (Hom(G F,S, F)⊗ ε)G

′

,
where S is the set of the places of F dividing Np. From class field theory and the
hypothesis (3) above, we have the following exact sequence of G ′-modules:

0→ Hom(Gab
F,S, F)→ Hom

( ∏
v |Np

O∗Fv , F

)
→ Hom(O∗F , F).
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Now, by hypothesis (1), we have:

Hom
( ∏
v |Np

O∗Fv , F

)
= Hom

(∏
v | p

OFv

∏
`|N

p |`−1

∏
v |`

Z/(`− 1)Z, F

)

as F is unramified at p. The factors in the second product come from places of
F dividing such primes and, since ` is either inert or ramified in F , each factor
appears only once. Observe that G ′ acts trivially on each of them. Thus,(

Hom
( ∏

`|N
p |`−1

∏
v |`

Z/(`− 1)Z, F

)
⊗ ε

)G ′

= 0.

If F is imaginary, then O∗F is a finite group and its order is not divisible by p, as
p is unramified in F . Thus, U(F)=O∗F/(O

∗

F )
p
= 0. Hence, in this case, it follows

that
(
Hom

(∏
v | p OFv , F

)
⊗ ε

)G ′ has dimension 1. Therefore, H 1(GQ,Np, ε) has
dimension 1. If F is real, then the free part of O∗F has rank 1 and the torsion part
is {1,−1}. Suppose p is not split in F . Then, it is inert in F and the fundamental
unit of F generates the residue field of OFp over Fp. Suppose p is split in F . Then∏
v | p OFv = Zp × Zp and the action of G ′ switches them. Moreover, under the

G ′-equivariant diagonal embedding O∗F →
∏
v | p O

∗

Fv = Z∗p×Z∗p, the fundamental
unit of F gets mapped to an element of the form (a,−a) as the nontrivial element
of G ′ sends the unit to its inverse. So, it follows, from the discussion above and
hypothesis (4), that in both the cases, G ′ acts trivially on the subspace of elements
of Hom

(∏
v | p OFv , F

)
which vanish on O∗F . An element of Hom(Gab

F,S, F) vanishes
on the fundamental unit. Thus, combining this and the previous paragraph, we see
that G ′ acts trivially on Hom(Gab

F,S, F), when F is totally real. It follows that, in
this case, H 1(GQ,Np, ε)=

(
Hom(Gab

F,S, F)⊗ ε
)G ′
= 0.

We shall now analyze the second factor appearing in the sum above. Let H be
the extension of Q which is fixed by Ker(ad0ρ). Thus, G =Gal(H/Q) is a dihedral
group D2n which is nonabelian and IndGQ

GF
χ is an irreducible representation of G.

By the arguments used above, we get that

H 1(GQ,Np, IndGQ
GF
χ)= (H 1(GH,S, F)⊗ IndGQ

GF
χ)G .

By hypothesis (3), H 1(GH,S, F) is the subspace of Hom
(∏

v |Np O
∗

Hv , F
)

vanishing
on O∗H . Since H is unramified at p, we get

Hom
( ∏
v |Np

O∗Hv , F

)
= Hom

(∏
v | p

OHv

∏
Z/pZ, F

)
,

where the last product is taken over all places v of H which divide N and whose
residue fields have p-th roots of unity. If ` is a such a prime, then the G-submodule
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Hom
(∏

v |` Z/pZ, F
)

of the module above is isomorphic to IndG
D`
α, where D` is the

image of GQ`
under ad0ρ and α is the character by which it acts on the p-th roots of

unity. Note that, by hypothesis (2) above, IndGQ
GF
χ is an irreducible representation

of D` for every `|N . So,
(
Hom

(∏
Z/pZ, F

)
⊗ IndGQ

GF
χ
)G
= 0.

Assume F is imaginary. As H is unramified at p and p - |G|, we see, using
arguments from [Bellaïche and Dimitrov 2016, Section 3.2], that every irreducible
representation of G occurs in Hom(Gab

H,S, F) with multiplicity at least 1. The addi-
tional multiplicities would only arise from U(H). But, from hypothesis (4) above,
we have HomG

(
U(H), IndGQ

GF
χ
)
= 0. Therefore, IndGQ

GF
χ occurs in Hom(Gab

H,S, F)

with multiplicity 1. Hence,
(
Hom(GH,S, F)⊗ IndGQ

GF
χ
)
G
= H 1

(
GQ,Np, IndGQ

GF
χ
)

has dimension 1. If F is real, then IndGQ
GF
χ is totally odd. Thus, from the arguments

in [Bellaïche and Dimitrov 2016, Section 3.2], we see that IndGQ
GF
χ occurs in the

subspace of Hom
(∏

v | p O
∗

Hv , F
)

vanishing on O∗H with multiplicity 2. Note that,
we do not need to consider contribution from U(H) as IndGQ

GF
χ does not occur

in O∗H/(O
∗

H )
p. Therefore, combining this with the previous paragraph, we see that

IndGQ
GF
χ occurs in Hom(Gab

H,S, F) with multiplicity 2. Hence, H 1(GQ,Np, IndGQ
GF
χ)

has dimension 2.
Combining these results we see that if ρ satisfies the conditions of the proposition,

then H 1(GQ,Np, ad0ρ) has dimension 2. Hence, ρ is unobstructed in our sense. �

Remark. (1) The hypotheses (3) and (4) are similar to those used by Mazur [1989,
Sections 1.12 and 1.13], where he studies unobstructed representations unram-
ified outside a single prime. Note that, for a number field L , A(L(ζp))[p] = 0
implies that U(L)= 0 (see the remark after Proposition 1 of [Boston 1990]).

(2) We know that G ′ = Gal(F/Q) acts on A(F)[p] by the character ε. So, if
A(F)[p] 6= 0, then it would contribute to H 1(GQ,Np, ε) in addition to what
we have calculated above. Hence, in this case, we have dim H 1(GQ,Np, ε) > 1.
Thus, considering the above calculations, we see that dim H 1(GQ,Np, ad0ρ)>2.
Hence, if A(F)[p] 6= 0, then ρ will be obstructed.

(3) Suppose f is a weight-1 form which has RM or CM by F , and there exists a
prime ` such that `|N and p |`+ 1. Moreover, assume that ` stays inert in F .
Thus, using the notations of the proof above, we see that

Hom
( ∏
v |Np

O∗Fv , F

)
= Hom

(∏
v | p

OFv

∏
`|N

p |`−1

∏
v |`

Z/(`− 1)Z
∏

Z/pZ, F

)
,

where the last product is taken over all the prime divisors ` of N which stay
inert in F and which are −1 mod p. Observe that, they are isomorphic to ε
as G ′ representations. The projection of the image of O∗F in

∏
v |Np O

∗

Fv onto
this product is also trivial as F is unramified at p. Hence, this product also
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contributes to H 1(GQ,Np, ε), making it bigger. All the other calculations at
the places above p in the proof above still remain valid. As a result, we see
that dim H 1(GQ,Np, ad0ρ) > 2. Hence, in this case, ρ is obstructed.

Note that, the assumptions in the proposition above do not yield any immediate
contradiction. Thus, we see that our notion of unobstructedness is weaker than
Mazur’s notion of unobstructedness.

Proposition 28. Let ρ be a modular representation satisfying the hypotheses of
Proposition 27 and suppose p |φ(N ). Let the p-primary part of (Z/NZ)∗ be
Z/pe1Z× · · ·×Z/pen Z. Assume moreover that:

(1) ρ is a new 01(N )-modular representation.

(2) For all primes ` dividing N such that p |`2
− 1, U` acts like 0 on all newforms

of level N which lift ρ.

Then, the corresponding local component Aρ of the mod p Hecke algebra is isomor-
phic to F[[x, y]][y1, . . . , yn]/( y pe1

1 , . . . , y pen
n ) and thus, is not reduced.

Proof. As ρ satisfies the hypotheses of Proposition 27, it satisfies the hypotheses
of Theorem 3 as well. Indeed, ρ comes from a regular, weight-1 form and is
unramified at p. So, ρ|GQp

is of the required form. If ` is a prime divisor of N
which is 1 mod p, then it splits completely in Q(ζp). As ρ|GQ`

is irreducible,
ρ|GQ(ζp )

is also irreducible. Therefore, from the results of Böckle [2001], Diamond
[1996], Diamond et al. [2004], and Kisin [2004], it follows that the surjective
map Rρ → T01(N )

ρ is an isomorphism. The hypothesis (2) along with the proof
of Proposition 20 and the proof of Theorem 1 implies that the kernel of the
surjective map T01(N )

ρ → A01(N )
ρ is m3T01(N )

ρ . By Proposition 27, we see that
Rρ 'O[[x, y, T ]][z1, . . . , zn]/(z

pe1
1 −1, . . . , z pen

n −1). Combining all of the above
gives us that Aρ ' F[[x, y]][y1, . . . , yn]/(y

pe1
1 , . . . , y pen

n ). �

Remark. (1) If the first condition of Proposition 28 is satisfied, then to check the
second condition, it is sufficient, by Lemma 19, to check that ρ|I` is irreducible.

(2) Suppose ρ is a 01(N )-modular representation which satisfies the two assump-
tions of Proposition 28 and the assumptions of Theorem 3. Moreover, assume
p |φ(N ) and let the p-primary part of (Z/NZ)∗ be Z/pe1Z× · · · ×Z/pen Z.
Then, from the proof above, we see that A01(N )

ρ ' Rρ/(π, T ). Now, as p 6= 2,

Rρ ' R0
ρ[T, y1, . . . , yn]/(y

pe1
1 − 1, . . . , y pen

n − 1),

where R0
ρ is the universal deformation ring of ρ with constant determinant (see

the proof of [BK, Lemma 19] for more details). So, A01(N )
ρ is isomorphic to

R̃0
ρ[z1, . . . , zn]/(z

pe1
1 , . . . , z pen

n ) and hence, is not reduced. So, the assumptions
of Proposition 27 are not necessary to get nonreduced Hecke algebras but are
necessary to find the precise structure of the Hecke algebra.
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We now give some examples of nonreduced Hecke algebras following the pre-
vious remark. Let ` be a prime such that p |` − 1 and ` is 3 modulo 4. Let
K = Q(

√
−`) and let hK be its class number. If p splits in K , then define n to

be the smallest integer such that p is not split in the anticyclotomic extension of
degree `n of K and `n - hK . Otherwise, define it to be the smallest integer such
that `n - hK . Let χ : GK → Z`→ Z/`nZ→ F∗, where the first map is given by the
anticyclotomic Z` extension of K , and the last map is the inclusion of the `n-th roots
of unity into F∗. Now, we see, from a classical theorem of Hecke, that ρ = IndGQ

GK
χ

on GQ,p` is an odd, irreducible representation coming from a weight-1 newform f
of level `2n+3.

As χσ = χ−1 and χ has odd order, they are distinct characters of GK and they
only coincide on ker(χ). Now, ` ramifies in K and the prime v′ of K lying above
` ramifies in the anticyclotomic extension of K of degree `n as `n - hK . As a
consequence, we see that ρ|I` and ρ|GQ`

are irreducible. As ` splits completely in
Q(ζp), it follows that ρ|GQ(ζp )

is also irreducible. If p is inert in K , then clearly
ρ|GQp

is a sum of distinct characters as p is unramified in K . If p is split in K ,
then for a place v of K above p, χ and χσ are distinct characters of GKv

, as χ
has odd order and p does not split completely in the anticyclotomic extension of
K of degree `n . As the anticyclotomic extension of K is unramified at p, we see
that ρ|GQp

is not a direct sum of characters which are cyclotomic twists of each
other. Therefore, ρ is a new 01(`

2n+3)-modular representation satisfying the two
conditions of Proposition 28 and the conditions of Theorem 3. Hence, from the
remark above, it follows that A01(`

2n+3)
ρ is not reduced.
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