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Structure of Hecke algebras
of modular forms modulo p

Shaunak V. Deo

Generalizing the recent results of Bellaiche and Khare for the level-1 case, we
study the structure of the local components of the shallow Hecke algebras (i.e.,
Hecke algebras without U, and U, for all primes ¢ dividing the level N) acting
on the space of modular forms modulo p for I'g(N) and I'; (N). We relate them
to pseudodeformation rings and prove that in many cases, the local components
are regular complete local algebras of dimension 2.

1. Introduction

The p-adic Hecke algebra acting on modular forms of level N of all weights, which
is generated by the Hecke operators away from Np, has been well studied in the
past due to its connection with p-adic families of modular forms and deformation
rings of Galois representations (see [Emerton 2011] for the precise definition and
more details). One can similarly define a mod p Hecke algebra acting on modular
forms modulo p of level N (in the sense of Serre and Swinnerton-Dyer) of all
weights. The main aim of this paper is to study the structure of these Hecke algebras
acting on modular forms modulo p and their relation with suitable deformation
rings in characteristic p. These objects were previously studied by Jochnowitz
[1982], Khare [1998], Nicolas and Serre [2012a; 2012b], and Bellaiche and Khare
[2015]. In this article, we generalize, with minor changes, the results Bellaiche and
Khare [2015] proved for p > 5 and N = 1.

Before proceeding further, we fix some notation. In all of this paper, we fix
a prime number p > 3 and a positive integer N > 1 not divisible by p. We
shall denote by K a finite extension of Q,, by O the ring of integers of K, by
p the maximal ideal of O, by & the generator of p and by [ the finite residue
field of 0. We call Gg,n, the Galois group of a maximal algebraic extension
of Q unramified outside {£ s.t. £| Np}U {oo} over Q. For a prime ¢ not dividing
Np, we denote by Frob, € Gg, np a Frobenius element at g. We denote by ¢ a
complex conjugation in Gg n,. We write Gg, for Gal(Q,/Qy) for every prime

MSC2010: primary 11F80; secondary 11F25, 11F33.
Keywords: Modular forms modulo p, Hecke algebras, deformations of Galois representations.
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¢ dividing Np. There are natural maps iy : Gg, — Gaq,np, Well defined up to
conjugacy. For every prime ¢ dividing Np, we write I, for the inertia subgroup of
Gq,. For a representation p of G, np, we shall denote by Plce, the composition
of iy with p: this is a representation of Gg,, well defined up to an isomorphism.
We denote by w, : Gg,np — F* the cyclotomic character modulo p.

We will now define the Hecke algebra that we want to study and the space of
modular forms on which it acts. For the rest of the introduction, I" means either
['1(N) or I'g(N) and I'(M) means either I'j (M) or ['g(M) accordingly. Following
[Bellaiche and Khare 2015] (henceforth abbreviated as [BK]), we shall denote
by Skr (O) the module of cuspidal modular forms of weight k£ for I' with Fourier
coefficients in O. We see it as a submodule of O[¢] by the g-expansion. We
denote by ST, (O) the submodule Y"{=¢ SF(O) of Ofl¢]l. Note that this sum is
direct (see [BK, Section 1.2]). We denote by S<k([F) the image of ST <1 (O) under the
reduction map O[lg]] — Fllg]l, which reduces each coefficient of a power series in
OllgTl modulo p. Thus, ST, (F) = Y"i= ST (F), where S} (F) is the space of cuspidal
modular forms of weight i for I" over [F in the sense of Serre and Swinnerton-Dyer,
i.e., it is the image of S/ (©) under the reduction map considered above. The map
SE,((O) /pSt <+ (0) —> ST <« (F) is surjective but not an isomorphism in general. Let

NOE U SL(0) and ST(F) = U ST ().
k=0

All the modules considered above have a natural action of the Hecke operators 7,
for (n, Np) = 1. We denote by TF the O-subalgebra of Endp (ST k(O)) generated
by the 7,,’s with (n, Np) = 1. We denote by AF the F-subalgebra of End[F(S < (F))
generated by the 7,,’s with (n, Np) = 1. From the relations between the Hecke
operators, we see that T}: or A}: is generated by the Hecke operators T, and S, for
primes g not dividing Np (see [BK, Section 1.2] for more details). Here, S, is the
operator acting on forms of weight k as the multiplication by (g)g*~2, where (g) is
the diamond operator corresponding to q.

We have a natural morphism of [F-algebras TT,E /pT,E — A,E, which is surjective,
but in general not an isomorphism. We set

T'=1imT; and A" =limA}.

Thus, the Hecke algebras T' and AT act on ST(©) and ST(F), respectively. We
obtain a surjective map T /pT! — A" from the surjective maps considered above.
We call A" the Hecke algebra modulo p of level I" and this is the central object of
our study.

The rings T" and A" are complete and semilocal. Actually, if F is large enough,
then, by the existence of Galois representations attached to eigenforms and by the
Deligne—Serre lifting lemma, the maximal ideals, and hence the local components of
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both T' and AT, are in bijection with the set of isomorphism classes of I'-modular
Galois representations o : Gg, np — GL2(F) (see [BK, Section 1.2] for more details).
Here and below, I"-modular means that p is the semisimplified reduction of a stable
lattice for the Galois representation p : Gg, np — GL2(K) attached by Deligne to
an eigenform in ST(O). Observe that, since 0 is odd, if p is irreducible, then it
is absolutely irreducible. We define Tg and Ag to be the local components of T
and A" corresponding to a I-modular representation 5. These rings are complete
local rings. The surjective map T' /pT! — A sends Tg/pTg onto Ag. As AT
(resp. T') is semilocal and an inverse limit of artinian rings, A" (resp. T') splits
into the product of its local components. Thus, it is enough to study the structure
of each local component to understand the structure of A", once we determine the
number of its local components.

The advantage of working with the local components is that one can relate
them to suitable deformation rings. By gluing pseudorepresentations attached to
modular eigenforms of level I" lifting the system of eigenvalues corresponding to
a '-modular representation p, one gets a pseudorepresentation of Gg,n), taking
values in Ag and deforming (tr p, det p). Let ﬁ’g be the universal deformation ring
with constant determinant of the pseudorepresentation (tr p, det p) in the category of
local, profinite F-algebras with residue field F. The pseudorepresentation obtained
above induces a local, surjective morphism 152 — Ag when either I' = lio(N )
or pt¢(N) and I' = T'j(N). Otherwise, it induces a local, surjective map Rg —
(Agl(N))red. See Section 2 for more details.

We define a I'-modular representation p to be unobstructed if the tangent space
of ﬁg has dimension 2. If p is irreducible and p{¢ (N), then p is unobstructed in
our sense if and only if it is unobstructed in the sense of Mazur [1989, Section 1.6].
But our notion is weaker than Mazur’s notion if p|¢(N). See Section 10, where
the notion of unobstructedness is studied in detail.

We prove the following rgsults concerning the Hecke algebra Ag and its relation
with the deformation ring Rg:

Theorem 1. Let ' = I'{(N) or ['o(N). If p is a I'-modular representation, then
both Rg and Ag have Krull dimension at least 2.

Theorem 2. Suppose either T = I'o((N) or p{¢p(N) and T' =T(N). If p is a
["-modular representation which is unobstructed, then the morphism Iig — Ag
is an isomorphism, and Ag is isomorphic to a power series ring in two variables
Fllx, 1. If pl¢(N) and p is an unobstructed I"{(N)-modular representation, then
the morphism ﬁg — (Agl(N nred is an isomorphism, and (Ag‘(N nred i isomorphic
to a power series ring in two variables F[[x, y].

In the last section, we shall give some conditions under which a I'j(N)-modular
representation p is unobstructed and the corresponding local component Agl(N )



4 Shaunak V. Deo

is not reduced: see Proposition 27 and Proposition 28. We shall also give some
examples of nonreduced Hecke algebras: see the remarks and discussion after
Proposition 28.

Remark. (1) Our approach to prove Theorem 1 and Theorem 2 does not depend
on whether p is irreducible or not. This is mainly because the results that we
use from deformation theory of Galois representations are available for both
reducible and irreducible p’s. So, the proof does not become simpler when p
is irreducible.

(2) Note that from Theorem 2, it follows that if p is a I'g(N )-modular representation
which is unobstructed and if pt¢(N), then the natural restriction morphism
Ag'(N) — AgU(N) is an isomorphism. In fact, if p{¢(N), then this happens
for any I'g(N)-modular representation p. Indeed, fixing such a p, we see
that the corresponding system of eigenvalues for the diamond operators is
trivial. As p{¢(N), by Hensel’s lemma, any system of eigenvalues lifting o
is trivial for the diamond operators. Hence, the diamond operators act trivially
on ST (0) ;. Therefore, S"'™N)(0); = SN (0);. So, T)'™) and T
are isomorphic. Thus, Agl(N ) and AgO(N ) are isomorphic for all the I'g(NV)-
modular representations p if p does not divide ¢ (N). However, this argument
breaks down if p divides ¢ (N).

Theorem 3. Assume that p is a I'{(N)-modular representation coming from a
newform of level N and is absolutely irreducible after restriction to the Galois
group of Q(¢p). If £|IN, ple? —1 and /5|G@£ is unramified, then assume £>|N.
If¢|N, pl€—1,and PlGg, is reducible, ramified and not a sum of two ramified
characters, then assume that the highest power of € dividing N is greater than the
highest power of £ dividing the Artin conductor of p. If plGq, is reducible, assume,
in addition, that ,0|G@ is not isomorphic to x ® ( ) norto x ® (0 J ) where x is
any character Gg, —> F*. Then AFI(N ) has Krull dimension 2. Moreover (RO)red
is isomorphic to (AF‘(N))recl

Similarly, if p is a I'o(N)-modular representation satisfying the hypotheses as
above, then AFO(N) has Krull dimension 2. Moreover, if p does not divide ¢ (N),
then (RO)red is lsomorphlc to (AFO(N))red

These results are generalizations of Theorem III, Theorem I and Theorem II
of [BK], respectively. Note that, it is possible to have mod p deformation rings
with constant determinant which are nonreduced, but we do not know of any such
examples.

Remark. If ptN, then we know that the module of mod p modular forms for
I'1(N) is the same as the module of mod p modular forms for I'{ (Np?¢) for e > 1
(see the remark after Corollary 1.3.6 on page 23 of [Gouvéa 1988] for more details).
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Hence, the corresponding mod p Hecke algebras are also the same. So, even though
we are assuming that p{ N, all the theorems that we prove for mod p Hecke algebras
for I'1(N) above will still be true without this assumption on N.

Note that, Theorem 2 easily follows from Theorem 1 and the definition of
unobstructed.

The idea of the proof of Theorem 1 is similar to the idea used in proving
Theorem III in [BK]. So, we try to find a relation between the characteristic-0
Hecke algebra Tplj with the characteristic- p Hecke algebra Ag. However, there are
some difficulties, such as ST(O) ®o F not being isomorphic to ST(F), in comparing
them directly. To overcome this problem, like Bellaiche and Khare [2015], we
also work with the divided congruence modules of Katz. Using the results of
Katz and the methods of [BK], we get the relation between characteristic-0 and
characteristic- p full Hecke algebras, i.e., the relation between the characteristic-0
and characteristic-p Hecke algebras generated by the Hecke operators T, ¢S, for
primes g not dividing Np, U, for primes ¢ dividing N and U,.

Now, we need to analyze how the addition of the U, and U, operators changes
our Hecke algebras in characteristic 0 and p. We can control the change caused by
the U, operator in a similar way to that done in the level-1 case in [BK]. This allows
us to get a relation between Hecke algebras in characteristic O and p generated by
Hecke operators away from p. Note that, the proof for the N = 1 case finishes
at this step. However, for N > 1, we still need to study the effect of adding the
extra operators U, for primes £ dividing N to our original Hecke algebras. This
differentiates the case of N > 1 from N = 1. In this direction, we prove that in
characteristic 0, if p is new, i.e., if p is not I'(N’)-modular for any proper divisor
N’ of N, then the operator U, acting on ST(O) 5 1s integral over Tg for every
prime ¢ dividing N. This gives us the finiteness of the U,’s over the mod p Hecke
algebra automatically for a new p and, along with the Gouvéa—Mazur infinite fern
argument, leads us to Theorem 1 in those cases. Finally, we prove that if p is
also a I'(M)-modular representation for some M dividing N, then the natural map
Ag — Aplj(M ) is surjective using the pseudorepresentation attached to it and the
Chebotarev density theorem. Theorem 1 in the case where p is new, along with the
surjectivity established above, leads us to Theorem 1 for all the local components
of the mod p Hecke algebra. We would like to point out that, in contrast with [BK],
our method does not give the precise kernel of the map Tg — Ag in all the cases
while proving Theorem 1. However, in many cases, we can find the kernel up to
some nilpotence.

To prove Theorem 3, we need to use a result of Bockle and flatness of TEI(N )
over the Iwasawa algebra O[[T']] which is proved in the same way as in [BK]. This,
along with Theorem 1, would imply the first part of Theorem 3. We prove, using
techniques and results similar to the ones sketched in the previous paragraph, that
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the map T'™)/(p, T) — AJ'™ has nilpotent kernel if £ satisfies the hypotheses
of Theorem 3. We use it, along with the results of Bockle, to conclude the second
part of Theorem 3 for the I'{ (V) case. The theorem for the I'g(N) case then follows
easily from the theorem for the [';(N) case.

Finally, we would like to remark on a possible generalization of these results
to the case of Hilbert modular forms. A well behaved theory for mod p Hilbert
modular forms with arbitrary weights, which includes a lot of tools and facts for
mod p modular forms that we use, is available (see the works of Andreatta and
Goren [2005] for more details). Moreover, an analogue of the Gouvéa—Mazur
infinite fern argument is also true for certain local components of the p-adic Hecke
algebra acting on the space of Hilbert modular forms due to work of Chenevier
[2011, Theorem 5.9]. However, contrary to the case of modular forms, the theory
of divided congruence modules of Katz, and properties of Hecke operators acting
on them, is not known for Hilbert modular forms. We expect results similar to
what we have proved above to hold for Hilbert modular forms once we know the
theory of divided congruence modules of Hilbert modular forms and the infinite
fern argument for all the local components. The results will depend on the space of
mod p Hilbert modular forms we consider. For instance, we expect the lower bound
on the Krull dimension of the mod p Hecke algebra for Hilbert modular forms of
parallel weights to be 2, while the corresponding lower bound for the mod p Hecke
algebra for Hilbert modular forms of arbitrary weights to be 2n, where n is the
degree of extension of the totally real field over (.

2. Deformation rings and Hecke algebras

The goal of this section is to relate mod p Hecke algebras with appropriate defor-
mation rings.

Using [Bellaiche 2012b, Step 1 of the proof of Theorem 1], which is essentially an
argument of gluing pseudorepresentations attached to modular eigenforms of a fixed
level and all weights, we get the following lemma (see also [BK, Proposition 2]):

Lemma 4. Let ' be either I'o(N) or I'{(N). For a I'-modular representation p,
there exists a unique continuous pseudorepresentation

", 8"): Ganp — TF

such that t"(c) =0, tr(Frobq) =T, and (SF(Frobq) = qS, for all the primes q not
dividing Np. We have

- (modmyr) =trp  and st (mod myr) = det f.

By composing (t', 1) with the natural morphism Tplj — Ag, we get a pseudorep-
resentation (t*, 8") Gao.np — Ag lifting (tr p, det p).
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A deformation (¢, d) of a pseudorepresentation (7, d) is called a deformation
with constant determinant if d =d.

Lemma 5. If [ =Tg(N) orif pt¢(N) and T’ =T |(N), then for a T'-modular rep-
resentation p, (t', gr) is a deformation of (tr p, det p) with constant determinant.

Proof. Let g be a prime not dividing Np. Note that, in the ['o(N) case, S, acts as
multiplication by g2 on a weight k modular form with Fourier coefficients in O.
If two modular forms of level N are congruent modulo p, then their weights are
congruent modulo p — 1. So, S, acts like a constant on STV () 5 for every p.
Since § 1“(Frobq) = qu~ and the set of Frob, for primes g not dividing Np is dense
in Gg,np, we get that § I is constant and we are done in the I'o(N) case.
Applying the same reasoning to the I'{(/V) case, we get that, for every prime ¢
not dividing Np, S, acts like ¢, (g) on ST'™)(F) 5, where ¢, is an invertible constant.
Since S, € AJ'™), it follows that (g) € A['™ for every prime ¢ not dividing Np. If
p does not divide ¢ (N), then the order of every diamond operator {(g) is coprime to p.
We have chosen [ to be large enough so that it contains all the mod p system of eigen-
values. Thus, by Hensel’s lemma, (g), and hence S,, will be constant in AFI(N ) for
every 5 and every prime ¢ not dividing Np. Therefore, 8" is constant in the I'i(N)
case if p does not divide ¢ (IV), by the same argument as in the I'g(V) case. [

If p|¢(N), then the determinant 8" may not be constant. See Section 10 for
more details. If the order of (g) is p¢, then ({(g) — 1)?" =0 in Ag'(N). Therefore, in
(Ag‘(N hred we have (¢) = 1 for all such (g). Thus, from the proof of the lemma
above, it follows that if p|¢(N), then the determinant

(SFl(N))red . G@,Np N ((Agl(N))red)*
is constant.

Let R; be the universal deformation ring of the pseudorepresentation (tr o, det o)
in the category of local profinite O-algebras with residue field F, Iéﬁ be the corre-
sponding universal deformation ring mod p and R% be the corresponding universal
deformation ring mod p with constant determinant (see [Chenevier 2014; BK,
Section 1.4] for more details regarding the existence and properties of these rings).
For a I'-modular representation p, the pseudorepresentation (z', §'') defines a local
morphism R; — TF which is the identity, modulo their maximal ideals. Similarly,
we get a local morphlsm R — AF From the previous paragraphs, we see that the
morphism R — A factors through R ifT=Ty(N)orif pt¢p(N)and ' =T(N).
However, th1s is not true in general. But from the above discussion, we see that for
a I'{(V)-modular representation p, the map R 5= (Agl(N yred factors through Rg.
All the morphisms considered above are surjective. Indeed, for a prime g not divid-
ing Np, the images of the trace and the determinant, coming from the universal pseu-
dorepresentation of Frob,, under the morphisms above are T, and ¢ S, respectively.
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3. Relation between the full Hecke algebras in characteristic 0 and p

The goal of this section is to obtain a relation, similar to [BK, Proposition 16],
between the full Hecke algebras, but for both the cases, I'j(N) and I'g(N). We follow
the approach of [BK]. We briefly recall, without proofs, some important results of
the theory of divided congruences of Katz needed for our purpose. Then, we state
some results about the comparisons of various Hecke algebras; these are similar to
the results given in Sections 3—6 of [BK], and since their proofs are more or less the
same, we do not give them in full detail here. Instead, we mostly refer readers to the
proofs of corresponding results in [BK] and provide some additional details when
required. In this section, we follow the notation of [BK] for the divided congruence
modules and the Hecke algebras along with an additional index representing the
level. For instance, D"'™)(©) will represent the divided congruence module of
cuspidal forms for I'j (V) over O. These modules and the Hecke algebras acting on
them are defined in exactly the same way as their level-1 counterparts in [BK] after
making appropriate level changes. The main references for this section are [Katz
1975; Hida 1986; BK]. Throughout this section, I" means either I'{(N) or T'o(N).

3.1. The divided congruence modules of Katz. In this and the following subsec-
tion, we quickly list all the results that are needed from the theory of divided
congruence modules. These results are the level-N counterparts of the results that
appear in [BK].

We now define the divided congruence modules of Katz. Let Szk(K ) be the
subspace of K[[¢q]l given by Zzg Sir(K ), where SZ.F(K ) is the space of cusp forms
of weight i and level I" with Fourier coefficients in K, which is identified as a
subspace of K[[¢]l via g-expansions. Let DL, (O) be the O-submodule of O[[¢]]
given by the intersection of ST «(K) with O[[c_l]]. These modules are called divided
congruence modules because they capture congruences between cusp forms of
different weights (see Remark 3 of Section 2 of [BK] for more details). We define
DEk (F) as the image of DEk (O) under the reduction map O[[g]] — Fllg]. Let

D"(©0)=|_J DL (0) and D'(F)=| )DL, (.
k=0 k=0

We call D'(0) the divided congruence module of cuspidal forms of level I' and
DY (F) the divided congruence module of cuspidal forms modulo p of level I'. See
Section 2 of [BK] for more details.

Lemma 6. The natural map ng O)R®oF— ng([F) is an isomorphism.

Proof. If f € Dg «(O) lies in the kernel of the natural surjective map

DL, (0) — DL, (P),
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then f/m lies in both S¥ <« (K) and O[[¢]. Hence, it lies in DEk(O) which implies
the lemma. See the proof of Lemma 5 of [BK]. O

We now recall, without proof, two theorems of Katz which relate the divided
congruence module of cuspidal forms mod p of level I' with the space of mod p
cuspforms of level I":

Proposition 7 [Katz 1975, Corollary 1.7]. (1) There exists a unique action of
7% x (Z/N2)* on D"'"M)(0), denoted by ((x, y), f) = (x,y).f, such that
for (x,y) € Z% x (Z/NZ)*, and f € S;'™)(0) c D"'NM(0),

(x,y).f =x () f.

(2) There exists a unique action of Z, on Do )(O) denoted by (x, f) — x.f
such that for x € 7%, and f € S}*™V)(0) c DM'™(0),

x.f=xFf.

Theorem 8 [Katz 1975, Section 4]. The space S'(F) is the space of invariants of
1+ pZ, acting on DI(F).

See also [Hida 1986, Theorem 1.1].
The two results of Katz recalled in this subsection are proved only for p > 3.
We do not know whether they also hold for p = 2, 3.

3.2. Hecke operators on the divided congruence modules. On D" (©) we can
define the Hecke operators T, and S, for primes ¢ not dividing Np, and Uy, for
primes £ dividing N. Their action on the g-expansions is given in the same way
as it is given on the g-expansions of the classical modular forms. See the proof of
Corollary-and-Definition 7 of [BK] and [Hida 1986, page 243] for more details.

Now we introduce partially full Hecke algebras which are generated by the U,’s
for every prime £ dividing N along with the 7,’s for (n, Np) = 1. We denote these
Hecke algebras by supplementing the index with pf. Thus, T P! is the O-subalgebra
of Endp (ST k((’))) generated by the 7,,’s with (n, Np) = 1 and U,’s with prime ¢
dividing N, while AF Pf s the [F- subalgebra of Endg (St k([F)) generated by the 7,’s
with (n, Np) =1 and U,’s with prime £ dividing N. We can consider the projective
limits

ThPf = =lim TP, ATP = =lim ApPE

Lemma9. (1) The subalgebra of Endp(DE < (0)) generated by the Hecke oper-
ators Ty, Sy for primes q not dividing Np and U, for primes £ dividing N is
naturally isomorphic to TF P,

(2) The subalgebra of Endp (DL k((’))) generated by the Hecke operators T, S,
for primes q not dividing Np is naturally isomorphic to Tk
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Proof. Both parts of the lemma follow from the observations that SL,(0) is a
cotorsion submodule of DL «(O) and that the action of Hecke operators on DEk(O)
extends their action on .S_‘<Fk((9). Indeed, as SEk(O) is a cotorsion submodule
of DEk(O), if fe Dzk(O)_, then 7" f € Sgk((’))_for some n which implies that a
Hecke operator Vanis_hing on S Ek (@) also vanishes on DE «(O). See the proof of
Lemma 8 of [BK] for more details. - O

Lemma 10. (1) The homomorphism ¢ : Z% — Endo(D"'")(0)), defined by
d(x)f = (x,1).f for f € D"""N(O), takes values in the subalgebra TV
and hence, in TT1(N).pf,

(2) The homomorphism ¢ : 7% — Bndo (D" (0)), defined by ¢ (x) f = x. f for
f € DY), takes values in the subalgebra T"™) and hence, in TToNV)-PL,

Proof. The proof of part (1) is almost the same as the proof of Lemma 9 of [BK].
We only need to change the last step of the proof slightly, so we sketch it briefly here.
Following the same proof, we see that T'! (M is a closed subset of Endo (D7) (0))
under the weak topology, and the map ¢ : 7% — Endo(D"'™)(0)) is continuous
for the weak topology. For a prime ¢ which does not divide Np and is 1 (mod N),
one has ¢ (q) = g%, € T"'™)_since (g) is the trivial operator as g is 1 (mod N). If
X € Z’;, there exists, by the Chinese remainder theorem and Dirichlet’s theorem on
primes in arithmetic progressions, a sequence of primes g,, (different from primes
dividing Np) that are 1 (mod N), that converges to x p-adically. Hence, ¢(g,)
converges to ¢ (x) in Endo (D" (0)). Therefore, ¢ (x) € T''™). The proof of
part (2) is the same as the proof of Lemma 9 of [BK]. ]

Let A be the Iwasawa algebra O[[1+ pZ,]|. By choosing a topological generator
of 14+pZ,, say 1+ p, one gets an isomorphism A 2~ O[[T]]. Under this isomorphism,
the maximal ideal m, of A gets mapped to (7, T). We get a morphism ¥ : A — T
of O-algebras from the group homomorphism ¢ : 1 + pZ, — (TY)*. Using the
morphism 1/, we can consider T! as a A-algebra.

3.3. Divided congruence modules of level T'y(Np) and T'{(Np). In this subsec-
tion, we consider the divided congruence modules of cuspidal forms for levels
[o(Np) and ' (Np). They are defined in the same way as in the level-N case after
just changing the level. For the rest of this section, I" still means I'g(V) or I'{(N)
and I'(p) means either I'g(Np) or I'| (Np) accordingly.

Proposition 11. The closures of D' (O) and D' P (O) in Olq]| provided with the
topology of uniform convergence, are equal.

Proof. See [Gouvéa 1988, Proposition 1.3.9] and Section 1 of [Hida 1986]. U

Corollary 12. There is an isomorphism preserving q-expansions of

D'P(0) @0 F ~ DI(F).
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Corollary 13. The algebras TV PP and TUP' are naturally isomorphic, as are
also the algebras T' P and TT.

Proof. The natural restriction maps between the Hecke algebras of level Np and
N are isomorphisms because their action is continuous and the modules on which
they act have the same closure. See the proof of Corollary 13 of [BK] for more
details. ([l

3.4. Full Hecke algebras. In this subsection, we consider full Hecke algebras,
i.e., the Hecke algebras generated by all the operators 7, S, for primes g with
(g, Np) = 1, U, for primes ¢ dividing N and U,. So, T ®-ull ' pAlfll apq
A,lg*f”” are the Hecke algebras generated by the Hecke operators T;,, S, for primes g
with (g, Np) =1, U, for primes ¢ dividing N and U, acting on Dg,g”)((’)), ng([F)
and ST, (F), respectively. We denote by TT (-l p AT full and AT.full the full Hecke
algeb;as acting on D' (") (0), D"(F) and ST(F), respectively, which are obtained by
taking the inverse limits over the weights k of appropriate Hecke algebras, as before.

Proposition 14 (perfect duality). The pairings
T P IR0y > 0, DA™ x DL (F) - F, A™ x SL(F) > F,

given by (t, ) — a,(tf), are perfect.

Proof. This is well known but we recall the proof here. Suppose f € DLP)(0O)
is such that a;(tf) = 0 for all ¢ € T,ls(l’)*fuu. This means a| (T, ) = an(_f) =0
for all n coprime to Np, a1 (U, f) = a,(f) = 0 for all primes £ dividing N and
ar(Uy, f) = a,(f) =0. Thus, we have a,(f) = 0 for all n which implies f = 0.
Now, suppose t € T}:(p)’f““ is such that a;(¢f) = 0 for all f € DE,((”)(O). This
means a;(s(tf)) =a;(t(sf))=0forall s € T,E(p)’f““. Thus, from the_previous part,
we getthat7f =0 forall f € DE,E”)((’)) which means ¢ = 0. The proof for other
cases goes in the exact same wa)Z ([

Corollary 15. The map T} """ — DA™ induces an isomorphism
—l]—II:(P)vaH ®0 F = DA}:’f”H.
Hence, we get an isomorphism TT (Pl @ F ~ p AT full,

Proof. By the perfect duality above and Lemma 6, we see that the rank of the
torsion-free O-module T} P and the dimension of DA} ™! as an F-vector space
are the same, which implies the result. See the proof of Corollary 15 of [BK] for
more details. |

The composition A — TT-Pf— TT(P-full defines a A-algebra structure on TT (P full,

Proposition 16. TrPLfll /gy TRl ATl
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Proof. The proposition follows from Theorem 8 (a theorem of Katz that we recalled
in Section 3.1), the perfect duality and its corollary above. See the proof of
Proposition 16 of [BK] for more details. O

4. Relation between the components of Partial and Full Hecke algebras

Throughout this section I' means either I'{(N) or I'g(N) and I'(p) means either
['1(Np) or 'g(Np) accordingly. Recall that we have a direct product decomposition

=11 Tg and a direct sum decomposition S YO Ps @) 5> Where the product
and sum are taken over all the I'-modular representations. Note that, S Lo 5 18
the intersection of the subspace of ST (@p) generated by the eigenforms lifting the
system of eigenvalues corresponding to p with ST(©). The decompositions above
are such that T} is also the largest quotient of T" which acts faithfully on S'(0),.
Let T[-P" be the largest quotient of T"Pf which acts faithfully on ST(0);. Define
ALPlin a similar way.

Note that, since D' () contains ST(O) as a cotorsion submodule, we have a direct
sum decomposition DY(0) = P DY) 5 similar to that of S T'(©). Moreover, Tg’pf
and Tg are the largest of quotients of T'Pf and TT respectively, acting faithfully
on DT(0);.

By aresult of Serre and Tate (see [Jochnowitz 1982, Lemma 4.4]), the subalgebras
of TF»-full gnd ATl generated by the Hecke operators 7, S, for primes ¢ not
dividing Np and U, are semilocal and the local components of both of them
are in bijection with the set of F-valued systems of eigenvalues of the Hecke
operators T, S, for primes g not dividing Np and U, appearing in ST(F). Hence,
they are in bijection with the pairs (o, A), where p: Gg, np — GL(F) is a I'-modular
representation attached to some eigenform f € ST(F) and A is the eigenvalue of U,
on f (see [Jochnowitz 1982]).

So, we get a direct sum decomposition DIP(0) = é DI»(©) 5, similar to
that of ST(©) seen above. Now, let us define Tr(p >l 46 be the largest quotient of
TrP-fll aeting faithfully on DTP)(0) ;5 and AF full t6 be the largest quotient of
AT acting faithfully on ST(F); Bk

We get, using the Chinese remainder theorem and the definitions above, the
product decompositions TT (#-full ]_[TF(” 0l Cand TRPE = [ TEP'. Similarly,
we get product decompositions of A full’, and AF Pf Here, the products are finite
products as the pairs (p, A) are finitely many.

Proposition 17. (1) For a I'-modular representation p, one has a natural isomor-
phism ofAr PLalgebras Ar pf[[U 7=~ AF fU“.

(2) For a I'-modular representation p, one has a natural isomorphism of Tg’pf-
algebras Tg’pf[[Up]] ~ Tg((f’)’fun.
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Proof. The first part of this proposition is proved by Jochnowitz [1982, Theorem 6.3].
The proof of the second part of the proposition is the same as that of Proposition 17
of [BK], where they adapt the proof of Jochnowitz in characteristic 0, which relies
on the interplay between the operators U, and V. Here, V is the operator which
sends Y a,q" to Y a,qP". The same argument works here. O

5. Finiteness of Tg’Pf over Tg for new p

Throughout this section, I" means either I'{(V) or I'o(N) and I'(M) means either
['1 (M) or 'g(M) accordingly. Let us call a I'-modular representation p new if it is
not I'(M)-modular for any proper divisor M of N. Thus, the system of eigenvalues
of the Hecke operators corresponding to p does not have a nontrivial eigenspace in
STM)(F) for any proper divisor M of N. Let S} ""*¥(Q,) be the O-submodule of
S{ (@p) consisting of new modular forms of weight k£ and level I'. Let

k 00
Sg’knew(@p) — Z Sil",new (@p) and SF,neW(@p) — U Sg}(neW(@p).
i=0 k=0
The following lemma follows directly from the discussion above and the description
of ST(0); given in the previous section:

Lemma 18. If p is a new T-modular representation, then S(0)j is an O-submodule
of SV(Q)).

Now we recall a well-known result regarding the Galois representations attached
to level-N newforms:

Lemma 19 [Emerton et al. 2006, Lemma 2.6.1]. Let f be a classical newform of
tame level N over @p. Let py be the p-adic Galois representation attached to f
and let Vy denote its underlying space. Let £ be a prime dividing N and let a;(f)
be the Uy eigenvalue of f. Let (Vy)j, be the vector space of I, coinvariants of Vy.
Then the following are equivalent:

(1) ae(f) is a nonunit,
(2) ae(f) =0,
(3) Vo), =0.

If these equivalent conditions do not hold, then we have that (Vy)j, is one
dimensional and a,(f) is equal to the eigenvalue of Froby acting on this line.

Proposition 20. If p is a new I'-modular representation, then Tg’f’f is finite over Tg.
More precisely, Uy ( for every £|N) is integral over Tg of degree at most 2. If one
of the following condition holds:

(1) ' =To(N) and there does not exist a prime £ such that £||N and p|€+ 1.
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(2) ' =T'1(N) and if there exists a prime £ such that pl€* —1and ¢||N, then
pl€+1anddetp(ly) # 1.

pf _ T
then Tﬁ Pt — Tﬁ.
Proof. Let I' =T'op(N). Since p is new, we know, from Lemma 18, that
S'(0); € STV@)).

Now, T5P' is the largest quotient of T'-Pf which acts faithfully on ST(0);. Let £
be a prime dividing N. By Theorem 5 of [Atkin and Lehner 1970], if ¢> divides N,
then U, acts like 0 on S{’“ew(@p) andif £|| N, then Ue2 acts like €2 on S{'“CW (@p).
Hence, if ¢> divides N, then Uy acts like 0 on ST(0); and if £ N, then U? acts
like £72¢ (£) on ST(O) 5> Where ¢ : Z; — Tg is the map considered in Lemma 10.
Thus, if £2| N, then Uy = 0, and if £|| N, then U7 — £7%¢(£) =0 in T}-P".

Suppose £|| N and let f be a newform of level I'g(N) lifting the system of
eigenvalues corresponding to p. Let 7y be the £-component of the automorphic
representation corresponding to f and py be the p-adic Galois representation
attached to f. As £2{ N, m is either principal series or special (see [Carayol 1989,
Section 1.2]). So, it follows from the local Langlands correspondence, that PflGa,
is either a direct sum of two characters or a nontrivial extension of a character by
its cyclotomic twist (see Sections 3 and 5 of [Weston 2004]). As f is a newform of
level I', the Artin conductor of py is N (the level of f). Since £|| N, the exponent
of ¢ appearing in the Artin conductor of pr is exactly 1 which means (pf)’ ¢, the
subspace of py on which I, acts trivially, is one dimensional. So, if ps[ge, is a
direct sum of two characters, then one of them is unramified and the other is tamely
ramified. Otherwise, pr|Gg, 18 a nontrivial extension of an unramified character
by its cyclotomic twist. As f is a modular form of level I'g(N), its nebentypus is
trivial, which means det py(I;) = 1. This implies that p¢ |G@z is not a direct sum of
two characters and hence, ,ofl(;@[ ~ (ef)x ; ), where * is nonzero and ramified, x is
an unramified character and €, is the p-adic cyclotomic character of G, .

As a;(f), the U, eigenvalue of f, is nonzero, by Lemma 19 above, it is the
eigenvalue of Froby acting on (pr);,. Thus, a,(f) = x (Froby). Let x be a lift of
Frob, in Gg,. Note that

tr(pf oig(x)) = €px (Froby) + x (Frobg) = (£ + 1) x (Frobe) = (€ + Dae(f),

which means a,(f) = tr(ps o i¢(x))/(¢ + 1). Suppose p{¢+ 1, which implies
that £ + 1 is a unit in Tg. Then on every newform f of level I' lifting p, the
action of U, coincides with the action of (¢! o i;)(x)/(£ + 1), which lies in Tg
as £ 41 is a unit in Tg. As p is new, every eigenform of level I lifting o is a
newform. This implies that U, — (t" oi)(x)/(£ 4+ 1) acts like O on SF(O)/; and
hence, Uy = (t" 0i¢)(x)/(£+1) in TP Therefore, Uy € T}, if £[| N and pf€+1.
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Note that, Tg’pf is generated by the Hecke operators U, over Tg. So, by com-
bining the discussion of the last two paragraphs, we get that T},;Pf = Tg if there
does not exist a prime £ such that £|| N and p|€ + 1. Otherwise, we have U, € Tg
if either ¢2| N or ptl+1and Ue2 — 72 () =0 if £|| N. Therefore, we conclude
that Tg’pf is a finite extension of Tg.

Let I' =TI"{(N). There is a continuous pseudorepresentation

", 8"): Ganp — TF

such that rr(Frobq) =T,46 1“(Frobq) = g, for primes g not dividing Np. Hence,
we get a continuous pseudorepresentation (¢, d) : Go,np — Tg’Pf since Tg C Tg’pf.
For every prime ¢ dividing N, let us choose an element g, of Gg, which gets
mapped to Frob, under the quotient map Gg, — Ggq,/I,. We have already fixed a
natural map iy : Gg, — Gq,np. Hence, we get a pseudorepresentation

(toip,doiy): Gg, — ‘ﬂ'/l;l(N),pf'
Now, consider the characteristic polynomial Q,(x) of g, which is defined by

Qu(x) = x* — (toig)(ge)x + (d oig)(gr).

Let f be a newform of level N lifting the system of eigenvalues corresponding
to p. Denote by pr the p-adic Galois representation attached to f and by a,(f)
its U, eigenvalue. By Lemma 19, if a,(f) = 0, then U, kills f. If a,(f) # 0,
then a,(f) is the root of the characteristic polynomial Py(x) of ps oiz(g¢). But
Q¢(Up) f = Prae(f)) f = 0. Thus, in this case, Q¢(Uy) kills f. We will now
determine if it is possible to have two newforms f and g of level N lifting p
such that a,(f) # 0 but a,(g) = 0 or equivalently (by Lemma 19), (oy),, is one
dimensional but (p,);, = 0.

Let f be a newform of level I' lifting o as above and 7, be the £-component of
the automorphic representation corresponding to f. So, 7y is one of the following:
principal series, special and supercuspidal (see [Weston 2004, Section 3]). As f
is a newform, the Artin conductor of py is N (the level of f). Suppose £| N but
€24 N. Then, from the analysis carried out in the T'o(N) case above, we see that
P |G@z is either a sum of an unramified character and a tamely ramified character
or a nontrivial extension of an unramified character by its cyclotomic twist. Hence,
the space (py);, of Iy coinvariants is also one dimensional. Therefore, if £ || N, then
for every newform f of level I' lifting o, (py);, is one dimensional and hence,
ag(f) #0.

Now suppose £2| N, and moreover, the space of I, coinvariants of pr is one
dimensional. So, the exponent of £ appearing in the Artin conductor of py is at
least 2. This means that 7y is not special, as otherwise (o), being one dimensional
will imply that py|Gg, 1s a nontrivial extension of an unramified character by its
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cyclotomic twist, and hence, the exponent of £ appearing in the Artin conductor
of py is 1. The nontriviality of (pr);, also implies that 7, is not extraordinary
supercuspidal (see the proof of [Weston 2004, Proposition 3.2] for more details).
Suppose 7y is supercuspidal but not extraordinary. Then, by the local Langlands
correspondence,

prlGa, =Indge x,

where K is a quadratic extension of (¢, Gk is the absolute Galois group of K,
X is a character of Gk taking values in @p and moreover, py is irreducible (see
Section 3 of [Weston 2004]). But as (pr),, is one dimensional, we get that x is
an unramified character of Gg. However, since the maximal unramified extension
of K is an abelian extension of (g, this implies that ,oflgw is a sum of two
characters, contradicting the hypothesis that ps|g,, is irreducible. Hence, 7 is
not supercuspidal. Therefore, 7, is principal series which means that ps|g,, is a
sum of two characters x; and x,. Moreover, (pf);, # 0 implies that one of them is
unramified, while ¢2| N implies that the other is wildly ramified. Without loss of
generality, suppose x; is wildly ramified and yx; is unramified.

Thus, plGe, = X1 ® X2, where i and )3 are the reductions of x; and y; in
characteristic p, respectively. Note that, x; is unramified while x; is wildly ramified
as £ # p. Let g be another newform of level I" lifting p and 7, be the £-component
of the automorphic representation corresponding to g. If 7, is special, then p, lGa,
is a nontrivial extension of a character by the cyclotomic twist of itself. This
would imply that both ¥7 and x; are either unramified or ramified, which is not
the case. Hence, 7, is not special. If 77, is extraordinary supercuspidal, then p|,,
is irreducible as p > 5 (see proof of [Weston 2004, Proposition 3.2]). So, 7, is
not extraordinary supercuspidal. If 7r; is supercuspidal but not extraordinary, then
PglGg, 1s induced from a character of the absolute Galois group of a quadratic
extension of Qy. Moreover, the subspace of p, fixed by Iy is trivial. But the
subspace of p fixed by I, is one dimensional. Thus, the exponent of £ in the Artin
conductor of p, is greater than the exponent of ¢ in the Artin conductor of p (see
[Carayol 1989, Section 1.1]). But [Carayol 1989, Proposition 2], along with the
assumption that 7, is supercuspidal, implies that p is unramified at £ which gives
us a contradiction. Therefore, 7, is not supercuspidal.

This means that 7, is principal series and hence, p, |G, 1s a sum of two characters,
say x; and x;. Without loss of generality, suppose x; is a lift of x and x; is a
lift of X7. As X1 is wildly ramified, the Artin conductor of x; is same as the Artin
conductor of X{ and the Artin conductor of y; (see [Carayol 1989, Section 1.2]).
As the exponent of £ in the Artin conductor of py is the sum of the exponents of £
in the Artin conductors of x; and x, and its exponent in the Artin conductor of
pg is the sum of its exponents in the Artin conductors of x; and ). As both f
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and g are newforms of level N, the exponents of £ in the Artin conductors of p¢
and pg are same. This implies that the Artin conductors of x» and x; are same,
which means that x} is also unramified. In particular, we see that (pg);, is one
dimensional. As a consequence, we see that if f is a newform of level I" lifting
p and (pr)j, is one dimensional, then, for every newform g of level I lifting p,
(pg)1, 1s one dimensional.

Let us continue with the assumption that there is a newform fy of level I' lifting
p such that (o), is one dimensional. Observe that in this case, from the discussion
so far, we get that for every newform g of level I' lifting p, pglgq, is reducible and
moreover, at least one character appearing in the semisimplification of pg|cq, 18
unramified. Thus, (,5|G®Z)SS =o & B, where (/5|G@£)SS is the semisimplification of
Plce, and o and B are characters of Gg, such that at least one of them is unramified.
Note that, both  and B are defined over . Indeed, both «|;, and B|;, take values in
[ as one of them is unramified and det(p) is defined over F. So it follows from the
previous discussion that the image of I, under p in GL,([F) is abelian and hence,
is upper-triangular under a suitable basis. Therefore, since I, is normal in Gq,, it
follows that if p is ramified at £, then under the same basis, the image of Gg, under
o in GL,(F) is also upper-triangular, which implies that both « and g are defined
over [. If p is unramified at £, then p is reducible as it is new. As p is semisimple,
it follows that both @ and g are defined over F.

Suppose @ # B. Then, by [Bellaiche and Chenevier 2009, Theorem 1.4.4,
Chapter 1], TE[G@(] / (ker(1:F oly (G@K))) is a generalized matrix algebra (GMA)

of the form
T B )
? (D
F )
(¢

where B and C are finitely generated Tg -modules contained in the total fraction
ring of TL, and the diagonal entries reduce to & and f modulo the maximal ideal
of Tg. Moreover, BC C Tg and it is an ideal of Tplj. Letus call it 1.

For a newform f of level I lifting p, let ¢ :Tg — @p be the map which sends a
Hecke operator to its f-eigenvalue and denote its kernel by Pr. From the previous
paragraph, we see that the 2 dimensional pseudocharacter ' oiy of Gg, is a sum of
two characters modulo Py and hence, is reducible modulo Py for every newform f
of level I lifting p. Therefore, by [Bellaiche and Chenevier 2009, Proposition 1.5.1,
Chapter 1], it follows that I C Py for every newform f of level I" lifting p. This
means that if x € I, then x(f) = 0 for every newform f of level I' lifting p. As
every eigenform of level I' lifting p is a newform, we see that / = 0. Thus, the
projection on the diagonal entries of the GMA (1) above gives two characters &
and 8 of Gq, taking values in Tg such that, & is a deformation of «, while 8 is a
deformation of 8.
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As at least one of @ and B is unramified; without loss of generality, assume
that g is unramified. Suppose « is ramified. Then, it follows, from the analysis
above, that for a newform f of level I' lifting p, prlgg, is a direct sum of an
unramified character and a ramified character. As « is ramified, the unramified
character appearing in p¢|g,, 18 a lift of 8 and hence, it is the image of B modulo Py.
This means that the reduction of g modulo Py gives an unramified character for
every newform f of level I' lifting p. Hence, by the reasoning used in the previous
paragraph, we see that £ is an unramified character of Gg,. By Lemma 19, it
follows that for every newform f of level I' lifting p, the U, eigenvalue of f is the
reduction of E(Frobg) modulo Py. Thus, Uy — ,5 (Froby) annihilates every newform
[ of level T lifting 4. Therefore, U, = B(Froby) in TEP" and hence, Uy € T} as
B(Frob) e T7.

Now, suppose « is also unramified. This means that for a newform f of level I'
lifting p, py |G@£ is either a nontrivial extension of an unramified character by its
cyclotomic twist or a direct sum of an unramified character and a tamely ramified
character and in both cases, £ || N (see [Carayol 1989, Proposition 2]). Moreover, in
the second case, p|£— 1. Suppose pslgq, is a direct sum of an unramified character
and a tamely ramified character. Let € be the nebentypus of f. Note that,

det(ps (1)) = €((Z/L2)") # 1,

but its reduction is 1 in characteristic p. So, by [Carayol 1989, Proposition 3], there
exists a newform g of level I lifting p such that €’((Z/£Z)*) = 1, where €’ is the
nebentypus of g. Thus, pg|, 1s a nontrivial extension of an unramified character
by its cyclotomic twist. This means that either «/8 or B/« is the cyclotomic
character w,. But as p|¢ —1, w,(Froby) =1 and hence, w),, is the trivial character.
However, this means that « = §, which contradicts our assumption that o # .
Therefore, we get that, if « is unramified, then py |G@@ is a nontrivial extension of
an unramified character by the cyclotomic twist of itself for every newform f of
level I' lifting o. By [Carayol 1989, Proposition 3] and the discussion above, it
follows that p{ ¢ — 1, for otherwise there would exist a newform g lifting p such
that det(po, (1)) # 1, which gives a contradiction.

As « is also unramified, we saw above that either a/B or B/a is w,. If both of
them are w,,, then wf, =1, which means p|£*> —1. As p{£— 1, we get that p|£+1
if both of them are w,. Suppose pt£+ 1, which implies that exactly one of them
is w,. Without loss of generality, assume «/f is w,. Now in this case, the image of
« is the cyclotomic twist of the image of B modulo Py for every newform f of level
I" lifting o. Thus, for every such newform f, Gq, acts by the image of B modulo
Py on (pr)y,. Hence, the U, eigenvalue of f is the reduction of ,g (Froby) modulo
Py for every newform f of level I lifting p. Therefore, by the reasoning used in
the previous case, we see that U, = B(Froby) in Tg’Pf which means that U, € Tg.
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Now suppose that there exists a newform fy of level I' lifting p such that
(0£,)1, =0, which means U, fo = 0. Then, by our analysis above, it follows that
¢2|N and U, f = 0 for all newforms f of level I lifting 5. As p is new of level T,
we get, by the reasoning used above, that Uy = 0 in Tg’Pf.

From the discussion so far, we see that for a prime ¢ dividing N, U, € Tg if one
of the following conditions hold:

(1) €%|N,
(2) £||N and pfe> —1,
(3) L|IN, p|€+1 and det p(I;) # 1.

Otherwise, Q¢ (U,) kills every newform f of level N lifting p. Since p is new,
every eigenform of level N lifting p is a newform. This implies that either U, € Tg
or Q¢(Uy) =0 for every prime £ dividing N. Since the pseudorepresentation (¢, d)
takes values in Tg, it follows that for every prime £ dividing N, Q,(x) is a monic
polynomial with coefficients in Tg. Hence, U, is integral over Tg for every prime
£ dividing N of degree at most 2. Therefore, Tg’Pf is finite over Tg and moreover,
TEPP=TE if £| N and p|£* — 1 implies that p|£+ 1 and det 5(Iy) # 1 as T5-Pf
is generated by these U,’s over Tg. (]

Remark. (1) Note that, the proof given above for the I'{(V) case works for the
['o(N) case as well. But we give a different proof because it gives us a more
precise result in the I'g(/V) case and it is also simpler than the proof in the
I'{(N) case.

(2) Even though we do a detailed analysis in the I';(N) case above, it is not
really necessary just to prove that U, is integral over TEI(N ). Indeed, by the
reasoning used in the last paragraph of the proof above, we can easily prove
that U, Q¢ (U,) = 0, which proves that Uy is integral over Tgl(N). For most of
our purposes, we only need the result that U, is integral over Tgl(N ). But we
give this detailed analysis to obtain a more precise result which is helpful in
getting a more precise version of Theorem 3 in some cases (see the remark
after the proof of Theorem 3).

6. The case of p which is not new

Throughout this section I' means either I'{(N) or ['g(N) and I'(M) means either
(M) or I'gy(M) accordingly. Let p be a I'-modular representation which is not
new. Thus, the system of F-valued eigenvalues corresponding to o has a nontrivial
eigenspace in ST ™) (F) for some proper divisor M of N. Let us denote by M 5 the
smallest divisor of N such that the system of [F-valued eigenvalues corresponding
to p has a nontrivial eigenspace in S* (M7)(F). Note that, 5 is then a new I'(M 5)-
modular representation.
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Lemma 21. If p is a I'-modular representation which is not new, then the natural
map of local algebras r : Ag — Ag Mp) obtained by restriction is surjective.

Proof. First note that ST™»)(F) ; C ST(F) ;. Hence, using this inclusion, we obtain a
natural map r : A — ALM?) by restriction. Its image Im(r) is complete and hence,
closed. It contains all the Hecke operators T, and ¢S, (considered as operators
on STMs) () ) for all the primes ¢ not dividing Np. There is a continuous pseu-
dorepresentation (FTMp)| ST (Mz)y . Ga.m;p— A”Mﬁ) and Im(r) contains the Hecke
operators T, = =7 (Mp) (Frob, ) for primes g not d1v1d1ng Np. By the Chebotarev den-
sity theorem the set of Frob,, for primes g not dividing Np is dense in G, p, - Since
#T'(Mp) is continuous and Im(r) is closed, it contains 7" M%) (g) for every g € G, u, p-
It also contains ¢ S, =" M) (Frob, ) for all the primes ¢ not dividing Np. As §7 (M7
is continuous and Im(r) is closed, by the Chebotarev density theorem, we see that
it contains §7 ™7 (g) for every g € Gg,um,p. For every prime ¢ not dividing M,
we have fF(Mﬁ)(Frobq) =T, and SF(ME)(Frobq) = qS,. Hence, we see that Im(r)
contains 7, ¢S, for all the primes g not dividing M;p. Thus, Im(r) is a closed
subalgebra of Ag(Mﬁ) containing all of its generators. Hence, Im(r) = Ag(Mﬁ). O

7. Proof of Theorem 1

Throughout this section I' means either I';(N) or ['g(N), I'(p) means either ['; (Np)
or ['g(Np) accordingly and I'(M) means I'1 (M) or ['o(M) accordingly. As we
noted before, the natural map T"P' — T T7 " is an isomorphism and it lifts the
natural map T' — [] Tg. The corresponding statement for AT-Pf and A" is also
true. The natural surjective map TTPf — ATPf sends Tg’pf onto Ag’Pf. The natural
surjective map TTPhfull . ATull taeg Tr(p Ml nto Ar’fu".

Thus, from Proposition 16 and the dlscussmn above it follows that A"
isomorphic to Tr(p) fuu/mATg((f) full . By Proposition 17, Tr(p) ull TF pf[[U ]]
and AE ofull _ AF[[U 1. Thus, AF P g isomorphic to TF pf/mATTr PrAs the ideal

my is generated by two elernents the Hauptidealsatz 1mp11es that

T, full

dim ADP" > dim T, PPF — 2,

Suppose p is a new ['-modular representation. Then, we have proved so far that
TEP' is a finite extension of T} . Observe that T% is mapped onto AJ under the
surjective map ThP" — AT-P. This follows from the fact that the map between the
partially full Hecke algebras is obtained by first reducing the partially full Hecke
algebra in characteristic 0 modulo p to get an action on D' (F) 5 and then restricting
it to the subspace § (e 5- Hence, we see that A; Pt is finite over Ar

Therefore, dim Ar Pf = dim Ar and dim Tr Pf = dim Tr By the Gouvea—Mazur
infinite fern argument we see that dim TF > 4 (see [Emerton 2011, Corollary 2.28;
Gouvéa and Mazur 1998, Theorem 1]). Hence, dim Aj > dim T, —2 > 2.
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Now suppose that p is not a new ['-modular representation. Thus, as remarked
before, there exists a proper divisor M; of N such that p is a new I'(M;)-modular
representation (we can take it to be the smallest divisor of N such that the eigenspace
corresponding to the system of eigenvalues corresponding to p is nonzero in
ST (F)). If My = 1, then we know that dim AL?) = 2 by Theorem III of
[BK]. If M; > 1, then since p is a new I'(M;)-modular representation, repeat-
ing the argument given in the previous paragraph for Ag(Mﬁ) and TE(M 7 gives
dim Ag(Mﬁ) > 2. (We can do this since, all the results till the previous section are
valid for any level not divisible by p. This condition is satisfied by M as it divides
N which is coprime to p.) Thus, in any case, we see that dim AJ™? > 2. By
Lemma 21, we have a surjective map A} — AJM»). Hence, dim A} > 2 when
p is not a new I'-modular representation. Thus, Theorem 1 is proved for all the
['-modular representations p.

8. Proof of Theorem 3

Theorem 22 (Bockle, Diamond—Flach—-Guo, Gouvéa—Mazur, Kisin). Under the
hypotheses of Theorem 3, the natural map R; — TEI(N ) is an isomorphism between
local rings of dimension 4.

Proof. If p is a I';(N)-modular representation which also satisfies the hypotheses
of Theorem 3, then mimicking the proof of Theorem 18 of [BK] gives the result
of the theorem. We can mimic the argument since, under all these assumptions,
the infinite fern argument of Gouvéa—Mazur and [Bockle 2001, Theorems 2.8, 3.1
and 3.9; Diamond 1996, Theorem 1.1; Diamond et al. 2004, Theorem 3.6; Kisin
2004, Main Theorem], which are the key ingredients of the proof of Theorem 18 of
[BK], hold. Note that the Hecke algebra appearing in [Bockle 2001, Theorem 3.9]
is of a higher level N’ such that N| N’ and N and N’ have the same prime factors
(see the discussion after [Bockle 2001, Theorem 2.7] for more details). But the
hypotheses of Theorem 3, along with [Carayol 1989, Proposition 2], ensure that all
eigenforms of level N’ lifting /5 arise from newforms of level dividing N, which
means that the natural restriction map TH!™) — TH™) is an isomorphism. [

Lemma 23. Under the hypotheses of Theorem 3, the algebra TEI(N ) is flat over A
for the structure of A-algebra on TEI(N) defined at the end of Section 3.2.

Proof. The proof is similar to that of Lemma 19 of [BK], but we need to make a
few changes. Let p be a I'1(N)-modular representation. If the p-primary part of
(Z/NZ)* is [];Z] Z/ p Z, then the universal deformation ring of det g is

Raetp =AY, ..., Y1/ (P =1,y —1). 2)

Thus, if p does not divide ¢ (N), then Ryei5; = A. Using the same arguments as
used in the proof of [BK, Lemma 19], we get that R is flat over Rye( 5. Since Rge 5
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is finite and free over A, it is also flat over A. So, we get that R is flat over A. To
verify that the map A — R; — T5'™) is the same as the map A — T'™) given
at the end of Section 3.2, we first show that it is true for all the primes g € 1+ pZ,
which are 1 (mod N). This is shown in exactly the same way as it is showed for all
the primes g € 1+ pZ,, in the proof of [BK, Lemma 19]. Since we are choosing the
primes which are 1 (mod N), the nebentypus is trivial at those primes and hence, we
can use the argument used in the proof of [BK, Lemma 19] without modifications.
By Dirichlet’s theorem on primes in arithmetic progressions, we know that the set
of all such primes is dense in 1 + pZ,. Thus, by continuity, we see that the two
maps considered above are the same. Under the hypotheses of Theorem 3, the map
R; — T'™) is an isomorphism. Hence, we conclude that T}'™) is flat over A for
the A-algebra structure defined on T}'") at the end of Section 3.2. O

There is a surjective map Tg‘(N ) Ag‘(N ) whose kernel contains m ATgl(N ) by
Proposition 16. Hence, we get a surjective map T1'™) /mpTJ1 V) — ALYV Since
Tgl(N ) is flat over A by Lemma 23, it follows, from [Eisenbud 1995, Theorem 10.10],
that the Krull dimension of TEI(N)/mATgl(N) is equal to dim TEI(N) —2=4-2=2.
Thus, the Krull dimension of AEI(N ) is at most 2. But, by Theorem 1, the dimension
of Agl(N ) is at least 2. Hence, the dimension of Ag'(N ) is exactly 2. This concludes
the proof of first part of Theorem 3 for the I'{ (V) case.

Let us assume that p satisfies the hypothesis of Theorem 3 and is also new.
Then we have proved that Tg'(N )-Pf {5 an integral extension of Tg'(’v ) and Agl(N )-pf
is an integral extension of AT!™), By Proposition 16, we see that the kernel
of the natural map TTV-Pf . ATINLPE jg gy TTN)-PE - Thys, the kernel of the
natural map T5'™) — AT s contained in every prime ideal of T5')-P" contain-
ing mpT5')P. Hence, by the going-up theorem, the kernel is contained in every
prime ideal of T5'™) containing ma TL!™). Therefore, the natural surjective map
(TFF‘(N)/m TFI(N))“’d — (AF'(N))red is an isomorphism. Under the hypothesis of
Theorem 3, the surjective map R; — TFI(N ) is an isomorphism. Thus, from the proof
of Lemma 23, it follows that (RO)red is isomorphic to (R;/ma R yed (this follows
from the fact that the universal deformatlon ring of det p is given by Equation (2)
and hence, its maximal ideal is Rad(m,)) and the map R; — TF 1(N) considered
above induces an isomorphism (R)™ — (T5'™) /m, Tk (v ))red As seen before,
we have a surjective map (R9)™ — (ADiV)yred and this map factors through

(TEM /mpTEVyred | Since both the maps (R)™! — (T5* ™) /mp T M)yred an
(TFF‘(N)/m TFI(N))red — (AFI(N))red are 1s0m0rphlsms we see that (RO)red is iSo-
morphic to (Ag'(N )yred under the map mentioned above.

Now suppose p satisfies the hypotheses of Theorem 3 but is not new. Note
that, while proving the theorem for a new p of level N, we use the result that
Tgl(N )-Pf is an integral extension of Tg 1) to prove that the kernel of the surjective
map TH™ — AT s nilpotent modulo maTH'™, which in turn implies the
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isomorphism between (T5'™)/maT ™) and (AJ1))™d. This, along with the
isomorphism between R and T5'™), gives us the isomorphism between (R%)
and (AD1™))red n the present situation, we know that R and T5') are isomorphic.
So, to prove the theorem in the current case, it suffices to prove that Trg‘(N )-Pf is an
integral extension of TEI(N ). To prove this, we will first compare the Artin conductor
of p with the level N and then do a case by case analysis using the technique used
in the proof of Proposition 20. Let C be the Artin conductor of p. Recall that we
assume p to be semisimple. As there exists a newform of level N giving rise to p,
we see that N = C []r*(", where the product is over finitely many primes » and
v(r) <2 for every r (see [Carayol 1989, Proposition 2] and the discussion before
it). Note that the product may include some divisors of C.

Let £ be a prime dividing N. So, if f is an eigenform of level N lifting the system
of eigenvalues associated to p, then f comes from a newform g of level M such
that the highest power of £ dividing N /M is at most 2. Thus, f(z) = Ziz g(d;2),
where the d;’s are some divisors of N/M. Now we will analyze the action of U, on
f case by case to find a monic polynomial with coefficients in Tgl (V) satisfied by U,.

Case 1. £|M but £t N/M: In this case, £1d; for all i and hence, f is new at £.
Therefore, from the proof of Proposition 20, we see that U, Q¢(U,)(f) = 0, where
Q¢ (x) is the characteristic polynomial of a lift of Frob, in G, np, as considered in
the proof of Proposition 20.

Case 2. £|M and £ || N/M: In this case, for every i either £||d; or £1d; and g is an
eigenform for U,. So, U, f is an eigenform of level N /¢, which is also new at £ if
it is nonzero. So, by the same logic as in the previous case, Uy Q¢ (Uy) (U, f) = 0.

Case 3. ¢£| M and ¢*|N/M: In this case, for every i either £{d; or £ divides d; with
multiplicity at most 2 and g is an eigenform for U,. So, U 52 f is an eigenform of
level N/Z2 and it is new at £ when it is nonzero. Thus, we get U, Qg(Ug)(UZf) =0.

Case 4. £t M and €+1d; forall i: If £+ M and €1d, then it follows directly from the
description of the action of 7y and U, on the g-expansions of modular forms, along
with the assumption that g is an eigenform of level M, that U, stabilizes the subspace
of modular forms of level Md{ generated by g(dz) and g(£dz) (see [Bellaiche
2010, Lemma III1.7.2] and the discussion around it). Moreover, the characteristic
polynomial of U, over this subspace is (UE2 — tr pg (Froby) Uy + det pg (FI‘Obg)),
where p, is the p-adic Galois representation of Gg, ), attached to g. Thus, in this
case, we get that Q,(U,)(f) =0.

Case 5. £+ M and ¢ divides at least one of the d;’s: Note that, U;g(d;z) is an
eigenform of level N/¢ if €| d; and U2 g(d;z) is an eigenform of level N /€% if €2 |d;.
This means that for all i, one of g(d;z), Ugg(d;z) or Uezg(diz) is an eigenform
of level coprime to £. So, by case 4, we have Qe(U@)(Uzzg(diZ)) =0 foralli as
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both Q¢ (Ue)(Urg(diz)) =0 and Q¢ (Uy)(g(diz)) =0imply Q¢(Ue)(U7g(d;z)) =0.
Hence, we have Q@(Uz)(UZZf) =

From the previous paragraphs, we conclude that, if f is an eigenform of level
N lifting p, then (Ug’ 0.:(Uyp)) f = 0, which means UE Q¢(Up) =0. As Qp(x) is
a monic polynomial with coefficients in TL!™)| U, is integral over Tglw ) for all
primes £ dividing N. Therefore, TEI(N )Pl is an integral extension of TF‘(N ) and
AFl(N )-Pf is an integral extension of Ag'(N ). Now using the argument used for the
new case above, we get that (RO)red is isomorphic to (AFI(N )yred This concludes
the proof of the second part of Theorem 3 for the I'{ (V) case.

Let p be a I'g(N)-modular representation which satisfies the hypothesis of
Theorem 3. Then, by the arguments above, it follows that AT has Krull di-
mension 2 and (AL'M)red jg jsomorphic to (RO)red We have a natural surjective
map AFI(N ) AFO(N ). By Theorem 1, the Krull dimension of AL0V) s at least 2.
Hence, we conclude that the Krull dimension of AEO(N ) is exactly 2. If p does
not divide ¢ (IV), then as observed in the introduction, the natural surjective map
A;l(N ) AFO(N ) is an isomorphism. Hence, we get that (AFO(N )yred is isomorphic
to (Ro)red Thus Theorem 3 is proved in the ['g(N) case.

Remark. Let p be a I'{(N)-modular representation satisfying the hypothesis of
Theorem 3 and assume p {¢ (N). Moreover, assume that if £|| N and p |+ 1, then
det p(1;) # 1. Hence, from the proof of Proposition 20 and the proof of Theorem 1,
we see that the kernel of the map TH'™ — ATV is m) THV) As p¢(N), the
kernel of the surjective map R; — R is mAR As p satlsﬁes the hypotheses of
Theorem 3, we get that R; >~ TFI(N ) Hence, by combining all the observations
above, we see that the natural surjectlve map R0 — AF'(N ) is an isomorphism.
Thus, for this case, we get a stronger statement than Theorem 3.

9. Proof of Theorem 2

Throughout this section I means either T'o(N) or I'1(N) with p{¢ (N). Assume that
0 1s an unobstructed I'-modular representation. So, by assumption, the cotangent
space of R0 has dimension 2 and this implies that its Krull dimension is at most 2.
We have a surjectlve morphism R — AT The Krull dimension of AT is at least 2
by Theorem 1. Hence, the Krull dlmensmn of R0 is exactly 2 and 1t is a regular
local ring of dimension 2. Therefore, by [Elsenbud 1995, Proposition 10.16], it is
isomorphic to F[[x, y]l. Hence, the surjective map ﬁg — Ag is an isomorphism.
This proves Theorem 2 for the cases considered above.

If p is an unobstructed I'j(N)-modular representation and p|¢(N), then we
have a surjective morphism Rg — (Agl(N yred By Theorem 1, the Krull dimension
of Ag‘(N ), and hence also of (A7'*" yred s at least 2. Therefore, the argument used
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in the previous paragraph proves Theorem 2 in this case as well. This completes
the proof of Theorem 2 in all the cases.

10. Unobstructed modular representations

In this section, we study I';(N)-modular representations to determine if and when
they can be unobstructed. If p is irreducible, then p is unobstructed in our sense if
and only if H I(G@, Np» adoﬁ) has dimension 2 (see [BK, Section 1.4]). By Tate’s
global Euler characteristic formula, we see that dim H'(Gg, Np> ad’p) > 2 with
equality if and only if H?(Gq, Np> ad’p) = 0. If p does not divide ¢ (N), then this
is equivalent to H 2(6@, Np-adp) =0,asadp =1® ad’p and, by the global Euler
characteristic formula, H 2(G@,Np, 1) = 0. Thus, in this case, p is unobstructed in
our sense if and only if it is unobstructed in the sense of Mazur [1989, Section 1.6].
The study of such unobstructed representations is carried out in [Weston 2004;
2005] when p does not divide ¢ (N).

However, if p is irreducible and p divides ¢ (N), then the global Euler character-
istic formula tells us that H2(G@,Np, 1) # 0 and hence, Hz(G@,Np, adp) #0. Thus,
we see that p is always obstructed in the sense of Mazur if p|¢(N) (see [Weston
2004, Theorem 4.5]). However, it is not clear a priori if p can be unobstructed in our
sense when p|¢(N). We devote most of this section to study the unobstructedness
of reducible and irreducible p’s when p|¢(N).

Throughout this section, we assume that p |¢ (N) unless otherwise stated. Note
that, as p{ N and p|¢(N), there exists at least one prime divisor £ of N such that
pl€—1,1e,£=1 (mod p). Let C be the category of local profinite F-algebras.
Let D; be the functor from C to Set of deformations of the pseudorepresentation
(tr p, det p) and Dg be its subfunctor of deformations with constant determinant.

Proposition 24. If p|¢(N), then every reducible I'{(N)-modular representation is
obstructed.

Proof. Let p be a reducible I'{(V)-modular representation. Up to a twist, p is of the
form 1@ x where x is an odd character of G,y taking values in . The character
X 1s odd because p is odd. By the main theorem of [Bellaiche 2012a], we have the
following exact sequence involving the tangent space of Dj:

0 — Tan(D; ® D,) 5N Tan(D;) — H' (Ga.np, x) ® H (Ganp, x~ ') = H*(Ganp, D

Here, D, and D; are the deformation functors of x and 1 as characters of Gg,np,
and i is the map which sends a pair of deformations (o, 8) of (x, 1) on F[e]/ (€2)
to the deformation @ + g of trp =1+ .

Let y be an element of H' (Ga,nps X)® H' (Ga,np» x 1) which is the image of
some deformation (¢, d) of (tr g, det 5) to F[€]/(€?). Thus, d is a deformation of
det p = x and hence, an element of Tan(D, ) C Tan(D1@® D, ). Thus, subtracting the
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image of this element under the map i from (¢, d) gives us an element of Tan(Dg)
whose image in HI(G@,N,,, xX)® HI(G@,N,,, x 1) is still y. Therefore, we have
an exact sequence:

0— Tan((D1®D,)°) > Tan(DY) — H' (Ga.np. OO H (Ganp, x 1) = H*(Gonp. D

Here, (D1 ® D, )0 is the subfunctor of D; @ D, parameterizing the deformations
(ax, B) of (1, x) such that a8 is constant.

Observe that, dim H'! (Ga,np, 1) =n+1, where n is the number of prime divisors
of N which are 1 mod p. Hence, dim Tan((D; & DX)O) =n+1. Since, i is an
injective map, we get dim Tan(Dg) > n+ 1. Thus, if n > 2, then dim Tan(Dg) > 3.
Hence, p is obstructed when n > 2, i.e., when there are at least two primes dividing
N which are 1 mod p.

Let us now assume that n = 1. Thus, there is a unique prime ¢ which divides
N and which is 1 mod p. In this case, dim H' (Ga,np» 1) =2 and by Tate’s global
Euler characteristic formula, dim H?(Gq, Np» 1) = 1. From the exact sequence
above, we get that

dim Tan(D?) > 24 dim H'(Gg np. x) dim H' (Ga np, x ') —2dim H*(Ga.np. D).

We shall distinguish between two cases:

First case. XlG@[ = 1: Note that a)plG@[ =1, since £ =1 (mod p).
If x # w,, then, by the Greenberg—Wiles version of Poitou-Tate duality [Wash-
ington 1997, Theorem 2], we get that

dim H'(Ga,np, x) = dim H'(Gay, xl6q,) —dim H(Ga,, xl6g,)
+dim H'(Ga,. xl6o,) —dim H*(Ga,, xlgq,)-
As =1 (mod p), dim H 1(G@l, 1) = 2. By the local Euler characteristic formula,
dim H'(Ga,. Xl6o,) —dim H’(Ga,. xl6y,) = 1 +dim H*(Ga,, xlq,) = 1.

Since, XlG@z =1, we see that dim HI(G@’N,,, X)=2—1+1=2.

If x = w,p, then, using the Kummer exact sequence, we get that a class in
Hl(G@,Np, w)) is represented by a cocycle of the form g — g(a)/a, with a € Q,
a? € Q and v, () = 0 for all primes ¢ { Np (See [Washington 1997, Section 1]
for more details). Hence, dim H'(Gg, Np» wp) =n', where n = number of distinct
prime factors of Np. Hence, dim H'(Gq,np, ®,) > 2. Since, x ~'|gq, = 1 as well,
the same argument gives us dim Hl(G@,Np, xH=>2.

Combining all the above calculations yields dim Tan(Dg) >24(12)2)—2(1) =4.
Hence, if n =1 and y lG@z =1, then p is obstructed.

Second case. x|Gq, # 11 AS XlGq, # 1, wp ® x # 1. Thus, H%(Gq,, x1Gq,) =0,
H*(Ga,, xl6e,) = H*(Ga, @) ® xlcq,) = 0 and hence, H'(Ga,, xlgq,) = 0.
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Similarly, we get that H! (Gay,» X ll(;@ ) = 0. Thus, the calculations done in the
first case do not imply that dim Tan(DO) > 2 which is required to prove that p is
obstructed.

Assume that p is unobstructed. So, the dimension of the tangent space of RO is 2.
By Theorem 1, its Krull dimension is at least 2. Hence, R0 is isomorphic to [F[[x v,
the power series ring in two variables. Let ("™, J""V) be the universal pseudorep-
resentation with constant determinant in characteristic p deforming (tr p, det p).

By [Bellaiche and Chenevier 2009, Theorem 1.4.4, Chapter 1],

p0 univ _ - : RQ B
Rﬁ[G@(]/(ker(t 0i¢(Gq,)) is a GMA of the form ( C’f’ R’O) ,
where B and C are finitely generated R -modules and the diagonal entries reduce
to 1 and x modulo the maximal ideal of R0 By [Bellaiche and Chenevier 2009,
Theorem 1.5.5, Chapter 1], we get 1n]ectlve maps (B/m R0 B)* — ExtG (X 1)
and (C/mRoC)* — ExtGQ (1, ). Since we have

H'(Ga,, xl6o,) = H'(Gay x ' og,) =0

it implies that ExtG (X 1) = ExtG@ (1, x) = 0 and hence, B = C = 0. Thus,
Funiv o i1(Gq,) =K1 + Ky, where k| and ko are characters of Gq, taking values in
(RO)* and are deformations of 1 and yx, respectively. Therefore, """V 5§, factors
through Gj‘QP , the abelianization of Gg,.

By local class field theory, G?QF’ =7 x 7. Let p° be the highest power of p
dividing £ — 1. Leta € Gab be the unique element of order p°. Since, a has order
p¢ and F[[x, y] does not have any nontrivial element of order p, it follows that
k1(a) =ka(a) = 1. Let b be a lift of a in Gg,. Hence, Y o, (b) = 2, ie., it is
constant. Hence, f o i;(b) = 2 for any deformation ¢ of tr o as a pseudocharacter
of Gq,np with constant determinant in characteristic p. But it is easy to construct
an explicit such deformation ¢ with ¢ oi,(b) # 2.

Indeed, to Construct such a deformation, first observe that the maximal pro-p
subgroup G@ Np of G"‘b QNp is Z/p°Z x Z,. Consider a deformation lToflasa
character of Gg y) to R = FlxTv] /(y” — 1) which maps Gab p — 14+ mpg in
the following way: the topological generator of Z,, is mapped to 1+ x and the
generator of Z/p°Z is mapped to y. The character x /1, which we will denote
by ¥, is a deformation of x. Let 5 = 1@ ¥. Thus, (tr 5, det §) is a deformation of
(tr p, det p) to R with constant determinant. We claim that tr(p o iz (b)) # 2.

To prove the claim, first consider the map i @b Gab Gg” Np induced from
i¢ by passing to the abelianizations of both the groups By class field theory,
Gj‘Ql? Np = [1Z;, where the product is taken over primes ¢ which divide N, p By the
local-global compatibility of class field theory, the Z; component of G@ Np> lies
in the image of Z; C Gg’e under the map i} b Thus, the unique element of Gg’ Np
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of order p¢ is iz‘b (a). Therefore,

w(goich)) =1G{" @) + X (@) =y+y".
If y + y~! =2, then it would imply (y — 1)> = 0. But this relation does not hold
in R. Hence, tr(p oi;(b)) # 2 and our claim is proved.
Thus, we get a contradiction to our hypothesis that o is unobstructed. Therefore,
in this case as well, p is obstructed.

Therefore, combining all the results above, we get that if p is a reducible I'{(N)-
modular representation and if p|¢ (N), then p is obstructed. U

Remark. Now suppose that p is a reducible I'j(N)-modular representation and p
does not divide ¢(N). Up to a twist, p = 1 @ x. If pt$(N), then

dim H'(Ggnp, 1) =1,

and Tate’s global Euler characteristic formula implies that H?(G g, np» 1) =0. The
exact sequence of [Bellaiche 2012a] considered on page 25 implies

dim Tan(DY) = 1 4+ dim H'(Ga np. x) dim H' (Ga,np, x ).

If x = w,, then by the Kummer theory argument above, it follows that the number
of distinct prime divisors of Np is dim H'(Gq, Np» @p) and hence, greater than 1.
Hence, if x = w), w, !, then dim Tan(Dg) > 2, so in this case p is obstructed. If
X # wp, a)pfl, then by the Greenberg—Wiles version of Poitou—Tate duality, we
get that
k+1<dim H (Ganp, x) <k+1+dimA(x 'w,)
and
K +1<dimH (Ganp, x7") <k +1+dim A (xw,),

where k is the number of prime divisors £ of N such that x |G@[ = a)p|(;@[, k' is
the number of prime divisors £ of N such that x! |G@z = a)plg@[, A(X_la)p) is
the part of the p-torsion subgroup of the class group of the totally real abelian
extension F of @ fixed by Ker(xflw,,) on which Gal(F/Q) acts by X*Ia)p and
A'(xw)) is the part of the p-torsion subgroup of the class group of the totally real

abelian extension F’ of Q fixed by Ker(xw,) on which Gal(F’/Q) acts by xw,,.

Proposition 25. Suppose p|¢p(N). Let p be an absolutely irreducible T'{(N)-
modular representation such that p|cq, is reducible for at least one prime € dividing
N which is 1 mod p. Then, p is obstructed.

Proof. Let p be an absolutely irreducible I'1(N)-modular representation. By
[Weston 2005, Lemma 2.5], we have

dimg H*(Ga,np, adp) = dimg 111" (G np, 0)p ® adp) + T np dime H(Gg,, 0, ® adp).



Structure of Hecke algebras of modular forms modulo p 29

Note that adp = 1 @ ad®p. By Tate’s global Euler characteristic formula, we get
that dimy H?(Gq, Np» 1) = n, where n = number of prime divisors of N which are
1 mod p. For a prime ¢, dimg HO(G@q, wp) is 1 if g is 1 mod p and 0, otherwise.
By removing the contributions of the trivial representation from both sides of the
formula above, we get

dimg H*(Go,np, ad’p) =dimg 11" (G, np, @, ®2ad’ 0)+ Zy v dimp H*(Ga, , 0, ®ad’p).

Now, let £ be a prime dividing N such that £ — 1 is divisible by p. Suppose that
ol Ga, i1s reducible. Thus, pl(;@ is an extension of a character y; by a character x,. If
X1 ;é X2, then, by Tate’s local Euler characterlstlc formula ExtG@ (x1, x2) =0. So,
PlGq, =X ® x2 and ad’plgy, = 1@ X127 @ 17" x2. As plL—1, 0,(Gg,) =1
and H° (Ga,rwp ® ® ad’p) = HO(G@E, ad’5) and in this case, both of them are
nonzero. Hence, if x| # x2, then, by the formula above, H*(Gg, Nps ad’p) # 0 and
0 is obstructed.

If X1 = x2 = x. then p|g,, is either x @ x or a nontrivial extension of x by itself.
If plGe, = x @ X, then clearly 1 C ad’p. If PlGa, is a nontrivial extension of x by
itself, then choose a basis of p such that p(Gq,) is upper triangular and identify
ado,b with the subspace of trace O matrices of M,([F). Then, Gq, acts trivially on
the subspace of ad’j generated by the element (8 (1)) Thus, 1 C ad’5 in this case
also. Therefore, if x; = 2, then

H'(Gq,, w, ®ad’p) = H(Gq,,ad’p) #0

and hence, by the formula above, H Z(G@, Np» ad® 0) # 0, which implies that p is
obstructed. This concludes the proof of Proposition 25. ]

We would like to determine the cases when the situation considered as above
would arise, i.e., when ,5|G@£ would be reducible. Note that, if f is an eigenform
of level N and py is the Galois representation attached to it, then we know all the
possible descriptions of pf|g,, for a prime £ dividing N. So, we will now analyze
all the possible descriptions of p¢|g,, for an eigenform f lifting p to determine
which of them will make p obstructed and when can they arise. This will give us
some conditions on p which will force it to be obstructed.

Let f be an eigenform of level N lifting p, £ be a prime dividing N which
is 1 mod p, py be the p-adic Galois representation attached to f and 7, be the
£-component of the automorphic representation associated to f. If m, is either
principal series or special, then by the local Langlands correspondence, we see
that 'OflG@z’ and hence '5|G@«’ is reducible (see Sections 3 and 5 of [Weston 2004]
for a similar analysis). This implies that p is obstructed. In particular, if £| N but
€24 N, then we know that 7y is either special or principal series (see [Carayol 1989,
Section 1.2]). If (p), the subspace of 5 on which I, acts trivially, is nonzero, then
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clearly p|gg, is reducible. If there exists an eigenform f of level M which lifts
o such that there exists at least one prime divisor £ of N which is 1 mod p and
which does not divide M, then p is unramified at £ and hence, Plcg, is reducible.
Therefore, in these cases, p is obstructed.

On the other hand, if w; is supercuspidal, then, as £ # 2, it follows, from
the local Langlands correspondence, that pf|g,, is induced from a character x
of Gg = Gal(Q;/K), where K is a quadratic extension of (0, and moreover,
pf|G@( is irreducible (see the proof of Proposition 3.2 of [Weston 2004]). Let
x° be the Gal(K /Qy)-conjugate character of x. So, prlg, >~ x ® x°. If PlGaq,
is reducible, then clearly ¥ = x?, where x and x° are the reductions of x and
x? in characteristic p, respectively. This means that y/x° factors through the
maximal abelian pro-p quotient of Gg. But it follows, from local class field theory
and the assumption that p |£ — 1, that the maximal abelian pro-p extension of K
is also abelian over Q. So, if x/x¢ factors through the maximal abelian pro-p
quotient of G, then it implies that p¢lg,, = Indggk x is reducible, contradicting
the hypothesis that it is irreducible. Thus, we see that if 7y is supercuspidal and
pl€—1, then PlGa, is not reducible. In summary we have:

Corollary 26. Suppose p|¢(N). Let p be an absolutely irreducible I'|(N)-modular
representation satisfying one of the following conditions:

(1) There exists at least one prime £ which is 1 mod p such that £|N and €*{ N.

(2) There exists an eigenform f of level M which lifts p such that there is at least
one prime divisor £ of N which is 1 mod p and which either does not divide M
or divides M with multiplicity 1.

(3) The subspace (P)' is nontrivial.
Then, p is obstructed.

The only case which remains to be considered is when '5|G@z is irreducible for
all the prime divisors £ of N which are 1 mod p. Let p be such a I'j(N)-modular
representation. In this case, HO(G@Z, wp ®ad0,5) = HO(G@[, adoﬁ) =0 for all such
primes £. Note that, if f is any eigenform which lifts p, then the local component
me of the automorphic representation associated to f is supercuspidal at all such
primes. The analysis of contributions coming from p and other prime divisors of N
in the formula above, which are not 1 mod p, is done in [Weston 2004, Sections 3-5;
2005, Section 3] to give conditions for vanishing of corresponding H?’s. We can
assume that those conditions hold as well so that we can ignore those primes. Note
that these conditions neither depend on each other nor put any restrictions on each
other. So assuming them together does not yield any immediate contradiction. Now,
moreover assume that o does not come from a weight 1 modular form. We need
this hypothesis to use the results of Section 3 of [Diamond et al. 2004]. We will
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analyze the only remaining group III' (Gg, Nps @p @ ad’5) in this case following
the approach of Weston [2004; 2005].

Let g be an eigenform such that p, is a minimally ramified lift of o (such a lift
does exist; see [Diamond et al. 2004, Section 3.2]). Hence, it is an eigenform of
level N and its weight k lies between 2 and p — 1. Let K be a finite extension
of Q,, generated by the eigenvalues of g, O be its ring of integers and m be its
maximal ideal. Denote by A, the module (K'/ )3 on which Go,np acts via ado,og.
We define Hé(G@, Ap,) as in [Diamond et al. 2004, Section 2.1] (see also [Weston
2005, Section 2.2]).

By [Diamond et al. 2004, Theorem 2.15], we get that

H}(Ga, pg) = H(Ga, pg(1)) =0,

where p, (1) is the Tate twist of p, and H}(G@, Pg), H}(G@, pg (1)) are the Bloch—
Kato Selmer groups defined as in Section 2.1 of [Diamond et al. 2004]. It follows,
from [Weston 2005, Lemma 2.6], that

dimg I (G g np, wp @ ad’p) < dimg H(Ga, Ap,)[ml,

where H},(Ga, A, )[m] is the m-torsion of H}(Gg, Ap,). Now, [Diamond et al.
2004, Theorem 3.7] implies that the length of Hé(G@, Ap,) 1s vm(ng@). Here, vy,
is the m-adic valuation and n? is the congruence ideal of g defined in [Diamond
et al. 2004, Section 1.7]. From the proof of [Weston 2005, Proposition 4.2], we see
that vm(n? ) > 0 if and only if m is a congruence prime for g, i.e., if there exists an
eigenform & which lifts p and which is not a Galois conjugate of g.

Let € be the nebentypus of g. Let i be a character of (Z/NZ)* whose order is a
power of p (there exists such a character as p |¢ (N)). Thus, € and 1€ have the same
reduction modulo m. Hence, from [Carayol 1989, Proposition 3], it follows that there
exists an eigenform /4 of level N and nebentypus e which lifts p. If 4 is a Galois
conjugate of g, then e ((Z/NZ)*) and yre((Z/N Z)*) will be Galois conjugates of
each other. Since, g is a minimal lift of p, the p-part of € ((Z/NZ)*) is trivial. But
the p-part of Yyre((Z/NZ)*) is nontrivial as i is a character of p-power order. So,
they can’t be Galois conjugates of each other. Therefore, g and & are not Galois
conjugates of each other. Thus, m is a congruence prime for g and H.(Gq, A pe) 7 0.
However, this does not ensure that IIT' (Ga,np, wp ® ado,b) is nonzero because we
do not know whether the injection Hll(G@,Np, w, ® adoﬁ) — Hé(G@, Ap)[m]
given in the proof of Lemma 2.6 of [Weston 2005], which we used in the last
paragraph, is an isomorphism, and in general it is very difficult to prove such a
result (see [Weston 2005, Lemma 2.6, Remark 2.7] and the discussion preceding
them for more details). But, based on the calculations above, we do expect that
' (Gg,np, wp ® ad’p) is nonzero.
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Let us consider the modular representations coming from a weight-1 modular
form. In the proposition below, we do not put the condition p|¢ (). For a number
field L with ring of integers O, we denote by A(L)[p] the p-torsion subgroup of
the class group of L and we let

*

(O o,
U(L) = ker((o oy (ll_g (Ozv)p>).

Proposition 27. Let p be a I'|(N)-modular representation coming from a regular
modular form f of weight 1 which has either RM or CM by F (see [Bellaiche and
Dimitrov 2016] for the definition of regular). Let H be the extension of Q) which is
fixed by Ker(ad®5). Moreover, assume the following conditions:

(1) If ¢|N and p|€+ 1, then £ does not stay inert in F.

(2) If ¢ is a prime divisor of N, then p |G@£ is irreducible.

(3) A(F)[p] =0 and Homg(A(H)|p], ad’p) =

(4) Homg (U(F), ad’p) = 0 and if F is imaginary, then Homg(U(H), ad’p) =

Then, p is unobstructed.

Proof. Note that, p = Indg;“iD 8, where F is a quadratic extension of @ which is either
real or imaginary and § : Gr — [* is a character, as it comes from a weight-1 form
which has RM or CM. Let Gal(F/Q) = G’ = {1, 0}. As f is a regular weight-1
eigenform, ,of|G@) = X1 x2, Where x; and yx, are distinct, unramified characters
from Gg, — (Qp)*. So, F and the fixed field H of Ker(ado,o) are unramified at p.
From the hypothes1s (2) above, we see that all prime divisors £ of N are either inert
or ramified in F.

Thus, from above, it follows that ad’p = € ® Indg;‘f X, Where € is the character
of Gg of order 2 corresponding to F and y =§6/6°. So

H'(Ga.np, ad’p) = H' (Ga,np, € ® H' (Ga,np, IndS2 ).

We will analyze each part of this sum separately. We mostly follow the notation of
[Bellaiche and Dimitrov 2016].

First, we will look at the group H'(Gg, Np» €) appearing above. From the
inflation-restriction sequence, we see that H 1 (Ga,np, €) = (Hom(Gr s, F) ® e)G/,
where S is the set of the places of F dividing Np. From class field theory and the
hypothesis (3) above, we have the following exact sequence of G’-modules:

0— Hom(GF s F)— Hom< 1_[ OF, [F) — Hom(O7%, ).
v|Np
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Now, by hypothesis (1), we have:

Hom( I1 9. [F) :Hom(l_[(’)pv IT [Tz/e-nz. [F)

v|Np v|p LIN wvl|L
ple—1

as F is unramified at p. The factors in the second product come from places of
F dividing such primes and, since £ is either inert or ramified in F, each factor
appears only once. Observe that G’ acts trivially on each of them. Thus,

(Hom< I][]z/e-nz [F)@e)G/:O.

¢IN w|e
ple—1

If F is imaginary, then O} is a finite group and its order is not divisible by p, as
p is unramified in F. Thus, U(E) = 0} /(0%)? =0. Hence, in this case, it follows
that (Hom(]_[vlp Or, . F) ® e)G has dimension 1. Therefore, H'(Gg, np, €) has
dimension 1. If F is real, then the free part of OF has rank 1 and the torsion part
is {1, —1}. Suppose p is not split in F. Then, it is inert in F' and the fundamental
unit of F generates the residue field of OF, over [,. Suppose p is split in F. Then
[, » OF, = Zp x Z), and the action of G’ switches them. Moreover, under the
G'-equivariant diagonal embedding O} — ]—[v‘ » OF, = 2}, x Z},, the fundamental
unit of ' gets mapped to an element of the form (a, —a) as the nontrivial element
of G’ sends the unit to its inverse. So, it follows, from the discussion above and
hypothesis (4), that in both the cases, G’ acts trivially on the subspace of elements
of Hom([T,,,, O, F) which vanish on O%. An element of Hom(G% ¢, F) vanishes
on the fundamental unit. Thus, combining this and the previous paragraph, we see
that G’ acts trivially on Hom(Gi‘ptf s> 1), when F is totally real. It follows that, in
this case, H'(Gg,np, €) = (Hom(G¥ s, F) ® e)G’ =0.

We shall now analyze the second factor appearing in the sum above. Let H be
the extension of @ which is fixed by Ker(ad’p). Thus, G = Gal(H/Q) is a dihedral
group Dy, which is nonabelian and IndgfD X 1s an irreducible representation of G.
By the arguments used above, we get that

H'(Ga,np, Indg2 x) = (H'(Gu,s, F) ® Indg2 x)€.

By hypothesis (3), H'(Gy.s, F) is the subspace of Hom(]_[lep Og. » [F) vanishing
on 0% . Since H is unramified at p, we get

Hom( I1 9. [F) =H0m<1_[OHU [[z/rz. [F),

v|Np vlp
where the last product is taken over all places v of H which divide N and whose
residue fields have p-th roots of unity. If £ is a such a prime, then the G-submodule
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Hom([T,,,Z/pZ, F) of the module above is isomorphic to Ind$ o, where Dy is the
image of Gg, under ad’p and o is the character by which it acts on the p-th roots of
unity. Note that, by hypothesis (2) above, Indg;‘;1 X is an irreducible representation
of D, forevery £|N. So, (Hom(]_[ Z]pZ, [F) ®Indg£’ X)G =0.

Assume F is imaginary. As H is unramified at p and pt|G|, we see, using
arguments from [Bellaiche and Dimitrov 2016, Section 3.2], that every irreducible
representation of G occurs in Hom(G;R ¢» ) with multiplicity at least 1. The addi-
tional multiplicities would only arise from U(H). But, from hypothesis (4) above,
we have Homg (U (H), Indg;‘{D X) = 0. Therefore, Indg;f_D X occurs in Hom(G?}’ ¢ B
with multiplicity 1. Hence, (Hom(Gps, F) ® Ind$e x)¢ = H'(Gg,np, Ind% x)
has dimension 1. If F is real, then Indgff x is totally odd. Thus, from the arguments
in [Bellaiche and Dimitrov 2016, Section 3.2], we see that Indgf X occurs in the
subspace of Hom(]_[v‘ » O;’;U, [F) vanishing on O}, with multiplicity 2. Note that,
we do not need to consider contribution from U(H) as Indg;‘ﬁD x does not occur
in Oy, /(O7F;)?. Therefore, combining this with the previous paragraph, we see that
Indg;f:D X occurs in Hom(G;‘f g» ) with multiplicity 2. Hence, H ! (Ga,np» Indgg X)
has dimension 2.

Combining these results we see that if p satisfies the conditions of the proposition,
then H' (G, Np> ad®5) has dimension 2. Hence, 5 is unobstructed in our sense. [J

Remark. (1) The hypotheses (3) and (4) are similar to those used by Mazur [1989,
Sections 1.12 and 1.13], where he studies unobstructed representations unram-
ified outside a single prime. Note that, for a number field L, A(L(¢,))[p]=0
implies that U(L) = 0 (see the remark after Proposition 1 of [Boston 1990]).

(2) We know that G’ = Gal(F/Q) acts on A(F)[p] by the character €. So, if
A(F)[p] # 0, then it would contribute to H' (Ga,np, €) in addition to what
we have calculated above. Hence, in this case, we have dim H' (Ga,np,€) > 1.
Thus, considering the above calculations, we see that dim H' (G, Nps ad’p) > 2.
Hence, if A(F)[p] # 0, then p will be obstructed.

(3) Suppose f is a weight-1 form which has RM or CM by F, and there exists a
prime £ such that £| N and p|£ + 1. Moreover, assume that £ stays inert in F.
Thus, using the notations of the proof above, we see that

Hom( I o:. [F> =Hom<H0Fv [T []z/e-vz]]z/rz. [F),

v|Np v|p LN e

ple—1
where the last product is taken over all the prime divisors £ of N which stay
inert in F and which are —1 mod p. Observe that, they are isomorphic to €
as G’ representations. The projection of the image of O}, in ]_[v‘ Np OF, onto
this product is also trivial as F is unramified at p. Hence, this product also
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contributes to H!(Gg, Np» €), making it bigger. All the other calculations at
the places above p in the proof above still remain valid. As a result, we see
that dim H'(Gq, Np» ad’p) > 2. Hence, in this case, g is obstructed.

Note that, the assumptions in the proposition above do not yield any immediate
contradiction. Thus, we see that our notion of unobstructedness is weaker than
Mazur’s notion of unobstructedness.

Proposition 28. Let p be a modular representation satisfying the hypotheses of
Proposition 27 and suppose p|¢(N). Let the p-primary part of (Z/NZ)* be
Z/pZ X ---x Z]prZ. Assume moreover that:

(1) p is a new I'{(N)-modular representation.

(2) For all primes ¢ dividing N such that p|€*> — 1, Uy acts like 0 on all newforms
of level N which lift p.

Then, the corresponding local component A of the mod p Hecke algebra is isomor-
phic to Fllx, yIly1, ..., yal/ O s ..o, y8 ) and thus, is not reduced.

Proof. As p satisfies the hypotheses of Proposition 27, it satisfies the hypotheses
of Theorem 3 as well. Indeed, p comes from a regular, weight-1 form and is
unramified at p. So, plGa, is of the required form. If £ is a prime divisor of N
which is 1 mod p, then it splits completely in Q(¢,). As plgg, is irreducible,
/5|G@<c,,> is also irreducible. Therefore, from the results of Bockle [2001], Diamond
[1996], Diamond et al. [2004], and Kisin [2004], it follows that the surjective
map R; — TEI(N ) is an isomorphism. The hypothesis (2) along with the proof
of Proposition 20 and the proof of Theorem 1 implies that the kernel of the
surjective map TN — AT >eis mp TN ); By Proposition 27, we see that
R; ~Olx,y, Tz, - .., Zn]/(Z‘f1 —1,...,z7" —1). Combining all of the above
gives us that A; ~ F[[x, yll[y1, .. ., yn]/(y{’g' ™. O
Remark. (1) If the first condition of Proposition 28 is satisfied, then to check the

second condition, it is sufficient, by Lemma 19, to check that p|, is irreducible.

(2) Suppose p is a I'1(N)-modular representation which satisfies the two assump-
tions of Proposition 28 and the assumptions of Theorem 3. Moreover, assume
pl¢(N) and let the p-primary part of (Z/NZ)* be Z/p“'Z x --- x Z]p“Z.
Then, from the proof above, we see that AT'™ ~ R;/(r, T). Now, as p #2,

Rﬁ:Rg[T»)’l,---»)’n]/(y{)]_1»---,)’:%_1),

where Rg is the universal deformation ring of p with constant determinant (see
the proof of [BK, Ie,emma 1%] for more details). So, AEI(N ) is isomorphic to
Rg [z1,..., Zn]/(Zf 4 ") and hence, is not reduced. So, the assumptions
of Proposition 27 are not necessary to get nonreduced Hecke algebras but are
necessary to find the precise structure of the Hecke algebra.
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We now give some examples of nonreduced Hecke algebras following the pre-
vious remark. Let £ be a prime such that p|f — 1 and £ is 3 modulo 4. Let
K = Q(v/—¢) and let hg be its class number. If p splits in K, then define n to
be the smallest integer such that p is not split in the anticyclotomic extension of
degree £" of K and ¢"{hg. Otherwise, define it to be the smallest integer such
that €" { hg. Let x : Gk — Zy — Z/€"Z — F*, where the first map is given by the
anticyclotomic Z, extension of K, and the last map is the inclusion of the £"*-th roots
of unity into F*. Now, we see, from a classical theorem of Hecke, that p= Indgg X
on Gq, ¢ is an odd, irreducible representation coming from a weight-1 newform f
of level £2"+3,

As x? = x~ " and x has odd order, they are distinct characters of Gx and they
only coincide on ker(y). Now, £ ramifies in K and the prime v’ of K lying above
¢ ramifies in the anticyclotomic extension of K of degree ¢" as £"thg. As a
consequence, we see that p|;, and p|g,, are irreducible. As £ splits completely in
Q(¢&p), it follows that :5|G@<¢,,> is also irreducible. If p is inert in K, then clearly
/5|G@,, is a sum of distinct characters as p is unramified in K. If p is split in K,
then for a place v of K above p, x and x¢ are distinct characters of Gg,, as x
has odd order and p does not split completely in the anticyclotomic extension of
K of degree £". As the anticyclotomic extension of K is unramified at p, we see
that plGa, is not a direct sum of characters which are cyclotomic twists of each
other. Therefore, 5 is a new I'; (£2"+3)-modular representation satisfying the two
conditions of Proposition 28 and the conditions of Theorem 3. Hence, from the
remark above, it follows that Ag‘(£2"+3) 18 not reduced.
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