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We determine local test vectors for Waldspurger functionals for GL2, in the
case where both the representation of GL2 and the character of the degree two
extension are ramified, with certain restrictions. We use this to obtain an explicit
version of Waldspurger’s formula relating twisted central L-values of automorphic
representations on GL2 with certain toric period integrals. As a consequence, we
generalize an average value formula of Feigon and Whitehouse, and obtain some
nonvanishing results.
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1. Introduction

1A. Global results. Let F be a number field and π be a cuspidal automorphic
representation of GL2(AF ). Let L/F be a quadratic extension and � an idèle class
character of L× such that �|A×F = ωπ , the central character of π . We are interested
in the central value of the L-function

L(s, πL ⊗�)= L(s, π × θ�),

where πL denotes the base change of π to GL2(AL) and θ� denotes the theta series
on GL2(AF ) associated to �. Note this contains the following interesting special
case: when � is trivial, then L(s, πL ⊗�)= L(s, π)L(s, π ⊗ η), where η = ηL/F

denotes the quadratic character of A×F associated to L via class field theory. Assume
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that ωπ is trivial or η. Then ε
( 1

2 , πL ⊗�
)
=±1, even though πL ⊗� need not be

self-dual (cf. [Jacquet and Chen 2001]). In the case where ε
( 1

2 , πL ⊗�
)
=−1, the

central value L
(1

2 , πL ⊗�
)
= 0. Henceforth, assume ε

( 1
2 , πL ⊗�

)
=+1.

Let D be a quaternion algebra over F containing L such that π has a Jacquet–
Langlands transfer to an automorphic representation π ′ of D×(AF ). We allow for
the possibility that D = M2(F) and π ′ = π , so there is always at least one such π ′.
Embed L× as a torus T inside D×. The period integrals we are interested in are

PD(φ) =

∫
Z(AF )T (F)\T (AF )

φ(t)�−1(t) dt, (1-1)

where φ ∈ π ′ and Z denotes the center of D× (with dt as in Section 7). If F =Q

and L is imaginary quadratic, then this period simplifies to a finite sum over certain
“CM points”.

When ωπ is trivial, a beautiful theorem of Waldspurger [1985] states that

|PD(φ)|
2

(φ, φ)
= ζ(2)

∏
v

αv(L , �, φ)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
(1-2)

for any φ ∈ π ′. Here ( · , · ) is a certain inner product on π ′ and the factors
αv(L , �, φ) are certain local integrals which equal 1 at almost all places. For
all but one D, PD ≡ 0 for local reasons. Namely, the linear functional PD factors
into a product of local linear functionals PD,v . There is a unique D ⊃ L for which
all PD,v 6= 0, and this D is determined by local epsilon factors in work of Tunnell
[1983] and Saito [1993]. Fixing this D, one now gets the nonvanishing criterion:
L
( 1

2 , πL ⊗�
)
6= 0 if and only if PD 6= 0.

It is useful to have a more explicit version of this formula for certain applications
like equidistribution, nonvanishing, subconvexity, p-adic L-functions, etc.; see, e.g.,
[Popa 2006; Martin and Whitehouse 2009; Feigon and Whitehouse 2009; Hsieh
2014]. In particular, it is not even obvious from (1-2) that L

(1
2 , πL ⊗�

)
≥ 0, as

predicted by the grand Riemann hypothesis. This positivity result was subsequently
shown by Jacquet and Chen [2001] using a trace formula identity.

Explicit versions of (1-2) have been considered by many authors under various
assumptions; see, e.g., [Gross 1987; Zhang 2001; Xue 2006; Popa 2006; Martin
and Whitehouse 2009; Murase 2010; Hida 2010; Hsieh 2014]. These explicit
formulas rely on picking out a suitable test vector φ in (1-2). All of these works
rely on the theta correspondence (as did [Waldspurger 1985]), except for [Martin
and Whitehouse 2009], which uses the trace formula identity from [Jacquet and
Chen 2001]. The only assumption in [Martin and Whitehouse 2009] is that π and
� have disjoint ramification, i.e., for any finite place v of F, π and � are not both
ramified at v. In this case one has a natural choice for the test vector φ from the
work of Gross and Prasad [1991] on local test vectors. In [Martin and Whitehouse
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2009], it was noted that this restriction of disjoint ramification is not essential to
the method and could be removed if one had a reasonable way to define the test
vector φ in a more general setting.

The main local results of this paper (see Theorems 1.6 and 1.7 below) are the
existence and characterization of suitable local test vectors in the case of joint
ramification under certain conditions. This allows us to extend the formula of
[Martin and Whitehouse 2009] to these cases. To be precise, for a finite place v
of F, let c(πv) be the (exponent of) the conductor of πv and c(�v) be the (exponent
of) the “F-conductor” of � (see (2-19)). Then we make the following assumption:

If v <∞ is inert in L and c(πv), c(�v) > 0, then we have c(�v)≥ c(πv). (1-3)

In particular, if the level N =
∏
v<∞$

c(πv)
v of π is squarefree, there is no condition

on�. We note that a consequence of our determination of test vectors is that assump-
tion (1-3) implies that D and � do not have joint ramification at any finite place.

Theorems 1.6 and 1.7 below give suitable local test vectors φv under assumption
(1-3), which yields the desired global test vector φ. Here suitable essentially means
that the local test vectors can be described purely in terms of ramification data, and
do not require more refined information about local representations. This is crucial
for global applications. Note that it is not even a priori clear if suitable test vectors
should exist in general.

Let us now describe the L-value formula more precisely. Denote the abso-
lute value of the discriminants of F and L by 1 and 1L . Let e(Lv/Fv) be the
ramification degree of Lv/Fv. Let Sinert be the set of places of F inert in L .
Let S(π) be the set of finite places of F where π is ramified, S(�) the set of
finite places of F where � is ramified, S1(π) the set of places in S(π) where
c(πv) = 1 and S2(π) the set of places in S(π) where c(πv) ≥ 2. Finally, let
S0(π)= S2(π)∪{v ∈ S1(π) : Lv/Fv is ramified and �v is unramified}, and denote
by c(�) the absolute norm of the conductor of �.

Theorem 1.1. Let π be a cuspidal automorphic representation of GL2(AF ) with
trivial central character and� a character of A×L /L×A×F . Assume ε

( 1
2 , πL⊗�

)
=1

and that π and� satisfy (1-3). Then, with the test vector φ∈π ′ defined in Section 7A
and archimedean factors Cv(L , π,�) defined in Section 7B, we have

|PD(φ)|
2

(φ, φ)

=
1
2

√
1

c(�)1L
L S(�)(1, η)L S(π)∪S(�)(1, η)L S(π)∩S(�)(1, 1F )L S(π)(2, 1F )

×

∏
v∈S(π)∩S(�)c

e(Lv/Fv)
∏
v|∞

Cv(L , π,�) ·
L S0(π)

( 1
2 , πL ⊗�

)
L S0(π)(1, π,Ad)

.
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Here ( · , · ) is the standard inner product on π ′ with respect to the measure on
D×(AF ) which is the product of local Tamagawa measures.

After our paper was originally completed, the paper [Cai et al. 2014] appeared,
which gives a similar formula using a less explicit choice of test vector.

Note φ is specified up to a scalar, and the left-hand side is invariant under scaling.
As in [Martin and Whitehouse 2009, Theorem 4.2], one can rewrite this formula
using the Petersson norm of a normalized newform in π instead of L(1, π,Ad).
See (8-19) for when π corresponds to a holomorphic Hilbert modular form. If
F =Q and π corresponds to a holomorphic new form of squarefree level N with
N | c(�), then the above formula simplifies considerably:

Corollary 1.2. Let f be a normalized holomorphic modular eigenform of weight k
and squarefree level N . Let S be the set of primes p | N which split in L. Let � be
any ideal class character of L such that N | c(�) and ε

( 1
2 , f ×�

)
= 1. Then

|PD(φ)|
2

(φ, φ)
=

C∞(L , f, �)
2k+1
√

c(�)1L
L S(�)(1, η)2

∏
p|N

(1+ p−1)εp ×
L S
( 1

2 , f ×�
)

〈 f, f 〉
,

where εp is +1 if p splits in L and −1 otherwise, and 〈 · , · 〉 is the Petersson inner
product.

In the setting of the corollary, C∞(L , f, �) is also easier to describe. If L is real
quadratic, then C∞(L , f, �)= 2k . If L is imaginary quadratic, it is described by
beta functions, and if we also assume �∞ is trivial, then

C∞(L , f, �)=

( 1
2 k− 1

)
!
2

π(k− 1)!
.

We prove Theorem 1.1 by computing local spectral distributions appearing in the
trace formula identity of [Jacquet and Chen 2001], just as in [Martin and Whitehouse
2009]. For simplicity, we only do this when ωπ = 1, though the case of ωπ = η
should be similar. (One needs either ωπ = 1 or ωπ = η to use the identity from
[Jacquet and Chen 2001].) Note this formula is considerably more general than the
one in [Martin and Whitehouse 2009] (for trivial central character) and one expects
that it should generalize the applications of the previously mentioned formulas.
For instance, we obtain the following generalization of an average value result of
Feigon and Whitehouse [2009, Theorem 1.1] by computing the geometric side of a
certain trace formula.

Theorem 1.3. Let F be a totally real number field with d = [F :Q]. Let F(N, 2k)
be the set of cuspidal automorphic representations of GL2(AF ) associated to the
holomorphic Hilbert modular eigen newforms of weight 2k and level N, with
k = (k1, . . . , kd) 6= (1, . . . , 1) and N squarefree. Let L be a totally imaginary
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quadratic extension of F, which is inert and unramified above each place p | N.
Fix a unitary character � of A×L /L×A×F , and let C be the norm of its conductor in
F. Suppose N =N0N1 and C = C0N1 with N0, N1 and C0 all coprime. Assume
N1 is odd, and that the number of primes dividing N0 has the same parity as d.
Further assume that for each infinite place v of F, we have kv > |mv|, where
�v(z)= (z/z̄)mv .

Then, if
|N0|> dL/F (|C0|/|N1|)

hF ,

where hF is the class number of F, we have

∏
v|∞

(
2kv − 2

kv −mv − 1

)∑
N′

∑
π∈F(N′,2k)

L
( 1

2 , πL ⊗�
)

L S(N)(1, π,Ad)

= 22−d13/2
|N|L S(N0)(2, 1F )L S(N1)(1, 1F )L S(C0)(1, η),

where N′ runs over ideals dividing N which are divisible by N0, and S(J) denotes
the set of all primes dividing J.

The parity condition guarantees the sign ε
( 1

2 , πL ⊗�
)

of the relevant functional
equation is +1 for π ∈ F(N, k). Without a condition to the effect that N (or N0)
is large, one does not expect a nice explicit formula, but rather just an asymptotic
in N, which miraculously stabilizes for N large (cf. [Michel and Ramakrishnan
2012; Feigon and Whitehouse 2009]). Hence the condition above on the size of N0

means we are in the stable range. The other assumptions in the theorem allow for
simplifications of the trace formula we will use, but are not necessary to express
such averages as the geometric side of an appropriate trace formula.

Theorem 1.3 specializes to [Feigon and Whitehouse 2009, Theorem 1.1] in the
case that N and C are coprime, i.e., N=N0. This case N=N0 is particularly nice
as one can transfer the problem to a trace formula computation on a quaternion
algebra that only picks up forms of exact level N. Additionally, one can rewrite the
formula in terms of the complete adjoint L-value at 1, as in [Feigon and Whitehouse
2009]. However, this is impossible to manage in general, and the primary difficulty
in going from Theorem 1.1 to Theorem 1.3 is to determine the contribution to the
spectral side of the relevant trace formula coming from the oldforms. (In general,
it is not easy to isolate the newforms in such formulas — see, e.g., [Knightly and
Li 2010] or [Nelson 2013] — and the issue for us is that the contribution from the
oldforms is now weighted by local adjoint L-factors.)

Still, one can use the above formula together with formulas for smaller levels
to get both explicit bounds and asymptotics for average values over just the forms
of exact level N. We do this in the case N1 is prime. This immediately implies
L
( 1

2 , πL ⊗�
)
6= 0 for some πL ∈ F(N, 2k).
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Theorem 1.4. With assumptions as in Theorem 1.3, and further assuming that
N1 = p is an odd prime and |N0|> dL/F |C|

hF , we have

|p| −
1

1− 2|p|−1+ |p|−2 ≤6(N)≤ |p| −
1

1+ 2|p|−1+ |p|−2 ,

where 6(N) is equal to

2d−2

13/2|N0|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η)

×

∏
v|∞

(
2kv − 2

kv −mv − 1

) ∑
π∈F(N,2k)

L
(1

2 , πL ⊗�
)

L(1, π,Ad)
.

In particular,6(N)∼|p|−1+O(|p|−1) as |N0p|→∞ such that |N0|>dL/F |C|
hF .

Furthermore, with p fixed, we have

lim
|N0|→∞

6(N)= |p| − 1.

In both of these asymptotics, N0 travels along squarefree ideals coprime to C which
are products of unramified primes and satisfy our previous parity assumption.

Note the above theorem implies the nonvanishing of 6(N), and therefore at least
one of these central values, provided |p|> 1

2(3+
√

5) and |N0|> dL/F |C|
hF , or p

is arbitrary and |N0| is sufficiently large.
We remark that the bounds come from having to estimate the p-th Hecke eigen-

values {ap, a−1
p } of the oldforms of level N0. The latter asymptotic comes from an

asymptotic for a weighted analogue of Theorem 1.3 in the case of disjoint ramifica-
tion (see [Feigon and Whitehouse 2009, Theorem 1.2]) to pick off the contribution
from the oldforms. One should be able to prove a version of Theorem 1.3 involving
weighting by Hecke eigenvalues (namely, extend [Feigon and Whitehouse 2009,
Theorem 6.1] to the case of joint ramification) whereby one could inductively
obtain asymptotics for the average values 6(N) in the case where gcd(N,C) has
an arbitrary number of prime factors. (We remark Sugiyama and Tsuzuki [2016]
have recently obtained asymptotics for weighted averages using a different relative
trace formula approach when � is trivial, but N need not be squarefree.)

Note that in previous studies of such averages, N is typically required to be
prime (e.g., [Ramakrishnan and Rogawski 2005]) or have an odd number of prime
factors (e.g., [Feigon and Whitehouse 2009]) to force the sign of the functional
equation to be +1 if, say, d is odd. However, allowing for joint ramification we
can treat levels N with an arbitrary number of prime divisors, though we do not
always get an exact formula in this situation.

Lastly, we include another application of Theorem 1.3 when N = N0 (i.e.,
[Feigon and Whitehouse 2009, Theorem 1.1]). Here, having an exact formula for
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the average value over newforms allows us to deduce the nonvanishing mod p of
the algebraic part Lalg

( 1
2 , πL ⊗�

)
(see (8-18)) of the central value for p suitably

large.

Theorem 1.5. With notation and assumptions as in Theorem 1.3, suppose that
|N| > dL/F |C|

hF , that N is coprime to C, and that mv is even for each v | ∞. Let
p be an odd rational prime satisfying p > q + 1 for all primes q ∈ S(�), and P a
prime of Q above p. Then there exists π ∈ F(N, 2k) such that

Lalg( 1
2 , πL ⊗�

)
6≡ 0 mod P.

This generalizes a theorem of Michel and Ramakrishnan [2012] on the case
F =Q and N= N is prime. The parity condition on mv ensures that � is algebraic
and that the above central value is critical.

As in [Feigon and Whitehouse 2009], one should be able to use Theorem 1.1 to
get estimates on more general averages of L-values, and apply this to subconvexity
and equidistribution problems, but we do not address this here. Theorem 1.1 has also
been used in very recent works of Hamieh [2014] on valuations of Rankin–Selberg
L-values in anticyclotomic towers and Van Order [2014] on constructing p-adic
L-functions.

We remark that similar L-value formulas have been recently proven in certain
cases of joint ramification with L totally imaginary, namely in Hida [2010] for F=Q

and in Hsieh [2014] for Hilbert modular forms of squarefree level (these works
have some additional conditions, but they do not assume trivial central character).
In general, when the joint ramification does not satisfy (1-3), this problem appears
considerably more complicated.

1B. Local results. Now, we pass to the local situation and discuss the local test
vectors in some detail.

Let F be a p-adic field and L a quadratic separable extension of F (either a
field or F ⊕ F). We may then embed L× as a torus T (F) of GL2(F). All such
embeddings are conjugate in GL2(F), so the choice of embedding will be merely
one of convenience. Consider an (infinite-dimensional) irreducible admissible
representation π of GL2(F). We do not assume that the central character ωπ is
trivial. A basic question to ask is the following: which characters of T (F) appear as
quotients in π |T (F)? Let� be a character of T (F). If� is an irreducible constituent
of π |T (F), i.e., if

HomT (F)(π,�) 6= 0,

then we must have �|Z(F) = ωπ , where Z denotes the center of GL2. Hence we
will assume �|Z(F) = ωπ .

Let D be the unique quaternion division algebra over F, and let π ′ be the
Jacquet–Langlands transfer to D×(F) when it exists. If π ′ exists and T (F) embeds
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into D×(F), put A(π)= {π, π ′}. Otherwise, put A(π)= {π}. From [Waldspurger
1985], one knows that ∑

τ∈A(π)

dimC HomT (F)(τ,�)= 1.

In other words, � is a constituent of π |T (F) if and only if it does not occur in that
of π ′|T (F) (when this makes sense), and it occurs with multiplicity at most one.
Further, Tunnell [1983] and Saito [1993] gave a local ε-factor criterion:

dimC HomT (F)(π,�)=
1
2

(
1+ ε

( 1
2 , πL ⊗�

)
ωπ (−1)

)
.

Applications to a global L-value formula (discussed in Section 1A) require
finer information than this. Namely, suppose dimC HomT (F)(π,�) = 1 and let
` ∈ HomT (F)(π,�) be nonzero. Then one would like to have a test vector for `,
i.e., an element φ ∈ π such that `(φ) 6= 0. For the applications, we will need φ to
satisfy two further conditions:

(i) φ ∈ V K
π for a compact subgroup K of GL2(F) with dim(V K

π )= 1.

(ii) The compact subgroup K above depends only on the ramification data attached
to π and �.

Let us note that, if ` 6= 0, then some translate of the new vector of π is always a test
vector for `. Hence, we can always find a test vector satisfying the first condition
above. Under some restriction on the conductors of π and �, we will obtain a test
vector satisfying the second condition as well.

Specifically, let o be the ring of integers of F, p its maximal ideal and $
a uniformizer. Let c(π) be the exponent of the conductor of π as defined in
Section 2A, and let

K1(p
c(π))=

{[ a b
c d

]
∈ GL2(o) : c ∈ pc(π), d ∈ 1+ pc(π)

}
.

Let c(�) be the conductor of � as defined in (2-19). Gross and Prasad [1991]
determine a test vector when c(π)= 0 (π is unramified) or c(�)= 0 (� is unrami-
fied). In particular, when c(π)= 0 so A(π)= {π}, the vector they obtain can be
described as a translate of the new vector.

We will now describe test vectors when π and � are both ramified. We will
distinguish the split and field case.

1B1. The split case. In the following, w =
[ 0
−1

1
0

]
.

Theorem 1.6. Suppose L = F ⊕ F and let T (F) ∼= L× be the diagonal torus in
GL2(F). Let π be any infinite-dimensional, irreducible, admissible representa-
tion of GL2(F) with central character ωπ and conductor pc(π), c(π) ≥ 0. Let
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�(diag(x, y))=�1(x)�2(y) be a character of T (F) such that �1�2 = ωπ . With-
out loss of generality, assume that c(�1) ≥ c(�2). Write �1 = | · |

1/2−s0µ for
some s0 ∈ C and some unitary character µ of F× such that µ($) = 1. Then
dimC HomT (F)(π,�) = 1, and for nonzero ` ∈ HomT (F)(π,�), the subgroup
hK1(p

c(π))h−1 fixes a 1-dimensional space of π consisting of test vectors for `,
where

h =


[

1 $−c(�)

0 1

]
if c(µ)= 0

or L(s, π ⊗µ−1) does not have a pole at s = s0;

w

[
1 $−c(�)

0 1

]
if c(µ) > 0 and L(s, π ⊗µ−1) has a pole at s = s0,

but L(1− s, π̃ ⊗µ) does not have a pole at s = s0.

In particular, if both � and π are unitary, then we are always in the first case
above.

The proof of the above theorem uses the theory of zeta integrals for GL2 repre-
sentations given by their Whittaker models. The zeta integral Z(s0, ∗, µ

−1) (defined
in (3-1)) divided by the L-value L(s0, π ⊗µ

−1) gives a concrete realization of a
nonzero ` ∈ HomT (F)(π,�). One checks that the newform in the Whittaker model
translated by the matrix h in the statement of the above theorem is a test vector
for `.

Note that we do not give a compact subgroup that fixes a 1-dimensional space of
π consisting of test vectors for ` when both L(s, π ⊗µ−1) and L(1− s, π̃ ⊗µ)
have a pole at s = s0.

1B2. The field case.

Theorem 1.7. Suppose L is a field. Let π be any infinite-dimensional, irre-
ducible, admissible representation of GL2(F) with central character ωπ and
conductor pc(π). Let � be a character on L× such that �|F× = ωπ . Assume that
c(�) ≥ c(π) > 0. Embed L× as a torus T (F) in GL2(F) as in Section 2C. Then
dimC HomT (F)(π,�)= 1, and for a nonzero ` ∈ HomT (F)(π,�), the subgroup[

o× pc(�)

pc(π)−c(�) 1+ pc(π)

]
∩GL2(F)= hK1(p

c(π))h−1, h =
[
$ c(�)−c(π) 0

0 1

]
w,

fixes a 1-dimensional space of π consisting of test vectors for `.

If π has trivial central character, then we can replace the compact subgroup in
the statement of the above theorem by[

$ c(�)

1

][
o× o

pc(π) o×

][
$−c(�)

1

]
,

since the Atkin–Lehner element normalizes the group
[ o×

pc(π)
o
o×

]
.
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The proof of the theorem breaks up into several cases depending on the type of
the representation π . Although the proofs are quite different in all cases, it turns out
that one of the key ingredients of the proof is that a function roughly of the form
x 7→ �(1+ xβ) (see Section 2B for details on notation) is an additive character
of o of a specific conductor. The condition c(�) ≥ c(π) is required to make this
key ingredient work. Also, in certain cases we obtain test vectors for more general
situations than the one mentioned above.

Principal series. If π is a principal series representation, then we realize it in its
induced model and explicitly define a linear functional

`( f )=
∫

Z(F)\T (F)

f (t)�−1(t) dt.

It is easy to see that `∈HomT (F)(π,�). We are able to show, for any c(π), c(�)≥0,
that ` 6= 0. See (4-4) and (4-5) for details. It is not clear if the explicit test vector
for ` obtained in (4-4) belongs to a 1-dimensional subspace of π of vectors right-
invariant under a compact subgroup. It is also not clear how to obtain a component
that is right invariant under a conjugate of K1(p

c(π)). To obtain a test vector with
the right invariance mentioned in the statement of the theorem, we evaluate ` at
a translate of the newform of π by h and show that that is nonzero. For this, we
need c(�) ≥ c(π) > 0. If we replace the h in the statement of the theorem by
h =

[
$ s

1

]
, s = c(π)− c(�)− v(a), where a depends on a particular embedding

of T (F) in GL2(F), then we can extend the result to the case c(�)≥ 2c(χ1) (see
Proposition 4.2). Here, π = χ1×χ2 and c(χ1)≤ c(χ2).

Twists of the Steinberg representation. If π is a twist of the Steinberg representation
by a ramified character χ , then realizing it as a subrepresentation of the reducible
induced representation χ | · |1/2×χ | · |−1/2, we see that we get the same linear func-
tional and the same nonvanishing of the translate of newform as in the irreducible
principal series case.

If π is a twist of the Steinberg representation by an unramified character χ , then
we use the fact that such representations are characterized by the existence of a
unique (up to constant) vector that is right invariant under the Iwahori subgroup
I and is an eigenvector of the Atkin–Lehner operator with eigenvalue −χ($).
If we assume that c(�) ≥ c(π), then [Waldspurger 1985] implies the existence
of a nonzero ` ∈ HomT (F)(π,�). As in Section 2D, we can then realize π as a
subrepresentation of the space of smooth functions B : GL2(F)→ C satisfying
B(tg)=�(t)B(g). In this latter space, we look for a vector B with three properties:
one that is right invariant under I , is zero when averaged over GL2(o)/I , and is an
eigenvector for the Atkin–Lehner operator with eigenvalue −χ($). Using a double
coset decomposition for T (F)\GL2(F)/I , we obtain in Lemma 4.4 the explicit
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values of such a B for all g ∈GL2(F). This gives us B(h) 6= 0, for h defined in the
statement of the theorem. The advantage of the above method is twofold. It gives
us the explicit values of the newform in the Waldspurger model and it also gives
another proof of the uniqueness of the Waldspurger model. One can also obtain an
independent proof of existence using the methods of [Pitale 2011], but we do not
do that here.

Supercuspidal representations. In the case that π is an irreducible supercuspidal
representation we may appeal to Mackey theory. We begin with the explicit con-
struction of supercuspidal representations of GL2(F) by induction from an open
subgroup that is compact modulo the center. Suppose that J is such a subgroup and
π = c-IndGL2(F)

J ρ. We first describe the situation when π is minimal, i.e., when the
conductor of π cannot be lowered upon twisting by a character.

We say that ρ and � intertwine on T (F)g J if HomJ∩g−1T (F)g(ρ,�
g) 6= 0.

Understanding HomT (F)(π,�) then reduces to understanding the double cosets
T (F)\GL2(F)/J on which ρ and � intertwine. We do this in two steps. The first
step is to consider a larger subgroup KA ⊇ J where KA is one of two subgroups
depending on J . There is a unique double coset T (F)h0KA that depends only on
c(π) and c(�) containing a T (F)\GL2(F)/J double coset on which ρ and � can
possibly intertwine. This double coset decomposes as the disjoint union of finitely
many T (F)\GL2(F)/J double cosets

T (F)h0KA =

⊔
i

T (F)hi J.

When c(�) >
[ 1

2 c(π)
]
, we describe this decomposition explicitly, show that one

may choose the representatives hi to be diagonal matrices, and show for each i that

(J ∩ h−1
i T (F)hi ) ker ρ/Z(F) ker ρ ∼= (J ∩ N )/(ker ρ ∩ N ),

where N is the subgroup of lower triangular unipotent matrices. It suffices to exam-
ine ρ|J∩N , which decomposes as a direct sum of characters. We show that there is a
unique i0 such that ρ and � intertwine on T (F)hi0 J . We conclude that there exists
a nonzero linear functional ` ∈ HomT (F)(π,�). We describe the translate of the
newvector in the induced model explicitly, and show that this translate is a test vector.

Finally, we deal with the case of an irreducible supercuspidal representation τ
that is not minimal. In this case τ ∼= π ⊗χ , where π is a minimal supercuspidal
representation and χ is a character of F×. We construct a vector ϕχ ∈ π so that
ϕχ ⊗χ is a translate of the newvector in τ . Using the results of the minimal case,
we show that ϕχ is a test vector for �⊗χ−1.

Similarly to the irreducible principal series case, if we replace h in the statement of
the theorem by h=

[
$ s

1

]
, s=c(π)−c(�)−v(a), then in the minimal supercuspidal

case, we can extend the result to the case c(�)≥
⌊3

4 c(π)
⌋
+ 1.
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1B3. Relation to test vectors of Gross–Prasad. We recall some results of Gross
and Prasad [1991]. For simplicity assume that ωπ = 1, that L/F is unramified and
that

dimC HomT (F)(π,�)= 1.

For an order R of M2(F), let d(R) be the exponent of its reduced discriminant
and c(R) be the smallest c ≥ 0 such that o+$ coL ⊂ R. It is clear that R× can
only fix a test vector if c(R) ≥ c(�). Moreover, if we want R× to fix a line in
π , it is reasonable to try R with d(R) = c(π). Thus one might consider orders
with c(R)= c(�) and d(R)= c(π). If either c(�)= 0 or c(π)= 0, then there is
a unique-up-to-L×-conjugacy order R with c(R) = c(�) and d(R) = c(π), and
[Gross and Prasad 1991] shows that R× fixes a line consisting of test vectors. If
c(π)= 0 then R is a maximal order, but in general R is not an Eichler order.

When c(�) > 0 and c(π) > 0, the invariants c(R) and d(R) no longer specify R
uniquely up to conjugacy by L×. However, with the above assumptions, Theorem 1.7
can be interpreted as follows: when c(�)≥ c(π), there is an Eichler order R with
c(R) = c(�) and d(R) = c(π) such that R× fixes a line in π which consists of
test vectors. Moreover, this R can be described uniquely up to L×-conjugacy
as the intersection of two maximal ideals R1 and R2, with c(R1) = c(�) and
c(R2)= c(�)− c(π), which are the maximal possible distance apart in the Bruhat–
Tits tree, i.e., d(R1, R2)= c(π). This provides an intrinsic description of our test
vectors, i.e., one without reference to a specific embedding of L× in GL2(F). It
would be interesting to know whether other Eichler orders R satisfying c(R)= c(�)
and d(R)= c(π) also pick out test vectors.

Note that if c(π) > 2c(�), there is no Eichler order with c(R) = c(�) and
d(R)= c(π), which suggests that the case when π is highly ramified, in comparison
with �, is more complicated than the reverse situation.

1C. Outline. Our paper consists of two parts, one local and one global.
In the first (local) part of the paper we prove our results on local test vectors,

which we treat in three separate cases. Section 2 contains our local notation and
embedding of L× into GL2(F). Then in Section 3 we treat the case where L/F is
split, using zeta integrals. This proves Theorem 1.6. Now assume L/F is inert. In
Section 4, we treat the case of principal series and Steinberg representations. In
Section 5, we treat the case of supercuspidal representations. These two sections
complete Theorem 1.7. Finally, in Section 6 we compute certain local spectral
distributions associated to our local test vectors.

The global part of the paper consists of two sections. In Section 7, we use the
local spectral calculations of Section 6 to prove our L-value formula (Theorem 1.1).
In Section 8, we deduce our results on average values and nonvanishing (Theorems
1.3, 1.4 and 1.5).
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2. Local setup

Let F be a nonarchimedean local field of characteristic zero, o its ring of integers, p
the maximal ideal of o and $ a generator of p. Denote by q the size of the residue
field and by v the normalized valuation map on F.

For a character χ of F×, let c(χ) be the exponent of its conductor, i.e., c(χ)≥ 0
is minimal such that χ is trivial on (1+ pc(χ))∩ o×.

2A. Subgroups and representations of GL2. We use the following compact sub-
groups of GL2(F). Put K1(o)= K2(o)= GL2(o). For n > 0, put

K1(p
n)=

[
o× o

pn 1+ pn

]
, (2-1)

K2(p
n)=

[
1+ pn o

pn 1+ pn

]
. (2-2)

For s ∈ Z, n ≥ 0, let

K (s)
1 (pn)=

[
$ s

1

]
K1(p

n)
[
$−s

1

]
. (2-3)

We also have the Iwahori subgroup

I =
[ o o

p o

]
∩GL2(o). (2-4)

Let (π, V ) be an infinite-dimensional, irreducible, admissible representation
of GL2(F). For n ≥ 0, denote by V n the subspace of K1(p

n)-fixed vectors. By
[Jacquet et al. 1981], one knows V n

6= 0 for some n. Further, if c(π) is the minimal
n such that V n

6= 0, then dim(V c(π))= 1. Call the ideal pc(π) the conductor of π .
If c(π)= 0, then π is unramified.

Such a π is a principal series, twist of Steinberg (special), or supercuspidal
representation. Let χ1, χ2 be two characters of F×. The representation π = χ1×χ2

is the standard induced representation of GL2(F) consisting of locally constant
functions f : GL2(F)→ C such that

f
([ a b

d

]
g
)
= χ1(a)χ2(d)

∣∣ad−1∣∣1/2 f (g),

for all g ∈ GL2(F), a, d ∈ F×, b ∈ F. (2-5)

This is irreducible if and only if χ1χ2 6= | · |
±1, in which case we say χ1×χ2 is a

principal series representation. For a character χ of F×, the twist of the Steinberg
representation by χ , which we denote by χ StGL2 , is the unique irreducible sub-
representation of the induced representation χ | · |1/2×χ | · |−1/2. The supercuspidal
representations are described in Section 5.
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2B. The degree-two extension. As in [Furusawa 1993], we fix three elements
a, b, c ∈ F such that d = b2

− 4ac 6= 0. We let L = F
(√

d
)

if d /∈ F×2, and
L = F ⊕ F otherwise. In the latter case we consider F diagonally embedded in L .
Let z 7→ z̄ be the obvious involution on L whose fixed point set is F. We define the
Legendre symbol as

(L
p

)
=


−1 if L/F is an unramified field extension,

0 if L/F is a ramified field extension,
1 if L = F ⊕ F.

(2-6)

We make the following assumptions:

• a, b ∈ o and c ∈ o×.

• If d /∈ F×2, then d is a generator of the discriminant of L/F.

• If d ∈ F×2, then d ∈ o×.

We define elements β and ξ0 of L by

β =


b+
√

d
2c if L is a field,(
b+
√

d
2c ,

b−
√

d
2c

)
if L = F ⊕ F,

(2-7)

ξ0 =


−b+

√
d

2
if L is a field,(

−b+
√

d
2

,
−b−

√
d

2

)
if L = F ⊕ F.

(2-8)

If L is a field, let oL be its ring of integers, $L a uniformizer, and vL the normalized
valuation. If L = F ⊕ F, put oL = o⊕ o and $L = ($, 1). By [Pitale and Schmidt
2009, Lemma 3.1.1], in either case,

oL = o+ oβ = o+ oξ0. (2-9)

Lemma 2.1. Suppose L is a field. The possible valuations of β and a are

vL(β)= v(a)= 0 if
(L
p

)
=−1, (2-10)

vL(β)= v(a) ∈ {0, 1} if
(L
p

)
= 0. (2-11)

Proof. Consider the identity

b+
√

d
2c ·

b−
√

d
2c =

a
c . (2-12)
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If
( L
p

)
=−1, we get the result by observing that d is a nonsquare unit. If

( L
p

)
= 0,

we get the result since 1, β is an integral basis. �

Fix the ideal in oL given by

PL := poL =


pL if

( L
p

)
=−1,

p2
L if

( L
p

)
= 0,

p⊕ p if
( L
p

)
= 1.

(2-13)

Here pL is the maximal ideal of oL when L is a field. We have Pn
L ∩ o= pn for all

n ≥ 0.
Under our stated assumptions, it makes sense to consider the quadratic equation

cu2
+ bu+ a = 0 over the residue class field o/p. The number of solutions of this

equation is
( L
p

)
+ 1. In the ramified case we will fix an element u0 ∈ o such that

cu2
0+ bu0+ a ∈ p; (2-14)

see [Pitale and Schmidt 2009, Lemma 3.1.1]. Further, note that in the ramified case
we have

b+ 2cu0 ∈ p. (2-15)

This follows from the fact that u0 is a double root of cu2
+ bu+ a over o/p.

2C. The torus. We now specify an embedding of L× as a torus in GL2 for conve-
nience of calculations. With a, b, c as above, let

S =
[

a 1
2 b

1
2 b c

]
, ξ =

[ 1
2 b c
−a − 1

2 b

]
.

Then F(ξ)= F · I2+ F · ξ is a 2-dimensional F-algebra isomorphic to L . If L is a
field, then an isomorphism is given by x + yξ 7→ x + y

√
d/2. If L = F ⊕ F, then

an isomorphism is given by x+ yξ 7→
(
x+ y
√

d/2, x− y
√

d/2
)
. The determinant

map on F(ξ) corresponds to the norm map on L . Let

T (F)= {g ∈ GL2(F) : tgSg = det(g)S}. (2-16)

One can check that T (F) = F(ξ)×. Note that T (F) ∼= L× via the isomorphism
F(ξ) ∼= L . Under the same isomorphism the group T (o) := T (F) ∩ GL2(o) is
isomorphic to o×L . Note that T (F) consists of all matrices

t (x, y)=
[

x + 1
2 yb cy
−ay x − 1

2 yb

]
,

for all x, y ∈ F, det(g)= x2
−

1
4 y2(b2

− 4ac) 6= 0. (2-17)

We give a useful structural lemma here.
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Lemma 2.2. Let L/F be a field extension. For any m, n ≥ 0, we have

T (F)
[
$−m

1

]
K1(p

n)= T (F)
[
$m−v(a)

1

]
wK1(p

n). (2-18)

Proof. Set y =$−m and x = 1
2 yb. Then[

$−m

1

]
=

−1
a$−v(a)

t (x, y)
[
$m−v(a)

1

]
wk,

with

k =

[ a$−v(a)
c

b$m−v(a)

c
1

]
∈ K1(p

n) for all n ≥ 0,

since v(b)≥ 1 whenever v(a)= 1. �

2D. The Waldspurger model. Let � be any character of L×, which we may view
as a character of the torus T (F). Define

c(�) :=min{m ≥ 0 :�|(1+Pm
L )∩o

×

L
≡ 1}. (2-19)

Note that this is the (exponent of the) conductor of � only in the case L/F is an
unramified field extension. Let B(�) be the space of all locally constant functions
B : GL2(F)→ C satisfying

B(tg)=�(t)B(g) for all t ∈ T (F), g ∈ GL2(F). (2-20)

Let (π, V ) be any infinite-dimensional, irreducible, admissible representation
of GL2(F). We say that π has an �-Waldspurger model if π is isomorphic to
a subrepresentation of B(�). We call a linear functional ` on π an �-Waldspurger
functional if it satisfies

`(π(t)v)=�(t)`(v) for all t ∈ T (F), v ∈ V . (2-21)

If π has an �-Waldspurger model then we obtain an �-Waldspurger functional ` by
`(B)= B(1). On the other hand, if π has an �-Waldspurger functional `, we obtain
an �-Waldspurger model for π by the map v 7→ Bv, where Bv(g) = `(π(g)v).
Observe that a necessary condition for an �-Waldspurger model or functional to
exist is that �|F× = ωπ , the central character of π .

If π has an �-Waldspurger functional `, we say that v ∈ V is a test vector for `
if `(v) 6= 0. From the discussion above, this is equivalent to Bv(1) 6= 0. Suppose
B0 is the newform in an �-Waldspurger model of π . Lemma 2.2 states that, in the
field case, for m ≥ 0, the vector

π
([ $m−v(a)

1

]
w
)

B0
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is a test vector if and only if π
([
$−m

1

])
B0 is also a test vector. This will be used

in the proof of Theorem 1.7 below.
Criteria for existence of Waldspurger functionals, which must be unique up to

scalars, are given in Section 1B.

3. Zeta integrals and test vectors for split Waldspurger models

In this section we show that any irreducible admissible representation π of GL2(F)
has a split �-Waldspurger model for every character � of L× = F×⊕ F×. Under
certain restrictions on the poles of the L-function of π , we also determine test vectors
for the Waldspurger functional that are right invariant under certain conjugates
of the compact group K1(p

c(π)). The conjugating elements depend only on c(π)
and c(�).

Let π be any irreducible admissible representation of GL2(F) with central char-
acter ωπ (not assumed to be trivial). Let π be given by its Whittaker model W(π, ψ),
where ψ is a nontrivial character of F with conductor o. For any W ∈W(π, ψ)

and a unitary character µ of F×, define the zeta integral

Z(s,W, µ−1) :=

∫
F×

W
([ x

1

])
|x |s−1/2µ−1(x) d×x, (3-1)

where d×x is the Haar measure on F× giving o× volume 1− q−1. Since µ is
unitary, there is an r ∈ R not depending on µ such that Z(s,W, µ−1) converges
absolutely for <(s) > r . By the theory of L-functions, we have

Z(s,W, µ−1)

L(s, µ−1⊗π)
∈ C[q−s, qs

] (3-2)

and the functional equation

Z(1− s, π(w)W, µω−1
π )

L(1− s, µ⊗ π̃)
= ε(s, µ−1

⊗π,ψ)
Z(s,W, µ−1)

L(s, µ−1⊗π)
(3-3)

for any W ∈W(π, ψ). Here w =
[
−1

1]. Please refer to Theorem 6.12 of [Gelbart
1975] for details.

Let W0 be the unique K1(p
c(π))-right invariant vector in W(π, ψ) such that

W0(1) = 1. The formula for W0
([ x

1

])
in various cases is given in Table 1 (see,

e.g., [Schmidt 2002]).

Proposition 3.1. Let π be any irreducible, admissible representation of GL2(F)
with central character ωπ and conductor pc(π). Let W0 be the newform in the
Whittaker model W(π, ψ) of π such that W0(1)= 1. Let µ be a unitary character
of F×.
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(i) If c(µ)= 0 then, for any π , we have

Z
(

s, π
([

1 $−c(µ)

1

])
W0, µ

−1
)
=

(
1− 1

q

)
L(s, µ−1

⊗π).

(ii) If c(µ) > 0 then

Z
(

s, π
([

1 $−c(µ)

1

])
W0, µ

−1
)
= q−c(µ)/2µ($−c(µ))ε

(1
2
, µ,ψ

)
.

Proof. If c(µ) = 0, then the values of the newform W0 from Table 1 and the
normalization of the measure give us (i). We have, for any k ∈ Z and any π ,

Z
(

s, π
([

1 $ k

1

])
W0, µ

−1
)

=

∫
F×

ψ(a$ k)W0

([ a
1

])
|a|s−1/2µ−1(a) d×a

=

∑
j∈Z

∫
o×

ψ(a$ j+k)W0

([
a$ j

1

])
|a$ j

|
s−1/2µ−1(a$ j ) d×a

=

∑
j∈Z

q− j (s−1/2)µ−1($ j )W0

([
$ j

1

])∫
o×

ψ(a$ j+k)µ−1(a) d×a.

If c(µ) > 0, then, by the definition of the epsilon factor for µ (see [Schmidt 2002,
equation (5)]), we have∫
o×

ψ(a$ j+k)µ−1(a) d×a

=

{
q−c(µ)/2µ($ j+k)ε

( 1
2 , µ,ψ

)
if j + k =−c(µ),

0 if j + k 6= −c(µ).
(3-4)

Now the proposition follows since W0(1)= 1. �

π W0

([ x
1

])
χ1×χ2,

|x |1/2
( ∑

k+l=v(x)
χ1($

k)χ2($
l)
)

1o(x)with χ1, χ2 unramified, χ1χ
−1
2 6= | · |

±1

χ1×χ2,
|x |1/2χ1(x)1o(x)with χ1 unramified, χ2 ramified

χ StGL2, with χ unramified |x |χ(x)1o(x)

L(s, π)= 1 1o×(x)

Table 1. Whittaker newform values.
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Proof of Theorem 1.6. For any W ∈W(π, ψ), define

`(W ) :=
Z(s0,W, µ−1)

L(s0, µ−1⊗π)
. (3-5)

The well-definedness of ` for all s0 and µ follows from (3-2). By [Gelbart 1975,
Theorem 6.12], ` is nonzero. The definition of the zeta integral and �1�2 = ωπ

gives us the transformation property

`
(
π
([ x

y

])
W
)
=�1(x)�2(y)`(W ), x, y ∈ F×.

Hence, we get HomT (F)(π,�) 6= 0. The 1-dimensionality follows from [Wald-
spurger 1985]. Note that, if c(µ)= 0 or if L(s, µ−1

⊗π) does not have a pole at
s = s0, then we have

`

(
π

([
1 $−c(�)

1

])
W0

)
6= 0

by Proposition 3.1. If c(µ) > 0 and L(s, µ−1
⊗π) has a pole at s = s0, then

`

(
π

([
1 $−c(�)

1

])
W0

)
= 0

by Proposition 3.1. In this case, if we assume that L(1− s, µ⊗ π̃) does not have a
pole at s = s0, then we can use the local functional equation (3-3), which gives us
the test vectors for `. The uniqueness statement follows from the uniqueness of W0.
If � and π are unitary, then s0 =

1
2 and one can check that L(s, µ−1

⊗π) does not
have a pole at s = 1

2 . �

4. Nonsupercuspidal representations

Here we assume that L is a field and prove Theorem 1.7 when π is not supercuspidal.
Let us define Haar measures dg on GL2(F) such that GL2(o) has volume 1;

d×x on F× = Z(F), the center of GL2(F), such that o× has volume 1 (note this is
different from Section 3); and dt on T (F)= L× such that the volume of o×L is 1.

4A. Irreducible principal series representation. Let π be a ramified irreducible
principal series representation of GL2(F) given by

π = χ1×χ2, χ1χ
−1
2 6= | · |

±1, c(χ2)≥ c(χ1),

c(π)= c(χ1)+ c(χ2) > 0, ωπ = χ1χ2.
(4-1)

Recall that π consists of locally constant functions f on GL2(F) satisfying (2-5).
The unique, up to scalars, right K1(p

c(π))-invariant vector f0 in π is given by the
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formula

f0(g)=

|a/d|1/2χ1(a)χ2(d) if g ∈
[ a ∗

d

]
γc(χ2)K1(p

c(π)),

0 if g 6∈ B(F)γc(χ2)K1(p
c(π)),

(4-2)

where γc(χ2) =
[ 1
$ c(χ2) 1

]
and B(F) is the Borel subgroup of GL2(F) consisting of

upper triangular matrices. See [Schmidt 2002] for details.
Let � be a character of L× such that �|F× = ωπ . Let B(�) be the space of all

locally constant functions B :GL2(F)→C satisfying (2-20) defined in Section 2D.
Define an intertwining operator A : π→ B(�) by the formula

(A( f ))(g) :=
∫

Z(F)\T (F)

f (tg)�−1(t) dt, f ∈ π, g ∈ GL2(F). (4-3)

Since Z(F)\T (F) is compact and �|F× = ωπ , this integral is well defined and
convergent. Note Z(F)\T (F) is isomorphic to Z(o)\T (o) if

( L
p

)
= −1, and to

Z(o)\T (o)t$L(Z(o)\T (o)) if
( L
p

)
= 0.

Next we show that A is nonzero for all � and, assuming c(�) ≥ 2c(χ1),
obtain g ∈ GL2(F) such that (A( f0))(g) 6= 0. First observe that we can write
GL2(F) = M2(F)T (F), where M2(F) =

{[a
0

b
1

]
: a, b ∈ F

}
∩ GL2(F) is the

mirabolic subgroup of GL2(F) and M2(F)∩ T (F)= {1}. Hence, the function f̂
defined by

f̂
([ a b

0 1

]
t
)
= |a|1/2χ1(a)�(t),

[ a b
0 1

]
∈ M2(F), t ∈ T (F), (4-4)

is a well-defined element of π and, for t ∈ T (F), satisfies π(t) f̂ =�(t) f̂ , which
implies

A( f̂ ) 6= 0. (4-5)

For the computation of A applied to the newvector f0, we need to know when the
argument tg of f0 is in the support of f0 for certain elements g ∈ GL2(F). We
obtain that information in the following lemma.

Lemma 4.1. Let t = t (x, y) ∈ T (F). For s ∈ Z, we have the following decomposi-
tion of t

[
$ s

1

]
as bk with b ∈ B(F) and k ∈ GL2(o).

(i) If x − 1
2 by ∈$−lo×, l ≥ 0, a$ s+l y ∈ o, then

t
[
$ s

1

]
=

[
det(t)$ s/

(
x − 1

2 by
)
$−l cy/

(
x − 1

2 by
)

0 $−l

]
×

[
1 0

−a$ s+l y $ l
(
x − 1

2 by
) ].
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(ii) If x − 1
2 by ∈$−lo×, l ≥ 0, a$ s+l y 6∈ o, then

t
[
$ s

1

]
=

[
det(t)/(ay) −$ s

(
x + 1

2 by
)

0 a$ s y

][
0 1
−1

(
x − 1

2 by
)
/(a$ s y)

]
.

(iii) If x − 1
2 by ∈ p,

(
x − 1

2 by
)
/($ s ay) ∈ o, then

t
[
$ s

1

]
=

[
det(t)/(ay) −$ s

(
x + 1

2 by
)

0 $ s ay

][
0 1
−1

(
x − 1

2 by
)
/($ s ay)

]
.

(iv) If x − 1
2 by ∈ p,

(
x − 1

2 by
)
/($ s ay) 6∈ o, then

t
[
$ s

1

]
=

[
det(t)$ s/

(
x − 1

2 by
)

cy
0 x − 1

2 by

][
1 0

−a$ s y/
(
x − 1

2 by
)

1

]
.

Proof. The lemma is obtained by direct computation. �

Proposition 4.2. Let c(�)≥ 2c(χ1) and set s = c(π)− c(�)− v(a). Then

(A( f0))

([
$ s

1

])
6= 0.

Proof. Since�|F× =ωπ and c(�)≥ 2c(χ1), we have c(�)> 0. Let us first compute
the part of the integral (A( f0))

([
$ s

1

])
over Z(o)\T (o). The argument of f0 is

given by t
[
$ s

1

]
, where

t =
[

x + 1
2 by cy
−ay x − 1

2 by

]
∈ T (o),

i.e., y, x− 1
2 by ∈ o and x2

−
1
4 y2d ∈ o×. We write t

[
$ s

1

]
as bk with b ∈ B(F) and

k ∈ GL2(o) according to Lemma 4.1. Since t ∈ T (o), we must have l = 0 in parts
(i) and (ii) of Lemma 4.1, and a, y ∈ o× in parts (iii) and (iv) of Lemma 4.1. The
support of f0 is B(F)γc(χ2)K1(p

c(π)) and an element k ∈GL2(o) lies in the support
if and only if the (2, 1) entry of k has (strictly positive) valuation c(χ2) if c(χ1) > 0
and ≥ c(χ2) if c(χ1)= 0. Hence, the k obtained in parts (ii) and (iii) of Lemma 4.1
is never in the support of f0. Since s < c(χ2)− v(a), the k obtained in part (iv) of
Lemma 4.1 is not in the support of f0 as well. Hence, the only possibility is part
(i) of Lemma 4.1. First suppose that c(χ1) > 0. By successive change of variable
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x→ x + 1
2 by and y→ xy, we have∫

Z(o)\T (o)

f0

(
t
[
$ s

1

])
�−1(t) dt

=

∫
y∈$ c(χ2)−s−v(a)o×

f0

([
$ s(1+ by+ acy2) cy

0 1

][
1 0

−ay$ s 1

])
×�−1(1+ cyβ) dy

= q−s/2χ1($
s)

∫
y∈$ c(χ2)−s−v(a)o×

χ1(1+ by+ acy2) f0

([
1 0

−ay$ s 1

])
×�−1(1+ cyβ) dy

= (1− q−1)qs/2−c(χ2)+v(a)χ1($
s)

×

∫
o×

χ1(1+ b$ c(χ2)−s−v(a)y+ ac$ 2(c(χ2)−s−v(a))y2)

× f0

([
1 0

−ay$ c(χ2)−v(a) 1

])
�−1(1+ c$ c(χ2)−s−v(a)yβ) d×y. (4-6)

We get the factor (1−q−1) above by the normalization of measures. Now, we have[
1 0

−ay$ c(χ2)−v(a) 1

]
=

[
−$ v(a)/(ay) 0

0 1

]
γc(χ2)

[
−ay$−v(a)

1

]
.

Hence the integral (4-6) is equal to

(1− q−1)qs/2−c(χ2)+v(a)χ1($
s)

×

∫
o×

χ1(1+ b$ c(χ2)−s−v(a)y+ ac$ 2(c(χ2)−s−v(a))y2)

×χ1(−$
v(a)/(ay))�−1(1+ c$ c(χ2)−s−v(a)yβ) d×y (4-7)

Using c(χ2)− s− v(a)= c(�)− c(χ1)≥ c(χ1), we get

(1− q−1)q(c(χ1)−c(χ2)−c(�)+v(a))/2χ1(−$
c(π)−c(�)/a)

×

∫
o×

χ−1
1 (y)�−1(1+ c$ c(�)−c(χ1)yβ) d×y.

Since c(�)≥ 2c(χ1), the map y 7→�−1(1+ c$ c(�)−c(χ1)yβ) is an additive char-
acter of o of conductor c(χ1). This character extends to a character ψ̂ of F with
conductor c(χ1).



Test vectors and central L-values for GL(2) 275

Hence, using (3-4), we get∫
Z(o)\T (o)

f0

(
t
[
$ c(π)−c(�)−v(a)

1

])
�−1(t) dt

= (1− q−1)q(−c(χ2)−c(�)+v(a))/2χ1(−$
c(χ2)−c(�)/a)ε

( 1
2 , χ1, ψ̂

)
. (4-8)

If c(χ1)= 0, the integral is much simpler. We get∫
Z(o)\T (o)

f0

(
t
[
$ s

1

])
�−1(t) dt

=

∫
y∈pc(�)

f0

([
$ s(1+ by+ acy2) cy

0 1

])
�−1(1+ cyβ) dy

= χ1($
s)q−s/2−c(�). (4-9)

If L/F is a ramified field extension, then it is also necessary to integrate over
$L(Z(o)\T (o)). Let

t =
[

x + 1
2 by cy
−ay x − 1

2 by

]
∈$L T (o).

Hence, we have

x2
−

1
4 y2d =

(
x + 1

2 by
)(

x − 1
2 by

)
+ acy2

∈$o×.

We claim that, for r < c(χ2)− v(a), the element t
[
$ r

1

]
is never in the support of

f0. We look at the four possibilities from Lemma 4.1. We know that the values
of x, y satisfying the conditions of parts (ii) and (iii) never give elements in the
support of f0.

• Suppose x − 1
2 by ∈$−lo× with l ≥ 0 and ay$ r+l

∈ o. To prove the claim, it
is enough to show that v(y)≤−l. Suppose y ∈ p−l+1. Then we have $ l y ∈ p.
By assumption, we have $ l

(
x − 1

2 by
)
∈ o×. Hence $ l

(
x + 1

2 by
)
∈ o×. But

then we get $ 2l
(
x2
−

1
4 y2d

)
∈ o×, which is a contradiction.

• Suppose x− 1
2 by ∈ p,

(
x− 1

2 by
)
/($ r ay) 6∈ o. To prove the claim, it is enough

to show that v(y) ≤ 0. Suppose y ∈ p. Then x + 1
2 by ∈ p. But then we get(

x2
−

1
4 y2d

)
∈ p2, a contradiction.

Hence, for r < c(χ2)− v(a), we have∫
$L (Z(o)\T (o))

f0

(
t
[
$ r

1

])
�−1(t) dt = 0. (4-10)

This completes the proof of the proposition by observing that s < c(χ2)− v(a). �
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Observe that in the above proof, we have used c(�)≥ 2c(χ1) at two crucial steps
to simplify the integral. In the case c(�) < 2c(χ1), it is not clear if the statement
of the proposition still remains valid.

Proof of Theorem 1.7 for principal series representations. By the definition (4-3) of
A and (4-5), the linear functional on π given by `( f ) = (A( f ))(1) is a nonzero
functional satisfying `(π(t) f ) = �(t)`( f ) for all t ∈ T (F) and f ∈ π . Hence,
HomT (F)(π,�) 6= 0. The 1-dimensionality follows from [Waldspurger 1985]. Since
c(�)≥ c(π), we can apply Lemma 2.2 together with Proposition 4.2 to obtain the
existence of the required test vector. The uniqueness follows from the uniqueness
of f0. �

4B. Steinberg representation. Let π = χ | · |1/2×χ | · |−1/2. Let V0 be the unique
invariant (infinite-dimensional) subspace of π , so π |V0 is the twisted Steinberg
representation χ StGL2 . If we set χ1 = χ | · |

1/2 and χ2 = χ | · |
−1/2, then V0 is

characterized as the kernel of the intertwining operator M : χ1 × χ2→ χ2 × χ1,
given by

(M( f ))(g)=
∫
F

f
([

−1
1

][ 1 x
1

]
g
)

dx .

Case 1: χ ramified. If χ is a ramified character, then f0, defined as in (4-2),
is in V0 and is, in fact, the unique (up to a constant) newform in χ StGL2 (see
[Schmidt 2002]). Hence the proof of Proposition 4.2 is valid in this case without
any modification.

Case 2: χ unramified. If χ is unramified, then the vector f0, defined as in (4-2),
is a spherical vector in χ1×χ2, hence clearly not the newform of χ StGL2 , which
has conductor p. Any vector in χ StGL2 which is right K1(p)-invariant is also right
I -invariant, where I is the Iwahori subgroup defined in (2-4). It is known (see
[Schmidt 2002]) that the newform in the induced model is given by

f0(g)=


|a/d|χ(ad)q if g ∈

[ a ∗
d

]
I,

−|a/d|χ(ad) if g ∈
[ a ∗

d

]
w I.

(4-11)

We can try to compute (A( f0))(g) (defined in (4-3)) in this case for various
values of g. But instead, we use a double coset decomposition and properties of
the Steinberg representation to obtain the test vector. This has the added advantage
of obtaining a new proof of the uniqueness (up to a constant) of the Waldspurger
functional, and also gives us the explicit formula for B(g), where B is the newform
in the corresponding Waldspurger model and g is any element of GL2(F). By
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[Sugano 1985, Lemma 2-4], there is the disjoint double coset decomposition

GL2(F)=
∞⊔

r=0

T (F)
[
$ r

1

]
GL2(o). (4-12)

Note that, by the Iwasawa decomposition of SL2(o/p), we have

GL2(o)= w I t
⊔

u∈o/p

[
1
u 1

]
I, w =

[
1

−1

]
. (4-13)

For u ∈ o and r ≥ 0 set βu,r := a$ 2r
+ b$ r u+ cu2. Arguing as in Lemma 3.1 of

[Pitale 2011], we have

T (F)
[
$ r

1

]
w I = T (F)

[
$ r

1

][
1
u 1

]
I ⇐⇒ βu,r ∈ o

×. (4-14)

Lemma 3.2 of [Pitale 2011] tells us exactly when βu,r ∈ o
×. Putting everything

together, we get the following proposition.

Proposition 4.3. For r > 0, we have

T (F)
[
$ r

1

]
GL2(o)= T (F)

[
$ r

1

]
I t T (F)

[
$ r

1

]
w I.

For r = 0,
( L
p

)
=−1, we have

T (F)GL2(o)= T (F) I = T (F)w I.

For r = 0,
( L
p

)
= 0, we have

T (F)GL2(o)= T (F)w I t T (F)
[

1
u0 1

]
I,

where u0 is chosen as in (2-14).

The twisted Steinberg representation is characterized as the representation π
with a newform v0 which is invariant under I and satisfies the two conditions∑

γ∈GL2(o)/I

π(γ )v0 = 0, π
([ 1
$

])
v0 =−χ($)v0.

These conditions follow from the action of the Atkin–Lehner element and the fact
that π does not have a vector invariant under GL2(o). See Proposition 3.1.2 of
[Schmidt 2002]. Let � be a character of L× with �|F× = ωπ .
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Let B : GL2(F)→ C be a function that satisfies B(tgk) = �(t)B(g) for all
t ∈ T (F), g ∈ GL2(F), k ∈ I and

∑
u∈o/p

B
(

g
[ 1

u 1

])
=−B(gw), (4-15)

B
(

g
[ 1
$

])
=−χ($)B(g) (4-16)

for all g ∈ GL2(F). If π has a �-Waldspurger model, then B will precisely be the
unique (up to scalars) newform of π in the �-Waldspurger model; otherwise B will
be 0.

Lemma 4.4. (i) If c(�)≥ 2, then

B
([

$ r

1

]
w

)
= 0 if r ≤ c(�)− 2. (4-17)

(ii) For r > 0, we have

B
([

$ r

1

])
=

−q B
([

$ r

1

]
w

)
if r ≥ c(�),

0 if r < c(�).
(4-18)

(iii) For r ≥max{c(�)− 1, 0}, we have

B
([

$ r+1

1

]
w

)
=
χ($)

q
B
([

$ r

1

]
w

)
. (4-19)

(iv) If
( L
p

)
= 0, then

B
([ 1

u0 1

])
=

{
−q B(w) if c(�)= 0,

0 if c(�) > 0.
(4-20)

(v) If c(�)= 0 and �= χ ◦ NL/F , then

B(w)= 0. (4-21)

Proof. We illustrate the proof of (i) and (ii) in detail here. Let u, v ∈ pc(�)−1 be
such that �(1+u+vβ) 6= 1. Take y = v/c, x = 1+u+ 1

2 by and, for r ≤ c(�)−2,
let

k =
[

1+ u a/cv$ r

−$−rv 1+ u+ b/cv

]
∈ I.
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Then

B
([

$ r

1

]
w

)
= B

([
$ r

1

]
wk
)
= B

(
t (x, y)

[
$ r

1

]
w

)
=�(1+ u+ vβ)B

([
$ r

1

]
w

)
.

This gives us (4-17) and completes the proof of (i).
Next, we give the proof of (ii). Substitute g =

[
$ r

1

]
in (4-15) to get∑

u∈o/p

B
([

$ r

1

][
1
u 1

])
=−B

([
$ r

1

]
w

)
.

For u 6= 0, setting x = b/2$ r
+ cu, y =$ r , we get[

$ r

1

][
1
u 1

][
−c b$ r

+ cu
−βu,r

]
= t (x, y)

[
$ r

1

]
w.

Since r > 0 by assumption, βu,r ∈ o
×. Hence, for u 6= 0 we have

B
([

$ r

1

][
1
u 1

])
=�(u+$ rβ)B

([
$ r

1

]
w

)
.

This gives us

B
([

$ r

1

])
=−

( ∑
u∈(o/p)×

�(u+$ rβ)+�(1)
)

B
([

$ r

1

]
w

)
.

Using (4-17) and the definition of c(�)we get the result for r ≥ c(�) or r ≤ c(�)−2.
For r = c(�)− 1, using Lemma 3.4 of [Pitale 2011], we see that the expression in
the parentheses on the right-hand side above is 0. This completes the proof of (ii).

Using (4-15), (4-16) and similar calculations as above, we get the remaining
results. �

Proof of Theorem 1.7 for twists of Steinberg representations. Let D be the quaternion
division algebra over F and ND/F be the reduced norm. Since π =χ St corresponds
to the 1-dimensional representation π ′ = χ ◦ ND/F of D×(F), one knows by
[Waldspurger 1985] that π has an�-Waldspurger model if and only if� 6=χ ◦NL/F .
Since c(�)≥ c(π), this must be the case, i.e., dimC HomT (F)(π,�)= 1. The case
of ramified χ follows exactly as in the principal series case. For χ unramified, the
result follows from Lemma 4.4. �

5. Supercuspidal representations

Throughout this section we continue to assume that L/F is a field.
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5A. Chain orders and strata. This section contains a summary of the facts about
chain orders and fundamental strata that we will use to construct test vectors for the
supercuspidal representations π of GL2(F), all of which can be found in [Bushnell
and Henniart 2006, Chapter 4].

Let A be a chain order in M2(F). Up to GL2(F)-conjugacy, A must be either
M=M2(o) or J=

[ o
p
o
o

]
, so we always take A to be M or J.

Write eA = 1 if A=M and eA = 2 if A= J. For more intrinsic definitions, see
[Bushnell and Henniart 2006]. Let P= radA, the Jacobson radical of A. There is
an element 5 ∈ GL2(F) such that P=5A, and one has

radM=$M, rad J=
[ 1
$

]
J.

Let Pn
= 5nA for n ∈ Z. Let U 0

A = UA := A×, U n
A := 1+Pn for n ≥ 1, and

KA = {g ∈ GL2(F) : gAg−1
= A}. Then

KA =


Z(F)GL2(o) if A=M,〈[ 1
$

]〉
n J× if A= J.

We fix a character ψ1 : F→ C× so that the conductor of ψ1 is p. For α ∈M2(F),
define a function of UA by ψα(x) = ψ1(Trα(x − 1)). Then for 1 ≤ m ≤ n ≤ 2m,
there is an isomorphism

P−n/P−m
→
(
U m+1
A /U n+1

A

)∧
,

α+P−m
7→ ψα.

The normalized level of π is defined to be

`(π)=min{n/eA : π |U n+1
A

contains the trivial character}.

A stratum in M2(F) is a triple (A, n, α) where A is a chain order in M2(F) with
radical P, n is an integer and α ∈P−n . For n ≥ 1 one associates to a stratum the
character ψα of U n

A which is trivial on U n+1
A .

We say that a smooth representation π contains the stratum (A, n, α) if π |U n
A

contains ψα . A fundamental stratum is one such that α+P1−n contains no nilpotent
elements. If an irreducible smooth representation π of GL2(F) contains a stratum
(A, n, α), then (A, n, α) is fundamental if and only if `(π)= n/eA [Bushnell and
Henniart 2006, 12.9 Theorem].

Suppose that (A, n, α) is a fundamental stratum with eA = 1. Write α =$−nα0

for α0 ∈A. Let fα(t)∈ o[t] be the characteristic polynomial of α0, and let f̃α ∈ k[t]
be its reduction modulo p. Here k is the residue class field. If f̃α has two solutions
in k, then (A, n, α) is said to be a split fundamental stratum. If f̃α is irreducible,
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then the stratum (A, n, α) is said to be unramified simple. On the other hand, if
(A, n, α) is a fundamental stratum with eA = 2, and n odd, then (A, n, α) is said
to be ramified simple. A simple stratum is either a simple unramified stratum or
a simple ramified stratum. Suppose that (A, n, α) is a simple stratum with α0 as
above and let E = F[α0]. Bushnell and Henniart define what it means for α to be
minimal [Bushnell and Henniart 2006, 13.4 Definition], and when this is the case
oE = o[α0] [Bushnell and Henniart 2006, 13.4 Lemma]. If (A, n, α) is a simple
stratum with A=M, then α0 ∈M but α0 /∈P.

Define π to be minimal if, for all characters χ of F×, `(π ⊗χ)≥ `(π). Every
irreducible supercuspidal representation of GL2(F) is either minimal, or isomorphic
to the twist of a minimal irreducible supercuspidal representation. Every minimal
irreducible smooth representation of GL2(F) contains exactly one of the following:
a ramified simple stratum, an unramified simple stratum, or a split fundamental stra-
tum [Bushnell and Henniart 2006, 13.3 Corollary]. If π contains a split fundamental
stratum, then π is not supercuspidal.

5B. Construction of minimal supercuspidals. In this section we review the con-
struction of minimal irreducible supercuspidal representations. See [Bushnell and
Henniart 2006, Section 19] for more details. In each case we describe a distinguished
vector v0 in the inducing representation. This vector v0 will be used to construct a
test vector for π .

We remark that if a representation π contains a simple stratum (A, n, α), then
it contains all GL2(F)-conjugates of (A, n, α). Therefore, we may always take
A to be either M or J. Since KA normalizes UA, we may also consider α up to
KA-conjugacy.

For the rest of Section 5 we assume that all supercuspidal representations are
irreducible.

5B1. A=M, `(π)= 2r + 1. Suppose that π is a minimal supercuspidal represen-
tation containing the simple stratum given by (M, 2r + 1, α). Then E = F[α] is an
unramified quadratic extension of F, and π ∼= c-IndGL2(F)

Jα λ, where Jα = E×U r+1
M

and λ is a character.
We have that λ|U r+1

M
= ψα with α ∈ P−2r−1

M and α is minimal. One may take
α0 =$

2r+1α to be in rational canonical form, i.e.,

α0 =

[ 0 1
a0 a1

]
, (5-1)

for ai ∈ o, i = 0, 1. Then

1+
[
pr+1 p2r+2

p2r+2 p2r+2

]
⊆ kerψα.
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5B2. A= J, `(π)= 1
2(2r + 1). Suppose that π is a minimal supercuspidal repre-

sentation containing the simple stratum (J, 2r+1, α), and let E = F[α]. In this case
E/F is a ramified extension, and `(π)e(E/F)= 2r + 1. Then π = c-IndGL2(F)

Jα λ,
where Jα = E×U r+1

J and λ is a character. Observe

U r+1
J = 1+Pr+1

=


1+

[
pr/2+1 pr/2

pr/2+1 pr/2+1

]
if r is even,

1+
[
p(r+1)/2 p(r+1)/2

p(r+3)/2 p(r+1)/2

]
if r is odd.

Note that

U 2r+2
J = 1+

[
pr+1 pr+1

pr+2 pr+1

]
⊆ ker λ.

Let α0 = $
r+1α be of the form (5-1), where now a0 ∈ $o× and a1 ∈ p, and

k :=
[ 1

2r
]
+ 1. Then

1+
[

pk pr+1

pr+2 pr+1

]
⊆ ker λ.

5B3. A = M, `(π) = 2r > 0. Now suppose π contains an unramified simple
stratum (M, 2r, α) for some α ∈ P−2r so that `(π) = 2r > 0 and e(E/F) = 1,
where as before E = F[α]. Continue to assume that α0 =$

2rα has the form (5-1).
In this case, π is not induced from a character, and E is an unramified quadratic
extension of F. We describe a representation ρ of Jα = E×U r

M so that π is
compactly induced from ρ, and we follow Kutzko [1978, §1] since his construction
is more convenient for our applications.

Write U 1
E =U 1

M ∩ E×. Since α0 ∈MrP and oE = o[α0] (see Section 5A), a
simple argument shows U 1

E ⊂ 1+ pE . The opposite inclusion is obvious; therefore,
U 1

E = 1+ pE . We similarly note that E× ∩UM =:UE ∼= o×E . There is a character
χ of E× such that χ(1+ x)= ψ1 ◦TrE/F (αx) for all x ∈ pr+1

E . Define a character

λ : H 1
α :=U 1

EU r+1
M → C×

by λ(ux)= χ(u)ψα(x) for u ∈U 1
E and x ∈U r+1

M .
Let A =

{[ x
1

]
: x ∈ F×

}
, and set An

= A ∩U n
M for n ≥ 0. The character λ

can be extended to a character λ̃ of Ar H 1
α by λ̃(yx)= λ(x) for y ∈ ArU 2r+1

M and
x ∈ H 1

α [Kutzko 1978, Definition 1.8].
Let J 1

α =U 1
EU r

M, and define η= IndJ 1
α

Ar H1
α
λ̃. Then η is an irreducible representation

of J 1
α of dimension q. There is an irreducible representation ρ of Jα such that

π ∼= IndGL2(F)
Jα ρ, and ρ|J 1

α

∼= η [Kutzko 1978, Lemma 1.10 and Proposition 1.15].
Note that U 2r+1

M ⊂ ker ρ. We must compute ρ|Ar ∼= η|Ar . We have [J 1
α : A

r H 1
α ] = q ,

and an irredundant set of coset representatives is given by
{[ 1

a 1

]
: a ∈ pr/pr+1

}
.
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It is a simple computation to show that η|Ar = IndJ 1
α

Ar H1
α
λ̃|Ar is isomorphic to the

regular representation of Ar/Ar+1. In particular it contains the trivial character
with multiplicity one, so there is a vector v0 ∈ ρ that is unique up to scalars which
is fixed by 1+

[ pr

p2r+1
p2r+1

p2r+1

]
.

Sometimes it will be convenient to consider the corresponding vector f0 ∈ η

given by

f0(k)=
{
λ̃(k) if k ∈ Ar H 1

α ,

0 otherwise.
(5-2)

5B4. Depth zero supercuspidals. Now, consider a depth zero supercuspidal rep-
resentation, i.e., `(π) = 0. Then π is induced from a representation ρ of KM

that is inflated from a cuspidal representation ρ̃ of GL2(o/p), i.e., ρ is trivial on
U 1
M = 1+ pM2(o) and it factors through ρ̃. The cuspidal representations ρ̃ are

parameterized by Galois conjugacy classes of regular characters θ : F×q2→C1. Such
a character θ can also be regarded as a character of o×E that is trivial on 1+ pE ,
where E/F is the unique unramified quadratic extension. Embed o×E in GL2(o),
and identify F×q2 with the image of o×E under the reduction map modulo p. The
following proposition gives the character table for ρ̃, which is a well-known result
(see, e.g., [Bushnell and Henniart 2006, 6.4.1]).

Proposition 5.1. The character table of ρ̃ is given by

Tr ρ̃(z)= (q − 1)θ(z), z ∈ Z;

Tr ρ̃(zu)=−θ(z), z ∈ Z , u ∈ N , u 6= 1;

Tr ρ̃(y)=−(θ(y)+ θq(y)), y ∈ F×q2 r Z .

If g is not conjugate to an element of F×q2 ∪ Z N , then Tr ρ̃(g)= 0.

From the character table one sees that the restriction of ρ to A0 is isomorphic to
the regular representation of A0/A1. In particular there is a vector v0 ∈ ρ such that
ρ(a)v0 = v0 for a ∈ A0.

5C. Remarks on minimal supercuspidals. We consider a minimal supercuspidal
representation π = c-IndGL2(F)

Jα ρ, where E = F[α] for α ∈P−n such that π contains
the simple stratum (A, n, α). When e(E/F)`(π) is odd, then ρ = λ is a character
which restricts to ψα. When e(E/F)`(π) is even, then ρ is not a character, and if
additionally `(π) > 0, then we sometimes identify ρ|J 1

α
with η as described above.

From the discussion in the previous section, we may always take J = Jα of the
form E×

(
1+P[(eA`(π)+1)/2]

)×, where we take E = F if `(π)= 0. In all cases, we
have E× ⊂ KA, so J ⊂ KA.

Definition 5.2. Suppose π = c-IndGL2(F)
J ρ is an irreducible minimal supercuspidal

representation.
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(i) If ρ = λ is a character, define v0 to be the unique vector up to scalar multiples
in ρ. That is, ρ(k)v0 = λ(k) for k ∈ J . Then according to the constructions in
Sections 5B1 and 5B2, ρ(a)v0 = λ(a)= 1 for a ∈ A∩ J .

(ii) Suppose dimC ρ > 1. Define v0 ∈ ρ to be the vector described in Sections 5B3
and 5B4 such that ρ(a)v0 = v0 for a ∈ A∩ J .

Let N =
{[1 x

1

]}
⊂GL2(F), N =

{[ 1
x 1

]}
⊂GL2(F) and N r

= N ∩U r
M for r ≥ 0.

Lemma 5.3. Suppose that π is a minimal supercuspidal representation and that
`(π)= 2r . Write π = c-IndGL2(F)

J ρ, where ρ is not a character.

(i) If `(π) = 0, then ρ|N 0 =
⊕q−1

i=1 ψi , where ψi runs over all the nontrivial
characters of N 0/N 1.

(ii) If `(π) > 0 and J = Jα, then ρ|N∩Jα =
⊕

j ψ j , where the sum runs over all
characters ψ j of N ∩ Jα such that ψ j |N∩Hα = ψα|N∩Hα , and Hα := E×U r+1

M .

Proof. The first part may be deduced from Proposition 5.1. Now, suppose that
`(π)> 0. Since Jα = E×U r

M, we have N ∩ Jα = N r , and similarly N ∩Hα = N r+1.
Also, recall that ρ|J 1

α

∼= η = IndJ 1
α

Ar H1
α
λ̃, where λ̃ is obtained from λ by extending it

trivially to Ar.
A set of irredundant coset representatives for Ar H 1

α\J
1
α is given by{[ 1

a 1

]
: a ∈ pr/pr+1

}
.

Let ψ ′ be one of the characters ψ j of N r as in (ii). For a ∈ pr/pr+1, define

fa(y)=

ψ ′
([ 1

a 1

])
λ̃(x) if y = x

[ 1
a 1

]
, x ∈ Ar H 1

α ,

0 otherwise.
(5-3)

This is well defined since ψ ′ and λ̃ agree on N r+1. Note the fa span η, and when
a = 0, (5-3) agrees with (5-2). Define fψ ′ =

∑
a∈pr/pr+1 fa . Then we have

η
([ 1

x 1

])
fψ ′ = ψ ′(x) fψ ′ .

From the explicit basis we computed for η, one sees that each of these characters
appear with multiplicity one. This proves the lemma. �

Later, it will be useful to have a case-by-case description of the kernel of ρ. We
summarize what we know about the kernel from the previous section in Table 2.
The quantities in the latter two columns will be denoted i and i ′ in Propositions 5.5
and 5.9, and are included here for the later convenience of the reader.
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`(π) J ⊂ ker ρ
[
`(π)+3/2

2

] [
`(π)+

3
2

]
−

[
`(π)

2

]
−1

2r+1 E×(1+Pr+1) 1+
[
pr+1 p2r+2

p2r+2 p2r+2

]
r+1 r+1

2r > 0 E×(1+Pr ) 1+
[
pr+1 p2r+1

p2r+1 p2r+1

]
r r

0 Z(F)GL2(o) 1+P 0 0

2r+1
2

E×(1+Pr+1) 1+
[
p[r/2]+1 pr+1

pr+2 pr+1

] [r
2

]
+1 r−

[r
2

]
+1

Table 2. Data for minimal supercuspidal representations.

5D. Mackey theory. In this section we describe the strategy to obtain the desired
test vector for π . Consider a minimal supercuspidal representation π of GL2(F).
There is an open subgroup J of GL2(F) that contains the center Z(F), is compact
modulo Z(F) and has an irreducible representation ρ of J with π ∼= c-IndGL2(F)

J ρ.
As before, let � : T (F)→ C× be a character such that �|Z(F) = ωπ .

Consider the space

HomT (F)(π,�)∼= HomGL2(F)
(
c-IndGL2(F)

J ρ, B(�)
)
. (5-4)

See Section 2D for the definition of B(�) and details of the above isomorphism.
Following the proof of Proposition 1.6 of [Bushnell and Henniart 1998] and [Kutzko
1977], define H (GL2(F), ρ, �) to be the space of functions

f : GL2(F)→ HomC(ρ,C)

satisfying

f (tgk)=�(t) f (g) ◦ ρ(k), t ∈ T (F), g ∈ GL2(F), k ∈ J.

Then for ϕ ∈ c-IndGL2(F)
J ρ and f ∈ H (GL2(F), ρ, �), the convolution f ∗ ϕ

defined as

f ∗ϕ(g) =
∫

GL2(F)/Z(F)

f (x)ϕ(x−1g) dx̄, g ∈ GL2(F),

gives a function in the space B(�). Furthermore, GL2(F) acts on H (GL2(F), ρ,�)
through the convolution by (g · f ) ∗ϕ = f ∗ (g ·ϕ), and there is a GL2(F) homo-
morphism

H (GL2(F), ρ,�)→ HomGL2(F)
(
c-IndGL2(F)

J ρ, B(�)
)
,

f 7→ (ϕ 7→ f ∗ϕ).
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This is in fact an isomorphism. By [Waldspurger 1985],

dimC HomGL2(F)
(
c-IndGL2(F)

J ρ, B(�)
)
≤ 1.

Hence, there is at most one double coset T (F)h0 J which has nontrivial inter-
section with the support of any f ∈H (GL2(F), ρ, �), and each f is uniquely
determined by its value at h0 (see 1.8 of [Bushnell and Henniart 1998]). Suppose
that f ∈ H (GL2(F), ρ, �) has support in a double coset T (F)h0 J , and that
f (h0) = `0 ∈ Hom(ρ,C). For k ∈ J ∩ h−1

0 T (F)h0, define �h0(k) = �(h0kh−1
0 ).

Then `0 has the property that for k ∈ J ∩ h−1
0 T (F)h0,

`0(ρ(k)v)=�h0(k)`0(v).

Therefore,
`0 ∈ HomJ∩h−1

0 T (F)h0
(ρ, �h0). (5-5)

When the Hom space in (5-5) is not 0, we say that π and � intertwine on h0. If
this is the case, then the double coset T (F)h0 J supports a nonzero function in
H (GL2(F), ρ, �), and the Hom space in (5-4) is not zero.

5E. Test vectors for minimal supercuspidal representations. By [Henniart 2002,
Section A.3], if π is a minimal representation with level `(π), then c(π)=2`(π)+2.
Let π = c-IndGL2(F)

J ρ as described above. Let v0 ∈ ρ be the vector described in
Definition 5.2. Assume that c(�)≥ c(π). Set

m0 =
[
`(π)+ 3

2

]
− c(�)− v(a). (5-6)

In the next proposition, we determine a double coset representative h0 of
T (F)\GL2(F)/J such that HomJ∩h−1

0 T (F)h0
(ρ, �h0) 6= 0. We remark that this

result depends on our choice of inducing subgroup J , and in particular the quadratic
extension E = F[α] = F[α0], where α0 is always assumed to be of the form (5-1).
For m ∈ Z and z ∈ o×, we define g(m, z) :=

[ z$m

1

]
.

Lemma 5.4. For z ∈ o×, T (F)∩g(m0, z)Jg(m0, z)−1
= F×

(
1+Pc(�)−[`(π)/2]−1

L

)
.

Proof. We give the details when A = M. First, suppose `(π) = 0. In this
case J = Z(F)GL2(o) and m0 = 1 − c(�) − v(a). Furthermore, for z ∈ o×,
g(m0, z)Jg(m0, z)−1

=g(m0, 1)Jg(m0, 1)−1. Let t ′∈T (F)∩g(m0, 1)Jg(m0, 1)−1.
Since J = Z(F)GL2(o), there is a unique integer k such that

$ k t ′ ∈ T (F)∩ g(m0, 1)GL2(o)g(m0, 1)−1.

Let t =$ k t ′ =
[ x+by

ay
cy
x

]
. Then

g(m0, 1)−1tg(m0, 1)=
[

x + by cy$−m0

ay$m0 x

]
∈ GL2(o).
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Therefore, y ∈ p−m0−v(a) = pc(�)−1
⊂ p. Since g(m0, 1)−1tg(m0, 1) ∈ GL2(o), we

have x ∈ o×. This proves that T (F)∩ g(m0, z)Jg(m0, z)−1
⊆ F×

(
1+Pc(�)−1

L

)
.

The other inclusion is straightforward. This completes the proof for `(π)= 0.
Now, assume `(π) > 0. Note that t ∈ T (F)∩ g(m0, z)Jg(m0, z)−1 if and only

if wt ∈ T (F)∩ g(m0, z)Jg(m0, z)−1 for all w ∈ Z(F).
Suppose that t ′ ∈ T (F) ∩ g(m0, z)Jg(m0, z)−1, where t ′ =

[ x ′+by′
−ay′

cy′
x ′
]
. Let

k =max{−v(x ′),−v(y′)−m0− v(a)}, x = x ′$ k, y = y′$ k and t =$ k t ′. Then

g(m0, z)−1tg(m0, z)=
[

x + by z−1cy$−m0

−zay$m0 x

]
.

Let i =
[ 1

2(`(π)+ 1)
]
, so J = E×U i

M. There is a u ∈U i
M such that

g(m0, z)−1tg(m0, z)u ∈ E×.

Since g(m0, z)−1tg(m0, z) ∈M2(o) and u ∈U i
M, this implies that

a0z−1cy$−m0 ≡−zay$m0 mod pi

(see (5-1) for a0). As y$−m0 ∈p−2m0−v(a), we have y∈pi−m0−v(a)=pc(�)−[`(π)/2]−1.
But this means that v(ay$m0) > 0, and hence v(x) = 0 by our choice of k.
Therefore, we have t ∈ o×(1+Pc(�)−[`(π)/2]−1

L ). The discussion above shows that
t ′ ∈ F×(1+Pc(�)−[`(π)/2]−1

L ). The inclusion

T (F)∩ g(m0, z)Jg(m0, z)−1
⊇ F×

(
1+P

c(�)−[`(π)/2]−1
L

)
is straightforward. �

Proposition 5.5. Let i =
[ 1

2

(
`(π)+ 3

2

)]
. There is a unique z0 ∈ o

×/(1+ pi ) such
that we have

HomJ∩g(m0,z0)−1T (F)g(m0,z0)(ρ,�
g(m0,z0)) 6= 0 for g(m0, z0) :=

[
z0$

m0

1

]
.

Proof. We give the details when `(π) > 0 and A = M. In this case, we have
m0 = `(π)+ 1− c(�)− v(a) and i =

[ 1
2(`(π)+ 1)

]
. By Lemma 5.4,

T (F)∩ g(m0, z)Jg(m0, z)−1
= F×

(
1+P

c(�)−[`(π)/2]−1
L

)
.

Since �|F× = ωπ , intertwining only depends on �|1+Pc(�)−[`(π)/2]−1
L

. Recall the
definition of ξ from Section 2. The function given by y 7→�

(
1+ y

(
ξ − 1

2 b
))

is an
additive character of pc(�)−[`(π)/2]−1/pc(�).

On the other hand, we have an isomorphism

pc(�)−[`(π)/2]−1/pc(�)
→ N iU `(π)+1

M /U `(π)+1
M ,

y 7→ g(m0, z)−1(1+ y
(
ξ − 1

2 b
))

g(m0, z).
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Therefore, �g(m0,z) determines a character of N iU `(π)+1
M /U `(π)+1

M
∼= N i/N `(π)+1.

As z runs over o×/(1+ p`(π)+1−i ), the character determined by �g(m0,z) runs over
all characters of N i/N `(π)+1 that are nontrivial on N `(π). In an abuse of notation
we also refer to the character of N i/N `(π)+1 by �g(m0,z).

If `(π) is odd, then ρ is a character of J . Then ρ|N i = ψ ′, i.e., ρ restricts to a
single character, and `(π)+ 1− i = i , giving the proposition in this case.

Otherwise `(π) > 0 is even and, according to Lemma 5.3, ρ|N i is the direct sum
of characters all of which restrict to the same character ψ ′ on N i+1. In this case
there is a unique z0 ∈ o

×/(1+ pi ) such that

ρ|N i
∼=

⊕
z∈o×/(1+pi+1)

z≡z0 (mod pi )

�g(m0,z),

proving the proposition. The other cases follow similarly. �

Remark 5.6. Let us comment on the choice of the m0 in (5-6). Put gm = g(m, 1).
One can exhibit the following double coset decomposition:

GL2(F)=



⊔
m≥v(a)

T (F)g−m KM if A=M,⊔
m≥0

T (F)g−m KJ if A= J,
(L
p

)
=−1,

⊔
m≥v(a)

T (F)g−m KJ t T (F)
[

1

u0 1

]
KJ if A= J,

(L
p

)
= 0.

Then, still assuming c(�)≥ c(π), one can prove that if f ∈H (GL2(F), ρ,�) is
nonzero and is supported on the double coset T (F)g−m KA, one must have−m=m0.
Thus it makes sense to look for intertwining on an element of T (F)g−m KA. The
decomposition above involves negative powers of the uniformizer in the double coset
representatives, whereas (4-12) uses positive exponents in the representatives. The
difference in the indices occurs because for m ≥ v(a), g−m and gm−v(a) represent
the same double coset.

Next, we define a vector in π which will be a test vector for a �-Waldspurger
functional and have the desired right-invariance. Recall v0 from Definition 5.2.
Define ϕ0 ∈ π by

ϕ0(g)=
{
ρ(k1)v0 if g = k1g−1

m0
k2, k1 ∈ J, k2 ∈ K (m0+[`(π)+1])

1 (p2`(π)+2),

0 otherwise.
(5-7)

See (2-3) for the definition of K (s)
1 (pn). The vector ϕ0 is well defined because of

the inclusion

J ∩ g−1
m0

K (m0+[`(π)+1])
1 (p2`(π)+2)gm0 ⊆ Stab(v0).
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Since ϕ0 is a translate of the newform in π , we see that ϕ0 is the unique (up to
scalar) K (m0+[`(π)+1])

1 (pc(π)) fixed vector in π .
For z ∈ o×, define

ϕz(g)=
{
ρ(k)v0 if g = kg(m0, z)−1, k ∈ J,
0 otherwise.

(5-8)

Proposition 5.7. Suppose π is a minimal supercuspidal representation. Let i and
z0 be as in Proposition 5.5. Then

(i) ϕ0 =
∑

z∈o×/(1+pi )

ϕz , and

(ii) `(ϕ0)= `(ϕz0) for ` ∈ HomT (F)(π,�).

Proof. The space
(
gm0 Jg−1

m0
∩ K (m0+[`(π)+1])

1 (p2`(π)+2)
)
\K (m0+[`(π)+1])

1 (p2`(π)+2)

has an irredundant set of coset representatives given by {g(0, z) : z ∈ o×/(1+ pi )}.
This shows (i). It is a straightforward computation to show that the double cosets
T (F)g(m0, z)J for z ∈ o×/(1+ pi ) are disjoint. Hence, z0 is the unique element
in o×/(1+ pi ) such that the double coset T (F)g(m0, z0)J is in the support of a
nonzero f ∈H (GL2(F), ρ, �). By the discussion in Section 5D, this gives (ii). �

Proposition 5.8. Let π be a minimal supercuspidal representation. There is a
nonzero ` ∈ HomT (F)(π,�) satisfying `(ϕ0) 6= 0.

Proof. Let z0 ∈ o
×/(1+ pi ) be as in Proposition 5.5 and `0 be a nonzero element

of the space HomJ∩g(m0,z0)−1T (F)g(m0,z0)(ρ,�
g(m0,z0)). Define

ξ = 1T (F)g(m0,z0)J ⊗ `0 ∈H (GL2(F), ρ, �).

As in Section 5D, define `(ϕ) = ξ ∗ ϕ(1) ∈ HomT (F)(π,�). After appropriate
normalization of measures, `(ϕ0)= `(ϕz0)= `0(v0).

When ρ is a character, it follows immediately that `(ϕ0) 6= 0. However, when ρ
is not a character, it must be shown that v0 /∈ ker `0.

Suppose that `(π)= 2r > 0 and write J = Jα . Recall that under the identification

ρ|J 1
α

∼= η = IndJ 1
α

Ar H1
α
λ̃,

the vector v0 is identified with f0 defined by (5-2). Consider any character ψ ′

which is a summand of ρ|N r , and the vectors fa ∈ η defined by (5-3) with respect
to ψ ′. We may take `0 to be given by

`0

( ∑
a∈pr/pr+1

ca fa

)
:=

∑
a∈pr/pr+1

ca.
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Indeed, with this definition, note that for f ∈ η and x ∈ pr ,

`0

(
η
([ 1

x 1

])
f
)
= ψ ′

([ 1
x 1

])
`0( f )

=�g(m0,z)
([ 1

x 1

])
`0( f ),

viewing �g(m0,z) as a character of N r for some choice of z ∈ o×/(1+ pi+1) corre-
sponding to ψ ′ as in the proof of Proposition 5.5. Hence `0(v0)= `0( f0)= 1 6= 0.

Finally, suppose that `(π) = 0, so c(π) = 2 and s = 1 − c(�) − v(a) < 0.
Let h = gs . The linear functional `0 is the projection onto one of the irreducible
summands of ρ|N 0 . Let a ∈ o×, and denote by ψa the character of N 0 given by
ψa
([ 1

u 1

])
=ψ1(au). Denote by va the vector in ρ such that ρ

([ 1
u 1

])
va =ψa(u)va .

Now, write v0 =
∑

cava , where ca ∈ C and a runs over o×/(1+ p). For b ∈ o×,
we have ρ(g(0, b))v0 = v0. However, ρ(g(0, b))va = vba . Therefore, ca = cba for
all b ∈ o×. Therefore, v0 has a nonzero component in each summand of ρ|N 0 . �

Proof of Theorem 1.7 for minimal supercuspidal representations. Since c(�)≥ c(π),
we can apply Lemma 2.2 together with Proposition 5.8 and the definition (5-7) to see
that HomT (F)(π,�) 6= 0 and that ϕ0 is a test vector with the required properties. �

5F. Nonminimal representations. In this section we consider a nonminimal super-
cuspidal representation τ and let � be a character of T (F) such that �|Z(F) = ωτ
and c(�) ≥ c(τ ). There exists a minimal supercuspidal representation π and a
(ramified) character χ of F× such that τ ∼= π ⊗χ . Identify τ with π ⊗χ . Since π
is minimal and τ is not, Proposition 3.4 of [Tunnell 1978] tells us

c(τ )= 2c(χ) > c(π).

Then c(�⊗χ−1)≥ c(�) > c(π).
Observe that the considerations of the previous section guarantee the existence

of a vector in π that is a test vector for an (�⊗χ−1)-Waldspurger functional and is
the unique vector (up to scalars) in π that is right invariant under the corresponding
conjugate of K1(p

c(π)). To get the desired test vector for τ , we actually need a
vector in π with respect to �⊗χ−1, but which transforms according to χ−1

◦ det
under right translation by a conjugate of K1(p

c(τ )). In the next proposition, we
obtain a vector ϕχ with the correct right-transformation property, and then show
that it is a test vector for the appropriate linear functional.

Proposition 5.9. Suppose that π = c-IndGL2(F)
J ρ. Let s = 2c(χ)− c(�)− v(a),

b =
[
`(π)+ 3

2

]
− c(χ), m0 =

[
`(π)+ 3

2

]
− c(�)− v(a), i =

[ 1
2

(
`(π)+ 3

2

)]
and

i ′ =
[
`(π)+ 3

2

]
−
[1

2`(π)
]
− 1.
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(i) There is a unique u ∈ o×/((1+ pi )∩ o×), and vχ ∈ ρ depending on u, which
is unique up to scaling, such that for all x ∈ pi ′,

ρ

([
1+ x$−b 0

xu−1 1

])
vχ = χ

−1(1+ x$−b)vχ . (5-9)

(ii) Suppose u and vχ satisfy (5-9). Let

ϕχ (g)=
{
(χ−1

◦ det)(k1)ρ(k2)vχ if g = k2gχk1, k2 ∈ J, k1 ∈ K (s)
1 (p2c(χ)),

0 otherwise,

where gχ =
[

$−m0

u−1$ c(χ)−s
0
1

]
. Then ϕχ is well defined, and is the unique vector (up

to scalars) in π such that, for k ∈ K (s)
1 (p2c(χ)), π(k)ϕχ = (χ−1

◦ det)(k)ϕχ .

Note that i = i ′ when `(π) ∈ Z or `(π)= 1
2(2r + 1) with r even; otherwise they

are off by 1 (see Table 2).

Proof. Observe that for
[a11

a21

a12
a22

]
∈ K (s)

1 (p2c(χ)), we have

gχ
[ a11 a12

a21 a22

]
g−1
χ ∈

[
a11 0

(a11− 1)u−1$ b 1

]
+P`(π)eA+1. (5-10)

We remark that b≤ 0. If gχ
[a11

a21

a12
a22

]
g−1
χ ∈ J , then a11≡ 1 mod pi ′−b. To show that

ϕχ is well defined, we must check that ρgχ and χ agree on g−1
χ Jgχ ∩ K (s)

1 (p2c(χ)).
This is precisely the condition (5-9). Once this is established, uniqueness then
follows since ϕχ ⊗χ is a translate of the newform for τ . Therefore, part (ii) of the
proposition will follow from part (i).

First, suppose ρ = λ is a character. As in Section 5B we have

ρ

([
1+ x$−b 0

xu−1 1

])
vχ = λ

([ 1 0
xu−1 1

])
.

As a function of x , both sides of (5-9) are nontrivial characters of pi ′/p[`(π)+3/2]

(see Table 2). Therefore, there is a unique u ∈ o×/(1+ pi ) such that (5-9) holds.
This proves part (i) when ρ is a character.

If ρ is not a character, then b < 0. By Section 5B,

ρ

([
1+ x$−b 0

xu−1 1

])
vχ = ρ

([ 1 0
xu−1 1

])
vχ .

Suppose that π is a depth zero supercuspidal representation. Let u = 1. By
Lemma 5.3 there is a unique up to scalar vχ ∈ ρ such that, for x ∈ o,

ρ
([ 1 0

x 1

])
vχ = χ

−1(1+ x$ c(χ)−1)vχ .

Finally, suppose that `(π) = 2r > 0, and π = c-IndGL2(F)
J ρ, where ρ is not a

character of J . By Lemma 5.3, ρ|N∩Hα is a multiple of ψα|N∩Hα . There exists a
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unique u ∈ o×/(1+ pi ) such that (5-9) holds for x ∈ pi ′. By Lemma 5.3, with this
choice of u there is a unique up to scalar multiple vχ ∈ ρ such that (5-9) holds.
This completes the proof of (i) of the proposition. �

The next lemma gives a double coset decomposition of the support of ϕχ .

Lemma 5.10. Let gχ =
[

$−m0 0
u−1$ c(χ)−s 1

]
as in Proposition 5.9. Then

JgχK (s)
1 (p2c(χ))=

⊔
z∈o×/(1+pc(χ)−[`(π)/2]−1)

Jgχ
[ z

1

]
.

Proof. Recall

K (s)
1 (p2c(χ))=

[
1 ps

pc(�)+v(a) 1+ p2c(χ)

][
o×

1

]
.

We have, for z ∈ o×,

gχ

[
1 ps

pc(�)+v(a) 1+ p2c(χ)

]
g−1
χ =

[
1+ pc(χ) p2c(χ)−[`(π)+3/2]

p[`(π)+3/2] 1+ pc(χ)

]
, (5-11)

gχ
[ z

1

]
g−1
χ =

[
z

u−1$ c(χ)−s+m0(z− 1) 1

]
. (5-12)

Using the description of J in Table 2, we see that the right-hand side of (5-11) lies
in J . Also, the right-hand side of (5-12) lies in J if and only if z∈1+pc(χ)−[`(π)/2]−1.
This completes the proof of the lemma. �

The next two lemmas give a useful decomposition of gχ . Fix gχ and u to be
as in Proposition 5.9, and set y0 = −u−1a−1$ c(�)+v(a)−c(χ). For y ∈ F, define
ty = t

(
1+ 1

2 by, y
)
=
[ 1+by
−ay

cy
1

]
.

Lemma 5.11. We have gχ = k0g−1
m0

ty0 , where k0 ∈U `(π)eA+1
A .

Proof. Write gχ = g−1
m0

g, where g =
[ 1
−ay0 1

]
. Let k−1

0 = g−1
m0

ty0 g−1gm0 . We see
that

k−1
0 =

[
1+ by0+ acy2

0 cy0$
−m0

0 1

]
.

So k0 ∈U `(π)eA+1
A and gχ = k0g−1

m0
ty0 . �

Lemma 5.12. For each z ∈ o×, there exists kz ∈U `(π)eA+1
A such that

g−1
m0

ty0

[ z
1

]
= kzg−1

m0

[ z
1

]
tzy0 . (5-13)
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Proof. Write gχ = k0g−1
m0

ty0 as in Lemma 5.11. Then

g−1
m0

ty0

[ z
1

]
= k−1

0 gχ
[ z

1

]
= k−1

0 g−1
m0

[ 1
−ay0 1

][ z
1

]
= k−1

0

[ z
1

]
g−1

m0

[ 1
−azy0 1

]
= k−1

0

[ z
1

]
k ′0g−1

m0
tzy0

= kz

[ z
1

]
g−1

m0
tzy0 .

For the second to last equality we have used a decomposition similar to Lemma 5.11,
and k ′0 is the corresponding element of U `(π)eA+1

A . For the last equality we use the
fact that the subgroup U `(π)eA+1

A is normalized by A0. �

Let us remark here that U `(π)eA+1
A lies in the kernel of ρ (see Table 2 for details).

For any g ∈ GL2(F) and v ∈ ρ, define

ϕg,v(h)=
{
ρ(k)v if h = kg, k ∈ J,
0 otherwise.

Note that, for any z ∈ o×, the support of π
([ z−1

1

])
ϕgχ ,vχ is exactly Jgχ

[ z
1

]
. Then

ϕχ =
∑

z∈o×/(1+pc(χ)−[`(π)/2]−1)

χ−1(z) π
([ z−1

1

])
ϕgχ ,vχ

= q−[`(π)/2]−1
∑

z∈o×/(1+pc(χ))

χ(z) π
([ z

1

])
ϕgχ ,vχ

= q−[`(π)/2]−1
∑

z∈o×/(1+pc(χ))

χ(z) π
(
t−1
z−1 y0

)
ϕg(m0,z)−1,vχ . (5-14)

The first equality follows from the double coset decomposition in Lemma 5.10. To
get the second equality, note that for z ∈ 1+ pc(χ)−[`(π)/2]−1, we can apply (5-9) to
the right-hand side of (5-12). Finally, the third equality follows from Lemmas 5.11
and 5.12.

Write c0 =
[ 1

2(c(χ)+ 1)
]
. For x ∈ pc0 , x 7→ χ(1+ x) is an additive character

of pc0/pc(χ).

Proposition 5.13. Suppose ` ∈ HomT (F)(π,� ⊗ χ
−1). Then there is a unique

w0 ∈ o
×/(1+ pc(χ)−c0) satisfying the following conditions:

(i) If ∑
z∈(1+pc0 )/(1+pc(χ))

χ(zw)`
(
π
(
t−1
(zw)−1 y0

)
ϕg(m0,zw)−1,vχ

)
6= 0,

then w ≡ w0 mod pc(χ)−c0 .

(ii) `(ϕg(m0,zw0)−1,vχ ) 6= 0.
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Proof. Recall y0=−u−1a−1$ c(�)+v(a)−c(χ). First, note χ◦det is trivial on elements
tzy0 for z ∈ o×. We can define an additive character of o by ψ�(x) :=�(txy0). By
(5-14), we have

`(ϕχ )= q−[`(π)/2]−1

×

∑
w∈o×/(1+pc0 )

∑
z∈(1+pc0 )/(1+pc(χ))

χ−1(wz)ψ−1
� (wz)`(ϕg(−m0,zw),vχ ). (5-15)

If z ∈ 1+pc0 , then ρ(g(0, z−1))vχ = vχ , and ϕg(−m0,zw),vχ =ϕg(−m0,w),vχ . Consider
the inner sum of (5-15):∑
z∈(1+pc0 )/(1+pc(χ))

χ−1(wz)ψ−1
� (wz)

= χ−1(w)ψ−1
� (w)

∑
x∈pc0/pc(χ)

χ−1(1+ x)ψ−1
� (wx). (5-16)

This sum does not equal zero if and only if χ−1(1+ x)= ψ�(xw) for all x ∈ pc0 ,
and this occurs for exactly one element w = w0 ∈ o

×/(1+ pc(χ)−c0). This proves
the first part.

Consider an element t ∈ T (F) ∩ gm0 Jg−1
m0
= F×

(
1 + P

c(�)−[`(π)/2]−1
L

)
(see

Lemma 5.4). Since 2c(χ) > c(π)= 2`(π)+ 2, we see(
c(�)−

[ 1
2`(π)

]
− 1

)
− (c(�)− c(χ))= c(χ)−

[ 1
2`(π)

]
− 1> c0.

Therefore, there exist x ∈ pc0 and z ∈ F× such that t = ztxy0 , and, by the remarks
after (5-16),

χ−1(1+w−1
0 x)= ψ�(x)=�(txy0)=�(z)

−1�(t).

By (5-9) we have

ρ
([ 1

u−1x 1

])
vχ = χ

−1(1+ x$−b)vχ .

Therefore, for all t ∈ T (F)∩ gm0 Jg−1
m0
= T (F)∩ gm0,w0 Jg−1

m0,w0
,

ρ(g−1
m0,w0

t gm0,w0)vχ =�(t)vχ =�(t)(χ
−1
◦ det)(t)vχ .

This implies that there is `0 ∈ Homg(m0,w0)−1T (F)g(m0,w0)∩J (ρ, (�⊗χ
−1)g(m0,w0))

such that `0(vχ ) 6= 0, and from the discussion in Section 5D, after a normalization,
`(ϕg(m0,w0)−1,vχ )= `0(vχ ). �

Proof of Theorem 1.7 for nonminimal supercuspidal representations. We compute,
by Proposition 5.13,

`(ϕχ )= q−[`(π)/2]−1`(ϕg(m0,w0)−1,vχ )
∑

χ−1(ww−1
0 )ψ−1

� (ww−1
0 )

= q−[`(π)/2]−1−[c(χ)/2]ψ−1
� (w−1

0 )G(χ, ψ−1
� )`(ϕg(m0,w0)−1,vχ ) 6= 0,
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where the sum is over w ∈ (1+ pc(χ)−c0)/(1+ pc0), w0 is the unique element of
o×/(1+pc(χ)−c0) such that χ−1(1+z)=ψ�(zw−1

0 ) for all z∈pc0 , and G(χ, ψ−1
� ) is

the Gauss sum for the pair χ , ψ−1
� . For the last equality see [Bushnell and Henniart

2006, 23.6 Proposition]. This shows that HomT (F)(τ,�) 6= 0. The 1-dimensionality
follows from [Waldspurger 1985]. Since c(�) ≥ c(τ ), we can apply Lemma 2.2
to obtain the test vector with the required properties. The uniqueness of the test
vector follows from the uniqueness of the newform in π . �

6. Local spectral distributions

Now we return to the setting where F is a p-adic field and L is a quadratic separable
extension as in Section 2B. Let π be an infinite-dimensional, irreducible, admissible
representation of GL2(F), and � a character of L× such that �|F× = ωπ . In this
section, we calculate certain local spectral distributions J̃π ( f ) defined by Jacquet
and Chen [2001] for certain test functions f ∈ C∞c (GL2(F)). These are used in
Section 7 to generalize the global L-value formula previously obtained in [Martin
and Whitehouse 2009]. For simplicity, we prove this global L-value formula when
the central character of our automorphic representation is trivial, so we may as well
assume ωπ = 1 in this section also. We also assume that π and � are unitary, since
the global objects in the following sections are unitary as well.

The calculation of J̃π ( f ) is contained in [Martin and Whitehouse 2009] in the
cases where F is archimedean, L/F is split, or π and � have disjoint ramification.
Hence, we assume L/F is a quadratic extension of nonarchimedean fields and
c(π), c(�)> 0. In particular, either L(s, π)= 1 or π = χ StGL2 , where, for the rest
of this section, χ denotes an unramified quadratic character. Further, we assume
c(�)≥ c(π) to use our determination of test vectors.

Write L× = F(ξ)×, where ξ = 1
2

√
d. Let T = T (F) be the torus in GL2(F)

isomorphic to L× defined in (2-16). Here it is convenient to take a slightly different
parameterization for T than the one given by t (x, y) in (2-17). Namely, we map

x + yξ0 7→

[ x cy
−ay x − by

]
, (6-1)

where

ξ0 = ξ −
1
2 b= 1

2

(√
d− b

)
.

By [Tunnell 1983; Saito 1993] or Theorem 1.7, the assumption c(�)≥ c(π) implies
dimC HomT (π,�)= 1. Fix a nonzero linear functional ` ∈ HomT (π,�).

Consider the Kirillov model for π and the inner product on π given by

(φ1, φ2)=

∫
F×

φ1(a)φ2(a) d×a,
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where d×a is the Haar measure giving vol(o×)= 1. This inner product is GL2(F)-
invariant. Let e be the unique (up to scalars) vector in π such that π(t)e =�(t)e
for t ∈ T , which we normalize so that (e, e)= 1. Let dg denote the local Tamagawa
measure on GL2(F). Then the local distribution we are interested in is defined in
[Jacquet and Chen 2001] by

J̃π ( f )= (π( f )e, e)=
∫

GL2(F)

f (g)(π(g)e, e) dg, f ∈ C∞c (GL2(F)). (6-2)

Put s = c(�)− c(π), h =
[
$ s

1

]
w, and

K ′ = hK1(p
c(π))h−1

=

[
1+ pc(π) pc(�)

pc(π)−c(�) o×

]
. (6-3)

Then Theorem 1.7 says there is a unique (up to scalars) test vector φ ∈ π which is
right invariant by K ′ such that `(φ) 6= 0. Let φ0 be the newvector in π normalized
so that φ0(1)= 1. Then we may take φ = π(h)φ0.

Observe that � is trivial on T ∩ Z K ′, where Z = Z(T ), since φ is fixed by Z K ′.
Consider the vector e′ ∈ π given by

e′ =
∑

t∈T/(T∩Z K ′)

�−1(t)π(t)φ. (6-4)

Note the index set for the sum is finite, so e′ is well defined. Then for any t ∈ T ,
we have π(t)e′ =�(t)e′, and `(e′) 6= 0. In other words, we may assume

e =
e′

(e′, e′)1/2
.

We take for our test function f = 1K ′/vol(K ′), so our calculations do not in fact
depend on the normalization of dg in (6-2). Then

J̃π ( f )= vol(K ′)−1
∫
K ′

(π(k)e, e) dk = vol(K ′)−1
∫
K ′

(π(k)e′, e′)
(e′, e′)

dk.

Note, using the GL2(F)-invariance of the inner product, we get

(e′, e′)=
∑

t∈T/(T∩Z K ′)

�−1(t)(φ, π(t−1)e′)

= |T/(T ∩ Z K ′)|(φ, e′).

Since π( f ) is simply orthogonal projection onto 〈φ〉 = πK ′,

vol(K ′)−1
∫
K ′

(π(k)e′, e′) dk = (π( f )e′, e′)=
(e′, φ)(φ, e′)
(φ, φ)

.
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Hence
J̃π ( f )=

1
|T/(T ∩ Z K ′)|

(e′, φ)
(φ, φ)

. (6-5)

Note that

(φ, φ)= (φ0, φ0)=

{
L(2, 1F ) if π = χ StGL2,

1 if L(s, π)= 1,
(6-6)

so it remains to compute |T/(T∩Z K ′)| and (e′, φ). (Recall χ denotes an unramified
character.) Only the latter computation is involved. This requires knowing some
facts about values of the Whittaker newform and determining a set of representatives
for T/(T ∩ Z K ′). We first tackle these two tasks, and then compute (e′, φ), and
hence J̃π ( f ), under our above assumptions.

Whittaker values. Assume π has trivial central character and let ψ be a nontrivial
additive character of F of conductor o. Let W(π, ψ) be the Whittaker model for
π with respect to ψ . Let W0 be the newform normalized so that W0(1) = 1, and
therefore φ0(a)=W0

([a
1

])
.

We are interested in certain values of the Whittaker newform when the local
L-factor of π has degree 1 or 0. For this, we recall (see Table 1 in Section 3) that
φ0(a) = χ(a)|a|1o(a) when π = χ StGL2 and φ0(a) = 1o×(a) when L(s, π) = 1.
From this, one obtains the following result on Whittaker newform values.

Lemma 6.1. (i) If u, v ∈ o×, then

W0

(
g
[ u

v

]
w
)
=W0(gw).

(ii) If π = χ StGL2 with χ unramified, then for j ∈ Z,

W0

([
$ j

1

]
w

)
=

{
−χ($) j q− j−1 if j ≥−1,
0 else.

If L(s, π)= 1, then for any j ∈ Z,

W0

([
$ j

1

]
w

)
=

{
ε
( 1

2 , π
)

if j =−c(π),
0 else.

(iii) If π = χ StGL2 with χ unramified, for j ≥ 0≥ k, we have∫
o×

W0

([
$ j u

1

][
1
$ k 1

])
d×u =−q−1(χ($)q−1) j−2k .

If L(s, π)= 1, then for all j, k ∈ Z,∫
o×

W0

([
$ j u

1

][
1
$ k 1

])
d×u =


1 if j = 0 and k ≥ c(π),
(1− q)−1 if j = 0 and k = c(π)− 1,
0 else.
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Proof. Part (i) follows simply from the facts that W0 is right invariant by K1(p
c(π))

and ωπ = 1. The proof of parts (ii) and (iii) follows from the functional equation
(3-3) with µ= 1 by comparing coefficients of qs . �

The toric quotient. We identify t = x + yξ0 ∈ L× with its image in T via (6-1).
Since we have assumed that c(�)≥ c(π), we have t = x + yξ0 ∈ K ′ if and only if
x ∈ 1+ pc(π) and y ∈ pc(�).

Lemma 6.2. We have

|T/(T ∩ Z K ′)| =
{

qc(�)(1+ q−1) if L/F is unramified,
2qc(�) if L/F is ramified.

(6-7)

Furthermore, if L/F is unramified or v(a)=1, then a complete set of representatives
of T/(T ∩ Z K ′) is given by

{1+ yξ0 : y ∈ o/pc(�)
} ∪ {x + ξ0 : x ∈ p/pc(�)+v(a)

}, (6-8)

while if L/F is ramified and v(a) = 0, then a complete set of representatives of
T/(T ∩ Z K ′) is given by

{1+ yξ0 : y ∈ o/pc(�), y 6≡ u′0 mod p}

∪ {1+ (u′0+ y)ξ0 : y ∈ p/pc(�)+1
} ∪ {x + ξ0 : x ∈ p/pc(�)

}, (6-9)

where u′0 =−u0/a ∈ o× with u0 as in (2-14).

Proof. We obtain the set of representatives of T/(T ∩ Z K ′), from which (6-7)
follows. Given an arbitrary t = x + yξ0 ∈ T , we may multiply t by an element of
Z to assume that x, y ∈ o and either x = 1 or y = 1. Further, if x and y are both
units, we may assume x = 1. So we may consider a set of representatives of the
form x + ξ0 and 1+ yξ0, where x ∈ p and y ∈ o. Observe ξ 2

0 = −ac− bξ0. For
t, t ′ ∈ T , write t ∼ t ′ if t = t0t ′ for some t0 ∈ T ∩ Z K ′.

First we observe that x+ ξ0 ∼ 1+ yξ0, where x ∈ p and y ∈ o, is not possible. If
it were, there would exist u ∈ 1+ pc(π), r ∈ pc(�) and z ∈ F× such that

zx + zξ0 = (u+ rξ0)(1+ yξ0)= u− acr y+ (uy+ r − br y)ξ0.

Since u− acr y ∈ o×, we see v(z) < 0, but z = uy+ r − br y ∈ o, a contradiction.
Now consider x1 + ξ0 ∼ x2 + ξ0 for x1, x2 ∈ p. Then, for some u ∈ 1+ pc(π),

r ∈ pc(�) and z ∈ F×, we have

zx1+ zξ0 = (u+ rξ0)(x2+ ξ0)= ux2− acr + (u+ r x2− br)ξ0.

Hence z = u+ r x2− br ∈ 1+ pc(π) and

zx1 = ux1+ r x1x2− br x1 = ux2− acr,
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which implies

u(x2− x1)= r(ac− bx1+ x1x2).

In particular, we must have x1 ≡ x2 mod pc(�)+v(a).
In fact, if v(a)= 0, we have x1+ ξ0 ∼ x2+ ξ0 if and only if x1 ≡ x2 mod pc(�).

Similarly, if v(a)= 1, then v(b) > 0 and x1+ ξ0 ∼ x2+ ξ0 if and only if x1 ≡ x2

mod pc(�)+1. The rest of the cases are computed similarly. �

Let us remark that the coset representatives in the previous lemma depend only
on c(�) since we are in the case c(�)≥ c(π).

Projection onto the test vector. Put e(L/F)= 1 if L/F is unramified, e(L/F)= 2
if L/F is ramified. Denote by η the quadratic character of F× associated to L/F.

Proposition 6.3. If c(π)≥ 2, then

J̃π ( f )= q−c(�) L(1, 1F )L(1, η)
e(L/F)

. (6-10)

If c(π)= 1, then

J̃π ( f )= q−c(�) L(1, 1F )L(1, η)
e(L/F)L(2, 1F )

. (6-11)

Proof. By (6-5), (6-6) and (6-7), this proposition is equivalent to the statement that

(e′, φ)= L(1, 1F ).

To show this, first observe

(e′, φ)=
∑

t∈T/(T∩Z K ′)

�−1(t)(π(t)φ, φ)=
∑

t∈T/(T∩Z K ′)

�−1(t)(π(h−1th)φ0, φ0).

Recall that h =
[
$ s

1

]
w with s = c(�)− c(π). We give the details of the case

c(π)≥ 2 here. The other case is computed similarly. Hence, assume that c(π)≥ 2,
so L(s, π)= 1. Then, for g ∈ GL(2),

(π(g)φ0, φ0)=

∫
o×

W0

([ u
1

]
g
)

d×u.

First suppose t = x + ξ0, where x ∈ p and v(x)≤ c(�)+ v(a). Note

h−1th =
[

x − b $ s a
−$−s c x

]
=$−s c

[
1 (b− x)$ s/c

1

][
det(t)$ 2s/c2

1

]
w

[
1 −$ s x/c

1

]
.
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Since the rightmost matrix lies in K1(p
c(π)), we have

(π(h−1th)φ0, φ0)=W0

([
det(t)$ 2s/c2

1

]
w

)
= 0,

where the last equality follows from Lemma 6.1(ii). Now suppose t = 1+ yξ0,
where y ∈ o. If y = 0, then

(π(h−1th)φ0, φ0)= (φ0, φ0)= 1.

Otherwise, assume v(y) < c(�) and write

h−1th =
[

1 $ s ay
1

][
det(t)

1

][
1

−$−s cy 1

]
.

Then, by Lemma 6.1(iii),

(π(h−1th)φ0, φ0)=

∫
o×

W0

([
det(t)u

1

][
1

−$−s cy 1

])
d×u

=

{
(1− q)−1 if v(y)= c(�)− 1,
0 else.

Observe that
∫

1+$ koL
�−1(u) d×u = 0 for 0< k < c(�), together with �−1

|o× = 1,
implies ∑

y∈o/pc(�):v(y)≥k

�−1(1+ yξ0)= 0.

Hence, for 0< k ≤ c(�), we have

∑
y∈o/pc(�):v(y)=k

�−1(1+ yξ0)=


0 if 0< k < c(�)− 1,
−1 if k = c(�)− 1 and c(�) > 1,

1 if k = c(�).

Summing up gives the desired calculation

(e′, φ)= 1+ (1− q)−1
∑

y∈o/pc(�):v(y)=c(�)−1

�(1+ yξ0)
−1
=

1
1− q−1 ,

since here c(�)≥ 2. �

7. A central-value formula

In this section we work globally. Specifically, let L/F be a quadratic extension of
number fields, A the adèles of F and AL the adèles of L . Let 1 and 1L be the
absolute values of the discriminants of F and L , and let η = ηL/F be the quadratic
idèle class character associated to L/F via class field theory.
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Set G = GL(2)/F. Let π be a cuspidal automorphic representation of G(A)
with trivial central character, and � a unitary character of A×L /L×A×. Assume the
sign of the functional equation ε

( 1
2 , πL⊗�

)
= 1, where πL is the base change of π

to L . Then by [Waldspurger 1985; Tunnell 1983; Saito 1993], one knows that there
is a unique quaternion algebra (possibly the split matrix algebra) D/F in which
L embeds, such that π has a Jacquet–Langlands transfer to a representation π ′ of
D×(A) and the local Hom spaces HomL×v (π

′
v, �v) 6= 0 for all places v, and in fact

have dimension 1. Fix this D and π ′, and write G ′ for D×, regarded as an algebraic
group over F. Let T be a torus in G ′ whose F-points are isomorphic to L×, and
view � as a character of T (A)/Z(A), where Z is the center of G ′.

Let ψ be the standard additive character on A/F, i.e., the composition of the
trace map with the standard additive character on AQ. Let S be a finite set of places
of F containing all archimedean places, such that, for all v 6∈ S, ψ , π and � are
unramified and L is not ramified at or above v.

Put on G ′(A) the product of the local Tamagawa measures times L S(2, 1F ),
i.e., take the local Tamagawa measure dgv for v ∈ S and dgv normalized so that
G(ov)∼=G ′(ov) has volume 1 if v 6∈ S (see, e.g., [Jacquet and Chen 2001, Section 2]
for the definition of local Tamagawa measures). Note we will renormalize our
measure on G ′(A) later in Section 7C.

Jacquet and Chen [2001] prove a formula for a distribution appearing on the
spectral side of the relative trace formula,

Jπ ′( f )=
∑
φ

∫
T (A)/Z(A)T (F)

π ′( f )φ(t)�(t)−1 dt
∫

T (A)/Z(A)T (F)

φ(t)�(t)−1 dt, (7-1)

where φ runs over an orthonormal basis for the space of π ′. Here T (A) and Z(A)
are given the product of local Tamagawa measures, T (F) has the counting measure,
and dt is the quotient measure.

Let Sinert be the set of finite places v in S such that Lv/Fv is inert (ramified or
unramified). For v ∈ Sinert, as in (6-2), define

J̃π ′v ( fv)=
∫

G ′(Fv)

fv(g)(π ′v(g)e
′

v, e′v) dgv,

where e′v is a norm 1 vector such that π ′v(t)e
′
v = �v(t)e

′
v for all t ∈ T (Fv). For

v ∈ S− Sinert, set

J̃π ′v ( fv)=
∑

W

( ∫
F×v

π ′v( fv)W
([ a

1

])
�
([ a

1

])−1
d×a

×

∫
F×v

W
([ a

1

])
�
([ a

1

])−1
d×a

)
,
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where d×a is the local Tamagawa measure and W runs over an orthonormal basis
for the local Whittaker model W(πv, ψv).

With the above normalizations, the formula of Jacquet and Chen is as follows.

Theorem 7.1 [Jacquet and Chen 2001]. Let S be a set of places containing all
infinite places and all places at which L , π or � is ramified. Let

f =
∏

fv ∈ C∞c (G
′(AF ))

with fv the unit element of the Hecke algebra for v 6∈ S. Then

Jπ ′( f )= 1
2

∏
S

J̃π ′v ( fv)
∏
v∈Sinert

2ε(1, ηv, ψv)L(0, ηv)×
L S(1, η)L S

( 1
2 , πL ⊗�

)
L S(1, π,Ad)

.

Note that if π ′( f ) is an orthogonal projection onto a 1-dimensional subspace 〈φ〉,
then

Jπ ′( f )=

∣∣∫
T (A)/Z(A)T (F) φ(t)�(t)

−1 dt
∣∣2

(φ, φ)
. (7-2)

This expression is written to be invariant under replacing φ by a scalar multiple.

7A. Choice of test vector. To obtain an explicit L-value formula, we choose
f =

∏
fv so that it picks out a global test vector φ =

⊗
φv as follows.

First suppose v is a finite place of F. We denote by ov , oLv , pv and $v what was
denoted in previous sections by these symbols without the subscript v for the local
field Fv . Since we have assumed that the central character is trivial, we may work
with the congruence subgroups

K0,v(p
n
v)=

{[ a b
c d

]
∈ G(ov) : c ∈ pn

v

}
.

We assume that at any finite v∈ Sinert such that c(�v)>0, we have c(�v)≥ c(πv).
Recall that, if Lv/Fv is split or 0 ≤ c(πv) ≤ c(�v), then we can identify G ′(Fv)
with G(Fv).

For v 6∈ S, let fv be the characteristic function of G(ov). Then πv ∼= π ′v, and
π ′v( fv) is orthogonal projection onto the local newvector φv.

Let v ∈ S − Sinert. Take gv ∈ G(Fv) such that g−1
v T (Fv)gv is the diagonal

subgroup of G(Fv). Let fv be the characteristic function of the subgroup of G(Fv)
given by

g−1
v

[
1 −$−c(�v)

v

1

]
K0,v(p

c(πv)
v )

[
1 $

−c(�v)
v

1

]
gv

divided by its volume. Then φv is the unique (up to scalar multiples) vector in πv
fixed by this subgroup.

Consider v ∈ Sinert.
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Suppose c(πv) = 0 or c(�v) = 0. Let R(π ′v) be an order in D(Fv) of reduced
discriminant pc(πv)

v such that R(π ′v) ∩ Lv = ov + $
c(�v)
v oLv (see [Gross 1988,

Proposition 3.4]). Note R(π ′v) is unique up to T (Fv)-conjugacy. In this case, we
take fv to be the characteristic function of R(π ′v)

× divided by its volume. Then
π ′v( fv) acts as orthogonal projection onto the local Gross–Prasad test vector φv
[Gross and Prasad 1991], except in the case that c(πv)≥ 2 and Lv/Fv is ramified.
(Note [Gross and Prasad 1991] also assumes Fv has odd residual characteristic if
πv is supercuspidal because of this restriction in [Tunnell 1983], but this hypothesis
is no longer needed due to [Saito 1993].) When c(�v)= 0, c(πv)≥ 2 and Lv/Fv is
ramified, π ′v( fv) acts as orthogonal projection onto a 2-dimensional space containing
a vector φv which satisfies π ′v(tv)φv=�v(tv)φv for all tv ∈ T (Fv) [Gross and Prasad
1991, Remark 2.7]; hence on this space any linear form in Hom(πv, �v) is simply
a multiple of the map φ′v 7→ (φ′v, φv).

If 0 < c(πv) ≤ c(�v), take gv so that g−1
v T (Fv)gv is of the form (2-16), and

let Kv be such that gvKvg−1
v is the subgroup in (6-3). Let fv be the characteristic

function of Kv divided by its volume, so πv( fv) acts as orthogonal projection onto
the line generated by φv, the unique (up to scalar multiples) vector in πv fixed
by Kv.

Lastly, suppose v is an infinite place of F. Let Kv be a maximal compact
subgroup of G ′(Fv) whose restriction to T (Fv) remains maximal compact. Let φv
be a vector of minimal weight such that π ′v(tv)φv =�v(tv)φv for tv ∈ Kv ∩ T (Fv).
Choose fv so that π ′v( fv) is orthogonal projection onto 〈φv〉.

Take f =
∏

fv and φ=⊗φv , so π( f ) acts as orthogonal projection onto a finite-
dimensional space V containing φ. Local considerations show the toric period
integral vanishes on the orthogonal complement of 〈φ〉 in V , and hence one has (7-2).

7B. Archimedean factors. Here we recall from [Martin and Whitehouse 2009]
certain archimedean constants Cv(L , π,�). Let v be an infinite place of F. By
assumption, �v is a unitary character of Lv.

First suppose Fv = R and Lv = R⊕R. Write

�v(x1, x2)=

∣∣∣∣ x1

x2

∣∣∣∣i tsgnmv

(
x1

x2

)
,

where t ∈R and mv is 0 or 1. If πv =µv×µ−1
v is a principal series with Laplacian

eigenvalue λv , let εv ∈ {0, 1} such that µv�v = | · |r sgnεv for some r . Then we put

Cv(L , π,�)=
(

8π2

λv

)εv
.

If π is a discrete series of weight kv, put

Cv(L , π,�)= 2kv .
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Now suppose Fv = R and Lv = C. Write �v(z)= (z/z̄)±mv , where mv ∈
1
2 Z≥0.

If πv = µv ×µ−1
v is a principal series where µv is of the form | · |rvsgnεv , then

Cv(L , π,�)= (2π)2mv

mv−1∏
j=0

(λv + j ( j + 1))−1,

where λv = 1
4 − r2

v . If πv is a discrete series of weight kv, then

Cv(L , π,�)=
1

πB(kv/2+mv, kv/2−mv)

if mv <
1
2(kv − 1) and

Cv(L , π,�)=
(2π)2mv−kvkv!

mv!B(kv/2+mv, 1− kv/2+mv)

if mv ≥
1
2(kv − 1). Here B(x, y) denotes the beta function.

Lastly suppose Fv = C, so Lv = C⊕C. Write �v in the form

�v(z1, z2)= (z1 z̄1)
i t
(

z1

z̄1

)mv

(z2 z̄2)
−i t
(

z2

z̄2

)−mv

,

where t ∈ R and mv ∈
1
2 Z≥0. Then πv is a principal series. Let kv be its weight, λv

the Laplacian eigenvalue and `v =max(kv,mv). Then

Cv(L , π,�)=
(1

2
+ `v

)( 2`v
|kv −mv|

) `v∏
j=kv+1

4π2

4λv + j2− 1
.

7C. Proof of Theorem 1.1. We consider a measure on G ′(A) which is the product
of local Tamagawa measures. Write 1=1inert1split, where 1inert is the part of 1
coprime to every place over which L/F splits. Then note that∏

v∈Sinert

2ε(1, ηv, ψv)L(0, ηv)=
1√

c(η)c(ψ)

∏
v∈Sinert

e(Lv/Fv)

=

√
1inert
1L

∏
v∈Sinert

e(Lv/Fv).

Let v ∈ S be finite. The calculations of J̃π ′v ( fv) below for when Lv/Fv is split,
v is infinite, or at most one of πv and �v is ramified are taken from [Martin and
Whitehouse 2009].
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Suppose Lv = Fv ⊕ Fv. Then

J̃π ′v ( fv)=


q−c(�v)
v

L
( 1

2 , πLv ⊗�v
)

(Wπv ,Wπv )
if �v is unramified,

q−c(�v)
v

L(1, 1Fv )
2

(Wπv ,Wπv )
if �v is ramified,

where Wπv is the normalized Whittaker newvector. Furthermore,

vol(o×v )(Wπv ,Wπv )=


L(1, πv,Ad)L(1, 1Fv )/L(2, 1Fv ) if πv is unramified,
L(1, πv,Ad)= L(2, 1Fv ) if c(πv)= 1,
1 if c(πv) > 1.

Since we are using local Tamagawa measures, the product over all such v of vol(o×v )
is
√
1split.

Suppose now Lv/Fv is inert. If π ′v is unramified, then J̃π ′v ( fv) is

q−c(�v)
v

e(Lv/Fv)
L
(1

2 , πLv ⊗�v
)
L(2, 1Fv )

L(1, πv,Ad)
L(1, ηv)δv ,

where δv =−1 if�v is unramified and δv = 1 if�v is ramified. If πv is ramified and
�v is unramified, then J̃π ′v ( fv)= 1. When both πv and �v are ramified, J̃π ′v ( fv) is
calculated in Proposition 6.3.

Summing up, if πv is unramified, then, up to factors of the form vol(o×v ) and
e(Lv/Fv), J̃π ′v ( fv) is

q−c(�v)
L
( 1

2 , πLv ⊗�v
)
L(2, 1Fv )

L(1, πv,Ad)
L(1, ηv)δv .

If c(πv)= 1, then, up to factors of the form vol(o×v ) and e(Lv/Fv), J̃π ′v ( fv) is

L
(1

2 , πLv ⊗�v
)

L(1, πv,Ad)

if �v is unramified and Lv/Fv is split or unramified; 1 if �v is unramified and
Lv/Fv is ramified; and

q−c(�v)
L
( 1

2 , πLv ⊗�v
)

L(1, πv,Ad)
L(1, 1Fv )L(1, ηv)

if �v is ramified.
If c(πv)≥ 2, then, up to factors of the form vol(o×v ) and e(Lv/Fv), J̃π ′v ( fv) is 1

if �v is unramified and q−c(�v)L(1, 1Fv )L(1, ηv) if �v is ramified.
Now suppose v | ∞. Then from [Martin and Whitehouse 2009] one has

J̃π ′v ( fv)=
Cv(L , π,�)

e(Lv/Fv)
L
( 1

2 , πLv ⊗�v
)
L(2, 1Fv )

L(1, πv,Ad)L(1, ηv)
.
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Combining the above calculations completes the proof of Theorem 1.1.

Remark 7.2. When S(π)∩ S(�)=∅, Theorem 1.1 is exactly the main theorem of
[Martin and Whitehouse 2009], though their choice of measure on G ′(A) is slightly
different. Our set S0(π) is denoted by S′(π) in that paper.

As in [Martin and Whitehouse 2009], one can rewrite this formula using the
Petersson norm (φπ , φπ ) of the new vector φπ ∈ π instead of L(1, π,Ad). The
formula in [Martin and Whitehouse 2009] is also valid when ωπ = η, and one could
treat that case here similarly. The restriction that ωπ ∈ {1, η} is not inherent in the
method, but is due to this assumption in [Jacquet and Chen 2001].

Remark 7.3. For many applications, one would like a formula for the complete
ratio of L-values L

(1
2 , πL ⊗�

)
/L(1, π,Ad). Theorem 1.1 of course gives this

when S0 =∅ (e.g., if the conductor c(π) of π is squarefree and π and L/F have
disjoint ramification). In general, one can of course multiply both sides by the
appropriate local factors, but then the rest of the formula will depend on more than
just the ramification of π and � together with their infinity types. Specifically, for
v ∈ S1(π) and πv = χv Stv , the local factor L

( 1
2 , πLv ⊗�v

)
depends on the sign of

χv when Lv/Fv is ramified. Similarly, for v ∈ S2(π), the local factor L(1, πv,Ad)
depends on more than just the ramification of πv.

8. An average-value formula

In this section, we prove Theorems 1.3, 1.4 and 1.5. Fix notation as in the first
paragraph of Theorem 1.3.

8A. The trace formula. Let D/F be the quaternion algebra which is ramified
precisely at the infinite primes and the primes dividing N0. Set G ′ = D× and
G = GL(2)/F. Let Z denote the center of either of these. Let ε be an element of
the normalizer of T (F) inside G ′(F) which does not lie in T (F), so ε2

∈ Z(F)
and D(F)= L ⊕ εL . Then we may write an element of G ′(F) in the form[

α βε

β̄ ᾱ

]
, α, β ∈ L .

With this representation,

T =
{[
α 0
0 ᾱ

]}
.

As in Section 7, let ψ be the standard additive character of A/F, and take the
product of the local Tamagawa measures on T (A), G ′(A), G(A) and Z(A). For
a cuspidal automorphic representation π ′ of G ′(A), let JL(π ′) denote its Jacquet–
Langlands transfer to G(A). Denote by F ′(N, 2k) the set of cuspidal automorphic
representations π ′ of G ′(A) such that JL(π ′) ∈F(N, 2k). We call N the conductor
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of π ′ and write c(π ′)=N. Subject to assumption (1-3), we note that our choice of
D guarantees HomT (π

′, �) 6= 0 for all π ′ ∈ F ′(N, 2k).
We now recall Jacquet’s relative trace formula for G ′ from [Jacquet 1987]. This

is an identity of the form
I ( f )= J ( f ), (8-1)

where I ( f ) is a certain geometric distribution, and J ( f ) is a certain spectral
distribution. Specifically, let f =

∏
fv ∈ C∞c (G

′(A)). The geometric (relative)
orbital integrals of f are defined by

I (0, f )=
∫

T (A)

f (t)�(t) dt,

I (∞, f )=
∫

T (A)

f
(

t
[ 0 ε

1 0

])
�(t) dt

and

I (b, f )=
∫

T (A)/Z(A)

∫
T (A)

f
(

s
[

1 εβ

β̄ 1

]
t
)
�(st) ds dt,

where b = εN (β) for β ∈ L×. Note this latter integral only depends on b and not
the choice of a specific β. Then the left-hand (geometric) side of (8-1) is

I ( f )=vol(T (A)/Z(A)T (F))(I (0, f )+δ(�2)I (∞, f ))+
∑

b∈εN (L×)

I (b, f ), (8-2)

where δ(χ)= 1 if χ is trivial and δ(χ)= 0 otherwise.
We now describe J ( f ), but for simplicity only in the situation that is rele-

vant for us. Namely, for each v | ∞, fix an embedding ιv : G ′(Fv) ↪→ GL2(C)

and let π ′2kv be the irreducible (2kv − 1)-dimensional representation of G ′(Fv)
given by π ′2kv = (Sym2kv−2

⊗ det1−kv ) ◦ ιv. Hence JL(π ′2kv ) is the holomorphic
discrete series of weight 2kv on G(Fv). The assumption that |mv| < kv implies
that there is a 1-dimensional subspace of π ′2kv consisting of vectors wv such that
π ′2kv (t)wv =�v(t)wv for all t ∈ T (Fv). Fix such a vector wv ∈ π ′2kv which satisfies
(wv, wv) = 1. For all v | ∞, we may take fv ∈ C∞c (G

′(R)) as in Section 7A, so
that ∫

Z(Fv)

fv(zg) dz =
2kv − 1

vol(G ′(Fv)/Z(Fv))
(π ′2kv(g)wv, wv)

(cf. [Feigon and Whitehouse 2009, Lemma 3.4]).
For a cuspidal automorphic representation π ′ of G ′(A)/Z(A), we consider the

spectral distribution

Jπ ′( f )=
∑
φ

PD(π
′( f )φ)PD(φ),
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where φ runs over an orthonormal basis for π ′ and PD is defined as in (1-1). In
general, the spectral side J ( f ) of (8-1) is a sum over all π ′ of Jπ ′( f ) plus a
noncuspidal contribution. However, things simplify greatly for our choice of f .

We already specified fv for v | ∞. Now let v <∞ and put mv = c(�v). For
such a v, as in Section 7A, we take fv to be the characteristic function of R×v
divided by its volume, for an order Rv of G ′(Fv) chosen as follows. If v - N,
then G ′(Fv)∼= G(Fv) and we take Rv to be a maximal order optimally containing
ov +$

mv
v oLv . If v |N0, then G ′(Fv) is not split and we take Rv to be a maximal

order containing oLv . If v |N1, then G ′(Fv)∼= G(Fv) and, at least when v is odd,
we can take

Rv =
{[
α βεv

β̄ ᾱ

]
: Tr(α),Tr(β) ∈ ov, α, β ∈ p1−mv

v oLv ,

and α−β ∈ ov + pmv
v oLv

}
. (8-3)

Note that for each v -N0, this agrees with our choice of test functions in Section 7A.
The difference of the present choice of fv for v |N0 is simply out of convenience
so we can directly apply local calculations from [Feigon and Whitehouse 2009].
What is important is that one still has πv( fv) being orthogonal projection onto our
local test vector for v |N0 (cf. [Feigon and Whitehouse 2009, Lemma 3.3]).

Consequently, for this f , assuming kv > 1 for some v | ∞, the spectral side of
(8-1) is given by

J ( f )=
∑
N′

∑
π ′∈F ′(N′,2k)

Jπ ′( f ), (8-4)

where N′ runs over ideals which divide N and are divisible by N0. This is because,
for our choice of f ′, π ′( f ′) is zero unless π ′ is of weight 2k and has conductor
dividing N. Furthermore, by our choice of D, Jπ ′( f ) vanishes for local reasons
if the conductor of π ′ is not divisible by N0 (cf. [Feigon and Whitehouse 2009,
Lemmas 3.6 and 3.7]). (The avoidance of the case kv = 1 for all v | ∞ is purely
for simplicity, for in this case there is also contribution from the residual spectrum,
which one would treat as in [Feigon and Whitehouse 2009].)

8B. Spectral calculations. Here we compute the spectral expansion (8-4). For
π ′ ∈F ′(N, 2k), we see that Jπ ′( f )=|PD(φ)|

2/(φ, φ). Hence Theorem 1.1 implies

Jπ ′( f )= 1
2

√
1

c(�)1L
L S(N0)(2, 1F )L S(N)(1, η)L S(C0)(1, η)

2

×

∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
. (8-5)

We now need to extend this equality to general π ′ ∈ F ′(N′, 2k), where N′

divides N and is divisible by N0. For v | (N′)−1N, let R′v be the maximal order of
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G ′(Fv)∼= G(Fv) which contains Rv given by (8-3). Let f ′ =
∏

f ′v , where f ′v = fv
if v - (N′)−1N, and f ′v is the characteristic function of (R′v)

× divided by its volume
if v | (N′)−1N. Now, f ′ agrees with our choice of test function for π ′ in Section 7A,
and Theorem 1.1 gives

Jπ ′( f ′)= 1
2

√
1

c(�)1L
L S(N0)(2, 1F )L S(N)(1, η)L S(C0)(1, η)

2

×

∏
v|(N′)−1N

L(1, ηv)
∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
. (8-6)

From Theorem 7.1, we see that

Jπ ′( f )= Jπ ′( f ′)
∏

v|(N′)−1N

J̃π ′v ( fv)

J̃π ′v ( f ′v)
.

From [Martin and Whitehouse 2009, Section 2.2.4], we know

J̃π ′v ( f ′v)= q−mv
v L(2, 1Fv )L(1, ηv)

1
L(1, πv,Ad)

,

so it remains to compute J̃π ′v ( fv). Here v | (N′)−1N⊃N1, so π ′v =πv is unramified
and mv = 1. We may write πv = χ ×χ−1, where χ = χv is an unramified (unitary)
character of F×v .

Note πv( fv) is orthogonal projection onto π R×v
v . Embedding Lv in M2(Fv) as in

(2-16), we may write

R×v = Kv :=

[
o×v pmv

v

p1−mv
v o×v

]
=

[
o×v pv
ov o×v

]
.

Note

Kv = hvGL2(ov)h−1
v ∩ hv

[
$−1
v

1

]
GL2(ov)

[
$v

1

]
h−1
v ,

where hv =
[
$v

1

]
. So if we put φ0 to be a newvector in πv and φ′0 = πv(h

−1
v )φ0,

then
πKv
v = 〈πv(hv)φ0, πv(hv)φ′0〉.

Normalize φ0 so that (φ0, φ0)= 1.

Lemma 8.1. We have

(φ0, φ
′

0)= (φ
′

0, φ0)=
q−1/2
v

1+ q−1
v

(χ($v)+χ($v)
−1). (8-7)

Proof. In the induced model for πv, we have

(φ′0, φ0)= (π(hv)φ0, φ0)=

∫
GL2(ov)

φ0(khv) dk.
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We may then use the fact that the subgroup Kv of GL2(ov) is normalized by hv to
get the lemma. �

Lemma 8.2. For v | (N′)−1N, so that πv is unramified and mv = 1, we have
J̃πv ( fv)= q−1

v .

Proof. Write φ1 = πv(hv)φ0 and

φ2 =
φ0− (φ0, φ1)φ1

(1− (φ0, φ
′

0)
2)1/2

=

(
L(1, πv,Ad)(1+ q−1

v )

L(2, 1Fv )

)1/2

(φ0− (φ0, φ1)φ1),

so that {φ1, φ2} forms an orthonormal basis for πKv
v . As in Section 6, put

e′ =
∑

t∈Tv/(Tv∩ZvKv)

�−1
v (t)πv(t)φ1,

so

J̃πv ( fv)= vol(Kv)
−1
∫
Kv

(πv(k)e′, e′)
(e′, e′)

dk =
1

|Tv/(Tv ∩ ZvKv)|(φ1, e′)
(πv( fv)e′, e′).

Since πv( fv)e′ = (e′, φ1)φ1+ (e′, φ2)φ2, we have

J̃πv ( fv)=
1

|Tv/(Tv ∩ ZvKv)|(φ1, e′)

(
(e′, φ1)(φ1, e′)+ (e′, φ2)(φ2, e′)

)
.

From [Martin and Whitehouse 2009, Section 2.2.4], where (φ1, e′) is denoted
〈v0, e′′T 〉/〈v0, v0〉, we know (φ1, e′)= L(2, 1Fv )/L(1, πv,Ad). Thus

J̃πv ( fv)=
1

|Tv/(Tv ∩ ZvKv)|

(
L(2, 1Fv )

L(1, πv,Ad)
+

L(1, πv,Ad)
L(2, 1Fv )

|(φ2, e′)|2
)
. (8-8)

Note

(φ2, e′)=
(

L(1, πv,Ad)(1+ q−1
v )

L(2, 1Fv )

)1/2(
(φ0, e′)− (φ′0, φ0)

L(2, 1Fv )

L(1, πv,Ad)

)
. (8-9)

Hence it suffices to compute

(φ0, e′) =
∑

t∈Tv/(Tv∩ZvKv)

�v(t)(φ0, πv(t)φ1)

=

∑
t∈Tv/(Tv∩ZvKv)

�−1
v (t)(πv(h

−1
v thv)φ′0, φ0).

Using the set of representatives for Tv/(Tv ∩ ZvKv) given in Lemma 6.2, we see

(φ0, e′)=
∑

x∈pv/pv

�−1
v (x + ξ0,v)

(
πv

([
$−1
v x c$−1

v

−a x − b

])
φ0, φ0

)

+

∑
y∈ov/pv

�−1
v (1+ yξ0,v)

(
πv

([
$−1
v c$−1

v y
−ay 1− by

])
φ0, φ0

)
. (8-10)
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Let φ and φ′ be the realizations of the unit newvectors φ0 and φ′0, respectively, in
the Kirillov model for πv with respect to an unramified ψv . Recall φ(z)= 0 unless
z ∈ ov. Recall also the action of the standard Borel on the Kirillov model is given
by (

πv

[ a x
d

]
φ
)
(z)= ψv(xz/d)φ(az/d).

Since v is odd and unramified, we may assume b= 0 and a is a unit. For the
x = 0 term in (8-10), note

πv

[
c$−1

v

−a

]
φ(z)= πv

[
c$−1

v

a

]
φ(z)= φ($−1

v z)= φ′(z).

For y ∈ ov, we have

πv

([
$−1
v c$−1

v y
−ay 1

])
φ(z)= πv

([
$−1(1+ acy2) c$−1

v y
1

][
1
−ay 1

])
φ(z)

= ψv(c$−1
v yz)φ($−1

v z)= φ($−1
v z)= φ′(z).

In the last line, we used the facts that 1+acy2
∈ o×v , ψ is unramified and φ vanishes

outside of ov. Hence (8-10) becomes

(φ0, e′)=
(
�−1
v (ξ0,v)+

∑
y∈ov/pv

�−1
v (1+ yξ0,v)

)
(φ′0, φ0)= 0, (8-11)

as this character sum is zero. Combining (8-7), (8-8) and (8-9) gives

J̃πv ( fv)=
1

|Tv/(Tv ∩ ZvKv)|

(
L(2, 1Fv )

L(1, πv,Ad)
+

q−1
v

1+ q−1
v

(
χ($v)+χ($v)

−1)2
)

=
1+ q−1

v

|Tv/(Tv ∩ ZvKv)|
.

This, with Lemma 6.2, gives the result. �

Hence,
J̃π ′v ( fv)

J̃π ′v ( f ′v)
=

L(1, πv,Ad)
L(2, 1Fv )L(1, ηv)

(8-12)

for v | (N′)−1N, which yields

J ( f )=

1
2

√
1

c(�)1L
L S(N0)(2, 1F )L S(N)(1, η)L S(C0)(1, η)

2
∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)

×

∑
N′

∑
π∈F(N′,2k)

( ∏
v|(N′)−1N

L(1, πv,Ad)
L(2, 1Fv )

)
L
( 1

2 , πL ⊗�
)

L(1, π,Ad)
.
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Here N′ runs over all divisors of N which are divisible by N0. Writing∏
v|(N′)−1N

L(1, πv,Ad)
L(2, 1Fv )

·
1

L(1, π,Ad)

=

∏
v|N′

L(2, 1Fv )

L(1, πv,Ad)
·

1
L S(N)(2, 1F )L S(N)(1, π,Ad)

and observing L(1, πv,Ad)= L(2, 1Fv ) for v |N′ and π ∈ F(N′, k) gives

J ( f )= 1
2

√
1

c(�)1L

L S(N0)(2, 1F )

L S(N)(1, 1F )
L S(C0)(1, η)

2

×

∏
v|∞

2kv − 1
π

(
2kv − 2

kv −mv − 1

)∑
N′

∑
π∈F(N′,2k)

L
( 1

2 , πL ⊗�
)

L S(N)(1, π,Ad)
. (8-13)

8C. Geometric calculations. We now obtain our average value formula from the
trace formula (8-1) and spectral calculation (8-5) by computing the geometric side
I ( f ). Most of the calculations we need are done in [Feigon and Whitehouse 2009],
with the proviso that our choice of test functions fv (for v - N1) are essentially
constant multiples of those therein (the test functions in [Feigon and Whitehouse
2009] also come “preintegrated over the center”).

Lemma 8.3. Let b ∈ εN (L×). We have the following vanishing of local orbital
integrals.

(i) If v |N0, then I (∞, fv)= 0.

(ii) If v |N0 and b 6∈ pv, then I (b, fv)= 0.

(iii) If v -N is finite and v(1− b) > v(dL/F c(�)), then I (b, fv)= 0.

(iv) If v |N1 and v(1− b) > v(c(�))− 2, then I (b, fv)= 0.

Proof. The first three results are directly from [Feigon and Whitehouse 2009,
Lemmas 4.2, 4.10 and 4.11]. So suppose v |N1 is odd and write b = εN (β) for
some β ∈ L×. For I (b, fv) to be nonzero we need that, for some α ∈ L×v and u ∈ L1

v ,[
α

ᾱ

][ 1 εβu
βu 1

]
∈ R×v ,

i.e.,

N (α)(1− b) ∈ o×v , Tr(α) ∈ o×v , α ∈ p1−mv
v oLv , α(1−βu) ∈ ov + pmv

v oLv .

Note this implies v(1− b)=−v(N (α))≤ 2mv − 2. Hence if v(1− b)≥ 2mv − 1,
then I (b, fv)= 0. �
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Proposition 8.4. If |N0|> dL/F (|C|/|N1|)
hF , then I ( f )= 2L(1, η)I (0, f ) and

I (0, f )=
12
|N|

√
c(�)1L

L S(C0)(1, η)
L S(N0)(1, 1F )

L(2, 1F )
∏
v|∞

2kv − 1
2π

.

Proof. This argument is adapted from the proof of [Feigon and Whitehouse 2009,
Lemma 4.21]. By the first part of the previous lemma, we know the global orbital
integral I (∞, f )= 0. Arguing as in Feigon and Whitehouse’s proof, we see that,
if |N0|> dL/F |N

−2
1 C|hF , then I (b, f )= 0 for all b.

Next we compute I (0, f ). For v - N1, we recall the following calculations
from [Feigon and Whitehouse 2009, Section 4.1]; see [Jacquet and Chen 2001,
Section 2; Feigon and Whitehouse 2009, Section 2.1 and proof of Proposition 4.20]
for necessary facts about local Tamagawa measures. Due to the difference in our
definition of test functions from those in [Feigon and Whitehouse 2009], our local
orbital integrals I (0, fv) (for v -N1) will be vol(Zv ∩ R×v )/vol(R×v ) times theirs
for finite v, and (2kv − 1)/vol(G ′(Fv)/Z(Fv)) times theirs for infinite v.

For v |N0,

I (0, fv)= vol(o×Lv/o
×

v )vol(Zv ∩ R×v )/vol(R×v )

= (qv − 1)L(2, 1Fv )vol(o×Lv )/vol(o×v )
4,

since vol(R×v )= L(2, 1Fv )
−1(qv − 1)−1vol(o×v )

4 and R×v ∩ Zv = o×v .
For a finite v -N, we have vol(R×v )= L(2, 1Fv )

−1vol(o×v )
4 and

I (0, fv)=


vol(o×Lv/o

×

v )vol(Zv ∩ R×v )/vol(R×v )

= L(2, 1Fv )vol(o×Lv )/vol(o×v )
4 for mv = 0,

q−mv L(1, ηv)vol(o×Lv )/vol(R×v )

= q−mv L(1, ηv)L(2, 1Fv )vol(o×Lv )/vol(o×v )
4 for mv > 0.

For v | ∞,

I (0, fv)= vol(F×v \L
×

v )
2kv − 1

vol(G ′(Fv)/Z(Fv))
=

2kv − 1
2π2 .

Now, for v |N1, our description of Rv readily implies

I (0, fv)= vol(o×v (1+ pmv
v oLv ))/vol(R×v )= q−mv L(1, ηv)vol(o×Lv )/vol(Rv)×.

A simple calculation gives vol(R×v )= q−1
v vol(o×)4/L(1, 1Fv ). Hence when v |N1,

we have
I (0, fv)= q1−mv

v L(2, 1Fv )vol(o×L )/vol(o×)4.

Putting together the nonarchimedean calculations gives∏
v<∞

I (0, fv)=
|N|
√

c(�)
Lfin(2, 1F )

∏
v|N0

L(1, 1Fv )
−1
∏
v|C0

L(1, ηv)
∏
v<∞

vol(o×Lv )

vol(o×)4
.
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Noting that
∏
v<∞ vol(o×)=1−1/2 (and similarly over L), we have∏

v<∞

I (0, fv)=
12
|N|

√
c(�)1L

Lfin(2, 1F )
∏
v|N0

L(1, 1Fv )
−1
∏
v|C0

L(1, ηv).

Recalling that L(2, 1F )= Lfin(2, 1F )/π
d, we see

I (0, f )=
12
|N|

√
c(�)1L

L(2, 1F )
∏
v|N0

L(1, 1Fv )
−1
∏
v|C0

L(1, ηv)
∏
v|∞

2kv − 1
2π

. �

8D. Proofs.

Proof of Theorem 1.3. The result immediately follows from our above calculations
of both sides of the equality J ( f )= I ( f )= 2L(1, η)I (0, f ). �

Proof of Theorem 1.4. Suppose N1 contains exactly one prime p. Put

6N(N
′)=

∏
v|∞

(
2kv − 2

kv −mv − 1

) ∑
π∈F(N′,2k)

L
(1

2 , πL ⊗�
)

L S(N)(1, π,Ad)
.

Then Theorem 1.3 reads

6N(N0)+6N(N)= 22−d13/2
|N|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η). (8-14)

Applying our average value formula when N=N0, we also see

6N0(N0)= 22−d13/2
|N0|L S(N0)(2, 1F )L S(C0)(1, η) (8-15)

if |N0|>dL/F |C|
hF. (This is precisely [Feigon and Whitehouse 2009, Theorem 1.1].)

For πp unramified, we have

L(1, 1Fp)
1

1+ 2q−1
p + q−2

p

≤ L(1, πp,Ad)≤ L(1, 1Fp)
1

1− 2q−1
p + q−2

p

,

which implies

L(1, 1Fp)
1

(1+ q−1
p )2

6N0(N0)≤6N(N0)

≤ L(1, 1Fp)
1

(1− q−1
p )2

6N0(N0). (8-16)

Combining the (in)equalities above gives

6N(N)

≤ 22−d13/2
|N0|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η)

(
|p| −

1
1+ 2|p|−1+ |p|−2

)
,

and a similar lower bound, which are precisely the bounds asserted in Theorem 1.4.
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To get an asymptotic, we use a special case of [Feigon and Whitehouse 2009,
Theorem 1.2], which is an asymptotic for

∑
π∈F(N0,2k)

Lp
( 1

2 , πL ⊗�
)

Lp(1, π,Ad)
=

∏
v|∞

(
2kv − 2

kv −mv − 1

)−1
6N(N0)

L S(N0)(2, 1F )

as |N0| → ∞. (Note Lp
( 1

2 , πL ⊗�
)
= L

( 1
2 , πL ⊗�

)
since � is ramified at p.)

Specifically, [Feigon and Whitehouse 2009, Theorem 1.2] tells us

6N(N0)∼ 22−d13/2
|N0|L(1, 1Fp)L S(N0)(2, 1F )L S(C0)(1, η) (8-17)

as |N0|→∞ along a sequence of squarefree ideals N0 coprime to C satisfying our
parity and ramification assumptions. Consequently, we have

6N(N)∼ 22−d13/2
|N0|L(1, 1Fp)L S(N0)(1, η)L

S(C0)(1, η)(|p| − 1).

This gives the asymptotic asserted in the theorem. �

8E. Nonvanishing mod p. Let π ∈ F(N, 2k), and let f be the corresponding
normalized Hilbert modular newform of weight 2k and level N over F. As before,
� is a unitary character of A×L /L×A×F such that, for all v | ∞, �v(z)= (z/z̄)±mv

with 0≤ mv < kv . Put m = (m1, . . . ,md). Then � gives rise to a Hilbert modular
form g over F of weight m + 1 = (m1 + 1, . . . ,md + 1); see [Shimura 1978,
Section 5]. Assume m1 ≡ m2 ≡ · · · ≡ md mod 2. This implies � is algebraic, so
that the field of rationality Q(g)⊂Q [Shimura 1978, Proposition 2.8].

Put k0 =maxv|∞ kv and m0 =maxv|∞mv. Then Shimura [1978, Theorem 4.1]
proved

D(s0, f, g)
√
1π2|k|( f, f )

∈Q(g)=Q

for any s0 ∈ Z such that 1
2(2k0+m0− 1) < s0 <

1
2(2k0+m0+ 2kv −mv) for all

v | ∞. Here D(s, f, g) is the Dirichlet series defined in [Shimura 1978], ( f, f )
is the Petersson norm defined as in [Hida 1991], and |k| =

∑
v|∞ kv. Assume that

m0 ≡ 0 mod 2. Then, for s0 =
1
2(2k0+m0), this means

Lalg(1
2 , πL ⊗�

)
:=

1
L(1, η)

Lfin
( 1

2 , πL ⊗�
)

√
1π2|k|( f, f )

∈Q. (8-18)

(Note that we normalize the algebraic part of the L-value in a different way than
other authors.) Recall the archimedean L-factors are given by

Lv
( 1

2 , πL ⊗�
)
= (2π)−2kv40(kv +mv)0(kv −mv), v | ∞.
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From [Hida and Tilouine 1993, Theorem 7.1; Hida 1991, (7.2c)] (cf. [Getz and
Goresky 2012, Theorem 5.16]), we have

L(1, π,Ad)=
22|k|−1

12hF |N|
( f, f ). (8-19)

Thus,

L
( 1

2 , πL ⊗�
)

L(1, π,Ad)

= 22d+1−4|k|15/2hF |N|L(1, η)Lalg( 1
2 , πL ⊗�

)∏
v|∞

0(kv +mv)0(kv −mv).

Hence we can rewrite the average value formula from Theorem 1.3 as

23d−4|k|−11hF

∏
v

(2kv − 2)!
∑

π∈F(N,2k)

Lalg( 1
2 , πL ⊗�

)
=

1
L S(�)(1, η)

. (8-20)

This immediately implies Theorem 1.5.
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