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Cup products of line bundles
on homogeneous varieties

and generalized PRV components
of multiplicity one
Ivan Dimitrov and Mike Roth

Let X = G/B and let L1 and L2 be two line bundles on X. Consider the cup-
product map

Hd1(X,L1)⊗Hd2(X,L2)
∪
−→ Hd(X,L),

where L= L1⊗L2 and d = d1+ d2. We answer two natural questions about the
map above: When is it a nonzero homomorphism of representations of G? Con-
versely, given generic irreducible representations V1 and V2, which irreducible
components of V1⊗V2 may appear in the right hand side of the equation above?
For the first question we find a combinatorial condition expressed in terms of
inversion sets of Weyl group elements. The answer to the second question is
especially elegant: the representations V appearing in the right hand side of the
equation above are exactly the generalized PRV components of V1⊗V2 of stable
multiplicity one. Furthermore, the highest weights (λ1, λ2, λ) corresponding
to the representations (V1,V2,V) fill up the generic faces of the Littlewood–
Richardson cone of G of codimension equal to the rank of G. In particular, we
conclude that the corresponding Littlewood–Richardson coefficients equal one.
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1. Introduction

1.1. Main problems. The main object of study of this paper is the cup-product
map

Hd1(X,L1)⊗ · · ·⊗Hdk (X,Lk)
∪
−→ Hd(X,L), (1.1.1)

where X= G/B, G is a semisimple algebraic group over an algebraically closed
field of characteristic zero, B is a Borel subgroup of G, L1, . . . ,Lk are arbitrary
line bundles on X, L = L1⊗ · · · ⊗ Lk , d1, . . . , dk are nonnegative integers, and
d = d1+ · · ·+ dk .

We assume that both sides of (1.1.1) are nonzero for otherwise the cup-product
map is the zero map. Without loss of generality we may also assume that the line
bundles L1, . . . ,Lk , and L are G-equivariant; then both sides of (1.1.1) carry a nat-
ural G-module structure and the cup-product map is G-equivariant. Furthermore by
the Borel–Weil–Bott theorem there are irreducible representations Vµ1, . . . ,Vµk , and
Vµ so that Hdi (X,Li )=V∗µi

for i = 1, . . . , k, and Hd(X,L)=V∗µ as representations
of G. The dual of (1.1.1) is thus a G-homomorphism

Vµ→ Vµ1 ⊗ · · ·⊗Vµk . (1.1.2)

Since Vµ1, . . . ,Vµk , and Vµ are irreducible representations, (1.1.1) is either surjec-
tive or zero; respectively, (1.1.2) is either injective or zero. This leads us naturally
to the two main problems of this paper.

Problem I. When is (1.1.1) a surjection of nontrivial representations?

Problem II. For which (k+1)-tuples (Vµ1, . . . ,Vµk ,Vµ) of irreducible represen-
tations of G can Vµ be realized as a component of Vµ1 ⊗ · · ·⊗Vµk via (1.1.2) for
appropriate line bundles L1, . . . ,Lk on X?

We call an irreducible representation Vµ that can be embedded into Vµ1⊗· · ·⊗Vµk

via (1.1.2) a cohomological component of Vµ1⊗· · ·⊗Vµk . A variation of Problem II
is to determine the cohomological components of Vµ1⊗· · ·⊗Vµk , for Vµ1, . . . ,Vµk

fixed.
With the exception of some quite degenerate cases for Problem II, we provide a

complete solution to both problems.

1.2. Solution of Problem I. Fix a maximal torus T ⊆ B. The G-equivariant line
bundles on X are in one-to-one correspondence with the characters of T. For a
character λ of T, we denote by Lλ the line bundle on X corresponding to the one
dimensional representation of B on which T acts via −λ.

The affine action of the Weyl group W of G on the lattice of T-characters 3 is
defined as

w · λ= w(λ+ ρ)− ρ,
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where ρ, as usual, denotes the half-sum of the roots of B. A character λ ∈ 3 is
regular if there exists a (necessarily unique) element w ∈ W such that w · λ is
a dominant character. Following Kostant [1961, Definition 5.10], we define the
inversion set 8w of w ∈W as the set 8w = w−11− ∩1+, where 1− = −1+ is
the set of negative roots of G.

Let λ1, . . . , λk ∈3 be the (regular) characters such that Li = Lλi for 16 i 6 k.
Then L= Lλ, where λ=

∑k
i=1λi . Assume that λ is also regular and denote by w

and w1, . . . , wk the Weyl group elements for which w ·λ and wi ·λi , for 16 i 6 k,
are dominant. With this notation we prove the following criterion for surjectivity
of (1.1.1).

Theorem I. For any semisimple G, if Hd(X,Lλ) 6= 0, then the cup-product map
(1.1.1) is surjective if and only if

8w =

k⊔
i=1

8wi . (1.2.1)

Studying the structure of (k+1)-tuples (w1, . . . , wk, w) satisfying (1.2.1) is an
interesting combinatorial problem which we do not address here. A recursive
description of such (k+1)-tuples in types A, B, and C is given in [Dewji et al. 2017].
For some open questions concerning (1.2.1) see the expository article [Dimitrov
and Roth 2009].

1.3. Solution of Problem II. We say that a component Vµ of Vµ1 ⊗ · · ·⊗Vµk has
stable multiplicity one if the multiplicity of Vmµ in Vmµ1 ⊗ · · · ⊗Vmµk is one for
all m� 0. We say that Vµ is a generalized PRV component of Vµ1 ⊗ · · ·⊗Vµk if
there exist w1, . . . , wk , and w ∈W such that w−1µ=w−1

1 µ1+· · ·+w
−1
k µk . (See

Sections 2.3 and 6.1 for further discussion of these conditions.)

Theorem II. (a) Let Vµ be a cohomological component of Vµ1⊗ · · ·⊗Vµk . Then
Vµ is a generalized PRV component of Vµ1⊗· · ·⊗Vµk of stable multiplicity one.

(b) Conversely, assume that Vµ is a generalized PRV component of Vµ1⊗· · ·⊗Vµk

of stable multiplicity one. If , in addition, one of the following holds:

(i) at least one of µ1, . . . , µk or µ is strictly dominant,
(ii) G is a simple classical group or a product of simple classical groups,

then Vµ is a cohomological component of Vµ1⊗ · · ·⊗Vµk .

It is unfortunate that in part (b) above we require condition (i) or (ii). Indeed,
we believe that we do not need these conditions but we impose them due to our
inability to overcome a combinatorial problem.

Remark. In type A a conjecture of Fulton, proved by Knutson, Tao, and Woodward
[Knutson et al. 2004, §6.1, §7] states that if Vµ is a component of Vµ1 ⊗ · · ·⊗Vµk
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of multiplicity one, then Vmµ has multiplicity one in Vmµ1 ⊗ · · · ⊗Vmµk for all
m > 1. Together with Theorem II, this means that in type A a component Vµ is a
cohomological component of Vµ1⊗· · ·⊗Vµk if and only if Vµ is a PRV component
of Vµ1 ⊗ · · ·⊗Vµk of multiplicity one.1

1.4. Representation-theoretic implications of Theorem II. The representation-the-
oretic significance of Theorem II is twofold: it provides both a geometric construc-
tion of special components of a tensor product via the Bott theorem, and a new way
of generalizing the classical PRV component.

The Borel–Weil–Bott theorem provides a geometric realization of every irre-
ducible representation of G as the cohomology (in any degree) of an appropriate
line bundle on X. In particular, every irreducible representation equals the space of
global sections of a unique line bundle on X. In this sense the Borel–Weil theorem
(the statement about cohomology in degree zero) suffices since the Bott theorem
(the statement about higher cohomology) yields the same representations. However,
in addition to being representations, the cohomology groups carry a ring structure
induced from the cup product. Theorem II employs this structure to give a geometric
realization of certain components of a tensor product of representations. As far as
we know this is the first use of the Bott theorem for a geometric construction of
representations in the case when G is a semisimple algebraic group over a field of
characteristic zero.

We are borrowing the term “generalized PRV component” from the case when
k = 2. Parthasarathy, Ranga Rao, and Varadarajan [Parthasarathy et al. 1967]
established that if µ is in the W-orbit of µ1+w0µ2 (where w0 denotes the longest
element of W), then Vµ is a component of Vµ1 ⊗Vµ2 . Moreover, they proved that
Vµ has multiplicity one in, and is the smallest component of, Vµ1 ⊗Vµ2 . It is true
more generally that if µ is in the W-orbit of µ1+ vµ2 (where v is now an arbitrary
element of W) then Vµ is again a component of Vµ1 ⊗Vµ2 ; this was established
independently by Kumar [1988] and Mathieu [1989].

Unlike the original PRV component, a generalized PRV component Vµ may
have multiplicity greater than one in Vµ1 ⊗Vµ2 . However, by Theorem II, every
cohomological component is a generalized PRV component of stable multiplicity
one. The cohomological components also retain an aspect of the minimality of the
original PRV component: every cohomological component of Vµ1⊗ · · · ⊗Vµk is
extreme among all components of Vµ1 ⊗ · · ·⊗Vµk . These properties of cohomo-
logical components suggest that they may be viewed as the “true” analog of the
original PRV component.

Figure 1 illustrates Theorem II in the case k = 2.

1This is not true in other types; see the component V1,0 of V1,1⊗V1,1 in the middle example of
Figure 1.
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V3,5⊗V1,2

SL3 SO5

V1,1⊗V1,1

SL3

V7,2⊗V1,3

– component of the tensor product

– cohomological component/generalized PRV component of stable multiplicity one

– generalized PRV component of multiplicity greater than one

– generalized PRV component of multiplicity one, but not stable multiplicity one

SL3 SO5 SL3

V3,5⊗V1,2 V1,1⊗V1,1 V7,2⊗V1,3

Figure 1. Illustration of Theorem II when k = 2.

1.5. Other results. In conclusion we mention several other results which may be
of independent interest.

The cup product and Schubert calculus. Recall that a basis for the cohomology ring
H∗(X,Z) of X = G/B is given by the classes of the Schubert cycles {[Xw]}w∈W
indexed by the elements of the Weyl group W . The dual basis {[�w]}w∈W , is given
by �w := Xw0w. With the notation of Section 1.2 we prove the following:

Theorem III. For any semisimple algebraic group G,

(a) if
⋂k

i=1[�wi ] · [Xw] = 1 then the cup-product map (1.1.1) is surjective;

(b) if
⋂k

i=1[�wi ] · [Xw] = 0 then the cup-product map (1.1.1) is zero.

We use Theorem III as stated above and a variation of its proof to prove Theorem I.
In general it is not known if condition (1.2.1) implies that

⋂k
i=1[�wi ] · [Xw] = 1.

In [Dimitrov and Roth ≥ 2017] we show that this is the case when G is a classical
group or G2; We do not know if condition (1.2.1) implies that the intersection
number is one in the other exceptional cases.

Diagonal Bott–Samelson–Demazure–Hansen varieties. We construct a class of
varieties which generalize the Bott–Samelson–Demazure–Hansen varieties. One
way to understand these varieties is a resolution of singularities of the total space
of intersections of translates of Schubert varieties; see Theorem 3.7.4. Other
notable results related to this construction include Lemma 3.8.1, which controls the
multiplicity of cohomological components, and Theorem 3.9.1, which provides a
new proof of the necessity of the inequalities determining the Littlewood–Richardson
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cone. These varieties have applications outside this paper. For instance, in a future
paper we use them to establish multiplicity bounds for the Littlewood–Richardson
coefficients generalizing the Klymik bound, each of which has the same asymptotic
order of growth as the multiplicity function, with each “centered” around a particular
cohomological component (in a way that the Klymik bound appears as the version
for the highest weight component). These varieties are also used in [Roth 2011] to
prove reduction rules for Littlewood–Richardson coefficients.

1.6. Related Work. After the initial version of this paper appeared on the arXiv,
other authors have worked on related ideas. V. Tsanov [2013], considers the more
general situation of an embedding G1 ↪→ G2 of complex semisimple Lie groups,
inducing an embedding

X1 := G1/B1 ↪→ X2 := G2/B2,

where B1 and B2 are nested Borel subgroups. The main result of [Tsanov 2013]
extends Theorem I to this setting, giving necessary and sufficient conditions for the
pullback map Hd(X1,L|X)← Hd(X2,L) to be nonzero, when L is an equivariant
bundle on X2; see [Tsanov 2013, Theorem 2.2]. The arguments in [Tsanov 2013]
use Lie algebra cohomology, and are quite different in character from the arguments
of this paper.

In a preprint, N. Ressayre [2009, Theorem 1] states that every generalized PRV
component of stable multiplicity one is a cohomological component. That is,
this result states that part (b) of Theorem II holds without requiring either of the
conditions (i) or (ii) of (b).

Finally, the varieties X=G/B considered in this paper have the property that they
are projective varieties acted on transitively by an algebraic group. There is another
natural class of varieties also fitting this description, namely Abelian varieties. Here
Mumford’s index theorem and the theorem on irreducibility of the theta-group
representation take the place of the Borel–Weil–Bott theorem. N. Grieve [2014]
proves results on the surjectivity of cup-product maps between cohomology of line
bundles on Abelian varieties, again subject to certain combinatorial restrictions.

2. Notation and background results

2.1. Notation and conventions. The ground field is algebraically closed of charac-
teristic zero. Throughout the paper we fix a semisimple connected algebraic group
G, a Borel subgroup B⊂ G, and a maximal torus T⊂ B. All parabolic subgroups
we consider contain T. The Lie algebras of algebraic groups are denoted by Fraktur
letters, e.g., g, b, t, etc. We use the term “G-module” instead of “representation of
G” to avoid differentiating between representations of algebraic groups and modules
over the respective Lie algebras; likewise, since T is fixed, we use the term “weight”
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both for characters of T and weights of t; in particular we only consider integral
weights of t.

The point

wB/B ∈ Xw ⊆ X= G/B,

where w ∈W and Xw is the corresponding Schubert variety, is denoted by w for
short. If M= G/P for some parabolic P we similarly use w to indicate the point
wP/P ∈M.

If 3 is the lattice of weights of T we denote the group ring of 3 by Z[3], i.e.,

Z[3] =

{ k∑
i=1

ci eλi

∣∣∣ ci ∈ Z, λi ∈3

}
.

For a T-module M, the formal character of M is

ChM=
∑
λ∈3

dimMλeλ ∈ Z[3],

where

Mλ
=
{

x ∈M | t · x = λ(t)x for every t ∈ t
}
.

All formal characters discussed in this paper are contained in Z[1]. For a subset
8⊆1, the formal character of

⊕
α∈8 gα is denoted by 〈8〉, i.e.,

〈8〉 =
∑
α∈8

eα.

If w is an element of the Weyl group W , then `(w) means the length of any
minimal expression giving w as a product of simple reflections. If v is a word in
the simple reflections, then `(v) is the number of reflections in the word. Note that,
if v is a word in simple reflections, and v ∈W is the corresponding element of the
Weyl group, then `(v)= `(v) if and only if v is a reduced word. If v = si1 · · · sim

is a nonempty word, we denote by vR the word si1 · · · sim−1 obtained from v by
dropping the rightmost reflection in v. If v = (v1, . . . , vk) is a sequence of words
then we set `(v)=

∑k
i=1`(vi ).

A list of symbols used in the paper can be found on page 812.

2.2. Inversion sets. Let 1+ be the set of positive roots of g (with respect to B).
Following Kostant [1961, Definition 5.10], for any element w of the Weyl group W
we define 8w, the inversion set of w, to be the set of positive roots sent to negative
roots by w, i.e.,

8w := w
−11− ∩1+. (2.2.1)
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For a subset 8 of 1+, we set 8c
:=1+ \8. We will need the following formulas,

which follow easily from the definition:

8w0w =8
c
w, (2.2.2)

w−11+ =8c
w t−8w, (2.2.3)

w−1
· 0= w−1ρ− ρ =−

∑
α∈8w

α. (2.2.4)

2.3. Generalized PRV components. For fixed dominant weights µ1, µ2, and µ it
is clear that the two conditions,

(a) there exist w1, w2, and w in W such that w−1µ= w−1
1 µ1+w

−1
2 µ2,

(b) there exists v in W such that µ is in the W-orbit of µ1+ vµ2,

are equivalent. If these conditions are satisfied we call Vµ a generalized PRV
component of Vµ1 ⊗Vµ2 .

As is suggested by the name, but is far from obvious from the definition, every
generalized PRV component of Vµ1 ⊗ Vµ2 is in fact a component of the tensor
product Vµ1 ⊗Vµ2 of G-modules. This was first proved when v = w0 (i.e., when µ
is in the W-orbit of µ1+w0µ2) in [Parthasarathy et al. 1967]. In the literature this
component is referred to simply as the PRV component. The general case, that Vµ is
a component of Vµ1⊗Vµ2 for an arbitrary v, became known as the PRV conjecture,
and was established independently by Kumar [1988] and Mathieu [1989].

In the present paper we extend the notion of generalized PRV component to
components of the tensor product of k irreducible G-modules for k > 2. We call
Vµ a generalized PRV component of Vµ1 ⊗· · ·⊗Vµk if there exist w1, . . . , wk , and
w in W such that w−1µ =

∑k
i=1w

−1
i µi . A straightforward induction from the

case k = 2 implies that every generalized PRV component of Vµ1 ⊗ · · · ⊗Vµk is
a component of the tensor product Vµ1 ⊗ · · ·⊗Vµk of G-modules. We record the
special case when µ= 0 for use in the proof of Theorem I.

Lemma 2.3.1. For any dominant weights µ1, . . . , µk , and Weyl group elements
w1, . . . , wk , if

∑k
i=1w

−1
i µi = 0 then (Vµ1 ⊗ · · ·⊗Vµk )

G
6= 0.

2.4. Borel–Weil–Bott theorem. Suppose that λ is a regular weight, so there is a
unique w ∈ W with w · λ ∈ 3+. The Borel–Weil–Bott theorem identifies the
cohomology of the line bundle Lλ on X as G-modules:

Hd(X,Lλ)=
{

V∗w·λ if d = `(w),
0 otherwise.

If λ is not a regular weight then the cohomology of Lλ is zero in all degrees.
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2.5. Serre duality on X . For any weight λ set S(λ)=−λ−2ρ. Since the canonical
bundle KX of X is equal to L−2ρ we see that LS(λ) = KX⊗L∗λ. In other words, S is
the function that for each weight λ returns the weight S(λ) of the line bundle Serre
dual to Lλ; the map S is clearly an involution. Let w be any element of the Weyl
group and λ any weight. A straightforward computation shows that S commutes
with the affine action of the Weyl group, i.e., that w ·S(λ)= S(w · λ).

Lemma 2.5.1. If λ is a regular weight and w the unique element of the Weyl group
with w · λ ∈3+ then (w0w) ·S(λ) ∈3+.

Proof. If µ is a dominant weight then V∗µ = V−w0µ. Therefore if w · λ= µ ∈3+

then

(w0w) ·S(λ)= w0 ·S(w · λ)= w0 ·S(µ)=−w0µ ∈3
+, (2.5.2)

concluding the proof. �

Since `(w0w)= N− `(w), the calculation above fits in neatly with the Borel–
Weil–Bott theorem (BWB) and Serre duality. If λ is a regular weight and w an
element of the Weyl group with w · λ= µ ∈3+ then we have

Vµ =
(
H`(w)(X,Lλ)

)∗ (by BWB)

= HN−`(w)(X,KX⊗L∗λ) (by Serre duality)

= H`(w0w)(X,LS(λ)) (see Section 2.5)

= V∗
−w0µ

, (by BWB and (2.5.2)).

2.6. Schubert varieties. For an element w ∈W of the Weyl group the Schubert
variety Xw is defined by

Xw := BwB/B⊆ G/B= X.

Recall that the classes of the Schubert cycles {[Xw]}w∈W give a basis for the
cohomology ring H∗(X,Z) of X. Each [Xw] is a cycle of complex dimension `(w).
The dual Schubert cycles {[�w]}w∈W , given by �w := Xw0w, also form a basis.
Each [�w] is a cycle of complex codimension `(w). The work of Demazure [1974],
Kempf [1976], Ramanathan [1985], and Seshadri [1987] shows that each Schubert
variety Xw is normal with rational singularities.

Remark. If w1, . . . , wk , and w ∈ W are such that `(w) =
∑
`(wi ), then the

intersection
⋂k

i=1[�wi ] · [Xw] is a number. The number is the coefficient of [�w]
when writing the product

⋂k
i=1[�wi ] in terms of the basis {[�v]}v∈W .

To reduce notation we use w to also refer to the point wB/B ∈ Xw ⊆ X. In
particular, for the identity e ∈W , Xe = {e}. Note that e ∈ X is also the image of
1G under the projection from G onto X.
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Definition. The Bruhat order on the Weyl group W is the partial order given by
the relation v 6w if and only if Xv ⊆ Xw. The minimum element in this order is e
and the maximum element is w0, corresponding to the subvarieties Xe = {e} and
Xw0 = X respectively.

The following result will be used several times throughout the paper.

Lemma 2.6.1. Suppose that w1, . . . , wk are elements of the Weyl group such that
1+ =

⊔k
i=18wi . Then

⋂k
i=1[�wi ] 6= 0.

Proof. Each class [�wi ] is represented by any translation of the cycle �wi , so to
understand

⋂k
i=1[�wi ] we can study the intersection of schemes

k⋂
i=1

(w0wi )
−1�wi . (2.6.2)

Each of the schemes (w0wi )
−1�wi passes through e ∈ X. The tangent space to

(w0w)
−1�w at e is

Lie
(
(w0w)

−1B(w0w)
)
/Lie(B)=

⊕
α∈−8w0w

gα
(2.2.2)
=

⊕
α∈−8c

w

gα ⊆ b− = TeX,

where we have identified TeX with b− via the projection G→ X. Noting that
k⋂

i=1

8c
w =

( k⋃
i=1

8w

)c

= (1+)c =∅,

we conclude that the intersection of the tangent spaces of the varieties (w0wi )
−1�wi

at e∈X is 0. Hence the intersection (2.6.2) is transverse at the identity. By Kleiman’s
transversality theorem [1974, Corollary 4(ii)], small translations of each of the
varieties (w0wi )

−1�wi will intersect properly and compute the intersection number.
Small translations of varieties cannot remove transverse points of intersection and
thus

⋂k
i=1[�wi ] 6= 0. �

2.7. Symmetric and nonsymmetric forms. Most questions we consider, including
Problem I and Problem II, can be stated in nonsymmetric and symmetric forms
and it is frequently convenient to switch from one to the other. We illustrate this
procedure by showing how to switch from the nonsymmetric to the symmetric form
of Problem I.

In the nonsymmetric form we are given w1, . . . , wk , and w, such that `(w) =∑
`(wi ), and λ1, . . . , λk , and λ, such that λ =

∑
λi , satisfying the additional

conditions that wi · λi ∈3
+ for i = 1, . . . , k, and w · λ ∈3+. This corresponds to

the data of a cup-product problem:

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ H`(w)(X,Lλ). (2.7.1)
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Set µi =wi ·λi for i = 1, . . . , k, and µ=w ·λ to keep track of the modules which
appear as cohomology groups. By the Borel–Weil–Bott theorem the map (2.7.1)
corresponds to a G-equivariant map

V∗µ1
⊗V∗µ2

⊗ · · ·⊗V∗µk
→ V∗µ.

By Serre duality HN−`(w)(X,KX⊗L∗λ) 6= 0 and the cup-product map

H`(w)(X,Lλ)⊗HN−`(w)(X,KX⊗L∗λ)
∪
−→ HN(X,KX)

is a perfect pairing. Since H`(w)(X,Lλ) is an irreducible G-module, the surjectivity
of (2.7.1) is equivalent to the surjectivity of the cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk )(X,Lλk )⊗HN−`(w)(X,KX⊗L∗λ)
∪
−→ HN(X,KX). (2.7.2)

To get the symmetric form of this problem, we set wk+1 =w0w, λk+1 = S(λ)=
−λ− 2ρ, and µk+1 =−w0µ=wk+1 ·λk+1. Then Lλk+1 =KX⊗L∗λ by Section 2.5,
wk+1 ·λk+1 ∈3

+ by Lemma 2.5.1, and `(wk+1)=N−`(w), so that (2.7.2) becomes

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk )(X,Lλk )⊗H`(wk+1)(X,Lλk+1)
∪
−→ HN(X,KX).

Since
k+1∑
i=1

λi = λ+ (−λ− 2ρ)=−2ρ

and L−2ρ =KX, this is again a cup-product problem of the type we consider, but now
all weights λ1, . . . , λk+1 and Weyl group elements w1, . . . , wk+1 play equal roles.

By (2.2.2) 8wk+1 = 8
c
w and therefore the condition that 8w =

⊔k
i=18wi is

equivalent to the condition 1+ =
⊔k+1

i=1 8wi . Since [�wk+1] = [Xw0wk+1] = [Xw],
the intersection numbers

⋂k
i=1[�wi ] · [Xw] and

⋂k+1
i=1 [�wi ] are the same. Finally,

the multiplicity of Vµ in Vµ1⊗· · ·⊗Vµk is the same as the multiplicity of the trivial
module in Vµ1 ⊗ · · ·⊗Vµk ⊗Vµk+1 because Vµk+1 = V−w0µ = V∗µ.

To go from the symmetric form to the nonsymmetric form we simply reverse the
above procedure, although of course we are free to desymmetrize with respect to
any of the indices i = 1, . . . , k+ 1, and not just the last one.

For convenience we list in Table 1 the symmetric and nonsymmetric forms of
some formulas and expressions we are interested in. Since k is an arbitrary positive
integer, after switching to the symmetric form we often use k in place of k+ 1 to
reduce notation.

2.8. Demazure reflections. Suppose that W and M are varieties and π :W→M
is a P1-fibration, i.e., a smooth morphism with fibers isomorphic to P1. Let L be
a line bundle on W and b be the degree of L on the fibers of π . Demazure [1976,
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Nonsymmetric Symmetric⊗k
i=1 H`(wi )(X,Lλi )→ H`(w)(X,Lλ)

⊗k+1
i=1 H`(wi )(X,Lλi )→ HN(X,KX)∑k

i=1 `(wi )= `(w)
∑k+1

i=1 `(wi )= N∑k
i=1 λi = λ

∑k+1
i=1 λi =−2ρ∑k

i=1w
−1
i µi −w

−1µ
∑k+1

i=1 w
−1
i µi∑k

i=1w
−1
i · 0−w

−1
· 0

∑k+1
i=1 w

−1
i · 0+ 2ρ

8w =
⊔k

i=18wi 1+ =
⊔k+1

i=1 8wi⋂k
i=1[�wi ] · [Xw]

⋂k+1
i=1 [�wi ]

Table 1. Nonsymmetric and symmetric forms of some formulas.

Theorem 1] proves the following isomorphism of vector bundles on M:

Riπ∗L∼= R1−iπ∗(L⊗ωb+1
π ) for i = 0, 1, (2.8.1)

where ωπ is the relative cotangent bundle of π . The line bundle L⊗ωb+1
π is called

the Demazure reflection of L with respect to π .
Note that there is at most one value of i for which the resulting vector bundles

are nonzero: i = 0 if b> 0, i = 1 if b6−2, and neither if b=−1. Equation (2.8.1)
and the corresponding Leray spectral sequence give the isomorphisms

H j (W,L)∼=
{

H j+1(W,L⊗ωb+1
π ) if b > 0,

H j−1(W,L⊗ωb+1
π ) if b 6−2,

for all j.

Link between Demazure reflections and the affine action. Let αi be any simple root,
Pαi the parabolic associated to αi , and πi : X→Mi := G/Pαi the corresponding
P1-fibration. The relative cotangent bundle ωπi of πi is the line bundle L−αi . Given
any λ ∈3, the degree of the line bundle Lλ on the fibers of πi is λ(α∨i ), where α∨i
is the coroot corresponding to αi . We thus obtain that the Demazure reflection of
Lλ with respect to the fibration πi is the line bundle

Lλ⊗L
λ(α∨i )+1
−αi

= Lλ−(λ(α∨i )+1)αi = Lsiλ−αi = Lsi ·λ,

where si is the simple reflection corresponding to αi . The combinatorics of per-
forming Demazure reflections with respect to the various P1-fibrations of X is
therefore kept track of by the affine action of the Weyl group on 3. In particular, if
v = si1 · · · sim ∈W and λ ∈3, the result of applying the Demazure reflections with
respect to the fibrations πim , πim−1, . . . , πi1 in that order to Lλ is Lv·λ.
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Demazure reflections and base change. Given any morphism h : Y2→M we can
form the fiber product diagram

Y1
f
//

π1

��

W

π

��

Y2
h
//

�

M

If π is a P1-fibration then so is π1, and ωπ1 = f ∗ωπ . Therefore, for any line bundle
L on V, we have

f ∗(L⊗ωb+1
π )= ( f ∗L)⊗ωb+1

π1
,

where b is the degree of L on the fibers of π . The degree of f ∗L on π1 is also b
and therefore the formula above shows that the pullback of the Demazure reflection
of L with respect to π is the Demazure reflection of the pullback of L with respect
to π1. Furthermore, by the theorem on cohomology and base change, the natural
morphisms

Riπ1∗( f ∗L)←−∼ h∗(Riπ∗L),

R1−iπ1∗(( f ∗L)⊗ωb+1
π1
)←−∼ h∗(R1−iπ∗(L⊗ωb+1

π ))

are isomorphisms for i = 0, 1.

2.9. E2-terms and computation of maps on cohomology. Suppose that we have a
commutative diagram of varieties

W′ �
� γ

//

π ′

��

W

π

��

M′ �
�

// M

where the vertical maps are proper and the horizontal maps are closed immersions.
Suppose further that we have coherent sheaves F on W and F ′ on W′, and a map ϕ :
γ ∗F→F ′ of sheaves on W′. The map ϕ induces maps ϕd :Hd(W,F)→Hd(W′,F ′)
on cohomology and maps ϕd,k : Hd−k(M,Rk

π∗F)→ Hd−k(M′,Rk
π∗F ′) on the E2-

terms of the Leray spectral sequences for F and F ′ with respect to π and π ′.
Assume that both spectral sequences degenerate at the E2-term. In Section 5.4 we
will need to know when we can compute ϕd by knowing the maps ϕd,k .

By the definition of convergence of a spectral sequence there are increasing
filtrations

0= U−1 ⊆ U0 ⊆ · · · ⊆ Ud = Hd(W,F),

0= U′
−1 ⊆ U′0 ⊆ · · · ⊆ U′d = Hd(W′,F ′),
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such that Uk/Uk−1 = Hd−k(M,Rk
π∗F) and U′k/U

′

k−1 = Hd−k(M′,Rk
π∗F ′) for k =

0, . . . , d. Since the map ϕd on the cohomology groups is compatible with the
filtrations (in the sense that ϕd(Uk) ⊆ U′k for k = −1, . . . , d), ϕd induces maps
between the associated graded pieces of the filtrations; these maps are exactly the
maps ϕd,k .

We will need to know that ϕd can be computed from the maps ϕd,k in an
elementary case. Suppose there is a unique k such that Uk/Uk−1 is nonzero (and
so Uk/Uk−1 = Hd(W,F)), and a unique k ′ such that U′k′/U

′

k′−1 is nonzero (and so
U′k′/U

′

k−1 =Hd(W′,F ′)). Then we can compute ϕd from the maps ϕd,k if and only
if k = k ′; if this occurs then ϕd = ϕd,k .

In order to show that we must check the condition k = k ′ above, i.e., that the map
on E2-terms does not always determine the map ϕd , we give the following example
of a nonzero map between cohomology groups of sheaves where the induced map
on E2-terms is zero. This example is also a cup-product map.

Example 2.9.1. Let W= Pm
×Pm for some m > 1, F =OPm (1)�OPm (−r) with

r > m + 2, and let G = O1(1− r) be the restriction of F to the diagonal of W.
We have Hm(W,F) = H0(Pm,OPm (1)) ⊗ Hm(Pm,OPm (−r)) and Hm(W,G) =
Hm(Pm,OPm (1− r)). The natural restriction map ϕ : F → G induces the cup-
product map

ϕm : H0(Pm,OPm (1))⊗Hm(Pm,OPm (−r))
∪
−→ Hm(Pm,OPm (1− r)),

which is a surjective map of nonzero groups.
If π :W→M= Pm is the projection onto the first factor then both of the Leray

spectral sequences degenerate at the E2 term with only one nonzero entry in each
sequence. We have

Hm(W,F)= H0(M,Rm
π∗F) (i.e., k = m),

Hm(W,G)= Hm(M, π∗G) (i.e., k ′ = 0).

The maps ϕm,k on the E2-terms are clearly zero, even though ϕm is nonzero.

2.10. Bott–Samelson–Demazure–Hansen varieties. Let v = si1 · · · sim be a word,
not necessarily reduced, of simple reflections. Associated to v is a variety Zv , a left
action of B on Zv, and a B-equivariant map fv : Zv→ X. If v is nonempty there
is also a B-equivariant map πv : Zv→ ZvR

expressing Zv as a P1-bundle over ZvR

together with a B-equivariant σv : ZvR
→ Zv section such that fvR

= fv ◦ σv.
These varieties were originally constructed by Demazure [1974] and Hansen

[1973] following an analogous construction by Bott and Samelson [1958] in the
compact case. In this subsection we recall their construction and several related
facts. We give two different descriptions of the construction; both will be used in
the constructions in Section 3.
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Recursive construction. Recall that e is unique point of X fixed by B. If the word
v is empty we define Zv to be e, the map fv to be the inclusion e ↪→ X, and the
B-action on Zv to be trivial.

If v = si1 · · · sim is nonempty, let u = vR = si1 · · · sim−1 be the word obtained by
dropping the rightmost reflection of v. By induction we have already constructed
Zu and the map fu : Zu → X. Set h = πim ◦ fu , where πim is the G-equivariant
projection (and P1-fibration) X→Mim =G/Pαim

. We then define Zv to be the fiber
product Zu ×Mim

X, and fv and πv to be the maps from the fiber product to X and
to Zu respectively. Since h = πim ◦ fu , by the universal property of the fiber product
there exists a unique map σv : Zu→ Zv such that fu = fv ◦ σv and idZu = πv ◦ σv.
These maps are summarized in the following diagram, where the square is a fiber
product:

Zv
fv

//

πv

��

X

πim

��

�

Zu
h

//

fu

??

σv

CC

Mim

(2.10.1)

Since B acts on Zu and on X, and the maps fu , πim , and h are B-equivariant, by
the universal property of the fiber product, the diagram (2.10.1) induces a B-action
on Zv such that fv and σv are B-equivariant maps. Since each morphism σv is
a P1-fibration it follows immediately that each Zv is a smooth proper variety of
dimension `(v).

Direct construction. For any word v set

Pv :=
{

e if v is empty,
Pαi1
× · · ·×Pαim

if v = si1 · · · sim is nonempty.

If v is empty we define Zv, fv, and the B-action as in the direct construction.
If v = si1 · · · sim is nonempty then Zv is the quotient of Pv by Bm , where an

element (b1, . . . , bm) of Bm acts on the right on (p1, . . . , pm) by

(p1, . . . , pm) · (b1, . . . , bm)=
(

p1b1, b−1
1 p2b2, b−1

2 p3b3, . . . , b−1
m−1 pmbm

)
.

The left action of B on Pv given by

b · (p1, p2, . . . , pm)= (bp1, p2, . . . , pm)

commutes with the right action of Bm and therefore descends to a left action of B
on Zv . We denote the corresponding B-equivariant quotient map by ψv : Pv→ Zv .
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The product map Pv
φv
−→G given by (p1, . . . , pm) 7→ p1 · · · pm is equivariant

for the left B-action described above and left multiplication of G by B. Under the
homomorphism of groups Bm

→ B given by the projection (b1, . . . , bm) 7→ bm the
product map φv is also equivariant for the right action of Bm on Pv and the right
multiplication of G by B. The product map therefore descends to a left B-equivariant
morphism fv : Zv→ X.

Let u=vR= si1 · · · sim−1 be the word obtained by dropping the rightmost reflection
in v. The projection map prv : Pv→Pu sending (p1, . . . , pm) to (p1, . . . , pm−1)

is equivariant with respect to the projection Bm
→ Bm−1 sending (b1, . . . , bm) to

(b1, . . . , bm−1). Similarly the inclusion map jv :Pu↪→Pv sending (p1, . . . , pm−1) to
(p1, . . . , pm−1, 1G) is equivariant with respect to the inclusion Bm−1 ↪→Bm sending
(b1, . . . , bm−1) to (b1, . . . , bm−1, bm−1). The maps prv and jv respect the left B-
action on Pv and Pu , and therefore descend to B-equivariant maps πv : Zv→ Zu

and σv : Zu → Zv. Since prv ◦ jv = idPu and φv ◦ jv = φu , taking quotients we
obtain πv ◦ σv = idZu and fv ◦ σv = fu . Finally, the fibers of πv are isomorphic to
Pαim

/B∼= P1.
We record the following well-known facts about the construction above.

Proposition 2.10.2. (a) The varieties Zv produced by the recursive and direct
constructions above are isomorphic over X.

(b) If v= si1 · · · sim is a reduced word with product v then the image of fv :Zv→X
is Xv and fv is a resolution of singularities of Xv.

Proof. Part (b) is proved in [Demazure 1974] and [Hansen 1973]. To show (a)
it is enough to show that the varieties produced by the direct construction satisfy
the fiber product diagram (2.10.1). This is most easily checked after pulling back
(2.10.1) via the maps G→ X and Pu = Pi1 × · · · × Pim−1 → Zu ; the details are
omitted here. �

Maximum points. Let v = si1 · · · sim be a reduced word with product v. The image
of Zv under fv is Xv, by Proposition 2.10.2(b), and one can check that there is a
unique point pv of Zv which maps to v ∈ Xv. More specifically, from the point of
view of the direct construction, the point (si1, . . . , sim ) is a point of Pv and its image
under the quotient map Pv → Zv is pv. From the point of view of the recursive
construction one starts with p∅ = e, and recursively defines pv to be unique torus
fixed point in the P1-fiber of πv : Zv→ Zu over pu which is not equal to σv(pu),
where u = vR = si1 · · · sim−1 . Note that pv is the unique torus fixed point of Zv
whose image in Xv is the largest in the Bruhat order among torus-fixed points of
Xv. We call pv the maximum point of Zv.

Since pv is a torus fixed point, the torus acts on the tangent space TpvZv and it
will be important for us to know the formal character of TpvZv . It follows inductively
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from the recursive construction that

Ch(TpvZv)= 〈8v−1〉. (2.10.3)

2.11. Semistability of torus fixed points. The following lemma is due to Kostant.

Lemma 2.11.1. Let W be a projective variety with a G-action and L a G-equivariant
ample line bundle on W. A torus fixed point q ∈W is semistable with respect to L
if and only if the weight of Lq is zero. In this case the orbit of q is closed in the
semistable locus.

Proof. If the action of the torus on the fiber Lq is nontrivial then it is easy to see
(for instance using the Hilbert–Mumford criterion for semistability, [Mumford et al.
1994, Theorem 2.1, p. 49]) that q is not a stable point.

Conversely, suppose that the weight of Lq is zero. Replacing L by a multiple we
may assume that L is very ample and gives an embedding W ↪→Pr for some r . Let
Ar+1 be the affine space corresponding to Pr and Ar+1

\ {0} → Pr be the quotient
map. Then G acts linearly on Ar+1 inducing an action on Pr compatible with the
action on W. Let q̃ be any lift to Ar+1 of the image of q in Pr . The condition
that the torus act trivially on Lq is equivalent to the condition that q̃ be fixed by T
under the G-action on Ar+1. Kostant ([1963, p. 354, Remark 11]) proves that for
any finite dimensional module of a reductive group G and any point q̃ fixed by T,
the G-orbit of q̃ is closed; this result was also later generalized by Luna [1975,
Theorem (∗∗)]. Since G is reductive and the orbit of q̃ does not meet zero, there is
a G-invariant homogeneous form of some degree m which is nonzero on q̃. This
corresponds to a G-invariant section s ∈ H0(W,Lm)G such that s(q) 6= 0. We thus
see that if the weight of Lq is zero then q is a semistable point, and the orbit of q is
closed in the semistable locus. �

3. Diagonal Bott–Samelson–Demazure–Hansen–Kumar varieties

In this section we give a generalization of the varieties from Section 2.10. The
construction is a variation of a construction of Kumar [1988]; see Section 3.10 for a
comparison. These varieties are obtained by applying the idea of the Bott–Samelson
resolution to the diagonal inclusion X ↪→ Xk . They can also be thought of as a
desingularization of the total space of the variety of intersections of translates of
Schubert cycles. This alternate description is established in Theorem 3.7.4.

More specifically, for each sequence v = (v1, . . . , vk) of words we construct a
smooth variety Yv of dimension N+ `(v) with a G-action together with a proper
map fv : Yv→ Xk which is G-equivariant for the diagonal action of G on Xk . If u
is the sequence obtained by dropping a single simple reflection from the right of
one of the v j ’s then Yv is a P1-fibration over Yu, and there is a section Yu ↪→ Yv

compatible with the maps fv and fu to Xk . The fibration and section maps are
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G-equivariant; moreover they are compatible with the P1-fibrations on factors of Xk .
These relationships are summarized in diagram (3.1.2).

3.1. Recursive construction. Let v = (v1, . . . , vk) be a sequence of words. If all
v j are empty, i.e., if v = (∅, . . . ,∅), we set Yv = X and let fv : Yv→ Xk be the
diagonal embedding.

Otherwise suppose that v j is nonempty. Let

ul :=

{
vl if l 6= j,
(v j )R if l = j,

l = 1, . . . , k, (3.1.1)

and set u = (u1, . . . , uk). By induction on `(v) we may assume that Yu and the
map fu :Yu→Xk have been constructed. If v j = si1 · · · sim , so that u j = si1 · · · sim−1

then we define Yv, the map fv, the projection πv,u, and the section σv,u by the
following fiber product square:

Yv

fv
//

πv,u

��

Xk

(idX)
j−1
×πim×(idX)

k− j

��

Yu //

�

fu

==

σv,u

CC

X j−1
×Mim ×Xk− j

(3.1.2)

Here πim :X→Mim :=G/Pαim
is the natural projection, and Xk

→X j−1
×Mim×Xk− j

is the projection πim on the j-th factor and the identity on all others. The bottom
map

Yu→ X j−1
×Mim ×Xk− j

is the map fu to Xk followed by the map Xk
→ X j−1

×Mim ×Xk− j above.
Since Xk

→ X j−1
×πim ×Xk− j is a P1-fibration the same is true of πv,u. We

conclude by induction that the variety Yv is smooth, proper, and irreducible of
dimension N+`(v). The maps fu and idYu from Yu to Xk and Yu respectively give
rise to the section σv,u. By construction we have

fu = fv ◦ σv,u and idYu = πv,u ◦ σv,u.

This construction is well defined. Indeed, assume that we had dropped a simple
reflection from the right of v j ′ , j ′ 6= j to obtain a sequence of words u′ and used
Yu′ instead of Yu to construct Yv . We claim that the resulting variety Yv is the same.
This follows easily by induction on `(v) and the fact that the diagram expressing
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the commutativity of the projections on the different factors is a fiber square:

Xk (idX)
j ′−1
×πim×(idX)

k− j ′

//

(idX)
j−1
×πim×(idX)

k− j

��

X j ′−1
×Mi ′m ×Xk− j ′

��

X j−1
×Mim ×Xk− j //

�

X j ′−1
×Mim′

×X j− j ′−1
×Mim ×Xk− j

Here, by symmetry, we have assumed that j ′ < j .

3.2. Direct construction. Let v= (v1, . . . , vk) be a sequence of words. The group
B acts diagonally on Zv1 × · · ·×Zvk on the left. We define Yv to be the quotient of
G× (Zv1 × · · ·×Zvk ) by the left B-action

b · (g, z1, . . . , zk)= (gb−1, b · z1, . . . , b · zk). (3.2.1)

Since G× (Zv1 ×· · ·×Zvk ) is smooth and B acts without fixed points, the quotient
Yv is smooth.

The group G acts on G× (Zv1 × · · · × Zvk ) by left multiplication on the first
factor. Since this action commutes with the action of B, it descends to an action of
G on Yv. The map from G× (Zv1 × · · ·×Zvk ) to Xk given by

(g, z1, . . . , zk) 7→
(
g· fv1(z1), g· fv2(z2), . . . , g· fvk (zk)

)
(3.2.2)

is invariant under the B-action. If we let G act on Xk diagonally then (3.2.2) is also
G-equivariant and hence descends to a G-equivariant morphism fv : Yv→ Xk .

As in the direct construction, we suppose that v j is nonempty, define ul by
(3.1.1) and set u= (u1, . . . , uk). The B-equivariant morphisms πv : Zv j → Zu j and
σv j : Zu j → Zv j from Section 2.10 give rise to B-equivariant morphisms between
G× (Zv1 × · · · × Zvk ) and G× (Zu1 × · · · × Zuk ) and hence to a G-equivariant
P1-fibration πv,u : Yv → Yu and a G-equivariant section σv,u : Yu → Yv. These
maps fit together to give diagram (3.1.2).

3.3. Expanded version of the direct construction. Combining the formulas for Pv
from Section 2.10 with the direct construction above we obtain a more explicit
expression for Yv . If v = (v1, . . . , vk) with v j = si1, j · · · sim j , j for j = 1, . . . , k then
we define Yv to be the quotient of

G×Pv1 × · · ·×Pvk = G× (Pi1,1 × · · ·×Pim1,1
)× · · ·× (Pi1,k × · · ·×Pimk ,k

)

by the right action of B×Bm1 × · · ·×Bmk , where an element

(b0 | b1,1, . . . , bm1,1 | b1,2, . . . , bm2,2 | · · · | b1,k, . . . , bmk ,k)
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acts from the right on

(g | pi1,1, pi2,1, . . . , pim1,1
| pi1,2, pi2,2, . . . , pim2,2

| · · · | pi1,k , . . . , pimk ,k
)

to give(
gb0 | b−1

0 pi1,1b1,1, b−1
1,1 pi2,1b2,1, . . . , b−1

m1−1,1 pim1,1
bm1,1 | · · ·

· · · | b−1
0 pi1,k b1,k, . . . , b−1

mk−1,k pimk ,k
bmk ,k

)
.

(In the expressions above the vertical lines “|” are used to indicate logical groupings,
but otherwise have no significance.) The group G acts on G×Pv1 × · · ·×Pvk by
left multiplication on the G factor, this action descends to a left action on Yv.

The map fv is induced by the map sending an element

(g | pi1,1, pi2,1, . . . , pim1,1
| pi1,2, pi2,2, . . . , pim2,2

| · · · | pi1,k , . . . , pimk ,k
)

of G×Pv1 × · · ·×Pvk to

(gpi1,1 pi2,1 · · · pim1,1
| gpi1,2 pi2,2 · · · pim2,2

| · · · | gpi1,k · · · pimk ,k
) (3.3.1)

in Xk . From the explicit formulas this is clearly a G-equivariant map.
Finally, if v is a sequence of words, and u is a sequence obtained by dropping the

rightmost reflection of a single word in v (as in Section 3.2) then the G-equivariant
P1-fibration πv,u : Yv → Yu and the G-equivariant section σv,u : Yu → Yv are
constructed using the obvious formulas analogous to those in Section 2.10. It again
follows easily from these formulas that fu = fv ◦ σv,u.

Remark. Note that the variety Yv depends on the sequence of wordsv= (v1, . . . , vk)

and not just on the corresponding sequence (v1, . . . , vk) of Weyl group elements.
If we choose a different reduced factorization of each vi the resulting variety is
birational to Yv over Xk . The proof is omitted because we do not need this fact.

3.4. The map f◦. As before, let v = (v1, . . . , vk) be a sequence of words. Besides
the map fv to Xk , each Yv comes with a G-equivariant map f◦ to X expressing Yv

as a Zv1 × · · ·×Zvk -bundle over X.
From the point of view of the construction in Section 3.1 f◦ is the composite

map

Yv

πv,u
−−→ Yu→ · · · → Y∅ = X

obtained by dropping the elements in the entries of v one at a time. The fiber over
e in X is then the result of applying the recursive construction in Section 2.10
separately for each vi , i = 1, . . . , k, and so the fiber is Zv1 × · · ·×Zvk .

From the point of view of the construction in Section 3.2 one starts with the
projection G× (Zv1 × · · · ×Zvk )→ G onto the first factor. This is B-equivariant
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for the right action of B on G and hence descends to a morphism f◦ : Yv → X
expressing Yv as a Zv1 × · · ·×Zvk -bundle over X.

Let u= (∅, v1, . . . , vk). Since the action of B on the point Z∅ = e is trivial, we
have an isomorphism

G×Zv1 × · · ·×Zvk ' G×Z∅×Zv1 × · · ·×Zvk

of B-varieties and hence a G-isomorphism φ :Yv→Yu. From the explicit description
in (3.2.2) we see that the composite map fu ◦φ :Yv→Xk+1 followed by projection
onto the first factor is f◦, and that fu ◦ φ followed by projection onto the last k
factors is fv.

Thus the map f◦× fv : Yv→ X×Xk is equal to the map

f(∅,v1,...,vk) : Y(∅,v1,...,vk)→ Xk+1

under the isomorphism φ. This will be used in the proof of Theorem 3.7.4.

3.5. Maximum point. Let v = (v1, . . . , vk) be a sequence of words. We define
the maximum point pv of Yv to be the product maximum point (Section 2.10)
pv1 × · · · × pvk in the fiber Zv1 × · · · × Zvk of f◦ over e in X. Alternatively, if
v j = (si1, j , . . . , sim j , j ) for j = 1, . . . , k then (in the notation of Section 3.3) the point

(e | si1,1, si2,1, . . . , sim1,1
| · · · | si1,k , . . . , simk ,k

)

is a point of

G× (Pi1,1 × · · ·×Pim1,1
)× · · ·× (Pi1,k × · · ·×Pimk ,k

)

and its image in Yv under the quotient map by B×Bm1×· · ·×Bmk is the maximum
point pv. If each v j is a factorization of some vj ∈W , then the image fv(pv) of
the maximum point in Xk is the point qv := (v1, . . . , vk).

3.6. Tangent space formulas. We will need to know the formal character (see
Section 2.1) of the tangent space of Yv at the maximum point pv. If each v j is a
reduced word with product vj , then the formal character of the tangent space to Zv j

at pv j is 〈8v−1
j
〉 and the formal character of the tangent space of X at e is 〈1−〉.

Since the fibration f◦ is smooth, the formal character of Tpv
Yv is the sum of

these formal characters, i.e.,

Ch(Tpv
Yv)= 〈1

−
〉+

k∑
i=1

〈8v−1
i
〉.

If vj = w
−1
j w0 for j = 1, . . . , k, then by (2.2.2) this is the same as

Ch(Tpv
Yv)=1

−
+

k∑
i=1

〈8c
wi
〉. (3.6.1)
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3.7. Fibers and images of fv.

Lemma 3.7.1. Let v = (∅, v2, . . . , vk) be a sequence of words, with each vi a
reduced factorization of vi , and let Xv be the (reduced) image of fv in Xk . Then:

(a) Projection onto the first factor of Xk endows Xv with the structure of a fiber
bundle over X with fiber isomorphic to Xv2 × · · ·×Xvk .

(b) The variety Xv is normal with rational singularities of dimension N+ `(v),
and the induced map Yv→ Xv is birational with connected fibers.

Proof. Projection on the first factor of Xk gives a G-equivariant morphism Xv
η
→X.

Since G acts transitively on X this morphism is surjective and all fibers are isomor-
phic, i.e., this expresses Xv as a fiber bundle over X. To study the fibers we look at
the fiber η−1(e) over the B-fixed point e of X.

Consider the diagram

G× e×Zv2 × · · ·×Zvk

ψv
//

idG× idxo × fv1×···× fvk
��

Yv

fv
��

G× e×Xv2 × · · ·×Xvk

φ
// Xk

(3.7.2)

where φ is given by φ(g, e, x2, . . . , xk) = (g · e, g · x2, . . . , g · xk) ∈ Xk . Since
ψv and the leftmost vertical map are surjective, the image of fv is the same as
the image of φ. Since B is the stabilizer of e, the fiber η−1(e) is the image of
B× e×Xv2 × · · ·×Xvk under φ. But each Schubert variety Xw is stable under the
action of B and therefore the image above is just e×Xv2 × · · ·×Xvk , proving (a).

From the fibration η it is clear that

dim(Xv)= dim(X)+
k∑

i=2

dim(Xvi )= N+
k∑

i=2

`(vi )= N+ `(v),

because each vi is reduced and hence `(vi )= `(vi ) for i > 2.
The product of normal varieties is again normal, and the product of varieties with

rational singularities also has rational singularities. Since each Xw is normal with
rational singularities (Section 2.6), the fibers also have this property, and therefore
so does Xv (since the properties of being normal or having rational singularities are
local, and Xv is locally the product of the fiber and a smooth variety).

Since each map fvi :Zvi →Xvi is a resolution of singularities of a normal variety,
each fvi is birational with connected fibers. It follows that the map Yv→Xv , which
is the quotient of the leftmost vertical map in (3.7.2) by the action of B, is also
birational with connected fibers. This proves (b). �

Definition 3.7.3. If Xw is any Schubert subvariety of X and q is any point of X, we
define the subvariety qXw of X to be the result of translating Xw by any element in
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the B-coset corresponding to q. Since Xw is B-stable the result is independent of
the choice of representative for q.

The following theorem gives more precise information about the image and fibers
of fv.

Theorem 3.7.4. Let v = (v1, . . . , vk) be a sequence of reduced words with cor-
responding Weyl group elements (v1, . . . , vk). Then there exists a factorization
fv : Yv

τ
→Qv

h
→Xk such that

(a) Qv is normal with rational singularities;

(b) the map τ : Yv→ Qv is proper and birational with connected fibers;

(c) for each point (q1, . . . , qk) of Xk there is a natural inclusion

h−1(q1, . . . , qk) ↪→

k⋂
i=1

qi Xv−1
i

of the scheme-theoretic fiber h−1(q1, . . . , qk) into the scheme-theoretic inter-
section

⋂k
i=1 qi Xv−1

i
;

(d) the inclusion of schemes in (c) induces an isomorphism at the level of reduced
schemes, or in other words, the set-theoretic fiber h−1(q1, . . . , qk) is equal to
the set-theoretic intersection

⋂k
i=1 qi Xv−1

i
.

Proof. Let f◦× fv : Yv→ X×Xk be the product of fv and the map f◦ : Yv→ X
from Section 3.4 expressing Yv as a Zv1

×· · ·×Zvk
-bundle over X. We define Qv

to be the image of f◦ × fv with the reduced scheme structure, τ to be the map
from Yv onto Qv, and h to be the map from Qv to Xk induced by the projection
X×Xk

→ Xk . By construction fv = h ◦ τ .
Letting ψv be the map (from Section 3.2) defining Yv as a quotient of B ×

Zv1 × · · · ×Zvk and φ : G×Xv1 × · · · ×Xvk → Qv ⊆ X×Xk as the map sending
(g, x1, . . . , xk) to (gB/B, g · x1, . . . , g · xk) in X×Xk , we obtain a refinement of
diagram (3.7.2):

G×Zv1 × · · ·×Zvk

ψv
//

��

�

Yv

τ

��

f◦× fv

��

G×Xv1 × · · ·×Xvk

φ
// Qv
� � //

h
��

X×Xk

��

Xk Xk
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Since Yv ' Y(∅,v1,...,vk) (see Section 3.4) and under this isomorphism the map
f◦× fv is the map f(∅,v1,...,vk), it follows from Lemma 3.7.1(b) that Qv is normal

with rational singularities and that τ : Yv→ Qv is birational with connected fibers,
proving (a) and (b).

The composite map

G×Pv1 × · · ·×Pvk → G×Zv1 × · · ·×Zvk

ψv

−→ Yv
τ
−→ Qv

is given (in the notation of Section 3.3) by sending

(g | pi1,1, pi2,1, . . . , pim1,1
| pi1,2, pi2,2, . . . , pim2,2

| · · · | pi1,k , . . . , pimk ,k
)

to
(g | gpi1,1 pi2,1 · · · pim1,1

| gpi1,2 pi2,2 · · · pim2,2
| · · · | gpi1,k · · · pimk ,k

)

in X×Xk . A point q of X is therefore in the fiber

h−1(q1, . . . , qk)⊆ X× q1× · · ·× qk = X

if for any B-coset representatives g, g1, . . . , gk of q, q1, . . . , qk , there exist elements
{pi, j } in the respective parabolic subgroups such that we can solve the equations

gpi1,1 pi2,1 · · · pim1,1
= g1,

...
...
...

gpi1,k pi2,k · · · pimk ,k
= gk .

Moving the pi, j ’s to the right hand side, the system above becomes

g = g1 p−1
im1,1
· · · p−1

i2,1
p−1

i1,1
,

...
...

...

g = gk p−1
imk ,k
· · · p−1

i2,k
p−1

i1,k
,

which is equivalent to q belonging in the intersection
⋂k

i=1 qi Xv−1
i

, proving (d).
Let v be a reduced word with product v. By part (d) the set

Q′v :=
{
(q, p) ∈ X×X | p ∈ qXv

}
is the image of f(∅,v) :Y(∅,v)→X×X and is therefore a closed subvariety of X×X.
Alternatively Q′v is the Zariski closure of the set {(g, g · v) | g ∈ G} ⊆ X×X.

For i = 1, . . . , k, let pi : X×Xk
→ X×X be the map which is the product of

idX with projection Xk
→ X onto the i-th factor. The intersection

Q′v :=
k⋂

i=1

p−1
i (Q′vi

)
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is a closed subscheme of X×Xk which, by (d), agrees set theoretically with Qv.
Since Qv is reduced, we have the inclusion of schemes Qv ⊆ Q′v. If h′ is the
map h′ : Q′v → Xk induced by projection, then the scheme-theoretic fibers of
h are naturally a subscheme of the scheme-theoretic fibers of h′ (and both are
naturally subschemes of X). The scheme-theoretic fiber of h′ is the scheme-theoretic
intersection

⋂k
i=1 qi Xv−1

i
, proving (c). �

The image Xv is therefore the set of translations (q1, . . . , qk) in Xk for which
the intersection

⋂k
i=1 qi Xv−1

i
of translated Schubert varieties is nonempty, and the

set-theoretic fibers of h are the intersections themselves. Moreover, Qv is the
incidence correspondence of intersections of translates of Schubert varieties (the
first coordinate in X×Xk is the intersection, the remaining k coordinates are the
parameters (q1, . . . , qk) controlling the translates). Theorem 3.7.4 shows that Yv is
a resolution of singularities of Qv.

Corollary 3.7.5. Let v = (v1, . . . , vk) be a sequence of reduced words with cor-
responding Weyl group elements (v1, . . . , vk) such that

∑k
i=1 `(vi ) = (k − 1)N.

Then the degree of the map fv : Yv → Xk is given by the intersection number⋂k
i=1[�w0v

−1
i
] =

⋂k
i=1[Xv−1

i
].

Remark. The dimension of Yv in this case is N+
∑
`(vi )= kN= dim(Xk) so it

is reasonable to ask for the degree of the map.

Proof. Since we are working in characteristic zero, the degree of fv is given by
the number of points in a generic fiber. By Theorem 3.7.4 the map p : Yv→ Qv

is birational, and so the generic fiber of fv is the same as the generic fiber of
h : Qv→ Xk . By the Kleiman transversality theorem, if q1, . . . , qk are generic, the
scheme-theoretic intersection

⋂k
i=1 qi Xv−1

i
is reduced and finite, and the number of

points is equal to the intersection number
⋂k

i=1[Xv−1
i
] =

⋂k
i=1[�w0v

−1
i
] in H∗(X,Z).

By Theorem 3.7.4(c–d) if the scheme-theoretic intersection
⋂k

i=1 qi Xv−1
i

is reduced
it is equal to the scheme-theoretic fiber h−1(q1, . . . , qk), proving the corollary. �

3.8. Key lemma. We now prove an important lemma which will allow us to derive
several results necessary for the proofs of Theorems I and II. The lemma itself will
also be used in the proof of Theorem I.

Lemma 3.8.1. Let v be a sequence of reduced words, L be a G-equivariant line
bundle on Yv and s ∈ H0(Yv,L)G be a nonzero G-invariant section. Then:

(a) the weight of L at the T-fixed maximum point (Section 3.5) p = pv ∈ Yv

belongs to spanZ>0
1+;

(b) the weight of L at p is zero if and only if s does not vanish at p;

(c) without supposing that L has a G-invariant section, if L is an equivariant
bundle on Yv and the weight of L at p is zero, then dim H0(Yv,L)G 6 1.



792 Ivan Dimitrov and Mike Roth

Remark. Part (c) will be used often to control the size of the G-invariant sections.

Proof. Let f◦ :Yv→X be the map from Section 3.4 expressing Yv as a Zv1×· · ·×Zvk -
bundle over X. The section s cannot vanish on any fiber of f◦ since (by G-invariance
and transitivity of G-action on X) s would vanish on all of Yv . We can thus restrict
s to get a nonzero section on the fiber Zv1 × · · ·×Zvk of f◦ over e ∈ X; this fiber
contains the maximum point p.

The formal character of the tangent space at the maximum point pi of Zvi

is 〈8v−1
i
〉; i.e., all the weights of this space are positive roots. Since the maximum

point p= p1×· · ·×pk ∈Z :=Zv1×· · ·×Zvk is the product of the maximum points of
the factors, each of the weights on the tangent space of p in Z is also a positive root.

Let mp be the maximal ideal of p in OZ,p. For every r > 0 we get a T-equivariant
restriction map

H0(Z,L|Z)→ L⊗OZ (OZ,p/m
r+1
p )= L⊗

(
OZ/mp⊕mp/m

2
p⊕ · · ·⊕mr

p/m
r+1
p
)
,

which is an injection for r sufficiently large. In particular, for sufficiently large r ,
the section s restricts to a nonzero element of L⊗OZ OZ,p/m

r+1
p . Since s is an

invariant section, this means that the zero weight is a weight of L⊗OZ (OZ,p/m
r+1
p ),

and so must appear in one of the factors L⊗OZ (m
i
p/m

i+1
p )= L⊗OZ Symi (mp/m

2
p)

for i = 0, . . . , r .
Since mp/m

2
p is dual to the tangent space at p, all weights of mp/m

2
p are negative

roots, and therefore the weights of Symi (mp/m
2
p) belong to spanZ601

+. Tensoring
with L multiplies the formal character of Symi (mp/m

2
p) by the weight of L at p.

Thus the zero weight is a weight of L⊗OZ Symi (mp/m
2
p) only if the weight of L

at p belongs to spanZ>0
1+. This proves (a).

The value of s at p is the restriction of s to the factor L⊗OZ (OZ,p/mp)= Lp. If
s does not vanish at p the weight of Lp is therefore zero. Conversely, if the weight
of Lp is zero then the weights of L⊗OZ Symi (mp/m

2
p) are nonzero for i > 1. Hence

the only possibility for the invariant section s under the restriction map is to have
nonzero restriction to L⊗OZ (OZ,p/mp)= Lp, proving (b).

Suppose that the weight of L at p is zero. If there were two linearly independent
sections s1, s2 ∈H0(Yv,L)G then some nonzero linear combination would vanish at
p contradicting (b). Hence if the weight is zero we must have dim H0(Yv,L)6 1,
giving (c). �

3.9. Applications of Lemma 3.8.1.

Theorem 3.9.1. Suppose that w1, . . . , wk , and w are elements of the Weyl group
such that

`(w)=

k∑
i=1

`(wi ) and
k⋂

i=1

[�wi ] · [Xw] 6= 0 in H∗(X,Z).
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Then:

(a) For any dominant weights µ1, . . . , µk , and µ such that the irreducible module
Vµ is a component of Vµ1⊗· · ·⊗Vµk , the weight

∑k
i=1w

−1
i µi−w

−1µ belongs
to spanZ>0

1+.

(b) If
∑k

i=1w
−1
i µi −w

−1µ= 0 then mult(Vµ,Vµ1 ⊗ · · ·⊗Vµk )= 1.

(c)
∑k

i=1w
−1
i ·0−w

−1
·0=

∑k
i=1(w

−1
k ρ−ρ)−(w−1ρ−ρ) belongs to spanZ>0

1+.

(d) If
∑k

i=1w
−1
i · 0= w

−1
· 0 then 8w =

⊔k
i=18wi .

Note that the action of the Weyl group in parts (a) and (b) is the homogeneous
action, while the action in parts (c) and (d) is the affine action.

Proof. Let vi = w
−1
i w0 for i = 1, . . . , k, vk+1 = w

−1, let vi be a reduced word
with product vi , for i = 1, . . . , k+ 1, and set v = (v1, . . . , vk+1). Then

∑
`(vi )=

(k+ 1− 1)N and so, by Corollary 3.7.5, the degree of fv : Yv→ Xk+1 is given by
the intersection number

k+1⋂
i=1

[�w0v
−1
i
] =

k⋂
i=1

[�wi ] · [Xw].

By hypothesis this intersection number is nonzero and therefore fv is surjective.
Given dominant weights µ1, . . . , µk , and µ let λi = −w0µi for i = 1, . . . , k

and λk+1 = µ. Set L to be the line bundle Lλ1 � · · · � Lλk+1 on Xk+1, so that
H0(Xk+1,L)= Vµ1 ⊗ · · ·⊗Vµk ⊗V∗µ and dim H0(Xk+1,L)G is the multiplicity of
Vµ in the tensor product Vµ1 ⊗ · · ·⊗Vµk .

Since fv is surjective, pullback induces an inclusion

H0(Yv, f ∗v L)
f ∗v
←− H0(Xk+1,L)

and, in particular, dim H0(Yv, f ∗v L)G > dim H0(Xk+1,L)G. We know, by applying
Lemma 3.8.1(a), that if f ∗v L has a nonzero G-invariant section then the weight of
f ∗v L at the maximum point pv belongs to spanZ>0

1+. This weight is

k+1∑
i=1

vi (−λi )=

k∑
i=1

(w−1
i w0)(w0µi )+w

−1(−µ)=

k∑
i=1

w−1
i µi −w

−1µ, (3.9.2)

proving (a).
If the weight in (3.9.2) is zero then dim H0(Xk+1,L)G 6 dim H0(Yv, f ∗v L)G 6 1

by Lemma 3.8.1(c), and so if Vµ is a component of Vµ1 ⊗ · · · ⊗Vµk then it is of
multiplicity at most one. The fact that Vµ actually is a component of the tensor
product is a consequence of the solution of the PRV conjecture — see Section 2.3
for a discussion. This proves (b).
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The map fv : Yv→ Xk+1 induces a natural map f ∗v KXk+1 → KYv
which is given

by a global section s of H0(Yv, ( f ∗v KXk+1)∗⊗KYv
). Since Yv and Xk+1 have the

same dimension and since fv is surjective, this section is nonzero. Because the
pullback morphism is natural, the section s is G-invariant. By Lemma 3.8.1(a) the
weight of the line bundle KYv/Xk+1 := ( f ∗v KXk+1)∗⊗KYv

at the maximum point pv

belongs to spanZ>01
+.

By (3.6.1), (2.2.2), and (2.2.3) the formal characters of the tangent spaces at pv

in Yv and qv := fv(pv) in Xk+1 are, respectively

Ch(Tpv
Yv)= 〈8w〉+ 〈1

−
〉+

k∑
i=1

〈8c
wi
〉 (3.9.3)

and

Ch(Tqv
Xk+1)=

(
〈8w〉+ 〈−8

c
w〉
)
+

k∑
i=1

(
〈8c

wi
〉+ 〈−8wi 〉

)
. (3.9.4)

A short calculation using formula (2.2.4) shows that the weight of KYv/Xk+1 at pv is∑k
i=1(w

−1
k ρ− ρ)− (w−1ρ− ρ), proving (c).

If the weight
∑k

i=1(w
−1
k ρ− ρ)− (w−1ρ− ρ) is zero then, by Lemma 3.8.1(b),

the section s is nonzero at pv . This means that fv is unramified at pv and therefore
the tangent space map TYv,p

d fv
−→TXk+1,q is an isomorphism. Hence both spaces

must have the same formal characters. Comparing the negative roots and their
multiplicities in (3.9.3) and (3.9.4) gives 1− =

(⊔k
i=1−8wi

)⊔
−8c

w which is
equivalent to 8w =

⊔k
i=18wi , proving (d). �

3.10. Relation with existing results. Part (a) of Theorem 3.9.1 is due to Berenstein
and Sjamaar [2000] . A theorem of this type was first proved by Klyachko [1998]
for GLn . This was later extended to all semisimple groups by Berenstein and
Sjamaar [2000] and by Kapovich, Leeb, and Millson [Kapovich et al. 2009]. Parts
(c) and (d) are due to Belkale and Kumar [2006]: part (c) is their Theorem 29 and
(d) is their Theorem 15, both in the case when the parabolic group P is the Borel
group B.

Part (b) is new and crucial for controlling the multiplicities of cohomological
components. The remaining statements have been included because Lemma 3.8.1
allows us to give a new, short, and unified proof of these results. In particular, we
obtain a new proof of the necessity of the inequalities determining the Littlewood–
Richardson cone. Namely, these inequalities are obtained by requiring that the
weights in Theorem 3.9.1(a) (for all w1, . . . , wk , w satisfying the conditions of the
theorem) belong to spanZ>01

+. (The proof that these inequalities are sufficient
requires a separate GIT argument.)



Cup products of line bundles and generalized PRV components 795

Relation with a construction of Kumar. Given a sequence u of simple reflections,
Kumar [1988, §1.1] defined a variety Z̃u along with a map θu from Z̃u to X2. For
any pair of words v = (v1, v2) let u = v−1

1 v2 be the word obtained by reversing v1

and concatenating it onto the left of v2. By comparing the construction of Yv and Z̃u

it is not hard to find an isomorphism Z̃u =Yv over X2 (i.e., such that θu = fv under
the isomorphism). Therefore when k = 2 the varieties produced by our construction
are the same as the ones constructed in [Kumar 1988, §1.1].

4. Proof of Theorem III

4.1. We will prove Theorem III in its symmetric form. After applying the sym-
metrization procedure from Section 2.7 (and replacing k+ 1 by k) we obtain:

Theorem 4.1.1 (symmetric form of Theorem III). Let w1, . . . , wk be elements of
the Weyl group W such that

∑
i `(wi )= N, and let λ1, . . . , λk be weights such that

wi · λi are dominant weights for i = 1, . . . , k, and
∑k

i=1 λi =−2ρ.

(a) If
⋂k

i=1[�wi ] = 1 then the cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ HN(X,KX) (4.1.2)

is surjective.

(b) If
⋂k

i=1[�wi ] = 0 then (4.1.2) is zero.

The proof of Theorem 4.1.1 is given in Section 4.3. We will use the following
common notation. For any sequence λ= (λ1, . . . , λk) of weights let Lλ be the line
bundle

Lλ := Lλ1 � · · ·�Lλk = pr∗1 Lλ1 ⊗ · · ·⊗ pr∗k Lλk

on Xk , where pri : X
k
→ X denotes projection onto the i-th factor.

4.2. Inductive lemma. Let λ = (λ1, . . . , λk) be a sequence of weights and v =

(v1, . . . , vk) a sequence of words. Let u be a sequence of words as in (3.1.1), i.e.,
u is a sequence of words obtained by dropping a simple reflection from the right of
a single member of v. The following lemma lets us propagate information about
the pullback map

HN+`(v)(Yv, f ∗v Lλ)
f ∗v
←− HN+`(v)(Xk,Lλ) (4.2.1)

on the top degree cohomology of Yv to information about an analogous pullback
map to the top degree cohomology of Yu. If v j = si1 · · · sim , so that we are dropping
sim from v j to get u j , we denote by µ the sequence

µ := (λ1, . . . , λ j−1, sim · λ j , λ j+1, . . . , λk).
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Finally, we assume that the degree of Lλ is negative on the fibers of the P1-fibration
πv,u : Yv→ Yu.

Lemma 4.2.2. Under the conditions above, the pullback map

HN+`(u)(Yu, f ∗u Lµ)
f ∗u
←− HN+`(u)(Xk,Lµ)

is (a) surjective, (b) zero, or (c) surjective on the space of G-invariants, if the
pullback map (4.2.1) has the corresponding property (a), (b), or (c).

Here “surjective on the space of G-invariants” means (in the case of Yv) that

HN+`(v)(Yv, f ∗v Lλ)G
f ∗v
←− HN+`(v)(Xk,Lλ)G

is surjective.

Proof. To reduce notation set

Mu = X j−1
×Mim ×Xk− j

and let π : Xk
→Mu be the map

π = (idX)
j−1
×πim × (idX)

k− j .

The fiber product diagram (3.1.2) relating Yv, Yu, Xk , and Mu is

Yv

fv
//

πv

��

�

Xk

π

��

Yu
h

//

σv

GG

Mu

(4.2.3)

where h = π ◦ fu and where we use πv and σv in place of πv,u and σv,u to reduce
notation.

Note that Lµ is the Demazure reflection of Lλ with respect to π . By Section 2.8
this means that we have natural isomorphisms

πv∗( f ∗v Lµ)∼= R1πv∗( f ∗v Lλ) and π∗Lµ ∼= R1π∗Lλ (4.2.4)

valid on Yu and Mu respectively. Diagram (4.2.3), the Leray spectral sequences
for Lλ and Lµ relative to π and πv, and the isomorphisms (4.2.4) then give the
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commutative diagram of cohomology groups:

HN+`(v)(Yv, f ∗v Lλ) HN+`(v)(Xk,Lλ)
f ∗v

(4.2.1)
oo

HN+`(v)−1(Yu,R1πv∗ f ∗v Lλ)

o Leray

HN+`(v)−1(Mu,R1π∗Lλ)
h∗

oo

o Leray

HN+`(v)−1(Yu, πv∗ f ∗v Lµ)

o (4.2.4)

HN+`(v)−1(Mu, π∗Lµ)
h∗

oo

o (4.2.4)

HN+`(v)−1(Yv, f ∗v Lµ)

o Leray

HN+`(v)−1(Xk,Lµ)
f ∗v

oo

o Leray

(4.2.5)

We conclude that the bottom pullback map

HN+`(v)−1(Yv, f ∗v Lµ)
f ∗v
←− HN+`(v)−1(Xk, f ∗v Lµ)

is surjective, zero, or surjective on the space of G-invariants if (4.2.1) is.
On Yv we have the exact sequence of bundles

0→ f ∗v Lµ(−Yu)→ f ∗v Lµ→ f ∗v Lµ|Yu → 0, (4.2.6)

where we consider Yu to be a divisor in Yv via the section σv. The degree of
f ∗v Lµ(−Yu) is at least −1 on the fibers of πv so the corresponding Leray spectral
sequence gives

HN+`(v)(Yv, f ∗v Lµ(−Yu)
)
= HN+`(v)(Yu, πv∗( f ∗v Lµ(−Yu))

)
= 0,

where the second cohomology group above equals zero by reason of dimension:

N+ `(v)= N+ `(u)+ 1= dim(Yu)+ 1.

The end of the long exact cohomology sequence associated to (4.2.6) is therefore

HN+`(v)−1(Yv, f ∗v Lµ)
σ ∗v
−→ HN+`(v)−1(Yu, f ∗v Lµ|Yu)→ 0. (4.2.7)

Since `(u)= `(v)−1, fu= fv ◦σv , and all maps are G-equivariant, we conclude
that the pullback map f ∗u , being the composite map

HN+`(u)(Xk,Lµ)
f ∗v
−→ HN+`(u)(Yv, f ∗v Lµ)

σ ∗v
−→ HN+`(u)(Yu, f ∗v Lµ|Yu)

= HN+`(u)(Yu, f ∗u Lµ),

is (a) surjective, (b) zero, or (c) surjective on the space of G-invariants, if the
pullback map f ∗v in (4.2.1) has the corresponding property (a), (b), or (c). �
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Remark. In part (c) of Lemma 4.2.2 we can replace the statement about G-
invariants with a statement about any isotypic component; the proof above goes
through without change. We will only need the case of G-invariants as part of the
proof of Theorem I in Section 5 below.

4.3. Proof of Theorem 4.1.1 and variation. For the rest of this section, we fix the
following notation. Letw1, . . . , wk and λ1, . . . , λk be as in Theorem 4.1.1. For each
i = 1, . . . , k set vi := w

−1
i w0 and λ′i := v

−1
i · λi . Let vi be a reduced factorization

of vi and let v = (v1, . . . , vk). Finally, set λ= (λ1, . . . , λk) and λ′ = (λ′1, . . . , λ
′

k).

Proof of Theorem 4.1.1. Since

dim(Yv)= N+
k∑

i=1

`(vi )= N+
k∑

i=1

(N− `(wi ))= kN= dim(Xk),

Corollary 3.7.5 implies that the degree of fv : Yv→ Xk is given by the intersection
number

⋂k
i=1[�wi ]. Therefore the pullback map

HkN(Yv, f ∗v Lλ′)
f ∗v
←− HkN(Xk,Lλ′)

is a surjection if
⋂k

i=1[�wi ] = 1 and is zero if
⋂k

i=1[�wi ] = 0: If
⋂k

i=1[�wi ] = 1
then fv is a birational map between the smooth varieties Yv and Xk in characteristic
zero, and so the pullback map

H j (Yv, f ∗v Lλ′)
f ∗v
←− H j (Xk,Lλ′)

is an isomorphism in all degrees, and in particular is a surjection in degree j = kN.
On the other hand, if

⋂k
i=1[�wi ] = 0 then the image Xv of fv is subvariety of

Xk of dimension strictly less than kN and therefore the pullback map f ∗v in top
cohomology, which factors through HkN(Xv,Lλ|Xv

)= 0, is the zero map.
Consider a sequence

v =: v0, v1, . . . , v(k−1)N
:=∅= (∅, . . . ,∅)

of sequences of words which reduces v to the empty sequence, and where at
each step v j+1 is obtained by dropping a simple reflection from the right of a
single member of v j . Set λ j

= (v j )−1
·λ where (by slight abuse of notation) v j is

considered as an element of Wk and the action is componentwise. Note that λ0
= λ′

and λ(k−1)N
= λ. The construction of v j and λ j implies that the degree of Lλ j is

negative on the fibers of the P1-fibration πv j ,v j+1 : Yv j → Yv j+1 .
Applying Lemma 4.2.2 to the pairs (v j , v j+1) for j = 0, . . . , (k− 1)N− 1 we

conclude that

HN(Y∅, f ∗∅Lλ)
f ∗∅
←− HN(Xk,Lλ) (4.3.1)
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is surjective if
⋂k

i=1[�wi ] = 1 and zero if
⋂k

i=1[�wi ] = 0. By construction f∅ :
Y∅=X→Xk is the diagonal embedding of X into Xk and the pullback map (4.3.1)
is the cup-product map. This proves Theorem 4.1.1 and completes the proof of
Theorem III. �

We record a statement that will be used in the proof of Theorem I below.

Proposition 4.3.2. If the pullback map

HkN(Yv, f ∗v Lλ′)
f ∗v
←− HkN(Xk,Lλ′)

is surjective on the space of G-invariants then the cup-product map (4.1.2) is
surjective.

Proof. We repeat the inductive reduction in the proof of Theorem 4.1.1 above with
part (c) of Lemma 4.2.2 in place of parts (a) and (b). As a result we conclude
that the cup-product map (4.1.2) is surjective on the space of G-invariants. Since
HN(X,KX) is the trivial G-module we conclude that (4.1.2) is surjective. �

5. Proof of Theorem I and corollaries

In this section we use Theorem III and Proposition 4.3.2 to prove Theorem I. The
proof that (1.2.1) is necessary for the surjectivity of the cup-product map appears
in Section 5.1 and the proof that (1.2.1) is sufficient appears in Section 5.3.

5.1. Proof that 8w =
⊔k

i=18wi is a necessary condition for surjectivity. We
assume the notation of Section 1.2, and set µi = wi · λi for i = 1, . . . , k, and
µ = w · λ. By assumption the weights µ1, . . . , µk , and µ are dominant. By the
Borel–Weil–Bott theorem each H`(wi )(X,Lλi )= V∗µi

and Hd(X,Lλ)= V∗µ.
Since w−1

i µi = w
−1
i ·µi −w

−1
i · 0 and w−1µi = w

−1
·µi −w

−1
· 0, we have

k∑
i=1

w−1
i µi −w

−1µ=

( k∑
i=1

w−1
i ·µi −w

−1
·µ

)
−

( k∑
i=1

w−1
i · 0−w

−1
· 0
)
.

Furthermore
∑k

i=1w
−1
i ·µi −w

−1
·µ=

∑
λi − λ= 0 and so the equation above

becomes
k∑

i=1

w−1
i µi −w

−1µ=−

( k∑
i=1

w−1
i · 0−w

−1
· 0
)
. (5.1.1)

If the cup-product map H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ Hd(X,Lλ) is

surjective, then (after dualizing) Vµ must be a component of the tensor product
Vµ1 ⊗ · · ·⊗Vµk and by Theorem III(b), the intersection

⋂k
i=1[�wi ] · [Xw] 6= 0 in

H∗(X,Z); we may therefore apply Theorem 3.9.1.
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By Theorem 3.9.1(a) the left hand side of (5.1.1) belongs to spanZ>01
+ and

by part (c) of the same theorem the right hand side belongs to spanZ601
+. We

conclude that both sides are zero and so, by Theorem 3.9.1(d), 8w =
⊔k

i=18wi .
�

Remark. In the first half of the argument above, the hypothesis that the cup-
product map is surjective was used, along with Theorem III, to conclude that Vµ is a
component of Vµ1⊗· · ·⊗Vµk and

⋂k
i=1[�wi ] · [Xw] 6= 0. If, on the other hand, we

assume the latter two conditions then the second half of the argument still applies
to give 8w =

⊔k
i=18wi . We will use this observation in Corollary 5.4.7 below.

5.2. Setup for the proof of sufficiency. For convenience, we collect some of the
consequences of condition (1.2.1) in its symmetric form which have effectively
appeared in previous arguments, and which we will use in the proof of sufficiency.

Proposition 5.2.1. Suppose that w1, . . . , wk are elements of the Weyl group such
that 1+ =

⊔k
i=18wi .

Combinatorial Consequences:

(a)
∑k

i=1w
−1
i · 0=−2ρ.

(b) Suppose that λ1, . . . , λk are weights such that
∑
λi =−2ρ, and set µi =wi ·λi

for i = 1, . . . , k. Then
∑k

i=1w
−1
i µi = 0.

Geometric Consequences: For each i = 1, . . . , k, let vi = w
−1
i w0 and let vi be a

word which is a reduced factorization of vi . We set v = (v1, . . . , vk) and construct
as usual the variety Yv and the map fv : Yv→ Xk .

Then

(c) deg( fv) 6= 0.

(d) The weight of the relative canonical bundle KYv/KXk at pv is zero.

Proof. Part (a) is immediate from the condition1+=
⊔k

i=18wi and formula (2.2.4).
Part (b) reverses the argument used to arrive at (5.1.1) in Section 5.1:

k∑
i=1

µ−1µi =

( k∑
i=1

w−1
i ·µi

)
−

( k∑
i=1

w−1
i · 0

)
=

k∑
i=1

λi − (−2ρ)= 0.

Part (c) is Corollary 3.7.5 combined with Lemma 2.6.1. Part (d) is the symmetric
version of the computation in the proof of Theorem 3.9.1(d): the weight of the
relative canonical bundle KYv/Xk at pv is

∑k
i=1w

−1
i · 0 + 2ρ, which is zero by

part (a). �
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5.3. Proof that8w=
⊔k

i=18wi is a sufficient condition for surjectivity. Consider
the symmetric version of the problem as in Section 2.7. It suffices to show the
surjectivity of a cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ HN(X,KX), (5.3.1)

wherew1, . . . , wk are elements of the Weyl group such that
∑
`(wi )=N, λ1, . . . ,λk

are weights such that wi · λi ∈ 3
+ for i = 1, . . . , k and

∑
λi = −2ρ. After this

reduction condition (1.2.1) becomes 1+ =
⊔k

i=18wi . We recall the notation from
Section 4.3: vi := w

−1
i w0, λ′i := v

−1
i · λi , vi is a reduced factorization of vi ,

v = (v1, . . . , vk), and λ′ = (λ′1, . . . , λ
′

k).
By Proposition 4.3.2, to show the surjectivity of (5.3.1) it is enough to show that

the pullback map

HkN(Yv, f ∗v Lλ′)G
f ∗v
←− HkN(Xk,Lλ′)G (5.3.2)

on the space of G-invariants is surjective. We will show that both spaces of G-
invariants are one-dimensional, and that the induced map is an isomorphism. Note
that by Proposition 5.2.1(c) deg( fv) 6= 0 and so fv is surjective.

The pullback map on top cohomology is Serre dual to the trace map:

H0(Yv, ( f ∗v Lλ′)∗⊗KYv
)=H0(Yv, f ∗v (L

∗

λ′⊗KXk )⊗KYv/Xk
) Tr fv
−−→H0(Xk,L∗λ′⊗KXk ).

Let s∈H0(Yv,KYv/Xk )G be the nonzero G-invariant section giving the map f ∗v KXk→

KYv
induced by fv. The composition

H0(Xk,L∗λ′⊗KXk )
f ∗v
−→H0(Yv, f ∗v (L

∗

λ′ ⊗KXk )
) ·s
−→H0(Yv, f ∗v (L

∗

λ′ ⊗KXk )⊗KYv/Xk
)

Tr fv
−−→ H0(Xk,L∗λ′ ⊗KXk )

of pullback, multiplication by s, and the trace map is multiplication by deg( fv),
which is nonzero. This gives us the inequality

dim H0(Xk,L∗λ′ ⊗KXk )G 6 dim H0(Yv, f ∗v (L
∗

λ′ ⊗KXk )⊗KYv/Xk
)G (5.3.3)

and shows that in order to prove that the trace map induces an isomorphism on
G-invariants it is sufficient to prove that we have equality of dimensions in (5.3.3).

Set µi =wi ·λi =w0 ·λ
′

i for i = 1, . . . , k. By the Borel–Weil–Bott Theorem we
have HkN(Xk,Lλ′)=V∗µ1

⊗· · ·⊗V∗µk
and so (by Serre duality) H0(Xk,L∗λ′⊗KXk )=

Vµ1 ⊗ · · · ⊗Vµk . Now set νi = −w0µi for i = 1, . . . , k so that Vνi = V∗µi
and let

ν = (ν1, . . . , νk). By the calculation

S(λ′i )=−λ
′

i − 2ρ =−w0 ·µi − 2ρ =−(w0µi − 2ρ)− 2ρ =−w0µi
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in each coordinate factor (as in Section 2.5), we conclude that L∗λ′ ⊗KXk = Lν .
The weight of Lν at q := fv(pv)= (v1, . . . , vk) is

−

k∑
i=1

viνi =

k∑
i=1

(w−1
i w0)(w0µi )=

k∑
i=1

w−1
i µi = 0,

where the last equality is due to Proposition 5.2.1(b). Since by Proposition 5.2.1(d)
the weight of KYv/Xk at pv is zero, the weight of f ∗v Lν ⊗KYv/Xk at pv in Yv is also
zero and hence

dim H0(Yv, f ∗v Lν ⊗KYv/Xk )G 6 1

by Lemma 3.8.1(c). On the other hand, Lemma 2.3.1 implies that

(Vµ1 ⊗ · · ·⊗Vµk )
G
6= 0

so we conclude that dim H0(Xk,Lν)G > 1. This gives us

16 dim H0(Xk,Lν)G 6 dim H0(Yv, f ∗v Lν ⊗KYv/Xk )G 6 1.

Therefore the inequality in (5.3.3) is an equality, and the cup-product map in (5.3.1)
is surjective. �

5.4. Corollaries of Theorem I and its proof.

Corollary 5.4.1. The cup-product map

H0(X,Lλ1)⊗Hd(X,Lλ2)→ Hd(X,Lλ1 ⊗Lλ2)

is surjective whenever both sides are nonzero.

Proof. If w2 is the element of the Weyl group so that w2 ·λ2 > 0 then the conditions
that λ1 is dominant and that Lλ1+λ2 has cohomology in the same degree d as Lλ2

imply that w2 · (λ1+ λ2)> 0, and so the corollary follows from Theorem I and the
obvious statement that 8w2 =8w2 t8e. �

Corollary 5.4.2 (compatibility with Leray spectral sequence). Suppose that λ1, λ2,
and λ= λ1+ λ2 are regular weights and that the cup-product map

Hd1(X,Lλ1)⊗Hd2(X,Lλ2)
∪
−→ Hd(X,Lλ)

is nonzero. Let P be any parabolic subgroup of G containing B, and

π : X→M := G/P
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be the corresponding projection. Then the cup-product map on X factors as a
composition

Hd1(X,Lλ1)⊗Hd2(X,Lλ2)
∪X

// Hd(X,Lλ)

Hd1−i (M,Ri
π∗Lλ1)⊗Hd2− j (M,R j

π∗Lλ2)

∪M

))

Hd−i− j (M,Ri+ j
π∗ Lλ)

Hd−i− j (M,Ri
π∗Lλ1 ⊗R j

π∗Lλ2)

∪π

77

of the cup product on M followed by the map induced on cohomology by the relative
cup-product map Ri

π∗Lλ1⊗R j
π∗Lλ2→Ri+ j

π∗ Lλ on the fibers of π . A similar statement
holds for the cup product of an arbitrary number of factors.

Proof. The factorization statement amounts to a numerical condition on the coho-
mology degrees of the line bundles on the fibers of π ensuring that the cup-product
map is computed by the map on E2-terms of the Leray spectral sequence. This
numerical condition is immediately implied by (1.2.1). We explain this in more
detail below.

Set L = Lλ1 � Lλ2 on X× X and consider the following factorization of the
diagonal map δX : X ↪→ X×X:

X

π

��

� � s
// X×M X �

� t
//

ψ

��
�

X×X

π×π

��

M M �
� δM

// M×M

(5.4.3)

The cup-product map then factors as

Hd(X,Lλ)
s∗
←− Hd(X×M X, t∗L)

t∗
←− Hd1(X,Lλ1)⊗Hd2(X,Lλ2)= Hd(X×X,L) (5.4.4)

and we claim that (5.4.4) induces the factorization claimed above.
By the Borel–Weil–Bott theorem applied to the fibers of π , for each of the

line bundles Lλ1 , Lλ2 , and Lλ there is precisely one degree for which the higher
direct image sheaf is nonzero. Suppose i is the degree such that Ri

π∗Lλ1 6= 0, j
is the degree such that R j

π∗Lλ2 6= 0, and k is the degree such that Rk
π∗Lλ 6= 0.

The Leray spectral sequence for the cohomology of these bundles degenerates
at the E2 term and we have the isomorphisms Hd1(X,Lλ1) = Hd1−i (M,Ri

π∗Lλ1),
Hd2(X,Lλ2)= Hd2− j (M,R j

π∗Lλ2), and Hd(X,Lλ1)= Hd−k(M,Rk
π∗Lλ).
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Since Ri+ j
π×π∗L= Ri

π∗Lλ1 �R j
π∗Lλ2 is a vector bundle on M×M, the theorem on

cohomology and base change gives us

Ri+ j
ψ∗ t∗L= δ∗M(R

i
π∗Lλ1 �R j

π∗Lλ2)= Ri
π∗Lλ1 ⊗R j

π∗Lλ2 on M,

and therefore we have Hd(X×MX, t∗L)=Hd−i− j (M,Ri
π∗Lλ1⊗R j

π∗Lλ2). The Leray
spectral sequences for L and t∗L with respect to ψ and π×π also degenerate at the
E2-terms and have nonzero terms in the same degree. The discussion in Section 2.9
implies that the map on E2-terms computes the pullback map t∗. Therefore t∗ in
(5.4.4) is equal to the map

Hd−i− j (M,Ri
π∗Lλ1 ⊗R j

π∗Lλ2)
δ∗M
←− Hd1−i (M,Ri

π∗Lλ1)⊗Hd2− j (M,R j
π∗Lλ2),

which shows that t∗ is the first part of the factorization claimed.
We now study s∗. The map s includes X as the relative diagonal of X×M X

over M. It follows that s∗ induces the relative cup-product map on the higher direct
image sheaves of t∗L and Lλ. Therefore the map associated to s∗ on the E2-terms
of the Leray spectral sequences for t∗L and Lλ is given by the relative cup-product
map

Hd−i− j (M,Ri+ j Lλ)= Hd−i− j (M,Ri+ j (Lλ1 ⊗Lλ2))
∪π
←− Hd−i− j (M,Ri

π∗Lλ1 ⊗R j
π∗Lλ2).

All that is needed to demonstrate the factorization claimed is to demonstrate the
condition k = i + j which ensures the map on the associated graded pieces in the
E2-terms agrees with the global map on the cohomology groups (see Section 2.9).

Suppose that w1, w2, and w are the elements of the Weyl group such that w1 ·λ1,
w2 · λ2, and w · λ are dominant. Then

k = #(8w ∩−1P), i = #(8w1 ∩−1P), j = #(8w2 ∩−1P),

where the symbol # indicates the cardinality of a set. The condition k = i + j
guaranteeing the factorization thus amounts to the condition

#(8w ∩−1P)= #(8w1 ∩−1P)+ #(8w2 ∩−1P). (5.4.5)

Since the original cup-product map was assumed surjective we must have 8w =
8w1 t8w2 by Theorem I; this immediately implies that (5.4.5) holds. �

Corollary 5.4.6. Suppose that w1, . . . , wk are elements of the Weyl group such that
1+=

⊔k
i=18wi , and that µ1, . . . , µk are dominant weights satisfying the condition∑k

i=1w
−1
i µi = 0. Then dim(Vµ1 ⊗ · · ·⊗Vµk )

G
= 1.

Proof. Set λi = w
−1
i · µi for i = 1, . . . , k. Then

∑
λi = −2ρ and we have a

cup-product problem as in (5.3.1). As part of the proof of Theorem I in Section 5.3
it was established that dim(Vµ1 ⊗ · · ·⊗Vµk )

G
= 1. Alternatively, the corollary is
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simply Theorem 3.9.1(b) applied in symmetric form, with Lemma 2.6.1 used to
ensure that the hypotheses of the theorem are satisfied. �

Corollary 5.4.7. Suppose that we have a cup-product map

H`(w1)(X,Lλ1)⊗ · · ·⊗H`(wk)(X,Lλk )
∪
−→ Hd(X,Lλ)

and, as above, Weyl group elements w1, . . . , wk , and w such that µi := wi · λi ,
i = 1, . . . , k, and µ :=w ·µ are dominant weights. Then if

⋂k
i=1[�wi ]·[Xw] 6= 0 the

cup-product map is surjective if and only if Vµ is a component of Vµ1 ⊗ · · ·⊗Vµk .

Proof. If Vµ is not a component of the tensor product the map is clearly not
surjective. Conversely, if Vµ is a component, the assumption on the intersection
number and the argument in Section 5.1 for the necessity of condition (1.2.1) show
that 8w =

⊔k
i=18wi , and therefore we conclude that the map is surjective by the

sufficiency of condition (1.2.1). �

The following example illustrates Corollary 5.4.7 and provides an example which
shows that condition (1.2.1) is not necessary in order to have a cup-product problem
for which both sides are nonzero.

Example 5.4.8. Let G = SL6 and w1 = w2 = s2s4s3. For any integers ai , bi > 0
(i = 1, 2) set

µi=(0, ai , 0, bi , 0) and λi=w
−1
i ·µi=(ai+1, bi+1,−4−ai−bi , ai+1, bi+1).

(The weights are written in terms of the fundamental weights of SL6.) Finally, let
w = s1s3s5s2s4s3 and set

µ= w · (λ1+ λ2)= (0, a1+ a2+ 1, 0, b1+ b2+ 1, 0) ∈3+.

We therefore get a cup-product problem:

H3(X,Lλ1)⊗H3(X,Lλ2)
∪
−→ H6(X,Lλ1+λ2).

By Theorem I, this cup product cannot be surjective, since 8w1 =8w2 ; alterna-
tively, the map cannot be surjective since Vµ is clearly not a component of Vµ1⊗Vµ2 .
The intersection number ([�w1] ∩ [�w2]) ·Xw is two.

Corollary 5.4.9. If 1+ =
⊔k

i=18wi then for any subset I⊆ {1, . . . , k} there is an
element w of the Weyl group such that 8w =

⊔
i∈I8wi .

Proof. Let λi = w
−1
i · 0 so that we get a cup-product problem as in (5.3.1). (Here

each H`(wi )(X,Lλi ) is the trivial G-module). By Theorem I and the assumption on
w1, . . . , wk this cup product is surjective. It can be factored by first taking the cup
product of any subset I ⊆ {1, . . . , k} of the factors and the resulting cup-product
problem must also be nonzero since the larger problem is. Hence by Theorem I
there is a w ∈W with w ·

(∑
i∈I λi

)
∈3+ and such that 8w =

⊔
i∈I8wi . �
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5.5. Comments. (1) Corollary 5.4.9 can also be proved independently of any of
the constructions in this paper by using a similar argument in nilpotent cohomology.
We are grateful to Olivier Mathieu for pointing this out to us.

(2) Using the result of Corollary 5.4.9 and induction, to prove Theorem I it is
sufficient to prove it in the case k = 2 of the cup product of two cohomology
groups into a third. We have chosen to develop the description of the varieties
Yv for arbitrary k partly since this is the natural generality of the construction,
partly because it makes no difference in our proofs, but also because some of the
applications (e.g., the multiplicity bounds) do not follow by induction. Note that
by the methods of this paper, even to prove the case k = 2 of the cup product it
would be necessary to consider the case of the cup product of three factors into
HN(X,KX), and hence we would need the construction of Yv for three factors.

(3) As Example 5.4.8 shows, the natural numerical condition `(w1)+`(w2)= `(w)

does not imply condition (1.2.1) even if there is a nontrivial cup-product problem
corresponding to w1, w2, and w. On the other hand, condition (5.4.5) imposes
further necessary numerical conditions for (1.2.1). Namely,

`(wP
1 )+ `(w

P
2 )= `(w

P) for every parabolic subgroup P⊇ B of G, (5.5.1)

wherewP
1 ,wP

2 ,wP denote the minimal length representatives inw1WP,w2WP,wWP.
In the case when G= SLn+1 one can show that condition (5.5.1) is sufficient for
(1.2.1). The simple inductive argument relies on the fact that if G = SLn+1 it is
possible to assign a parabolic Pα ⊃ B to every root α ∈1+ in such a way that −α
is a root of Pα but not a root of any proper parabolic subgroup of Pα containing B.
We do not know if (5.5.1) is sufficient to imply (1.2.1) for general G.

(4) Corollary 5.4.2 establishes the following factorization property: any nonzero
cup-product map on X factors as a cup product on G/P and fibers of π : X→ G/P
for all P⊃B. We know of no a priori reason why this should hold. The factorization
property is equivalent to (5.4.5) holding for all P⊃ B which is equivalent to (5.5.1).
Hence, in the case G= SLn+1 the factorization property is equivalent to (1.2.1).

6. Cohomological components and proof of Theorem II

6.1. Conditions on components of tensor products. We begin by introducing two
relevant conditions. We also recall the notion of generalized PRV component from
Section 2.3 for convenience.

Definitions 6.1.1. Suppose that µ1, . . . , µk , and µ are dominant weights.

(a) We say that Vµ is a generalized PRV component of Vµ1 ⊗ · · · ⊗Vµk if there
exist w1, . . . , wk , and w in W such that w−1µ=

∑k
i=1w

−1
i µi .
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(b) We say that Vµ is a component of stable multiplicity one of Vµ1 ⊗ · · ·⊗Vµk if
we have dim(Vmµ1 ⊗ · · ·⊗Vmµk ⊗V∗mµ)

G
= 1 for all m� 0.

(c) We say that Vµ is a cohomological component of Vµ1 ⊗ · · · ⊗ Vµk if there
exist w1, . . . , wk , and w in W such that w−1µ=

∑k
i=1w

−1
i µi and such that

8w =
⊔k

i=18wi .

Under the hypothesis that 8w =
⊔k

i=18wi , the condition w−1µ=
∑k

i=1w
−1
i µi

is equivalent to the condition w−1
·µ =

∑k
i=1w

−1
i ·µi . Therefore by Theorem I

condition (c) is equivalent to having a surjective cup-product map

H`(w1)(X,Lw−1
1 ·µ1

)⊗ · · ·⊗H`(wk)(X,Lw−1
k ·µk

)
∪
−→ H`(w)(X,Lw−1·µ)

which, after dualizing, gives an injective map

Vµ→ Vµ1 ⊗ · · ·⊗Vµk .

In other words, we obtain a construction of Vµ as a component of Vµ1 ⊗ · · ·⊗Vµk

realized through the cohomology of X.
Note that the conditions in Definitions 6.1.1 are homogeneous: if Vµ is a gener-

alized PRV component, a component of stable multiplicity one, or a cohomological
component of Vµ1 ⊗ · · · ⊗Vµk then the same is true of Vmµ as a component of
Vmµ1 ⊗ · · ·⊗Vmµk for all m > 1. This follows immediately from the definitions.

6.2. Proof of Theorem II(a) and restatement of Theorem II(b).

Proof of Theorem II(a). Every cohomological component has multiplicity one by
Theorem 3.9.1(b) (the condition on nonzero intersection holds by the nonsymmetric
version of Lemma 2.6.1). By homogeneity we conclude that homological compo-
nents are of stable multiplicity one. From Definitions 6.1.1(a, c) it is clear that every
cohomological component is a generalized PRV component. Thus every cohomo-
logical component is a generalized PRV component of stable multiplicity one. �

For the proof of part (b) it will be more convenient to work with the symmetric
form of the problem. Applying the symmetrization procedure from Section 2.7
(and replacing k+ 1 by k) we obtain the following reformulation of Theorem II(b).

Proposition 6.2.1. Let µ1, . . . , µk be dominant weights such that

dim(Vmµ1 ⊗ · · ·⊗Vmµk )
G
= 1 for m� 0

and suppose that we have elements w1, . . . , wk such that
∑
w−1

i µi = 0. Then in
either of the following two cases:

(i) at least one of µ1, . . . , µk is strictly dominant,

(ii) G is a classical simple group or product of classical simple groups,
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there exist w1, . . . , wk ∈W such that

k∑
i=1

w−1
i µi = 0 and 1+ =

k⊔
i=1

8wi . (6.2.2)

The proof of Proposition 6.2.1 will be given in Section 6.8 after some preliminary
reduction steps.

For the rest of this section we assume that we have fixed dominant weights
µ1, . . . , µk and Weyl group elements w1, . . . , wk satisfying the conditions of
Proposition 6.2.1.

6.3. Outline of the proof of Proposition 6.2.1. For i = 1, . . . , k, let Pi be the
parabolic subgroup of G such that Lµi is the pullback to X of an ample line bundle
Lµ̃i on G/Pi . Set M= G/P1× · · ·×G/Pk and L= Lµ̃1 � · · ·�Lµ̃k . The condition
that dim(Vmµ1⊗· · ·⊗Vmµk )

G
= 1 for all m� 1 implies that the GIT quotient M//G

with respect to L is a point.
If w1, . . . , wk are elements such that

∑k
i=1w

−1
i µi = 0 then by Lemma 2.11.1,

the point q = (w−1
1 , . . . , w−1

k ) is a semistable point of M with a closed orbit. Let
H⊆ G be the stabilizer subgroup of q, and Nq be the normal space to the orbit at
q . By the Luna slice theorem and the fact that the GIT quotient M//G is a point we
conclude that Sym·(Nq)

H is one-dimensional.
The explicit combinatorial formula for the weights appearing in Nq shows that a

necessary condition for a solution of (6.2.2) to exist is that there is v ∈W such that
the weights of vNq are contained in 1−. In Proposition 6.6.1 below we formulate
a condition which, together with the necessary condition above, guarantees the
existence of a solution of (6.2.2). Together these two conditions are equivalent to
the existence of a parabolic subalgebra p with reductive part Lie(H) such that the
weights of Nq are contained in p.

Finally, we use the restriction that Sym·(Nq)
H is one-dimensional to show the

existence of such a parabolic subalgebra when G is a classical group, or for any
semisimple group G under a genericity condition.

6.4. Stabilizer subgroup of a semistable T-fixed point. Let Pi be the parabolic
with roots 1Pi = {α ∈ 1 | κ(α, µi ) > 0}, and let Mi = G/Pi . The stabilizer
subgroup of the point w−1

i in Mi is w−1
i Piwi , whose roots are

1w−1
i Piwi

=
{
α ∈1 | κ(wiα,µi )> 0

}
=
{
α ∈1 | κ(α,w−1

i µi )> 0
}
. (6.4.1)

Let M=M1×· · ·×Mk and let q be the point q= (w−1
1 , . . . , w−1

k ) of M. We set H=⋂k
i=1w

−1
i Pwi to be the stabilizer subgroup of q. The condition

∑k
i=1w

−1
i µi = 0

in combination with (6.4.1) shows that the roots of H are given by

1H =
{
α ∈1 | κ(α,w−1

i µi )= 0 for i = 1, . . . , k
}
. (6.4.2)
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We conclude from (6.4.2) that H is a reductive subgroup of G. Noting that T⊆ H,
the following lemma is another immediate consequence of (6.4.2).

Lemma 6.4.3. We have H= T if and only if the span of {w−1
i µi }

k
i=1 intersects the

interior of some Weyl chamber. This happens, for instance, if any one of the weights
µi is strictly dominant.

6.5. Torus action at fixed points of M and combinatorial deductions. Let Wi =

{w ∈W | wµi = µi } ⊆W be the stabilizer subgroup of µi ; this is the Weyl group
of Pi . We will need the formula for the formal character of the tangent space of Mi

at a torus fixed point. Because of the way that the inverses of group elements enter
into our formulas we make the following convention: For any element w of W and
any i we let ws(i) and wl(i) be respectively the shortest and longest elements in the
coset Wiw. Recall also that for 8⊆1, 〈8〉 denotes the formal character

∑
α∈8 eα .

With this convention, if wi is any element of W , the formal character of the
tangent space of Mi at the torus fixed point corresponding to the coset w−1

i Wi is

Ch(Tw−1
i

Mi )= 〈8wi,s(i)〉+ 〈−8
c
wi,l(i)
〉 =

〈
{α ∈1 | κ(α,w−1

i µi ) < 0}
〉
.

The formal character of the tangent space of M at q is therefore

Ch(TqM)=
k∑

i=1

(
〈8wi,s(i)〉+ 〈−8

c
wi,l(i)
〉
)
=

k∑
i=1

〈
{α∈1 |κ(α,w−1

i µi )<0}
〉
. (6.5.1)

Note that the multiplicity of each root α in the equations above is the number of i
for which κ(α,w−1

i µi ) < 0.
If α 6∈ 1H then there is some i for which κ(α,w−1

i µi ) 6= 0 and hence, by the
condition

∑k
i=1w

−1
i µi = 0, there is some i for which κ(α,w−1

i µi )< 0, i.e., α must
appear as a weight in TqM. By looking at the positive roots of TqM we therefore
conclude that

(1+ \1+H)=
⋃
8wi,s(i) . (6.5.2)

Let Oq be the G-orbit of q in M. Since H is the stabilizer of q, the formal
character of the tangent space TqOq is

Ch(TqOq)= 〈1
+
\1+H〉+ 〈1

−
\1−H〉. (6.5.3)

If Nq = TqM/TqOq is the normal space to the orbit at q , then the union in (6.5.2)
is disjoint if and only if the formal character of Nq contains no positive root.

Let M be the subspace of g spanned by the root spaces corresponding to the roots
appearing in Nq . Comparing the multiplicities in (6.5.1) and (6.5.3) we conclude
that the roots of M are

1M =
{
α ∈1 | κ(α,w−1

i µi ) < 0 for at least two i ∈ {1, . . . , k}
}
. (6.5.4)
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Let s= Lie(H); equations (6.5.4) and (6.4.2) show that M is an s-submodule of g.
The point q is not the only torus fixed point in its orbit; for any v ∈W we can

act on the left to get the torus fixed point vq = (vw−1
1 , . . . , vw−1

k ). The weights of
the normal space Nvq to the G-orbit at vq are the result of acting on the weights of
Nq by v and are hence the roots appearing in Ch(vM).

Repeating the previous arguments with the new point vq and the new stabilizer
group vHv−1

= Stab(vq), gives the following result.

Lemma 6.5.5. For any v ∈W we have

(1+ \1+
vHv−1)=

k⊔
i=1

8(wiv−1)s(i)

if and only if vM⊆ b−.

6.6. Reduction to the existence of pM.

Proposition 6.6.1. Suppose that there exists v ∈W satisfying the conditions

(i) vM⊆ b−,

(ii) there is an element w ∈W such that 8w =1+vHv−1 .

Then there exist w1, . . . , wk ∈W such that
∑k

i=1w
−1
i µi = 0 and 1+ =

⊔k
i=18wi .

Proof. By condition (i) and Lemma 6.5.5 we have (1+\1+
vHv−1)=

⊔k
i=18(wiv−1)s(i) .

Set w̃k+1 =w, µk+1 = 0, and w̃i = (wiv
−1)s(i) for i = 1, . . . , k. Conditions (i) and

(ii) above and the original assumption about w1, . . . , wk imply
k+1∑
i=1

w̃−1
i µi = 0 and 1+ =

k+1⊔
i=1

8w̃i . (6.6.2)

Equation (6.6.2) and Theorem I show that there is a surjective cup-product map

H`(w̃1)(X,Lw̃−1
1 ·µ1

)⊗ · · ·⊗H`(w̃k+1)(X,Lw̃−1
k+1·µk+1

)
∪
−→ HN(X,KX).

Since H`(w̃k+1)(X,Lw̃−1
k+1·µk+1

) is the trivial module, if we factor the map above
by cupping the k-th and (k+1)-st factors together first, we obtain a surjective
cup-product map onto HN(X,KX) only involving the modules V∗µ1

, . . . ,V∗µk
. By

invoking Theorem I again we conclude that there are w1, . . . , wk such that
k∑

i=1

w−1
i µi = 0 and 1+ =

k⊔
i=1

8wi , (6.6.3)

proving Proposition 6.6.1. �

Remark. If there do existw1, . . . , wk satisfying the conclusion of Proposition 6.2.1
it is not hard to show that there must exist v ∈W so that (i) of Proposition 6.6.1
holds. As a consequence of our method of proof we see a posteriori that there must
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be a v so that both (i) and (ii) hold when G is a classical group or under a genericity
condition. We do not know if condition (ii) is necessary in general.

It is useful to rephrase the conditions of Proposition 6.6.1 in terms of the existence
of a particular parabolic subalgebra pM.

Lemma 6.6.4. Let s = Lie(H). Suppose that there exists a parabolic subalgebra
pM with reductive part s such that M ⊆ pM. Then conditions (i) and (ii) of
Proposition 6.6.1 hold.

Proof. Let pM be such a parabolic subalgebra. Acting by an element v ∈W we
can conjugate pM so that b− ⊆ vpM. This implies that vM⊆ b−. Since vs is the
radical of a parabolic subalgebra containing b−, if w is the longest element of the
Weyl group of vs then 8w =1+vs =1

+

vHv−1 . �

Remark. If there exists v ∈W such that condition (ii) of Proposition 6.6.1 holds
then one can show that p := b−+ vs is a parabolic subalgebra of g. If condition
(i) also holds for this v then pM := v

−1p is a parabolic subalgebra satisfying
the conditions of Lemma 6.6.4. Therefore the existence of the parabolic pM is
equivalent to the conditions in Proposition 6.6.1. Since we will not need this
direction of the equivalence we omit the justification of the first assertion.

6.7. GIT consequences of the stable multiplicity one condition. Let L be the line
bundle on M whose pullback to Xk is Lµ1�· · ·�Lµk . Then L is a G-equivariant ample
line bundle on M. By the stable multiplicity one condition we have dim(M,Lm)G=1
for all m� 1, and so the GIT quotient M//G is a point.

The weight of L at q is
∑k

i=1w
−1
i µi = 0. By Lemma 2.11.1 this means that q

is a semistable point with a closed orbit. By the Luna slice theorem [1973, théorèm
du slice étale, p. 97], Spec(Sym(N ∗q )H) and the image of q in the GIT quotient
M//G have a common étale neighborhood. Hence dim(Nq/H)= dim(M//G)= 0,
i.e., dim Sym·(N ∗q )H = 1. Passing to the level of Lie algebras and dualizing we
obtain dim Sym·(Nq)

s
= 1.

Since M is isomorphic to an s-submodule of Nq we arrive at the following
consequence of the stable multiplicity one condition:

Lemma 6.7.1. Under the hypotheses of Proposition 6.2.1 and with the notation
of Section 6.5, we have dim Sym·(M)s = 1, i.e., Sym·(M)s consists of just the
constants.

6.8. Proof of Proposition 6.2.1. By Proposition 6.6.1 and Lemma 6.6.4, to prove
Proposition 6.2.1 it is enough to show the existence of the parabolic subalgebra pM.
By Lemma 6.7.1 we may assume that dim Sym·(M)s = 1.

Proof of 6.2.1(i). If any one of the weights µ1, . . . , µk is strictly dominant, or more
generally, if the span of {w−1

i µi }
k
i=1 intersects the interior of some Weyl chamber,
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then by Lemma 6.4.3 H = T and so s = Lie(T) = t and 1+t = ∅. The condition
that dim(Sym·(M)t) = 1 is then equivalent to the condition that no nontrivial
nonnegative combination of weights of M is zero. Hence by Farkas’s lemma the
weights of M all lie strictly on one side of a hyperplane and the cone dual to the
cone they span is open. We may therefore pick a weight in the interior of the dual
cone which is not on any hyperplane of the Weyl chambers. The roots lying on the
positive side of this hyperplane give the parabolic subalgebra pM. �

Proof of Proposition 6.2.1(ii). Equation (6.4.2) shows that the roots of s are given
by the vanishing of linear forms and hence s is the reductive part of a parabolic
subalgebra. Let a be the center of s. For any ν ∈ a∗ \ {0} set

gν =
{

x ∈ g | [t, x] = ν(t)x for all t ∈ a
}
.

Following Kostant [2010], we call ν ∈ a∗\{0} an a-root if gν 6= 0. Let R be
the set of a-roots of g and S the subset of those a-roots appearing in M, so that
M=

⊕
ν∈S g

ν .
A subset R′ of R is called saturated if whenever ν ∈R′ and rν ∈R for some

r ∈Q+ then rν ∈R′ as well. It follows from (6.5.4) that S is a saturated subset of R.
As part of the main theorem of [Dimitrov and Roth 2017] we establish the

following result.2

Theorem. Let g be a classical Lie algebra, s be a subalgebra which is the reductive
part of a parabolic subalgebra of g , S be a saturated subset of the a-roots R, and
M =

⊕
ν∈S g

ν . If dim(Sym·(M))s = 1, then there exists a parabolic subalgebra
pM ⊆ g, with reductive part s, such that M⊆ pM.

Thus when G is a simple classical group or a product of simple classical groups,
the above theorem along with the previous reductions establish Proposition 6.2.1
and finish the proof of Theorem II. �

List of symbols⊔k
i=1 disjoint union

κ( · , · ) the Killing form of G
3, 3+ weight lattice and cone of dominant weights
Vµ irreducible G-module of highest weight µ
mult(Vµ,V) the multiplicity of Vµ in V
{α1, . . . , αn} base of simple roots of B
W Weyl group of g

2The proof is rather technical, and involves a case-by-case analysis of the different types, a
characterization of the desired parabolics in terms of certain linearly ordered data, and an argument
that the hypothesis dim(Sym·(M))s = 1 allows one to take a partial order constructed from S and
extend it to a linear one.
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w · λ w(λ+ ρ)− ρ, the result of the affine action of w ∈W on λ ∈3
si simple reflection along αi

Pαi the minimal parabolic subgroup of G associated to αi

PI the minimal parabolic subgroup of G associated to a set I of
simple roots

WP the Weyl group of a parabolic subgroup P⊆ G
spanZ>0

8 the set of nonnegative integer combinations of elements
of 8⊆1

u or v a word si1 · · · sim in the simple reflections of the Weyl group
u, v the element of W corresponding to u or v
vR the word obtained by dropping the rightmost reflection of v
u or v a sequence (u1, . . . , uk) or (v1, . . . , vk) of words
8w w−11− ∩1+, the inversion set of w ∈W
〈8〉

∑
α∈8 eα, the formal character of

⊕
α∈8 gα, where 8⊂1

`(w) the length of w ∈W
Lλ the line bundle on X corresponding to the B-module on which T

acts via −λ
N the dimension of X
πi the projection πi : X→ G/Pαi (a P1-fibration)
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Mass formulas for local Galois
representations and quotient singularities
II: Dualities and resolution of singularities

Melanie Matchett Wood and Takehiko Yasuda

A total mass is the weighted count of continuous homomorphisms from the
absolute Galois group of a local field to a finite group. In the preceding paper,
the authors observed that in a particular example two total masses coming from
two different weightings are dual to each other. We discuss the problem of
how generally such a duality holds and relate it to the existence of simultaneous
resolution of singularities, using the wild McKay correspondence and the Poincaré
duality for stringy invariants. We also exhibit several examples.

A correction was submitted on 1 Apr 2019 and posted online on 28 May 2019.

1. Introduction

In [Wood and Yasuda 2015] we found a close relationship between mass formulas
for local Galois representations, studied in the number theory, and stringy invariants
of singular varieties. In the present paper we discuss dualities of mass formulas in
relation with the existence of some kinds of desingularization.

For a local field K and a finite group 0, let G K = Gal(K sep/K ) be the absolute
Galois group of K and SK ,0 be the set of continuous homomorphisms G K → 0.
For a function c : SK ,0→ R, the total mass of (K , 0, c) is defined as

M(K , 0, c) := 1
]0

∑
ρ∈SK ,0

q−c(ρ),

with q the cardinality of the residue field of K . For the symmetric group Sn , fixing
the standard representation

ι : Sn ↪→ GLn(OK )⊂ GLn(K ),

with OK the integer ring of K , we can associate the Artin conductor aι(ρ) to each
continuous homomorphism ρ :G K→ Sn . According to Kedlaya [2007], Bhargava’s
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mass formula [2007] for étale extensions of a local field is expressed as

M(K , Sn, aι)=
n−1∑
m=0

P(n, n−m)q−m,

where P(n, n−m) is the number of partitions of the integer n into exactly n−m
parts. It was found in [Wood and Yasuda 2015] that for another function ρ 7→w2ι(ρ)

originating in the wild McKay correspondence [Yasuda 2013] we have

M(K , Sn,−w2ι)=

n−1∑
m=0

P(n, n−m)qm .

Here 2ι stands for the direct sum of two copies of the representation ι. The right-
hand sides of the two formulas are interchanged by replacing q with q−1: this is
what we call a duality. It is then natural to ask how generally the duality holds: what
about other groups and other representations? There exists yet another function
vτ on SK ,0 for each representation τ of 0 over OK . It was shown in [Wood and
Yasuda 2015] that if τ is a permutation representation, then we have aτ = v2τ . It
turns out that the function vτ is more appropriate when discussing dualities for
nonpermutation representations. The most basic question we would like to ask
is: when are the total masses M(K , 0, vτ ) and M(K , 0,−wτ ) dual to each other
in the same way as M(K , Sn, aι) and M(K , Sn,−w2ι)? We will observe that the
duality does not always hold, but is closely related to the existence of a simultaneous
resolution of singularities or to equisingularities.

To discuss the duality more rigorously, we need to consider total masses for all
unramified extensions of the given local field K . For each integer r > 0, let Kr be
the unramified extension of K of degree r . For a representation τ : 0→GLd(OK ),
we can naturally generalize functions vτ and wτ to ones on SKr ,0, which we
continue to denote by the same symbols. We then regard total masses M(Kr , 0, vτ )

and M(Kr , 0,−wτ ) as functions in the variable r ∈ N. When they belong to a
certain class of nice functions (which we call admissible), we can define their dual
functions D(M(Kr , 0, vτ )) and D(M(Kr , 0,−wτ )) in such a way that the dual of
the function qr is q−r . A duality which we are interested in is now expressed by
the equality

D(M(Kr , 0, vτ ))= M(Kr , 0,−wτ ). (1-1)

We call it the strong duality.
It is the wild McKay correspondence which relates total masses to singularities.

Given a representation τ : 0 → GLd(OK ), we have the associated 0-action on
the affine space Ad

OK
and the quotient scheme X := Ad

OK
/0, which is a normal

Q-Gorenstein variety over OK . In general, for a normal Q-Gorenstein variety Y
over OK , we can define the stringy point count ]st(Y ) as a volume of the OK -point
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set Y (OK ) (see [Yasuda 2014b]). This is an analogue of the stringy E-function
defined in [Batyrev and Dais 1996; Batyrev 1998] and is a generalization of the
number of k-points on a smooth OK -variety. For a k-point y ∈ Y (k), we can
similarly define the stringy point count along {y} (or the stringy weight of y),
denoted by ]st(Y )y , so that we have

]st(Y )=
∑

y∈Y (k)

]st(Y )y .

Yasuda [2014b] proved that if the representation τ is faithful and the morphism
Ad
OK
→ X is étale in codimension one, then

]st(X)= M(K , 0, vτ )qd and ]st(X)o = M(K , 0,−wτ ),

where o is the origin of X (k). This is a version of the wild McKay correspondence
discussed in [Yasuda 2013; 2014a; 2016; Wood and Yasuda 2015]. Special cases
were previously proved in [Yasuda 2014a; Wood and Yasuda 2015]. If X has a nice
resolution, then ]st(X) and ]st(X)o are explicitly computed in terms of resolution
data. Using it, we can deduce a few properties of the functions M(Kr , 0, vτ ) and
M(Kr , 0,−wτ ): obtained properties depend on what sort of resolution exists.

Remark 1.1. The assumption that the morphism Ad
OK
→ X is étale in codimension

one is just for notational simplicity. We may drop this assumption by considering
the pair of X and a Q-divisor on it rather than the variety X itself.

Let us think of X as a family of singular varieties over SpecOK . If X admits a
kind of simultaneous resolution, then

]st(X)− ]st(X)o
qr − 1

satisfies a certain self-duality, which can be understood as the Poincaré duality of
stringy invariants proved in [Batyrev and Dais 1996; Batyrev 1998] over complex
numbers. Using the wild McKay correspondence, we can transform this duality
into the form:

M(Kr , 0, vτ ) · qrd
−M(Kr , 0,−wτ )

= D(M(Kr , 0,−wτ )) · qrd
−D(M(Kr , 0, vτ )). (1-2)

We call it the weak duality between M(Kr , 0, vτ ) and M(Kr , 0,−wτ ), which is
indeed weaker than the strong duality (1-1).

There are three possibilities: both dualities hold, both dualities fail, and the
weak one holds but the strong one does not. Examples we compute show that each
possibility indeed occurs. In the tame case, the strong duality holds. For permutation
representations, the weak duality holds in all examples we compute, but the strong
duality does not generally hold. When OK = Fq [[t]] and the given representation τ
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is defined over Fq , the strong duality holds in all computed examples. However,
when the representation is not defined over Fq , then the weak duality tends to fail.
These examples suggest that we may think of the two dualities as a test of how
equisingular the family X is.

In particular, when OK = Fq [[t]] and τ is defined over Fq , the associated quotient
scheme X = Ad

Fq [[t]] would be equisingular in any reasonable sense. If there exists a
nice resolution of the Fq -variety X⊗OK Fq , we obtain an equally nice simultaneous
resolution of X just by base change. Therefore, if one believes that there exists as
nice a resolution in positive characteristic as in characteristic zero, then at least
the weak duality (1-2) would hold for such τ . If, on the contrary, one finds an
example such that weak duality fails, this would give an example of an Fq -variety
not admitting any nice resolution. However, every example we have computed
satisfies strong duality.

The study in this paper thus gives rise to interesting open problems related to
dualities and equisingularities and their interaction (see Questions 4.7, 4.8 and 5.2,
and Section 6). Further studies are required.

The paper is organized as follows. In Section 2, we define admissible functions
and their duals. In Section 3, we discuss properties of stringy point counts. In
Section 4, we define total masses and discuss how the wild McKay correspondence
relates dualities of total masses with equisingularities. In Section 5, we exhibit
several examples. Section 6 contains concluding remarks.

Convention and notation. We denote the set of positive integers by N. A local
field means a finite extension of either Qp or Fp((t)) for a prime number p. For
a local field K , we denote its integer ring by OK and its residue field by k. We
denote the characteristic of k by p and the cardinality of k by q. For r ∈ N, we
denote the unramified extension of K of degree r by Kr and its residue field (that
is, the extension of k of degree r) by kr . For a variety X defined over either OK

or k, we put

]X := ]X (k),

the cardinality of k-points of X . More generally, for r ∈ N, we put

]r X := ]X (kr ).

2. Admissible functions and their duals

In this section, we set the foundation to discuss dualities of total masses and stringy
point counts by introducing admissible functions.
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Definition 2.1. We call a function f : N→ C admissible if there exist numbers
0 6= c ∈Q, ni ∈ Z and αi ∈ C (1≤ i ≤ m) such that for every r ∈ N,

f (r)= 1
qcr−1

l∑
i=1

niα
r
i .

We denote the set of admissible functions by AF. For an admissible function f (r)
as above, we define its dual function D f : N→ C by

(D f )(r) := 1
q−cr−1

l∑
i=1

niα
−r
i .

It is easy to see that the set of admissible functions is closed under addition and
multiplication, thus AF has a natural ring structure. For f ∈AF, the dual D f is also
an admissible function. Therefore D gives an involution of the set AF. Moreover it
is easily checked that D : AF→ AF is a ring isomorphism.

A typical admissible function is a rational function in q1/n for some n ∈ N with
a denominator of the form qcr

− 1. In that case, the dual function is obtained just
by substituting q−1 for q. Another example is given as follows: let k = Fq and
kr := Fqr . For a k-variety X the function

r 7→ ]r X := ]X (kr )

is admissible from the Grothendieck–Lefschetz trace formula.

Lemma 2.2. The dual function D f does not depend on the choice of the expression
of f (r) as 1/(qcr

− 1)
∑l

i=1 niα
r
i .

Proof. Let
1

qdr−1

l ′∑
j=1

m jβ
r
j

be another such expression of f (r). For every r ∈ N, we have

(qdr
− 1) ·

l∑
i=1

niα
r
i = (q

cr
− 1) ·

l ′∑
j=1

m jβ
r
j .

It suffices to show that for every r ∈ N,

(q−dr
− 1) ·

l∑
i=1

niα
−r
i = (q

−cr
− 1) ·

l ′∑
j=1

m jβ
−r
j .

This follows from the following claim:
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Claim 2.3. Suppose that for every r , we have

l∑
i=1

niα
r
i =

l ′∑
j=1

m jβ
r
j .

Suppose also that αi , ni , βj and m j are nonzero, that α1, . . . , αl are distinct, and so
are β1, . . . , βl ′ . Then we have l = l ′, αi = βi and ni = mi , up to permutation.

In turn, this claim follows from:

Claim 2.4. Suppose that α1, . . . , αl are distinct nonzero complex numbers and that
for every r ,

l∑
i=1

niα
r
i = 0.

Then ni = 0 for every i .

The last claim follows from the regularity of the Vandermonde matrix

(αr
i )1≤i≤l, 0≤r≤l−1. �

For a smooth proper k-variety X of pure dimension d, the Poincaré duality for
the l-adic cohomology shows that the function r 7→ ]r X satisfies

]r X = qdr
·D(]r X).

3. Stringy point counts

Stringy point counts. Let K be a local field, that is, a finite extension of either
Qp or Fp((t)). We denote its residue field by k and its integer ring by OK . An
OK -variety means an integral separated flat OK -scheme of finite type such that
there exists an open dense subscheme U ⊂ X which is smooth over OK . For an
OK -variety X , we denote by Xk the closed fiber X ⊗OK k and by X K the generic
fiber X ⊗OK K . For a constructible subset C ⊂ Xk , we let X (OK )C be the set of
OK -points SpecOK → X sending the closed point into C .

Suppose now that X is normal. From [Kollár 2013, Definition 1.5], X has a
canonical sheaf ωX/OK . If d is the relative dimension of X over OK , then ωX/OK

coincides with �d
X/OK

=
∧d

�X/OK on the OK -smooth locus of X . The canonical
divisor K X = K X/OK is defined as a divisor such that ωX/OK =OX (K X ), which is
determined up to linear equivalence. Let us suppose also that X is Q-Gorenstein,
that is, K X is Q-Cartier. Then, for a constructible subset C ⊂ Xk , we can define
the stringy point count along C ,

]st(X)C ∈ R≥0 ∪ {∞},
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as a certain p-adic volume of X (OK )C . For details, see [Yasuda 2014b]. However,
what is important for our purpose is not the definition but the explicit formula in
the next subsection.

For r ∈ N, let Kr be the unramified extension of K of degree r and let kr be
its residue field. We then define ]r

st(X)C to be the stringy point count X ⊗OK OKr

along the preimage of C in (X ⊗OK OKr )⊗OKr
kr = X ⊗OK kr . We often regard

]r
st(X)C as a function in r . When X is smooth over OK , then ]r

st(X)C is equal to
the number of kr -points of X contained in C .

An explicit formula and the Poincaré duality. Let X be a normal Q-Gorenstein
variety over either OK or k. For a proper birational morphism f : Y → X with Y
normal, the relative canonical divisor

KY/X := KY − f ∗K X

is uniquely determined as a Q-divisor on Y supported in the exceptional locus of f .
We are especially interested in the case where Y is regular and KY/X is a simple
normal crossing divisor, a notion that we define on regular OK -varieties as follows.

Definition 3.1. Let Y be a regular variety over OK and E ⊂ Y a reduced closed
subscheme of pure codimension one. We call E a simple normal crossing divisor if

• for every irreducible component E0 of E and for every closed point x ∈ E0

where Y is smooth over OK , the completion of E0 at x is irreducible, and

• for every closed point x ∈ Y where Y is smooth over OK , the support of E is,
in a certain Zariski neighborhood, defined by a product yi1 · · · yim for a regular
system of parameters y0 =$, y1, . . . , yd ∈ÔY,y with $ a uniformizer of K
and 0≤ i1 < · · ·< im ≤ d.

We call a Q-divisor on Y a simple normal crossing divisor if its support is one.

The reason why we look only at closed points where Y is OK -smooth is that
there is no OK -point passing through a closed point where Y is not OK -smooth,
and hence such a point is irrelevant to stringy point counts.

Definition 3.2. Let f : Y → X be a proper birational morphism of varieties over
either OK or k such that X is normal and Q-Gorenstein:

• We call f a resolution if Y is regular.

• We call f a WL (weak log) resolution if f is a resolution and the support of
KY/X is simple normal crossing.

• When f is defined over OK , we call f an SWL (simultaneous weak log)
resolution if f is a WL resolution and Y is smooth over OK or k.
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Remark 3.3. The word weak indicates that we look only at the support of KY/X

rather than the whole exceptional locus. In particular, every resolution Y → X with
KY/X = 0 is a WL resolution, whatever the exceptional locus is.

Remark 3.4. We cannot usually expect that an SWL resolution exists, unless X is
thought of as an equisingular family over OK in some sense. If OK = k[[t]] and
if X = X0 ⊗k k[[t]] for some k-variety X0, then X would be equisingular in any
reasonable sense. In this situation, an SWL resolution of X exists if and only if a
WL resolution of X0 exists.

For a normal Q-Gorenstein OK -variety X and a WL resolution f : Y → X , we
can uniquely decompose KY/X as

KY/X =

l∑
h=1

ah Ah +

m∑
i=1

bi Bi +

n∑
j=1

cj C j , (3-1)

where all the Ah , Bi , C j are prime divisors on Y , the coefficients ah , bi , cj are
nonzero rational numbers, every Ah is contained in Xk and Y is OK -smooth at the
generic point of Ah , every Bi is contained in Xk and Y is not OK -smooth at the
generic point of Bi , and every C j dominates SpecOK . We denote by A◦h the locus
in Ah where Y is OK -smooth. For a subset J ⊂ {1, . . . , n}, we define

C◦J :=
⋂
j∈J

C j

∖⋃
j /∈J

C j .

For a constructible subset W of a k-variety Z , let ]r (W ) denote the number of
kr -points of W .

Proposition 3.5 (An explicit formula, [Yasuda 2014b]). Let f : Y → X be a WL
resolution of a normal Q-Gorenstein OK -variety X and write KY/X as in (3-1). Let
Ysm be the OK -smooth locus of Y :

(1) We have ]r
st(X)C <∞ for all r ∈N if and only if cj >−1 for every j such that

C j ∩ f −1(C)∩ Ysm 6=∅.

(2) If the two equivalent conditions of (1) hold, then

]r
st(X)C =

l∑
h=1

q−rah
∑

J⊂{1,...,n}

]r ( f −1(C)∩ A◦h ∩C◦J )
∏
j∈J

qr
− 1

qr(1+cj )− 1
.

Proof. In [Yasuda 2014b] it was proved that ]st(X)C is equal to ]st(Y,−KY/X ) f −1(C),
the stringy point count of the pair (Y,−KY/X ) along f −1(C). The proposition
follows from the explicit formula for the stringy point count of a pair with a simple
normal crossing divisor in the same paper. �
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In particular, if K has characteristic zero and if the generic fiber X K has only
log terminal singularities (for instance, quotient singularities), then ]r (X)C <∞
for every r and C . The following is a direct consequence of the proposition.

Corollary 3.6. Suppose that X is Q-Gorenstein, that there exists a WL resolution
f : Y → X and that ]r

st(X)C <∞ for every r > 0. Then the function ]r
st(X)C in the

variable r is admissible.

The following result was proved by Batyrev–Dais [1996] and Batyrev [1998] in
a slightly different setting.

Corollary 3.7 (The Poincaré duality). Let X be a d-dimensional proper normal
Q-Gorenstein OK -variety. Suppose that there exists an SWL resolution f : Y → X
and that ]r

st(X) <∞ for every r ∈ N. We then have

]r
st(X)= D(]r

st(X)) · q
dr .

Proof. We follow arguments in the proof of [Batyrev 1998, Theorem 3.7]. Since
f is an SWL resolution, if we write KY/X as in (3-1) then the terms

∑
ah Ah and∑

bi Bi do not appear. Therefore Proposition 3.5 reads

]r
st(X)=

∑
J⊂{1,...,n}

]r (C◦J )
∏
j∈J

qr
− 1

qr(1+cj )− 1
.

Putting
CJ :=

⋂
j∈J

C j ,

we have CJ :=
⊔

J ′⊃J C◦J ′ and ]r (CJ )=
∑

J ′⊃J ]
r (C◦J ′). From this and the inclusion-

exclusion principle (or the Möbius inversion formula see, for instance, [Stanley
1997]), we deduce

]r (C◦J )=
∑
J ′⊃J

(−1)]J ′−]J]r (CJ ′).

Hence

]r
st(X)=

∑
J⊂{1,...,n}

( ∑
J ′⊃J

(−1)]J ′−]J]r (CJ ′)

)∏
j∈J

qr
− 1

qr(1+cj )− 1

=

∑
J⊂{1,...,n}

]r (CJ )
∏
j∈J

(
qr
− 1

qr(1+cj )− 1
− 1

)

=

∑
J⊂{1,...,n}

]r (CJ )
∏
j∈J

(
qr
− qr(1+cj )

qr(1+cj )− 1

)
.

Now we have

D

(
qr
− qr(1+cj )

qr(1+cj )− 1

)
=

q−r
− qr(−1−cj )

qr(−1−cj )− 1
=

qr
− qr(1+cj )

qr(1+cj )− 1
· q−r .
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Since ]r (CJ ) = ]
r (CJ ⊗K k) and CJ ⊗K k are proper smooth k-varieties of pure

dimension d − ]J , the Poincaré duality for the l-adic cohomology gives

D(]r (CJ ))= ]
r (CJ ) · qr(]J−d).

Since D : AF→ AF is a ring homomorphism, the corollary follows. �

Set-theoretically free Gm-actions.

Definition 3.8. An action of the group scheme Gm = Gm,k = Spec k[t, t−1
] on a

k-variety Z is said to be set-theoretically free if for every field extension k ′/k and
every point x ∈ Z(k ′), the stabilizer subgroup scheme Stab(x)⊂ Gm,k′ consists of
a single point.

A set-theoretically free Gm-action naturally appears as the Gm-action on the
quotient variety (Ad

k /0)\{o} with the origin o removed for a linear action of a finite
group 0 on an affine space Ad

k . In general, the Gm-action may have nonreduced
stabilizer subgroups and not be free. See [Yasuda 2014a] for such an example. If
X is the quotient variety Z/Gm for a set-theoretically free Gm-action on a smooth
variety Z and if X is proper, then the function ]r X satisfies the same Poincaré
duality as a smooth proper variety does. Note that X is not necessarily smooth
because of nonreduced stabilizers. To prove the duality, we need to use Artin stacks.

Based on [Olsson 2015; Laszlo and Olsson 2008a; 2008b], Sun [2012] defined
étale cohomology groups H i (X ⊗k k,Ql) and H i

c (X ⊗k k,Ql) for Artin stacks X
of finite type over k and a prime number l 6= p. For r ∈ N, we define

]r (X ) :=
∑

i

(−1)i Tr(Fr
|H i

c (X ⊗k k,Ql))

with Fr the r -iterated Frobenius action. This is a generalization of ]r X = ]X (kr )

for a k-variety X .

Proposition 3.9. Let X be an Artin stack of finite type over k with finite diagonal,
and X its coarse moduli space. Then we have

]r (X )= ]r (X ).

Moreover, if X is smooth and proper of pure dimension d over k, then

]r (X )= D(]r (X )) · qrd .

Proof. In the proof of [Sun 2012, Proposition 7.3.2], Sun proved that

H i
c (X ⊗k k,Ql)= H i

c (X ⊗k k,Ql)

and that if X is smooth and proper, then we have the Poincaré duality,

H i (X ⊗k k,Ql)
∨
= H 2d−i (X ⊗k k,Ql)⊗Ql(d).
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The proposition is a direct consequence of these results. �

Let Z be a k-variety endowed with a set-theoretically free Gm-action. Then the
quotient stack W := [Z/Gm] is an Artin stack with finite diagonal and hence admits
a coarse moduli space, which we write as W = Z/Gm .

Proposition 3.10. We have

]r (W)= ]r (W )=
]r (Z)
qr − 1

.

Proof. The left equality was proved in the last proposition. We show the right
equality. For every field extension k ′/k and every point x ∈ Z(k ′), we have

Stab(x)= Spec k ′[t, t−1
]/(t pa

− 1)

for some nonnegative integer a. Let U ⊂ Z be the locus where this number a takes
the minimum value, and let U ⊂W be its image. The algebraic spaces U and U
are open dense subspaces of Z and W respectively. If we put

H := Spec k[t, t−1
]/(t pa

− 1),

then the given set-theoretically free Gm-action on U induces a free action of the
quotient group scheme Gm/H , which is isomorphic to Gm , on U . This action
makes the projection U→U a Gm-torsor. From Hilbert’s Theorem 90 [Milne 1980,
p. 124], every Gm-torsor is Zariski locally trivial, hence

]r (U )= (qr
− 1) · ]r (U ).

It is now easy to show ]r (Z)= (qr
− 1) · ]r (W ) by induction. �

Definition 3.11. Let X be an OK -variety with a Gm,OK -action. We suppose that
the induced Gm,k-action on Xk is set-theoretically free. For the quotient stack
[X/Gm,OK ], we put

]r
st([X/Gm,OK ]) :=

]r
st(X)

qr − 1
.

Definition 3.12. For a normal Q-Gorenstein OK -variety X endowed with a Gm,OK -
action, we call a resolution f : Y → X an ESWL (equivariant simultaneous weak
log) resolution if f is an SWL resolution and Gm,OK -equivariant (that is, Y also
has a Gm,OK -action so that f is Gm,OK -equivariant).

Proposition 3.13. Let X be a normal Q-Gorenstein OK -variety X endowed with a
Gm,OK -action. Suppose that the induced action of Gm,k on Xk is set-theoretically
free and the quotient stack [Xk/Gm,k] is proper over k. Suppose also that there
exists an ESWL resolution f : Y → X and that ]r

st(X) <∞ for all r . Then

]r
st([X/Gm,OK ])= D(]r

st([X/Gm,OK ])) · q
r(d−1)
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with d the dimension of X over OK .

Proof. From Proposition 3.5, if we write KY/X =
∑n

j=1 cj C j , then we obtain

]r
st([X/Gm,OK ])=

∑
J⊂{1,...,n}

]r (C◦J )
qr − 1

∏
i∈J

qr
− 1

qr(1+cj )− 1

=

∑
J⊂{1,...,n}

]r (CJ )

qr − 1

∏
j∈J

(
qr
− qr(1+cj )

qr(1+cj )− 1

)
as in the proof of Corollary 3.7. Each CJ ∩ Yk is stable under the Gm,k-action
and the action on CJ ∩ Yk is set-theoretically free. Hence [(CJ ∩ Yk)/Gm,k] is a
smooth proper Artin k-stack of dimension d − 1− ]J with finite diagonal. From
Proposition 3.9,

]r (CJ )

qr − 1
= D

(
]r (CJ )

qr − 1

)
· qr(d−1−]J ).

Following the proof of Corollary 3.7 we obtain the result. �

4. Total masses of local Galois representations

Total masses. Let K be a local field and G K = Gal(K sep/K ) its absolute Galois
group. For a finite group 0, we define SK ,0 to be the set of continuous homomor-
phisms G K → 0. To each representation τ : 0→ GLd(OK ), we can associate,
among others, three functions SK ,0→ R denoted by aτ , vτ and wτ .

The first one, aτ , is called the Artin conductor. For ρ ∈ SK ,0 , let H be the image
of ρ and L/K the associated Galois extension, having H as its Galois group. The
Galois group H has the filtration by ramification subgroups with lower numbering

H ⊃ H0 ⊃ H1 ⊃ · · · ,

(see [Serre 1979]). We define

aτ (ρ) :=
∞∑

i=0

1
(H0 : Hi )

codim (K d)Hi .

The second function vτ is defined as follows. For ρ ∈ SK ,0 let Spec M→Spec K
be the corresponding étale 0-torsor and OM the integer ring of M . Note that the
spectrum of the extension L mentioned above is a connected component of Spec M .
Then the free OM -module O⊕d

M has two (left) 0-actions: firstly the action induced
from the map

0 τ
−→GLd(OK )⊂ GLd(OM)

and secondly the diagonal action induced from the given 0-action on OM . We
define the associated tuning submodule 4⊂O⊗d

M to be the subset of those element
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on which the two actions coincide. It turns out that 4 is a free OK -module of
rank d . We define

vτ (ρ) :=
1
]0
· length

(
O⊕d

M

OM ·4

)
.

Note that we may also use OL and the subgroup H = Im(ρ) in the definition of vτ
instead of OM and 0.

The last function wτ is called the weight function. Let ρ ∈ SK ,0, M and 4 ⊂
O⊕d

M be as above. We identify 4 with the subgroup of 0-equivariant maps of
HomOK (O

⊕d
K ,OM) = O⊕d

M . For an OK -basis φ1, . . . , φd of 4, we define an OK -
algebra homomorphism u∗ :OK [x1, . . . , xd ] →OM [y1, . . . , yd ] by

u∗(xi )=

n∑
j=1

φj (xi )yj .

Let u :Ad
OM
→Ad

OK
be the corresponding morphism of schemes and o :Spec k ↪→Ad

OK

the k-point at the origin. We define

wτ (ρ) := dim u−1(o)− vτ (ρ).

Remark 4.1. Our definition of wτ follows the one in [Yasuda 2014b] and is slightly
different from the one in the earlier paper [Wood and Yasuda 2015]. Let us consider
the left 0-action on Ad

OK
induced from the one on OK [x1, . . . , xd ]. To be precise, an

element γ ∈ 0 gives the automorphism of Ad
OK

corresponding to the automorphism
on OK [x1, . . . , xd ] given by the inverse γ−1 of γ . In [Wood and Yasuda 2015] we
defined

wτ (ρ) := codim((Ad
k )

H0,Ad
k )− vτ (ρ),

where H0 is the zeroth ramification subgroup of H , that is, the inertia subgroup.
However, as proved in [Yasuda 2014b], the two definitions coincide in the following
three cases with which we are mainly concerned:

(1) The order of the given group 0 is invertible in k.

(2) The given representation τ is a permutation representation.

(3) The given local field K has positive characteristic, and hence K = k((t)), and
the image of τ is contained in GLd(k).

Definition 4.2. For a function c : SK ,0→R, we define the total mass of (K , 0, c) as

M(K , 0, c) := 1
]0
·

∑
ρ:∈SK ,0

q−c(ρ)
∈ R≥0 ∪ {∞}.

For r ∈ N, let Kr/K be the unramified extension of degree r . We continue to
denote the induced representations 0 τ

−→GLn(OK ) ↪→ GLn(OKr ) by τ . Then we
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can consider total masses M(Kr , 0, aτ ), M(Kr , 0, vτ ) and M(Kr , 0,−wτ ), and
regard them as functions in r .

Kedlaya studied total masses for c= aτ and used them to interpret and generalize
the mass formula of Bhargava [2007]. Wood [2008] studied total masses for different
choices of c. In the context of the wild McKay correspondence, explained below,
functions vτ and wτ occur. For permutation representations, functions aτ and vτ
are related as follows.

Lemma 4.3 [Wood and Yasuda 2015]. If τ is a permutation representation, then

2vτ = vτ⊕τ = aτ .

The wild McKay correspondence. A representation τ : 0 → GLd(OK ) defines
0-actions on the polynomial ring OK [x1, . . . , xd ] as above. Let X be the quotient
variety Ad

OK
/0 = SpecOK [x1, . . . , xd ]

0, which is a normal Q-Gorenstein OK -
variety. The following theorem, which we call the wild McKay correspondence,
connects total masses and stringy point counts. This was proved in [Yasuda 2014a;
Wood and Yasuda 2015] for special cases and in [Yasuda 2014b] in full generality.

Theorem 4.4 (The wild McKay correspondence). Suppose that the representation τ
is faithful and the quotient morphism Ad

OK
→ X is étale in codimension one. We have

]r
st(X)= M(Kr , 0, vτ ) · qdr and ]r

st(X)o = M(Kr , 0,−wτ ).

The next corollary is a direct consequence of this theorem and Proposition 3.5.

Corollary 4.5. If X admits a WL resolution and if M(Kr , 0, vτ ) < ∞ (resp.
M(Kr , 0,−wτ ) < ∞) for every r ∈ N, then the function M(Kr , 0, vτ ) (resp.
M(Kr , 0,−wτ )) is admissible.

Dualities of total masses. To discuss dualities, let us assume that both functions
M(Kr , 0, vτ ) and M(Kr , 0,−wτ ) have finite values for all r and are admissible.
The quotient variety X associated to a faithful representation τ :0→GLd(OK ) has a
natural Gm,OK -action. Let X∗ be the complement of the zero section SpecOK ↪→ X .
The Gm,k-action on X∗k is set-theoretically free. By definition, we have

]r
st([X

∗/Gm,OK ])=
]r

st(X)− ]
r
st(X)o

qr − 1
.

If there exists an ESWL resolution Y → X∗, then from Proposition 3.13, we have

]r
st(X)− ]

r
st(X)o

qr − 1
= D

(
]r

st(X)− ]
r
st(X)o

qr − 1

)
· qr(d−1). (4-1)

Remark 4.6. When 0 = Z/pZ ⊂ GLd(k) with k a perfect field of characteristic
p> 0, the motivic version of (4-1) was checked in [Yasuda 2014a, Proposition 6.36],
not by using a resolution but by an explicit formula for motivic total masses.
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If Ad
OK
→ X is étale in codimension one, then the wild McKay correspondence,

Theorem 4.4, shows that the last equality is equivalent to:

M(Kr , 0, vτ ) · qrd
−M(Kr , 0,−wτ )

= D(M(Kr , 0,−wτ )) · qrd
−D(M(Kr , 0, vτ )). (4-2)

We call this the weak duality. The equality may be regarded as a constraint imposed
by the existence of an ESWL resolution of X∗. If this duality fails for some
representation τ , then the associated X∗ would have no ESWL resolution. In
particular, it is interesting to ask the following question.

Question 4.7. Suppose that K has positive characteristic so that K = k((t)), that
τ : 0→ GLd(OK ) is a faithful representation factoring through GLn(k) and that
the quotient morphism Ad

OK
→ Ad

OK
/0 is étale in codimension one. Then, does

the weak duality always hold?

If this has the negative answer and some representation τ does not satisfy (4-2),
then the associated k-variety Xk = Ad

k /0 does not admit any Gm,k-equivariant
WL resolution.

In some examples, even a stronger equality,

D(M(Kr , 0,−wτ ))= M(Kr , 0, vτ ), (4-3)

holds: we call this the strong duality. A special case of this was the duality involving
Bhargava’s formula and the Hilbert scheme of points observed in [Wood and Yasuda
2015] (see Section 5). Actually, as far as the authors know, even the strong duality
holds in all examples satisfying the assumptions of Question 4.7. It is thus natural
to ask:

Question 4.8. With the same assumptions as in Question 4.7, does the strong
duality always hold?

5. Examples

The tame case.We first consider the tame case. Suppose p -]0. Let τ :0→GLd(OK)

be a representation. Then SK ,0 is a finite set and every ρ ∈ SK ,0 factors through
the Galois group G tame

K of the maximal tamely ramified extension K tame/K . It is
topologically generated by two elements a and b with one relation bab−1

= aq (see
[Neukirch et al. 2008, p. 410]). Here a is the topological generator of the inertia
subgroup of G tame

K . Therefore SK ,0 is in one-to-one correspondence with

{(g, h) ∈ 02
| hgh−1

= gq
}.

The last set admits the involution (g, h) 7→ (g−1, h). Let ι be the corresponding
involution of SK ,0.
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Lemma 5.1. For ρ ∈ SK ,0, we have vτ (ι(ρ))= wτ (ρ).

Proof. Let K ′ be the completion of the maximal unramified extension of K . Both ρ
and ι(ρ) define the same cyclic extension L/K ′ of order l := ord(g) with (g, h) ∈
02 corresponding to ρ. We can regard the element a ∈ G tame

K as a generator of
Gal(L/K ′). Let $ ∈ L be a uniformizer and ζ ∈ K ′ an l-th root of unity such that
a($)= ζ$ .

If ζ a1, . . . , ζ ad with 0 ≤ ai < l are the eigenvalues of g ∈ 0 ⊂ GLd(K ′), then,
from [Wood and Yasuda 2015, Lemma 4.3], we have

vτ (ρ)=
1
l

l∑
i=1

ai .

In the tame case, our definition of wτ coincides with the one in [Wood and
Yasuda 2015] (see Remark 4.1). Therefore

wτ (ρ)= ]{i | ai 6= 0}− vτ (ρ)=
1
l

∑
ai 6=0

l − ai = vτ (ι(ρ)). �

From the lemma,

M(K , 0,−wτ )=
1
]0

∑
ρ∈SK ,γ

qwτ (ρ)

=
1
]0

∑
ρ∈SK ,γ

qvτ (ι(ρ))

=
1
]0

∑
ρ∈SK ,γ

qvτ (ρ)

= D(M(K , 0, vτ )).

The strong duality thus holds in the tame case. Moreover it is a term-wise duality:
qwτ (ρ) and qvτ (ι(ρ)) are dual to each other. This is no longer true in wild cases
satisfying dualities.

Quadratic extensions: characteristic zero. We consider an unramified extension
K of Q2 and compute some total masses counting quadratic extensions of K .
Namely we consider the case 0 = Z/2Z. Let mK be the maximal ideal of OK ,
quadratic extensions are divided into 4 classes:

• The trivial extension K × K .

• The unramified field extension of degree two.

• Ramified extensions with discriminant m2
K . There are 2(q − 1) of them.

• Ramified extensions with discriminant m3
K . There are 2q of them.
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For instance, this follows from Krasner’s formula [1966] (see also [Serre 1978]).
They are in one-to-one correspondence with elements of SK ,0 . Let σ be the two-

dimensional representation of 0 = Z/2Z by the transposition and for n ∈ N, σn the
direct sum of n copies of σ . From [Wood and Yasuda 2015, Lemma 2.6], the values
aσ (ρ), for ρ ∈ SK ,0, are respectively 0, 0, 2, 3 depending on the corresponding
class of quadratic extension. We have

M(K , 0, vσn )= M
(
K , 0, 1

2 aσn

)
=

1
2(1+ 1+ 2(q − 1)q−2n/2

+ 2q · q−3n/2)

= 1+ q−n+1
− q−n

+ q−3n/2+1.

As for the total mass with respect to −wσn , we have wσn (ρ) = n − vσn (ρ)

if ρ corresponds to a totally ramified extension, and wσn (ρ) = vσn (ρ) otherwise.
Therefore,

M(K , 0,wσn )=
1
2(1+ 1+ 2(q − 1)q−n+n

+ 2q · q−3n/2+n)= q + q−n/2+1.

We easily see that the strong duality holds for n= 1. For n> 1, the strong duality
does not hold, but the weak one holds.

This phenomenon seems to be rather general. For a few other examples of
permutation representations σ of cyclic groups, the authors checked that the weak
duality holds, but the strong duality does not always hold. From these computations
as well as the example in Section 5, it is natural to ask:

Question 5.2. Suppose that the given representation τ is a permutation representa-
tion. Does the weak duality (4-2) always hold? Does the quotient scheme Ad

OK
/0

always admit an ESWL resolution?

Quadratic extensions: characteristic two. Next we consider the case K = Fq((t))
with q a power of two and 0 = Z/2Z. As in the last example, there are exactly two
unramified quadratic extensions of K : the trivial one K×K and the unramified field
extension. As for the ramified extensions, for i ∈N, there are exactly 2(q − 1)q i−1

extensions with discriminant m2i
K . There is no extension with discriminant of odd

exponent. This again follows from Krasner’s formula.
Let σ be the two dimensional 0-representation by transposition and σn the direct

sum of n copies of it as above. We have

M(K , 0, vσn )= 1+
∞∑

i=1

(q − 1)q i−1q−in
= 1+

(q − 1)q−n

1− q−n+1 ,

and

M(K , 0,−wσn )= 1+
∞∑

i=1

(q − 1)q i−1q−in+n
= 1+

q − 1
1− q−n+1 ,
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We see that the strong duality and hence the weak duality hold for every n. Thus
the answer to Question 4.8 in this case is positive.

For an integer m ≥ 0, let us now consider the representation τm : 0→GL2(OK )

given by the matrix (
1 tm

0 1

)
.

We have τ0 ∼= σ . If m > 0, then τm is not defined over k = Fq .
To compute the functions vτm and wτm , let L be a ramified quadratic extension

of K with discriminant m2i
K , ι its unique K -involution and $ its uniformizer. Then

δ($) := ι($)−$ ∈ OK and vK (δ($)) = i with vK the normalized valuation
of K . Therefore the tuning submodule 4 is computed as follows:

4= {(x, y) ∈O⊕2
L | x + tm y = ι(x), y = ι(y)}

= {(x, t−mδ(x)) | x ∈OL , vK (δ(x))≥ m}

= {(x, t−mδ(x)) | x ∈OK · 1⊕OK · ta$ }

= 〈(1, 0), (ta$, ta−mδ($))〉OK ,

where a = sup{0,m− i}. Therefore,

O⊕2
L

OL ·4
∼=

OL

OL · ta−mδ($)
∼=

OL

OL · ta−m+i .

For ρ ∈ SK ,0 corresponding to L ,

vτm (ρ)= a−m+ i =
{

0 i ≤ m,
i −m i > m.

The map u∗ :OK [x, y] →OL [X, Y ] in the definition of w is explicitly given as

u∗(x)= X + ta$Y, u∗(y)= ta−mδ($)Y.

The induced morphism Spec k[X, Y ] → Spec k[x, y] is an isomorphism if i ≤ m
and a linear map of rank one if i > m. Therefore

wτm (ρ)=

{
0 i ≤ m,
1− i +m i > m.

To obtain quotient morphisms which are étale in codimension one, we consider the
direct sums υm,n := τm ⊕ σn . We have

M(K , 0, vυm,n )= 1+
m∑

i=1

(q − 1)q i−1
· q−in

+

∞∑
i=m+1

(q − 1)q i−1
· q−i+m−in

= 1+ (q − 1)q−n 1− q(1−n)m

1− q1−n + (q − 1)
qm−(m+1)n−1

1− q−n ,
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and

M(K , 0,−wυm,n )= 1+
m∑

i=1

(q−1)q i−1
·q−in+n

+

∞∑
i=m+1

(q−1)q i−1
·q1−i+m−in+n

= 1+(q−1)
1−q(1−n)m

1−q1−n +(q−1)
qm−mn

1−q−n .

One can easily see that the weak duality does not generally hold, for instance,
by putting (m, n) = (1, 1). From our viewpoint, this is explained by noting that
the entry tm in the matrix defining τm causes the degeneration of singularities of
Ad
OK
/0, namely it makes the family over OK nonequisingular.

Bhargava’s formula. We discuss an example from [Wood and Yasuda 2015] and
the duality observed there. Let Sn be the n-th symmetric group and σ : Sn →

GLd(OK ) the standard permutation representation. According to Kedlaya [2007],
the mass formula of Bhargava [2007] for étale extensions of a local field is formu-
lated as

M(K , Sn, aσ )=
n−1∑
m=0

P(n, n−m) · q−m .

Here P(n, n−m) denotes the number of partitions of n into exactly n−m parts.
Let

τ := σ ⊕ σ : Sn→ GL2n(OK ).

From Lemma 4.3, we have

M(K , Sn, vτ )= M(K , Sn, aσ )=
n−1∑
m=0

P(n, n−m) · q−m .

In [Wood and Yasuda 2015], we verified that

M(K , Sn,−wτ )=

n∑
m=0

P(n, n−m) · qm .

These show that the functions M(Kr , Sn,−wτ ) and M(Kr , Sn, vτ ) satisfy the strong
duality (4-3). Thus the answer to Question 5.2 is positive in this situation.

The quotient scheme X = A2n
OK
/Sn associated to τ is nothing but the n-th sym-

metric product of the affine plane over OK . It admits a special ESWL resolution,
namely the Hilbert–Chow morphism

f : Hilbn(A2
OK
)→ X,

from the Hilbert scheme of n points on A2
OK

defined over OK .
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Using a stratification of Hilbn(A2
k) into affine spaces [Ellingsrud and Strømme

1987; Conca and Valla 2008], we can directly show

]Hilbn(A2
k)=

n∑
m=0

P(n, n−m) · q2n−m .

These together with Theorem 4.4 gives a new proof of Bhargava’s formula without
using the mass formula of Serre [1978] unlike [Bhargava 2007; Kedlaya 2007].

Kedlaya’s formula. We suppose p 6=2 and let G be the group of signed permutation
matrices in GLn(OK ). A signed matrix is a matrix such that every row or column
contains one and only one nonzero entry which is either 1 or −1. The group is
isomorphic to the wreath product (Z/2Z) o Sn . Let

ι : G ↪→ GLn(OK )

be the inclusion and τ := ι⊕ ι.

Lemma 5.3. We have aι = vτ .

Proof. We construct a representation ι′ : G→ GL2n(OK ) by replacing entries of
matrices in G as follows: replace 0 with

( 0
0

0
0

)
, 1 with

( 1
0

0
1

)
, and −1 with

( 0
1

1
0

)
. The

obtained ι′ is a permutation representation of G and, from Lemma 4.3,

aι′ = vι′⊕ι′ .

If τ : G→ GLn(OK ) is the trivial representation, then ι′ ∼= ι⊕ τ . The facts that
aτ ≡ vτ ≡ 0, aι⊕τ = aι+ aτ and vι⊕τ = vι+ vτ , which were proved in [Wood and
Yasuda 2015], prove the lemma. �

We then have

M(K ,G, vτ )= M(K ,G, aι)=
n∑

j=0

j∑
i=0

P( j, i)P(n− j)q i−n, (5-1)

where the right equality is due to Kedlaya [2007, Remark 8.6] and P(m) denotes
the number of partitions of m.

We can construct a resolution of X := A2n
OK
/G as follows. First consider the

involution of A2
OK
= SpecOK [x, y] sending x to −x and y to −y. Let

Z := A2
OK
/(Z/2Z)= SpecOK [x2, xy, y2

]

be the associated quotient scheme. We have a natural isomorphism

X ∼= Sn Z := Zn/Sn.

Since Z is the trivial family of A1-singularities over SpecOK (actually it is a toric
variety), there exists the minimal resolution W→ Z of Z such that W is OK -smooth,
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the exceptional locus is isomorphic to P1
OK

and KW/Z = 0. Let Hilbn(W ) be the
Hilbert scheme of n points of W over OK , which is again smooth over OK . We
have the proper birational morphism

f : Hilbn(W ) Hilbert–Chow
−−−−−−−→ SnW → Sn Z ∼

−→ X

and KHilbn(W )/X = 0.
We now compute ] f −1(o)(k). Let E ⊂ Wk be the exceptional divisor of

Wk → Zk , which is isomorphic to P1
k . Each k-point of f −1(o) corresponds to

a zero-dimensional subscheme of Wk of length n supported in E . There exists a
stratification

E = E1 t E0

such that E1 ∼= A1
k is a coordinate line of an open subscheme A2

k
∼= U ⊂ Wk and

E0 ∼= Spec k is the origin of another open subscheme A2
k
∼= U ′ ⊂ Wk . Let Cm be

the set of zero-dimensional subschemes U of length m supported in E1 and Dm

the set of zero-dimensional subschemes of U ′ of length m supported in E0. From
[Conca and Valla 2008, Corollary 3.1],

]Cm = P(m)qm and ]Dm =

m∑
i=0

P(m, i)qm−i .

Since f −1(o)(k) decomposes as

f −1(o)(k)=
n⊔

j=0

Cn− j × Dj ,

we have

] f −1(o)(k)=
n∑

j=0

(
P(n− j)qn− j

j∑
i=0

P( j, i)q j−i
)

=

n∑
j=0

j∑
i=0

P( j, i)P(n− j)qn−i .

From the wild McKay correspondence,

M(K ,G,−wτ )=

n∑
j=0

j∑
i=0

P( j, i)P(n− j)qn−i .

Comparing this with (5-1), we verify the strong duality for M(Kr ,G,−wτ ) and
M(Kr ,G, vτ ).

In a similar way to computing ] f −1(o)(k), we can directly compute ]Hilbn(W )(k)
and obtain a new proof of Kedlaya’s formula (5-1).
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6. Concluding remarks and extra problems

As far as we computed, we observed the following phenomena. The weak duality
and the strong duality may fail. Tame representations satisfy both the strong
and weak dualities. Permutation representations satisfy the weak duality but not
necessarily the strong duality. When K = Fq((t)), representations defined over Fq

satisfy both the strong and weak dualities.
We may interpret these as follows. We might be able to measure by the two

dualities how equisingular the family Ad
OK
/0 is. If the strong duality holds, then

the family would be very equisingular. If only the weak duality holds, then the
family would be moderately so. If both dualities fail, then it is rather far from being
equisingular. It may be interesting to look for a numerical invariant refining this
measurement.

As we saw, the weak duality is derived from the Poincaré duality of stringy
invariants if there exists an ESWL resolution. What about the strong duality? Is
there any geometric interpretation of it?

Although it is still conjectural, there would be the motivic counterparts of total
masses, stringy point counts and the McKay correspondence between them (see
[Wood and Yasuda 2015; Yasuda 2013; 2014a; 2016]). We may discuss dualities
in this motivic context as well. Indeed, some dualities for motivic invariants were
verified in [Yasuda 2014a; 2016].

Acknowledgments

The authors would like to thank Kiran Kedlaya for helpful discussion. Yasuda
thanks Max Planck Institute for Mathematics for its hospitality, where he stayed
partly during this work. Wood was supported by NSF grants DMS-1147782 and
DMS-1301690 and an American Institute of Mathematics Five Year Fellowship.

References

[Batyrev 1998] V. V. Batyrev, “Stringy Hodge numbers of varieties with Gorenstein canonical
singularities”, pp. 1–32 in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), edited by
M.-H. Saito et al., World Sci. Publ., River Edge, NJ, 1998. MR Zbl

[Batyrev and Dais 1996] V. V. Batyrev and D. I. Dais, “Strong McKay correspondence, string-theoretic
Hodge numbers and mirror symmetry”, Topology 35:4 (1996), 901–929. MR Zbl

[Bhargava 2007] M. Bhargava, “Mass formulae for extensions of local fields, and conjectures on the
density of number field discriminants”, Int. Math. Res. Not. 2007:17 (2007), art. id. rnm052, 20 pp.
MR Zbl

[Conca and Valla 2008] A. Conca and G. Valla, “Canonical Hilbert–Burch matrices for ideals of
k[x, y]”, Michigan Math. J. 57 (2008), 157–172. MR Zbl

[Ellingsrud and Strømme 1987] G. Ellingsrud and S. A. Strømme, “On the homology of the Hilbert
scheme of points in the plane”, Invent. Math. 87:2 (1987), 343–352. MR Zbl

http://msp.org/idx/mr/1672108
http://msp.org/idx/zbl/0963.14015
http://dx.doi.org/10.1016/0040-9383(95)00051-8
http://dx.doi.org/10.1016/0040-9383(95)00051-8
http://msp.org/idx/mr/1404917
http://msp.org/idx/zbl/0864.14022
http://dx.doi.org/10.1093/imrn/rnm052
http://dx.doi.org/10.1093/imrn/rnm052
http://msp.org/idx/mr/2354798
http://msp.org/idx/zbl/1145.11080
http://dx.doi.org/10.1307/mmj/1220879402
http://dx.doi.org/10.1307/mmj/1220879402
http://msp.org/idx/mr/2492446
http://msp.org/idx/zbl/1179.13020
http://dx.doi.org/10.1007/BF01389419
http://dx.doi.org/10.1007/BF01389419
http://msp.org/idx/mr/870732
http://msp.org/idx/zbl/0625.14002


Mass formulas and quotient singularities II 839

[Kedlaya 2007] K. S. Kedlaya, “Mass formulas for local Galois representations”, Int. Math. Res. Not.
2007:17 (2007), art. id. rnm021, 26 pp. MR Zbl

[Kollár 2013] J. Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics
200, Cambridge Univ. Press, 2013. MR Zbl

[Krasner 1966] M. Krasner, “Nombre des extensions d’un degré donné d’un corps p-adique”, pp.
143–169 in Les tendances géométriques en algèbre et théorie des nombres, edited by M. Kras-
ner, Colloques Intern. Centre National Recherche Sci. 143, Editions Centre National Recherche
Scientifique, Paris, 1966. MR Zbl

[Laszlo and Olsson 2008a] Y. Laszlo and M. Olsson, “The six operations for sheaves on Artin stacks,
I: Finite coefficients”, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 109–168. MR Zbl

[Laszlo and Olsson 2008b] Y. Laszlo and M. Olsson, “The six operations for sheaves on Artin stacks,
II: Adic coefficients”, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 169–210. MR Zbl

[Milne 1980] J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton Univ.
Press, 1980. MR Zbl

[Neukirch et al. 2008] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, 2nd
ed., Grundlehren Math. Wissenschaften 323, Springer, Berlin, 2008. MR Zbl

[Olsson 2015] M. Olsson, “Fujiwara’s theorem for equivariant correspondences”, J. Algebraic Geom.
24:3 (2015), 401–497. MR Zbl

[Serre 1978] J.-P. Serre, “Une ‘formule de masse’ pour les extensions totalement ramifiées de degré
donné d’un corps local”, C. R. Acad. Sci. Paris Sér. A-B 286:22 (1978), A1031–A1036. MR Zbl

[Serre 1979] J.-P. Serre, Local fields, Graduate Texts in Mathematics 67, Springer, New York, 1979.
MR Zbl

[Stanley 1997] R. P. Stanley, Enumerative combinatorics, I, Cambridge Studies in Advanced Mathe-
matics 49, Cambridge Univ. Press, 1997. Corrected reprint of the 1986 original. MR Zbl

[Sun 2012] S. Sun, “L-series of Artin stacks over finite fields”, Algebra Number Theory 6:1 (2012),
47–122. MR Zbl

[Wood 2008] M. M. Wood, “Mass formulas for local Galois representations to wreath products and
cross products”, Algebra Number Theory 2:4 (2008), 391–405. MR Zbl

[Wood and Yasuda 2015] M. M. Wood and T. Yasuda, “Mass formulas for local Galois representations
and quotient singularities, I: A comparison of counting functions”, Int. Math. Res. Not. 2015:23
(2015), 12590–12619. MR Zbl

[Yasuda 2013] T. Yasuda, “Toward motivic integration over wild Deligne–Mumford stacks”, 2013.
To appear in Adv. Stud. Pure Math. 74. arXiv

[Yasuda 2014a] T. Yasuda, “The p-cyclic McKay correspondence via motivic integration”, Compos.
Math. 150:7 (2014), 1125–1168. MR Zbl

[Yasuda 2014b] T. Yasuda, “The wild McKay correspondence and p-adic measures”, 2014. To appear
in J. Eur. Math. Soc. arXiv

[Yasuda 2016] T. Yasuda, “Wilder McKay correspondences”, Nagoya Math. J. 221:1 (2016), 111–164.
MR Zbl

Communicated by Kiran S. Kedlaya
Received 2015-06-19 Accepted 2017-03-01

http://dx.doi.org/10.1093/imrn/rnm021
http://msp.org/idx/mr/2354797
http://msp.org/idx/zbl/1175.11071
http://dx.doi.org/10.1017/CBO9781139547895
http://msp.org/idx/mr/3057950
http://msp.org/idx/zbl/1282.14028
http://msp.org/idx/mr/0225756
http://msp.org/idx/zbl/0143.06403
http://dx.doi.org/10.1007/s10240-008-0011-6
http://dx.doi.org/10.1007/s10240-008-0011-6
http://msp.org/idx/mr/2434692
http://msp.org/idx/zbl/1191.14002
http://dx.doi.org/10.1007/s10240-008-0012-5
http://dx.doi.org/10.1007/s10240-008-0012-5
http://msp.org/idx/mr/2434693
http://msp.org/idx/zbl/1191.14003
http://msp.org/idx/mr/559531
http://msp.org/idx/zbl/0433.14012
http://dx.doi.org/10.1007/978-3-540-37889-1
http://msp.org/idx/mr/2392026
http://msp.org/idx/zbl/1136.11001
http://dx.doi.org/10.1090/S1056-3911-2014-00628-7
http://msp.org/idx/mr/3344762
http://msp.org/idx/zbl/1348.14058
http://msp.org/idx/mr/500361
http://msp.org/idx/zbl/0388.12005
http://msp.org/idx/mr/554237
http://msp.org/idx/zbl/0423.12016
http://dx.doi.org/10.1017/CBO9780511805967
http://msp.org/idx/mr/1442260
http://msp.org/idx/zbl/0889.05001
http://dx.doi.org/10.2140/ant.2012.6.47
http://msp.org/idx/mr/2950161
http://msp.org/idx/zbl/1329.14042
http://dx.doi.org/10.2140/ant.2008.2.391
http://dx.doi.org/10.2140/ant.2008.2.391
http://msp.org/idx/mr/2411405
http://msp.org/idx/zbl/1176.11063
http://dx.doi.org/10.1093/imrn/rnv074
http://dx.doi.org/10.1093/imrn/rnv074
http://msp.org/idx/mr/3431631
http://msp.org/idx/zbl/06527273
http://msp.org/idx/arx/1302.2982
http://dx.doi.org/10.1112/S0010437X13007781
http://msp.org/idx/mr/3230848
http://msp.org/idx/zbl/1310.14023
http://msp.org/idx/arx/1412.5260
http://dx.doi.org/10.1017/nmj.2016.3
http://msp.org/idx/mr/3508745
http://msp.org/idx/zbl/06642607


840 Melanie Matchett Wood and Takehiko Yasuda

mmwood@math.wisc.edu Department of Mathematics, University of Wisconsin,
480 Lincoln Drive, Madison, WI 53705, United States

American Institute of Mathematics, 360 Portage Avenue,
Palo Alto, CA 94306, United States

takehikoyasuda@math.sci.osaka-u.ac.jp
Department of Mathematics, Graduate School of Science,
Osaka University, Toyonaka 560-0043, Japan

mathematical sciences publishers msp

mailto:mmwood@math.wisc.edu
mailto:takehikoyasuda@math.sci.osaka-u.ac.jp
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 11:4 (2017)

dx.doi.org/10.2140/ant.2017.11.841

A new equivariant in
nonarchimedean dynamics

Robert Rumely

Let K be a complete, algebraically closed nonarchimedean valued field, and let
ϕ(z) ∈ K (z) have degree d ≥ 2. We show there is a canonical way to assign
nonnegative integer weights wϕ(P) to points of the Berkovich projective line
over K in such a way that

∑
P wϕ(P)= d−1. When ϕ has bad reduction, the set

of points with nonzero weight forms a distributed analogue of the unique point
which occurs when ϕ has potential good reduction. Using this, we characterize the
minimal resultant locus of ϕ in analytic and moduli-theoretic terms: analytically,
it is the barycenter of the weight-measure associated to ϕ; moduli-theoretically, it
is the closure of the set of points where ϕ has semistable reduction, in the sense
of geometric invariant theory.

Let K be a complete, algebraically closed nonarchimedean valued field with
absolute value | · | and associated valuation ord( · ). Write O for the ring of integers
of K , m for its maximal ideal, and k̃ for its residue field. Let P1

K be the Berkovich
projective line over K : a compact, path-connected Hausdorff space which contains
P1(K ) as a dense subset (a nonmetric tree in the sense of [Favre and Jonsson 2004]).

Our main result is:

Theorem A. Let ϕ(z) ∈ K (z) be a rational function with degree d ≥ 2. There is a
canonical way, determined by the variation in the resultant under conjugation of ϕ,
to assign nonnegative integer weights wϕ(P) to points of P1

K in such a way that∑
P

wϕ(P)= d − 1,

where wϕ(P)= 0 for each P ∈ P1(K ).

This work began during the ICERM Program “Complex and p-adic dynamics”, Spring 2012, and was
carried out in part under the auspices of the University of Georgia VIGRE NSF grant DMS-0738586.
MSC2010: primary 37P50; secondary 11S82, 37P05.
Keywords: dynamics, minimal resultant locus, crucial set, repelling fixed points, nonarchimedean

weight formula, geometric invariant theory.
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We call the finite set of points which receive weight the crucial set of ϕ. Write δP

for the Dirac measure at a point P ∈ P1
K . We call the discrete probability measure

νϕ :=
1

d−1

∑
P

wϕ(P)δP

the crucial measure of ϕ.
The crucial set and crucial measure are conjugation equivariants of ϕ which live in

the interior of the Berkovich projective line. It is natural to ask about their meaning.
The crucial set, decorated with the weights, adjacency data, and the reductions of ϕ
at its points, appears to be a kind of “analytic special fiber” for ϕ, analogous to the
algebraic special fiber for a model of a curve over a nonarchimedean valued field.
When ϕ has potential good reduction in the sense of nonarchimedean dynamics, the
crucial set consists of the unique point where ϕ has good reduction and that point
has weight d−1. When ϕ has bad reduction, the single point of good reduction
splits into a collection of points with total weight d−1.

Explicit formulas for the weights wϕ(P) are given Section 6, and there are only
finitely many ways a point can receive weight. The crucial set, decorated with
adjacency data and information about how each point receives weight, appears to
the classify possible reduction types for a functions ϕ of given degree: the author
and students in a University of Georgia VIGRE group have shown that for quadratic
rational functions and cubic polynomials [Doyle et al. 2016; Rumely et al. ≥ 2017],
the finitely many possible configurations of the crucial set lead to a stratification of
the dynamical moduli space which governs where ϕ lies in the moduli space, and is
compatible with reduction (modm). This is analogous to the fact that for an elliptic
curve E over a nonarchimedean local field, E has good reduction if and only if its
j -invariant satisfies | jE | ≤ 1, while E has bad reduction (with semistable reduction
a loop of curves), if and only if | jE |> 1. It seems likely that such a stratification
holds in general.

The crucial measure appears to be an intrinsic discrete approximation to the
canonical invariant measure µϕ supported on the Berkovich Julia set: Kenneth
Jacobs [2014] has shown that the crucial measures of the iterates of ϕ converge
weakly to µϕ; for a given test function, the convergence is geometrically fast.

Our construction of the crucial set is an analytic one. It depends on the theory
of the function ordResϕ( · ) introduced in [Rumely 2015]. We associate to ϕ a
canonical, finitely generated tree 0Fix,Repel ⊂ P1

K . The weights wϕ(P) and the
crucial set are obtained by taking the Laplacian of ordResϕ( · ) restricted to 0Fix,Repel.
It would be interesting to have a more algebraic construction.

Under conjugation of ϕ by an element γ ∈GL2(K ) (given by ϕγ =γ−1
◦ϕ◦γ ), the

crucial set Cr(ϕ) and the crucial measure νϕ have the same equivariance properties
as fixed points: P is a fixed point of ϕ if and only if γ−1(P) is a fixed point of ϕγ .
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Analogously, Cr(ϕγ )= γ−1(Cr(ϕ)) and νϕγ = γ ∗(νϕ) (see Proposition 6.6). The
construction of the crucial set applies in arbitrary characteristic. The crucial set is
unchanged under enlargement of K (see Proposition 6.7), and is Galois-equivariant
(see Proposition 6.8).

One application of the theory is as follows: by the formulas in Section 6, each
repelling fixed point of ϕ in H1

K := P1
K \P1(K ) receives weight. Hence ϕ can have

at most d−1 nonclassical repelling fixed points (Corollary 6.2); previously it seems
not to have been known that there were finitely many. In [Rumely 2014] it is shown
that the bound d−1 is sharp.

A second application concerns the minimal resultant locus of ϕ, the set of points
in P1

K where, under change of coordinates, ϕ achieves its minimal resultant. We
show that the minimal resultant locus is the barycenter of the crucial measure: the
set of points P such that each component of P1

K \ {P} has νϕ-mass at most 1
2 . We

also show that the minimal resultant locus characterizes the elements γ ∈ GL2(K )
for which ϕγ has semistable reduction in the sense of geometric invariant theory
(see Theorems B and C below). Thus, the minimal resultant locus forms a bridge
between analytic and moduli-theoretic properties of ϕ.

A third application is a new fixed point theorem, showing the existence of fixed
points in balls which ϕ maps onto P1

K (Theorem 4.6).
We will now give an overview of the paper. Suppose (F,G) is a normalized

representation for ϕ: a pair of homogeneous functions F(X, Y ),G(X, Y )∈O[X, Y ]
of degree d such that ϕ(z)= F(z, 1)/G(z, 1) and some coefficient of F or G is a unit
in O. Such a pair (F,G) is unique up to scaling by a unit. Let Res(F,G) be the resul-
tant of F and G; then ordRes(ϕ) :=ord(Res(F,G)) is well-defined and nonnegative.

Let P1
K be the Berkovich projective line over K . By Berkovich’s classification

theorem (see [Berkovich 1990, p. 18]), points of P1
K \ {∞} correspond to discs

D(a, r) ⊂ K or to nested sequences of discs; points corresponding to discs with
radius r ∈ |K×| are said to be of type II. The point ζG corresponding to D(0, 1)
is called the Gauss point. The action of GL2(K ) on P1(K ) extends continuously
to P1

K , and GL2(K ) acts transitively on type II points.
In [Rumely 2015] it is shown that the map γ 7→ ordRes(ϕγ ) factors through a

function ordResϕ( · ) on P1
K , given on type II points by

ordResϕ(γ (ζG))= ordRes(ϕγ ).

By [Rumely 2015, Theorem 0.1] the function ordResϕ( · ) is piecewise affine and
convex upwards on paths in P1

K and it achieves a minimum. The set MinResLoc(ϕ)
where the minimum occurs is called the minimal resultant locus of ϕ. For each
a ∈ P1(K ), MinResLoc(ϕ) is contained in the tree 0Fix,ϕ−1(a) spanned by the
classical fixed points of ϕ and the preimages of a. It is either a type II point or a
segment joining two type II points.
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In this paper, we show that the intersection of the trees0Fix,ϕ−1(a) for all a∈P1(K )
is the tree 0Fix,Repel spanned by the classical fixed points of ϕ and the repelling
fixed points in H1

K (Theorem 4.2). Although ordResϕ( · ) does not belong to the
domain of the Laplacian on P1

K (it is increasing too fast, in too many directions), one
can compute its graph-theoretic Laplacian on the finitely generated tree 0Fix,Repel.
Comparing this Laplacian with the so-called “branching measure” µBr of 0Fix,Repel

(which depends only on the topology of the tree), leads to the construction of the
weights wϕ(P) and the proof of Theorem A. An intrinsic formula for νϕ is given in
Corollary 6.5. Only points of type II can receive weight. The weights wϕ(P), the
crucial set, and the crucial measure are canonical because ordResϕ( · ), 0Fix,Repel,
and µBr are canonical.

The following pair of theorems justify our claim that the minimal resultant locus
forms a bridge between analytic and moduli-theoretic properties of ϕ:

Theorem B (analytic characterization of MinResLoc(ϕ)). Let ϕ(z) ∈ K (z) have
degree d ≥ 2. Then MinResLoc(ϕ) is the barycenter of νϕ in P1

K . If d is even,
MinResLoc(ϕ) is a vertex of the tree 0ϕ spanned by the crucial set. If d is odd,
MinResLoc(ϕ) is either a vertex or an edge of 0ϕ .

Using geometric invariant theory (GIT), Silverman [1998] has constructed a mod-
uli space Md/Spec(Z) for rational functions of degree d, modulo conjugacy. The
construction involves the notions of semistable and stable reduction for ϕ, explained
in Section 7. Building on work of Szpiro, Tepper, and Williams [2014], we show

Theorem C (moduli-theoretic characterization of MinResLoc(ϕ)). Let ϕ(z)∈K (z)
have degree d ≥ 2. Suppose γ ∈ GL2(K ) and put P = γ (ζG), then:

(A) P belongs to MinResLoc(ϕ) if and only if ϕγ has semistable reduction in the
sense of GIT.

(B) MinResLoc(ϕ) consists of the single point P if and only if ϕγ has stable
reduction in the sense of GIT.

The plan of the paper is as follows. In Section 1 we recall basic facts and
definitions. In Sections 2 and 3 we establish some preliminaries concerning surplus
multiplicities sϕ(P, Ev) and repelling fixed points and in Section 4 we prove the tree
intersection theorem (Theorem 4.2). In Section 5 we carry out slope computations
needed to find the Laplacian of ordResϕ( · ) on 0Fix,Repel and in Section 6 we prove
Theorem A as Theorem 6.1. In Section 7, we prove Theorems B and C as Theorems
7.1 and 7.4, respectively.

1. Background

The Berkovich projective line is a path-connected Hausdorff space containing P1(K ).
We denote the Berkovich projective line by P1

K (in [Baker and Rumely 2010], it
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was written P1
Berk). By Berkovich’s classification theorem (see e.g., [Baker and

Rumely 2010, p. 5]), points of P1
K \ {∞} correspond to discs, or nested sequences

of discs, in K . There are four kinds of points: Type I points are the points of
P1(K ), which we regard as discs of radius 0. Type II points correspond to discs
D(a, r)={z ∈ K : |z−a| ≤ r} such that r belongs to the value group |K×|. Type III
points correspond to discs D(a, r) with r /∈ |K×|. We write ζa,r for the point
corresponding to D(a, r). The type II point ζ0,1 plays a special role; it is called
the Gauss point and is denoted ζG . Type IV points serve to complete P1

K ; they
correspond to (cofinal equivalence classes of) sequences of nested discs with empty
intersection. If {D(ai , ri )}i≥1 is such a sequence, by abuse of notation we continue
to write ζa,r for the associated point in P1

K .
Paths in P1

K correspond to ascending or descending chains of discs or unions of
chains sharing an endpoint. For example the path from 0 to 1 in P1

K corresponds to
the chains {D(0, r) : 0≤ r ≤ 1} and {D(1, r) : 1≥ r ≥ 0}; here D(0, 1)= D(1, 1).
Topologically, P1

K is a tree: there is a unique path [P, Q] between any two points
P, Q ∈ P1

K . We write (P, Q) for the interior of that path, with similar notation for
half-open segments.

If P ∈ P1
K , the tangent space TP is the set of equivalence classes of paths (P, x]

as x varies over P1
K \ {P}; we call paths (P, x] and (P, y] equivalent if they share

a common initial segment. We call elements of TP tangent vectors or directions
and denote them by vectors; given Ev ∈ TP , we write

BP(Ev)
−
= {x ∈ P1

K : (P, x] ∈ Ev}

for the associated path-component of P1
K \ {P}. If x ∈ BP(Ev)

−, we will say that x
lies in the direction Ev at P . If P is of type I or type IV, then TP has one element;
if P is of type III, TP has two elements; and if P is of type II then TP is infinite.
When P = ζG , there is a natural one-to-one correspondence between elements of
TζG and P1(k̃). More generally, for any type II point P , a map γ ∈ GL2(K ) with
γ (ζG)= P induces a parametrization of TP by P1(k̃); if a ∈P1(k̃) we write Eva ∈ TP

for the corresponding direction.
The set H1

K = P1
K \P1(K ) (written HBerk in [Baker and Rumely 2010]) is called

the Berkovich upper half-space; it carries a metric ρ(x, y) called the logarithmic
path distance, for which the length of the path corresponding to {D(a, r) : R1 ≤ r ≤
R2} is log(R2/R1). (We normalize the function log t so that ord(x) = − log|x |.)
There are two natural topologies on P1

K , called the weak and strong topologies. The
weak topology on P1

K is the coarsest one which makes the evaluation functionals
z→| f (z)| continuous for all f (z)∈ K (z); under the weak topology, P1

K is compact
and P1(K ) is dense in it. The basic open sets for the weak topology are the path-
components of P1

K \ {P1, . . . , Pn} as {P1, . . . , Pn} ranges over finite subsets of H1
K .

The strong topology on P1
K (which is finer than the weak topology) restricts to the
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topology on H1
K induced by ρ(x, y). The basic open sets for the strong topology are

the ρ(x, y)-balls in H1
K together with the basic open sets from the weak topology.

Type II points are dense in P1
K for both topologies.

The action of ϕ on P1(K ) extends functorially to P1
K . If ϕ is nonconstant, the

induced map ϕ : P1
K → P1

K is surjective, open and continuous for both topologies
and takes points of a given type to points of the same type; if ϕ(P)= Q, there is
an induced surjection ϕ∗ : TP → TQ . The action of GL2(K ) on P1(K ) extends to
an action on P1

K which is continuous for both topologies and preserves the type of
each point. GL2(K ) acts transitively on type II points. It preserves the logarithmic
path distance:

ρ(γ (x), γ (y))= ρ(x, y),

for all x, y ∈H1
K and γ ∈ GL2(K ).

At each P ∈ P1
K , the map ϕ has a local degree degϕ(P) (called the multiplicity

mϕ(P) in [Baker and Rumely 2010]), which is a positive integer in the range
1≤ degϕ(P)≤ d . It has the property that for each Q ∈ P1

K ,∑
ϕ(P)=Q

degϕ(P)= d.

When P ∈ P1(K ), degϕ(P) coincides with the classical algebraic multiplicity of ϕ
at P .

For additional facts about P1
K , see [Berkovich 1990; Rivera-Letelier 2003b; Favre

and Rivera-Letelier 2006; 2010; Baker and Rumely 2010; Faber 2013a; 2013b;
Benedetto et al. 2014].

We will use two notions of “reduction” for ϕ. The first, which we simply call the
reduction of ϕ, is defined as follows. If (F,G) is a normalized representation of ϕ,
the reduction ϕ̃ is the rational map on P1(k̃) obtained by reducing F and G (modm)
and eliminating common factors. Explicitly, let F̃, G̃ ∈ k̃[X, Y ] be the reductions
of F,G (modm) and put Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y )). Write F̃(X, Y )=
Ã(X, Y )F̃0(X, Y ) and G̃(X, Y ) = Ã(X, Y )G̃0(X, Y ). Then ϕ̃ : P1(k̃)→ P1(k̃) is
the map defined by (X, Y ) 7→ (F̃0(X, Y ) : G̃0(X, Y )). If ϕ̃ has degree d = deg(ϕ),
then ϕ is said to have good reduction.

The second, which we call the reduction of ϕ at P , is obtained by fixing a
type II point P ∈ HBerk, choosing a γ ∈ GL2(K ) with γ (ζG)= P , and taking the
reduction ϕ̃P of ϕγ = γ−1

◦ϕ ◦ γ in the sense above. (If (FP ,G P) is a normalized
representation of ϕγ , we call (FP ,G P) a normalized representation of ϕ at P .)
When P = ζG and γ = id, this notion of reduction coincides with previous one. The
map ϕ̃P depends on the choice of γ , but if γ ′ ∈ GL2(K ) also satisfies γ ′(ζG)= ζ

and ϕ̃′P is the reduction of ϕ at P corresponding to γ ′, there is an η̃ ∈ GL2(k̃)
such that ϕ̃′P = η̃

−1
◦ ϕ̃P ◦ η̃. Thus deg(ϕ̃P), and the properties that ϕ̃P is constant,

is nonconstant or is the identity map, are independent of the choice of γ with
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γ (ζG)= P . If ϕ does not have good reduction but after a change of coordinates by
some γ ∈ GL2(K ) the map ϕγ has good reduction, then ϕ is said to have potential
good reduction.

A theorem of Rivera-Letelier [2003a] (see [Baker and Rumely 2010, Corol-
lary 9.27]) says that when P is of type II, then ϕ(P) = P if and only if ϕ̃P is
nonconstant. Rivera-Letelier shows that in this situation degϕ(P) = deg(ϕ̃P); he
calls P a repelling fixed point if deg(ϕ̃P) ≥ 2 and an indifferent fixed point if
deg(ϕ̃P) = 1. When ϕ(P) = P , the induced map ϕ∗ : TP → TP on the tangent
space comes from the action of ϕ̃P on P1(k̃). If ϕ(P) 6= P , the map ϕ̃P is constant,
and in that case, if ϕ̃P(z)≡ a ∈ P1(k̃), then ϕ(P) belongs to the ball BP(Eva)

−.
Another result of Rivera-Letelier [2003a, Lemma 2.1] (see [Faber 2013a, Propo-

sition 3.10] for a definitive version) says that for each P ∈ P1
K and each Ev ∈ TP ,

there are integers m = mϕ(P, Ev)≥ 1 and s = sϕ(P, Ev)≥ 0 such that

(a) for each y ∈ Bϕ(P)(ϕ∗(Ev))− there are exactly m+ s solutions to ϕ(x)= y in
BP(Ev)

− (counted with multiplicities), and

(b) for each y ∈ P1
K \

(
Bϕ(P)(ϕ∗(Ev))− ∪ {ϕ(P)}

)
, there are exactly s solutions to

ϕ(x)= y in BP(Ev)
− (counted with multiplicities).

The number mϕ(P, Ev) is called the directional multiplicity of ϕ at P in the di-
rection Ev, and sϕ(P, Ev) is called the surplus multiplicity of ϕ at P in the direc-
tion Ev. Several formulas relating mϕ(P, Ev) to geometric quantities are given in
[Baker and Rumely 2010, Theorem 9.26]. In particular, when P is of type II and
ϕ(P) = P , then mϕ(P, Eva) is the algebraic multiplicity of ϕ̃P at a, for each for
a ∈ P1(k̃). An important result due to Faber [2013a, Lemma 3.17] says that if P is
of type II and ϕ(P) = P , if (F,G) is a normalized representation of ϕ at P and
if F̃(X, Y )= Ã(X, Y )F̃0(X, Y ) and G̃(X, Y )= Ã(X, Y )G̃0(X, Y ), then sϕ(P, Eva)

is the multiplicity of a as a root of Ã(X, Y ).
Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let (F,G) be a normalized representa-

tion of ϕ. Writing F(X, Y ) = fd Xd
+ fd−1 Xd−1Y + · · · + f0Y d and G(X, Y ) =

gd Xd
+ gd−1 Xd−1Y + · · ·+ g0Y d the resultant of F and G is

Res(F,G)= det





fd fd−1 · · · f1 f0

fd fd−1 · · · f1 f0
...

fd fd−1 · · · f1 f0

gd gd−1 · · · g1 g0

gd gd−1 · · · g1 g0
...

gd gd−1 · · · g1 g0




. (1)
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The quantity ordRes(ϕ) := ord(Res(F,G)) is independent of the choice of nor-
malized representation; by construction, it is nonnegative. It is well-known (see
e.g., [Silverman 2007, Theorem 2.15]) that ϕ has good reduction if and only if
ordRes(ϕ)= 0.

The starting point for the investigation in [Rumely 2015] was the following
observation. By standard formulas for the resultant (see for example [Silverman
2007, p. 75]), for each γ ∈ GL2(K ) and each τ ∈ K× ·GL2(O), one has

ordRes(ϕγ )= ordRes(ϕγ τ ).

On the other hand, K× ·GL2(O) is the stabilizer of the Gauss point. Since GL2(K )
acts transitively on the type II points in P1

K , the map γ 7→ ordRes(ϕγ ) factors
through a well-defined function ordResϕ( · ) on type II points given by

ordResϕ(γ (ζG)) := ordRes(ϕγ ). (2)

The main theorem in [Rumely 2015] (Theorem 0.1 of that paper) is:

Theorem 1.1. Let ϕ(z) ∈ K (z) and suppose d = deg(ϕ) ≥ 2. The function
ordResϕ( · ) on type II points extends to a function ordResϕ : P1

K →[0,∞] which is
continuous for the strong topology, is finite on H1

K , and takes the value∞ on P1(K ).
The extended function f ( · )= ordResϕ( · ) has the following properties:

(A) f ( · ) is piecewise affine and convex upwards on each path in P1
K relative to

the logarithmic path distance; the slope of each affine piece is an integer m in
the range−(d2

+d)≤m ≤ d2
+d satisfying m ≡ d2

+d (mod 2d); the breaks
between affine pieces occur at type II points.

(B) f ( · ) achieves a minimum value on P1
K . The set MinResLoc(ϕ) on which the

minimum is taken is a single type II point if d is even and is either a single
type II point or a segment with type II endpoints if d is odd.

(C) For each a ∈ P1(K ), the extended function f ( · ) is strictly increasing away
from the tree 0Fix,ϕ−1(a) ⊂ P1

K spanned by the classical fixed points of ϕ and
the preimages of a in P1(K ).

In particular, MinResLoc(ϕ) belongs to 0Fix,ϕ−1(a), for each a ∈ P1(K ).

2. Identification lemmas

The surplus multiplicity sϕ(P, Ev) plays an important role in the study of ordResϕ( · ).
It turns out that there is a relation between directions Ev ∈ TP for which sϕ(P, Ev) > 0
and directions containing type I fixed points. This is expressed in two lemmas
which we call “identification lemmas”, because they identify the directions which
can have sϕ(P, Ev) > 0.
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If P ∈ H1
K is a type II fixed point of ϕ and ϕ̃P is the reduction of ϕ at P , we

say that P is id-indifferent for ϕ if ϕ̃P is the identity map. (This is part of a more
general classification of fixed points given in Section 3.)

Definition 1 (directional and reduced fixed point multiplicities). Suppose ϕ ∈ K (z)
is nonconstant:

(A) For each P ∈ H1
K and each Ev ∈ TP , we define the directional fixed point

multiplicity #Fϕ(P, Ev) to be the number of classical fixed points of ϕ in
BP(Ev)

− (counting multiplicities).

(B) If P ∈ H1
K is a type II fixed point of ϕ, which is not id-indifferent for ϕ, let

ϕ̃P be the reduction of ϕ at P and parametrize TP by P1(k̃) in such a way that
ϕ∗(Eva) = Evϕ̃P (a) for each a ∈ P1(k̃). If Ev = Eva , we define the reduced fixed
point multiplicity #F̃ϕ(P, Ev) to be the multiplicity of a as a fixed point of ϕ̃P .

Clearly
∑
Ev∈TP

Fϕ(P, Ev)= deg(ϕ)+1. If P is a type II point with ϕ(P)= P and P
is not id-indifferent for ϕ, then

∑
Ev∈TP

#F̃ϕ(P, Ev)= degϕ(P)+ 1.

Lemma 2.1 (first identification lemma). Suppose P ∈ H1
K is of type II, and that

ϕ(P)= P , but P is not id-indifferent. Let Ev ∈ TP ; then

#Fϕ(P, Ev)= sϕ(P, Ev)+ #F̃ϕ(P, Ev). (3)

In particular, BP(Ev)
− contains a type I fixed point of ϕ if and only if at least one of

the following hold:
ϕ∗(Ev)= Ev or sϕ(P, Ev) > 0.

Proof. Choose γ ∈ GL2(K ) with γ (P) = ζG and put 8 = ϕγ ; then 8(ζG) = ζG .
Note that ξ ∈ P1(K ) is fixed by ϕ if and only if γ−1(ξ) is fixed by 8 and that
Ev ∈ TP is fixed by ϕ∗ if and only if (γ−1)∗(Ev)∈ TζG is fixed by8∗. Hence it suffices
to prove the result under the assumption that P = ζG .

Choose F(X, Y ),G(X, Y ) ∈O[X, Y ] so (F,G) is a normalized representation
of ϕ. Let F̃, G̃ ∈ k̃[X, Y ] be the reductions of F and G and put

Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y )).

Write F̃(X, Y )= Ã(X, Y ) · F̃0(X, Y ) and G̃(X, Y )= Ã(X, Y ) · G̃0(X, Y ). Then ϕ̃
is the map on P1(k̃) defined by (X, Y ) 7→ (F̃0(X, Y ) : G̃0(X, Y )).

Put H(X, Y )=XG(X,Y )−Y F(X,Y ) and H̃0(X,Y )= XG̃0(X,Y )−Y F̃0(X,Y ).
Here H(X, Y ) 6=0 since deg(ϕ)>1 and H̃0(X, Y ) 6=0 since ϕ̃(z) 6≡ z by assumption.
The fixed points of 8 are the zeros of H(X, Y ) in P1(K ) and the fixed points of ϕ̃
are the zeros of H̃0(X, Y ) in P1(k̃).

Reducing H(X, Y ) modulo m, we see that

H̃(X, Y )= XG̃(X, Y )− Y F̃(X, Y )= Ã(X, Y ) · H̃0(X, Y ). (4)
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Since K is algebraically closed, H(X, Y ) factors over K [X, Y ] as a product of linear
factors. After scaling the factors if necessary, we can assume that the factorization
has the form

H(X, Y )= C ·
d+1∏
i=1

(bi X − ai Y ), (5)

where max(|ai |, |bi |)= 1 for each i = 1, . . . , d + 1. We claim that |C | = 1 as well.
To see this, note that if we choose u, v in O so that (ũ : ṽ) is not a zero of either
Ã(X, Y ) or H̃0(X, Y ), then H̃(ũ, ṽ) 6= 0 by (4).

It follows that

H̃(X, Y )= C̃ ·
d+1∏
i=1

(b̃i X − ãi Y ) 6≡ 0. (6)

Since k̃[X, Y ] is a unique factorization domain, comparing (4) and (6) we see that
after reordering factors if necessary, there are constants C̃1, C̃2 ∈ k̃× and an integer
0≤ n ≤ d such that

Ã(X, Y )= C̃1 ·

n∏
i=1

(b̃i X − ãi Y ) and H̃0(X, Y )= C̃2 ·

d+1∏
i=n+1

(b̃i X − ãi Y ). (7)

The fixed points of 8(X, Y ) are the points (ai : bi ) ∈ P1(K ), i = 1, . . . , d + 1.
By (4) and (7), each fixed point of 8(X, Y ) specializes to a zero of H̃0(X, Y )
or Ã(X, Y ) and conversely each such zero is the specialization of a fixed point of
8(X, Y ). For a given Ev ∈ TζG , if ã ∈ P1(k̃) is such that Ev = Evã , then #Fϕ(P, Ev)
is the multiplicity of ã as a zero of H̃(X, Y ), sϕ(P, Ev) is the multiplicity of ã as
a zero of Ã(X, Y ), and #F̃ϕ(P, Ev) is the multiplicity of ã as a root of H̃0(X, Y ).
Thus #Fϕ(P, Ev)= sϕ(P, Ev)+ #F̃ϕ(P, Ev). �

Lemma 2.2 (second identification lemma). Suppose P ∈H1
K is of type II and that

ϕ(P)= Q 6= P. Let Ev ∈ TP . Then BP(Ev)
− contains a type I fixed point of ϕ if and

only if at least one of the following hold

(A) Q ∈ BP(Ev)
−,

(B) P ∈ BQ(ϕ∗(Ev))
−, or

(C) sϕ(P, Ev) > 0.

Proof. Let Q = ϕ(P). We claim that there is a γ ∈ GL2(K ) such that γ (ζG)= P
and γ−1(Q) = ζ0,r for some 0 < r < 1. To see this, take any τ0 ∈ GL2(K )
with τ0(ζG) = P . Then τ−1

0 (Q) 6= ζG , since τ0 is one-to-one. Let α ∈ P1(K )
be such that the path [α, ζG] contains τ−1

0 (Q) and choose τ1 ∈ GL2(O) with
τ1(0) = τ−1

0 (α). (Such a τ1 exists because GL2(O) acts transitively on P1(K )).
Setting γ =τ0◦τ1, we see that γ (ζG)= P and γ (0)=γ0(τ1(0))=α. This means that
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γ−1(Q) = τ−1
1 (τ−1

0 (Q)) belongs to τ−1
1 ([α, ζG]) = [0, ζG], so γ−1(Q) = ζ0,r for

some 0< r < 1. Here r ∈|K×|, since ζ0,r = γ
−1(ϕ(P)) is of type II. Since the fixed

points of ϕ and conditions (A), (B), (C) are equivariant under conjugation, replacing
ϕ with ϕγ = γ−1

◦ϕ ◦ γ we are reduced to the case where P = ζG and Q = ζ0,r .
Take any c∈K× with |c|=r . Put γ1(z)= id and γ2(z)=cz; then γ1(ζG)=ζG= P

and γ2(ζG)= ζ0,r = Q. Put 8= γ−1
2 ◦ϕ ◦ γ1, noting that ϕ(z)= c ·8(z).

Choose F(X, Y ),G(X, Y ) ∈O[X, Y ] so (F,G) is a normalized representation
of 8. Let F̃, G̃ ∈ k̃[X, Y ] be their reductions and put

Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y )).

Write F̃(X, Y ) = Ã(X, Y ) · F̃0(X, Y ) and G̃(X, Y ) = Ã(X, Y ) · G̃0(X, Y ). The
reduction 8̃ of 8 is the map (X, Y ) 7→ (F̃0(X, Y ) : G̃0(X, Y )), so by Faber’s
theorem [2013a, Lemma 3.17], the directions Eva ∈ TP with sϕ(P, Eva) > 0 (which
are the same as the ones with s8(P, Eva) > 0) are precisely those corresponding to
points a ∈ P1(k̃) with Ã(a)= 0.

Since ϕ = c ·8, the pair (cF,G) is a normalized representation of ϕ. The fixed
points of ϕ in P1(K ) are the zeros (ai : bi ) of H(X, Y )= XG(X, Y )−Y ·cF(X, Y ).
As in the proof of Lemma 2.1, we can write

H(X, Y )= C ·
d+1∏
i=1

(bi X − ai Y ), (8)

where max(|ai |, |bi |)=1 for each i=1, . . . , d+1 and |C |=1. Absorbing C into the
coefficients a1, b1, we can assume that C = 1. Reducing H(X, Y ) modulo m gives

H̃(X, Y )=
d+1∏
i=1

(b̃i X − ãi Y ) 6≡ 0. (9)

On the other hand, since H(X, Y )= XG(X, Y )−Y · cF(X, Y ) with |c|< 1, we
also have

H̃(X, Y )= XG̃(X, Y )= X · Ã(X, Y ) · G̃0(X, Y ). (10)

Comparing (9) and (10), we see that after reordering the factors if necessary, there
are constants C̃1, C̃2, C̃3 ∈ k̃× and an integer 1≤ n ≤ d such that in k̃[X, Y ]

X = C̃1 · (b̃1 X − ã1Y ), (11)

Ã(X, Y )= C̃2 ·

n∏
i=2

(b̃i X − ãi Y ), (12)

G̃0(X, Y )= C̃3 ·

d+1∏
i=n+1

(b̃i X − ãi Y ), (13)

and each fixed point of ϕ corresponds to a factor of one of these terms.
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From (11) it follows that |a1| < 1 and |b1| = 1. Thus the fixed point (a1 : b1)

belongs to BP(Ev0)
−, where Ev0 ∈ TP is the tangent direction corresponding to

0 ∈ P1(k̃). We can express this in a coordinate-free way by noting that BP(Ev0)
−

is the ball containing Q = ζ0,r = ϕ(P).
From (12) and the fact that the zeros of Ã(X, Y ) correspond to the directions Eva

for which sϕ(P, Eva) > 0, we see that each direction Ev ∈ TP with sϕ(P, Ev) > 0
contains a fixed point of ϕ.

Finally, from (13), we see that each direction Eva ∈ TP corresponding to a zero
of G̃0(X, Y ) contains a fixed point of ϕ. However, the zeros of G̃0(X, Y ) are the
poles of 8̃ and if 8̃(a)=∞ then 8∗(Eva)= Ev∞ ∈ TP . Since ϕ = c ·8 and |c|< 1,
it follows that ϕ∗(Eva) ∈ TQ = Tζ0,r is the “upwards” direction EvQ,∞ ∈ TQ . This can
be expressed a coordinate-free manner by noting that BQ(ϕ∗(Eva))

−
= BQ(EvQ,∞)

−

is the unique ball containing P = ζG . �

As a consequence of Lemmas 2.1 and 2.2 we obtain

Corollary 2.3. Let P be of type II and suppose P is not id-indifferent for ϕ. Then
for each Ev ∈ TP such that sϕ(P, Ev) > 0, the ball BP(Ev)

− contains a type I fixed
point of ϕ.

Remark. Later, when we have proved the tree intersection theorem (Theorem 4.2)
we will establish a third identification lemma for id-indifferent points P (Lemma 4.5)
and we will strengthen Corollary 2.3, obtaining a fixed point theorem for arbitrary
balls BP(Ev)

− which ϕ maps onto P1
K (Theorem 4.6).

3. Classification of fixed points in H1
K

Recall that a fixed point P of ϕ in H1
K is called indifferent if degϕ(P) = 1 and

repelling if degϕ(P) > 1. We begin by introducing two trees which will play an
important role:

Definition 2 (the trees 0Fix and 0Fix,Repel). Suppose ϕ(z) ∈ K (z) has degree d ≥ 2.
Let 0Fix be the tree in P1

K spanned by the type I (classical) fixed points of ϕ. Let
0Fix,Repel be the tree in P1

K spanned by the type I fixed points of ϕ and the type II
repelling fixed points of ϕ in H1

K .

Clearly 0Fix ⊂ 0Fix,Repel. Since ϕ has at most d + 1 distinct type I fixed points,
0Fix is a finitely generated tree. It is possible that ϕ has a single type I fixed point
of multiplicity d + 1, in which case 0Fix is reduced to a point.

Below, we refine the notions of indifferent and repelling fixed points in H1
K .

Definition 3 (refined classification of indifferent fixed points in H1
K ). Let P ∈H1

K
be a type II indifferent fixed point of ϕ and let ϕ̃P be the reduction of ϕ at P . After
a change of coordinates, ϕ̃P is of one of three types:
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(A) ϕ̃P(z)= z; in this case we will say P is id-indifferent for ϕ.

(B) ϕ̃P(z) = ã · z for some ã ∈ k̃× with ã 6= 1; in this case we will say P is
multiplicatively indifferent for ϕ and that ϕ̃P has reduced rotation number ã.
(We remark that the reduced rotation number is only well-defined as an element
of {ã, ã−1

}: if coordinates on P1(k̃) are changed by conjugating with 1/z, then
ã is replaced by ã−1. If we need to be more precise, we will speak as follows.
Note that the directions Ev0, Ev∞ ∈ TP corresponding to 0,∞∈ P1(k̃) are the
only directions Ev ∈ TP fixed by ϕ∗. Let points P0 ∈ BP(Ev0)

−, P∞ ∈ BP(Ev∞)
−

be given. We will say that ϕ has reduced rotation number ã for the axis
(P0, P∞) and that it has reduced rotation number ã−1 for the axis (P∞, P0).)

(C) ϕ̃P(z) = z+ ã for some ã ∈ k̃ with ã 6= 0; in this case we will say that P is
additively indifferent for ϕ, with reduced translation number ã. The reduced
translation number is well-defined: it is the same for any choice of coordinates
on P1(k̃) with ϕ̃P(∞)=∞.

Definition 4 (reduced multipliers for fixed directions). Suppose P ∈H1
K is a type II

fixed point of ϕ and let Ev ∈ TP be a direction with ϕ∗(Ev)= Ev and mϕ(P, Ev)= 1. Let
ϕ̃P be the reduction of ϕ at P; without loss, assume coordinates have been chosen
so that Ev = Ev0. Then 0 is a fixed point of ϕ̃P . Put ã = ϕ̃′P(0) ∈ k̃. We will call ã the
reduced multiplier of ϕ in the direction Ev.

Definition 5 (refined classification of repelling fixed points in H1
K ). Let ϕ(z)∈K (z)

have degree d ≥ 2 and let P ∈H1
K be a repelling fixed point of ϕ. The directions

Ev1, . . . , Evm ∈ TP such that BP(Evi )
− contains a classical fixed point of ϕ, will be

called the focal directions of ϕ at P:

(A) P will be called unifocused (or just focused) if it has a unique focal direction Ev1.

(B) P will be called bifocused if it has exactly two distinct focal directions Ev1, Ev2.

(C) P will be called multifocused if it has m ≥ 3 focal directions.

Below are some properties of unifocused repelling fixed points.

Proposition 3.1. A repelling fixed point of ϕ in H1
K is a focused repelling fixed

point if and only if it does not belong to 0Fix. Each focused repelling fixed point is
an endpoint of 0Fix,Repel. If P is a focused repelling fixed point, with focus Ev1, then:

(A) ϕ∗(Ev1)= Ev1, mϕ(P, Ev1)= 1, and #F̃ϕ(P, Ev1)= degϕ(P)+ 1≥ 3.

(B) sϕ(P, Ev1) = d − degϕ(P) and Ev1 is the only direction Ev ∈ TP for which one
could have sϕ(P, Ev) > 0.

(C) For each Ev ∈ TP with Ev 6= Ev1 we have ϕ∗(Ev) 6= Ev and ϕ(BP(Ev)
−) is the ball

BP(ϕ∗(Ev))
−.

(D) For each Ew ∈ TP , there is at least one Ev ∈ TP with Ev 6= Ev1 such that ϕ∗(Ev)= Ew.



854 Robert Rumely

Proof. Let P be a repelling fixed point of ϕ. If P /∈0Fix all the type I fixed points of
ϕ lie in a single ball BP(Ev1)

−, so P is a focused repelling fixed point. Conversely,
suppose P is a focused repelling fixed point with focus Ev1. By assumption, all the
type I fixed points of ϕ belong to BP(Ev1)

−, so 0Fix ⊂ BP(Ev1)
−. Thus, P /∈ 0Fix.

We next show that if P is a focused repelling fixed point, it must be an endpoint
of 0Fix,Repel, and the only Ev ∈ TP fixed by ϕ∗ is Ev1. After a change of coordinates,
we can assume that P = ζG . Index directions Ev ∈ TP by points α̃ ∈ P1(k̃) and
choose coordinates so that Ev1 corresponds to α̃ = 1. Take any Ev ∈ TP with Ev 6= Ev1.
Since BP(Ev)

− contains no type I fixed points, Lemma 2.1 shows that sϕ(P, Ev)= 0
and ϕ∗(Ev) 6= Ev. Thus ϕ(BP(Ev)

−) is a ball, necessarily BP(ϕ∗(Ev)
−). If P were

not an endpoint of 0Fix,Repel, there would be a direction Ev ∈ TP with Ev 6= Ev1 such
that BP(Ev)

− contained a repelling fixed point Q of ϕ. This is impossible, since
ϕ(BP(Ev)

−)= BP(ϕ∗(Ev))
− where ϕ∗(Ev) 6= Ev, yet Q ∈ BP(Ev)

− and ϕ(Q)= Q. From
the fact that ϕ∗(Ev) 6= Ev for all Ev 6= Ev1, it follows that ϕ∗(Ev1)= Ev1, since the action of
ϕ∗ on TP corresponds to the action of the reduction ϕ̃ on P1(k̃) and ϕ̃ has at least
one fixed point.

Since P is a repelling fixed point, necessarily degϕ(P) ≥ 2. Since Ev1 is the
only direction fixed by ϕ∗, α̃ = 1 is the only point of P1(k̃) fixed by ϕ̃(z). Thus,
α̃ = 1 is a fixed point of ϕ̃ of multiplicity deg(ϕ̃)+ 1= degϕ(P)+ 1. This means
ϕ∗(Ev1)= Ev1 and #F̃ϕ(P, Ev1)= degϕ(P)+ 1≥ 3. Since α̃ = 1 is a fixed point of ϕ̃
of multiplicity > 1, α is not a critical point of ϕ̃, so mϕ(P, Ev1)= 1.

Since all the classical fixed points belong to BP(Ev1)
−, one has #Fϕ(P, Ev1)=d+1.

By Lemma 2.1, #Fϕ(P, Ev1) = sϕ(P, Ev1)+ #F̃ϕ(P, Ev1). We have seen above that
#F̃ϕ(P, Ev1)= degϕ(P)+ 1, so sϕ(P, Ev1)= d − degϕ(P). Since #Fϕ(P, Ev)= 0 for
all Ev ∈ TP with Ev 6= Ev1, Lemma 2.1 shows that Ev1 is the only direction in TP for
which one could have sϕ(P, Ev) > 0.

Finally, we show that for each Ew ∈ TP , there is a Ev ∈ TP with Ev 6= Ev1 satisfying
ϕ∗(Ev)= Ew. If Ew 6= Ev1, this is trivial, since ϕ∗ : TP→ TP is surjective and ϕ∗(Ev1)= Ev1.
If Ew = Ev1, it follows from the fact that mϕ(P, Ev1)= 1, since∑

Ev∈TP ,ϕ∗(Ev)=Ev1

mϕ(P, Ev)= degϕ(P)≥ 2. �

It may be worthwhile to note that focused repelling fixed points can exist. Here
is a class of maps with a focused repelling fixed point at ζG , with focal direction Ev0:

Example (maps with a focused repelling fixed point at ζG). Fix d ≥ 2 and let
L̃(X, Y )∈ k̃[X, Y ] be a homogeneous form of degree d−1 with L̃(X, Y ) 6= C̃ Xd−1.
Let L1(X, Y ), L2(X, Y ) ∈O[X, Y ] be homogeneous forms of degree d−1 whose
reductions satisfy

L̃1(X, Y )≡ L̃2(X, Y )≡ L̃(X, Y ) (mod m).
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Put
F(X, Y )= X L1(X, Y ) and G(X, Y )= Xd

+ Y L2(X, Y ).

For generic L1(X, Y ) and L2(X, Y ) we will have GCD(F,G) = 1; if this fails,
perturb L1(X, Y ) or L2(X, Y ) slightly. Henceforth we will assume GCD(F,G)= 1.

Consider the map ϕ with representation (F,G). Write

F̃(X, Y )= Ã(X, Y )F̃0(X, Y ) and G̃(X, Y )= Ã(X, Y )G̃0(X, Y ).

The reduced map ϕ̃ is represented by (F̃0, G̃0). Since F̃(X, Y ) = X L̃(X, Y ) and
G̃(X, Y )= Xd

+ Y L̃(X, Y ), we have

Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y ))= GCD(Xd−1, L̃(X, Y )).

Since L̃(X, Y ) 6= C̃ Xd−1, we must have Ã(X, Y ) = X s for some 0 ≤ s ≤ d − 2.
Putting n = d− s, it follows that deg(ϕ̃)= n ≥ 2. Thus ζG is a repelling fixed point
of ϕ and degϕ(ζG)= n. Let Ev0 ∈ TζG be the direction corresponding to 0∈ k̃⊂P1(k̃).

The fixed points of ϕ in P1(K ) are the zeros of H(X, Y ) = XG(X, Y ) −
Y F(X, Y ). The reduction of H(X, Y ) is

H̃(X, Y )= XG̃(X, Y )− Y F̃(X, Y )

= X · (Xd
+ Y L̃2(X, Y ))− Y · (X L̃1(X, Y ))= Xd+1, (14)

since L̃1(X, Y ) = L̃2(X, Y ). By the theory of Newton polygons, the type I fixed
points all belong to BζG (Ev0)

−. We claim that ζG is a focused repelling fixed point
for ϕ. To see this, note that 0Fix is contained in BζG (Ev0)

−, so ζG /∈ 0Fix. Since ζG

is a repelling fixed point of ϕ, it belongs to 0Fix,Repel. By Proposition 3.1, ζG must
be a focused repelling fixed point.

By taking L̃(X, Y )= X sY d−1−s for a given integer 0≤ s ≤ d−2, we can arrange
that Ã(X, Y )= X s . Thus for any pair (n, s) with 2 ≤ n ≤ d and n+ s = d, there
is a ϕ ∈ K (z) of degree d which has a focused repelling fixed point at ζG with
degϕ(ζG)= n and sϕ(ζG, Ev0)= s. �

We next consider the properties of bifocused repelling fixed points. First, we
will need a lemma.

Lemma 3.2. Suppose P ∈H1
K is of type II and Ev∈TP . If there is a focused repelling

fixed point Q ∈ BP(Ev)
− whose focus Ev1 points towards P , then sϕ(P, Ev) > 0.

Proof. We must show that ϕ(BP(Ev)
−)= P1

K . Since (P1
K \ BQ(Ev1)

−)⊂ BP(Ev)
−, it

suffices to show that
ϕ
(
P1

K \ BQ(Ev1)
−
)
= P1

K .

To see this, note that P1
K \ BQ(Ev1)

−
= {Q}∪

(⋃
Ev∈TQ ,Ev 6=Ev1

BQ(Ev)
−
)
. By assumption

ϕ(Q)= Q. Since ϕ∗ : TQ→ TQ is surjective, Proposition 3.1 shows that for each
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Ew ∈ TQ there is at least one Ev ∈ TQ with Ev 6= Ev1 for which ϕ∗(BQ(Ev)
−)= BQ( Ew)

−.
Since P1

K = {Q} ∪
(⋃
Ew∈TQ

BQ( Ew)
−
)
, the claim follows. �

Proposition 3.3. A repelling fixed point of ϕ in H1
K is a bifocused repelling fixed

point if and only if it belongs 0Fix but is not a branch point of 0Fix,Repel. Suppose P
is a bifocused repelling fixed point and let Ev1, Ev2 ∈ TP be its focal directions, then:

(A) ϕ∗(Ev)= Ev, mϕ(P, Ev)= 1, and #F̃ϕ(P, Ev)≥ 2, for at least one Ev ∈ {Ev1, Ev2}.

(B) For each Ev ∈ TP with Ev 6= Ev1, Ev2, we have ϕ∗(Ev) 6= Ev and sϕ(P, Ev)= 0.

Proof. Suppose P is a bifocused repelling fixed point. By definition, there are
type I fixed points α1, α2 of ϕ belonging to distinct directions in TP , so P ∈ 0Fix.
However, P cannot be a branch point of 0Fix, because if it were there would be at
least three distinct directions in TP containing type I fixed points. It also cannot
be a branch point of 0Fix,Repel which is not a branch point of 0Fix, because if it
were there would be at least one branch of 0Fix,Repel \ 0Fix off P . If Ev ∈ TP is
the corresponding direction, then BP(Ev)

− would contain a type II repelling fixed
point Q but no type I fixed points. Since Q is a focused repelling fixed point, whose
focus Ev1 ∈ TQ points towards 0Fix, by Lemma 3.2 we would have sϕ(P, Ev) > 0.
However, this contradicts Lemma 2.1 since BP(Ev)

− contains no type I fixed points.
Conversely, suppose P ∈ 0Fix is a type II repelling fixed point but is not a vertex

of 0Fix,Repel. Then there are exactly two directions Ev1, Ev2 ∈ TP containing type I
fixed points, so P is a bifocused repelling fixed point.

To prove assertions (A) and (B), let P be any bifocused repelling fixed point.
After a change of coordinates, we can assume that P= ζG and that 0 and∞ are fixed
points of ϕ. Let (F,G) be a normalized representation of ϕ. Since ϕ(z) fixes P , it
has nonconstant reduction. Thus there are nonzero homogeneous polynomials

Ã(X, Y ), F̃0(X, Y ), G̃0(X, Y ) ∈ k̃[X, Y ]

such that (F̃, G̃) = ( Ã · F̃0, Ã · G̃0), with GCD(F̃0, G̃0) = 1. Since P is a re-
pelling fixed point, we have δ := degϕ(P)≥ 2 and deg(F̃0)= deg(G̃0)= δ. Write
H(X, Y )= XG(X, Y )−Y F(X, Y ) and put H̃0(X, Y )= XG̃0(X, Y )−Y F̃0(X, Y ).
Then H̃(X, Y ) = Ã(X, Y ) · H̃0(X, Y ). Since 0,∞∈ P1(K ) are fixed points of ϕ
and P is a bifocused repelling fixed point, Ev0, Ev∞ ∈ TP are the only directions
Ev ∈ TP for which the balls BP(Ev)

− can contain type I fixed points. It follows
from Lemma 2.1 that H̃(X, Y )= c̃ · X`Y d+1−` for some c̃ ∈ k̃× and some `. Since
H̃0(X, Y ) | H̃(X, Y ), we must have H̃0(X, Y )= h̃ ·X`0Y δ+1−`0 for some h̃ ∈ k̃× and
some 0≤ `0 ≤ δ+1. Since δ+1≥ 3, either #F̃ϕ(P, Ev0)≥ 2 or #F̃ϕ(P, Ev∞)≥ 2. If
i ∈{1, 2} is such that #F̃ϕ(P, Evi )≥ 2 then necessarily ϕ∗(Evi )= Evi and mϕ(P, Evi )= 1.
This proves assertion (A).

For each Ev ∈ TP with Ev 6= Ev0, Ev∞, there are no type I fixed point in BP(Ev)
−, so

Lemma 2.1 shows that ϕ∗(Ev) 6= Ev and sϕ(P, Ev)= 0. Thus assertion (B) holds. �
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Finally, we consider multifocused repelling fixed points. Recall that the valence
of a point P in a graph 0 is the number of edges of 0 emanating from P .

Proposition 3.4. A fixed point of ϕ in H1
K is a multifocused repelling fixed point

if and only if it is a repelling fixed point and is a branch point of 0Fix. If P is a
multifocused repelling fixed point, then its valence in 0Fix,Repel is the same as its
valence in 0Fix.

Remark. Branch points of 0Fix need not be repelling fixed points: there can be
branch points of 0Fix which are indifferent fixed points of ϕ or are moved by ϕ.

Proof of Proposition 3.4. If P is a multifocused repelling fixed point, then at least
three directions in TP contain type I fixed points of ϕ, so P is a branch point of 0Fix.
Conversely, if a repelling fixed point P is a branch point of 0Fix, at least three
directions in TP contain type I fixed points of ϕ, so P is multifocused.

The second assertion can be reformulated as saying that if P is a multifocused
repelling fixed point of ϕ, then there are no branches of 0Fix,Repel \ 0Fix which
fork off 0Fix at P . Suppose to the contrary that there were such a branch and let
Ev ∈ TP be the corresponding direction. By the same argument as in the proof of
Proposition 3.3, BP(Ev)

− would contain a type II repelling fixed point Q but no type
I fixed points. Since Q is a focused repelling fixed point, whose focus Ev1 points
towards P , by Lemma 3.2 we would have sϕ(P, Ev) > 0. However, this contradicts
Lemma 2.1 since BP(Ev)

− contains no type I fixed points. �

The fact that focused repelling fixed points are endpoints of 0Fix,Repel, while
bifocused repelling fixed points and multifocused repelling fixed points belong
to 0Fix, leads one to ask about the nature of points of 0Fix,Repel \0Fix which are not
endpoints of 0Fix,Repel.

Proposition 3.5. Suppose P is a focused repelling fixed point of ϕ and let P0 be the
nearest point to P in 0Fix. Then each type II point Q ∈ (P, P0] is an id-indifferent
fixed point of ϕ.

Proof. Let Q be a type II point in (P, P0]. Let Ew ∈ TQ be the direction for which
P ∈ BQ( Ew)

−. The focus Ev1 of P points towards 0Fix and hence towards Q. By
Lemma 3.2, we have sϕ(Q, Ew) > 0. If ϕ(Q)= Q but Q is not id-indifferent, this
contradicts Lemma 2.1 since BQ( Ew)

− does not contain any type I fixed points of ϕ.
If ϕ(Q) 6= Q, it contradicts Lemma 2.2 for the same reason. Thus, Q must be
id-indifferent. �

4. The tree intersection theorem

In this section we study the tree 0Fix,Repel. We first note that it is never a single point.
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Lemma 4.1. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then either ϕ has at least two
type I fixed points or it has one type I fixed point and one or more type II repelling
fixed points. In either case, 0Fix,Repel has at least one edge.

Proof. If ϕ has at least two type I fixed points, we are done. If it has only one, that
point is necessarily a fixed point of multiplicity d+1, hence has multiplier 1 and is
an indifferent fixed point. By a theorem of Rivera-Letelier (see [Rivera-Letelier
2003b, Theorem B] or [Baker and Rumely 2010, Theorem 10.82]), ϕ has at least
one repelling fixed point in P1

K (which may be in either P1(K ) or H1
K ), so in this

case ϕ must have a repelling fixed point in H1
K . �

Theorem 4.2 (the tree intersection theorem). Let ϕ ∈ K (z) have degree d ≥ 2. Then
0Fix,Repel is the intersection of the trees 0Fix,ϕ−1(a), for all a ∈ P1(K ).

Proof. Write 00 for the intersection of the trees 0Fix,ϕ−1(a), for all a ∈ P1(K ).
We first show that 0Fix,Repel ⊆ 00. For this, it is enough to show that each

repelling fixed point of ϕ in H1
K belongs to 00, since 00 is connected and clearly

contains the type I fixed points. Let P be a repelling fixed point of ϕ in H1
K and fix

a ∈ P1(K ). We claim that P belongs to 0Fix,ϕ−1(a).
By a theorem of Rivera-Letelier (see [Rivera-Letelier 2000, Proposition 5.1]

or [Baker and Rumely 2010, Lemma 10.80]), P is of type II. By [Baker and
Rumely 2010, Corollary 2.13(B)], there is a γ ∈GL2(K ) for which γ (∞)= a and
γ (ζG)= P . After conjugating ϕ by γ , we can assume that a =∞ and P = ζG . Let
(F,G) be a normalized representation of ϕ. The poles of ϕ are the zeros of G(X, Y )
and the fixed points of ϕ are the zeros of H(X, Y ) := Y F(X, Y )− XG(X, Y ). Let
F̃, G̃ ∈ k̃[X, Y ] be the reductions of F and G. Put

Ã = GCD(F̃, G̃).

Write F̃= Ã·F̃0, and G̃= Ã·G̃0. Then ϕ̃ is the map (X, Y ) 7→ (F̃0(X, Y ), G̃0(X, Y ))
on P1(k̃). Since P is a repelling fixed point of ϕ, we have d̃ := deg(ϕ̃)≥ 2.

Put H̃0(X, Y ) = Y F̃0(X, Y ) − XG̃0(X, Y ), so deg(H̃0) = d̃ + 1. The fixed
points of ϕ̃ are the zeros of H̃0(X, Y ) in P1(k̃), listed with multiplicities. Since
GCD(F̃0, G̃0) = 1 and GCD(H̃0, G̃0) = GCD(Y F̃0, G̃0), we must have either
GCD(H̃0, G̃0)= 1 or GCD(H̃0, G̃0)= Y .

If GCD(H̃0, G̃0) = 1, the fixed points and poles of ϕ̃ are disjoint. Since each
fixed point of ϕ̃ is the reduction of at least one fixed point of ϕ (Lemma 2.1) and
each pole of ϕ̃ is the reduction of at least one pole of ϕ, we conclude that ϕ has a
fixed point z0 and a pole z1 lying in different directions in TP . Thus P belongs to
[z0, z1] and P ∈ 0Fix,ϕ−1(a).

If GCD(H̃0, G̃0) = Y , then Y divides G̃0, so ∞̃ is a pole of ϕ̃. This means ϕ
has a pole z1 in the ball BζG (Ev∞)

−
⊂ P1(K ). On the other hand, Y 2 cannot divide

both H̃0 and G̃0. If Y 2 does not divide H̃0, then ϕ̃ has at least one fixed point in k̃,
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so ϕ has a fixed point z0 in O. Since z0 and z1 lie in different tangent directions
at ζG , we conclude that ζG ∈ 0Fix,ϕ−1(a) in this case. On the other hand, if Y 2 does
not divide G̃0, then ϕ̃ has at least one pole in k̃, so ϕ has a pole z0 ∈O, and again
P = ζG ∈ 0Fix,ϕ−1(a).

We next show that 0Fix,Repel = 00. Since 0Fix,Repel ⊆ 00, it will suffice to show
that each endpoint of 0Fix,Repel which does not belong to 0Fix is an endpoint of the
intersection of some set of trees {0Fix,ϕ−1(ai ) : i ∈ I }, for an appropriate index set I .

By Proposition 3.1, each endpoint of 0Fix,Repel not in 0Fix is a focused repelling
fixed point of ϕ. Let P ∈ H1

K be a focused repelling fixed point, with focus Ev1.
Choose distinct directions Ev2, Ev3 ∈ TP \ {Ev1} and take a2 ∈ P1(K )∩ BP(Ev2)

− and
a3 ∈P1(K )∩ BP(Ev3)

−. We claim that P is an endpoint of 0Fix,ϕ−1(a2)∩0Fix,ϕ−1(a3).
To see this, note that if ξ2 ∈P1(K )∩(P1

K \BP(Ev1)
−) is a solution to ϕ(ξ2)= a2 and

ξ3 ∈P1(K )∩(P1
K \BP(Ev1)

−) is a solution to ϕ(ξ3)= a3, the directions Ew2, Ew3 ∈ TP

such that ξ2 ∈ BP( Ew2)
− and ξ3 ∈ BP( Ew3)

− are necessarily distinct. This follows
from Proposition 3.1, which asserts that for each Ew ∈ TP with Ew 6= Ev1, the image
ϕ(BP( Ew)

−) is precisely BP(ϕ∗( Ew))
−. �

The tree 0Fix,Repel is spanned by finitely many points.

Corollary 4.3. If ϕ(z) ∈ K (z) has degree d ≥ 2, then

(A) ϕ has at most d focused repelling fixed points, and

(B) 0Fix,Repel is a finitely generated tree with at most 2d + 1 endpoints. Each
endpoint of 0Fix,Repel is either a type I fixed point or a type II focused repelling
fixed point.

Proof. If ϕ(z) has no focused repelling fixed points, part (A) holds trivially. Other-
wise, choose any focused repelling fixed point P . By Proposition 3.1, it is an
endpoint of 0Fix,Repel; let Ev ∈ TP be a direction pointing away from 0Fix,Repel. Fix
a point α ∈ P1(K ) ∩ BP(Ev)

− and consider the solutions ξ1, . . . , ξd to ϕ(z) = α.
By Proposition 3.1, for each focused repelling fixed point Q there is a direction
EwQ ∈ TQ pointing away from 0Fix,Repel such that α ∈ ϕ(BQ( EwQ)

−); it follows that
some ξi belongs to BQ( EwQ)

−. For distinct Q, the balls BQ( EwQ)
− are pairwise

disjoint. Thus ϕ has at most d focused repelling fixed points.
Since ϕ has at most d + 1 type I fixed points, the tree 0Fix,Repel is spanned by at

most 2d + 1 points. Its endpoints are clearly as claimed. �

We will sharpen Corollary 4.3 in Corollary 6.2. Below are some additional
consequences of Theorem 4.2. A trivial but important one is:

Corollary 4.4. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then MinResLoc(ϕ) is con-
tained in 0Fix,Repel.

Proof. By Theorem 1.1, MinResLoc(ϕ) is contained in0Fix,ϕ−1(a) for each a∈P1(K ).
Hence it is contained in the intersection of those trees, which is 0Fix,Repel. �
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Another is an “identification lemma” for id-indifferent fixed points.

Lemma 4.5 (third identification lemma). Suppose P is a type II id-indifferent fixed
point of ϕ. Then for each Ev ∈ TP such that sϕ(P, Ev) > 0, the ball BP(Ev)

− contains
either a type I fixed point or a type II focused repelling fixed point of ϕ.

Proof. Suppose sϕ(P, Ev) > 0. This means ϕ(BP(Ev)
−)= P1

K . If BP(Ev)
− contains a

type I fixed point, we are done.
If not, then there must be some Ev0 ∈ TP with Ev0 6= Ev such that BP(Ev0)

− contains
a type I fixed point. Since ϕ(BP(Ev)

−)= P1
K , for each a ∈P1(K ) there is a solution

to ϕ(x)= a in BP(Ev)
−. The path from this solution to the type I fixed point passes

through P , so P ∈ 0Fix,ϕ−1(a). Letting a vary, we see that

P ∈
⋂

a∈P1(K )

0Fix,ϕ−1(a) = 00 = 0Fix,Repel.

Since P is id-indifferent, we must have mϕ(P, Ev) = 1. Hence by a theorem
of Rivera-Letelier (see [Rivera-Letelier 2003b, §4] or [Baker and Rumely 2010,
Theorem 9.46]) there is a Q ∈ BP(Ev)

− such that ϕ maps the annulus Ann(P, Q)
to itself and fixes each point in [P, Q]. Take any type II point Z ∈ (P, Q) and let
Ew ∈ TZ be the direction towards Q. We claim that sϕ(Z , Ew) > 0. If not, ϕ maps
BZ ( Ew)

− to a ball and that ball must be BZ ( Ew)
− since ϕ(Z)= Z and ϕ∗( Ew)= Ew.

However, this means that

ϕ(BP(Ev)
−)= ϕ(Ann(P, Q)∪ BZ ( Ew)

−)

= ϕ(Ann(P, Q))∪ϕ(BZ ( Ew)
−)

= Ann(P, Q)∪ BZ ( Ew)
−

= BP(Ev)
−,

which contradicts that sϕ(P, Ev) > 0. Hence it must be that sϕ(Z , Ew) > 0 and, by
the same argument as above, it follows that Z ∈ 0Fix,Repel.

Thus 0Fix,Repel contains points in BP(Ev)
−, so it has an endpoint in BP(Ev)

−.
Since BP(Ev)

− does not contain type I fixed points, the endpoint must be a focused
repelling fixed point. �

As Lemma 4.5 shows, when P is a type II id-indifferent fixed point, the linkage
between directions Ev ∈ TP for which sϕ(P, Ev) > 0 and directions containing a
type I fixed point breaks down. It turns out that for id-indifferent fixed points it is
the “primary terms” in a normalized representation at P which determine when
sϕ(P, Ev) > 0 and the “secondary terms” which determine the type I fixed points.
This is made precise by the following class of examples:

Example (maps with an id-indifferent fixed point at ζG). Fix d ≥ 2 and let
Ã(X, Y ) ∈ k̃[X, Y ] be a nonzero homogeneous form of degree d−1. Lift Ã(X, Y )
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to A(X, Y ) ∈O[X, Y ] and fix π ∈O with ord(π) > 0. Let F1(X, Y ),G1(X, Y ) ∈
O[X, Y ] be arbitrary homogeneous forms of degree d . Put

F(X, Y )= A(X, Y ) · X +πF1(X, Y ),

G(X, Y )= A(X, Y ) · Y +πG1(X, Y ).

For generic F1(X, Y ) and G1(X, Y ) we will have GCD(F,G) = 1; if that is the
case, let ϕ be the map with normalized representation (F,G). Then

(1) (F̃(X, Y ), G̃(X, Y ))= Ã(X, Y ) · (X, Y ), while

(2) H(X, Y )= XG(X, Y )− Y F(X, Y )= π(XG1(X, Y )− Y F1(X, Y )).

Thus the directions Ev ∈ TζG with sϕ(ζG, Ev) > 0 come from the roots of Ã(X, Y ),
while the type I fixed points of ϕ are the roots of XG1(X, Y )− Y F1(X, Y ). �

By combining the three identification lemmas we obtain a new fixed point
theorem which concerns balls which ϕ maps onto P1

K . Previously known fixed
point theorems (see [Baker and Rumely 2010, Theorems 10.83, 10.85, and 10.86])
concern domains D ⊂ P1

K whose image ϕ∗(D) is another domain, with D ⊂ ϕ∗(D)
or ϕ∗(D)⊂ D, or closed sets X with ϕ(X)⊆ X .

Theorem 4.6 (full image fixed point theorem). Let ϕ(z) ∈ K (z), with deg(ϕ)≥ 2.
Suppose P ∈ P1

K and Ev ∈ TP . If ϕ(BP(Ev)
−)= P1

K , then BP(Ev)
− contains either a

(classical) fixed point of ϕ in P1(K ) or a repelling fixed point of ϕ in H1
K .

Proof. Given points P, Q ∈P1
Berk with Q 6= P , write Ann(P, Q) for the component

of P1
K \ {P, Q} containing (P, Q).

Assume ϕ(BP(Ev)
−) = P1

K . If P is of type II, then sϕ(P, Ev) > 0 and the result
follows by combining Lemmas 2.1, 2.2, and 4.5. If P is of type III or IV, one
reduces to the case of type II as follows: There is a point Q ∈ BP(Ev)

− such that
ϕ(Ann(P, Q)) = Ann(ϕ(P), ϕ(Q)). Take any type II point Z ∈ (P, Q) and let
Ew ∈ TZ be the direction towards Q. We claim that ϕ(BZ ( Ew)

−)= P1
K . Otherwise,

ϕ∗(BZ ( Ew)
−)would be the ball Bϕ(Z)(ϕ∗( Ew))−. By the mapping properties of annuli

ϕ∗( Ew) is the direction in Tϕ(Z) containing ϕ(Q), so

ϕ(BP(Ev)
−)= ϕ(Ann(P, Q))∪ϕ(BZ ( Ew)

−)=Ann(ϕ(P), ϕ(Q))∪ Bϕ(Z)(ϕ∗( Ew))−

omits the point ϕ(P), contradicting that ϕ(BP(Ev)
−)= P1

K .
If P is of type I and BP(Ev)

−
= P1

K \ {P} contains no type I fixed points of ϕ,
then P is the only type I fixed point of ϕ. Hence it is a fixed point of multiplicity
d + 1> 1 and necessarily has multiplier 1. By a theorem of Rivera-Letelier (see
[Rivera-Letelier 2003b, Theorem B] or [Baker and Rumely 2010, Theorem 10.82])
ϕ has at least one repelling fixed point in P1

K , so it has a repelling fixed point in H1
K ,

which clearly lies in BP(Ev)
−. �
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The author does not know whether Theorem 4.6 can be generalized to domains
D with ϕ(D)= P1

K , when D has more than one boundary point.

5. Slope formulas

In this section we establish formulas for the slope of ordResϕ( · ) at an arbitrary
point P ∈H1

K , in an arbitrary direction Ev ∈ TP . These formulas will be used in the
proof of the weight formula in Section 6.

Let f (z) be a function on H1
K and write ρ(P, Q) for the logarithmic path distance.

Given a point P ∈H1
K and a direction Ev ∈ TP , the slope of f at P in the direction

Ev is defined to be

∂Ev f (P)= lim
Q→P

Q∈BP (Ev)
−

F(Q)− F(P)
ρ(Q, P)

, (15)

provided the limit exists. For any two points P1, P2 ∈ BP(Ev)
−, the paths [P, P1]

and [P, P2] share a common initial segment, so the limit in (15) exists if and only
if it exists for Q restricted to [P, P1]. Since ρ(P, Q) is invariant under the action
of GL2(K ) on H1

K , ∂EvF(P) is independent of the choice of coordinates.
For the remainder of this section we will take f ( · )= ordResϕ( · ).

Definition 6 (tangent space and valence in 0Fix,Repel). For a point P ∈ 0Fix,Repel,
we write TP,FR for the tangent space to P in 0Fix,Repel, the set of directions Ev ∈ TP

such that there is an edge of 0Fix,Repel emanating from P in the direction Ev. We
write vFR(P) for the valence of P in 0Fix,Repel, the number of edges of 0Fix,Repel

emanating from P .

Definition 7 (shearing directions). If P is a fixed point of ϕ in P1
K (of any type I, II,

III, or IV), a direction Ev ∈ TP will be called a shearing direction if there is a type I
fixed point in BP(Ev)

− but ϕ∗(Ev) 6= Ev. Let NShearing(P) be the number of shearing
directions in TP .

We will now give formulas for the slope of ordResϕ( · ) at each type II point P ,
in each direction Ev ∈ TP . The formulas break into several cases, depending on the
nature of P . For the convenience of the reader, we first state all the formulas, then
give the proofs.

Proposition 5.1. Let P ∈H1
K be a type II fixed point of ϕ which is not id-indifferent.

Then for each Ev ∈ TP , the slope of f ( · )= ordResϕ( · ) at P in the direction Ev is

∂Ev f (P)= (d2
− d)− 2d · #Fϕ(P, Ev)+ 2d ·max(1, #F̃ϕ(P, Ev))

= (d2
− d)− 2d · sϕ(P, Ev)+ 2d ·

{
0 if ϕ∗(Ev)= Ev,
1 if ϕ∗(Ev) 6= Ev.

(16)
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Furthermore, if P ∈ 0Fix,Repel, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
−d) ·(vFR(P)−2)+2d ·(degϕ(P)−1+NShearing(P)). (17)

Proposition 5.2. Let P ∈H1
K be a type II id-indifferent fixed point of ϕ. Then for

each Ev ∈ TP , the slope of f ( · )= ordResϕ( · ) at P in the direction Ev is

∂Ev f (P)= (d2
− d)− 2d · sϕ(P, Ev). (18)

Furthermore, if P ∈ 0Fix,Repel, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (vFR(P)− 2). (19)

Proposition 5.3. Let P ∈ H1
K be a type II point with ϕ(P) 6= P. Then for each

Ev ∈ TP , the slope of f ( · )= ordResϕ( · ) at P in the direction Ev is

∂Ev f (P)= d2
+ d − 2d · #Fϕ(P, Ev). (20)

Furthermore, if P ∈ 0Fix,Repel, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (vFR(P)− 2)+ 2d · (vFR(P)− 2). (21)

Finally, we consider the “slope of ordResϕ( · ) in the direction away from Q”, at
a type I point Q. Since ordResϕ(Q)=∞, the definition of the slope given in (15)
does not make sense. Instead, for a suitable Q1 near Q, we show that ordResϕ( · )
has constant slope in the direction of Q1, for each P ∈ (Q, Q1).

Proposition 5.4. Let Q be a type I point. Then there is a Q1 ∈ H1
K such that for

each P ∈ (Q, Q1), the slope of f ( · )= ordResϕ( · ) at P , in the direction Ev1 ∈ TP

which points towards Q1, is

∂Ev1 f (P)=
{
−(d2

− d) if Q is fixed by ϕ,
−(d2

+ d) if Q is not fixed by ϕ.

We will now prove Propositions 5.1–5.4.

Proof of Proposition 5.1. After a change of coordinates, we can assume that P = ζG

and Ev = Ev0. Let (F,G) be a normalized representation of ϕ; write F(X, Y ) =
ad Xd

+· · ·+a0Y d and G(X, Y )= bd Xd
+· · ·+b0Y d . For each A ∈ K× we have,

by [Rumely 2015, formula 13],

ordResϕ(ζ0,|A|)− ordResϕ(ζG)

= (d2
+ d)ord(A)− 2d ·min

(
min

0≤i≤d
ord(Ai ai ), min

0≤ j≤d
ord(A j+1b j )

)
.
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By hypothesis, the reductions F̃ and G̃ are nonzero; thus there are indices i and j
such that ãi 6= 0 and b̃ j 6= 0 or equivalently that ord(ai )= 0 and ord(b j )= 0. Let `1

be the least index i for which ord(ai )= 0 and let `2 be the least index j for which
ord(b j )= 0. If ord(A) > 0 and ord(A) is sufficiently small, then

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
=min

(
ord(A`1a`1), ord(A`2+1b`2)

)
=min(`1, `2+ 1) · ord(A).

It follows that the slope of ordResϕ( · ) at P in the direction Ev = Ev0 is

d2
+ d − 2d ·min(`1, `2+ 1). (22)

We will now reformulate (22) using dynamical invariants. Letting F̃, G̃ ∈ k̃[X, Y ]
be the reductions of F and G, we can factor F̃ = Ã · F̃0 and G̃ = Ã · G̃0 where
Ã=GCD(F̃, G̃). Write ordX (F̃) and ordX (G̃) for the power with which X occurs
as a factor of F̃ and G̃. Using Faber’s theorem [2013a, Lemma 3.17], it follows that

sϕ(P, Ev0)= ordX ( Ã)=min
(
ordX (F̃), ordX (G̃)

)
=min(`1, `2).

On the other hand, since P is not id-indifferent for ϕ, by Lemma 2.1

sϕ(P, Ev0)= #Fϕ(P, Ev0)− #F̃ϕ(P, Ev0).

Note that #F̃ϕ(P, Ev0)= 0 holds if and only if ordX (F̃0)= 0, which in turn holds
if and only if `1 ≤ `2. Thus, if #F̃ϕ(P, Ev0)= 0, then `1 ≤ `2 and

min(`1, `2+ 1)= `1 = sϕ(P, Ev0)= #Fϕ(P, Ev0).

On the other hand, if #F̃ϕ(P, Ev0) > 0 then `2 < `1 and sϕ(P, Ev0)= `2, so

min(`1, `2+ 1)= `2+ 1= sϕ(P, Ev0)+ 1= #Fϕ(P, Ev0)− #F̃ϕ(P, Ev0)+ 1.

It follows that

min(`1, `2+ 1)=
{

#Fϕ(P, Ev0) if #F̃ϕ(P, Ev0)= 0,
#Fϕ(P, Ev0)− #F̃ϕ(P, Ev0)+ 1 if #F̃ϕ(P, Ev0) > 0

= #Fϕ(P, Ev0)−max(1, #F̃ϕ(P, Ev0))+ 1. (23)

Inserting (23) in (22) yields the first formula in (16). The second formula in (16)
follows from sϕ(P, Ev) = #Fϕ(P, Ev)− #F̃ϕ(P, Ev), since ϕ∗(Ev) = Ev if and only if
#F̃ϕ(P, Ev) > 0.

If P ∈0Fix,Repel, note that by Lemma 2.1, for a direction Ev∈TP,FR, then ϕ∗(Ev) 6= Ev
if and only if Ev is a shearing direction. To obtain (17), sum the second formula in
(16) over all Ev ∈ TP,FR, getting∑
Ev∈TP,FR

∂Ev f (P)= (d2
−d) ·vFR(P)−2d ·

∑
Ev∈TP,FR

sϕ(P, Ev)+2d ·NShearing(P). (24)
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By Lemma 2.1, TP,FR contains all Ev ∈ TP such that sϕ(P, Ev) > 0. It follows that∑
Ev∈TP,FR

sϕ(P, Ev)= d − degϕ(P).

Inserting this in (24) yields (17). �

Proof of Proposition 5.2. After a change of coordinates, we can assume that P = ζG

and Ev = Ev0. Let (F,G) be a normalized representation of ϕ; write F(X, Y ) =
ad Xd

+ · · · + a0Y d and G(X, Y ) = bd Xd
+ · · · + b0Y d . Letting `1 and `2 be

the least index such that ord(ai ) = 0 and ord(b j ) = 0, respectively, just as in
Proposition 5.1 one sees that the slope of ordResϕ( · ) at P in the direction Ev= Ev0 is

d2
+ d − 2d ·min(`1, `2+ 1). (25)

Since P is id-indifferent for ϕ, the reductions F̃ and G̃ are nonzero and if
Ã = GCD(F̃, G̃) then F̃(X, Y )= X · Ã(X, Y ) and G̃(X, Y )= Y · Ã(X, Y ). Thus
`1 = ordX ( Ã(X, Y ))+ 1 and `2 = ordX ( Ã(X, Y )). By Faber’s theorem [2013a,
Lemma 3.17], we have sϕ(P, Ev0)= ordX ( Ã). Hence

min(`1, `2+ 1)= ordX ( Ã)+ 1= sϕ(P, Ev0)+ 1. (26)

Inserting (26) in (25) yields (18).
When P ∈ 0Fix,Repel, to obtain (19) sum (18) over all Ev ∈ TP,FR, getting∑

Ev∈TP,FR

∂Ev f (P)= (d2
− d) · vFR(P)− 2d ·

∑
Ev∈TP,FR

sϕ(P, Ev). (27)

By Lemma 4.5, TP,FR contains all Ev∈TP such that sϕ(P, Ev)>0. Since degϕ(P)=1,
it follows that ∑

Ev∈TP,FR

sϕ(P, Ev)= d − degϕ(P)= d − 1.

Inserting this in (27), and simplifying, yields (19). �

Proof of Proposition 5.3. To prove (20) we use the machinery from Lemma 2.2. As
in that lemma, we choose γ ∈GL2(K ) such that γ (ζG)= P and γ−1(ϕ(P))= ζ0,r ,
for some r ∈ |K×| with 0 < r < 1. By replacing ϕ with ϕγ we can assume that
P = ζG and ϕ(P)= ζ0,r .

Let c ∈ K× be such that |c| = r ; put 8(z)= (1/c)ϕ(z). Then 8(ζG)= ζG , so 8
has nonconstant reduction and ϕ(z)= c ·8(z). Let (F,G) be a normalized represen-
tation of8; then (cF,G) is a normalized representation of ϕ. Using this representa-
tion, put H(X, Y )= XG(X, Y )−Y ·cF(X, Y ); this yields H̃(X, Y )= X · G̃(X, Y ).
On the other hand, if the type I fixed points of ϕ (listed with multiplicities) are
(ai : bi ) for i = 1, . . . , d+1, normalized so that max(|ai |, |bi |)= 1 for each i , there
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is a constant C with |C | = 1 such that H(X, Y )=C ·
∏d+1

i=1 (bi X −ai Y ). Reducing
this (modm) gives

XG̃(X, Y )= H̃(X, Y )= C̃ ·
d+1∏
i=1

(b̃i X − ãi Y ). (28)

We will now consider what this means for the slope of ordResϕ( · ) at P in a
direction Ev ∈ TP . We parametrize the directions Ev ∈ TP by points a ∈P1(k̃). We will
consider three cases, corresponding to the directions Ev0, Eva for 0 6= a ∈ k̃, and Ev∞.

First consider the direction Ev0∈TP . We use the normalized representation (cF,G)
for ϕ, expanding cF(X, Y )= ad Xd

+· · ·+a0Y d and G(X, Y )= bd Xd
+· · ·+b0Y d .

As usual, for each A ∈ K×,

ordResϕ(ζ0,|A|)− ordResϕ(ζG)

= (d2
+ d)ord(A)− 2d ·min

(
min

0≤i≤d
ord(Ai ai ), min

0≤ j≤d
ord(A j+1b j )

)
. (29)

Let N = N0 = #Fϕ(P, Ev0) be the number of fixed points of ϕ in BP(Ev0)
−. By (28)

we have X N−1
‖ G̃(X, Y ), so ord(b`) > 0 for `= 0, . . . , N −2 and ord(bN−1)= 0.

Since |c| < 1 we see that ord(a`) > 0 for all `. It follows that if ord(A) > 0 and
ord(A) is sufficiently small, then

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
= ord(A(N−1)+1bN−1)= N · ord(A).

Inserting this in (29) shows that the slope of ordResϕ( · ) at P in the direction Ev0 is

∂Ev0 f (P)= d2
+ d − 2d · N0 = d2

+ d − 2d · #Fϕ(P, Ev0). (30)

Next consider a direction Eva ∈ TP , where 0 6= a ∈ k̃. Choose an α ∈ O with
α̃ = a and conjugate ϕ by

γα =

[
1 α

0 1

]
.

A normalized representation for ϕα := (ϕ)γα is given by(
Fα(X, Y )
Gα(X, Y )

)
=

[
1 −α
0 1

]
·

(
cF
G

)
·

[
1 α

0 1

]
=

(
cF(X +αY, Y )−αG(X +αY, Y )

G(X +αY, Y )

)
.

Reducing this gives F̃α(X, Y )=−aG̃(X+aY, Y ) and G̃α(X, Y )= G̃(X+aY, Y ).
Let N = Na = #Fϕ(P, Eva) be the number of fixed points of ϕ in BP(Eva)

−;
from (28) it follows that (X − aY )N

‖ G̃(X, Y ). The direction Evα for ϕ pulls
back to Ev0 for ϕα, so N = #Fϕα (P, Ev0). Thus X N

‖ F̃α(X, Y ) and X N
‖ G̃α(X, Y ).

Expanding Fα(X, Y )= ad Xd
+· · ·+a0Y d and Gα(X, Y )= bd Xd

+· · ·+b0Y d , we
see that ord(a`), ord(b`) > 0 for `= 0, . . . , N − 1, while ord(aN )= ord(bN )= 0.
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If ord(A) > 0 is sufficiently small, it follows that

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
= ord(AN aN )= N · ord(A).

Inserting this in (29) shows that the slope of ordResϕ( · ) at P in the direction Eva is

∂Eva f (P)= d2
+ d − 2d · Na = d2

+ d − 2d · #Fϕ(P, Eva). (31)

Finally, consider the direction Ev∞ ∈ TP . Conjugate ϕ by

γ∞ =

[
0 1
1 0

]
.

A normalized representation for ϕ∞ := (ϕ)γ∞ is given by(
F∞(X, Y )
G∞(X, Y )

)
=

[
0 1
1 0

]
·

(
cF
G

)
·

[
0 1
1 0

]
=

(
G(Y, X)
cF(Y, X)

)
.

Reducing this gives F̃∞(X, Y )= G̃(Y, X) and G̃∞(X, Y )= 0.
Let N = N∞ = #Fϕ(P, Ev∞) be the number of fixed points of ϕ in BP(Ev∞)

−;
by formula (28) we have Y N

‖ G̃(X, Y ). The direction Ev∞ for ϕ pulls back to
Ev0 for ϕ∞, so N = #Fϕ∞(P, Ev0). Thus X N

‖ F̃∞(X, Y ). Writing F∞(X, Y ) =
ad Xd

+ · · ·+ a0Y d and G∞(X, Y )= bd Xd
+ · · ·+ b0Y d , we see that ord(a`) > 0

for ` = 0, . . . , N − 1, while ord(aN ) = 0; we have ord(b`) > 0 for all `. Thus if
ord(A) > 0 is sufficiently small,

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
= ord(AN aN )= N · ord(A).

Inserting this in (29) shows that the slope of ordResϕ( · ) at P in the direction Ev∞ is

∂Ev∞ f (P)= d2
+ d − 2d · N∞ = d2

+ d − 2d · #Fϕ(P, Ev∞). (32)

Combining (30), (31) and (32) yields (20).
If P ∈ 0Fix,Repel, to obtain (19) sum (20) over all Ev ∈ TP,FR, getting∑

Ev∈TP,FR

∂Ev f (P)= (d2
+ d) · vFR(P)− 2d ·

∑
Ev∈TP,FR

#Fϕ(P, Ev). (33)

By Lemma 2.2, TP,FR contains all Ev ∈ TP such that #Fϕ(P, Ev) > 0. Since ϕ has
d + 1 type I fixed points (counting multiplicities), it follows that∑

Ev∈TP,FR

#Fϕ(P, Ev)= d + 1.

Inserting this in (33) yields (21). �
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Proof of Proposition 5.4. After a change of coordinates, we can assume that Q = 0.
Since ordResϕ( · ) is piecewise affine on paths in H1

K (relative to the logarithmic
path distance), it suffices to prove the result when P = ζ0,r is a type II point with r
sufficiently small and Ev1 ∈ TP is the direction Ev∞.

Write F(X, Y )=ad Xd
+· · ·+a0Y d , G(X, Y )=bd Xd

+· · ·+b0Y d and let (F,G)
be a normalized representation of ϕ. Take A ∈ K× and put r = |A|; by [Rumely
2015, formula (19)]

ordResϕ(ζ0,r )

= ordRes(F,G)+(d2
+d)ord(A)−2d min

(
min

0≤`≤d
ord(A`a`), min

0≤`≤d
ord(A`+1b`)

)
.

First suppose that Q is fixed by ϕ, so ϕ(0) = 0. In this situation a0 = 0 and
b0 6= 0, so if r = |A| is sufficiently small, then

min
(

min
0≤`≤d

ord(A`a`), min
0≤`≤d

ord(A`+1b`)
)

coincides with

min
(
ord(Aa1), ord(Ab0)

)
= ord(A)+min

(
ord(a1), ord(b0)

)
.

For such r we have

ordResϕ(ζ0,r )= ordRes(F,G)− 2d min
(
ord(a1), ord(b0)

)
+ (d2

− d)ord(A),

and since ord(A) measures the logarithmic path distance and increases as r→ 0,
the slope of ordResϕ( · ) at ζ0,r in the direction Ev∞ is −(d2

− d).
Next suppose Q is not fixed by ϕ, so ϕ(0) 6=0. In this case a0 6=0. If r=|A| is suf-

ficiently small, then min
(
min0≤`≤d ord(A`a`),min0≤`≤d ord(A`+1b`)

)
= ord(a0).

For such r we have

ordResϕ(ζ0,r )= ordRes(F,G)− 2dord(a0)+ (d2
+ d)ord(A),

so the slope of ordResϕ( · ) at ζ0,r in the direction Ev∞ is −(d2
+ d). �

6. The weight formula and the crucial set

In this section, we prove the weight formula (Theorem A) as Theorem 6.1. We then
give an intrinsic formula for the crucial measure (Corollary 6.5) and note some of
the functoriality properties of the crucial set and crucial measure.

We begin by defining weights wϕ(P), motivated by Propositions 5.1, 5.2, and 5.3.

Definition 8 (weights). For each P ∈ P1
K , let wϕ(P) be the following nonnegative

integer:

(1) If P ∈H1
K and P is fixed by ϕ, put

wϕ(P)= degϕ(P)− 1+ NShearing(P).
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(2) If P ∈H1
K and P is not fixed by ϕ, let v(P) be the number of directions Ev ∈ TP

such that BP(Ev)
− contains a type I fixed point of ϕ, and put

wϕ(P)=max(0, v(P)− 2).

(3) If P ∈ P1(K ), put wϕ(P)= 0.

Our main theorem (Theorem A) is:

Theorem 6.1 (weight formula). Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then∑
P∈P1

K

wϕ(P)= d − 1. (34)

Corollary 6.2. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then∑
repelling fixed points

P ∈H1
K

(degϕ(P)− 1)≤ d − 1. (35)

In particular ϕ can have most d−1 repelling fixed points in H1
K .

In [Rumely 2014] it is shown that for each d ≥ 2, there exist functions ϕ ∈ K (z)
of degree d which have d−1 repelling fixed points in H1

K , so Corollary 6.2 is sharp.
Although the weight formulas in Definition 8 are mysterious, they arise naturally,

as shown by the proof of Theorem 6.1 and by Corollary 6.5 which gives an intrinsic
formula for the crucial measure νϕ .

The author’s efforts to understand the weights lead to the following observations.
It is not surprising that for a fixed point in HBerk, the degree should enter into
the weight. Given that (35) holds, if there are infinitely many fixed points, most
must have degree 1 and weight 0, so the contribution degϕ(P)− 1 to the weight is
understandable. The contribution from the shearing directions is more unexpected.
The presence of a shearing direction Ev ∈ TP indicates a difference between the
local and global behavior of ϕ: “ near P” points in the direction Ev are moved to
another direction Ew but “far away from P” there is a classical fixed point in the
direction Ev. There is a hidden similarity between the weight formulas for fixed
points and points that are moved. If P is fixed by ϕ, there need be no shearing
directions, and all the shearing directions count in the weight. For a point P ∈H1

K
which is moved by ϕ, there are automatically some shearing directions: If P is
outside 0Fix,Repel all the classical fixed points lie in one direction and that direction
is sheared. If P is in 0Fix,Repel but is not a branch point, there are two directions
containing classical fixed points and those directions are sheared. Such points must
have weight 0. However, if P is a branch point of 0Fix,Repel, there are more than
two shearing directions, and the weight counts the excess.



870 Robert Rumely

The following proposition makes the weights more explicit and describes which
points have positive weight and which have weight zero:

Proposition 6.3 (properties of weights). Let P ∈ P1
K . If P is a focused repelling

fixed point, then wϕ(P)= degϕ(P)− 1. If P is an additively indifferent fixed point
in 0Fix or is a multiplicatively indifferent fixed point which is a branch point of 0Fix,
then wϕ(P) = NShearing(P). If P is an id-indifferent fixed point, then wϕ(P) = 0.
If P is a nonfixed branch point of 0Fix, then wϕ(P)= v(P)− 2. For all P , wϕ(P)
is an integer with 0≤ wϕ(P)≤ d − 1 and:

(A) wϕ(P) > 0 if

(1) P is a type II repelling fixed point of ϕ, or
(2) P is an additively indifferent fixed point of ϕ which belongs to 0Fix, or
(3) P is a multiplicatively indifferent fixed point of ϕ which is a branch point

of 0Fix, or
(4) P is a branch point of 0Fix which is moved by ϕ.

(B) wϕ(P)= 0 if

(1) P /∈ 0Fix,Repel, or
(2) P is not of type II, or
(3) P is an additively indifferent fixed point which is not in 0Fix, or
(4) P is a multiplicatively indifferent fixed point which is not a branch point

of 0Fix, or
(5) P is an id-indifferent fixed point, or
(6) P is moved by ϕ and is not a branch point of 0Fix.

Proof. If P is a focused repelling fixed point, the unique direction Ev ∈ TP such
that BP(Ev)

− contains type I fixed points is fixed by ϕ∗, so NShearing(P) = 0 and
wϕ(P)=degϕ(P)−1. If P is an additively indifferent or multiplicatively indifferent
fixed point, then degϕ(P)= 1 so wϕ(P)= NShearing(P). If P is id-indifferent, then
degϕ(P)= 1 and each Ev ∈ TP is fixed by ϕ∗, so NShearing(P)= 0; thus wϕ(P)= 0.
If P is a nonfixed branch point of 0Fix, then v(P) > 2 so wϕ(P)= v(P)− 2.

Clearly each type II repelling fixed point has wϕ(P) > 0. By results of Rivera-
Letelier [2003b, Lemmas 5.3 and 5.4] (or [Baker and Rumely 2010, Lemma 10.80]),
each fixed point of type III or IV has degree 1 and each of its tangent directions is
fixed by ϕ∗, hence wϕ(P)= 0. By definition, each point of type I has wϕ(P)= 0.

Each additively indifferent fixed point P /∈ 0Fix has type I fixed points in exactly
one tangent direction and Lemma 2.1 shows that direction is fixed by ϕ∗; hence
wϕ(P) = 0. On the other hand, each additively indifferent fixed point P ∈ 0Fix

has type I fixed points in at least two tangent directions, one of which must be a
shearing direction since an additively indifferent fixed point has exactly one fixed
direction; hence wϕ(P) > 0.
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Likewise, a multiplicatively indifferent fixed point P has two fixed directions and
Lemma 2.1 shows each of them must contain type I fixed points; thus P belongs
to 0Fix. If P is not a branch point of 0Fix, its two fixed directions are the only ones
containing type I fixed points, so it has no shearing directions, and wϕ(P) = 0.
If P is a branch point of 0Fix, there is at least one Ev ∈ TP containing a type I fixed
point besides the two fixed directions and that direction is a shearing direction,
so wϕ(P) > 0.

If P ∈ H1
K is not fixed by ϕ, there are three possibilities. Recall that v(P) is

the number of directions in TP containing a type I fixed point. If P /∈ 0Fix, there
is only one direction Ev ∈ TP containing type I fixed points, so v(P) = 1, giving
wϕ(P)= 0. If P ∈ 0Fix but P is not a branch point of 0Fix, then v(P)= 2, giving
wϕ(P)= 0. If P is a branch point of 0Fix, then v(P)≥ 3, so wϕ(P) > 0.

The fact that 0≤ wϕ(P)≤ d − 1 follows from Theorem 6.1, whose proof only
uses the formulas in Definition 8. �

Using Proposition 6.3, the weight formula (34) in Theorem 6.1 can be made
more explicit:∑

focused
repelling f.p.s

(degϕ(P)− 1) +
∑

bifocused and
multifocused f.p.s

(degϕ(P)− 1 +NShearing(P))

+

∑
additively

indifferent f.p.s in 0Fix

NShearing(P) +
∑

multiplicatively
indifferent f.b.p.s of 0Fix

NShearing(P) +
∑

nonfixed
b.p.s of 0Fix

(v(P)− 2)

= d − 1, (36)

where f.p.s, b.p.s, and f.b.p.s stand for fixed points, branch points, and fixed branch
points, respectively.

The idea for the proof of Theorem 6.1 is to take the Laplacian of ordResϕ( · ) on
finite metrized subgraphs of 0Fix,Repel; by simplifying the Laplacians and taking
a limit over a cofinal sequence of subgraphs, we obtain the result. By a finite
metrized graph we mean a connected subgraph with a finite number of vertices and
edges, such that each edge is equipped with a metric which makes it isometric to an
interval of finite length in R. For subgraphs of H1

K we will always take the metric
to be the one induced by the logarithmic path distance ρ(x, y).

If 0 ⊂H1
K is a finite metrized subgraph, let CPA(0) be the space of functions

on 0 which are continuous and piecewise affine (with a finite number of pieces)
with respect to the logarithmic path distance. For each P ∈ 0, we write TP,0 for
the tangent space to P in 0, namely the set of Ev ∈ TP such that there is an edge
of 0 emanating from P in the direction Ev. If the valence of P in 0 is v(P), then
TP,0 has v(P) elements. If f ∈ CPA(0), the Laplacian of F (as defined in [Baker



872 Robert Rumely

and Rumely 2007]) is the measure

10( f )=
∑
P∈0

−

( ∑
Ev∈TP,0

∂Ev( f )(P)
)
δP(z), (37)

where δP(z) is the Dirac measure at P . Here 10(F) is a discrete measure, since
the inner sum in (37) is 0 at any P which is not a branch point of 0 and where F
does not change slope. It is well known (see for example [Baker and Rumely 2007])
that 10(F) has total mass 0. The proof is as follows. Note that for any partition of
0 into finitely many segments [Pi , Qi ] (disjoint except for their endpoints), such
that the restriction of F to each [Pi , Qi ] is affine, the slopes of F at Pi and Qi , in
the directions pointing into [Pi , Qi ], are negatives of each other.

Before proving Theorem 6.1, we will need an identity relating the number of
endpoints of a tree to the valences of its internal branch points. If 0 is a finite graph
and P ∈ 0, the valence v0(P) is the number of edges of 0 incident at P .

Lemma 6.4. Let 0 be a finite tree with D endpoints. Then

D −
∑

b.p.s P∈0

(v0(P)− 2)= 2, (38)

where b.p.s stands for “branch points”.

Proof. This is a reformulation of Euler’s formula V − E + F = 2 for planar graphs.
If B is the number of branch points of 0, then V = D+ B. Each edge has two

endpoints, so E = 1
2

(∑
vertices v(P)

)
. Since 0 is a tree, if it is embedded as a planar

graph then F = 1. Inserting these in Euler’s formula yields

2D+ 2B −
∑
e.p.s

v(P) −
∑
b.p.s

v(P)= 2, (39)

where e.p.s stands for end points. At each endpoint we have v(P) = 1, so∑
e.p.s v(P)= D. There are B branch points, so 2B =

∑
b.p.s 2. Combining terms

in (39) gives (38). �

Proof of Theorem 6.1. The idea is to restrict ordResϕ( · ) to finite subgraphs of
0Fix,Repel, take its Laplacian and simplify. Since 0Fix,Repel has branches of infinite
length, to apply the theory of graph Laplacians for metrized graphs from [Baker and
Rumely 2007], we cut off segments at the type I endpoints of 0Fix,Repel, obtaining
a finite metrized tree 0FR. We then exhaust 0Fix,Repel by a sequence of such trees.

For each type I fixed point αi of ϕ, choose a type II point Qi ∈ 0Fix,Repel close
enough to αi that

(1) there are no branch points of 0Fix,Repel in [Qi , αi ], and

(2) at each P ∈ [Qi , αi ), the slope of ordResϕ( · ) at P in the (unique) direction
Ev ∈ TP pointing away from αi in 0Fix,Repel is −(d2

− d).
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Since any two paths emanating from αi share a common initial segment, such Qi

exist by Proposition 5.4.
Let 0FR be the subtree of 0Fix,Repel spanned by the focused repelling fixed points

and the points Qi . Suppose there are D1 distinct type I fixed points (ignoring
multiplicities) and D2 focused repelling fixed points. Then the number of endpoints
of 0FR is

D = D1+ D2.

Let f ( · ) be the restriction of ordResϕ( · ) to 0FR. Then f belongs to CPA(0FR).
For each P ∈ 0FR, write TP,FR for its tangent space in 0FR (the set of Ev ∈ TP

such that there is an edge of 0FR emanating from P in the direction Ev). If P ∈
0FR \ {Q1, . . . , Q D1}, then TP,FR = TP,FR and the valence of P in 0FR coincides
with vFR(P). If P ∈ {Q1, . . . , Q D1} then TP,FR consists of the single direction
EvP,1 ∈ TP pointing into 0FR.

For the Laplacian 1FR( f ) we have

−1FR( f )

=

∑
P∈{Q1,...,Q D1 }

∂EvP,1 f (P)δP(z) +
∑

P∈0FR\{Q1,...,Q D1 }

( ∑
Ev∈TP,FR

∂Ev f (P)
)
δP(z). (40)

By Proposition 5.4, if P ∈ {Q1, . . . , Q D1} then ∂EvP,1 f (P)=−(d2
− d). We claim

that if P ∈ 0FR \ {Q1, . . . , Q D1}, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (vFR(P)− 2)+ 2d ·wϕ(P). (41)

If P ∈ 0FR \ {Q1, . . . , Q D1} is of type II and is a repelling fixed point, or is
a multiplicatively or additively indifferent fixed point, then (41) follows from
Proposition 5.1 and the definition of wϕ(P). If P is an id-indifferent fixed point,
then (41) follows from Proposition 5.2 since wϕ(P)= 0 by Proposition 6.3.

If P ∈0FR\{Q1, . . . , Q D1} is a type II point with ϕ(P) 6= P , then by Propositions
3.1 and 3.5, P belongs to 0Fix and is not a point where a branch of 0Fix,Repel \0Fix

attaches to 0Fix. It follows that vFR(P) (which is the valence of P in 0FR and
0Fix,Repel) coincides with v(P) (its valence in 0Fix). Hence (41) follows from
Proposition 5.3 and the definition of wϕ(P).

If P ∈0FR\{Q1, . . . , Q D1} is a type III point, then vFR(P)=2 andwϕ(P)=0, so
the right side of (41) is 0. The left side of (41) is also 0, since ordResϕ( · ) can change
slope only at points of type II (see Theorem 1.1). Each P ∈ 0FR \ {Q1, . . . , Q D1}

is either of type II or type III, so this establishes (41) in all cases.
Since 1FR( f ) has total mass 0, it follows from (40) and (41) that

D1 · (−(d2
−d)) +

∑
P∈0FR\{Q1,...,Q D1 }

(
(d2
−d) · (vFR(P)−2)+2d ·wϕ(P)

)
= 0. (42)
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If P is a focused repelling fixed point, then vFR(P)= 1, so vFR(P)− 2=−1. If P
is not an endpoint or a branch point of 0FR then vFR(P)−2= 0. Moving the terms
in (42) involving (d2

− d) to the right side, and noting that there are D2 focused
repelling fixed points, it follows that∑

P∈0FR\{Q1,...,Q D1 }

2d ·wϕ(P)= (d2
− d) ·

(
D1+ D2 −

∑
b.p.s of 0FR

(vFR(P)− 2)
)
, (43)

where b.p.s stands for branch points. By Lemma 6.4 the sum on the right side
of (43) equals 2. Dividing through by 2d gives∑

P∈0FR\{Q1,...,Q D1 }

wϕ(P)= d − 1. (44)

If we let the endpoints points Qi approach the type I fixed points αi , the cor-
responding graphs 0FR exhaust 0Fix,Repel ∩ H1

K . By Proposition 6.3, we have
wϕ(P)= 0 for each type I fixed point and for each P ∈ P1

K \0Fix,Repel. Thus∑
P∈P1

K

wϕ(P)= d − 1. �

Definition 9 (the crucial set, crucial weights, and crucial measure). The set of
points P ∈ P1

K with weight wϕ(P) > 0 will be called the crucial set and their
weights wϕ(P) will be called the crucial weights. The probability measure

νϕ =
1

d−1

∑
P∈P1

K

wϕ(P)δP(z) (45)

will be called the crucial measure of ϕ.

The crucial set consists of the repelling fixed points in H1
K , the indifferent fixed

points with a shearing direction, and the branch points of 0Fix which are moved
by ϕ. It has at most d−1 elements. If ϕ has potential good reduction, it consists
of the unique point where degϕ(P) = d. However, it can also consist of a single
point in other ways: for each k = 1, . . . , d − 1, it could be a fixed point P with
degϕ(P) = k and d − k shearing directions or it could be a branch point of 0Fix

with valence d + 1, which is moved. All of these possibilities actually occur; see
[Rumely 2014].

If 0 is a finite metrized graph, there is a natural measure of total mass 1 attached
to 0, its “Branching Measure” µ0,Br. This measure was introduced in [Chinburg
and Rumely 1993], where it was called the canonical measure and used to define a
pairing on the Arakelov divisor class group of a curve. It was studied in detail in
[Baker and Rumely 2007] and was generalized by Shouwu Zhang [1993], who used
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it to construct the dualizing metric for the Serre duality theorem in nonarchimedean
Arakelov theory.

When 0 is a tree, µ0,Br is supported on the branch points and endpoints of 0
and is given by the formula

µ0,Br =
∑
P∈0

(
1− 1

2v0(P)
)
δP(z).

This formula makes sense even when 0 has edges of infinite length. Note that
µ0,Br gives mass 1

2 to each endpoint of 0 and negative mass 1− 1
2v0(P) to each

branch point, so it is not in general a positive measure. The fact that µ0,Br has total
mass 1 follows from Lemma 6.4. When 0 = 0Fix,Repel, we will write µBr for its
branching measure.

We can obtain an intrinsic formula for νϕ by taking the Laplacian of ordResϕ( · )
on the tree 0Fix,Repel: suitably normalized, the Laplacian decomposes as the dif-
ference of µBr and νϕ . Note that µBr depends only on the topology of 0Fix,Repel,
while νϕ encodes analytic properties of ϕ. Thus, νϕ is the analytic part of a
decomposition of the normalized Laplacian into topological and analytic parts.

Corollary 6.5. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Let f ( · ) be the restriction of
ordResϕ( · ) to 0Fix,Repel and let 1Fix,Repel( f ) be its Laplacian. Then

1
2d(d−1)

1Fix,Repel( f )= µBr− νϕ.

Proof. Since 0Fix,Repel has edges of infinite length and ordResϕ( · ) is unbounded,
the Laplacian 1Fix,Repel( f ) must be defined in a more sophisticated way than
formula (37). (See [Baker and Rumely 2010, §5] and [Jonsson 2015, §2] for
general discussions of Laplacians on mildly infinite graphs.) Here is a distri-
butional definition for it. Let C(0Fix,Repel) be the space of continuous functions
η : 0Fix,Repel → R. Since 0Fix,Repel is compact, such functions are necessarily
bounded. Let 3 f : C(0Fix,Repel)→R be the continuous linear functional defined by

3 f (η)= lim
−→

0⊂0Fix,Repel

∫
0

η10( f ),

where the limit is taken over the set of finite subgraphs 0 ⊂ 0Fix,Repel, partially
ordered by inclusion. Then 1Fix,Repel( f ) is the Radon measure representing 3 f .

Let 0 = 0FR be a finite subgraph of 0Fix,Repel of the type considered in the proof
of Theorem 6.1. Reformulating (40) using (41) and Proposition 5.4, one has

10( f )=
∑

P∈{Q1,...,Q D1 }

(d2
−d)δP −

∑
P∈0\{Q1,...,Q D1 }

(
(d2
−d)(v0(P)−2)+2d ·wϕ(P)

)
δP .
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Using the definitions of µ0,Br and νϕ , this can be rewritten as

10( f )= 2d(d − 1) · (µ0,Br− νϕ).

Letting Q1, . . . , Q D1 approach the type I endpoints of 0Fix,Repel, one sees that for
any test function η ∈ C(0Fix,Repel),∫

0

η µ0,Br→

∫
0Fix,Repel

η µBr.

Hence 1Fix,Repel( f )= 2d(d − 1) · (µBr− νϕ). �

We close this section by noting some functoriality properties of the crucial set.
First, the weights, crucial set, and crucial measure have the same equivariance
properties under conjugation as fixed points:

Proposition 6.6. Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let γ ∈GL2(K ). Viewing
γ as a linear fractional transformation, put ϕγ = γ−1

◦ ϕ ◦ γ . Then the weights,
crucial set, and crucial measure satisfy

wϕγ (γ
−1(P))= wϕ(P), Cr(ϕγ )= γ−1(Cr(ϕ)), and νϕγ = γ

∗(νϕ).

Proof. The group GL2(K ) acts transitively on type II points and, by the defini-
tion of ordResϕ( · ) on type II points, for each τ ∈ GL2(K ), if P = τ(ζG) then
ordResϕ(τ (ζG))= ord(Res(ϕτ )). It follows that

ordResϕγ (τ (ζG))= ord(Res((ϕγ )τ ))= ordResϕ(γ (τ (ζG))).

Since ordResϕ( · ) is determined by continuity from its values on type II points,
we have ordResϕγ (P)= ordResϕ(γ (P)) for all P ∈ P1

K . Replacing P by γ−1(P)
shows that

ordResϕγ (γ−1(P))= ordResϕ(P).

Furthermore, P is a fixed point of ϕ if and only if γ−1(P) is a fixed point of
ϕγ and in that case the points have the same local degrees. This implies that
0Fix,Repel(ϕ

γ ) = γ−1(0Fix,Repel(ϕ)). The assertions in the Proposition follow by
taking Laplacians. �

Next, we show the crucial set and crucial measure are preserved under extension
of the ground field. If L ⊃ K is another complete, algebraically closed field, there
is a canonical embedding P1

K ↪→ P1
L . This is a special case of a general result about

what Berkovich [1990] called peaked points and Poineau [2013] renamed universal
points. Poineau1 shows that whenever K is algebraically closed and L/K is any
field extension, if X K is any Berkovich space over K , then there is a canonical
embedding X K ↪→ X L .

1The author thanks one of the anonymous referees for bringing Poineau’s result to his attention.
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Proposition 6.7. Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let L ⊇ K be another
complete algebraically closed valued field, whose valuation extends the one on K .
Using subscripts L and K to denote objects computed over the corresponding
ground fields, we have

CrL(ϕ)= CrK (ϕ) and νϕ,L = νϕ,K .

Proof. Faber [2013a, §4] constructs the embedding P1
K ↪→ P1

L in an elementary
way and shows that it respects the action of ϕ on points and tangent spaces and
preserves path distances and degrees of points. By the formulas in Definition 8,
for each P ∈ P1

K we have wϕ,L(P)≥wϕ,K (P). Applying Theorem 6.1 over L and
over K we see that ∑

P∈P1
L

wϕ,L(P)= d − 1=
∑

P∈P1
K

wϕ,K (P).

Hencewϕ,L(P)=wϕ,K (P) for each P ∈P1
K andwϕ,L(P)= 0 for each P ∈P1

L \P
1
K .

The assertions in the proposition follow from this. �

Finally, the weights, crucial set, and crucial measures are Galois-equivariant.
Recall that if σ is a continuous automorphism of K , then the action of σ on K
extends to an action of σ on P1

K which is continuous for both the weak and strong
topologies, respects the logarithmic path distance, and is given on points of type II
and type III by σ(ζa,r )= ζσ(a),r .

Proposition 6.8. Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let σ be a continuous
automorphism of K . Then the weights, crucial set, and crucial measure satisfy

wσ(ϕ)(σ (P))= wϕ(P), Cr(σ (ϕ))= σ(Cr(ϕ)), and νσ(ϕ) = σ∗(νϕ).

Proof. Since σ respects absolute value on K and since the resultant is defined by a
determinant in the coefficients of ϕ, it follows that for each τ ∈ GL2(K ),

ord(Res(ϕτ ))= ord(Res(σ (ϕτ )))= ord(Res(σ (ϕ)σ(τ))).

Since ζG = ζ0,1, the description of the action of σ on type II points shows that
σ(ζG) = ζG . This means that for the type II point P = τ(ζG), one has σ(P) =
σ(τ)(ζG) and hence

ordResσ(ϕ)(σ (P))= ordResσ(ϕ)(σ (τ )(ζG))= ord(Res(σ (ϕ)σ(τ)))

= ord(Res(ϕτ ))= ordResϕ(τ (ζG))= ordResϕ(P).

By continuity, this holds for all P ∈ P1
K .

Furthermore, P is a fixed point of ϕ if and only if σ(P) is a fixed point of
σ(ϕ) and in that case the points have the same local degrees. This implies that
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0Fix,Repel(σ (ϕ)) = σ(0Fix,Repel(ϕ)). The assertions in the proposition follow by
taking Laplacians. �

7. Characterizations of the minimal resultant locus

In this section, we characterize MinResLoc(ϕ) from analytic and moduli-theoretic
standpoints. We first give an analytic characterization. Before stating it we need
two definitions.

Definition 10 (barycenter). The barycenter of a finite positive measure ν on P1
K is

the set of points Q ∈ P1
K such that for each direction Ev ∈ TQ , at most half the mass

of ν lies in BQ(Ev)
−.

The notion of the barycenter of a measure on P1
K is due to Benedetto and Rivera-

Letelier, who used it in unpublished work on the “s log s” bound for the number of
k-rational preperiodic points of ϕ(z) ∈ k(z), when k is a number field.

Definition 11 (the crucial tree). The crucial tree 0ϕ is the subtree of 0Fix,Repel

spanned by the crucial set of ϕ. We define the vertices of 0ϕ to be the points of
the crucial set (whether they are endpoints or interior points of 0ϕ) and the branch
points of 0ϕ . The edges of 0ϕ are the closed segments between adjacent vertices.

Theorem 7.1 (dynamical characterization of MinResLoc(ϕ)). Let ϕ(z) ∈ K (z)
have degree d ≥ 2. Then MinResLoc(ϕ) is the barycenter of the crucial mea-
sure νϕ . Equivalently, a point Q ∈ P1

K belongs to MinResLoc(ϕ) if and only if for
each Ew ∈ TQ ∑

P∈BQ( Ew)−

wϕ(P)≤
d−1

2
. (46)

If d is even, then MinResLoc(ϕ) is a vertex of the crucial tree 0ϕ . If d is odd, then
MinResLoc(ϕ) is either a vertex or an edge of 0ϕ .

Proof. To show that MinResLoc(ϕ) is the barycenter of νϕ , we must show for each
Q ∈ P1

K that Q ∈MinResLoc(ϕ) if and only if for each Ew ∈ TQ ,

νϕ(BQ( Ew)
−)≤ 1

2 .

If Q /∈ 0Fix,Repel this is trivial: Q /∈MinResLoc(ϕ) since

MinResLoc(ϕ)⊂ 0Fix,Repel ∩H1
K ,

while if Ew ∈ TQ is the direction towards 0Fix,Repel then νϕ(BQ(Ev)
−)= 1. Similar

reasoning applies when Q ∈ 0Fix,Repel ∩P1(K ).
Let Q ∈0Fix,Repel∩H1

K and write f ( · )= ordResϕ( · ). Then Q ∈MinResLoc(ϕ)
if and only if ∂ Ew f (Q)≥ 0 for each Ew ∈ TQ . If Ew ∈ TQ points away from 0Fix,Repel

then ∂ Ew f (Q) > 0 and νϕ(BQ( Ew)
−)= 0. Hence it is enough to show that for each



A new equivariant in nonarchimedean dynamics 879

Ew ∈ TQ,FR, we have ∂ Ew f (Q)≥ 0 if and only if νϕ(BQ( Ew)
−)≤ 1

2 , or equivalently
that (46) holds. For this, we use an argument like the one in the proof of Theorem 6.1.

Let 0 be the graph consisting of the part of 0Fix,Repel in BQ( Ew)
−, together with Q.

The endpoints of 0 are Q and the type I fixed points and focused repelling fixed
points of ϕ in BQ( Ew)

−. Let D′1 be the number of type I endpoints and let D′2 be the
number of focused repelling endpoints, so 0 has D′ = 1+D′1+D′2 endpoints in all.

Suppose the type I fixed points of ϕ in BQ( Ew)
− are α1, . . . , αD′1 . For each αi ,

choose a type II point Qi in 0Fix,Repel close enough to αi that

(1) there are no branch points of 0 in [Qi , αi ],

(2) at each P ∈ [Qi , αi ), the slope of ordResϕ( · ) at P in the (unique) direction
Evi ∈ TP pointing away from αi in 0 is −(d2

− d), and

(3) each P ∈ [Qi , αi ] has weight wϕ(P)= 0.

Since only finitely many points have positive weight, Proposition 5.4 shows that
such Qi exist. Let 0̂ be the finite metrized graph gotten by cutting the terminal
segments (Qi , αi ] off of 0.

To simplify notation, write Q0 for Q and let Ev0 = Ew ∈ TQ . Then the Laplacian
10̂( f ) satisfies

−10̂( f )

=

∑
P∈{Q0,Q1,...,Q D′1

}

∂Evi f (P)δP(z) +
∑

P∈0̂\{Q0,Q1,...,Q D′1
}

( ∑
Ev∈TP,FR

∂Ev f (P)
)
δP(z). (47)

Put L = ∂ Ew f (Q) = ∂Ev0 f (Q0). By Proposition 5.4, if P ∈ {Q1, . . . , Q D′1} then
∂Evi f (P)=−(d2

− d). By formula (41), if P ∈ 0̂ \ {Q0, Q1, . . . , Q D′1}, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (v0̂(P)− 2)+ 2d ·wϕ(P).

Inserting these values in (47) and using that 10̂( f ) has total mass 0, we see that

0= L + D′1 · (−(d
2
− d)) +

∑
P∈0̂\{Q0,Q1,...,Q D′1

}

(
(d2
− d) · (v0̂(P)− 2)+ 2d ·wϕ(P)

)
.

If P ∈ 0̂ is not an endpoint or a branch point, then (d2
−d) ·(v0̂(P)−2)= 0. There

are D′2 focused repelling endpoints of 0̂ in BQ( Ew)
− and for each of them we have

(d2
− d) · (v0̂(P)− 2)=−(d2

− d). Hence

L =
(

D′1+ D′2 −
∑

b.p.s of 0̂

(v0̂(P)− 2)
)
· (d2
− d)− 2d ·

∑
P∈0̂∩BP ( Ew)−

wϕ(P). (48)
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Since 0̂ has D′ = 1+ D′1+ D′2 endpoints, Lemma 6.4 gives

D′1+ D′2 −
∑

b.p.s of 0̂

(v0̂(P)− 2)= 1. (49)

It follows from (48) and (49) that L ≥ 0 if and only if (46) holds. Thus Q belongs
to MinResLoc(ϕ) if and only if Q is in the barycenter of νϕ .

Clearly MinResLoc(ϕ)⊆ 0ϕ . To see that MinResLoc(ϕ) is either a vertex or an
edge of 0ϕ , note that as a point P moves along 0ϕ , the distribution of νϕ-mass in
the various directions Ev ∈ TP can change only when P passes through a vertex.

If MinResLoc(ϕ) consists of a vertex of 0ϕ , then we are done. Otherwise,
MinResLoc(ϕ) contains a point Q in the interior of an edge e of 0ϕ . Since there
are precisely two directions Ev ∈ TQ for which the balls BQ(Ev)

− can contain νϕ-mass
and since each has mass at most 1

2 , each must have mass exactly 1
2 . This continues

to hold for all P in the interior of e but it changes when P reaches an endpoint of e.
At an endpoint P0 of e, for the direction Ev0 ∈ TP0 pointing into e we still

have νϕ(BP0(Ev0)
−) = 1

2 , so for all Ev ∈ TP0 with Ev 6= Ev0 we necessarily have
νϕ(BP( Ew)

−) ≤ 1
2 and P0 belongs to MinResLoc(ϕ). If P0 is an endpoint of 0ϕ ,

this is all that needs to be said. If P0 is a vertex of 0ϕ which is not a branch point,
then P0 belongs to the crucial set, so νϕ({P0}) > 0. Hence when P moves outside e,
for the direction Ev ∈ TP pointing towards e we will have νϕ(BP(Ev)

−) > 1
2 , so

P /∈MinResLoc(ϕ). Finally, if P0 is a branch point of 0ϕ , there are at least two
directions Ev1, Ev2 ∈ TP0 with Ev1, Ev2 6= Ev0 such that νϕ(BP0(Evi )

−) > 0. Hence when
P moves outside e, for the direction Ev ∈ TP pointing towards e, we will again have
νϕ(BP(Ev)

−) > 1
2 and P /∈MinResLoc(ϕ). �

We next give a moduli-theoretic characterization of MinResLoc(ϕ).
The basic theorem in geometric invariant theory (GIT) concerning moduli spaces

of rational functions is due to Silverman. Let R be a commutative ring with 1
and let ϕ : P1

R → P1
R be a morphism of degree d ≥ 2. Fixing homogeneous

coordinates on P1
R , the map ϕ corresponds to a pair of homogeneous functions

F(X, Y )= fd Xd
+· · ·+ f0Y d and G(X, Y )= gd Xd

+· · ·+g0Y d in R[X, Y ] such
that Res(F,G) is a unit in R. Writing f = ( fd , . . . , f0) and g = (gd , . . . , g0), let

Zϕ = Z f,g = ( fd : · · · : f0 : gd : · · · : g0) ∈ P2d+1(R)

be the point corresponding to ϕ. If µ =
(
α
γ
β
δ

)
∈ GL2(R), the usual conjugation

action of µ on ϕ defined by

ϕµ =

(
δ −β

−γ α

)
◦

(
F
G

)
◦

(
α β

γ δ

)
=

(
δF(αX +βY, γ X + δY )−βG(αX +βY, γ X + δY )
−γ F(αX +βY, γ X + δY )+αG(αX +βY, γ X + δY )

)
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induces an algebraic action of GL2 on P2d+1. If R =� is an algebraically closed
field, the groups GL2(�) and SL2(�) have the same orbits in P2d+1(�). For
technical reasons, in GIT it is better to work with the action of SL2; Silverman
[1998, Theorems 1.1 and 1.3] proves:

Theorem 7.2 (Silverman). There are open subschemes of P2d+1/Spec(Z)

Ratd ⊆ (P2d+1)s ⊆ (P2d+1)ss

(the subschemes of rational morphisms of degree d, stable points, and semistable
points), which are invariant under the conjugation action of SL2, such that the
quotients

Md = Ratd/SL2, M s
d = (P

2d+1)s/SL2, and M ss
d = (P

2d+1)ss/SL2

exist. Md is a dense open subset of M s
d and M ss

d , Md and M s
d are geometric

quotients, and M ss
d is a categorical quotient which is proper and of finite type over Z.

Geometrical and categorical quotients are quotients with certain desirable proper-
ties (see [Mumford et al. 1994] for the definitions). The fact that Md is a geometric
quotient includes the fact over any algebraically closed field �, the SL2(�) orbits
of rational functions of degree d are in one-to-one correspondence with the points
of Md(�). The spaces M s

d and M ss
d are called the spaces of stable and semistable

conjugacy classes of rational maps, respectively. Loosely, the stable locus (P2d+1)s

is the largest subscheme such that for any algebraically closed field �, the SL2(�)-
orbits of points in (P2d+1)s(�) are closed and are in one-to-one correspondence
with the points of M s

d(�). Loosely, the semistable locus (P2d+1)ss is the largest sub-
scheme for which a quotient makes sense: SL2(�)-orbits of points in (P2d+1)ss(�)

need not be closed but if one defines two orbits to be equivalent if their closures
meet, points of M ss

d (�) correspond to equivalence classes of SL2(�)-orbits. Each
equivalence class of orbits in (P2d+1)ss(�) contains a unique minimal closed orbit.

Recall that K is a complete, algebraically closed nonarchimedean valued field
with ring of integers O and residue field k̃:

Definition 12 (semistable and stable reduction). Let ϕ(z) ∈ K (z) have degree
d ≥ 2 and let (F,G) be a normalized representation of ϕ. Writing F(X, Y ) =
fd Xd

+ · · ·+ f0Y d and G(X, Y )= gd Xd
+ · · · g0Y d , let

Zϕ = ( fd : · · · : f0 : gd : · · · : g0) ∈ P2d+1(K )

be the point corresponding to ϕ. We will say that ϕ has semistable reduction if

Z̃ϕ = ( f̃d : · · · : f̃0 : g̃d : · · · : g̃0) ∈ P2d+1(k̃)

belongs to (P2d+1)ss(k̃) and that ϕ has stable reduction if Z̃ϕ belongs to (P2d+1)s(k̃).
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Making explicit the Hilbert–Mumford numerical criteria, Silverman [1998, Propo-
sition 2.2] gives necessary and sufficient conditions for a point to be semistable
or stable.

Proposition 7.3. Let SL2 act on P2d+1 as above and suppose Z̃ ∈ P2d+1(k̃). Then:

(A) Z̃ belongs to (P2d+1)ss(k̃) if and only if for each τ̃ ∈SL2(k̃), when Z̃ τ̃ is written
as (ãd : · · · : ã0 : b̃d : · · · : b̃0), either there is some i with (d + 1)/2 ≤ i ≤ d
such that ãi 6= 0 or there is some i with (d − 1)/2≤ i ≤ d such that b̃i 6= 0.

(B) Z̃ belongs to (P2d+1)s(k̃) if and only if for each τ̃ ∈SL2(k̃), when Z̃ τ̃ is written
as (ãd : · · · : ã0 : b̃d : · · · : b̃0), either there is some i with (d + 1)/2 < i ≤ d
such that ãi 6= 0 or there is some i with (d − 1)/2< i ≤ d such that b̃i 6= 0.

Proof. This is [Silverman 1998, Proposition 2.2] in the special case � = k̃, with
two modifications. Silverman formulates conditions (A) and (B) as characterizing
the “unstable” and “not stable” points of P2d+1(k̃). Our assertions are the contra-
positives of his: by definition, “semistable” is “not unstable” and “stable” is “not
not stable”. Second, Silverman writes ϕ(z)= (a0zd

+ · · ·+ ad)/(b0zd
+ · · ·+ bd),

indexing coefficients of rational function in the opposite order. We have adjusted
his coefficient ranges to account for this. �

The connection between semistability and having minimal resultant is due to
Szpiro, Tepper, and Williams, who proved the implication “semistable reduction
implies minimal resultant” in part A of the following theorem using a moduli-
theoretic argument (see [Szpiro et al. 2014, Theorem 3.3]). Here we establish the
converse as well; however, the theorem of Szpiro, Tepper, and Williams holds in
arbitrary dimension n, whereas ours applies only when n = 1.

Theorem 7.4 (moduli-theoretic characterization of MinResLoc(ϕ)). Let ϕ(z)∈K(z)
have degree d ≥ 2. Suppose γ ∈ GL2(K ) and put P = γ (ζG), then:

(A) P belongs to MinResLoc(ϕ) if and only if ϕγ has semistable reduction in the
sense of GIT.

(B) MinResLoc(ϕ) consists of the single point P if and only if ϕγ has stable
reduction in the sense of GIT.

Proof. We first show (A). Fixing γ , put P = γ (ζG). Note that P ∈MinResLoc(ϕ)
if and only if ∂EvordResϕ(P)≥ 0 for each Ev ∈ TP . After replacing ϕ with ϕγ , we can
assume that P = ζG . Let Zϕ ∈ P2d+1(K ) be the point corresponding to ϕ and let
Z̃ϕ ∈P2d+1(k̃) be its reduction. We will index directions Ev∈TζG by points a∈P1(k̃).

Fix a direction Eva ∈ TζG and choose τ̃ ∈ SL2(k̃) so that τ̃ (∞)= a. We will show
that ∂Eva ordResϕ(ζG) ≥ 0 if and only if the condition of Proposition 7.3(A) holds
for (Z̃ϕ)τ̃ .



A new equivariant in nonarchimedean dynamics 883

Lift τ̃ to τ ∈ SL2(O). Let (F,G) be a normalized representation of ϕτ and write
F(X, Y )= ad Xd

+· · ·+a0Y d and G(X, Y )= bd Xd
+· · ·+b0Y d . Since the action

of SL2 commutes with reduction, it follows that

(Z̃ϕ)τ̃ = (̃Zϕτ )= (ãd : · · · ã0 : b̃d : · · · : b̃0).

Since τ∗(Ev∞)= Eva , the function ordResϕ( · ) is nondecreasing in the direction Eva

at ζG if and only if ordResϕτ ( · ) is nondecreasing in the direction Ev∞. Take A ∈ K×

with |A| ≥ 1. By [Rumely 2015, formula (13)], we have
ordResϕτ (ζ0,|A|)− ordResϕτ (ζG)

= (d2
+ d)ord(A)− 2d · min

0≤i≤d

(
ord(Ai ai ), ord(Ai+1bi )

)
= max

0≤i≤d

(
(d2
+ d − 2di)ord(A)− 2dord(ai ),

(d2
+ d − 2d(i + 1))ord(A)− 2dord(bi )

)
. (50)

The terms in (50) which are nondecreasing as |A| increases are the ones involving
ord(ai ) for (d+1)/2≤ i ≤ d and the ones involving ord(bi ) for (d−1)/2≤ i ≤ d .

Since (F,G) is normalized, we have ord(ai ) ≥ 0 and ord(bi ) ≥ 0 for all i and
there is at least one i for which ord(ai )= 0 or ord(bi )= 0. Hence the terms with
ord(ai ) > 0 or ord(bi ) > 0 cannot be the maximal ones in (50) when ord(A) is
near 0. It follows that ∂Ev∞ordResϕτ (ζG)≥ 0 if and only if

ord(ai )= 0 for some i with (d + 1)/2≤ i ≤ d, or

ord(bi )= 0 for some i with (d − 1)/2≤ i ≤ d.

Since ord(ai )= 0 if and only if ãi 6= 0 and ord(bi )= 0 if and only if b̃i 6= 0, these
are precisely the conditions on (Z̃ϕ)τ̃ from Proposition 7.3(A).

Since τ∗(Ev∞) runs over all Eva ∈ TP as τ̃ runs over SL2(k̃), it follows that P
belongs to MinResLoc(ϕ) if and only if ϕγ has semistable reduction.

Part (B) is proved similarly, using that P = γ (ζG) is the unique point in
MinResLoc(ϕ) if and only if ∂EvordResϕ(P) > 0 for each Ev ∈ TP and that the
terms in (50) which are increasing as |A| increases are the ones involving ord(ai )

for (d + 1)/2< i ≤ d and the ones involving ord(bi ) for (d − 1)/2< i ≤ d. �
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On pairs of p-adic L-functions
for weight-two modular forms

Florian Sprung

Dedicated to Barry, Joe, and Rob

The point of this paper is to give an explicit p-adic analytic construction of
two Iwasawa functions, L]p( f, T ) and L[p( f, T ), for a weight-two modular form∑

anqn and a good prime p. This generalizes work of Pollack who worked in
the supersingular case and also assumed ap = 0. These Iwasawa functions work
in tandem to shed some light on the Birch and Swinnerton-Dyer conjectures
in the cyclotomic direction: we bound the rank and estimate the growth of the
Šafarevič–Tate group in the cyclotomic direction analytically, encountering a new
phenomenon for small slopes.

1. Introduction

Let f =
∑

anqn be a weight-two modular form. The idea of attaching a p-adic
L-function to f goes back to at least Mazur and Swinnerton-Dyer in the case where
the associated abelian variety A f is an elliptic curve. They analytically constructed
a power series Lα( f, T ), whose behavior at special values ζpn − 1, corresponding
to finite layers Qn of the cyclotomic Zp-extension Q∞ of Q, should mirror that of
the rational points A f (Qn) and the Šafarevič–Tate group X(A f/Qn) in view of the
Birch and Swinnerton-Dyer conjectures. Identifying algebraic numbers with p-adic
numbers via a fixed embedding Q ↪→ Cp, we may give ap a valuation v. Their
crucial assumption was that p be good and v = 0 (p is ordinary), so that Lα( f, T )
is an Iwasawa function, i.e., analytic on the closed unit disc. Since Lα( f, T ) is
nonzero by work of Rohrlich [1984], we can extract Iwasawa invariants, responsible
for that behavior of Lα( f, T ) which under the main conjecture corresponds to a

This material is based upon work supported by the National Science Foundation under agreement
No. DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of the National Science
Foundation.
MSC2010: primary 11G40; secondary 11F67, 11R23.
Keywords: Birch and Swinnerton-Dyer, p-adic L-function, elliptic curve, modular form,
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bound for rank(A f (Q∞)) and a description of the size of X(A f/Qn)[p∞]. Skinner
and Urban [2014] settled the main conjecture in many cases.

The construction of Lα( f, T ) has been generalized to the supersingular (i.e.,
v > 0) case as well [Amice and Vélu 1975; Višik 1976], in which there are two
power series Lα( f, T ) and Lβ( f, T ). They are not Iwasawa functions, and thus not
amenable for estimates for rank(A f (Q∞)) or X(A f/Qn) directly. Nevertheless,
the results of Rohrlich show that Lα( f, T ) and Lβ( f, T ) vanish at finitely many
special values ζpn − 1, so that the analytic rank of A f (Q∞) is bounded. His results
are effective.1

The main theorem (Theorem 2.14) of Part I in this paper obtains a pair of
appropriate Iwasawa functions in the general good reduction case so that p can
be ordinary or supersingular. This pair is unique when p is supersingular, and
generalize the results of Pollack in the ap = 0 case. Note that the hypothesis ap = 0
is very restrictive since the vast majority of supersingular modular abelian varieties
have modular forms failing this condition. The philosophy of using pairs of objects
has its origins in the work of Perrin-Riou [1990; 1993] in the supersingular case
in which the pair consisting of Lα( f, T ) and Lβ( f, T ) is considered as one object
as a power series with coefficients in the Dieudonné module. Our main theorem
generalizes the construction of a pair of functions in the case of elliptic curves and
supersingular primes [Sprung 2012] via Kato’s zeta element. As pointed out in [Lei
et al. 2010, Remark 5.26], the methods in [Sprung 2012] extend to the case v > 1

2
as well. In this paper, we have completely isolated the analytic aspects of the theory
and are thus able to treat the much harder case v < 1

2 . In the supersingular case, we
prove a functional equation for this pair, which corrects a corresponding statement
in [Pollack 2003] when reduced to the ap = 0 case. Also, we give a quick proof
that Lα( f, T ) and Lβ( f, T ) have finitely many common zeros, as conjectured by
Greenberg.

Part 2 is dedicated to the estimates connected to the Birch and Swinnerton-Dyer
conjectures. We bound the p-adic analytic rank of A f (Q∞), which is the number
of zeros of Lα( f σ, T ) at cyclotomic points T = ζpn − 1 summed over all Galois
conjugates f σ of f . This analytic rank does not depend on the choice of α in the
supersingular case, as shown in Proposition 7.1. When p is ordinary, α is chosen
to be a p-adic unit. This is hard even when f is ordinary, since f σ may not be
ordinary, i.e., we may have v = 0 but vσ > 0, where vσ is the valuation for aσp for
σ ∈ Gal(Q/Q). We overcome this difficulty by giving an upper bound in terms
of the Iwasawa invariants of our pair of Iwasawa functions in the supersingular
case. Apart from our Iwasawa-theoretic arguments, the key ingredient for this upper
bound is to find any nonjump in the analytic rank in the cyclotomic tower, i.e.,

1In the elliptic curve case, Lα(ζpn −1) 6= 0 for pn >max(101000 N 170, 10120p p7p, 106000 p420),
where N is the conductor of E = A f [Rohrlich 1984, p. 416].
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any n such that Lα( f, ζpn − 1) 6= 0. Note that this is a much weaker corollary to
Rohrlich’s theorem (stating that almost all n give rise to nonjumps). This manifests
itself in the fact that the first such n is typically very small. We also give another
upper bound that assumes ap = 0 (so that all f σ are supersingular), and is due to
Pollack under the further assumption p≡ 3 (mod 4), which our new proof removes.
This upper bound is in most cases not as sharp as the more general one. Note that
the upper bounds are also upper bounds for the corresponding algebraic objects (i.e.,
that rank of A f (Q∞)) in view of classical work of Perrin-Riou [1990, Lemme 6.10].

We then give growth formulas for the analytic size of X(A f/Qn)[p∞], unifying
results of Mazur (who assumed vσ = 0 for all σ ) and Pollack (who assumed vσ =∞
for all σ , i.e., ap=0), and finishing this problem in most of the good reduction cases.2

For example, we finish this problem when A f is an elliptic curve, where there are in-
finitely many remaining cases all for which p=2 or p=3 in view of the Hasse bound.
In Mazur’s case, this formula was governed by Lα( f σ, T ), while in the ap = 0 case,
Pollack’s Iwasawa functions alternated responsibility for the growth at even n and
odd n. The reason we can cover the remaining cases is that our estimates result from
both of our Iwasawa functions working in tandem, giving rise to several growth
formula scenarios in these remaining cases, illustrating their difficulty even when A f

is an elliptic curve. In the ordinary case (and some special subcases of the supersin-
gular case), one of the Iwasawa functions dominates, and only the invariants of that
function are visible in the estimates. When 0< vσ < 1

2 , we encounter a mysterious
phenomenon: the estimates depend further on which one of (up to infinitely many)
progressively smaller intervals vσ lies in, and the roles of the Iwasawa functions gen-
erally alternate in adjacent intervals. We suspect the answer to the following question
is very deep: Where does this phenomenon come from and why does it occur?

We now state our results more precisely. We work in the context of weight-
two modular forms and a good (coprime to the level) prime p. The functions
Lα( f, T ) and Lβ( f, T ) are named after the roots α and β of the Hecke polynomial
X2
− ap X + ε(p)p, ordered such that ordp(α)6 ordp(β). In the supersingular case

(i.e., when v := ordp(ap) > 0), we can now trace the p-adic L-functions back to
a pair of Iwasawa functions when v =∞ (i.e., ap = 0) thanks to the methods of
Pollack [2003].

In Part I, we prove the following theorem.

Theorem 1.1. Let f =
∑

anqn be a modular form of weight two and p be a good
prime. We let 3 = O[[T ]], where O is the ring of integers of the completion at a
prime above p of Q((an)n∈N, ε(Z)).

2The remaining cases we term the sporadic cases, which shouldn’t occur in nature: For vσ > 0, we
are in the sporadic case when the µ-invariants differ in a specific way and vσ = 1

2 p−k for k ∈N and
the valuation of σ(ap)

2
− ε(p)8p(ζpk+2) is exactly 2vσ (1+ p−1

− p−2) for n with a fixed parity
with respect to k; see Definition 8.3.
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(1) When p is a supersingular prime, we have(
Lα( f, T ), Lβ( f, T )

)
=
(
L]p( f, T ), L[p( f, T )

)
Logα,β(1+ T ),

for two power series L]p( f, T ) and L[p( f, T ) which are elements of 3, and
Logα,β(1+ T ) is an explicit 2× 2 matrix of functions converging on the open
unit disc.

(2) When p is ordinary, we can write

Lα( f, T )= L]p( f, T ) log]α(1+ T )+ L[p( f, T ) log[α(1+ T ),

for some nonunique Iwasawa functions L]p( f, T ) and L[p( f, T ), where log]α(T )
and log[α(T ) are the entries in the first column of Logα,β(1+ T ). They are
functions converging on the closed unit disc.

In the supersingular case, our vector (L]p( f, T ), L[p( f, T )) is related to the vector
(Lα( f, T ), Lβ( f, T )) much like the completed Riemann zeta function is related to
the original zeta function: since Lα( f, T ) and Lβ( f, T ) are not Iwasawa functions,
they have infinitely many zeros in the open unit disk. The analogue of the Gamma
factor is the matrix Logα,β(1+ T ). It removes zeros of linear combinations of
Lα( f, T ) and Lβ( f, T ), producing the vector of Iwasawa functions with finitely
many zeros. Its definition for odd p is

Logα,β(1+ T ) := lim
n→∞

C1 · · · CnC−(n+2)
(
−1 −1
β α

)
,

where

Ci :=

[
ap 1

−ε(p)8pi (1+ T ) 0

]
, C :=

[
ap 1

−ε(p)p 0

]
,

and 8n(X) is the n-th cyclotomic polynomial.
As one immediate corollary of Theorem 1.1, we obtain that Lα( f, T ) and

Lβ( f, T ) have finitely many common zeros, as conjectured by Greenberg [2001].
When p= 2 and a2 = 0, our construction of Logα,β(1+T ) explains a seemingly

artificial extra factor of 1
2 in Pollack’s [2003] corresponding half-logarithm. The

theorem also shows that for p = 2, the functions L]2(T ) and L[2(T ) of [Sprung
2012] in 3⊗Q are in fact elements of 3 in the strong Weil case.

Our proof of Theorem 1.1 is completely p-adic analytic, generalizing the argu-
ments of Pollack [2003] when v =∞ (i.e., ap = 0). Recall that the methods in
[Sprung 2012] extend to the case v > 1

2 ([Lei et al. 2010, Remark 5.26]). However,
the situation for the remaining (and more difficult) valuations when v < 1

2 is more
involved. This part forms the technical heart of the first half of the paper, in which
one major new tool is Lemma 4.17, which gives an explicit expansion of the terms
of Logα,β(1+ T ). We use valuation matrices, an idea introduced in [Sprung 2013],
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to scrutinize the growth properties of the functions in its columns: They grow like
Lα( f, T ) and Lβ( f, T ) for v> 1

2 , and at most as fast as these functions when v < 1
2 ,

proving, e.g., that the entries in the first column are Iwasawa functions when v = 0.
We also construct a completed version L̂ogα,β of Logα,β , and similarly L̂]p and

L̂[p, and then prove functional equations for these completed objects.

Theorem 1.2. Let p be supersingular. Then under the change of variables

(1+ T ) 7→ (1+ T )−1,

L̂ogα,β(1+T ) is invariant, and the vector (L̂]p(T ), L̂[p(T )) is invariant up to a root
number of the form −ε(−1)(1+ T )− logγ (N ). A similar statement holds for p = 2.

For a precise definition of the root number, we refer to Section 2.
We derive functional equations for L]p and L[p in some cases as well, which

correct a corresponding statement in [Pollack 2003] (where ap = 0), which is off
by a unit factor. The algebraic version of the functional equation by Kim [2008]
when ap = 0 is still correct, since it is given up to units.

Part II is concerned with applications involving the invariants of the Birch and
Swinnerton-Dyer (BSD) conjectures in the cyclotomic direction:

• Choose a subset Gf of Gal(Q/Q) such that { f σ }σ∈Gf contains each Galois con-
jugate of f once. Each zero of Lα( f σ, T ) or Lβ( f σ, T ) at T = ζpn − 1 (counted
with multiplicity) with σ ∈ Gf should, in view of BSD for number fields, contribute
toward the jump in the ranks, rank(A f (Qn))− rank(A f (Qn−1)), where Qn is the
n-th layer in the cyclotomic Zp-extension of Q=Q0. More specifically, the number
of zeroes r an

∞
at all T = ζpn − 1 of all Lα( f σ, T ) is an analytic upper bound for

r∞ = limn→∞ rank A f (Qn). Denote by r an
∞
( f σ ) the σ -part of r an

∞
, i.e., the number

of such zeros of Lα( f σ, T ), so that r an
∞
=
∑

σ∈Gf
r an
∞
( f σ ). When f σ is ordinary,

r an
∞
( f σ ) is bounded by the λ-invariant λσ of Lα( f σ, T ).
For the case in which f σ is supersingular, Lα( f σ, T ) and Lβ( f σ, T ) are known

to have finitely many zeroes of the form ζpn − 1, by a theorem of Rohrlich. By
only assuming the much weaker corollary that Lα( f σ, T ) does not vanish at some
ζpn − 1, we give an explicit upper bound:

Theorem 1.3. Let λ] and λ[ be the λ-invariants of L]p( f σ, T ) and L[p( f σ, T ). Put

q]n :=
⌊ pn

p+1

⌋
if n is odd, and q]n := q]n+1 for even n,

q[n :=
⌊ pn

p+1

⌋
if n is even, and q[n := q[n+1 for odd n,

ν] := largest odd integer n > 1 such that λ] > pn
− pn−1

− q]n,

ν[ := largest even integer n > 2 such that λ[ > pn
− pn−1

− q[n,

ν :=max(ν], ν[).
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(1) Assume µ] = µ[. Then the σ -part r an
∞
( f σ ) of the cyclotomic analytic rank r∞

for limn→∞ rank A f (Qn) is bounded above by

min(q]ν + λ], q[ν + λ[).

(2) For the case µ] 6= µ[, there is a similar bound of the form q∗ν + λ∗, where
∗ ∈ {], [}. We refer the reader to Theorem 7.8 for a precise formulation.

(3) When ap = 0, another analytic upper bound is given by λ]+ λ[.

Let Gord
f = {σ ∈ Gf : f σ is ordinary} and Gss

f = {σ ∈ Gf : f σ is supersingular}.
When σ ∈ Gss

f , denote by λσ\ the minimum of the bounds from Theorem 1.3.

Corollary 1.4. For a prime of good reduction, r an
∞

is bounded above as follows:

r an
∞
6

∑
σ∈Gord

f

λσ +
∑
σ∈Gss

f

λσ\ .

The Kurihara terms q]/[n in Theorem 1.3 are p-power sums, e.g., when ν > 1
and ν is odd, we have

q]ν = pν−1
− pν−2

+ pν−3
− pν−4

+ · · ·+ p2
− p.

The ν ∈N is chosen according to an explicit algorithm that measures the contribution
of Logα,β(1+T ) to the cyclotomic zeroes. For example, whenµ]=µ[ and λ]< p−1
and λ[<(p−1)2, we have ν= 0, in which case q]0 = q[0= 0 and the bound is simply
min(λ], λ[), which is very much in the spirit of the bound in the ordinary case.

The bound for the case ap = 0, λ]+ λ[, is a generalization of work of Pollack
[2003]. When p is odd, this bound is in most (computationally known) cases weaker
than the above one, but there are cases in which it is stronger. It is interesting to
ask for an optimal bound.

• For the leading term part, we know from the discussion above that Lα( f, T ) and
Lβ( f, T ) don’t vanish at T = ζpn −1 for n� 0, so that these values should encode
#(X(A f/Qn)[p∞])/#(X(A f/Qn−1)[p∞]), i.e., the jumps in the p-primary parts
of X at the n-th layer of the cyclotomic Zp-extension.

In the ordinary case, a classical result of Mazur gives an estimate for

#Xan(A f/Qn) :=
L(r

an′
n )(A f/Qn, 1)#Ator

f (Qn)# Âtor
f (Qn)

√
D(Qn)

(r an′
n )!�A f/Qn R(A f/Qn)Tam(A f/Qn)

.

His analytic estimate for en := ordp(#Xan(A f/Qn)) when f σ are all ordinary
says that for n� 0,

en − en−1 =
∑
σ∈Gf

µσ (pn
− pn−1)+ λσ − r an

∞
( f σ ),
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much in the spirit of Iwasawa’s famous class number formula. Here, µσ and λσ

are the Iwasawa invariants of Lα( f σ, T ). We prove a theorem that estimates en in
the general good reduction case in terms of the Iwasawa invariants of L]p( f σ, T )
and L[p( f σ, T ) and vσ = ordp(aσp ):

Given an integer n, we now define two generalized Kurihara terms q∗n (v
σ ) for

∗ ∈ {], [} which are continuous in vσ ∈ [0,∞]. They are each a sum of a truncated
Kurihara term and a multiple of pn

−pn−1. For fixed n, they are piecewise linear in v.

Definition 1.5. For a real number v > 0, let k ∈Z>1 be the smallest positive integer
such that v > p−k/2.

q]n(v) :=


(pn
− pn−1)kv+

⌊ pn−k

p+1

⌋
when n 6≡ k mod (2),

(pn
− pn−1)((k− 1)v)+

⌊ pn+1−k

p+1

⌋
when n ≡ k mod (2),

q[n(v) :=


(pn
− pn−1)((k− 1)v)+ p

⌊ pn−k

p+1

⌋
+ p− 1 when n 6≡ k mod (2),

(pn
− pn−1)kv+ p

⌊ pn−1−k

p+1

⌋
+ p− 1 when n ≡ k mod (2).

We also put

q∗n (∞) := lim
v→∞

q∗n (v), and q∗n (0) := lim
v→0

q∗n (v)=
{

0 when ∗ = ],
p− 1 when ∗ = [.

Definition 1.6 (modesty algorithm). Given v ∈ [0,∞], an integer n, integers λ]
and λ[, and rational numbers µ] and µ[, choose ∗ ∈ {], [} via

∗ =

{
] if (pn

− pn−1)µ]+ λ]+ q]n(v) < (pn
− pn−1)µ[+ λ[+ q[n(v),

[ if (pn
− pn−1)µ[+ λ[+ q[n(v) < (pn

− pn−1)µ]+ λ]+ q]n(v).

Theorem 1.7. Let en := ordp(#Xan(A f/Qn)). Then for n� 0, we have

en − en−1 =
∑
σ∈Gf

(
µσ
∗
(pn
− pn−1)+ λσ

∗
+ q∗n (v

σ )
)
− r an
∞
,

where:

(1) ∗ ∈ {], [} is chosen according to the modesty algorithm (Definition 1.6) with
the choice v = vσ when vσ 6= p−k/2. Note that one input of the algorithm is
the parity of the integer k such that vσ ∈

[ 1
2 p−k, 1

2 p−k+1
)
.

(2) The term q∗n (v
σ ) is replaced by a modified Kurihara term q∗n (v

σ , vσ2 ), when
vσ = p−k/2, that depends further on the valuation vσ2 of (aσp )

2
−ε(p)8p(ζpk+2)

whenµσ] 6=µ
σ
[ . Further, ∗∈{], [} is chosen according to a generalized modesty

algorithm which also depends on vσ2 . We refer the reader to Theorem 8.5 for a
precise formulation.
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v = 0 0< v <∞ v =∞

λ] < λ
′

[ λ] > λ
′

[ λ] = λ
′

[ n odd n even n odd n even

µ] = µ[ ] [ excluded ] [ ] [

µ] < µ[ ] ] ] ] ] ] [

µ[ < µ] [ [ [ [ [ ] [

Table 1. Table for Corollary 1.9, with λ′[ denoting λ[+ p− 1.

Remark 1.8. The (generalized) modesty algorithm doesn’t work for some excluded
(“sporadic”) cases. When vσ =0, the excluded case isµσ] =µ

σ
[ , and λσ] =λ

σ
[ + p−1,

which can be remedied by adhering to the ordinary theory; see Theorem 8.5. The
other excluded cases occur when vσ = p−k/2 and vσ2 = p−k(1 + p−1

− p−2)

and an inequality of µ-invariants (or λ-invariants) is satisfied. This case should
conjecturally not occur. See Definition 8.3 for details.

In less precise terms, the theorem above states that our formulas in the super-
singular case approach Mazur’s formula in the ordinary case as k→∞, and that
during this approach, the roles of ] and [ may switch as the parity of k does. The
simplest scenario is when the µ-invariants are equal. Here, a switch in the parity of
k always causes a switch in the role of ] and [. It is a mystery why these formulas
appear in this way, but we invite the reader to ponder this phenomenon by looking
at Figure 1.

In the supersingular case, Greenberg, Iovita, and Pollack (in unpublished work
around 2005) generalized the approach of Perrin-Riou of extracting invariants µ±
and λ± from the classical p-adic L-functions for a modular form f , L p( f, α, T ) and
L p( f, β, T ), which they used for their estimates (under the assumption µ+ = µ−).
Our formulas match theirs exactly in those cases, although the techniques are
different.

We write out explicitly the elliptic curve case of the above theorem for the
convenience of the readers, and since it hints at a unification of the ordinary and
supersingular theories:

Corollary 1.9. Let E be an elliptic curve over Q, p a prime of good reduction, v =
ordp(ap) and en := ordp(#Xan(E/Qn)), and µ]/[ and λ]/[ the Iwasawa invariants
of L]/[p (E, T ). Then for n� 0,

en − en−1 = µ∗(pn
− pn−1)+ λ∗− r an

∞
+min(1, v)q∗n ,

where the q∗n are the Kurihara terms from Theorem 1.3 and ∗ ∈ {], [} is chosen
according to Table 1.

In particular, there are three different possible formulas for the growth of the
Šafarevič–Tate group when ap 6= 0 and p is supersingular, one for each scenario of
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v =∞ (i.e., ap = 0)

v =
1

2p
+ |µ]−µ[|

v =
1

2p
− |µ]−µ[|

v =
1

2p2
+ |µ]−µ[|

v =
1

2p2
− |µ]−µ[|

v =
1

2p3
+ |µ]−µ[|

v = 0 (p is ordinary)

Figure 1. The locus inside the p-adic unit disc in which the mod-
esty algorithm chooses ] or [ when (p− 1)/(4p4) < |µ]−µ[|<

(p−1)/(4p3). Here, v=ordp(ap) indicates the possible valuations
of ap inside the unit disc. At the center, we have ap= 0, i.e., v=∞.
On the edge, we have v = 0, so that p is ordinary. In the central
shaded region, the formula involves µ], λ] for odd n and µ[, λ[ for
even n, while in the second shaded region, µ] and λ] are part of
the formula for even n, and µ[ and λ[ for odd n. In the outermost
shaded region, the roles are flipped yet again and the ]-invariants
come into play for odd n, and the [-invariants for even n. When
µ] < µ[, the formulas are only controlled by the µ] and λ] in the
nonshaded regions.

comparing µ-invariants. As visible when ap 6= 0, the Šafarevič–Tate group X tries
to stay as small as possible (it is “modest”) during its ascent along the cyclotomic
Zp-extension by choosing smaller Iwasawa-invariants. The analytic estimates in
the case v = ∞ (i.e., ap = 0) were given by Pollack [2003], see also the many
computations in [Stein and Wuthrich 2013].

Thanks to the work of Kurihara [2002], Perrin-Riou [2003], Kobayashi [2003],
and the work in [Sprung 2013], we now understand the algebraic side of the corollary
(i.e., the elliptic curve case) quite well in the supersingular case when p is odd.3

The formulas also match the algebraic ones of Kurihara and Otsuki [2006] when
p = 2. For the unknown cases (in which p = 2), the formulas thus serve as a
prediction of how X(E/Qn)[p∞] grows.

3These works answer a comment by Coates and Sujatha who wrote in their textbook [2000, p. 56]
only 15 years ago that when looking at the p-primary part of X(E/Qn) as n→∞, “. . . nothing
seems to be known about the asymptotic behavior of the order . . . ”
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Organization of Paper. This paper consists of two parts. Part I is mainly concerned
with the construction of our pair of Iwasawa functions: In Section 2, we introduce
Mazur–Tate symbols, which inherit special values of L-functions to construct the
classical p-adic L-functions of Amice, Vélu, and Višik, and state the main theorem.
In Section 3, we give a quick application, answering a question by Greenberg. In
Section 4, we scrutinize the logarithm matrix Logα,β and prove its basic properties.
In Section 5, we then put this information together to rewrite the p-adic L-functions
from Section 2 in terms of the new p-adic L-functions L]p and L[p, proving the
main theorem. Part II is devoted to the BSD-theoretic aspects as one climbs up
the cyclotomic tower: in Section 6, we give the necessary preparation, Section 7
is concerned with the two upper bounds on the Mordell–Weil rank, and Section 8
scrutinizes the size of X.

Outlook. Pottharst [2012] constructs an algebraic counterpart (Selmer modules) to
the pair Lα( f, T ), Lβ( f, T ) in the supersingular case, which hints at an algebraic
counterpart to Logα,β(1+ T ) as well, along with algebraic versions of each of our
analytic applications; these are equivalent under an Iwasawa main conjecture. A
proof of the main conjecture in terms of Lα( f, T ) in the ordinary case is due to
Skinner and Urban [2014], building on [Kato 2004]. See also [Rubin 1991] for
the CM case. The work of Lei, Loeffler, and Zerbes [Lei et al. 2010] constructs
pairs of Iwasawa functions (in Q⊗3) out of Berger–Li–Zhu’s basis [Berger et al.
2004] of Wach modules, see also [Loeffler and Zerbes 2013]. They match the
Iwasawa functions in this paper when ap = 0 (which shows that the functions in
[Lei et al. 2010] actually live in 3), which hints at an explicit relationship between
our methods and theirs. For the higher weight case, there are generalizations of
L]p( f, T ) and L[p( f, T ), which is forthcoming work. Their invariants are already
sometimes visible (see, e.g., [Pollack and Weston 2011]). It would be nice to
generalize the pairs of p-adic BSD conjectures formulated in [Sprung 2015] to
modular abelian varieties as well. For the ordinary case, the generalization of
[Mazur et al. 1986] is [Balakrishnan et al. 2016]. Another challenge is formulating
p-adic BSD for a bad prime. See [Colmez 2004] for an overview of p-adic BSD,
mainly in the good reduction case. Apart from [Mazur et al. 1986], a hint for what
to do can be found in Delbourgo’s [1998] formulation of Iwasawa theory.

Part I. The pair of Iwasawa functions L]p and L[p

2. The p-adic L-function of a modular form

In this section, we recall the classical p-adic L-functions given in [Amice and Vélu
1975; Mazur et al. 1986; Višik 1976; Mazur and Swinnerton-Dyer 1974], in the
case of weight-two modular forms. We give a construction via queue sequences
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which we scrutinize carefully enough to arrive at the decomposition of the classical
p-adic L-functions as linear combinations of Iwasawa functions L]p and L[p. This
is the main theorem of this paper, which will be proved in Sections 4 and 5, and
upon which the applications (Sections 3, 6, and 7) depend.

Let f be a weight-two modular form with character ε which is an eigenform
for the Hecke operators Tn with eigenvalue an . We also fix forever a good (i.e.,
coprime to the level) prime p. Given integers a,m, the period of f is

ϕ
(

f, a
m

)
:= 2π i

∫ a/m

i∞
f (z) dz.

The following theorem puts these transcendental periods into the algebraic realm
(see also [Greenberg and Stevens 1994, Theorem 3.5.4]).

Theorem 2.1 [Manin 1973, Proposition 9.2c]. There is a finite extension K ( f ) of
Q with integer ring O( f ) and nonzero complex numbers�±f such that the following
are in O( f ) for all a,m ∈ Z:[ a

m

]+
f
:=
ϕ( f, a/m)+ϕ( f,−a/m)

2�+f
and

[ a
m

]−
f
:=
ϕ( f, a/m)−ϕ( f,−a/m)

2�−f
.

Convention 2.2 (for Part II). We choose the convention that
∏

f σ �
±

f σ = �
±

A f
,

where the f σ run over all Galois conjugates of f (see, e.g., [Balakrishnan et al.
2016, (2.4)]), and �±A f

are the Neron periods as in [Manin 1971, §8.10]. We also
use the convention that any period � with an omitted sign denotes �+.

The [a/m]±f are called modular symbols. For p-adic considerations, we fix
an embedding Q→ Cp of an algebraic closure of Q inside the completion of an
algebraic closure of Qp. This all allows us to construct p-adic L-functions as
follows: Denote by C0(Z×p ) the Cp-valued step functions on Z×p . Let a be an integer
prime to p, and denote by 1U the characteristic function of an open set U . We let
ordp be the valuation associated to p so that ordp(p)= 1. Let α be a root of the
Hecke polynomial X2

− ap X + ε(p)p of f so that ordp(α) < 1, and denote the
conjugate root by β. Without loss of generality, we assume throughout this paper
that ordp(α)6 ordp(β). We define a linear map µ±f,α from C0(Z×p ) to Cp by setting

µ±f,α(1a+pnZp)=
1

αn+1

([ a
pn

]±
f
,
[ a

pn−1

]±
f

)(
α

−ε(p)

)
.

Remark 2.3. The maps µ±f,α are not measures, but ordp(α)-admissible measures.
See, e.g., [Pollack 2003]. For background on measures, see [Washington 1982,
Section 12.2].

Theorem 2.4. We can extend the maps µ±f,α to all analytic functions on Z×p .
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This can be done by locally approximating analytic functions by step functions,
since µ±f,α are ordp(α)-admissible measures. That is, we look at their Taylor series
expansions and ignore the higher order terms. For an explicit construction, see
[Amice and Vélu 1975] or [Višik 1976]. Since characters χ of Z×p are locally
analytic functions, we thus obtain an element

L p( f, α, χ) := µsign(χ)
f,α (χ).

Now since Z×p
∼= (Z/2pZ)×× (1+ 2pZp), we can write a character χ on Z×p as

a product
χ = ωiχu,

with 06 i < |1| for some u ∈Cp with |u−1|p < 1, where χu sends the topological
generator γ = 1+ 2p of 1+ 2pZp to u, and where ω :1→ Z×p ∈ Cp is the usual
embedding of the |1|-th roots of unity in Zp so that ωi is a tame character of
1= (Z/2pZ)×. Using this product, we can identify the open unit disc of Cp with
characters χ on Z×p having the same tame character ωi. Thus if we fix i , we can
regard L p( f, α, ωiχu) as a function on the open unit disc. We can go even further:

Theorem 2.5 [Višik 1976; Mazur et al. 1986; Amice and Vélu 1975; Pollack 2003].
Fix a tame character ωi

:1= (Z/2pZ)×→ Cp. Then the function L p( f, α, ωiχu)

is an analytic function converging on the open unit disc.

We can thus form its power series expansion about u = 1. For convenience, we
change variables by setting T =u−1 and denote L p( f, α, ωiχu) by L p( f, α, ωi , T ).

Denote by ζ = ζpn a primitive pn-th root of unity. We can then regard ωiχζ as a
character of (Z/pN Z)×, where N = n+1 if p is odd and N = n+2 if p= 2. Given
any character ψ of (Z/pN Z)×, let τ(ψ) be the Gauß sum

∑
a∈(Z/pN Z)× ψ(a)ζ

a
pN .

Theorem 2.6 [Amice and Vélu 1975; Višik 1976]. The above L p( f, α, ωi , T )
interpolate as follows:

L p( f, α, ωi , ζ − 1)=
pN

αN τ(ω−iχζ−1)

L( fω−iχ
ζ−1 , 1)

�
ωi (−1)
f

if i 6= 0 and ζ − 1 6= 0,

L p( f, α, ω0, 0)=
(

1− 1
α

)2 L( f, 1)
�+f

.

(1)

Queue sequences and Mazur–Tate elements. Denote by µpn the group of pn-th
roots of unity, and put GN := Gal(Q(µpN )). We let Qn be the unique subextension
of Q(µpN ) with Galois group isomorphic to Z/pnZ and put 0n :=Gal(Qn/Q). We
also let 0 := Gal

(⋃
n Qn/Q

)
. We then have an isomorphism

GN ∼=1×0n.
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We let K := K ( f )v be the completion of K ( f ) from Theorem 2.1 by the prime v of
K ( f ) over p determined by ordp(·) and denote by O the ring of integers of K . Let
3n =O[0n] be the finite version of the Iwasawa algebra at level n. We need two
maps ν = νn−1/n and π = πn/n−1 to construct queue sequences: π is the natural
projection from 3n to 3n−1, and the map 3n−1

νn−1/n−−→3n we define by

νn−1/n(σ )=
∑

τ 7→σ,τ∈0n

τ.

We let 3=O[[0]] = lim
←−−πn/n−1

O[0n] be the Iwasawa algebra. We identify 3 with
O[[T ]] by sending our topological generator γ = 1+ 2p of 0 ∼= Zp to 1+ T . This
induces an isomorphism between 3n and O[[T ]]/((1+ T )pn

− 1).

Definition 2.7. A queue sequence is a sequence of elements (2n)n ∈ (3n)n such
that

π2n = ap2n−1− ε(p)ν2n−2 when n > 2.

Definition 2.8. For a ∈ GN , denote its projection onto 1 by ā, and let i :1 ↪→ GN

be the standard inclusion, so that a/i(ā) ∈ 0n . Define logγ (a) to be the smallest
positive integer such that the image of γ logγ (a) under the projection from 0 to 0n

equals a/i(ā). We then have a natural map i :1 ↪→ G∞ which allows us to extend
this definition to any a ∈ G∞ = lim

←−−N GN : let logγ (a) be the unique element of Z×p
such that γ logγ (a) = a/i(ā).

Example 2.9. We make the identification GN ∼= (Z/pN Z)× by identifying σa with a,
where σa(ζ )= ζ

a for ζ ∈µpN . This allows us to construct the Mazur–Tate element,
which is

ϑ±N :=
∑

a∈(Z/pN )×

[
a

pN

]±
f
σa ∈O[GN ].

For each character ωi
:1→ C×p , put

εωi =
1

#1

∑
τ∈1

ωi (τ )τ−1.

We can take isotypical components εωiϑN of the Mazur–Tate elements, which can
be regarded as elements of 3n ∼=O[[T ]]/((1+T )pn

−1). Denote these Mazur–Tate
elements associated to the tame character ωi by

θn(ω
i , T ) := εωiϑ

sign(ωi )

N .

We extend ωi to all of (Z/pN Z)× by precomposing with the natural projection
onto 1, and can thus write these elements explicitly as elements of 3n:

θn(ω
i,T ) =

∑
a∈(Z/pN Z)×

[
a

pN

]sign(ωi )

f
ωi (a)(1+ T )logγ (a).
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When ωi
= 1 is the trivial character, we simply write θn(T ) instead of θn(1, T ).

For a fixed tame character ωi, the associated Mazur–Tate elements θn(ω
i , T ) form

a queue sequence. For a proof, see [Mazur et al. 1986, (4.2)].

We can now explicitly approximate L p( f, α, ωi , T ) by Riemann sums:

Definition 2.10. Put

L±N ,α :=
∑

a∈(Z/pN Z)×

µ±f,α(1a+pN Zp)σa ∈ Cp[GN ],

so we get the representation

εωi Lsign(ωi )

N ,α (T ) =
∑

a∈(Z/pN Z)×

µ
sign(ωi )

f,α (1a+pnZp)ω
i (a)(1+ T )logγ (a).

Note that the homomorphism ν :0n−1→0n extends naturally to a homomorphism
from GN−1 to GN , also denoted by ν.

Lemma 2.11. Let n > 0, i.e., N > 1 for odd p, and N > 2 for p = 2. Then

(L±N ,α, L±N ,β)= (ϑ
±

N , νϑ
±

N−1)

(
α−N β−N

−ε(p)α−(N+1)
−ε(p)β−(N+1)

)
.

Proof. This follows from the definitions. �

Proposition 2.12. As functions converging on the open unit disc, we have

L p( f, α, ωi , T )= lim
n→∞

εωi Lsign(ωi )

N ,α (T ).

Proof. Approximation by Riemann sums, and decomposition into tame characters.
�

Corollary 2.13. Let p be supersingular. Then both α and β have valuation strictly
less than one, so we can reconstruct the p-adic L-functions by the Mazur–Tate
elements:(
L p( f, α, ωi , T ), L p( f, β, ωi , T )

)
= lim

n→∞

(
θn(ω

i , T ), νθn−1(ω
i , T )

) ( α−N β−N

−ε(p)α−(N+1)
−ε(p)β−(N+1)

)
.

In the ordinary case, we have ordp(α)= 0< 1, so

L p( f, α, ωi , T )= lim
n→∞

(
θn(ω

i , T ), νθn−1(ω
i , T )

) ( α−N

−ε(p)α−(N+1)

)
.

Proof. This follows from Lemma 2.11. �
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In Section 4, we define an explicit 2× 2 matrix

L̂ogα,β(1+ T )=

(
l̂og]α(1+ T ) l̂og]β(1+ T )

l̂og[α(1+ T ) l̂og[β(1+ T )

)
that encodes convenient behavior of the Mazur–Tate elements. We prove that the
entries are functions convergent on the open unit disc when p is supersingular, and
that l̂og]α(1+ T ) and l̂og[α(1+ T ) converge on the closed unit disc in the ordinary
case. This assertion is the main lemma (Lemma 4.4). A corollary of the construction,
Remark 4.5, says that the determinant of L̂ogα,β(1+ T ) converges and vanishes
precisely at ζpn = 1 for n > 0. Lemma 4.4 is the key ingredient to proving our main
theorem:

Theorem 2.14. Fix a tame character ωi .

(a) When p is supersingular, there is a unique vector of two Iwasawa functions

−̂→Lp( f, ωi , T )=
(

L̂]p( f, ωi , T ), L̂[p( f, ωi , T )
)
∈3⊕2

such that(
L p( f, α, ωi , T ), L p( f, β, ωi , T )

)
=
(
L̂]p( f, ωi , T ), L̂[p( f, ωi , T )

)
L̂ogα,β(1+T ).

(b) When p is ordinary, there is vector

−̂→Lp( f, ωi , T )=
(
L̂]p( f, ωi , T ), L̂[p( f, ωi , T )

)
∈3⊕2

such that

−̂→Lp( f, ωi , T )

(
l̂og]α(1+ T )
l̂og[α(1+ T )

)
= L p( f, α, ωi , T )

and

−̂→Lp( f, ωi , 0)

(
l̂og]β(1)
l̂og[β(1)

)
is given by (1) with ζ = 1 and α replaced by β.

Once −̂→Lp( f, ωi , T ) is fixed, all (other) such vectors are given by

−̂→Lp( f, ωi , T )+ g(T )T
(
−l̂og[α(1+ T ), l̂og]α(1+ T )

)
for g(T ) ∈3. In particular, the value of −̂→L p( f, ωi , 0) is uniquely determined.

Statements analogous to parts (a) and (b) also hold for objects without the hats.
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3. A question by Greenberg

To motivate our theorem, we give a quick application. Greenberg [2001] conjectured
that L p( f, α, ωi , T ) and L p( f, β, ωi , T ) have finitely many common zeros (in the
elliptic curve case) when p is supersingular and i = 0. In this section, we work in
the general supersingular case.

Theorem 3.1 [Rohrlich 1984]. L p( f, α, ωi , T ) and L p( f, β, ωi , T ) vanish at only
finitely many T = ζpn − 1.

Proof. Since these functions interpolate well (Theorem 2.6), the result follows from
the original theorem of Rohrlich [1984], which guarantees that L( f, χ, 1)= 0 at
finitely many characters of p-power order. �

Theorem 3.2. L p( f, α, ωi , T ) and L p( f, β, ωi , T ) have finitely many common
zeros. In particular, Greenberg’s conjecture is true.

Proof. When a zero is not a p-power root of unity minus 1, it is one of the finitely
many zeros of L]p( f, ωi , T ) and L[p( f, ωi , T ), since detLogα,β(1 + T ) doesn’t
vanish there. For the other zeros, use Rohrlich’s theorem. �

Remark 3.3. Pollack already found a different proof in the case ap = 0 ([Pollack
2003, Corollary 5.12]).

4. The logarithm matrix L̂ogα,β(1+ T )

Definition of the matrix Logα,β(1+T ) and convergence of entries. In this section,
we construct a matrix Logα,β(1+ T ) whose entries are functions converging on
the open unit disc in the supersingular case. In the ordinary case, its first column
converges on the closed unit disc. They directly generalize the four functions log]/[α/β
from [Sprung 2012] and the three functions log+p , log−p ·α, log−p ·β from [Pollack
2003], all of which concern the supersingular case. We also construct a completed
version L̂ogα,β(1+ T ).

Definition 4.1. Let i > 1. We complete the pi -th cyclotomic polynomial by putting

8̂pi (1+ T ) :=8pi (1+ T )/(1+ T )
1
2 pi−1(p−1),

except when p = 2 and i = 1: to avoid branch cuts (square roots), we set

8̂2(1+ T ) :=82(1+ T ).

Definition 4.2. Define the following matrices:

Ci := Ci (1+ T ) :=
(

ap 1
−ε(p)8pi (1+ T ) 0

)
, and C := Ci (1)=

(
ap 1

−ε(p)p 0

)
.
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Definition 4.3. Recall that ordp is the valuation on Cp normalized by ordp(p)= 1.
Put

v = ordp(ap) and w = ordp(α).

Lemma 4.4 (main lemma). Recall that N = n + 1 if p is odd, and N = n + 2 if
p = 2. We put

Logα,β(1+ T ) := lim
n→∞

C1 · · · CnC−(N+1)
(
−1 −1
β α

)
.

Then the entries in the left column of Logα,β(1+ T ) and L̂ogα,β(1+ T ) are well-
defined as power series and converge on the open unit disc. When v > 0 (the
supersingular case) or T = ζpn − 1 with n > 0, we can say the same about all
entries.

Remark 4.5. We call Logα,β(1+ T ) the logarithm matrix. The reason for this
name is that for odd p, we have

detLogα,β(1+ T )=
logp(1+ T )

T
×

β −α

(ε(p)p)2
.

For p = 2, the above exponent of 2 has to be replaced by a 3.

Remark 4.6. After this paper was written, Antonio Lei found a more streamlined
proof of Lemma 4.4. This can be found in the proof of [Lei 2014, Theorem 1.5],
which relies on techniques of Perrin-Riou [1994, §1.2.1]. The methods below uses
the technique of valuation matrices developed below instead of those in [Perrin-Riou
1994, §1.2.1].

Convention 4.7. Whenever we encounter an expression E involving 8pi (1+ T ),
we let Ê be the corresponding expression involving 8̂pi (1+T ). For example, we let
Ĉi be Ci with −ε(p)8̂pi (1+T ) in the lower left entry instead of −ε(p)8pi (1+T ),
and

L̂ogα,β(1+ T )= lim
n→∞

Ĉ1 · · · ĈnC−(N+1)
(
−1 −1
β α

)
.

Observation 4.8. For i > n > 0, we have

Ĉi (T + 1)|T=ζpn−1 = Ĉi (ζpn )= Ci (ζpn )= C.

Definition 4.9. For a matrix M = (mi, j )i, j with entries mi, j in the domain of a
valuation val, let the valuation matrix [M] of M be the matrix consisting of the
valuations of the entries:

[M] := [val(mi, j )]i, j .
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Let N = (n j,k) j,k be another matrix so that we can form the product M N . Valuation
matrices have the following valuative multiplication operation:

[M][N ] :=
[
min

j
(mi, j + n j,k)

]
i,k .

We also define the valuation val(M) of M to be the minimum of the entries in the
valuation matrix:

val(M) :=min{val(mi, j )}.

Definition 4.10. Let 0 < r < 1. Denote by | · |p = p−ordp(·) the p-adic absolute
value. For f (T ) ∈Cp[[T ]] convergent on the open unit disc, we define its valuation
at r to be

vr ( f (T )) := inf
|z|p<r

ordp( f (z)).

We define the valuation at 0 to be

v0( f (T )) := ordp( f (0)).

Lemma 4.11. Let val be a valuation, and M and N be matrices as above allowing
a matrix product M N. Then val(M N )> val(M)+ val(N ).

Proof. Term by term, the valuations of the entries of [M N ] are at least as big as
those of [M][N ]. �

Notation 4.12. Let M be a matrix whose coefficients are in Cp[[T ]]. With respect
to vr we may then define the valuation matrix of M at r and denote it by [M]r .
We similarly define the valuation of M at r and denote it by vr (M). When these
terms don’t depend on r (e.g., when the entries of M are constants), we drop the
subscript r .

Example 4.13.4 Denote the logarithm with base p by log(p) to distinguish it from
the p-adic logarithm logp of Iwasawa.

vr (8pn (1+ T ))=
{

1 when r 6 p−(p
n−1(p−1))−1

,

−log(p)(r)p
n−1(p− 1) when r > p−(p

n−1(p−1))−1
.

Example 4.14. vr
(
(1+ T )

1
2 pn−1(p−1))

=
1
2 pn−1(p− 1)vr (1+ T )= 0.

In what follows, we give the arguments needed for our main lemma (Lemma 4.4)
for L̂ogα,β(1+ T ). From Example 4.14, the proof for Logα,β(1+ T ) follows by
taking the hat off the relevant expressions.

4This essentially appears in [Pollack 2003, lemma 4.5]. It seems that he meant to write
p−vr (8n(1+T ))

∼ r pn−1(p−1) in the proof.
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Definition 4.15. Assume β 6= α. We put ρ := α/β and let

ϒ̂n :=
1

β−α

(
β −

8̂pn (1+T )
α

)
, Hn :=

(
−1 −ρn+1

ρ−n ρ

)
,

M̂n :=

(
1 0
0 1

)
+ Hnϒ̂n

=

(
αn 0
0 βn

)(
−1 −1
β α

)−1

Ĉn

(
−1 −1
β α

)(
α−n−1 0

0 β−n−1

)
,

Ha,n1,n2,...,nl := Ha Ha+n1+1 Ha+n1+n2+2 · · · Ha+n1+n2+···+nl+l,

ϒ̂a,n1,n2,...,nl := ϒ̂aϒ̂a+n1+1ϒ̂a+n1+n2+2 · · · ϒ̂a+n1+n2+···+nl+l .

Note that Logα,β differs from limn→∞ M̂1M̂2 · · · M̂n by multiplication by
(
−1 −1
β α

)
on the left and a diagonal matrix on the right.

Lemma 4.16. Ha,n1,n2,...,nl =

Ha

(
(−1)l(1− ρ−n1)(1− ρ−n2) · · · (1− ρ−nl ) 0

0 ρl(1− ρn1)(1− ρn2) · · · (1− ρnl )

)
.

Proof. This follows from the fact that

Ha Ha+b+1 = Ha

(
−(1− ρ−b) 0

0 ρ(1− ρb)

)
. �

Lemma 4.17 (expansion lemma).

M̂1 · · · M̂n =

(
1 0
0 1

)
+

n∑
a>1

Haϒ̂a +
∑
l>1

∑
a>1, ni>1

l+a+
∑l

i>1 ni6n

Ha,n1,n2,...,nl ϒ̂a,n1,n2,...,nl .

Proof. We prove this by induction. For n = 1, this is just the definition. Now
assume the lemma holds for n. We want to show that it holds for n+1. The entries
in the very last sum are products of (l + 1) matrices Hmϒ̂m whose subindices are
bounded above by n. In fact, the entries are all such matrix products with the two
following conditions on the subindices m:

• The m’s are off by at least 2.

• The m’s are in ascending order.

Note that the first sum corresponds to the l = 0 case.
We want to show that

(M̂1 · · · M̂n)

((
1 0
0 1

)
+ Hn+1ϒ̂n+1

)
= M̂1 · · · M̂n + M̂1 · · · M̂n Hn+1ϒ̂n+1
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satisfies Lemma 4.17. Each time when multiplying Hn+1ϒ̂n+1 with the product of
(l + 1) matrices that satisfy the conditions in the bullet points above, we obtain
a product of (l + 2) matrices whose subindices are now bounded by n + 1. The
subindices are still in ascending order, and we may assume they are also off by at
least 2, since

Ha Ha+1 =

(
−1 −ρa+1

ρ−a ρ

)(
−1 −ρa+2

ρ−a−1 ρ

)
=

(
0 0
0 0

)
. �

Proof of the main lemma (Lemma 4.4). We want to prove that the sums involved in
Lemma 4.17 converge as n→∞.

When β = α, w = ordp(α) =
1
2 , so that the arguments of [Sprung 2012,

Lemma 4.4] work; see [Lei et al. 2010, Remark 5.26]. Thus, suppose β 6= α.
Fix r < 1.

For convergence of the first sum, we see the terms in the valuation matrix [Haϒ̂a]r

are bounded below by the terms in[
a 2wa

(2− 2w)a a

]
up to a constant independent from a or n. This follows from Example 4.13 and
the fact that

∏a−1
i>1 8pi (1+ T ) divides ϒ̂a: Indeed, ϒ̂a vanishes at T = ζpi − 1 for

16 i 6 a− 1, since 8pa (ζpi )= p. All terms in this valuation matrix go to∞ as
a does, except for the upper-right term when w = 0, or the lower left term when
w = 1

2 .
Now we handle the second (double) sum. We want to show that

Ha,n1,n2,...,nl ϒ̂a,n1,n2,...,nl

is bounded. Note that we have ordp(ρ(1− ρm))> (2w− 1)(1+m) so that

[ϒ̂a+mρ(1− ρm)]r > 2wm+ a+C

for some constant C independent of a or m. Assume for the moment that we are in
the supersingular case. Lemma 4.16 and the easier fact that [ϒ̂a+mρ(1− ρ−m)]r >
a+m then shows that all entries in the valuation matrix of Ha,n1,n2,...,nl ϒ̂a,n1,n2,...,nl ,
except possibly for the lower-left term, have terms bounded below by the corre-
sponding entries of Haϒ̂a .

Thus, three of the terms of L̂ogα,β(1+ T ) converge in the supersingular case.
Since det L̂ogα,β(1+ T ) converges as well, all terms of L̂ogα,β(1+ T ) converge.
For Logα,β(1+ T ), we take our hats off.

For the ordinary case, analogous arguments hold for the terms in the left column.
�



On pairs of p-adic L-functions for weight-two modular forms 905

The rate of growth.

Definition 4.18. For f (T ), g(T ) ∈ Cp[[T ]] converging on the open unit disc, we
say f (T ) is O(g(T )) if

p−vr ( f (T )) is O(p−vr (g(T ))) as r→ 1−,

i.e., there is an r0 < 1 and a constant C such that

vr (g(T )) < vr ( f (T ))+C when 1> r > r0.

If f (T ) is O(g(T )) and g(T ) is O( f (T )), we say “ f (T ) grows like g(T ),” and
write f (T )∼ g(T ).

Example 4.19. 1∼ T ∼8p(1+T ). Also, detLogα,β ∼ logp(1+T ) by Remark 4.5.

Proposition 4.20 (growth lemma). When v > 1
2 , the entries of L̂ogα,β(1+ T ) and

Logα,β(1+ T ) grow like logp(1+ T )
1
2 . When v 6 1

2 , the entries in the left column
are O(logp(1+ T )v), and those in the right O(logp(1+ T )1−v).

We give the proof for Logα,β(1+T ), since it is similar for the case L̂ogα,β(1+ T ).
Before beginning with the proof, let us name the quantities from Example 4.13:

Definition 4.21. en,r := vr (8pn (1+ T ))=min
(
1,−log(p)(r)(p

n
− pn−1)

)
.

Lemma 4.22. The entries of Logα,β(1+ T ) are O(logp(1+ T )1−w).

Proof. It suffices to prove this for limn→∞ M1 · · ·Mn , where the Mi are as in
Definition 4.15. Note that

Mn =8pn (1+ T )
(

1/α 1/β
−1/α −1/β

)
+

(
−α −α

−β −β

)
,

so that for r < 1,

[Mn]r > en,r +w− 1> (1−w)(en,r − 1).

Hence,

[M1 · · ·Mn]r > (1−w)
n∑

i>1

(ei,r − 1)= (1−w)
n∏

i>1

[
8pi (1+ T )

p

]
r
.

Taking limits, the result follows. �

We implicitly used diagonalization in an earlier proof, but write it out for conve-
nience:

Observation 4.23. Let m be an integer. Then(
−1 −1
β α

)(
αm 0
0 βm

)
= Cm

(
−1 −1
β α

)
.
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Proof of the growth lemma (Proposition 4.20). We first treat the case v=0=ordp(α).
When n > 1,

[C1 · · · Cn]r = [C1]r · · · [Cn]r =

[
0 0

e1,r e1,r

]
.

By Observation 4.23, the valuation matrix of the left column of C1 · · · Cn
(
−1 −1
β α

)
and of Logα,β is

[ 0
e1,r

]
. Thus, these entries are O(8p(1+ T )). Since we have

8p(1+ T )∼ 1 by Example 4.19, they are indeed O(1).
Next, we assume 0 < v 6 1

2 . Given r , let i be the largest integer such that
ei,r < 2v. Without loss of generality, assume i is even. We then compute

[C1 · · · Ci ]r = [C1]r · · · [Ci ]r

=

[
e2,r + e4,r + · · ·+ ei,r v+ e2,r + · · ·+ ei−2,r

v+ e1,r + e3,r + · · ·+ ei−1,r e1,r + · · ·+ ei−1,r

]
.

Remembering that ei+1,r > 2v, we see that for n > i ,

[C1 · · · Cn]r

=

[
(n− i)v+ e2,r + e4,r + · · ·+ ei,r (n− i − 1)v+ e2,r + · · ·+ ei,r

>(n− i − 1)v+ e1,r + · · ·+ ei−1,r >(n− i)v+ e1,r + · · ·+ ei−1,r

]
,

where by >x we have denoted an unspecified entry that is greater than or equal
to x . By Observation 4.23, we have that

[
C1 · · · CnC−(N+1)

(
−1 −1
β α

)]
r is[

>(n− N − i)v+ e2,r + · · ·+ ei,r >(n+ N − i)v− N + e2,r + · · ·+ ei,r

>(n− N − i + 1)v+ e1,r + · · ·+ ei−1,r >(n+ N − i + 1)v− N + e1,r + · · ·+ ei−1,r

]
.

Now let m := i−bordp(2v)c. We then have em−h,r ·2v6 ei−h,r for any h< i , and
eM,r = 1 for any M > m. Thus, the top-left entry of

[
C1 · · · CnC−(N+1)

(
−1 −1
β α

)]
r

is, up to a constant independent from r , greater than or equal to

2v(em−i+2,r + em−i+4,r + · · ·+ em,r )− iv = 2v · vr

( m∏
k>m−i+2

k even

8pk (1+ T )
p

)
.

Now note that
∞∏

even k>2

8pk (1+ T )
p

∼ logp(1+ T )
1
2 .

Using similar arguments, one obtains the appropriate bound for the lower left entry.5

The claim for the case 06 v 6 1
2 thus follows from Lemma 4.22.

5The same arguments show it for the right entries when v = 1
2 , although this already follows from

Lemma 4.22.



On pairs of p-adic L-functions for weight-two modular forms 907

Lastly, we treat the case v > 1
2 . Without loss of generality, let n > 1 be even.

Then

[C1 · · · Cn]r = [C1]r · · · [Cn]r =

[
e2,r + e4,r + · · ·+ en,r v+ e1,r + · · ·+ en−2,r

v+ e1,r + · · ·+ en−1,r e1,r + · · ·+ en−1,r

]
.

From Observation 4.23, ordp(α)= ordp(β)=
1
2 , and en,r 6 1, we compute[

C1 · · · CnC−(N+1)
(
−1 −1
β α

)]
r

=

[
−N/2+ e2,r + · · ·+ en,r −N/2+ e2,r + · · ·+ en,r

(1− N )/2+ e1,r + · · ·+ en−1,r (1− N )/2+ e1,r + · · ·+ en−1,r

]
.

Up to a constant independent from r , these entries are

vr

( n∏
k>2, k even

8pk (1+ T )
p

)
= e2,r + · · ·+ en,r −

n
2
,

vr

( n∏
k>1, k odd

8pk (1+ T )
p

)
= e1,r + · · ·+ en−1,r −

n
2
.

But from [Pollack 2003, Lemma 4.5], we have
∞∏

even k>2

8pk (1+ T )
p

∼

∞∏
odd k>1

8pk (1+ T )
p

∼ logp(1+ T )
1
2 ,

from which the assertion follows for the case v > 1
2 . �

Lemma 4.24. When v = 0, the functions l̂og]α(1+ T ) and l̂og[α(1+ T ) are in 3.

Proof. Observation 4.23 and Remark 4.5. �

The functional equation.

Proposition 4.25. Under the change of variable (1+ T ) 7→ (1+ T )−1, the first
column of L̂ogα,β(1 + T ) is invariant. When all four entries of L̂ogα,β(1 + T )
converge, then

L̂ogα,β(1+ T )= L̂ogα,β((1+ T )−1) if p is odd,(
1 0
0 (1+ T )−1

)
L̂ogα,β(1+ T )= L̂ogα,β((1+ T )−1) if p = 2.

Proof. All Ĉi (1+T ) are invariant under the change of variables 1+T 7→ 1/(1+T ),
except Ĉ1(1+ T ) if p = 2, where we have

Ĉ1

( 1
1+T

)
=

(
1 0
0 (1+ T )−1

)
Ĉ1(1+ T ). �
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The functional equation in the case ap = 0. The entries of L̂ogα,β(1+ T ), when
ap = 0, are off by units from the corresponding ones in Logα,β(1+ T ). More
precisely, denote by log±p (1+ T ) Pollack’s [2003] half-logarithms:

log+p (T ) :=
1
p

∏
j>1

8p2 j (1+ T )
p

, and log−p (T ) :=
1
p

∏
j>1

8p2 j−1(1+ T )
p

.

We then have

Logα,β(1+ T )=



1
ε(p)

 log+p (T ) log+p (T )

log−p (T )α log−p (T )β

 when p is odd,

1
ε(2)

 −1
ε(2)2

log+2 (T )α
−1
ε(2)2

log+2 (T )β

log−2 (T ) log−2 (T )

 when p = 2.

Setting U±(1+ T ) := ̂log±p (T )/ log±p (T ), we obtain

L̂ogα,β(1+ T )=
(

U+(1+ T ) 0
0 U−(1+ T )

)
Logα,β(1+ T ).

Now put

W+(1+ T )=
U+(1+ T )

U+((1+ T )−1)
=

∏
j>1

(1+ T )−p2 j−1(p−1),

and

W−(1+T )=


U−(1+T )

U−((1+T )−1)
=
∏

j>1(1+T )−p2 j−2(p−1) for odd p,

U−(1+T )
(1+T )U−((1+T )−1)

= (1+T )−1∏
j>2(1+T )−p2 j−2(p−1) when p= 2.

We can finally arrive at the corrected statement of [Pollack 2003, Lemma 4.6]:

Lemma 4.26. We have

log+p (T )W
+(1+ T )= log+p

( 1
1+T

− 1
)
,

log−p (T )W
−(1+ T )= log−p

( 1
1+T

− 1
)
.

Proof. This follows from what has been said above, or by going through the proof
of [Pollack 2003, Lemma 4.6] on noting that the units U±(1+ T ) 6= 1. �

5. The two p-adic L-functions L̂]p( f, T ) and L̂[p( f, T )

In this section, we construct Iwasawa functions L̂]p( f, T ) and L̂[p( f, T ). We present
the arguments with the completions. The corresponding noncompleted arguments
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can be recovered by taking off the hat above any expression x̂ yz and replacing it
by xyz. Instead of working with the matrices Ĉi and C , we make our calculations
easier via the following definitions:

Definition 5.1. We put

Âi :=

(
ap 8̂pi (1+ T )
−ε(p) 0

)
, A :=

(
ap p
−ε(p) 0

)
, Ã :=

(
ap 1
−ε(p) 0

)
.

Definition 5.2. For any integer i, put Y2i := p−i A2i , and Y2i+1 = Y2i Ã.

Proposition 5.3 (tandem lemma). Fix n ∈ N. Assume that for any i ∈ N, we are
given functions Qi = Qi (T ) such that Qi ∈8pi (1+ T )O[T ] whenever i 6 n, and
(Qn+1, Qn)Yn′−n = (Qn′+1, Qn′) for any n′ ∈ N. Then

(Qn+1, Qn)= (q̃1, q0)Â1 · · · Ân with q̃1, q0 ∈O[T ].

Proof. We inductively show that (Qn+1, Qn)= (̃qi+1, qi )Âi+1 · · · Ân for q̃i+1, qi ∈

O[T ] with 06 i 6 n: Note that at the base step i = n, the product of the Â’s is
empty so that we indeed have (̃qn+1, qn)= (Qn+1, Qn). For the inductive step, let
i > 1. Then we have

(Qn+1, Qn)= (̃qi+1, qi )An−i by evaluation at ζpi − 1,

(Qn+1, Qn)Yi−n = (Qi+1, Qi ) by assumption.

We thus have
(̃qi+1, qi )An−i Yi−n = (Qi+1, 0) at ζpi − 1,

whence qi vanishes at ζpi − 1. We hence write qi = 8̂pi (1 + T ) · q̃i for some
q̃i ∈O[T ]. Now put (q̃i , qi−1) := (q̃i+1, q̃i ) Ã−1. Then (̃qi+1, qi )= (q̃i , qi−1)Âi .

�

Observation 5.4. Let (2n)n be a queue sequence and π : 3n → 3n−1 be the
projection. Then for n > 2, we have π(2n, ν2n−1)= (2n−1, ν2n−2)A.

Proof. Definition 2.7. �

Proposition 5.5. Let (2n)n be a queue sequence and 0 6 n′ 6 n. When lifting
elements of 3n to O[T ], the second entry of (2n, ν2n−1)Yn′−n vanishes at ζpn′ − 1.

Proof. Denote by πn/n′ the projection from 3n to 3n′ . By the above observation,
the second entry of

πn/n′(2n, ν2n−1)Yn′−n = (2n′, ν2n′−1)An−n′Yn′−n

is contained in the ideal (8n′)⊂3n′ . Thus, its preimage under πn/n′ is in the ideal
(8n′)⊂3n . �
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Corollary 5.6. Let (2n)n be a queue sequence. Then

(2n, ν2n−1)= ϒ̂n Ĉ1 · · · Ĉn Ã−1 for some ϒ̂n ∈3
⊕2
n .

Proof. We identify elements of 3n by their corresponding representative in O[T ]
and use Proposition 5.5. Then, we can apply the tandem lemma (Proposition 5.3),
and project back to 3⊕2

n . �

Corollary 5.7. (We rewrite the Riemann sum approximations of Definition 2.10)
For some −̂→L ωi

p,n ∈O[T ]
⊕2,(

εωi Lsign(ωi )

N ,α , εωi Lsign(ωi )

N ,β

)
=
−̂→L ωi

p,n Ĉ1 · · · Ĉn Ã−1
(

α−N β−N

−α−(N+1)
−β−(N+1)

)
=
−̂→L ωi

p,n Ĉ1 · · · ĈnC−(N+1)
(
−1 −1
β α.

)
.

Proof. We know that (αN+1L N ,α, β
N+1L N ,β)= (ϑN , νϑN−1)

(
α β
−ε −ε

)
. The isotyp-

ical components of ϑN form queue sequences. Now apply Corollary 5.6 and lift
back to O[T ]⊕2. �

The above −̂→L ωi

p,n are not unique, so we take limits by regarding the polynomials
as elements of 3⊕2

n :

Definition 5.8. We define
−̂→L ωi

p := lim
n→∞

−̂→L ωi

p,n ∈3
⊕2/M,

where M is given by the next definition.

Definition 5.9. We put M := lim
←−−n Mn , where

Mn := ker
(
×Ĉ1 · · · ĈnC−(N+1)

(
−1 −1
β α

))
⊂3n ⊕3n.

Proposition 5.10. For supersingular p, M is trivial. For ordinary p,

M∼= T3(− log[α ⊕ log]α)⊂3⊕3.

Proof. Since

C−(N+1)
(
−1 −1
β α

)
=

(
−1 −1
β α

)(
−α−(N+1) 0

0 β−(N+1)

)
,

we have

Mn = pordp(α)(N+1)(αN+13n ⊕β
N+13n)

(
α 1
−β −1

)
Ĉ∗n · · · Ĉ

∗

1 (β −α)T,

where Ĉ∗i is the adjugate of Ĉi (see also [Sprung 2012, Lemma 5.8]).
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Since the matrix product to the right of (αN+13n⊕β
N+13n) has3n-integral coef-

ficients, we see that Mn ⊂ pordp(α)(N+1)3⊕2
n so that lim

←−−n Mn = 0 when ordp(α)> 0.
In the ordinary case, only the terms involving a power of β go to zero in the limit,
whence the result. �

Proof of Theorem 2.14. We give the proof with the hats, since the proof for the
expressions without the hats is the same. Part a follows from taking limits of
−̂→
L ωi

p,n together with the main lemma (Lemma 4.4) and the above Proposition 5.10
(triviality of M). For part b, the proof is the same up to the description of M and
Proposition 5.10, which gives rise to the term g(T )T (−l̂og[α ⊕ l̂og]α). Now use
Lemma 4.24. �

Now that we have finally proved Theorem 2.14, we can give the following
corollary:

Corollary 5.11. Pick T such that Logα,β(1+ T ) and L̂ogα,β(1+ T ) converge in
all entries and are invertible. Then(
L̂]p( f, ωi , T ), L̂[p( f, ωi , T )

)
=
(
L]p( f, ωi , T ), L[p( f, ωi , T )

)
Logα,β(1+ T )L̂ogα,β(1+ T )−1

.

Remark 5.12. In our setup so far, we have worked with the periods �±f . In the
case of an elliptic curve E over Q, one can alternatively use the real and imaginary
Néron periods �±E . These real and imaginary Néron periods are defined as follows.

Definition 5.13. Decompose H1(E,R) = H1(E,R)+ ⊕ H1(E,R)−, where com-
plex conjugation acts as +1 on the first summand and as −1 on the second. Put
H±1 (E,Z) := H1(E,Z)± ∩ H1(E,R). Choose generators δ± of H1(E,Z)± such
that the following integrals are positive:

�±E :=

{∫
δ±
ωE if E(R) is connected,

2 ·
∫
δ±
ωE if not.

Convention 5.14. When working with these periods, we may define modular
symbols and p-adic L-functions analogously, and write E wherever we have written
f before.

In view of [Breuil et al. 2001] and [Wiles 1995], we have a modular parametriza-
tion π : X0(N )→ E , such that π∗(ωE) = c · fE · (dq)/q for some normalized
weight-two newform fE of level N. The constant c is called the Manin constant
for π . It is known to be an integer (see [Edixhoven 1991, Proposition 2]) and
conjectured to be 1. See [Manin 1972, § 5].

We note that the analogue of Theorem 2.1 is not necessarily satisfied when one re-
places�±f by�±E , but the following is known (see [Pollack 2003, Remarks 5.4, 5.5]):
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L]p( f, ωi , 0) L[p( f, ωi , 0)

p odd,
i = 0

(
−a2

p + 2ap + p− 1
) L( f, 1)
�+f

(2− ap)
L( f, 1)
�+f

p odd,
i 6= 0 −pap

L( f, ω−i , 1)

τ (ω−i )�
ωi (−1)
f

−p L( f, ω−i , 1)

τ (ω−i )�
ωi (−1)
f

p = 2,
i = 0

(
−a3

p + 2a2
p + 2pap − ap − 2p

) L( f, 1)
�+f

(
−a2

p + 2ap + p− 1
) L( f, 1)
�+f

p = 2,
i 6= 0 −p2ap

L( f, ω−i , 1)

τ (ω−i )�
ωi (−1)
f

−p2 L( f, ω−i , 1)

τ (ω−i )�
ωi (−1)
f

Table 2. Table of the special values for a good prime p.

Theorem 5.15 (imitation of Theorem 2.1). Let E be a strong Weil curve over Q,
and p be a prime of good reduction. Then:

(1) [Abbes and Ullmo 1996, théorème A] p does not divide c.

(2) [Manin 1972, Theorem 3.3] If ap 6≡ 1 mod p, we have

2
[ a

pn

]±
E
∈ c−1Z, so 2

[ a
pn

]±
E
∈ Zp.

Corollary 5.16. When ap 6≡ 1 mod p, L]p(E, ωi , T ) and L[p(E, ωi , T ) and their
completions are in 3. In particular, the 2-adic L-functions L]2(E, ω

i , T ) and
L[2(E, ω

i , T ) from [Sprung 2012, Definition 6.1] agree with those of this paper and
are consequently elements of 3, rather than 3⊗Q.

Proof. This follows from Theorem 2.14 and what has just been said. For p = 2,
we exploit the following symmetry in the isotypical components of the Riemann
sums L±N ,α and L±N ,β : From η±(a/m) = ±η±(−a/m), we can conclude that
ωi (a)η±(a/m)=±ωi (−a)η±(−a/m). �

Corollary 5.17 (analogue of Theorem 2.14). When ap 6≡ 1 mod p, the statement
of Theorem 2.14 with f formally replaced by E is still valid. When ap ≡ 1 mod p
or E is not a strong Weil curve, we can say the same with the added caveat that
L]p(E, ωi , T ), L[p(E, ωi , T ), and their completions are elements of Q⊗3.

From Theorem 2.6, we can give a table of the special values for a good prime p,
as shown in Table 2. In view of these special values, it seems reasonable to make
the following conjecture:

Conjecture 5.18. Let f be a modular form as above, and let p be a good supersin-
gular prime. When p is odd, L̂[p( f, ωi , T ) and L[p( f, ωi , T ) are not identically zero,
and L̂]p( f, ωi , T ) and L]p( f, ωi , T ) are not identically zero when ap 6= 2. When
p = 2, the power series L̂]2( f, ωi , T ) and L]2( f, ωi , T ) are not identically zero, and
L̂[2( f, ωi , T ) and L[2( f, ωi , T ) are not identically zero when a2 6= 1.
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The functional equation in the supersingular case. Let f be a weight-two mod-
ular form of level N and nebentype ε which is an eigenform for all Tn . Recall
also logγ (·) introduced in Definition 2.8. We denote by f ∗(z) = wN ( f (z)) =
ε(−1) f (−1/(N z)) the involuted form of f under the Atkin-Lehner / Fricke operator,
as in [Mazur et al. 1986, (5.1)], and let α∗ = α/ε(p) and β∗ = β/ε(p).

Theorem 5.19. Let p be a supersingular prime so that (p, N ) = 1, i.e., N ∈
Z×p
∼= G∞. Then(

L̂]p( f, ωi , T ), L̂[p( f, ωi , T )
)
L̂ogα,β(1+ T )

=−ε(−1)ω−i (−N )(1+ T )− logγ (N )

×

(
L̂]p
(

f ∗, ω−i ,
1

1+T
− 1

)
, L̂[p

(
f ∗, ω−i ,

1
1+T

− 1
))

L̂ogα∗,β∗(1+ T ).

Corollary 5.20. For an elliptic curve E over Q and a good supersingular prime p,
let cN be the sign of f , i.e., f ∗ := −cN f (see [Mazur et al. 1986, §18]). We then
have

L̂]p(E, ω
i , T )=−(1+ T )− logγ (N )ωi (−N )cN L̂]p

(
E, ωi ,

1
1+T

− 1
)
,

L̂[p(E, ω
i , T )=−(1+ T )− logγ (N )ωi (−N )cN L̂[p

(
E, ωi ,

1
1+T

− 1
)
.

When ap = 0, we can give an explicit functional equation for the noncompleted
p-adic L-functions, which corrects [Pollack 2003, Theorem 5.13] in the case i = 0:

L]p(E, ω
i , T )=−(1+ T )− logγ (N )ωi (−N )cN W+(1+ T )L]p

(
E, ωi ,

1
1+T

− 1
)
,

L[p(E, ω
i , T )=−(1+ T )− logγ (N )ωi (−N )cN W−(1+ T )L[p

(
E, ωi ,

1
1+T

− 1
)
.

Proof of Theorem 5.19. This follows from the functional equations for L̂ p( f,α,ωi,T )
and L̂ p( f, β, ωi, T ), which formally display exactly the same invariance under the
substitution T 7→ (1+ T )−1

− 1, see [Mazur et al. 1986, §17, (17.3)]. The rest is
invariance of L̂ogα,β(1+ T ) under T 7→ (1+ T )−1

− 1, see Proposition 4.25. �

Part II. Invariants coming from the conjectures of Birch and
Swinnerton-Dyer in the cyclotomic direction

6. The conjectures about the rank and leading coefficient

We scrutinize what happens when T = ζpn−1 for n> 1: we estimate BSD-theoretic
quantities in the cyclotomic direction, using the pairs of Iwasawa invariants of L]p
and L[p (which match those of L̂]p and L̂[p when used, see Corollary 8.9).

Choose Gf ⊂Gal(Q/Q) such that
{

f σ =
∑
σ(an)qn

}
σ∈Gf

contains each Galois
conjugate of f once.
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Definition 6.1. For σ ∈ Gf , the σ -parts of the (p-adic) analytic ranks of A f (Qn)

and of A f (Q∞) are

r an
n ( f σ )=

∑
ζ : pn -th roots of unity

ordζ−1(L p( f σ, α, T )),

r an
∞
( f σ ) := lim

n→∞
r an

n ( f σ )=
∑

ζ : all p-power roots of unity

ordζ−1(L p( f σ, α, T )).

Note that by a theorem of Rohrlich [1984], r an
∞

is a finite integer.

We can then estimate the p-adic analytic rank of A f (Qn) and of A f (Q∞) by
setting

r an
n :=

∑
σ∈Gf

r an
n ( f σ ) and r an

∞
:=

∑
σ∈Gf

r an
∞
( f σ ). (2)

Conjecturally, r an
∞

should agree with the complex analytic rank of A f (Q∞) defined
by the order of vanishing of the Hasse–Weil series L(A f/Q∞, s) at s = 1.

Definition 6.2. We let dn be the normalized jump in the ranks of A f at level Qn:

dn :=
rank(A f (Qn))− rank(A f (Qn−1))

pn − pn−1 .

Denote by D(Qn) the discriminant, by R(A f/Qn) the regulator, by Tam(A f/Qn)

the product of the Tamagawa numbers, and let �A f/Qn = (�A f/Q)
pn

, where �A f/Q

is the real period of A f . We also denote by Â f the dual of A f .

Conjecture 6.3 (cyclotomic BSD). Let ζpn be a primitive pn-th root of unity,
dan

n ( f ) the order of vanishing of L p( f, α, T ) at T = ζpn − 1, and r an′
n ( f ) the order

of vanishing of the complex L-series L( f/Qn, s) :=
∏
χ∈Gal(Qn/Q)

L( f, χ, s) at
s = 1. Then

dan
n ( f )=

r an′
n ( f )− r an′

n−1( f )

pn − pn−1 and
∑
σ

dan
n ( f σ )= dn.

In particular, the order of vanishing r an′
n of L(A f/Qn, s) :=

∏
σ L( f σ/Qn, s) at

s = 1 is dn .

In view of this conjecture, we put (see [Manin 1971, Remark 8.5]):

#Xan(A f/Qn) :=
L(r

an′
n )(A f/Qn, 1)#Ator

f (Qn)# Âtor
f (Qn)

√
D(Qn)

(r an′
n )!�A f/Qn R(A f/Qn)Tam(A f/Qn)

.

Our notation of dan
n ( f ), which is independent of the choice ζpn , is justified as

follows:

Lemma 6.4. dan
n ( f )=

r an
n ( f )− r an

n−1( f )

pn − pn−1 .
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We postpone the proof until after Lemma 7.4.

Remark 6.5. It is not clear (at least not to the author) how to relate the leading
Taylor coefficient of L p( f, α, T ) at T = ζpn − 1 to the size of the Šafarevič–Tate
groups, even when A f is an elliptic curve. (For a relative version, see [Mazur and
Swinnerton-Dyer 1974, §9.5, Conjecture 4].)

7. The Mordell–Weil rank in the cyclotomic direction

We now give an upper bound for r an
∞
( f ). When f is ordinary at p, we have the

estimate λ > r an
∞
( f ), where λ is the λ-invariant of L p( f, α, T ). This section is

devoted to the more complicated supersingular scenario. We give two different
upper bounds. To obtain an upper bound on r an

∞
, one then simply sums the bounds

on r an
∞
( f σ ). (Note that f σ may be ordinary or supersingular at p independently

of whether f was!) Recall that the weight of f is two in this paper, so that trivial
zeros of p-adic L-functions are not an issue.

Proposition 7.1. Let f be a weight-two modular form and p be a good supersingu-
lar prime. If ζ is a pn-th root of unity, then we have

ordζ−1L p( f, α, T )= ordζ−1L p( f, β, T ).

Proof. For n = 0, this is [Pollack 2003, Lemma 6.6]. Thus, let n > 0. Let us first
prove that L p( f, α, ζ − 1)= 0 if and only if L p( f, β, ζ − 1)= 0: Observation 4.8
allows us to conclude that(
L p( f, α, ζ − 1), L p( f, β, ζ − 1)

)
=
−→Lp( f, ζ − 1)Logα,β(ζ − 1)

=
−→Lp( f, ζ − 1)

(
∗ ∗

∗ ∗

)(
1 0
0 8pn (ζ )

)(
−1 −1
β α

)(
α−N 0

0 β−N

)
=
−→Lp( f, ζ − 1)

(
∗ ∗

∗ ∗

)(
−1 −1

β8pn (ζ ) α8pn (ζ )

)(
α−N 0

0 β−N

)
for some 2× 2-matrix

(
∗ ∗
∗ ∗

)
with entries in Q. But 8pn (ζ )= 0, so

L p( f, α, ζ − 1)= 0 implies −→Lp(ζ − 1)
(
∗ ∗

∗ ∗

)
= (0, ∗).

Thus, we can conclude that L p( f, β, ζ − 1) = 0. A symmetric argument shows
L p( f, β, ζ − 1)= 0 implies L p( f, α, ζ − 1)= 0.

The rest is induction: Fixing k ∈ N and assuming

L(i)p ( f, α, ζ − 1)= L(i)p ( f, β, ζ − 1)= 0 for 06 i < k,
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we have(
L(k)p ( f, α, ζ − 1), L(k)p ( f, β, ζ − 1)

)
=
−→L (k)

p ( f, ζ − 1)Logα,β(ζ − 1)

by the product rule. By the above argument, L(k)p ( f, α, ζ − 1) = 0 if and only if
L(k)p ( f, β, ζ − 1)= 0. �

Corollary 7.2. Let ap = 0. Then we have r an
∞
( f )6 λ]+ λ[.

This has already been proved by Pollack in the elliptic curve case when p ≡
3 mod 4 and ap = 0. He derived Proposition 7.1 in this case by a very clever
argument involving Gauß sums (for which p≡3 mod 4 is needed) and the functional
equation (which is simple enough for elliptic curves).

Proof of Corollary 7.2. The proof of [Pollack 2003, Corollary 6.8] now works in
the desired generality, since the only hard ingredient was Proposition 7.1. �

Definition 7.3. For any integer n, let4n be the matrix such that Logα,β=C1 · · ·Cn4n.

Lemma 7.4. Fix an integer n and let m 6 n. Then

ordζpm−1L p( f, α, T )= j if and only if ordζpm−1
−→Lp( f, T )C1 · · · Cn = j.

Proof. Since det4n(ζpm − 1) 6= 0, we have by induction on i and Proposition 7.1
that

L(i)p ( f, α, ζpm − 1)= 0 for i 6 j − 1 but not for i = j

is equivalent to

−→L (i)
p ( f, T )C1 · · · Cn(ζpm − 1)= (0, 0) for i 6 j − 1 but not for i = j,

which is equivalent to ordζpm−1
−→Lp( f, T )C1 · · · Cn = j . �

Proof of Lemma 6.4. The entries of the vector −→Lp( f, T )C1 · · · Cn are up to units
polynomials, so for m 6 n, we have

ordζpm−1
−→Lp( f, T )C1 · · · Cn = ordζ ′pm−1

−→Lp( f, T )C1 · · · Cn

for any two primitive pm-th roots of unity ζpm and ζ ′pm . From Lemma 7.4,

ordζpm−1L p( f, α, T )= ordζ ′pm−1L p( f, α, T ). �

Notation 7.5. Given x ∈Q, we let bxc be the largest integer 6 x .
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Definition 7.6. We define the n-th ]/[-Kurihara terms q]/[n and some auxiliary
integers ν]/[, ν̃]/[.

q]n :=
⌊ pn

p+1

⌋
if n is odd, and q]n := q]n+1 for even n,

q[n :=
⌊ pn

p+1

⌋
if n is even, and q[n := q[n+1 for odd n,

ν] := largest odd integer n > 1 such that λ] > pn
− pn−1

− q]n,

ν[ := largest even integer n > 2 such that λ[ > pn
− pn−1

− q[n,

ν̃[ := largest odd integer n > 3 such that λ[ > pn
− pn−1

− pq[n−1− (p− 1)2,

ν̃] := largest even integer n > 2 such that λ] > pn
− pn−1

− pq]n−1.

In case no such integer exists, we put respectively ν] := 0, ν[ := 0, ν̃] := 0, but
ν̃[ := 1.

Note that explicitly, we have

q]n = pn−1
− pn−2

+ pn−3
− pn−4

+ · · ·+ p2
− p for odd n > 1,

q[n = pn−1
− pn−2

+ pn−3
− pn−4

+ · · ·+ p− 1 for even n > 0.

Convention 7.7. We define the µ-invariant of the 0-function to be∞.

Theorem 7.8. • When |µ]−µ[| 6 v = ordp(ap) (e.g., when ap = 0), put ν =
max(ν], ν[). We then have r an

∞
( f )6min(q]ν + λ], q[ν + λ[).

• When µ] > µ[+ v, put ν =max(ν[, ν̃[). We then have

r an
∞
( f )6

{
min(q[ν + λ[, q[ν−1− (p− 1)2+ λ[) when ν 6= 1,
min(q[1+ λ[, q]1 + λ]) when ν = 1.

• When µ[ > µ]+ v, put ν =max(ν], ν̃]). We then have

r an
∞
( f )6min(pq]ν−1+ λ], q]ν + λ]).

Definition 7.9. For a vector −→a = (a], a[) ∈ 3⊕2, we define its λ-invariant as
λ(
−→a ) :=min(λ(a]), λ(a[)).

Proof of Theorem 7.8. We handle the first case first. Denote L p( f, α, T ) by Lα . In
the proof, we justify the two equality signs in the following equation:∑

all p-power
roots of unity ζ

ordζ−1Lα =
∑

ζ s.t. ζ pn
=1

and n6ν

ordζ−1Lα =
∑

ζ s.t. ζ pn
=1

and n6ν

ordζ−1
−→LpC1 · · · Cν

The result then follows on noting that the last term is bounded by λ(−→LpC1 · · · Cν).
We justify the first equality sign. By Proposition 7.1, ordζpn−1Lα = ordζpn−1Lβ .

Since we have det4n|T=ζpn−1 6= 0, we can say that ordζpn−1Lα = 0 if and only if
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−→LpC1 · · · Cn|T=ζpn−1 6= (0, 0). Since λ(−→LpC1 · · · Cn) is bounded above by λ] + q]n
and λ[+ q[n , we have that

pn
− pn−1 >min(λ]+ q]n, λ[+ q[n) implies −→LpC1 · · · Cn|ζpn−1 6= (0, 0).

Now λ[+q[n < pn
− pn−1 for some even n implies λ[+q[m < pm

− pm−1 for any even
m> n. Similarly, λ]+q]n < pn

− pn−1 for some odd n implies λ]+q]m < pm
− pm−1

for any odd m > n. Thus,

m > ν implies ordζpm−1Lα = 0.

The second equality sign follows from Lemma 7.4 applied to n = ν.
In the other cases, similar arguments hold, with the following caveats: in the

second case,

λ(
−→LpC1 · · · Cn)=


λ[+ q[n when n is even,
λ[+ pq[n−1− (p− 1)2 when n is odd and n 6= 1,
λ[+ q[1 when n = 1,

while in the third case,

λ(
−→LpC1 · · · Cn)=

{
λ]+ pq]n−1 when n is even,
λ]+ q]n when n is odd.

The asymmetry in the second case comes from

(L]p, L[p)C1 ≡ (−8p L[p, L]p) mod ap. �

Comparing this bound with the sum of λ-invariants bound of Corollary 7.2, we
find that it is in most cases sharper. (The exception is when p = 2, in which case it
is never sharper. Here, the cases when the bounds match is when there is an odd
ν so that λ] = q]ν and λ[ 6 q[ν or there is an even ν so that λ[ = q[ν and λ] 6 q]ν .)
When p is odd and f is elliptic modular, this bound is strictly sharper in all known
cases (see the tables of Perrin-Riou [2003] and Pollack [2002]), except when:

(1) λ[ = 0 and λ] < p− 1,

(2) p = 3, and

(λ], λ[) ∈ {(0, 6), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (12, 2), (13, x) with x 6 5}.

The following corollary gives a bound that is in the spirit of the bound in the
ordinary case:

Corollary 7.10. Assume λ] < p− 1 and λ[ < p2
− p− p+ 1 = (p− 1)2. Then

r an
∞
( f )6min(λ], λ[) for µ[ 6 µ]+ v, while r an

∞
( f )6 λ] when µ[ > µ]+ v.

Proof. Indeed, we have ν] = ν[ = ν̃] = ν̃[− 1= 0 in this case. �
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Example 7.11. When p is odd and λ] = λ[ = 1, we have r an
∞
= r an
∞
( f ) 6 1; see

[Perrin-Riou 2003, Proposition 7.17] for the elliptic curve case. This case is very
common numerically.

We thank Robert Pollack for pointing out the following example in which the sum
of the λ-invariants is not a bound for r an

∞
( f ) as in Corollary 7.2. Our proposition

explains the bound:

Example 7.12. Consider E37A. For the prime 3, we have a3 = −3, and at this
prime 3, we have λ]= 1, while λ[= 5, and r an

∞
= r an
∞
( f )= 7. In this case ν]= 0 and

ν[=2. Thus, the bound for r an
∞

is min(q[2+5, q]2+1)=min(3−1+5, 32
−3+1)=7.

Note that r an
∞
= 7> λ]+ λ[ = 6.

8. The special value of the L-function of f in the cyclotomic direction

The purpose of this section is to prove a special value formula for modular forms of
weight two in the cyclotomic direction that estimates the size of Xan(A f/Qn)[p∞].
We encounter an unexpected phenomenon when v = ordp(ap) <

1
2 .

Definition 8.1. Put

Ci (a, 1+ T ) :=
(

a 1
−ε(p)8pi (1+ T ) 0

)
.

We now put Hi
a(1+ T ) := C1(a, 1+ T ) · · · Ci (a, 1+ T ).

Definition 8.2. For an element a in the closed unit disc of Cp, let v := ordp(a)> 0.
When v > 0, let k ∈ Z>1 be the smallest positive integer such that v > p−k/2. We
now let vm = vm(a) be the upper left entry in the valuation matrix of Hm

a (ζpk+2−1).
Given further an integer n, we now define two functions q∗n (v, v2) for ∗ ∈ {], [}.
When∞>v> p−k/2, we put δ :=min(v2−2v, (p−1)p−k−2). Note that δ= 0

when v > p−k/2, since v2 = ordp(a2
−8p2(ζpk+2)). We define

q]n(v, v2) :=


(pn
− pn−1)kv+

⌊ pn−k

p+1

⌋
if n 6≡ k mod 2

(pn
− pn−1)((k−1)v+δ)+

⌊ pn+1−k

p+1

⌋
if n ≡ k mod 2,

q[n(v, v2) :=


(pn
− pn−1)((k−1)v+δ)+ p

⌊ pn−k

p+1

⌋
+ p−1 if n 6≡ k mod 2

(pn
− pn−1)kv+ p

⌊ pn−1−k

p+1

⌋
+ p−1 if n ≡ k mod 2.

Note that the tail terms ⌊ pn−k

p+1

⌋
and

⌊ pn+1−k

p+1

⌋
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appearing in q]n(v, v2) are equal to q]n−k . For n > k, those for q[n(v, v2), i.e.,

p
⌊ pn−k

p+1

⌋
+ p− 1 and p

⌊ pn−1−k

p+1

⌋
+ p− 1,

are both q[n−k . For v =∞, we define

q∗n (∞, v2) := lim
v→∞

q∗n (v, v2).

Finally, for v = 0, we similarly put

q∗n (0, v2) := lim
v→0

q∗n (v, v2)=

{
0 when ∗ = ],
p− 1 when ∗ = [.

(We use this seemingly strange adherence to the symbol v2 simply for uniform
notation.)

Definition 8.3. The sporadic case (for v and v2) occurs if v = 0 and µ] = µ[ and
λ] = λ[+ p− 1, or if v = p−k/2 and v2 = 2v(1+ p−1

− p−2) and

n 6≡ k mod 2 and
{
µ]−µ[ > v− 2v/(p3

+ p2) or,
µ]−µ[ = v− 2v/(p3

+ p2) and λ] > λ[,
or

n ≡ k mod 2 and
{
µ]−µ[ < 2v/(p3

+ p2)− v or,
µ]−µ[ = 2v/(p3

+ p2)− v and λ] 6 λ[.

Definition 8.4 (modesty algorithm). Given a in the closed unit disc, an integer n,
integers λ] and λ[, and rational numbers µ] and µ[, choose ∗ ∈ {], [} via

∗ =

{
] if (pn

− pn−1)µ]+ λ]+ q]n(v, v2) < (pn
− pn−1)µ[+ λ[+ q[n(v, v2),

[ if (pn
− pn−1)µ[+ λ[+ q[n(v, v2) < (pn

− pn−1)µ]+ λ]+ q]n(v, v2).

Theorem 8.5. Let f be a modular form of weight two which is a normalized
eigenform for all Tn with eigenvalue an and p a good prime. Let v = v(ap) and
v2 = v2(ap) (via Definition 8.2). For a character χ of Z×p with order pn , denote by
τ(χ) the Gauß sum. Let n be large enough that

ordp
(
L]/[p ( f, ζpn − 1)

)
= µ]/[+

λ]/[

pn − pn−1 ,

and suppose that n > k when v > 0, and that we are not in the sporadic case. Then

ordp

(
τ(χ)

L( f, χ−1, 1)
� f

)
= µ∗+

1
pn − pn−1

(
λ∗+ q∗n (v, v2)

)
,

and ∗ ∈ {], [} is chosen according to the modesty algorithm (Definition 8.4).

See Figure 1 in the introduction for an illustration of this theorem.
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Proof. Let p be odd, since the other case is similar. Letting χ(γ ) = ζpn , the
interpolation property implies

L p( f, α, ζpn − 1)=
1

αn+1

pn+1

τ(χ−1)

L( f, χ−1, 1)
� f

.

Now αn+1L p( f, α, ζpn − 1) has the desired p-adic valuation by Proposition 8.12
below and Theorem 2.14. �

For σ ∈ Gal(Q/Q), let µσ]/[ and λσ]/[ be the µ- and λ-invariants of L]/[p ( f σ, T ),
and let vσ = v(aσp ) and vσ2 = v2(aσp ). For vσ = 0, put q\n(vσ , vσ2 ) = 0 and let µσ\
and λσ\ be the µ- and λ-invariants of L p( f σ, α, T ).

Corollary 8.6. Let pen :=Xan(A f/Qn)[p∞]. Suppose we are not in the sporadic
case for any pair vσ , vσ2 with vσ > 0. Then for n� 0,

en − en−1 =
∑
σ∈Gf

µσ
∗
(pn
− pn−1)+ λσ

∗
+ q∗n (v

σ , vσ2 )− r an
∞
( f σ ),

where ∗ ∈ {], [} is chosen according to the modesty algorithm (Definition 8.4),
except when vσ = 0 (and we are in the sporadic case), in which case ∗ := \.

Proof. This follows from Theorem 8.5 in the same way that [Pollack 2003,
Proposition 6.10] follows from [Pollack 2003, Proposition 6.9(3)]: The idea is
to pick n large enough that ordp(#A f (Qn))= ordp(#A f (Qn−1)), L(A f , χ, 1) 6= 0
for χ of order pn , and ordp(Tam(A f/Qn)) = ordp(Tam(A f/Qn−1)). Noting that
R(A f/Qn)= prn R(A f/Qn−1) and by computing D(Qn),

en − en−1 = ordp

( ∏
χ of order pn

L(A f/Q, χ
−1, 1)

�A f/Q

)
+ pn−1(p− 1) ·

n+ 1
2
− r an
∞

= ordp

( ∏
χ of order pn

τ(χ)
L(A f/Q, χ

−1, 1)
�A f/Q

)
− r an
∞

= ordp

( ∏
χof order pn

τ(χ)
∏
σ∈Gf

L( f σ, χ−1, 1)
� f σ

)
−

∑
σ∈Gf

r an
∞
( f σ ). �

Corollary 8.7. If A f is an elliptic curve, ordp(L(A f , 1)/�A f )= 0, ap 6≡ 1 mod p,
p is odd, and p - Tam(A f/Qn), then e0 = e1 = 0=µ]/[ = λ]/[ = r an

∞
and the above

formulas are valid for n > 2.

Proof. We can pick n = 0 by [Kurihara 2002, Proposition 1.2] and the arguments
of its proof, invoking [Greenberg 1999, Proposition 3.8] and Theorem 5.15. �

Definition 8.8 (the invariants µ± and λ±). Perrin-Riou, (resp. Greenberg, Iovita,
and Pollack) defined invariants µ± (resp. λ±) as follows. Let p be a supersingular
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odd prime.6 Let (Qn)n ∈ 3n be a queue sequence. Let π be a generator of the
maximal ideal of O such that πm

= p. When Qn 6= 0, we define µ′(Qn) to be the
unique integer such that

Qn ∈ (π)
µ′(Qn)3n − (π)

µ′(Qn)+13n.

Further, we let λ(Qn) be the unique integer such that

π−µ
′(Qn)Qn mod π ∈ Ĩn

λ(Qn)
− Ĩn

λ(Qn)+1
,

where Ĩn is the augmentation ideal of O/πO[0n]. Finally, we put µ(Qn) :=

mµ′(Qn). Then for even (resp. odd) n, µ(Qn) stabilizes to a minimum constant
value µ+ (resp. µ−). When µ+ = µ−, put

λ+ := lim
n→∞

λ(Q2n)− q[2n and λ− := lim
n→∞

λ(Q2n+1)− q]2n+1.

Corollary 8.9. When µ] and λ] (resp. µ[ and λ[) appear in the estimates of
Theorem 8.5, they are the Iwasawa invariants of L̂]p (resp. L̂[p). When µ] = µ[, we
define µ± and λ± via the queue sequences that gave rise to L]p and L[p, and have

µ] = µ+, λ] = λ+, µ[ = µ−, and λ[ = λ−.

Proof. The Kurihara terms q∗n (v, v2) come from appropriate valuation matrices
of Logα,β and L̂ogα,β , which are the same. Thus, the Iwasawa invariants of L̂]/[p

and of L]/[p match. We can calculate the p-primary part of the special value in
Theorem 8.5 using the appropriate queue sequences.7 Since µ+ = µ−, we are a
posteriori not in the sporadic case, so that our formulas match. �

Remarks in the elliptic curve case. For the remainder of this subsection, assume
A f = E is an elliptic curve. Then in the supersingular case, Corollary 8.6 generalizes
[Pollack 2003, Proposition 6.10], which works under the assumption ap = 0. For
an algebraic version of this Corollary 8.6 for supersingular primes, see [Kobayashi
2003, Theorem 10.9] in the case ap=0 and odd p, and [Sprung 2013, Theorem 3.13]
for any odd supersingular prime.

Remark 8.10. These formulas are compatible with Perrin-Riou’s [2003] formulas.
Note that she assumes that p is odd, and that µ+ = µ− or ap = 0 in [Perrin-Riou
2003, Theorem 6.1(4)]; see also [Sprung 2013, Theorem 5.1] . Her invariants match
ours, by Corollary 8.9. For p = 2, our results are compatible with [Kurihara and
Otsuki 2006, Theorem 0.1(2)] (which determines the structure of the 2-primary

6Perrin-Riou makes the assumption that p is odd. For p = 2, one could define the µ± and λ± in
the same way but switch the signs so that they agree with the Iwasawa invariants of L±p in the case
ap = 0.

7This has been explicitly done in an unpublished preprint of Greenberg, Iovita, and Pollack.
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component of X(A f/Qn) under the assumption a2 =±2 in the elliptic curve case
and other conditions, which force the Iwasawa invariants to vanish).

In the ordinary case, the estimate for n� 0 is

en − en−1 = (pn
− pn−1)µ+ λ− r an

∞
,

where µ and λ are the Iwasawa invariants of L p(E, α, T ). Thus, we obtain:

Corollary 8.11. In the ordinary case, let λ be the λ-invariant of L p(E, α, T ). Then

λ=

{
λ] when µ] < µ[ or µ] = µ[ and λ] < λ[+ p− 1,
λ[ when µ[ < µ] or µ[ = µ] and λ[ < λ]+ 1− p.

Tools for the proof of Theorem 8.5.

Proposition 8.12. Suppose we have (L](T ), L[(T ))∈O[[T ]]⊕2, where O is the ring
of integers of some finite extension of Qp. Rewrite L](T ) := pµ] × P](T )×U ](T )
for a distinguished polynomial P](T ) with λ-invariant λ] and a unit U ](T ). Note
that µ] ∈Q. Rewrite L[(T ) similarly to extract µ[ and λ[. Suppose we are not in
the sporadic case. Let a and k be as in Definition 8.2, and en the left entry of the
1× 2 valuation matrix of(

L](ζpn − 1), L[(ζpn − 1)
)
Hn−1

a (ζpn − 1).

Then for n large enough so that n > k and ordp(L]/[(ζpn −1))=µ]/[+
λ]/[

pn− pn−1 ,
we have

en = µ∗+
λ∗

pn − pn−1 +
q∗n (v, v2)

pn − pn−1 ,

where ∗ ∈ {], [} is chosen according to the modesty algorithm.

Proof. From Lemma 8.14 and Lemma 8.15 below, it follows that the valuation
matrix of the above expression is a product (of valuation matrices) of the form

[
µ]+

λ]

pn − pn−1 , µ[+
λ[

pn − pn−1

]
q]n(v, v2)

pn− pn−1
∗

q[n(v, v2)

pn− pn−1
∗

,
except when v = p−k/2 and v2 = p−k(1+ p−1

− p−2), in which case one of the
two entries shown in the right valuation matrix is the actual entry, while the other
is a lower estimate, see Lemma 8.15. The leading term of P]/[(T ) dominates by
assumption, so the modesty algorithm (Definition 8.4) chooses the correct subindex.

�



924 Florian Sprung

Lemma 8.13. When v > 0 and n > k+ 3, the valuation matrix [Hn−k−2
a (ζpn − 1)]

is

p2−n
+ p4−n

+ p6−n
+ · · ·+ p−k−2 v+ p2−n

+ · · ·+ p−k−4

v+ p1−n
+ · · ·+ p−k−3 p1−n

+ · · ·+ p−k−3

 if n ≡ k mod 2,v+ p2−n
+ · · ·+ p−k−3 p2−n

+ · · ·+ p−k−3

p1−n
+ · · ·+ p−k−2 v+ p1−n

+ · · ·+ p−k−4

 if n 6≡ k mod 2.

Proof. Multiplication of valuation matrices and induction. �

Lemma 8.14. With notation as above, assume v = 0. Then

[
Hn−1

a (ζpn − 1)
]
=

[
0 0

p1−n p1−n

]
.

Proof. Multiplication of valuation matrices. �

Given a real number x , recall that “>x” denotes an unknown quantity greater
than or equal to x .

Lemma 8.15. When v > 0 and n > k, we have

(pn
− pn−1)[Hn−1

a (ζpn − 1)] =

[
q]n(v, v2) q]n(v, v2)− v

q[n(v, v2) q[n(v, v2)− v

]
,

unless v = 1
2 p−k and v2 = 2v(1+ p−1

− p−2).

When v = 1
2 p−k and v2 = 2v(1+ p−1

− p−2), we have

(pn
−pn−1)[Hn−1

a (ζpn−1)]

=



[
>q]n(v, v2) >q]n(v, v2)−v

q[n(v, v2) q[n(v, v2)−v

]
when n ≡ k mod 2,[

q]n(v, v2) q]n(v, v2)−v

>q[n(v, v2) >q[n(v, v2)−v

]
when n 6≡ k mod 2.

Proof. We give the proof for the case n ≡ k mod 2 and n > k+ 4. (The case where
n 6≡ k mod 2 and n > 5 is similar, and the excluded cases are easier variants of
these calculations.8) We have

Hn−1
a (ζpn − 1)=Hn−k−2

a (ζpn − 1)Hk+1
a (ζ

pn−k−2

pn − 1),

8For n = k+ 1, we directly verify [Hk
a(ζpk+1 − 1)] =

[ kv
(k−1)v+p−k

(k−1)v
(k−2)+p−k

]
.
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whose valuation matrix is the product of valuation matrices:
 p−k

p2−1
v+

p−k−2

p2−1

v+
p−k−1

p2−1
p−k−1

p2−1

−
 p2−n

p2−1
p2−n

p2−1
p1−n

p2−1
p1−n

p2−1


[ vk+1 vk

kv+ p−1−k (k− 1)v+ p−1−k

]
,

by Lemma 8.13, where the lower entries in the last valuation matrix are calculated
by induction just as in Lemma 8.13 above. The first column of [Hn−1

a (ζpn − 1)] ismin(vk+1, (k+ 1)v+ p−1−k
− p−k−2)+

p−k
− p2−n

p2−1

min(vk+1, (k− 1)v+ p−1−k)+ v+
p−k−1

− p1−n

p2−1
,

.
as long as the two terms involved in min(· , ·) are different.

If 2v> p−k , we have vk+1= (k−1)v+p−k , so the first column of [Hn−1
a (ζpn−1)]

is (k− 1)v+ p−k
+

p−k
− p2−n

p2−1

kv+ p−1−k
+

p−k−1
− p1−n

p2−1

.
The difficult part is the case 2v = p−k . From the lemma below, we find that the
expression for the lower term is the same as when 2v > p−k.

We claim that the upper term is the same as well (i.e., the minimum is vk+1)
when v2 < p−k(1 + 1/p − 1/p2), while the minimum is the other term when
v2 > p−k(1+ 1/p− 1/p2). For v2 > p1−k , this follows at once from the below
lemma, since vk+1> (k−1)v+ p1−k ; so the real difficulty is when p1−k >v2> p−k :
Here, the lemma below tells us that vk+1 = v2 + (k − 1)p−k/2, from which we
obtain our claim. Note that when v2 = p−k(1+1/p−1/p2), we obtain our desired
inequality. �

Lemma 8.16. In the above situation, let m > 2. We then have vm = (m− 2)v+ v2

when v2 < p1−k and vm > (m− 2)v+ p1−k if not.

Proof. Explicit decomposition of the valuation matrix of Hk
a(ζ

pn−k−1

pn − 1). �
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On Hilbert’s 17th problem in low degree
Olivier Benoist

Artin solved Hilbert’s 17th problem, proving that a real polynomial in n variables
that is positive semidefinite is a sum of squares of rational functions, and Pfister
showed that only 2n squares are needed.

In this paper, we investigate situations where Pfister’s theorem may be im-
proved. We show that a real polynomial of degree d in n variables that is positive
semidefinite is a sum of 2n

− 1 squares of rational functions if d ≤ 2n− 2. If n is
even or equal to 3 or 5, this result also holds for d = 2n.

Introduction

Hilbert’s 17th problem. Let R be a real closed field, for instance the field R of
real numbers, and let n ≥ 1. A polynomial f ∈ R[X1, . . . , Xn] is said to be
positive semidefinite if f (x1, . . . , xn)≥ 0 for all x1, . . . , xn ∈ R. As an odd degree
polynomial changes sign, such a polynomial has even degree.

Artin [1927] answered Hilbert’s 17th problem by proving that a positive semi-
definite polynomial f ∈ R[X1, . . . , Xn] is a sum of squares of rational functions.1

This theorem was later improved by Pfister [1967, Theorem 1], who showed that it
is actually the sum of 2n squares of rational functions. We refer to [Pfister 1995,
Chapter 6] for a nice account of these classical results.

In two variables, the situation is very well understood. Hilbert [1888] showed
that a positive semidefinite polynomial f ∈ R[X1, X2] of degree ≤ 4 is a sum of 3
squares of rational functions,2 and Cassels, Ellison and Pfister [Cassels et al. 1971]
gave an example of a positive semidefinite polynomial f ∈ R[X1, X2] of degree 6
that is not a sum of 3 squares of rational functions.

Our goal is to prove an analogue of Hilbert’s result — that in low degree, less
squares are needed — in more than two variables:

MSC2010: primary 11E25; secondary 14F20, 14P99.
Keywords: Hilbert’s 17th problem, sums of squares, real algebraic geometry, Bloch–Ogus theory.

1Hilbert himself [1888] had given examples of positive semidefinite polynomials that are not sums
of squares of polynomials.

2In fact, in this exceptional case, Hilbert actually showed that squares of polynomials suffice.
We will not consider this question in what follows, and refer the interested reader to [Pfister and
Scheiderer 2012].
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Theorem 0.1. Let f ∈ R[X1, . . . , Xn] be a positive semidefinite polynomial of
degree d. Suppose that one of the following holds:

(i) d ≤ 2n− 2.

(ii) d = 2n, and either n is even, n = 3, or n = 5.

Then f is a sum of 2n
− 1 squares in R(X1, . . . , Xn).

Of course, when d = 2, the classification of quadratic forms over R shows the
much stronger result that n+ 1 squares are enough. However, to the best of our
knowledge, our theorem is already new for d = 4 and n ≥ 3.

Dependence on the degree. The question whether the bound 2n in Pfister’s afore-
mentioned theorem is optimal is natural and well known [Pfister 1971, §4, Prob-
lem 1]. It is often formulated in the following equivalent way, where the Pythagoras
number p(K ) of a field K is the smallest number p such that every sum of squares
in K is a sum of p squares:

Question 0.2. Do we have p(R(X1, . . . , Xn))= 2n?

When n ≥ 2, the best known result is that n + 2 ≤ p(R(X1, . . . , Xn)) ≤ 2n

[Pfister 1995, p. 97], where the upper bound is Pfister’s theorem and the lower
bound is an easy consequence of the Cassels–Ellison–Pfister theorem.

Our main theorem does not address this question directly; it explores the opposite
direction, that is, the values of the degree for which Pfister’s bound may be improved.
However, Theorem 0.1 gives insights into Question 0.2. The bound d ≤ 2n has
a natural geometric origin (it reflects the rational connectedness of an associated
algebraic variety), and it would be natural to expect that Theorem 0.1 cannot be
extended to degrees d ≥ 2n+ 2.

In view of Theorem 0.1, it is natural to ask whether the bound d ≤ 2n− 2 may
be improved to d ≤ 2n for every odd value of n. When n = 1, this is not the case
because X2

1 + 1 is not a square. On the other hand, when n ≥ 3 is odd, we reduce
this question to a geometric coniveau estimate (Proposition 6.3). When n = 3, it is
very easy to check. We also verify it when n = 5, following an argument of Voisin.
This explains the hypotheses on the degree in Theorem 0.1.

Strategy of the proof. In two variables, the theorems of Hilbert and Cassels–Ellison–
Pfister quoted above have received geometric proofs by Colliot-Thélène [1992,
Remark 2; 1993]. His idea is to consider the homogenization F of f and to
introduce the algebraic surface Y := {Z2

+ F = 0}. Then, whether or not f may be
written as a sum of three squares in R(X1, X2) depends on the injectivity of the
map Br(R)→ Br(R(Y )), which may be studied by geometrical methods.

We follow the same strategy in more variables. Proposition 3.2 and Proposition 3.3
translate the property that f is a sum of 2n

− 1 squares in R(X1, . . . , Xn) into a
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cohomological property of (a resolution of singularities of) the variety Y . The group
that plays a role analogous to that of the Brauer group in two variables is a degree
n unramified cohomology group.

It remains to show that when the degree of f is small, some class in a degree n
unramified cohomology group vanishes. This is more difficult than the correspond-
ing result in two variables, as these groups are harder to control than Brauer groups.
Our main tool to achieve this is Bloch–Ogus theory.

Structure of the paper. The first two sections gather general cohomological results
for varieties over R, which are used throughout the text. It will be very important for
us to use cohomology with integral coefficients (as opposed to 2-torsion coefficients).
For this reason, Section 1 is devoted to general properties of the 2-adic cohomology3

of varieties over R.
In Section 2, we recall the basics of Bloch–Ogus theory, then focus on the specific

properties of it over real closed fields. In particular, we adapt to our needs a strategy
of Colliot-Thélène and Scheiderer [1996] to compare the Bloch–Ogus theory of a
variety over R and over the algebraic closure C of R, and explain in our context
consequences of the Bloch–Kato conjectures discovered by Bloch and Srinivas
[1983] and extended by Colliot-Thélène and Voisin [2012].

We study when a positive semidefinite polynomial f ∈ R[X1, . . . , Xn] is a sum
of 2n

− 1 squares of rational functions in Section 3. We successively relate this
property to the level of the function field R(Y ) of the variety Y := {Z2

+ F = 0} in
Proposition 3.2 (this is due to Pfister), to degree n unramified cohomology of Y
in Proposition 3.3 (an important tool is Voevodsky’s solution [2003] to the Milnor
conjecture) and to degree n + 1 cohomology of Y in Proposition 3.5 (this is the
crucial step, which uses Bloch–Ogus theory, and where the rational connectedness
of Y plays a role).

Section 4 contains the cohomological computations on the variety Y that are
relevant to apply the results of Section 3. Section 4D will only be useful when
n is odd and d = 2n, and is complemented by a geometric coniveau estimate in
Section 5. The reader who is not interested in our partial and conditional results
when n ≥ 3 is odd and d = 2n may skip them.

Section 6 completes the proof of Theorem 0.1. For a generic choice of f (that
is, when the degree of f is maximal among the values allowed in the statement
of Theorem 0.1, and Y is a smooth variety), this is an immediate consequence of
the results obtained so far. In general, we do not know how to apply this argument
directly, because we do not have a good control on the geometry of (a resolution of
singularities of) Y . Instead, we rely on a specialization argument. This argument

3It would also have been possible to work with equivariant Betti cohomology over the field R of
real numbers [Krasnov 1994], and with its semialgebraic counterpart over a general real closed field.
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reduces Theorem 0.1 to the generic case, but over a bigger real closed field. In
particular, even if one is only interested in proving Theorem 0.1 over R, one has to
work over real closed fields that are not necessarily archimedean.

1. Cohomology of real varieties

Let R be a real closed field and C be an algebraic closure of R. We denote the
Galois group by G := Gal(C/R)' Z/2Z. A variety over R is a separated scheme
of finite type over R.

1A. 2-adic cohomology. If X is a variety over R, we denote by H k(X,Z/2r Z( j))
its étale cohomology groups. These cohomology groups are finite; this follows
from the Hochschild–Serre spectral sequence

E p,q
2 = H p(G, Hq(XC ,Z/2r Z( j)))⇒ H p+q(X,Z/2r Z( j))

using the facts that XC has finite cohomological dimension [SGA 43 1973, X
Corollaire 4.3], that the groups Hq(XC ,Z/2r Z( j)) are finite [SGA 43 1973, XVI
Théorème 5.1] and that a finite G-module has finite cohomology.

Let us define H k(X,Z2( j)) := lim
←−−r H k(X,Z/2r Z( j)). Since the Galois coho-

mology of finite G-modules is finite, [Jannsen 1988, Remark 3.5(c)] shows that
these groups coincide with the continuous étale cohomology groups defined by
Jannsen. In particular, we have a Hochschild–Serre spectral sequence [Jannsen
1988, Remark 3.5(b)]:

E p,q
2 = H p(G, Hq(XC ,Z2( j)))⇒ H p+q(X,Z2( j)). (1-1)

We also freely use the cup-products, cohomology groups with support, cycle
class maps and Gysin morphisms defined by Jannsen [1988].

Note that since G = Z/2Z, the sheaves Z/2r Z( j) only depend on the parity of j ,
hence so do all the cohomology groups considered above.

Let ω be the generator of H 1(R,Z2(1)) ' Z/2Z. We denote also by ω its
reduction modulo 2: the generator of H 1(R,Z/2Z)' Z/2Z. If k ≥ 1, their powers
ωk generate H k(R,Z2(k))' Z/2Z and H k(R,Z/2Z)' Z/2Z, and we still denote
by ωk their pull-backs to any variety X over R.

1B. Comparison with geometric cohomology. Let π : Spec(C)→ Spec(R) be
the base-change morphism, and fix j ∈ Z. There is a natural short exact sequence
of étale sheaves on Spec(R): 0→ Z/2r Z( j)→ π∗Z/2r Z→ Z/2r Z( j + 1)→ 0,
as one checks at the level of G-modules. They fit together to form a short exact
sequence of 2-adic sheaves on Spec(R): 0→ Z2( j)→ π∗Z2→ Z2( j + 1)→ 0.

Let X be a variety over R, and let us still denote by π : XC→ X the base-change
morphism. Notice that by the Leray spectral sequence, we have H k(X, π∗Z/2r Z)=
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H k(XC ,Z/2r Z). Now pull-back the exact sequence of 2-adic sheaves 0→Z2( j)→
π∗Z2→ Z2( j + 1)→ 0 on X and take continuous étale cohomology. We obtain a
long exact sequence

· · · → H k(X,Z2( j)) π∗
−→ H k(XC ,Z2)

π∗
−→ H k(X,Z2( j + 1)) ω

−→ H k+1(X,Z2( j))→ · · · (1-2)

in which the boundary map H k(X,Z2( j+1))→H k+1(X,Z2( j)) is the cup-product
by the class of the extension 0→ Z2( j)→ π∗Z2→ Z2( j + 1)→ 0, which is the
nonzero class ω ∈ H 1(G,Z2(1))' Z/2Z.

1C. Cohomological dimension. Recall first the following well-known statement,
which goes back to Artin.

Proposition 1.1. Let X be an integral variety over R. The following are equivalent:

(i) R(X) is formally real, that is, −1 is not a sum of squares in R(X).
(ii) X has a smooth R-point.

(iii) X (R) is Zariski-dense in X.

Proof. By the Artin–Lang homomorphism theorem [Bochnak et al. 1998, Theo-
rem 4.1.2], if (i) holds, every open affine subset of X contains an R-point, proving
(iii). Conversely, if X (R) were Zariski-dense in X , −1 could not be a sum of
squares in R(X), because we would get a contradiction by evaluating this identity
at an R-point outside of the poles of the rational functions that appear. That (ii)
implies (iii) is a consequence of the implicit function theorem [Bochnak et al. 1998,
Corollary 2.9.8], and the converse is trivial. �

From this proposition, it is possible to deduce estimates on the cohomological
dimension of varieties X over R without R-points. For the cohomological dimension
of R(X), this follows from a theorem of Serre [1965] and Artin–Schreier theory.
The cohomological dimension of an arbitrary variety X may then be controlled
using [SGA 43 1973, X Corollaire 4.2].

Here, we point out places in the literature where the statements we need are
explicitly formulated.

Proposition 1.2. Let X be an integral variety of dimension n over R such that
X (R)=∅.

(i) R(X) has cohomological dimension n.

(ii) X has étale cohomological dimension ≤ 2n.

(iii) If X is affine, X has étale cohomological dimension ≤ n.

Proof. The first statement is [Colliot-Thélène and Parimala 1990, Proposition 1.2.1],
where it is attributed to Ax.
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The second (resp. third) statement follows from [Scheiderer 1994, Corollary 7.21],
noticing that the real spectrum of X is empty by Proposition 1.1 and using that
XC has étale cohomological dimension ≤ 2d (resp. ≤ d) by [SGA 43 1973, X
Corollaire 4.3] (resp. [SGA 43 1973, XIV Corollaire 3.2]). �

2. Bloch–Ogus theory

2A. Gersten’s conjecture. In this subsection, let X be a smooth variety over R.
We want to apply Bloch–Ogus theory to the cohomology groups H k(X,Z2( j)).

For this purpose, one needs to check the validity of Gersten’s conjecture for this
cohomology theory. There are two ways to do so.

First, the formal properties of continuous étale cohomology proven by Jannsen
[1988] allow one to prove that associating to a variety X over R its continuous
étale cohomology groups H k(X,Z2( j)) is part of a Poincaré duality theory with
supports in the sense of Bloch and Ogus [1974, Definition 1.3], in the same way as
it is proven for étale cohomology with finite coefficients [Bloch and Ogus 1974,
§2]. Then it is possible to apply [Bloch and Ogus 1974, Theorem 4.2].

Another possibility is to use the axioms of [Colliot-Thélène et al. 1997], which
are easier to check. That these axioms hold for continuous étale cohomology is
explained for instance in [Kahn 2012, §3C], allowing us to apply [Colliot-Thélène
et al. 1997, Corollary 5.1.11].

Let us now explain the meaning of Gersten’s conjecture in our context. We define
Hk

X ( j) to be the Zariski sheaf on X that is the sheafification of U 7→ H k(U,Z2( j)).
Moreover, if z ∈ X is a point with closure Z ⊂ X , we define4

H k
→
(z,Z2( j)) := lim

−−→
U⊂Z

H k(U,Z2( j)), (2-1)

where U runs over all nonempty open subsets of Z . We define ιz : z → X to
be the inclusion, and we consider the skyscraper sheaves ιz∗H

k
→
(z,Z2( j)) on X .

Finally, we set X (c) to be the set of codimension c points in X . Then the sheaves
Hk

X ( j) admit Cousin resolutions (see either [Bloch and Ogus 1974, (4.2.2)] or
[Colliot-Thélène et al. 1997, Corollary 5.1.11] taking into account purity [Jannsen
1988, (3.21)] to obtain the precise form below):

0→Hk
X ( j)→

⊕
z∈X (0)

ιz∗H
k
→
(z,Z2( j))→

⊕
z∈X (1)

ιz∗H
k−1
→

(z,Z2( j − 1))

→ . . .→
⊕

z∈X (k)

ιz∗H
0
→
(z,Z2( j − k))→ 0. (2-2)

4Beware that since continuous étale cohomology does not commute with inverse limit of schemes,
this group does not coincide in general with the continuous Galois cohomology of the residue field
of z.
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The way this Cousin resolution is constructed, from a coniveau spectral sequence,
shows that the arrows in (2-2) are given by maps in long exact sequences of
cohomology with support, also called residue maps.

Since the sheaves in this resolution are flasque, the Cousin complex obtained by
taking its global sections computes the Zariski cohomology of Hk

X ( j). For instance,
this implies that H 0(X,Hk

X ( j)) coincides with the unramified cohomology group
H k

nr(X,Z2( j)), that is, the subgroup of H k
→
(η,Z2( j)) on which all residues at

codimension 1 points of X vanish.
The exactness of (2-2) allows us to compute the second page of the coniveau

spectral sequence for X mentioned above. As shown in [Bloch and Ogus 1974,
Corollary 6.3] or [Colliot-Thélène et al. 1997, Corollary 5.1.11], it reads

E p,q
2 = H p(X,Hq

X ( j))⇒ H p+q(X,Z2( j)). (2-3)

Recall that the filtration induced by this spectral sequence on H k(X,Z2( j)) is the
coniveau filtration, where a class α ∈ H k(X,Z2( j)) has coniveau ≥ c if it vanishes
in the complement of a closed subset of codimension c of X .

2B. Bloch–Ogus theory over R. If X is a variety over R, we still denote by
π : XC → X the natural morphism, and we naturally view XC as a variety over R.
The following proposition was proved in [Colliot-Thélène and Scheiderer 1996,
Lemma 2.2.1] over R and with 2-torsion coefficients, but the proof goes through,
and we include it for completeness.

Proposition 2.1. Let X be a smooth variety over R and fix j ∈ Z. Then there exists
a long exact sequence of Zariski sheaves on X :

· · · →Hk
X ( j)→ π∗Hk

XC
→Hk

X ( j + 1)→Hk+1
X ( j)→ · · · . (2-4)

Moreover, the sheaf π∗Hk
XC

coincides with the sheafification of U 7→ H k(UC ,Z2)

and its cohomology groups are Hq(X, π∗Hk
XC
)= Hq(XC ,Hk

XC
) for any k, q ≥ 0.

Proof. Let x ∈ X . If V is a neighborhood of π−1(x) in XC , the sheaf Hk
V has a

flasque Cousin resolution (2-2). Taking global sections and taking the limit over
all such neighborhoods V gives a complex that is exact in positive degree (the
argument for étale cohomology with finite coefficients is [Colliot-Thélène et al. 1997,
Proposition 2.1.2], and the corresponding effaceability condition for continuous
étale cohomology follows from [Colliot-Thélène et al. 1997, Theorem 5.1.10]). As
a consequence,

lim
−−→

V
H p(V,Hk

V )= 0 for p > 0. (2-5)

Considering the coniveau spectral sequences (2-3) for every V and taking (2-5) into
account shows that

lim
−−→

V
H k(V,Z2)= lim

−−→
V

H 0(V,Hk
V ). (2-6)
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Note that in both (2-5) and (2-6), it is possible to restrict to neighborhoods of the
form UC for U ⊂ X because they form a cofinal family.

Now, the exact sequences obtained by applying (1-2) to all open subsets of X fit
together to induce a long exact sequence of Zariski presheaves on X . By exactness
of sheafification, one obtains a long exact sequence of Zariski sheaves on X :

· · · →Hk
X ( j)→ Fk

→Hk
X ( j + 1)→Hk+1

X ( j)→ · · · ,

where Fk is the sheafification of U 7→ H k(UC ,Z2). The universal property of
sheafification gives a morphism Fk

→ π∗Hk
XC

. The map induced on stalks at x ∈ X
is precisely (2-6), hence an isomorphism. It follows that Fk

' π∗Hk
XC

, completing
the construction of (2-4).

If k ≥ 0 and p > 0, the stalk of R pπ∗Hk
XC
= 0 at x ∈ X is given by (2-5), hence

trivial. It follows that R pπ∗Hk
XC

vanishes, and the Leray spectral sequence for π
implies the last statement of the proposition. �

2C. Consequences of the Bloch–Kato conjecture. The following proposition is
due to Bloch and Srinivas [1983, proof of Theorem 1] for k ≤ 2 and to Colliot-
Thélène and Voisin [2012, Théorème 3.1] in general. Since both references work
over an algebraically closed field, and since the latter uses Betti cohomology, we
repeat the proof to emphasize that it works in our setting.

Proposition 2.2. Let X be a smooth variety over R. Then for every k ≥ 0, the sheaf
Hk+1

X (k) is torsion free.

Proof. Since it is a sheaf of Z2-modules, it suffices to prove that it has no 2-torsion.
Consider the exact sequence of 2-adic sheaves on X : 0→ Z2(k)

2
−→ Z2(k)→

µ⊗k
2 → 0. Taking long exact sequences of continuous cohomology over every open

subset U ⊂ X to get a long exact sequence of presheaves on X and sheafifying it
gives a long exact sequence of sheaves on X , part of which is

Hk
X (k)→Hk

X (µ
⊗k
2 )→Hk+1

X (k) 2
−→Hk+1

X (k),

where Hk
X (µ

⊗k
2 ) is the sheafification of U 7→ H k(U, µ⊗k

2 ). Consequently, it suffices
to prove the surjectivity of Hk

X (k)→Hk
X (µ

⊗k
2 ).

On an open set U ⊂ X , the Kummer exact sequence 0→µ2→Gm
2
−→Gm→ 0

induces a boundary map H 0(U,O∗U )→ H 1(U, µ2). These maps sheafify to O∗X→
H1

X (µ2), inducing via cup-products a morphism of sheaves (O∗X )
⊗k
→Hk

X (µ
⊗k
2 ).

It is explained in [Colliot-Thélène and Voisin 2012, end of section 2.2] how Ger-
sten’s conjecture for Milnor K-theory proven by Kerz [2009] and the Bloch–Kato
conjecture proven by Rost and Voevodsky (since we only need this conjecture at
the prime 2, Voevodsky’s work [2003, Corollary 7.4] on Milnor’s conjecture is
sufficient here) imply the surjectivity of this morphism.
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Over an open set U ⊂ X , the boundary maps H 0(U,O∗U )→ H 1(U, µ2r ) for the
Kummer exact sequences

0→ µ2r → Gm
2r
−→ Gm→ 0

fit together to induce a map H 0(U,O∗U )→lim
←−−r H 1(U, µ2r )=H 1(U,Z2(1)). Again,

this sheafifies to a morphism O∗X→H1
X (1), inducing via cup-products a morphism

of sheaves (O∗X )
⊗k
→ Hk

X (k) lifting (O∗X )
⊗k
→ Hk

X (µ
⊗k
2 ). The surjectivity of

Hk
X (k)→Hk

X (µ
⊗k
2 ) now follows from surjectivity of (O∗X )

⊗k
→Hk

X (µ
⊗k
2 ). �

In [Bloch and Srinivas 1983; Colliot-Thélène and Voisin 2012], the authors
worked over an algebraically closed field, and the Tate twist was not essential for
the result to hold. Here, it is very important; it is not true in general that the sheaf
Hk

X (k) has no torsion.
As in these references, the following are straightforward corollaries.

Corollary 2.3. Let X be a smooth variety over R and k ≥ 0. Then

H k+1
nr (X,Z2(k))= H 0(X,Hk+1

X (k))
is torsion free.

Corollary 2.4. Let X be an integral variety over R with generic point η and k ≥ 0.
Then H k+1

→
(η,Z2(k)) is torsion free.

Proof. If α ∈ H k+1(U,Z2(k)) is a torsion class on a smooth open subset U ⊂ X , it
vanishes in H k+1

nr (U,Z2(k)) by Corollary 2.3, hence on an open subset V ⊂U . �

Another application of Proposition 2.2 is as follows.

Proposition 2.5. Let X be a smooth variety over R. Then for every k ≥ 0, there is
an exact sequence

0→Hk−1
X (k)→ π∗Hk−1

XC
→Hk−1

X (k+1)→Hk
X (k)→ π∗Hk

XC
→Hk

X (k+1)→ 0.

Proof. Let us prove that the long exact sequence (2-4) splits into these shorter exact
sequences. It suffices to prove that, for k ≥ 0, the morphism Hk−1

X (k)→ π∗Hk−1
XC

is
injective. The composition

Hk−1
X (k)→ π∗Hk−1

XC
→Hk−1

X (k)

is multiplication by 2. Consequently, the kernel of Hk−1
X (k)→ π∗Hk−1

XC
is of 2-

torsion. Since Hk−1
X (k) is torsion free by Proposition 2.2, this kernel is trivial, as

required. �

Proposition 2.6. Let X be an integral variety over R with generic point η. Then
for every k ≥ 0, there is an exact sequence

0→ H k−1
→

(η,Z2(k))→ H k−1
→

(η, π∗Z2)→ H k−1
→

(η,Z2(k+ 1))

→ H k
→
(η,Z2(k))→ H k

→
(η, π∗Z2)→ H k

→
(η,Z2(k+ 1))→ 0.
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Proof. Take the direct limit of the long exact sequence (1-2) applied to all open
subsets of X ; it splits into exact sequences of length six by the same argument as
in the proof of Proposition 2.5, using Corollary 2.4 instead of Corollary 2.3. �

3. Sums of squares and unramified cohomology

3A. Sums of squares and level. Let n≥1, consider a nonzero positive semidefinite
polynomial f ∈ R[X1, . . . , Xn] and its homogenization F ∈ R[X0, . . . , Xn]. Notice
that since an odd degree polynomial over R changes sign, f and F must have
even degree. This allows us to consider the double cover Y of Pn

R ramified over
{F = 0} defined by the equation Y := {Z2

+ F = 0} in the weighted projective
space P(1, . . . , 1, deg(F)/2).

Lemma 3.1. The variety Y is integral, R(Y ) is not formally real, and if Ỹ → Y is
a resolution of singularities, then Ỹ (R)=∅.

Proof. To prove that Y is integral, one has to check that − f is not a square in
R(X1, . . . , Xn), or equivalently, that it is not a square in R[X1, . . . , Xn]. But if it
were, f would be negative on Rn , hence zero on Rn by positivity, hence zero by
Zariski-density of Rn in Cn . This is a contradiction.

The R-points of Ỹ necessarily lie above R-points of Y , hence, by positivity
of F , above zeroes of F . Consequently, Ỹ (R) is not Zariski-dense in Ỹ . Applying
Proposition 1.1 using the smoothness of Ỹ shows that Ỹ (R)=∅, and that R(Y ) is
not formally real. �

Recall that the level s(K ) ∈ N∗ ∪ {∞} of a field K is∞ if −1 is not a sum of
squares in K , and the smallest s such that −1 is a sum of s squares otherwise. In
the latter case, it has been shown by Pfister [1965, Satz 4] to be a power of 2.

Proposition 3.2. The polynomial f is a sum of 2n
− 1 squares in R(X1, . . . , Xn)

if and only if R(Y ) has level < 2n . Conversely, the polynomial f is not a sum of
2n
− 1 squares in R(X1, . . . , Xn) if and only if R(Y ) has level 2n .

Proof. Proposition 1.1 shows that R(X1, . . . , Xn) is formally real and Artin’s
solution [1927] to Hilbert’s 17th problem shows that f is a sum of squares in
R(X1, . . . , Xn).

Then [Lam 1980, Chapter 11, Theorem 2.7] applies and shows that f is a sum
of 2n

− 1 squares in R(X1, . . . , Xn) if and only if R(Y ) has level < 2n (this is
essentially due to Pfister; the statement we have used is very close and its proof is
identical to [Pfister 1965, Satz 5]).

Since R(Y ) is not formally real by Lemma 3.1, Pfister [1967, Theorem 2] has
shown that its level is ≤ 2n . This concludes the proof. �
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3B. Level and unramified cohomology. To apply Proposition 3.2, we need to
control the level of the function field of a variety over R. The following proposition
relates it to one of its unramified cohomology groups. The equivalence (i)⇔(ii)
is hinted at in [Colliot-Thélène 1993, bottom of p. 236], at least for n = 3. I am
grateful to Olivier Wittenberg for explaining to me that the implication (ii)⇒(iii)
holds.

Proposition 3.3. Let X be a smooth integral variety over R, and fix n ≥ 1. The
following assertions are equivalent:

(i) The function field R(X) has level < 2n .

(ii) The map H n(R,Z/2Z)→ H n(R(X),Z/2Z) vanishes.

(iii) The map H n(R,Z2(n))→ H n
nr(X,Z2(n)) vanishes.

Proof. Consider the property that the level of R(X) is < 2n . It is equivalent to
the fact that −1 is a sum of 2n

− 1 squares in R(X), hence to the fact that the
Pfister quadratic form q := 〈1, 1〉⊗n is isotropic over R(X). By a theorem of Elman
and Lam [1972, Corollary 3.3], this is equivalent to the vanishing of the symbol
{−1}n in the Milnor K-theory group K M

n (R(X))/2. By Voevodsky’s proof [2003,
Corollary 7.4] of the Milnor conjecture, the natural map

K M
n (R(X))/2→ H n(R(X),Z/2Z)

is an isomorphism, so our property is equivalent to the vanishing of H n(R,Z/2Z)→

H n(R(X),Z/2Z). We have proven that (i) and (ii) are equivalent.
Suppose that (iii) holds and let η be the generic point of X . The definition

of H n
nr(X,Z2(n)) as a subgroup of H n

→
(η,Z2(n)) shows that H n(R,Z2(n)) →

H n
→
(η,Z2(n)) vanishes. Then we have a commutative diagram

H n(R,Z2(n))

∼=

��

// H n
→
(η,Z2(n))

��
H n(R,Z/2Z) // H n

→
(η,Z/2Z)

where the groups on the right are defined as inductive limits on the open subsets
of X as in (2-1), showing that H n(R,Z/2Z)→ H n

→
(η,Z/2Z) vanishes. Since

étale cohomology commutes with such limits [SGA 42 1972, VII Corollaire 5.8],
H n
→
(η,Z/2Z) is nothing but the Galois cohomology group H n(R(X),Z/2Z), prov-

ing (ii).
Suppose conversely that (ii) holds, and let U ⊂ X be an open subset such that

ωn vanishes in H n(U,Z/2Z). Consider the following commutative exact diagram,
where the lines are (1-2):
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H n−1(U,Z2(n− 1)) ω //

2
��

H n(U,Z2(n))

2
��

// H n(UC ,Z2)

2
��

H n−1(U,Z2(n− 1)) ω // H n(U,Z2(n)) //

��

H n(UC ,Z2)

H n(U,Z/2Z)

Look at ωn
∈ H n(U,Z2(n)). By hypothesis, it vanishes in H n(U,Z/2Z), hence

may be written 2α for some α ∈ H n(U,Z2(n)). Since ωn
∈ H n(U,Z2(n)) is the

image of ωn−1
∈ H n−1(U,Z2(n− 1)), αC ∈ H n(UC ,Z2) is a 2-torsion class. By

Corollary 2.4, any torsion class in H n(UC ,Z2) vanishes on an open subset: up to
shrinking U , we may assume that αC=0, hence that there is β ∈H n−1(U,Z2(n−1))
such that β ·ω = α. Then ωn

= β · 2ω = 0 ∈ H n(U,Z2(n)), proving (iii). �

3C. From degree n to degree n+1 cohomology. Condition (iii) in Proposition 3.3
means that ωn has coniveau ≥ 1. Proposition 3.5 uses Bloch–Ogus theory to relate
this property to the coniveau of ωn+1.

Fix an integer n ≥ 1 and let X be a smooth variety over R. The coniveau
spectral sequence (2-3) induces two maps H n(X,Z2(n))

φ
−→H n

nr(X,Z2(n)) and K :=
Ker

[
H n+1(X,Z2(n+ 1))→ H n+1

nr (X,Z2(n+ 1))
] ψ
−→H 1(X,Hn

X (n+ 1)).
Cup-product with ω gives morphisms H n(X,Z2(n))

ω
−→ H n+1(X,Z2(n+1)) and

H n
nr(X,Z2(n))

ω
−→ H n+1

nr (X,Z2(n+ 1)). Let I := {α ∈ H n(X,Z2(n)) | α ·ω ∈ K }
and Inr := {α ∈ H n

nr(X,Z2(n)) | α ·ω = 0}.
Finally, Proposition 2.5 gives an exact sequence of sheaves on X :

0→Hn
X (n+ 1)→ π∗Hn

XC
→Hn

X (n)
ω
−→Hn+1

X (n+ 1)→ · · · . (3-1)

Taking cohomology, we obtain an exact sequence:

0→ H n
nr(X,Z2(n+ 1))→ H n

nr(XC ,Z2)→ Inr
δ
−→ H 1(X,Hn

X (n+ 1)). (3-2)

Lemma 3.4. Let X be a smooth variety over R. The diagram

I ω //

φ

��

K

ψ

��
Inr

δ // H 1(X,Hn
X (n+ 1))

constructed above commutes.

Proof. Let α ∈ I . By hypothesis, the class α ·ω ∈ H n+1(X,Z2(n+ 1)) vanishes on
an open subset U ⊂ X . Let D := X \U be endowed with its reduced structure.

The description of H 1(X,Hn
X (n + 1)) as a cohomology group of the Cousin

complex (2-2) shows that if X◦ ⊂ X is an open subset whose complement has
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codimension ≥ 2, then the restriction H 1(X,Hn
X (n+1))→ H 1(X◦,Hn

X◦(n+1)) is
injective. Consequently, to prove that ψ(α ·ω)= δ ◦φ(α), it is possible to remove
from X a closed subset of codimension ≥ 2. This allows us to suppose that D is
smooth of pure codimension 1.

Our next task is to concretely identify δ ◦ φ(α). The cohomology theory with
supports in the sense of [Colliot-Thélène et al. 1997, Definition 5.1.1], which to a
variety X over R and a closed subset Z ⊂ X associates the groups H k

Z (X, π∗Z2)=

H k
ZC
(XC ,Z2), satisfies axioms COH1 and COH3 by [Colliot-Thélène et al. 1997,

5.5(1)], hence COH2 by [Colliot-Thélène et al. 1997, Proposition 5.3.2]. It fol-
lows from [Colliot-Thélène et al. 1997, Corollary 5.1.11] that the sheafification of
U 7→ H n(UC ,Z2) (that is, π∗Hn

XC
by Proposition 2.1) admits a Cousin resolution

by flasque sheaves, and the same goes for π∗Hn+1
XC

. These resolutions fit together
with the Cousin resolutions (2-2) of Hn

X (n+1), Hn
X (n), H

n+1
X (n+1) and Hn+1

X (n),
giving rise to a diagram that is an exact sequence of flasque resolutions for the exact
sequence of sheaves (3-1) by Proposition 2.6. Let us only draw the relevant part of
the diagram containing the Cousin resolutions for Hn

X (n+1), π∗Hn+1
XC

and Hn
X (n):

⊕
z∈X (0)

ιz∗H
n
→
(z,Z2(n+ 1)) //

��

⊕
z∈X (1)

ιz∗H
n−1
→

(z,Z2(n)) //

��

· · ·

⊕
z∈X (0)

ιz∗H
n
→
(z, π∗Z2) //

��

⊕
z∈X (1)

ιz∗H
n−1
→

(z, π∗Z2) //

��

· · ·

⊕
z∈X (0)

ιz∗H
n
→
(z,Z2(n)) //

⊕
z∈X (1)

ιz∗H
n−1
→

(z,Z2(n− 1)) // · · ·

(3-3)

It is now possible to give a description of δ ◦ φ(α) by a diagram chase in the
diagram obtained by taking the global sections of (3-3). More precisely, α induces
a class

φ(α) ∈ Ker
[⊕

z∈X (0)

H n
→
(z,Z2(n))→

⊕
z∈X (1)

H n−1
→

(z,Z2(n− 1))
]
.

Lifting it in
⊕

z∈X (0) H n
→
(z, π∗Z2) by the hypothesis that α ∈ I , pushing it to⊕

z∈X (1) H n−1
→

(z, π∗Z2) and lifting it again to
⊕

z∈X (1) H n−1
→

(z,Z2(n)) gives a
cohomology class of degree one of the complex of global sections of the Cousin
resolution of Hn

X (n+ 1) representing δ ◦φ(α) ∈ H 1(X,Hn
X (n+ 1)).

At this point, consider the following commutative diagram, whose rows are exact
sequences of cohomology with support, whose columns are instances of (1-2), and
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where the coefficient ring Z2 has been omitted:

H n(U, n+ 1) //

��

H n−1(D, n)

π∗

��
H n(UC)

π∗

��

∂ // H n−1(DC)

��
H n−2(D, n− 1)

��

// H n(X, n)

ω

��

j∗ // H n(U, n)

��

// H n−1(D, n− 1)

H n−1(D, n)

��

i∗ // H n+1(X, n+ 1) // H n+1(U, n+ 1)

H n−1(DC)

Here we have denoted by i : D→ X and j :U → X the inclusions, and by ∂ the
residue map. By our choice of U , α∈H n(X,Z2(n)) vanishes in H n+1(U,Z2(n+1)).
Chasing the diagram, there are two ways to construct a (not well-defined) class
in H n−1(D,Z2(n)). First, we may consider a class β ∈ H n−1(D,Z2(n)) such that
i∗β = α ·ω. Second, we may lift j∗α along π∗, apply the residue map ∂ , and lift
the resulting class along π∗ to obtain γ ∈ H n−1(D,Z2(n)).

Our diagram has been constructed from the diagram of distinguished triangles in
the derived category of 2-adic sheaves on X :

i∗Ri !Z2(n+ 1)

��

// Z2(n+ 1)

��

// R j∗ j∗Z2(n+ 1)

��

//

i∗Ri !π∗Z2

��

// π∗Z2

��

// R j∗ j∗π∗Z2

��

//

i∗Ri !Z2(n)

��

// Z2(n)

��

// R j∗ j∗Z2(n)

��

//

A homological algebra lemma due to Jannsen [2000, lemma, p. 268], applied
exactly as in [Jannsen 2000, proof of Theorem 2], shows that the images of β and
γ in H n−1(DC ,Z2) that are well-defined up to the image of H n(U,Z2(n + 1))
coincide up to a sign. It follows that β and γ , well-defined up to the images of
H n(U,Z2(n + 1)) and H n−2(D,Z2(n − 1)) in H n−1(D,Z2(n)), coincide up to
a sign.
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Now notice that β and γ induce classes in
⊕

z∈X (1) H n−1
→

(z,Z2(n)). Our explicit
description of δ ◦φ(α) shows that β is a representative of it as a cohomology class
of degree one of the Cousin complex. On the other hand, γ has been constructed by
lifting α ·ω along the Gysin morphism H n−1(D,Z2(n))→ H n+1(X,Z2(n+ 1)).
By construction of the coniveau spectral sequence [Bloch and Ogus 1974, §3;
Colliot-Thélène et al. 1997, §1], γ is a representative of ψ(α ·ω) as a cohomology
class of degree one of the Cousin complex.

At this point, we have proven that ψ(α ·ω)= [γ ] =−[β] =−δ◦φ(α). Since this
element is 2-torsion because ω is, one has in fact ψ(α ·ω)= δ◦φ(α), as wanted. �

Proposition 3.5. Let X be a smooth projective variety over R, and fix n ≥ 1.
Consider the following assertions:

(i) The class ωn
∈ H n(X,Z2(n)) has coniveau ≥ 1.

(ii) The class ωn+1
∈ H n+1(X,Z2(n+ 1)) has coniveau ≥ 2.

Then (i) implies (ii). Moreover, if CH0(XC) is supported on a closed subvariety of
XC of dimension n− 1, then the converse holds.

Proof. Either (i) or (ii) implies that ωn+1 has coniveau ≥ 1, or equivalently that
it vanishes in H n+1

nr (X,Z2(n+ 1)). Let us suppose this is the case; in particular,
ωn
∈ I .
By the coniveau spectral sequence (2-3), ωn has coniveau ≥ 1 in X if and only

if its class in H n
nr(X,Z2(n)) vanishes, and ωn+1 has coniveau ≥ 2 if and only if its

class in H 1(X,Hn
X (n+ 1)) vanishes. Then consider the diagram

H n(R,Z2(n))
ω

∼=

//

��

H n+1(R,Z2(n+ 1))

��
Inr

δ // H 1(X,Hn
X (n+ 1))

which is commutative by Lemma 3.4. Contemplating it shows that (i) implies (ii).
Conversely, if CH0(XC) is supported on a closed subvariety of XC of dimension

n − 1, we have H n
nr(XC ,Z2) = 0 by [Colliot-Thélène and Voisin 2012, Proposi-

tion 3.3(ii)]. Indeed, the argument given there for Betti cohomology over C, which
relies on decomposition of the diagonal, works as well for 2-adic cohomology
over C. It then follows from the exact sequence (3-2) that δ is injective, proving
that (ii) implies (i). �

4. Cohomology of smooth double covers

Recall the notation of Section 3A. The polynomial F ∈ R[X0, . . . , Xn] is the
homogenization of a nonzero positive semidefinite polynomial f ∈ R[X1, . . . , Xn].
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Its degree d is even. We introduced the double cover Y of Pn
R ramified over {F = 0}

defined by the equation Y := {Z2
+ F = 0}.

Throughout this section, we make the additional hypothesis that {F = 0} is
smooth so that Y is smooth. By Lemma 3.1, Y (R) = ∅. The main goal of this
section is to prove Propositions 4.8 and 4.12.

4A. Geometric cohomology. We first collect some needed results on the cohomol-
ogy of YC . They follow from general theorems on the cohomology of weighted
complete intersections due to Dimca [1985]. When n = 3, we could also have
applied [Clemens 1983, Corollary 1.19 and Lemma 1.23].

Proposition 4.1. Let HC ∈ H 2(YC ,Z2(1)) be the class of OPn
C
(1).

(i) The cohomology groups H k(YC ,Z2) have no torsion.

(ii) If k 6= n is odd, H k(YC ,Z2)= 0.

(iii) If 0≤ l < n
2 , H 2l(YC ,Z2)' Z2(l) as a G-module, and is generated by H l

C .

(iv) If n
2 < l ≤ n, H 2l(YC ,Z2)'Z2(l) as a G-module, and has a generator αl such

that 2αl = H l
C .

Proof. It suffices to prove the equalities as Z2-modules (this means that it is possible
to forget the twist indicating the action of G), because one recovers the correct
twist by noticing that the relevant cohomology groups are rationally generated by
algebraic cycles.

Using the fact that YC is defined over an algebraically closed subfield that may be
embedded in C together with the invariance of étale cohomology under an extension
of algebraically closed fields, it suffices to prove the lemma when C =C. Moreover,
by comparison with Betti cohomology, it suffices to prove it for Betti cohomology.

Since YC is a strongly smooth weighted complete intersection in the sense of
[Dimca 1985], its cohomology groups have no torsion by Proposition 6(ii) of that
paper. Moreover, its Betti numbers in degree k 6= n are computed in Dimca’s
Proposition 6(i).

If l < n
2 , the class H l

C ∈ H 2l(YC ,Z2) cannot be divisible by 2 because the
intersection product 1

2 H l
C ·

1
2 H l

C ·H
n−2l
C =

1
2 would not be an integer. It follows that

H l
C generates H 2l(YC ,Z2).
If l > n

2 , since H l
C · H

n−l
C = 2, it follows by Poincaré duality that H 2l(YC ,Z2) is

generated by a class αl such that 2αl = H l
C . �

4B. Preparation for a deformation argument. In the next subsections, we perform
some computations on the cohomology of Y . One of the arguments, in the proofs
of Lemma 4.7 and Proposition 4.12, is a reduction to the Fermat double cover
Y †
:= {Z2

+ F†
= 0}, where F†

:= Xd
0 + · · · + Xd

n is the Fermat equation. This
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deformation argument relies on a little bit of semialgebraic geometry, so it is
convenient to collect the relevant lemmas here.

Let V := R[X0, . . . , Xn]d be the space of degree d homogeneous polynomials
viewed as an algebraic variety over R. The discriminant 1⊂ V is the closed alge-
braic subvariety parametrizing equations that do not define smooth hypersurfaces
in Pn

R. It is irreducible, and a general point of 1 defines a hypersurface with only
one ordinary double point as singularities. Let 1′ ⊂ 1 be the closed algebraic
subvariety parametrizing singular hypersurfaces that do not have only one ordinary
double point as singularities; it has codimension ≥ 2 in V . We view the sets of
R-points V (R), 1(R) and 1′(R) as semialgebraic sets. Define

5 := {H ∈ V (R) | H(x0, . . . , xn) > 0 for every (x0, . . . , xn) ∈ Rn+1
\ (0, . . . , 0)}.

Lemma 4.2. The set 5⊂ V (R) is convex, open and semialgebraic. Moreover, the
polynomials F and F† belong to 5.

Proof. It is immediate that 5 is convex. We prove that the complement of 5 is a
closed semialgebraic set. By homogeneity of H , it coincides with the projection to
V (R) of

Q := {(H, x0, . . . , xn) ∈ V (R)×Sn
| H(x0, . . . , xn)≤ 0},

where Sn
:= {(x0, . . . , xn) ∈ Rn+1

| x2
0 + · · ·+ x2

n = 1} is the unit sphere.
That it is semialgebraic follows from the Tarski–Seidenberg theorem [Bochnak

et al. 1998, Theorem 2.2.1]. To check that it is closed, it suffices to check that its
intersection with every closed hypercube in V (R) is closed, which follows from
[Bochnak et al. 1998, Theorem 2.5.8].

That F†
∈5 is clear. We know that F ≥ 0 because it is positive semidefinite.

Moreover, it cannot vanish on Rn+1
\ (0, . . . , 0) because Y (R) 6=∅ by Lemma 3.1.

This shows that F ∈5. �

Now choose a general affine subspace W ⊂ V of dimension 2 that contains F
and F†.

Lemma 4.3. The set 5∩W (R)∩1(R) is finite.

Proof. Let H ∈5∩W (R)∩1(R). Since H ∈1(R), {H = 0} ⊂ Pn
R is a singular

hypersurface. Since H ∈ 5, {H = 0} has no real point. Consequently, {H = 0}
has (geometrically) at least two singular points: any singular point and its distinct
complex conjugate. This shows that 5∩W (R)∩1(R)⊂W (R)∩1′(R). But if
W has been chosen to properly intersect 1′, the variety W ∩1′ is already finite. �

Lemma 4.4. There exists a variety S over R, two points s, s†
∈ S(R) and a mor-

phism ρ : S→ W \1 such that S(R) is semialgebraically connected, ρ(s) = F ,
ρ(s†)= F† and ρ(S(R))⊂5.
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Proof. Choose a coordinate system on W for which F has coordinate (−1, 0) and
F† has coordinate (1, 0). By Lemma 4.2, the segment [F, F†

] is included in 5
and W (R) \5 is closed and semialgebraic. Consequently, combining Proposi-
tion 2.2.8(ii) and Theorem 2.5.8 of [Bochnak et al. 1998], we see that the distance
between [F, F†

] and W (R)\5 is positive. It follows that if ε ∈ R is small enough,
the ellipse {x2

+ y2/ε ≤ 1} ⊂W (R), which contains F and F†, is included in 5.
Now, consider the double cover ρ :W ′ := {x2

+ y2/ε+ z2
= 1}→W and define

S := ρ−1(W \1) ⊂ W ′. That ρ(S(R)) is included in 5 and contains F and F†

follows from our choice of the ellipse. The semialgebraic set W ′(R) is a sphere S2,
and S(R) is the complement of a finite number of points in it by Lemma 4.3.
This allows us to show by hand that it is semialgebraically path-connected, hence
semialgebraically connected by [Bochnak et al. 1998, Proposition 2.5.13]. �

Over the base S, there is a smooth projective family Y p
−→ S obtained by pulling

back by ρ the universal family of smooth double covers over W \1. In particular,
Ys ' Y and Ys† ' Y †. Since ρ(S(R))⊂5, we see that Y(R)=∅.

4C. Cohomology over R when d ≡ 0[4]. We start with a general lemma.

Lemma 4.5. Let X be a smooth projective geometrically integral variety of dimen-
sion n over R such that X (R)=∅. Then:

(i) H 2n(X,Z2(n))' Z2.

(ii) H 2n(X,Z2(n+ 1))' Z/2Z.

Proof. We use the exact sequence (1-2), as well as Proposition 1.2(ii).
Consider H 2n(X,Z2(n))→ H 2n(XC ,Z2)

π∗
−→ H 2n(X,Z2(n + 1))→ 0. The

cohomology class of a closed point in H 2n(X,Z2(n)) pulls back to twice the coho-
mology class of a closed point in H 2n(XC ,Z2). This shows that H 2n(X,Z2(n+1))
is torsion. From H 2n(X,Z2(n+ 1))→ H 2n(XC ,Z2)→ H 2n(X,Z2(n))→ 0, we
deduce that Z2 ' H 2n(XC ,Z2)→ H 2n(X,Z2(n)) is an isomorphism. The com-
position H 2n(X,Z2(n))

π∗
−→H 2n(XC ,Z2)

π∗
−→ H 2n(X,Z2(n)) being multiplication

by 2, we see that the image of H 2n(X,Z2(n))
π∗
−→H 2n(XC ,Z2) has index 2, so

that H 2n(X,Z2(n+ 1))= Z/2Z. �

We need information about ω2n
∈ H 2n(Y,Z2(2n)) provided by Lemma 4.7

below. As a first step towards this result, we deal with the Fermat double cover
Y †
:= {Z2

+ F†
= 0}, where F†

:= Xd
0 + · · ·+ Xd

n .

Lemma 4.6. Suppose n is odd and d ≡ 0[4]. Then ω2n
∈ H 2n(Y †,Z2(2n)) is zero.

Proof. The morphism µ : Y †
→ Qn to Qn

:= {Z2
+ T 2

0 + · · · + T 2
n = 0} ⊂ Pn+1

R
defined by Ti = Xd/2

i has even degree because d ≡ 0[4]. By Lemma 4.5 applied to
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Y † and Qn , there is a commutative diagram with surjective vertical arrows:

Z2 = H 2n(Qn
C ,Z2)

��

µ∗C
// H 2n(Y †

C ,Z2)= Z2

��

Z/2Z= H 2n(Qn,Z2(2n))
µ∗

// H 2n(Y †,Z2(2n))= Z/2Z

Since µ∗C is the multiplication by the even number deg(µ), µ∗ vanishes. Hence so
does the composite H 2n(R,Z2(2n))→H 2n(Qn,Z2(2n)) µ∗

−→H 2n(Y †,Z2(2n)). �

We deduce the same result for Y using a deformation argument:

Lemma 4.7. Suppose n is odd and d ≡ 0[4]. Then ω2n
∈ H 2n(Y,Z2(2n)) is zero.

Proof. Lemma 4.6 and the diagram

H 2n(R,Z2(2n))
∼= //

��

H 2n(R,Z/2Z)

��
H 2n(Y †,Z2(2n)) // H 2n(Y †,Z/2Z)

show that H 2n(R,Z/2Z)→ H 2n(Y †,Z/2Z) vanishes.
Now consider the family Y p

−→ S constructed at the end of Section 4B. The vari-
eties Y and Y † are members of this family and S(R) is semialgebraically connected.
If we were working over the field R of real numbers, we would use topological
arguments (namely a G-equivariant version of Ehresmann’s theorem applied to
the fibration p−1

C
(S(R))→ S(R)) to show that H 2n(R,Z/2Z)→ H 2n(Y,Z/2Z)

vanishes as well. Over an arbitrary real closed field R, the corresponding tools
have been developed by Scheiderer [1994] and the topological arguments may be
replaced by [Scheiderer 1994, Corollary 17.21].

Let us explain more precisely how to apply this result. In doing so, we freely
use the notations of [Scheiderer 1994]. Consider the composition

H 2n(R,Z/2Z)→ H 2n(Y,Z/2Z)
∼
←− H 2n(Yb,Z/2Z)

→ H 0(Sb, R2n pb∗Z/2Z)→ H 0(Sr , i∗R2n pb∗Z/2Z),

where the isomorphism H 2n(Yb,Z/2Z)
∼
−→H 2n(Y,Z/2Z) follows from [Scheiderer

1994, Example 2.14], taking into account Proposition 1.1 and the fact that Y(R)=∅.
By proper base change [Scheiderer 1994, Theorem 16.2(b)] and comparing étale
and b-cohomology using [Scheiderer 1994, Example 2.14] once again, we see that
the stalk of i∗R2n pb∗Z/2Z is H 2n(Y,Z/2Z) at s and H 2n(Y †,Z/2Z) at s†. We
have proven above that H 2n(R,Z/2Z) vanishes in the stalk at s†. But we know
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that the sheaf i∗R2n pb∗Z/2Z is locally constant on Sr by [Scheiderer 1994, Corol-
lary 17.20(b)], and that Sr is connected by [Bochnak et al. 1998, Proposition 7.5.1(i)]
and because S(R) is semialgebraically connected. Consequently, H 2n(R,Z/2Z)

also vanishes in the stalk at s, so that H 2n(R,Z/2Z)→ H 2n(Y,Z/2Z) is zero.
To conclude that ω2n

∈ H 2n(Y,Z2(2n)) vanishes, consider the exact diagram

H 2n(R,Z2(2n))
∼= //

��

H 2n(R,Z/2Z)

��
H 2n(Y,Z2(2n)) 2 // H 2n(Y,Z2(2n)) // H 2n(Y,Z/2Z)

and notice that the multiplication by 2 map is zero by Lemma 4.5. �

Proposition 4.8. Suppose that d ≡ 0[4]. Then ωn+1
∈ H n+1(Y,Z2(n+ 1)) is zero.

Proof. Suppose not, and let k≥ n+1 be such that ωk
∈ H k(Y,Z2(k)) is nonzero and

ωk+1
∈ H k+1(Y,Z2(k+ 1)) vanishes. By Proposition 1.2(ii), k exists and k ≤ 2n.

Consider the short exact sequence (1-2) applied to Y :

H k(Y,Z2(k+ 1)) π∗
−→ H k(YC ,Z2)

π∗
−→ H k(Y,Z2(k))

ω
−→ H k+1(Y,Z2(k+ 1)).

By hypothesis, ωk
∈ Im(π∗). By Proposition 4.1(ii), since ωk

∈ H k(Y,Z2(k)) is
nonzero, k has to be even, say k = 2l.

If l were even, we would have H k(YC ,Z2(k+ 1))G = 0 by Proposition 4.1(iv),
and the Hochschild–Serre spectral sequence (1-1) would show that

π∗ : H k(Y,Z2(k+ 1))→ H k(YC ,Z2)

is zero. Consequently, Im(π∗) has no torsion by Proposition 4.1(iv). This is a
contradiction and shows that l is odd.

Let H ∈ H 2(Y,Z2(1)) be the class of OPn
R
(1). Since π∗H l

= H l
C , and taking

into account Proposition 4.1(iv), the only class in Im(π∗) that may be nonzero
is π∗αl . Consequently, we have ωk

= π∗αl .
Choose by the Bertini theorem an l-dimensional linear subspace Pl

R ⊂Pn
R that is

transverse to the smooth hypersurface {F=0}, and define i : Z ↪→Y to be the inverse
image of Pl

R in Y ; it is a smooth double cover of Pl
R ramified over {F = 0} ∩Pl

R.
Consider the following commutative diagram, where the left horizontal arrows are
restrictions, the right horizontal arrows are Gysin morphisms and the vertical ones
are those appearing in the exact sequence (1-2):

H k(YC ,Z2)
i∗C //

π∗
��

H k(ZC ,Z2) //iC∗ //

π∗
��

H 2n(YC ,Z2)

π∗
��

H k(Y,Z2(k))
i∗ // H k(Z ,Z2(k))

i∗ // H 2n(Y,Z2(n+ l))
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Look at αl ∈ H k(YC ,Z2). We have i∗i∗π∗αl = i∗i∗ωk
= i∗ωk

= 0 by Lemma 4.7
applied to Z . On the other hand, π∗iC∗i∗Cαl = π∗(αl · [ZC ]) = π∗(αl · H n−l

C ) =

π∗αn 6= 0 because it is the generator of H 2n(Y,Z2(n + l)) ' Z/2Z as seen in
Lemma 4.5. This is a contradiction. �

4D. Cohomology over R when n is odd. As in the previous paragraph, we reduce
the computations we need to the case of a quadric. To do this, we collect a few
results about the cohomology of quadrics. Analogues with 2-torsion coefficients of
some of these computations appear in [Kahn and Sujatha 2000, §4].

We denote by Qn
:= {Z2

+ T 2
0 + · · · + T 2

n = 0} ⊂ Pn+1
R the n-dimensional

projective anisotropic quadric, by U n
:= Qn

\ Qn−1 its affine counterpart and by
H ∈ H 2(Qn,Z2(1)) the class of OPn+1

R
(1).

Lemma 4.9. The cohomology groups of U n are as follows:

H k(U n,Z2( j))=


Z2 if k = 0 and j ≡ 0[2],
Z/2Z ·ωk if 1≤ k ≤ n and j ≡ k[2],
Z2 if k = n and j ≡ n+ 1[2],
0 otherwise.

Proof. The geometric cohomology groups of U n are easily computed as G-modules
from the description of the geometric cohomology groups of Qn and Qn−1 as
G-modules given in [SGA 7II 1973, XII Théorème 3.3], and from the long exact
sequence of cohomology with support associated with Qn−1

C ⊂ Qn
C :

· · · → H k−2(Qn−1
C ,Z2(−1))→ H k(Qn

C ,Z2)→ H k(U n
C ,Z2)→ · · · .

One gets

H k(U n
C ,Z2)=


Z2 if k = 0,
Z2(n+ 1) if k = n,
0 otherwise.

Consider the Hochschild–Serre spectral sequence (1-1) for U n . The only possibly
nonzero arrows in this spectral sequence are the dn : E

p,n
n+1→ E p+n+1,0

n+1 . These are
necessarily surjective as H k(U n,Z2( j))= 0 for k > n by Proposition 1.2(iii). This
allows us to compute the spectral sequence entirely, and to deduce the lemma. �

Lemma 4.10. Suppose that n is odd. Then H n(Qn,Z2(n)) ' (Z/2Z)dn/4e gen-
erated by ωn, ωn−4 H 2, . . . , ωn−4bn/4cH 2bn/4c. Moreover, the 2-torsion subgroup
of H n+1(Qn,Z2(n+ 1)) is H n+1(Qn,Z2(n+ 1))[2] ' (Z/2Z)dn/4e, generated by
ωn+1, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c.

Proof. Fix r ≥ 0. The Gysin morphism H n−2r−2(Qn−r−1,Z2(n − r − 1)) →
H n−2r (Qn−r ,Z2(n − r)) is part of a long exact sequence of cohomology with
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supports. In this exact sequence, the morphisms

H n−2r−1(Qn−r ,Z2(n− r))→ H n−2r−1(U n−r ,Z2(n− r)),

H n−2r (Qn−r ,Z2(n− r))→ H n−2r (U n−r ,Z2(n− r))

are surjective. Indeed, in the degrees that come up, all the cohomology of U n−r

comes from the base field by Lemma 4.9, hence a fortiori from Qn−r .
It follows that this Gysin morphism is injective, with a cokernel naturally isomor-

phic to H n−2r (U n−r ,Z2(n−r))= H n−2r (R,Z2(n−r)). This allows us to compute
H n−2r (Qn−r ,Z2(n−r)) by decreasing induction on r and shows, since n is odd, that
H n(Qn,Z2(n))' (Z/2Z)dn/4e generated by ωn, ωn−4 H 2, . . . , ωn−4bn/4cH 2bn/4c.

Considering the long exact sequence (1-2), and using our knowledge of the
geometric cohomology of Qn to get

0→ H n(Qn,Z2(n))
ω,
−→ H n+1(Qn,Z2(n+ 1))→ H n+1(Qn

C ,Z2)' Z2, (4-1)

the lemma follows. �

In the remainder of this section, we continue to suppose that n is odd. We
consider the generator γ of H n+1(Qn

C ,Z2)' Z2 such that 2γ = H (n+1)/2
C [SGA 7II

1973, XII Théorème 3.3].
If n ≡ 1[4], define δ := π∗γ ∈ H n+1(Qn,Z2(n + 1)). If n ≡ 3[4], define

δ := π∗γ − H (n+1)/2
∈ H n+1(Qn,Z2(n+ 1)).

Lemma 4.11. Suppose that n is odd. Then δ ∈ H n+1(Qn,Z2(n + 1))[2]. More-
over, δ does not belong to the subgroup of H n+1(Qn,Z2(n+ 1))[2] generated by
ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c.

Proof. We suppose that n ≡ 1[4]. The arguments when n ≡ 3[4] are analogous.
Since G acts on H n+1(Qn

C ,Z2)' Z2 by multiplication by (−1)(n+1)/2 and since
n+1 6≡ 1

2(n+1)[2], the natural morphism H n+1(Qn,Z2(n+1))→ H n+1(Qn
C ,Z2)

is zero. From the exact sequence (4-1), this implies that H n+1(Qn,Z2(n+ 1)) is a
2-torsion group, so that δ is 2-torsion.

Let us check that δ is nonzero. From the exact sequence

H n+1(Qn,Z2(n))
π∗
−→ H n+1(Qn

C ,Z2)
π∗
−→ H n+1(Qn,Z2(n+ 1)),

we see that it suffices to prove that there does not exist a cohomology class ζ ∈
H n+1(Qn,Z2(n)) such that π∗ζ = γ . If such a class existed, π∗(ζ · H (n−1)/2)

would be a generator of H 2n(Qn
C ,Z2). This would contradict the fact, proven in

Lemma 4.5, that the cokernel of

H 2n(Qn,Z2(n))→ H 2n(Qn
C ,Z2)

is H 2n(Qn,Z2(n+ 1))' Z/2Z.
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Consider now the commutative diagram below, whose horizontal arrows are
Gysin morphisms:

H n−3(Qn−2,Z2(n− 1)) //

ω
��

H n−1(Qn−1,Z2(n)) //

ω
��

H n+1(Qn,Z2(n+ 1))

ω
��

H n−2(Qn−2,Z2(n)) // H n(Qn−1,Z2(n+ 1)) // H n+2(Qn,Z2(n+ 2))

(4-2)

Let us show that the lower horizontal arrows of (4-2) are injective. Considering
ωn−1

∈ H n−1(Qn−1,Z2(n+ 1)) and using Lemma 4.9 shows that

H n−1(Qn−1,Z2(n+ 1))→ H n−1(U n−1,Z2(n+ 1))

is surjective, so that the map

H n−2(Qn−2,Z2(n))→ H n(Qn−1,Z2(n+ 1))

is injective. Since H n+1(U n,Z2(n+ 2))= 0 by Lemma 4.9,

H n(Qn−1,Z2(n+ 1))→ H n+2(Qn,Z2(n+ 2))

is also injective.
Suppose for contradiction that δ may be written as a linear combination of

the classes ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c. Then it is the image by the Gysin
morphism H n−3(Qn−2,Z2(n − 1)) → H n+1(Qn,Z2(n + 1)) of a class ε that
is a linear combination of ωn−3, . . . , ωn+1−4bn/4cH 2bn/4c−2. The image of ε in
H n+2(Qn,Z2(n+ 2)) is δ ·ω = π∗γ ·ω = 0. By the injectivity result just proved,
ε ·ω = 0. It follows that ωn−2, . . . , ωn+2−4bn/4cH 2bn/4c−2 are not independent in
H n−2(Qn−2,Z2(n)), contradicting Lemma 4.10. �

We return to our double cover Y → Pn
R. We recall from Proposition 4.1 that

H n+1(YC ,Z2)= Z2(n+1) with a generator α := α(n+1)/2 such that 2α = H (n+1)/2
C .

If n ≡ 1[4], define β := π∗α ∈ H n+1(Y,Z2(n+ 1)). If n ≡ 3[4], define instead
β := π∗α− H (n+1)/2

∈ H n+1(Y,Z2(n+ 1)), where H ∈ H 2(Y,Z2(1)) is the class
of OPn

R
(1).

Proposition 4.12. Suppose that n is odd. Then ωn+1 is a linear combination of
ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c and β in H n+1(Y,Z2(n+ 1)).

Proof. Using a deformation argument as in the proof of Lemma 4.7, one reduces to
the case of the Fermat double cover Y †

:= {Z2
+F†
=0}, where F†

:= Xd
0+· · ·+Xd

n .
As in Lemma 4.6, we consider the morphism µ : Y †

→ Qn to the quadric
Qn
:= {Z2

+ T 2
0 + · · · + T 2

n = 0} ⊂ Pn+1
R , defined by Ti = Xd/2

i . Note that
µ∗H =

( d
2

)
H , so that µ∗Cγ =

( d
2

)(n+1)/2
α and µ∗δ =

( d
2

)(n+1)/2
β.

By Lemma 4.10, the group H n+1(Qn,Z2(n + 1))[2] is freely generated by
ωn+1, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c. By Lemma 4.11, δ does not belong to the
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subgroup generated by ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c. Thus, ωn+1 is a linear
combination of δ, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c in H n+1(Qn,Z2(n+ 1))[2].

Pulling back this relation by µ, it follows that ωn+1 is a linear combination of
β, ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c in H n+1(Y †,Z2(n+ 1)), as wanted. �

Corollary 4.13. Suppose that n is odd. If α ∈ H n+1(YC ,Z2) has coniveau ≥ 2,
then ωn+1

∈ H n+1(Y,Z2(n+ 1)) has coniveau ≥ 2.

Proof. The statement follows from Proposition 4.12, because the cohomology classes
ωn−3 H 2, . . . , ωn+1−4bn/4cH 2bn/4c, as well as H (n+1)/2 when n 6= 1, obviously have
coniveau ≥ 2 as multiples of H 2. �

5. A geometric coniveau computation

In this section, we fix an odd integer n ≥ 3 and take d := 2n.
We work over an algebraically closed field C of characteristic 0. We consider

F ∈ C[X0, . . . , Xn]d a homogeneous degree d polynomial such that {F = 0} is
smooth. Let Y be the double cover of Pn

C ramified over {F = 0} defined by the
equation Y := {Z2

+ F = 0}, and H :=OPn
C
(1).

By Proposition 4.1, H n+1(Y,Z2) has a generator α such that 2α = H (n+1)/2. In
order to apply Corollary 4.13, we need to answer positively the following:

Question 5.1. Does α have coniveau ≥ 2?

When n = 3, Y is a sextic double solid, and this is very easy:

Lemma 5.2. If n = 3, α has coniveau ≥ 2.

Proof. A dimension count (see for instance Lemma 5.6 below) shows that Y contains
a line, that is, a curve of degree 1 against H . The cohomology class of such a curve
is α, so that α is algebraic, hence of coniveau 2. �

In what follows, we answer Question 5.1 positively when n = 5, following an
argument of Voisin. We comment on the n ≥ 7 case in Section 5D.

Proposition 5.3. If n = 5, α has coniveau ≥ 2.

5A. Reductions. The following reductions are standard. We include them because
we do not know a convenient reference.

Lemma 5.4. Let C ⊂ C ′ be an extension of algebraically closed fields. Then the
answer to Question 5.1 is positive for Y over C if and only if it is for YC ′ over C ′.

Proof. It is clear that if α has coniveau ≥ 2 over C , it has coniveau ≥ 2 over C ′.
Suppose conversely that there is a closed subset Z ⊂ YC ′ of codimension ≥ 2

such that αC ′ vanishes in YC ′ \ Z . Taking an extension of finite type of C over
which Z is defined, spreading out and shrinking the base gives a smooth integral
variety B over C, and a subvariety Z B ⊂ Y × B of codimension ≥ 2 in the fibers
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of p2 : Y × B → B such that p∗1α vanishes in the generic geometric fiber of
p2 : (Y × B \ Z B)→ B. The existence of cospecialization maps for smooth mor-
phisms [SGA 41/2 1977, Arcata V (1.6)] implies that α vanishes in every geometric
fiber of p2 : (Y × B \ Z B)→ B. Taking the fiber over a C-point of B shows that α
has coniveau ≥ 2. �

Lemma 5.5. In order to answer Question 5.1 positively in general, it suffices to
answer it over the field C of complex numbers, for a general choice of F.

Proof. Let U ⊂ C[X0, . . . , Xn]d be a Zariski-open subset of degree d polynomials
F as in the hypothesis: for F ∈U (C), {F = 0} is smooth and α is of coniveau ≥ 2.

Let K be an algebraic closure of the function field C(U ), let FK be the generic
polynomial and let YK be the associated universal double cover. Choosing an
isomorphism K ' C such that the induced polynomial FC belongs to U shows that
the answer to Question 5.1 is positive for YK .

Let us now deal with the case C = C. It is possible to find the spectrum T of
a strictly henselian discrete valuation ring and a morphism T → C[X0, . . . , Xn]d

sending the closed point of T to the polynomial associated to Y and its generic
point to the generic point of U . Let YT be the induced family of double covers. Up
to replacing T by a finite extension, there exists a codimension 2 subset Z ⊂ YT

flat over T such that α vanishes in the complement of Z in the generic geometric
fiber. Using cospecialization maps again shows that α vanishes in the complement
of Z in the special fiber, so that the answer to Question 5.1 is positive for Y .

In general, choose an algebraically closed subfield of finite transcendence degree
of C over which Y is defined, embed it in C, and apply Lemma 5.4. �

5B. The variety of lines. We define F(Y ) to be the Fano variety of lines of Y , that
is, the Hilbert scheme of Y parametrizing degree 1 curves in Y . We also introduce
the universal family I ⊂ Y × F(Y ) and denote by q : I → Y and p : I → F(Y ) the
natural projections.

The following lemma is well known for hypersurfaces [Barth and Van de Ven
1978/79, §3] or complete intersections [Debarre and Manivel 1998, Théorème 2.1],
and the proof in our situation is similar.

Lemma 5.6. If Y is general, F(Y ) is smooth, nonempty and of dimension n− 2.

Proof. First, an easy dimension count shows that if F is general, {F = 0} contains
no line [Barth and Van de Ven 1978/79, §3]. It follows that for such a general Y ,
F(Y ) is a double étale cover of the variety G(Y ) of lines in Pn

C on which the
restriction of F is a square.

One introduces the space V ⊂ C[X0, . . . , Xn]d of degree d polynomials F such
that {F = 0} is smooth. We consider the universal double cover YV → V , and the
universal Fano variety of lines F(Y )V → V , viewed as a double cover of G(Y )V
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that is étale generically over V . Looking at the natural projection from G(Y )V
to the grassmannian of lines in Pn

C , one sees that G(Y )V is smooth of dimension
dim(V )+n−2. Since we are in characteristic 0, the general fiber of G(Y )V → V is
smooth, and it remains to show that this morphism is dominant, or that F(Y )V → V
is dominant. We do it by finding one point at which it is smooth.

To do so, we fix a line L with equations X2 = · · · = Xn = 0, and a degree d
polynomial F such that the restriction of F to L is the square of H ∈ C[X0, X1]n .
The double cover Y may be viewed naturally as the zero-locus of a section of O(d)
in the total space E→ Pn

C of the line bundle OPn
C
(n). The inverse image of L in Y

splits into the union of two lines. Let 3 be one of them. The normal exact sequence
0→ N3/Y → N3/E → NY/E |3→ 0 reads

0→ N3/Y →O(1)⊕n−1
⊕O(n)→O(2n)→ 0.

The same computation as the one carried out in [Barth and Van de Ven 1978/79, §2]
for hypersurfaces shows that the last arrow is given by (∂F/∂X2, . . . , ∂F/∂Xn, H).
Consequently, if H 0(3,O(2n)) is generated by multiples of ∂F/∂X2, . . . , ∂F/∂Xn

and H , then H 1(3, N3/Y )= 0 and 3 corresponds to a smooth point of the relative
Hilbert scheme F(Y )V → V , as wanted. It is easy to find a polynomial F satisfying
this condition. �

Lemma 5.7. If there exists a smooth Y over C such that F(Y ) is smooth of dimen-
sion n−2, and a cohomology class ζ ∈ H n−1(F(Y ),Z2) such that q∗ p∗ζ is an odd
multiple of α, then Question 5.1 has a positive answer.

Proof. By Lemma 5.5 and Lemma 5.6, it suffices to consider a double cover over
the complex numbers whose variety of lines is smooth of dimension n − 2. By
Ehresmann’s theorem, the existence of a cohomology class ζ as in our hypothesis
does not depend on Y (as long as Y and F(Y ) are smooth). Consequently, it suffices
to answer Question 5.1 for a double cover Y for which such a ζ exists.

On the one hand 2α= H (n+1)/2 is algebraic, hence of coniveau ≥ 2. On the other
hand ζ has coniveau ≥ 1 because it vanishes on any affine open subset of F(Y ).
It follows that q∗ p∗ζ has coniveau ≥ 2 because q : I → Y is not dominant by
dimension. Combining these two assertions, we see that α has coniveau ≥ 2. �

5C. A degeneration argument. In this subsection, we set n = 5 and d = 10, and
we prove Proposition 5.3 by checking the hypothesis of Lemma 5.7.

To do so, we choose four homogeneous polynomials P ∈ C[X0, . . . , X5]5,
G ∈ C[X1, X2, X3]5, and Q1, Q2 ∈ C[X0, . . . , X5]9, and we set

F0 := X10
0 + PG+ Q1 X4+ Q2 X5 ∈ C[X0, . . . , X5]10.

The reason for this choice is that F0 restricts to a square on the cone 0 := {G= X4=

X5 = 0}, so that the inverse image of 0 in Y0 := {Z2
+ F0 = 0} has two irreducible
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components, giving rise to two 1-dimensional families of lines in Y0. We denote
by 80 ⊂ F(Y0) the curve corresponding to one of these families; it is naturally
isomorphic to {G = 0} ⊂ P2

C
.

Lemma 5.8. If P,G, Q1, Q2 have been chosen general, then Y0 is smooth, 80 is
smooth and F(Y0) is smooth of dimension 3 along 80.

Proof. To check that the general zero-locus of such an F0 is smooth, it suffices to
deal with equations of the form λX10

0 +µX10
1 +Q1 X4+Q2 X5 ∈C[X0, . . . , X5]10.

These form a linear system, so a general one among these is smooth outside of the
base locus {X0 = X1 = X4 = X5 = 0} by the Bertini theorem. But there exists a
particular one that is smooth on the base locus: take Q1 = X9

2 and Q2 = X9
3. It

follows that the general one is smooth everywhere.
To conclude, fix G such that 80 ' {G = 0} ⊂ P2

C
is smooth. It suffices to

prove that for every 3 ∈80, F(Y0) is smooth of dimension 3 at 3, with possible
exceptions on a codimension 2 subset of the parameter space for P , Q1 and Q2. By
the computations in the proof of Lemma 5.6, we need to show that, outside such a
subset, H 0(3,O(10)) is generated by multiples of ∂F0/∂X2, . . . , ∂F0/∂X5 and X5

0 .
This amounts to showing that, outside of a codimension 2 subset of the parameter

space for P ∈ C[X0, X1]5 and Q1, Q2 ∈ C[X0, X1]9, H 0(P1,O(10)) is generated
by multiples of X5

0, PX4
1, Q1 and Q2. This is easy to see, by exhibiting a complete

curve in the projectivized parameter space avoiding the bad locus. �

Now, let 1 be a small enough disk in C[X0, . . . , X5]10 centered around the
polynomial F0 given by Lemma 5.8. Let Y1 be the family of double covers over it,
and F(Y )1 the corresponding family of varieties of lines.

Recall that 80 is a smooth proper subvariety of the smooth locus of the special
fiber F(Y0). Using the flow of a vector field as in the proof of Ehresmann’s theorem,
one sees that80 deforms (as a differentiable submanifold) to nearby fibers for which
F(Yt) is smooth, giving rise to a cohomology class ζt = [8t ] ∈ H n−1(F(Yt),Z2).
We compute q∗ p∗ζt = q∗[p−1(8t)] = q∗[p−1(80)]; it is the cycle class of the
cone 0 that is equal to 5α.

5D. Remarks. When n ≥ 7, an argument analogous to that of Section 5C fails,
because one gets a double cover Y0 whose variety of lines is singular along a
codimension 2 subset of the subvariety 80 that we would like to deform to nearby
fibers F(Yt).

It might still be possible to show, by another argument, the existence of a
cohomology class ζ allowing application of Lemma 5.7. To do so, one would need
to compute part of the integral cohomology of F(Y ). The rational cohomology of
F(Y ) in the required degree is well understood thanks to [Debarre and Manivel
1998, Théorème 3.4] (where the computations are carried out in the analogous
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setting of hypersurfaces or complete intersections). However, Debarre and Manivel’s
approach, relying on the Hodge decomposition, does not allow control of the integral
cohomology groups of F(Y ).

6. Proof of the main theorem

We now come back to our main goal: the proof of Theorem 0.1.

6A. The generic case. Let us first put together what we have obtained so far. Fix
n ≥ 2. Define d(n) by setting d(n) := 2n if n is even or equal to 3 or 5 and
d(n) := 2n− 2 if n ≥ 7 is odd.

Proposition 6.1. Let f ∈ R[X1, . . . , Xn] be a positive semidefinite polynomial of
degree d(n) whose homogenization F defines a smooth hypersurface in Pn

R. Then
f is a sum of 2n

− 1 squares in R(X1, . . . , Xn).

Proof. We consider the double cover Y of Pn
R ramified over {F = 0} defined by the

equation Y := {Z2
+ F = 0}. The variety Y is smooth, Y (R)=∅ by Lemma 3.1,

and computing that the anticanonical bundle −KY =OPn
R
(n+ 1− d(n)/2) of Y is

ample, one sees that YC is Fano, hence rationally connected.
By Proposition 3.2, we need to show that the level of R(Y ) is < 2n . Applying

Proposition 3.3 (iii)⇒(i), we have to prove that ωn
∈H n(Y,Z2(n)) has coniveau≥1.

Finally, since YC is rationally connected, the converse Proposition 3.5 (ii)⇒(i) holds:
we only have to check that ωn+1

∈ H n+1(Y,Z2(n+ 1)) has coniveau ≥ 2.
When n 6= 3 or 5, d(n)≡ 0[4] so that ωn+1

∈ H n+1(Y,Z2(n+ 1)) vanishes by
Proposition 4.8.

When n = 3 or 5, ωn+1
∈ H n+1(Y,Z2(n+ 1)) is seen to be of coniveau ≥ 2 by

combining Corollary 4.13 and either Lemma 5.2 when n = 3 or Proposition 5.3
when n = 5. �

6B. A specialization argument. We do not know how to deal with singular equa-
tions using the same arguments because one has too little control on the geometry of
(a resolution of singularities of) the variety Y . Instead, we rely on a specialization
argument, that will also take care of the lower values of the degree.

Theorem 6.2 (Theorem 0.1). Let f ∈ R[X1, . . . , Xn] be a positive semidefinite
polynomial of degree ≤ d(n). Then f is a sum of 2n

− 1 squares in R(X1, . . . , Xn).

Proof. Consider g := f + t
(
1+

∑n
i=1 Xd(n)

i

)
∈ R(t)[X1, . . . , Xn]. It is a degree

d(n) polynomial whose homogenization defines a smooth hypersurface in Pn
R,

because so does its specialization 1+
∑n

i=1 Xd(n)
i . Let S :=

⋃
r R((t1/r )) be a real

closed extension of R(t). By Artin’s solution [1927] to Hilbert’s 17th problem, f
is a sum of squares in R(X1, . . . , Xn), hence still a positive semidefinite polyno-
mial viewed in S[X1, . . . , Xn]. Consequently, since t = (t1/2)2 is a square in S,
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g ∈ S[X1, . . . , Xn] is a positive semidefinite polynomial. Applying Proposition 6.1
over the real closed field S, we see that g is a sum of 2n

−1 squares in S(X1, . . . , Xn):
one has g =

∑2n
−1

i=1 h2
i .

Consider the t-adic valuation on S. Applying n times successively [Bourbaki
1985, Chapitre VI §10, Proposition 2], we can extend it to a valuation v on
S(X1, . . . , Xn) that is trivial on R(X1, . . . , Xn), and whose residue field is iso-
morphic to R(X1, . . . , Xn). Note that these choices imply that v(g)= 0 and that
the reduction of g modulo v is f ∈ R(X1, . . . , Xn).

Define m := infi v(hi ) and notice that m ≤ 0 because v(g) = 0. Suppose for
contradiction that m < 0 and let j be such that v(h j )= m. Then it is possible to
reduce the equality gh−2

j =
∑2n

−1
i=1 (hi h−1

j )
2 modulo v. This is absurd because we

get a nontrivial sum of squares that is zero in R(X1, . . . , Xn). This shows that
m = 0. Consequently, it is possible to reduce the equality g =

∑2n
−1

i=1 h2
i modulo v,

showing that f is a sum of 2n
− 1 squares in R(X1, . . . , Xn) as wanted. �

We conclude by stating explicitly the following consequence of our proof.

Proposition 6.3. If n ≥ 3 is odd and if Question 5.1 has a positive answer, then
Theorem 0.1 also holds in n variables and degree d = 2n.
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Gowers norms of multiplicative functions
in progressions on average

Xuancheng Shao

Let µ be the Möbius function and let k ≥ 1. We prove that the Gowers U k-norm
of µ restricted to progressions {n ≤ X : n ≡ aq (mod q)} is o(1) on average over
q ≤ X1/2−σ for any σ > 0, where aq (mod q) is an arbitrary residue class with
(aq , q)= 1. This generalizes the Bombieri–Vinogradov inequality for µ, which
corresponds to the special case k = 1.

1. Introduction

A basic problem in analytic number theory is to understand the distribution of
primes, or other related arithmetic functions such as the Möbius function µ and
the Liouville function λ, in arithmetic progressions when the modulus is relatively
large. In this direction, the Bombieri–Vinogradov inequality leads us almost half
way to the ultimate goal, if we average over the moduli.

Theorem (Bombieri–Vinogradov). Let X, Q ≥ 2, and let A ≥ 2. Assume that
Q ≤ X1/2(log X)−B for some sufficiently large B = B(A). Then for all but at most
Q(log X)−A moduli q ≤ Q, we have

sup
(a,q)=1

∣∣∣∣ ∑
n≤X

n≡a (mod q)

3(n)−
1

ϕ(q)

∑
n≤X

3(n)
∣∣∣∣�A

X
Q(log X)A .

The same statement holds for the Möbius function µ and the Liouville function λ.

See [Iwaniec and Kowalski 2004, Chapter 17] for its proof and applications. In
this paper, we investigate a higher order generalization of the Bombieri–Vinogradov
inequality, which measures more refined distributional properties. This higher
order version involves Gowers norms, a central tool in additive combinatorics. We
refer the readers to [Tao and Vu 2006, Chapter 11] for the basic definitions and
applications. In particular, ‖ f ‖U k(Y ) stands for the U k-norm of the function f on
the interval [0, Y ] ∩Z.

Shao was supported by a Glasstone Research Fellowship.
MSC2010: primary 11P32; secondary 11B30, 11N13.
Keywords: multiplicative functions, Bombieri–Vinogradov theorem, Gowers norms.
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For any arithmetic function f : Z→ C and any residue class a (mod q), denote
by f (q ·+a) the function m 7→ f (qm+a). Precisely we study the Gowers U k-norm
of f restricted to progressions {n ≤ X : n ≡ a (mod q)}, i.e., the U k-norm of the
functions f (q · + a) on [0, X/q] ∩Z.

Corollary 1.1. Let X, Q ≥ 2, let k be a positive integer, let A ≥ 2, and let ε > 0.
Assume that Q ≤ X1/2(log X)−B for some sufficiently large B = B(k, A, ε). Then
for all but at most Q(log X)−A moduli q ≤ Q, we have

sup
0≤a<q
(a,q)=1

‖µ(q · + a)‖U k(X/q) ≤ ε.

The same statement holds for the Liouville function λ.

The Bombieri–Vinogradov inequality is the k = 1 case of Corollary 1.1 (quali-
tatively), since the U 1-norm of a function is the same as the absolute value of its
average. By the inverse theorem for Gowers norms [Green et al. 2012], Corollary 1.1
is a straightforward consequence of the following result.

Theorem 1.2. Let X, Q ≥ 2 be parameters with 10Q2
≤ X. Associated to each

Q ≤ q < 2Q we have

(1) a residue class aq (mod q) with 0≤ aq < q , (aq , q)= 1;

(2) a nilmanifold Gq/0q of dimension at most some d ≥ 1, equipped with a
filtration (Gq)• of degree at most some s ≥ 1 and a (log X)-rational Malcev
basis Xq ;

(3) a polynomial sequence gq : Z→ Gq adapted to (Gq)•;

(4) a Lipschitz function ϕq : Gq/0q → C with ‖ϕq‖Lip(Xq ) ≤ 1.

Let ψq : Z→ C be the function defined by ψq(n) = ϕq(gq(n)0q). Then for any
A ≥ 2, the bound∣∣∣∣ ∑

n≤X
n≡aq (mod q)

µ(n)ψq

(
n− aq

q

)∣∣∣∣�A,d,s
X
Q
·

log log X
log(X/Q2)

(1-1)

holds for all but at most Q(log X)−A moduli Q ≤ q < 2Q. The same statement
holds for the Liouville function λ.

See [Green and Tao 2012a] for the precise definitions of nilmanifolds and the
associated data appearing in the statement. To avoid confusions later on, we point
out that the Lipschitz norm is defined by

‖ϕq‖Lip(Xq ) = ‖ϕq‖∞+ sup
x 6=y

|ϕq(x)−ϕq(y)|
d(x, y)

,

where d( · , · ) is the metric induced by Xq . In particular ‖ϕq‖∞ ≤ ‖ϕq‖Lip(Xq ).
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To understand this paper, however, it is not essential to know these definitions,
as long as one is willing to accept certain results about nilsequences as black boxes,
many of which can be found in [Green and Tao 2012a]. The readers are thus
encouraged to consider the following special case when the nilmanifolds are the
torus R/Z, the polynomial sequences are genuine polynomials of degree at most s,
and the Lipschitz functions are ϕ(x)= e(x)= e2π i x .

Theorem (main theorem, special case). Let X, Q≥2 be parameters with 10Q2
≤ X ,

and let s ≥ 1. Then for any A ≥ 2, the bound

sup
0≤a<q
(a,q)=1

sup
α1,...,αs∈R

∣∣∣∣ ∑
n≤X

n≡a (mod q)

µ(n) e(αsns
+ · · ·+α1n)

∣∣∣∣�A,s
X
Q
·

log log X
log(X/Q2)

holds for all but at most Q(log X)−A moduli Q ≤ q < 2Q. The same statement
holds for the Liouville function λ.

Without restricting to arithmetic progressions (i.e., when Q = O(1)), the discor-
relation between the Möbius function and nilsequences was studied by Green and
Tao [2012b], as part of their program to count the number of solutions to linear
equations in prime variables.

The rest of the paper is organized as follows. In Section 2 we reduce Theorem 1.2
to the minor arc case (Proposition 2.1). This reduction process is summarized in
Lemma 2.4, using a factorization theorem for nilsequences [Green and Tao 2012a,
Theorem 1.19]. In fact, one can obtain analogues of Theorem 1.2 for all 1-bounded
multiplicative functions satisfying the Bombieri–Vinogradov estimate, such as
indicator functions of smooth numbers (see [Fouvry and Tenenbaum 1996; Harper
2012] and the references therein). See [Frantzikinakis and Host 2017] for a previous
work on Gowers norms of multiplicative functions, and also [Matthiesen 2016] for a
generalization to some not necessarily bounded multiplicative functions. However,
we will not seek for such generality here since any such result can be easily deduced
from Lemma 2.4 and Proposition 2.1 as needed.

The rest of the argument applies to all bounded multiplicative functions. In
Section 3 we consider the minor arc case using an orthogonality criterion. The idea,
going back to Montgomery and Vaughan [1977] and Kátai [1986] (see also [Bourgain
et al. 2013; Harper 2011]), is that one can make do with type-II estimates (or bilinear
estimates) in a very restricted range when dealing with bounded multiplicative
functions. This is the reason that we are unable to prove Theorem 1.2 for the primes,
which would require type-II estimates in an inaccessible range, and also the reason
that one saves no more than log X in the bound (1-1). In fact, to get this saving
we use a quantitatively superior argument of Ramaré [2009], which received a
lot of attention recently [Matomäki et al. 2015; Green 2016] following its use in
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Matomäki and Radziwiłł’s recent breakthrough [2016]. Finally the required type-II
estimates will be proved in Section 4.

2. Technical reductions

In this section, we reduce Theorem 1.2 to the following minor arc, or equidistributed,
case. See [Green and Tao 2012a, Definition 1.2] for the precise definition about
equidistribution of nilsequences.

Proposition 2.1. Let X, Q ≥ 2 be parameters with 10Q2
≤ X. Let η ∈

(
0, 1

2

)
. Let

Q⊂ [Q, 2Q) be an arbitrary subset. Associated to each q ∈Q we have

(1) a residue class aq (mod q) with 0 ≤ aq < q, (aq , q) = 1, and an arbitrary
interval Iq ⊂ [0, X ];

(2) a nilmanifold Gq/0q of dimension at most some d ≥ 1, equipped with a
filtration (Gq)• of degree at most some s ≥ 1 and an η−c-rational Malcev basis
Xq for some sufficiently small c = c(d, s) > 0;

(3) a polynomial sequence gq :Z→Gq adapted to (Gq)• such that {gq(m)}1≤m≤X/q

is totally η-equidistributed;

(4) a Lipschitz function ϕq : Gq/0q → C with ‖ϕq‖∞ ≤ 1 and
∫
ϕq = 0.

Let ψq : Z→C be the function defined by ψq(n)= ϕq(gq(n)0q). Let f : Z→C be
a multiplicative function with | f (n)| ≤ 1. Then∑
q∈Q

∣∣∣∣ ∑
n∈Iq

n≡aq (mod q)

f (n)ψq

(
n− aq

q

)∣∣∣∣
�

log η−1

log(X/Q2)

∑
q∈Q

(
|Iq |

q
+ 1

)
+ ηc X log X max

q∈Q
‖ϕq‖Lip(Xq ),

for some constant c = c(d, s) > 0.

Thus one obtains a saving of (at most) log η−1/ log(X/Q2) compared to the
trivial bound. The attentive reader may notice an extra factor log X in the second
term of the bound, which prevents one from taking any η = o(1) and still getting
a nontrivial estimate. This extra factor mainly comes from the type-II estimate
(Lemma 3.3); see the comments after its statement. It won’t be a concern for us
since we will take η to be a large negative power of log X .

To deduce Theorem 1.2 from Proposition 2.1, we may assume that A is suffi-
ciently large depending on d and s, that X is sufficiently large depending on A, d
and s, and that Q ≤ X1/2(log X)−B for some sufficiently large B = B(A), since
otherwise the bound (1-1) is trivial. In particular, it suffices to establish the bound
OA(Q(log X)−2A) for the number of exceptional moduli.
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Reducing to completely multiplicative functions. The first technical step of the
reduction is to pass from the Möbius function µ to its completely multiplicative
cousin λ. In this subsection we deduce Theorem 1.2 for µ, assuming that it has
already been proved for the Liouville function λ. This step is summarized in the
following lemma.

Lemma 2.2. Let X ≥ 2 be large, and let a (mod q) be a residue class with
(a, q) = 1. Let ε ∈ (0, 1), and assume that q ≤ εX1/2(log X)−3. Let f : Z→ C

be a multiplicative function with | f (n)| ≤ 1, and let f ′ : Z→ C be the completely
multiplicative function defined by f ′(p)= f (p) for each prime p. Let c : Z→ C

be an arbitrary function with |c(n)| ≤ 1. If∣∣∣∣ ∑
n≤X

n≡a (mod q)

f (n)c(n)
∣∣∣∣≥ ε X

q
,

then there is a positive integer `� ε−3 with (`, q)= 1, such that∣∣∣∣ ∑
n≤X/`

n≡a`−1 (mod q)

f ′(n)c(`n)
∣∣∣∣� ε

X
`q
.

To deduce Theorem 1.2 for µ, apply Lemma 2.2 with f = µ (so that f ′ = λ)
and ε = C log log X/ log(X/Q2) for some large constant C depending on A. For
each q satisfying ∣∣∣∣ ∑

n≤X
n≡aq (mod q)

µ(n)ψq

(
n− aq

q

)∣∣∣∣≥ ε X
q
, (2-1)

Lemma 2.2 produces a positive integer `= `q � ε−3 with (`q , q)= 1, such that∣∣∣∣ ∑
n≤X/`q

n≡aq`
−1
q (mod q)

λ(n)ψq

(
`qn− aq

q

)∣∣∣∣� ε
X
`qq

.

For each `� ε−3, apply Theorem 1.2 for λ, with X replaced by X/`, to conclude
that there are at most Q(log X)−3A moduli q satisfying (2-1) with `q = `. It
follows that the total number of moduli q satisfying (2-1) is O(ε−3 Q(log X)−3A)=

O(Q(log X)−2A), as desired.
In the remainder of this subsection, we give a standard proof of Lemma 2.2,

starting with a basic lemma.

Lemma 2.3. Let f : Z→ C be a multiplicative function with | f (n)| ≤ 1, and let
f ′ : Z→ C be the completely multiplicative function defined by f ′(p)= f (p) for
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each prime p. Let g be the multiplicative function with f = f ′ ∗ g. Then for any
N ≥ 2 we have∑

n≥N

|g(n)|
n
� N−1/2(log N )2 and

∑
n≤N

|g(n)| � N 1/2(log N )2.

Proof. It is easy to see that g(p) = 0 and |g(pk)| ≤ 2 for every prime p. Set
σ = 1

2+1/(10 log N ) so that σ ∈
( 1

2 , 1
)

and Nσ
� N 1/2. By Rankin’s trick we have∑

n≥N

|g(n)|
n
≤

∑
n

|g(n)|
n

( n
N

)1−σ
� N−1/2

∑
n

|g(n)|n−σ ,

and similarly ∑
n≤N

|g(n)| ≤
∑

n

|g(n)|
(N

n

)σ
� N 1/2

∑
n

|g(n)|n−σ .

Thus it suffices to establish the bound∑
n

|g(n)|n−σ � (log N )2.

We may write the Dirichlet series associated to |g| in terms of its Euler product:∑
n

|g(n)|n−σ =
∏

p

(
1+ |g(p2)|p−2σ

+ |g(p3)|p−3σ
+ · · ·

)
.

Since |g(pk)| ≤ 2, we may bound it by∏
p

(1+ p−2σ
+ p−4σ

+ · · · )2(1+ p−3σ
+ p−6σ

+ · · · )2 = ζ(2σ)2ζ(3σ)2.

Since ζ(3σ)�1 and ζ(2σ)�(2σ−1)−1, the desired bound follows immediately. �

Proof of Lemma 2.2. Write f = f ′ ∗ g for some multiplicative function g. We have∑
n≤X

n≡a (mod q)

f (n)c(n)=
∑
`n≤X

`n≡a (mod q)

f ′(n)g(`)c(`n)=
∑
`≤X
(`,q)=1

g(`)
( ∑

n≤X/`
n≡a`−1 (mod q)

f ′(n)c(`n)
)
.

Let L ≥ 2 be a parameter. Using the trivial bound O(X/`q + 1) for the inner sum,
we may apply Lemma 2.3 to bound the total contributions from those terms with
`≥ L by

X
q

∑
`≥L

|g(`)|
`
+

∑
`≤X

|g(`)| � X
q L1/2 (log L)2+ X1/2(log X)2.
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We may choose L � ε−3 such that the first term above is negligible compared
to the lower bound εX/q, and the second term is already negligible compared to
εX/q by the assumption on q . It follows that∑

`≤L
(`,q)=1

|g(`)|
∣∣∣∣ ∑

n≤X/`
n≡a`−1 (mod q)

f ′(n)c(`n)
∣∣∣∣� ε

X
q
.

Since
∑
|g(`)|`−1

� 1, there is some `≤ L with (`, q)= 1 such that∣∣∣∣ ∑
n≤X/`

n≡a`−1 (mod q)

f ′(n)c(`n)
∣∣∣∣� ε

X
`q
.

This completes the proof of the lemma. �

Reducing to equidistributed nilsequences. We now use the factorization theorem
[Green and Tao 2012a, Theorem 1.19] to reduce arbitrary nilsequences to equidis-
tributed ones. This step is summarized in the following lemma, the proof of which
is similar to arguments in [Green and Tao 2012b, Section 2].

Lemma 2.4. Let X ≥2 be large, and let a (mod q) be a residue class with 0≤a<q ,
(a, q)= 1. Let ε ∈

(
0, 1

2

)
. Let f : Z→ C be a completely multiplicative function

with | f (n)| ≤ 1. Given

• a nilmanifold G/0 of dimension at most some d ≥ 1, equipped with a filtration
G• of degree at most some s ≥ 1 and a M0-rational Malcev basis X for some
M0 ≥ ε

−1;

• a polynomial sequence g : Z→ G adapted to G•; and

• a Lipschitz function ϕ : G/0→ C with ‖ϕ‖Lip(X ) ≤ 1,

let ψ : Z→ C be the function defined by ψ(n)= ϕ(g(n)0). Assume that∣∣∣∣ ∑
n≤X

n≡a (mod q)

f (n)ψ
(

n− a
q

)∣∣∣∣≥ ε X
q
.

For any A ≥ 2 large enough depending on d and s, we may find M0 ≤ M ≤ M OA(1)
0 ,

an interval I ⊂ [0, X ] with |I | � X/M3, a positive integer q ′ with q | q ′ and
q ′ ≤ q M , a residue class a′ (mod q ′) with 0≤ a′ < q ′, (a′, q ′)= 1, and moreover

• a nilmanifold G ′/0′ of dimension at most d, equipped with a filtration G ′
•

of
degree at most s and a M Od,s(1)-rational Malcev basis X ′;

• a polynomial sequence g′ : Z→ G ′ adapted to G ′
•

such that {g′(m)}1≤m≤X/q

is totally M−A-equidistributed; and
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• a Lipschitz function ϕ′ :G ′/0′→C with ‖ϕ′‖∞≤ 1 and ‖ϕ′‖Lip(X ′)≤M Od,s(1),

such that ∣∣∣∣ ∑
n∈I

n≡a′ (mod q ′)

f (n)ψ ′
(

n− a′

q ′

)∣∣∣∣� ε
|I |
q ′
,

where ψ ′ : Z→ C is the function defined by ψ ′(n)= ϕ′(g′(n)0′).

To deduce Theorem 1.2 for λ from Proposition 2.1, apply Lemma 2.4 with f = λ,
ε=C log log X/ log(X/Q2) for some large constant C depending on A, and M0 =

(log X)C for some large constant C depending on d and s. For each q satisfying∣∣∣∣ ∑
n≤X

n≡aq (mod q)

λ(n)ψq

(
n− aq

q

)∣∣∣∣≥ ε X
q
, (2-2)

Lemma 2.4 produces Mq , Iq , a′ (mod q ′), G ′/0′, and ψ ′ = ϕ′ ◦ g′, all of which
depend on q (some of these dependencies are suppressed for notational convenience),
such that ∣∣∣∣ ∑

n∈Iq
n≡a′ (mod q ′)

λ(n)ψ ′
(

n− a′

q ′

)∣∣∣∣� ε
|Iq |

q ′
.

Divide the possible values of Mq into OA(1) subintervals of the form [M1/2,M]
with M0 ≤ M ≤ M OA(1)

0 . Given M , let Q=QM be the set of moduli q ∈Q such
that M1/2

≤ Mq ≤ M , and let Q′ = Q′M be the set of q ′ arising from q ∈ Q. It
suffices to show that

|Q| � Q(log X)−2A.

Since q ′/q is a positive integer at most M , each q ′ occurs with multiplicity at
most M . Thus |Q| ≤ M |Q′|. Before applying Proposition 2.1 we need to ensure
that each ϕ′ has average 0. For q ′ ∈Q′ either∣∣∣∣ ∑

n∈Iq
n≡a′ (mod q ′)

λ(n)
∣∣∣∣� ε

|Iq |

q ′
�

X
q ′(log X)OA(1)

(2-3)

or ∣∣∣∣ ∑
n∈Iq

n≡a′ (mod q ′)

λ(n)
(
ψ ′
(

n− a′

q ′

)
−

∫
ϕ′
)∣∣∣∣� ε

|Iq |

q ′
. (2-4)

To bound the number of q ′ satisfying (2-3), note that the Bombieri–Vinogradov
inequality (for λ) is applicable since q ′ ≤ 2QM ≤ X1/2(log X)−B/2 (recall the
assumption that Q ≤ X1/2(log X)−B for some large B). By choosing b large
enough, we may ensure that the number of q ′ satisfying (2-3) is at most QM−A.
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Now let Q′2 ⊂Q′ be the set of q ′ ∈Q′ satisfying (2-4). To bound the size of Q′2,
we apply Proposition 2.1 after replacing each ϕ′ by ϕ′−

∫
ϕ′ and dyadically dividing

the possible values of q ′. This leads to

ε
∑

q ′∈Q′2

|Iq |

q ′
�

log M A

log(X/Q2 M2)

∑
q ′∈Q′2

(
|Iq |

q ′
+ 1

)
+M−cA X (log X)2 M Od,s(1),

for some c = c(d, s) > 0. The first term on the right can be made negligible
compared to the left-hand side, if the constant C in the choice of ε is taken large
enough in terms of A. Hence

ε
X

M3 ·
|Q′2|
QM
� ε

∑
q ′∈Q′

|Iq |

q ′
� M−cA+Od,s(1)X.

It follows that |Q′2| � QM−cA+Od,s(1). Combining the estimates for the two types
of q ′ together, we obtain

|Q| ≤ M |Q′| � QM−cA+Od,s(1)� Q(log X)−2A,

if the constant C in the choice of M is large enough depending on d and s. This
completes the deduction of Theorem 1.2.

Proof of Lemma 2.4. Let C be a large constant (depending on d and s), and
apply the factorization theorem [Green and Tao 2012a, Theorem 1.19] to find
CM0≤M ≤M OA(1)

0 , a rational subgroup G̃⊂G, a Malcev basis X̃ for G̃/0̃ (where
0̃ = 0 ∩ G̃) in which each element is an M-rational combination of the elements
of X , and a decomposition g = sg̃γ into polynomial sequences s, g̃, γ : Z→ G
with the following properties:

(1) s is (M, X/q)-smooth in the sense that d(s(n), id)≤M and d(s(n), s(n−1))≤
q M/X for each 1≤ n ≤ X/q .

(2) g̃ takes values in G̃; moreover {g̃(n)}1≤n≤X/q is totally M−CA-equidistributed
in G̃/0̃ (using the metric induced by the Malcev basis X̃ ).

(3) γ is M-rational in the sense that for each n ∈Z, γ (n)r ∈0 for some 1≤ r ≤M .
Moreover, γ is periodic with period t ≤ M .

We may assume that X ≥ q M3, since otherwise the conclusion holds trivially. After
a change of variables n = qm+ a, we may rewrite the assumption as∣∣∣∣ ∑

m≤X/q

f (qm+ a)ψ(m)
∣∣∣∣� ε

X
q
.

Dividing [0, X/q] into O(M2) intervals of equal length and then further dividing
them into residue classes modulo t , we may find an interval J ⊂ [0, X ] with
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|J | � X/M2 and some residue class b (mod t), such that∣∣∣∣ ∑
m≡b (mod t)

qm+a∈J

f (qm+ a)ϕ
(
s(m)g̃(m)γ (m)

)∣∣∣∣� ε
|J |
qt
. (2-5)

Pick any m0 counted in the sum (i.e., m0 ≡ b (mod t) and qm0+ a ∈ J ), and note
that we may replace s(m) in (2-5) by s(m0) with a negligible error, since ϕ has
Lipschitz norm at most 1 and

d
(
s(m)g̃(m)γ (m), s(m0)g̃(m)γ (m)

)
= d

(
s(m), s(m0)

)
� M−1,

for all m with qm+a ∈ J by the right invariance of d and the smoothness property
of s. Moreover, by the periodicity of γ , we may replace γ (m) in (2-5) by γ (m0).
Now let g′ be the polynomial sequence defined by

g′(m)= γ (m0)
−1g̃(tm+ b)γ (m0),

taking values in G ′ = γ (m0)
−1G̃γ (m0), and let ϕ′ be the automorphic function

on G ′ defined by
ϕ′(x)= ϕ

(
s(m0)γ (m0)x

)
.

The desired properties about G ′/0′, g′, and ϕ′ can be established via standard
“quantitative nillinear algebra” (see the claim at the end of [Green and Tao 2012b,
Section 2]). After a change of variables replacing m by tm+ b, the inequality (2-5)
can be rewritten as ∣∣∣∣ ∑

m : qtm+c∈J

f (qtm+ c)ϕ′(g′(m))
∣∣∣∣� ε

|J |
qt
,

where c = qb+ a. This is almost what we need, but there is the slight issue that c
may not be coprime with t . Let d= (c, t) so that d ≤M . Let q ′=qt/d and a′= c/d
so that (a′, q ′) = 1. Let I = d−1 J so that |I | � X/M3. Since f is completely
multiplicative, we have∣∣∣∣ ∑

m : q ′m+a′∈I

f (q ′m+ a′)ϕ′(g′(m))
∣∣∣∣� ε

|I |
q ′
.

This completes the proof of the lemma. �

3. The minor arc case: Proof of Proposition 2.1

In this section we prove Proposition 2.1, which is the minor arc case of our main
theorem and applies to all 1-bounded multiplicative functions. For convenience write

T =
∑
q∈Q

(
|Iq |

q
+ 1

)
.
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We may assume that

(X/Q2)−1/20 < η < (log X)−C ,

for some sufficiently large C = C(d, s) > 0, since otherwise the bound is trivial.
We may further assume that |Iq | ≥ X0.9 for each q ∈ Q, since the contributions
from those q with |Iq | ≤ X0.9 are trivially acceptable. After multiplying each ϕq

by an appropriate scalar, it suffices to prove the desired inequality with the absolute
value sign removed. Set

Y = η−1 and Z =
(

X
Q2

)1/20

,

so that 2≤ Y < Z ≤ X1/20. Let F be the function defined by

F(n)=
∑

q∈Q, n∈Iq
n≡aq (mod q)

ψq

(
n− aq

q

)
.

Clearly F is supported on [0, X ]. The desired bound can be rewritten as∑
n≤X

f (n)F(n)�
log Y
log Z

· T + ηc X log X max
q∈Q
‖ϕq‖Lip(Xq ). (3-1)

As alluded to in the introduction, this will be proved using an orthogonality criterion
for multiplicative functions. A general principle of this type is given in [Green
2016, Proposition 2.2]. In the notations there, the terms giving rise to Etriv and
Esieve will be dealt with by Lemmas 3.1 and 3.2, respectively. In particular, the
Esieve term leads to the first bound in (3-1). The bilinear (type-II) sum Ebilinear will
be dealt with in Lemma 3.3, leading to the second bound in (3-1).

Unfortunately we cannot directly apply [Green 2016, Proposition 2.2], since
for example our function F is not necessarily bounded. In the remainder of this
section we reproduce the argument from [Green 2016] with suitable modifications
to prove (3-1). Recall the definition of Ramaré’s weight function:

w(n)=
1

#{Y ≤ p < Z : p | n}+ 1
.

Introduce also the function µ2
[Y,Z), the indicator function of the set of integers n

that are not divisible by the square of any prime p ∈ [Y, Z). To prove (3-1), we
first dispose of those terms with µ2

[Y,Z)(n)= 0:∑
n≤X

µ2
[Y,Z)(n)=0

| f (n)F(n)| ≤
∑

Y≤p<Z

∑
n≤X
p2
| n

|F(n)|.
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The following lemma will be used repeatedly.

Lemma 3.1. For any positive integer D ≤ X0.4 we have∑
n≤X
D | n

|F(n)| � T
D
.

Proof. Using the trivial bound

|F(n)| ≤
∑

q∈Q, n∈Iq
n≡aq (mod q)

1, (3-2)

we obtain ∑
n≤X
D | n

|F(n)| ≤
∑
q∈Q

∑
n∈Iq , D | n

n≡aq (mod q)

1.

Since (aq , q)= 1, the inner sum over n is nonempty unless (q, D)= 1, in which
case it is O(|Iq |/q D). The conclusion follows immediately. �

Since Z2
≤ X0.4, Lemma 3.1 implies that∑

n≤X
µ2
[Y,Z)(n)=0

| f (n)F(n)| � T
∑

Y≤p<Z

1
p2 �

T
Y
.

Hence the contributions from those n ≤ X with µ2
[Y,Z)(n) = 0 are acceptable. If

µ2
[Y,Z)(n)= 1, then we have the Ramaré identity∑

Y≤p<Z
p | n

w
( n

p

)
=

{
1 if p | n for some Y ≤ p < Z ,
0 otherwise.

The following lemma disposes of those n not divisible by any p ∈ [Y, Z):

Lemma 3.2. We have∑
n≤X

|F(n)| · 1(
n,
∏

Y≤p<Z p
)
=1
�

log Y
log Z

· T .

Proof. Using (3-2), we can bound the left-hand side by∑
q∈Q

∑
n∈Iq

n≡aq (mod q)

1(
n,
∏

Y≤p<Z p
)
=1
.

Consider the inner sum for a fixed q. Writing d =
(
q,
∏

Y≤p<Z p
)
, we may
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bound the inner sum using a standard upper bound sieve (since Z2
≤|Iq |/q) to obtain∑

n∈Iq
n≡aq (mod q)

1(
n,
∏

Y≤p<Z p
)
=1
�
|Iq |

q

∏
Y≤p<Z

p-q

(
1−

1
p

)
�
|Iq |

q
·

log Y
log Z

·
d
ϕ(d)

.

On the other hand, since d |
∏

Y≤p<Z p and d ≤ q we have

d
ϕ(d)

≤

∏
Y≤p<W

(
1−

1
p

)−1

,

where W ∼ Y + log q. Thus d/ϕ(d)= O(1) since Y ≥ log q, and the conclusion
of the lemma follows. �

Thus we can restrict to those n with µ2
[Y,Z)(n)= 1 and having at least one prime

divisor p ∈ [Y, Z). By the Ramaré identity, we need to estimate

6 :=
∑
n≤X

µ2
[Y,Z)(n)=1

f (n)F(n)
∑

Y≤p<Z
p | n

w
( n

p

)
.

Writing m = n/p and using the multiplicativity of f , we obtain

6 =
∑

m≤X/Y
µ2
[Y,Z)(m)=1

w(m) f (m)
∑

Y≤p<Z
p≤X/m
(m,p)=1

f (p)F(pm). (3-3)

The condition µ2
[Y,Z)(m)= 1 can be dropped since the contribution from those m

divisible by p̃ 2 for some p̃ ∈ [Y, Z) is at most∑
Y≤ p̃<Z

∑
Y≤p<Z

∑
m≤X/p

p̃ 2
|m

|F(pm)| � T
∑

Y≤ p̃<Z

∑
Y≤p<Z

1
p p̃ 2 �

T
Y

log log X,

by an application of Lemma 3.1. Similarly, the condition (m, p)= 1 in (3-3) can
also be dropped since the contribution from the terms with p |m is at most∑

Y≤p<Z

∑
m≤X/p

p |m

|F(pm)| � T
∑

Y≤p<Z

1
p2 �

T
Y
,

by Lemma 3.1. Both these bounds are acceptable. Thus it remains to bound

6′ :=
∑

m≤X/Y

w(m) f (m)
∑

Y≤p<Z
p≤X/m

f (p)F(pm).
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Dyadically dividing the range [Y, Z) for p, we consider

6′(P) :=
∑

m≤X/P

w(m) f (m)
∑

P≤p<2P
p≤X/m

f (p)F(pm)

for P ∈ [Y, Z). Use the trivial bound |w(m) f (m)| ≤ 1 and apply the Cauchy–
Schwarz inequality to obtain

|6′(P)|2� X
P

∑
m≤X/P

∣∣∣∣ ∑
P≤p<2P
p≤X/m

f (p)F(pm)
∣∣∣∣2.

After expanding the square and changing the order of summation, we obtain

|6′(P)|2� X
P

∑
P≤p,p′<2P

f (p) f (p′)
∑

m≤min(X/p,X/p′)

F(pm)F(p′m)

�
X
P

∑
P≤p,p′<2P

∣∣∣∣ ∑
m≤min(X/p,X/p′)

F(pm)F(p′m)
∣∣∣∣.

Set K = P , L = X/P , and δ = ηc for some c > 0 small enough depending on d
and s. The following lemma, whose proof will be given in Section 4, gives the
necessary estimates for the type-II (bilinear) sums appearing above.

Lemma 3.3. Let K , L , Q ≥ 2 be parameters with 10Q2
≤ L. Let δ ∈

(
0, 1

2

)
.

Associated to each Q ≤ q < 2Q we have

(1) a residue class aq (mod q) with 0 ≤ aq < q, (aq , q) = 1, and an arbitrary
interval Iq ;

(2) a nilmanifold Gq/0q of dimension at most some d ≥ 1, equipped with a
filtration (Gq)• of degree at most some s ≥ 1 and a δ−1-rational Malcev
basis Xq ;

(3) a polynomial sequence gq : Z→ Gq adapted to (Gq)•;

(4) a Lipschitz function ϕq : Gq/0q → C with ‖ϕq‖Lip(Xq ) ≤ 1 and
∫
ϕq = 0.

Let ψq : Z→ C be the function defined by ψq(n)= ϕq(gq(n)0q), and let F be the
function defined by

F(n)=
∑

Q≤q<2Q
n∈Iq

n≡aq (mod q)

ψq

(
n− aq

q

)
.

For each k, k ′ ∈ [K , 2K ), let I (k, k ′)⊂ [0, L] be an arbitrary interval. Suppose that

∑
K≤k,k′<2K

∣∣∣∣ ∑
`∈I (k,k′)

F(k`)F(k ′`)
∣∣∣∣≥ δK 2L , (3-4)
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and that K−c < δ < (log Q)−1 for some sufficiently small c= c(d, s) > 0. Then the
polynomial sequence {gq(m)}1≤m≤KL/Q fails to be totally δOd,s(1)-equidistributed
for some Q ≤ q < 2Q.

To complete the proof of Proposition 2.1, note that the hypotheses 10Q2
≤ L

and K−c < δ < (log Q)−1 in Lemma 3.3 are satisfied by our choices of Y and Z .
By setting ϕq = 0 for q /∈Q and renormalizing (replacing ϕq by ϕq/‖ϕq‖Lip(Xq )),
we may apply Lemma 3.3 to conclude that

|6′(P)|2� X
P
· ηc P X max

q∈Q
‖ϕq‖

2
Lip(Xq )

.

The desired bound (3-1) follows after summing over P dyadically.

Remark 3.4. Instead of using simply the trivial bound |w(n)| ≤ 1, one may appeal
to [Green 2016, Lemma 2.1] to dispose of the extra log X factor that appeared
when summing over P dyadically. We will, however, not bother with this since the
type-II estimates we use already have an extra logarithmic factor anyways.

4. Type-II estimates

In this section we prove Lemma 3.3. We start with the following lemma, needed to
treat composite moduli.

Lemma 4.1. Let Q ≥ 2 and Q ≤ R ≤ 4Q2. Let E be the set of pairs (q, q ′) with
Q ≤ q, q ′ < 2Q and R ≤ [q, q ′]< 2R. For each Q ≤ q < 2Q and R ≤ r < 2R, let

mq(r)= #
{

Q ≤ q ′ < 2Q : (q, q ′) ∈ E, [q, q ′] = r
}
.

Then for any m0 ≥ 1 we have

#
{
(q, q ′) ∈ E : mq([q, q ′])≥ m0

}
� m−1

0 R log Q.

Proof. By a dyadic division, it suffices to show that

#
{
(q, q ′) ∈ E : m0 ≤ mq([q, q ′]) < 2m0

}
� m−1

0 R log Q,

for any m0 ≥ 1. Call the left-hand side above N (m0). For any D ≥ 1, let σD(q)
be the number of divisors of q in the range [D, 8D]. A moment’s thought reveals
that mq(r) ≤ σD(q), where D = Q2/2R. Indeed, each q ′ with [q, q ′] = r gives
rise to a divisor (q, q ′) of q in the range [D, 8D], and moreover (q, q ′) is uniquely
determined by q ′ via (q, q ′)= qq ′/r . It follows that

N (m0)=
∑

Q≤q<2Q
σD(q)≥m0

∑
R≤r<2R

m0≤mq (r)<2m0

mq(r).
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Since mq(r)= 0 unless q | r , the inner sum over r is O(m0 R/Q). It thus suffices
to show that

#
{

Q ≤ q < 2Q : σD(q)≥ m0
}
� m−2

0 Q log Q,

for any D ≥ 1. We may assume that D ≤ Q1/2 since otherwise we may replace D
by Q/8D. By the second moment method, we have

#
{

Q ≤ q < 2Q : σD(q)≥ m0
}
≤

1
m2

0

∑
Q≤q<2Q

σD(q)2.

After expanding the square and changing the order of summation, the right-hand
side above is

1
m2

0

∑
D≤d1,d2≤8D

∑
Q≤q<2Q
[d1,d2] | q

1�
Q
m2

0

∑
D≤d1,d2≤8D

1
[d1, d2]

�
Q
m2

0
log D.

This completes the proof of the lemma. �

There are two places in the proof of Lemma 3.3 where we lose a factor of
log Q (and hence the assumption that δ < (log Q)−1). One place is from dyadically
decomposing the possible values of [q, q ′], and the other from the conclusion of
Lemma 4.1. If one is only interested in prime moduli, then this extra loss can
certainly be saved.

Proof of Lemma 3.3. In this proof, all implied constants are allowed to depend on d
and s. For k, k ′ ∈ [K , 2K ), we may write

∑
`∈I (k,k′)

F(k`)F(k ′`)=
∑

Q≤q,q ′<2Q

∑
`∈I (k,k′,q,q ′)
k`≡aq (mod q)

k′`≡aq′ (mod q ′)

ψq

(
k`−aq

q

)
ψq ′

(
k ′`−aq ′

q ′

)
, (4-1)

for some interval I (k, k ′, q, q ′)⊂ I (k, k ′). The solution to the simultaneous con-
gruence conditions

k`≡ aq (mod q) and k ′`≡ aq ′ (mod q ′)

takes the form

`≡ a(k, k ′, q, q ′) (mod [q, q ′]),

for some 0≤ a(k, k ′, q, q ′) < [q, q ′]. It is possible that no solutions exist, in which
case we may simply set I (k, k ′, q, q ′) to be empty and assign an arbitrary value to
a(k, k ′, q, q ′). After a change of variables `= [q, q ′]m+ a(k, k ′, q, q ′), the inner
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sum over ` in (4-1) can be rewritten as∑
m∈J (k,k′,q,q ′)

ψq

(
k[q, q ′]

q
m+ b

)
ψq ′

(
k ′[q, q ′]

q ′
m+ b′

)
,

for some interval J (k, k ′, q, q ′)⊂
[
0, L/[q, q ′]

]
, where

b = 1
q
(
ka(k, k ′, q, q ′)− aq

)
and b′ = 1

q ′
(
k ′a(k, k ′, q, q ′)− aq ′

)
.

In principle b and b′ depend on k, k ′, q and q ′, but to simplify notations we drop this
dependence, as the precise nature of b and b′ is unimportant, apart from the obvious
facts that 0 ≤ b ≤ k[q, q ′]/q and 0 ≤ b′ ≤ k ′[q, q ′]/q ′. Consider the polynomial
sequence gk,k′,q,q ′ : Z→ Gq ×Gq ′ defined by

gk,k′,q,q ′(m)=
(

gq

(
k[q, q ′]

q
m+ b

)
, gq ′

(
k ′[q, q ′]

q ′
m+ b′

))
,

and the Lipschitz function ϕq,q ′ : Gq/0q ×Gq ′/0q ′→ C defined by

ϕq,q ′(x, x ′)= ϕq(x)ϕq ′(x ′).

Then the type-II sum from (4-1) can be written as∑
`∈I (k,k′)

F(k`)F(k ′`)=
∑

Q≤q,q ′<2Q

∑
m∈J (k,k′,q,q ′)

ϕq,q ′(gk,k′,q,q ′(m)).

After dyadically dividing the possible values of [q, q ′], we deduce from the hypoth-
esis (3-4) that∑

K≤k,k′<2K

∑
Q≤q,q ′<2Q
R≤[q,q ′]<2R

∣∣∣∣ ∑
m∈J (k,k′,q,q ′)

ϕq,q ′(gk,k′,q,q ′(m))
∣∣∣∣� δ2K 2L , (4-2)

for some Q ≤ R ≤ 4Q2, where we used the assumption that δ < (log Q)−1. For the
rest of the proof fix such an R. Hence there is a subset T consisting of quadruples
(k, k ′, q, q ′) with R ≤ [q, q ′]< 2R, such that

|T | � δO(1)K 2 R, (4-3)

and for (k, k ′, q, q ′) ∈ T we have∣∣∣∣ ∑
m∈J (k,k′,q,q ′)

ϕq,q ′(gk,k′,q,q ′(m))
∣∣∣∣� δ2L

R
. (4-4)

Since
∫
ϕq,q ′ = 0, (4-4) implies that the sequence {gk,k′,q,q ′(m)}0≤m≤L/R fails to

be δO(1)-equidistributed. Hence by [Green and Tao 2012a, Theorem 2.9], there is
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a nontrivial horizontal character χq,q ′ = χk,k′,q,q ′ : Gq ×Gq ′→ C with ‖χq,q ′‖�

δ−O(1), such that
‖χq,q ′ ◦ gk,k′,q,q ′‖C∞(L/R)� δ−O(1). (4-5)

We have tacitly assumed that χq,q ′ is independent of k and k ′, since this can be
achieved after pigeonholing in the δ−O(1) possible choices of χq,q ′ and enlarging
the constant O(1) in (4-3) appropriately. More explicitly, if we write

χq,q ′ ◦ gk,k′,q,q ′(m)=
s∑

i=0

βi (k, k ′, q, q ′)mi , (4-6)

for some coefficients βi (k, k ′, q, q ′) ∈ R, then (4-5) combined with [Green and Tao
2012b, Lemma 3.2] implies that there is a positive integer r = O(1) such that

‖rβi (k, k ′, q, q ′)‖� δ−O(1)
( L

R

)−i
, (4-7)

for each 1≤ i ≤ s and (k, k ′, q, q ′) ∈ T . Write

χq,q ′ =
(
χ
(1)
q,q ′, χ

(2)
q,q ′
)
,

where χ (1)q,q ′ and χ (2)q,q ′ are horizontal characters on Gq and Gq ′ , respectively, with

‖χ
(1)
q,q ′‖� δ−O(1) and ‖χ

(2)
q,q ′‖� δ−O(1).

Write also

χ
(1)
q,q ′ ◦ gq(n)=

s∑
i=0

αi (q, q ′)ni and χ
(2)
q,q ′ ◦ gq ′(n)=

s∑
i=0

α′i (q, q ′)ni ,

for some coefficients αi (q, q ′), α′i (q, q ′) ∈ R.

Claim. There exists a sequence of subsets E1 ⊂ · · · ⊂ Es of pairs (q, q ′) with
R ≤ [q, q ′]< 2R and a sequence of positive integers r1 ≥ · · · ≥ rs with ri+1 | ri for
each i , such that |E1| � δO(1)R, r1� δ−O(1), and moreover

‖riαi (q, q ′)‖� δ−O(1)
(KL

Q

)−i
and ‖riα

′

i (q, q ′)‖� δ−O(1)
(KL

Q

)−i
,

for each 1≤ i ≤ s and (q, q ′) ∈ Ei .

Note that the claim actually implies the bounds

‖riαj (q, q ′)‖� δ−O(1)
(KL

Q

)− j
and ‖riα

′

j (q, q ′)‖� δ−O(1)
(KL

Q

)− j
,

for each 1≤ i ≤ j ≤ s and (q, q ′) ∈ E j .
Assuming the claim, we may conclude the proof of the lemma as follows:

Pick an arbitrary pair (q, q ′) ∈ E1. Since χq,q ′ is nontrivial, either χ (1)q,q ′ or χ (2)q,q ′
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is nontrivial. Without loss of generality, assume that χ (1)q,q ′ is nontrivial. The
diophantine information about αi (q, q ′) from the claim implies that

‖r1χ
(1)
q,q ′ ◦ gq‖C∞(KL/Q)� δ−O(1).

Thus by [Frantzikinakis and Host 2017, Lemma 5.3], the polynomial sequence gq

fails to be totally δO(1)-equidistributed.
It remains to establish the claim. Start by finding a subset E of pairs (q, q ′) with

R ≤ [q, q ′]< 2R, such that the following properties hold:

(1) |E | � δO(1)R.

(2) For each pair (q, q ′) ∈ E , there are at least δO(1)K 2 pairs (k, k ′) such that
(k, k ′, q, q ′) ∈ T .

(3) For each pair (q, q ′) ∈ E , there are at most δ−O(1) pairs (q, q̃ ′) ∈ E with
[q, q ′] = [q, q̃ ′], and similarly there are at most δ−O(1) pairs ( q̃, q ′) ∈ E with
[q, q ′] = [ q̃, q ′].

Indeed, from the bound (4-3) we may first find E satisfying (1) and (2), and then
apply Lemma 4.1 with m0 = δ

−C for some sufficiently large C to remove a small
number of pairs from E , so that property (3) is satisfied.

Construct {Ei } and {ri } in the claim by downward induction on i as follows. Take
Es+1 equal to the E just constructed and rs+1 = r from (4-7). Now let 1≤ i ≤ s,
and suppose that E j and rj have already been constructed for j > i satisfying the
desired properties. First we show that for each pair (q, q ′)∈ Ei+1, there is a positive
integer r̃(q, q ′)� δ−O(1) such that∥∥∥∥r̃(q, q ′)ri+1αi (q, q ′)

(
[q, q ′]

q

)i∥∥∥∥� δ−O(1)
(KL

R

)−i
, (4-8)

and similarly with αi (q, q ′) replaced by α′i (q, q ′). To prove this, fix (q, q ′) ∈ Ei+1,
and for the purpose of simplifying notations we drop the dependence on q and q ′

so that

αi = αi (q, q ′), α′i = α
′

i (q, q ′), and βi (k, k ′)= βi (k, k ′, q, q ′).

From the definition of gk,k′,q,q ′ we see the following relationship between the
coefficients αi , α′i , and βi (k, k ′):

βi (k, k ′)=
(

k[q, q ′]
q

)i ∑
i≤ j≤s

αj b j−i
+

(
k ′[q, q ′]

q ′

)i ∑
i≤ j≤s

α′j b
′ j−i . (4-9)

Write β̃i (k, k ′) for the contribution from the term with j = i :

β̃i (k, k ′)=
(

k[q, q ′]
q

)i

αi +

(
k ′[q, q ′]

q ′

)i

α′i .
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By the induction hypothesis, ‖ri+1αj‖ and ‖ri+1α
′

j‖ are small for j > i . Combined
with the bound 0 ≤ b, b′ � K R/Q, this implies that the terms with j > i are
negligible: ∥∥ri+1(βi (k, k ′)− β̃i (k, k ′))

∥∥� δ−O(1)
( L

R

)−i
.

It follows from (4-7) that∥∥ri+1β̃i (k, k ′)
∥∥� δ−O(1)

( L
R

)−i
, (4-10)

whenever (k, k ′, q, q ′) ∈ T . Since (q, q ′) ∈ E , this holds for at least δO(1)K 2 pairs
(k, k ′). Choose k ′ such that (4-10) holds whenever k ∈ K, for some subset K with
|K| � δO(1)K . Since

β̃i (k, k ′)− β̃i ( k̃, k ′)= αi

(
[q, q ′]

q

)i

(ki
− k̃ i ),

it follows that for k, k̃ ∈ K we have∥∥∥∥ri+1αi

(
[q, q ′]

q

)i

(ki
− k̃ i )

∥∥∥∥� δ−O(1)
( L

R

)−i
.

Since δ > K−c for some sufficiently small c> 0, the desired inequality (4-8) follows
from a standard recurrence result such as [Green and Tao 2012a, Lemma 4.5]. The
analogous bound for α′i can be proved in a similar way.

Now that we have established (4-8), define Ẽi ⊂ Ei+1 to be a subset with |Ẽi | �

δO(1)
|Ei+1|� δ

O(1)R, such that r̃(q, q ′) take a common value r̃ for (q, q ′)∈ Ẽi . We
say that a pair (q, q ′)∈ Ẽi is typical if there are at least δO(1)R/Q pairs (q, q̃ ′)∈ Ẽi

with χ (1)q,q ′ = χ
(1)
q,q̃ ′ , and similarly there are at least δO(1)R/Q pairs ( q̃, q ′) ∈ Ẽi with

χ
(2)
q,q ′ = χ

(2)
q̃,q ′ . Define Ei ⊂ Ẽi to be the set of typical pairs in Ẽi . By choosing the

constant O(1) in the definition of typical pairs sufficiently large, we may ensure
that |Ei | � δO(1)R.

Now let (q, q ′) ∈ Ei . Since (q, q ′) is typical, there exists a subset Q(q, q ′) with
|Q(q, q ′)|� δO(1)R/Q, such that (q, q̃ ′)∈ Ẽi and χ (1)q,q ′=χ

(1)
q,q̃ ′ for all q̃ ′∈Q(q, q ′).

Thus α(q, q ′)= α(q, q̃ ′) for all q̃ ′ ∈Q(q, q ′), and by applying (4-8) to (q, q̃ ′) we
obtain ∥∥∥∥r̃ri+1αi (q, q ′)

(
[q, q̃ ′]

q

)i∥∥∥∥� δ−O(1)
(KL

R

)−i
,

for each q̃ ′ ∈Q(q, q ′). Since Ẽi ⊂ E , property (3) of the set E implies that

#
{
[q, q̃ ′]

q
: q̃ ′ ∈Q(q, q ′)

}
� δO(1)

|Q(q, q ′)| � δO(1) R
Q
.
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By a standard recurrence result such as [Green and Tao 2012a, Lemma 4.5], there
exists ri � δ−O(1)r̃ri+1� δ−O(1) such that

‖riαi (q, q ′)‖� δ−O(1)
(KL

Q

)−i
,

as desired. The analogous bound for α′i (q, q ′) can be proved in a similar way. This
finishes the proof of the claim, and also the proof of Lemma 3.3. �
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The degree of the Gauss map
of the theta divisor

Giulio Codogni, Samuel Grushevsky and Edoardo Sernesi

We study the degree of the Gauss map of the theta divisor of principally polarised
complex abelian varieties. Thanks to this analysis, we obtain a bound on the
multiplicity of the theta divisor along irreducible components of its singular locus.
We spell out this bound in several examples, and we use it to understand the
local structure of isolated singular points. We further define a stratification of the
moduli space of ppavs by the degree of the Gauss map. In dimension four, we
show that this stratification gives a weak solution of the Schottky problem, and
we conjecture that this is true in any dimension.

1. Introduction

Let (A,2) be a complex g-dimensional principally polarised abelian variety (ppav),
where, by abuse of notation, we write 2 both for an actual symmetric divisor of A
and for its first Chern class. The Gauss map

G :2 99K Pg−1

is the rational map given by the complete linear system L :=O(2)|2. If (A,2) is
indecomposable (not a product of lower-dimensional ppavs), then G is a rational
dominant generically finite map, and we are interested in its degree. Since a basis
of H 0(2, L) is given by the partial derivatives of the theta function restricted to
the theta divisor, the scheme-theoretic base locus of the Gauss map is equal to the
singular locus Sing(2), endowed with the scheme structure defined by the partial
derivatives of the theta function.

Given an irreducible component V of Sing(2), we denote by Vred the reduced
scheme structure on V, and then denote multVred 2 the vanishing multiplicity of the

Codogni is funded by the FIRB 2012 “Moduli spaces and their applications” and the “ERC StG
307119 - Stab AGDG”. Research of Grushevsky is supported in part by National Science Foundation
under the grant DMS-15-01265, and by a Simons Fellowship in Mathematics (Simons Foundation
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theta function along Vred. We denote by degV 2 the intersection number 2d
· V

on A, where d = dim V ; note that degV 2 ≥ 1 for any V, since the theta divisor
is ample. Our main result relates the multiplicity of the singularities of the theta
divisor with the degree of the Gauss map.

Theorem 1.1. Let (A,2) be an indecomposable principally polarised abelian
variety of dimension g ≥ 3. Let {Vi }i∈I be the set of irreducible components of
Sing(2); denote di := dim Vi and mi :=multVi,red 2. Then the following inequalities
hold: ∑

i∈I

mi (mi − 1)g−di−1 degVi,red
2≤ g! − degG ≤ g! − 4,

where degG is the degree of the Gauss map.

In Section 3 we discuss the improvements of this result in various cases, by using
the known lower bounds on the degree of the theta divisor on subschemes of A. In
particular, as an easy corollary we obtain a special case of a well-known result of
Ein and Lazarsfeld [1997].

Corollary 1.2. For any indecomposable ppav (A,2) such that the algebraic coho-
mology group HA2,2(A)= Z, the divisor 2 is smooth in codimension 1.

Remark 1.3. For the case of an isolated singular point z∈Sing(2) of multiplicity m,
the bound of Theorem 1.1 gives m(m− 1)g−1

≤ g! − 4, which asymptotically for
g→∞ behaves like m ≤ g/e, where e is the Euler number.

Recall that the inequality multz 2 ≤ g at any point of any ppav is a famous
result of Kollár [1995], while Smith and Varley [1996] prove that there exists a
point z such that multz 2 = g if and only if the ppav is the product of g elliptic
curves. Conjecturally (see the discussion in [Grushevsky and Hulek 2013]) for
indecomposable ppavs the multiplicity of the theta divisor at any point is at most
b(g+ 1)/2c— this is the maximum possible multiplicity for Jacobians of smooth
curves. The bound we get for multiplicity of isolated singular points is thus
asymptotically better than this conjecture.

Since the multiplicity mi ≥ 2, we also get the following:

Corollary 1.4. The number of isolated singular points of the theta divisor is at
most (g! − 4)/2.

Remark 1.5. Recall that by definition a vanishing theta-null for a ppav is an even
two-torsion point contained in the theta divisor. Conjecturally for an indecomposable
ppav the number of vanishing theta-nulls is less than 2g−1(2g

+ 1)− 3g, and this
conjecture was recently investigated in detail by Auffarth, Pirola, Salvati Manni [Auf-
farth et al. 2017]. The corollary above provides a better bound than this conjecture for
all ppavs for genus up to 8 (this is the range in which (g!−4)/2< 2g−1(2g

+1)−3g)
such that every vanishing theta-null is an isolated point of Sing(2).
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We use the machinery of Vogel’s v-cycles to obtain the proof of our result. As
we only need to apply this machinery in a specific case, we give a direct elementary
construction of v-cycles, and a self-contained argument for our results, not relying
on the general v-cycle literature.

Related results and approaches. Using the results of [Ein et al. 1996; Nakamaye
2000] one can obtain a slightly weaker version of the bound on the multiplicity of
singularities claimed in Theorem 1.1. More recently, Mustat,ă and Popa applied their
newly developed theory of Hodge ideals to also get a slightly weaker multiplicity
bound; see [Mustata and Popa 2016, Section 29]. Neither of these works is directly
related to the degree of the Gauss map. R. Varley explained to us that Corollary 1.4
can be obtained by extending the techniques from [Smith and Varley 1996] and
utilizing the machinery developed in [Fulton 1984, Section 4.4 and Chapter 11].

In the spirit of the Andreotti–Mayer loci defined as

N (g)
k := {(A,2) ∈Ag | dim Sing(2)≥ k},

we define the Gauss loci

G(g)
d := {(A,2) ∈Ag | deg(G :2 99K Pg−1)≤ d}.

In this spirit, we conjecture that the degree of the Gauss map gives a weak solution
to the Schottky problem:

Conjecture 1.6. The Gauss loci G(g)
d are closed for any d and g. The closure of

the locus of Jacobians of smooth curves Jg is an irreducible component of G(g)
d ′ ,

where d ′ =
(2g−2

g−1

)
. The closure of the locus of Jacobians of smooth hyperelliptic

curves Hg is an irreducible component of G(g)
2g−1 .

In making this conjecture, we recall that the degree of the Gauss map is known for
all Jacobians of smooth curves: it is equal to 2g−1 if the curve is hyperelliptic, and to(2g−2

g−1

)
if the curve is not hyperelliptic; see [Andreotti 1958, Proof of Proposition 10].

In Proposition 4.2, we prove Conjecture 1.6 for g = 4 (after easily verifying it
for any g < 4). We also show that all relevant Gauss loci are distinct in genus 4,
i.e., that for any 2≤ d ≤ 12 there exists an abelian fourfold such that the degree of
its Gauss map is equal to 2d .

Already when g = 5, we expect not all the even degree Gauss loci G(5)
2d for

2 ≤ d ≤ 60 to be distinct, and in general the following natural question remains
completely open:

Question 1.7. For a given g ≥ 5, what is the set of possible degrees of the Gauss
map for g-dimensional ppavs? Equivalently, for which d is G(g)

2d \G(g)
2d−2 nonempty?
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2. Generalities about the Gauss map and multiplicities of singularities

Our paper is focussed on studying the degree and the geometry of the Gauss map
for abelian varieties. We first recall the general setup for working with generically
finite rational maps to projective spaces.

Let X be an n-dimensional complex projective variety (we implicitly assume all
varieties in this paper to be irreducible, unless stated otherwise), L a line bundle
on X , and W ⊆ H 0(X, L) a vector subspace such that the rational map

f = |W | : X 99K PW∨

is generically finite and dominant. Let B be the scheme-theoretic base locus of f .
Our focus will be the discrepancy of f :

Definition 2.1 (discrepancy). In the above setup, the discrepancy δ of f is

δ := degX L − deg f.

If f is regular, the discrepancy δ is equal to zero. In general, naively, δ tells
us how much of the degree of L is absorbed by the base locus B. Note that the
discrepancy is not always positive: the presence of the base locus could even
increase the degree, as shown in Example 2.4. We will show that when L is ample
and the base locus is not empty, the discrepancy is strictly positive.

The following formula for the discrepancy in terms of Segre classes is given in
[Fulton 1984, Proposition 4.4]:

δ =

∫
B
(1+ c1(L))n ∩ s(B, X).

For our purposes in this paper we prefer to avoid Segre classes and use the language
of Vogel’s cycles, called v-cycles for short. The theory of v-cycles is fully developed
and described in detail in [Flenner et al. 1999]; other references are [Vogel 1984;
van Gastel 1991]. However, as the applications we need in this paper are limited,
for our purposes a limited version of the theory suffices. We thus prefer to give
an entirely self-contained exposition of the machinery we use — avoiding most
technicalities, and not having to rely on the literature on the subject.

In the setup above, we will define effective cycles V j with support contained
in B and the so-called residual cycles R j such that the support of none of their
irreducible components is contained in B, with j = 0, . . . , n. Both V j and R j are
equidimensional of dimension n− j , unless they are empty.

These cycles are defined inductively, according to Vogel’s intersection algorithm.
We let V 0

:=∅, and let R0
:= X . For any j > 0 assume we have already defined

effective cycles V j−1 and R j−1 of pure dimension n − j + 1. Since none of the
irreducible components of R j−1 have support contained in B, the zero locus Dj ⊂ X
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of a generic section sj ∈W does not contain any irreducible component of R j−1. We
thus write Dj ∩ R j−1

=
∑

k ak Ek , where the Ek are reduced and irreducible Cartier
divisors on R j−1. We order the divisors Ek in such a way that Ek is supported
within B for k = 1, . . . , t and is not supported within B for k > t . Then we let

V j
:=

t∑
k=1

ak Ek and R j
:=

∑
k>t

ak Ek .

The cycles R j and V j are effective of pure dimension n − j . The cycle V j can
possibly be empty; on the other hand, for Dj general, the cycle R j is nonempty.
Since

Dj ∩ R j−1
= V j

+ R j,

and since Dj is the zero locus of a section of L , it follows that

degR j L = degR j−1 L − degV j L . (1)

Theorem 2.2 (formula for the discrepancy). In the setup above, the discrepancy is
given by

δ =

n∑
j=1

degV j L .

Proof. For 0≤ j ≤ n, consider the restricted morphisms

f j := f |R j : R j 99K PHj ,

where Hj is the linear subspace of W∨ that is the common zero locus of the sections
s1, . . . , sj ∈W . Since R j is the closure of f −1(PHj ) in X , we have

deg f = deg f j

for any j . We now take j = n. Since Rn is zero-dimensional and it is supported
outside B, the map

fn : Rn
→ PHn

is a regular morphism, and thus

deg f = deg fn = degRn L .

To compute degRn L , we apply formula (1) n times to obtain

degRn L = degR0 L −
n∑

j=1

degV j L .

The theorem follows from observing that degR0 L = degX L . �
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Example 2.3. Let ` be a line in P3 and let W ⊂ H 0(P3, O(3)) define a generic
3-dimensional linear system of cubics containing `. This linear system gives a
rational map with finite fibres

f = |W | : P3 99K PW∨.

Let us run Vogel’s algorithm to describe the v-cycles and compute the discrepancy.
We thus pick 4 generic cubics D1, . . . , D4 ∈ W , and have R1

= D1 and V 1
= ∅.

The intersection D2 ∩ R1 is a reducible curve C ∪ `; thus R2
= C and V 2

= `.
The intersection C ∩ D3, is equal to the union of C ∩ ` and r reduced points not
contained in `, and thus V 3

= C ∩ ` and R3 consists of the other r reduced points.
To describe C ∩ `, notice that the arithmetic genus of C ∪ ` is 10. The curve C is a
component of a complete intersection; since we know the degree of all components
of this complete intersection, we can show that the genus of C is 7 using a standard
formula; see for example [Sernesi 1986, Proposition 11.6]. We conclude that C ∩ `
consists of 4 reduced points.

The discrepancy of the morphism associated to W is

δ = deg`O(3)+ degV 3O(3)= 3+ 4= 7.

Hence the rational map given by W has degree degP3 O(3)− δ = 27− 7= 20.
We can also compute this discrepancy using Segre classes. Notice that ` is

regularly embedded in P3, so its Segre class is just the inverse of the Chern class of
the normal bundle. Let p be the class of a point in `. We have

δ =

∫
`

(1+ 3p)3(1− 2p)=
∫
`

(1+ 9p− 2p)= 9− 2= 7.

It is worth remarking that the Segre classes formula expresses the discrepancy as
a difference, whereas the v-cycles formula expresses the discrepancy as a sum of
positive contributions.

We now modify slightly the previous example to obtain a map with negative
discrepancy (which is of course impossible for an ample line bundle L). The
highlight of the following example is that the discrepancy is negative because the
degree of L on the v-cycle V 2 is negative; in particular, L is not nef.

Example 2.4 (negative discrepancy). Keeping the notation of Example 2.3, we
consider the blow-up π : X→ P3 of P3 at generic points p1, . . . , pk on the line `;
in particular, we assume that these points are not contained in the curve C described
in Example 2.3. Let E1, . . . , Ek be the exceptional divisors and let E =

∑
Ei .

On X , we take as line bundle L = π∗O(3)− E , and as linear system we take the
proper transform W̃ of W ; denote by ˜̀ the proper transform of `.
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The v-cycles are the proper transform of the v-cycles of the previous example,
so V 2

= ˜̀, and V 3 consists again of 4 reduced points on ˜̀. The discrepancy is now

δ = deg ˜̀L + degV 3 L = (3− k)+ 4= 7− k,

which is negative for k > 7. The degree of the map is

degX L − δ = (27− k)− (7− k)= 20.

As expected, this degree agrees with the degree of the map described in Example 2.3;
the reason is that the two morphisms coincide outside the exceptional locus of the
blow-up.

Before giving an application of Theorem 2.2, we need to recall the notion of
multiplicity. Let Z be an irreducible subscheme of an irreducible scheme X ; the
multiplicity multZ X of X along Z is defined using the notion of Samuel multiplicity
as follows. Let (R,m) be the local ring of X at (the generic point of) Zred. In this
ring, Z is defined by an m-primary ideal q. For t sufficiently large, the Hilbert
function h(t) := len(R/qt) is a polynomial in t . We normalise this polynomial by
multiplying it by deg(h(t))! = codim(Z , X)!, and the Samuel multiplicity e(q, R)
is then defined to be the leading term of the normalised Hilbert polynomial.

Then one defines
multZ X := e(q, R).

The following commutative algebra result, roughly speaking, reduces the computa-
tion of the Samuel multiplicity to the case of local complete intersections.

Proposition 2.5. Let (R,m) be a d-dimensional Cohen–Macaulay local ring with
infinite residue field K . Let q be an m-primary ideal of R. Let t1, . . . , tm be a set of
generators of q, and let s1, . . . , sd be generic linear combinations of the ti . Then
the ideal I := (s1, . . . , sd)⊆ q computes the Samuel multiplicity of q; that is

e(q, R)= e(I, R)= `(R/I ).

Proof. From [Matsumura 1986, Theorems 14.13 and 14.14 on p. 112] it follows
that e(q, R) = e(I, R). Since R is Cohen–Macaulay, s := s1, . . . , sd is a regular
R-sequence; thus

`(R/I )= `(H0(s, R))=
∑

i

(−1)i`(Hi (s, R))= e(I, R)

by [op. cit., p. 109]. �

Before applying this result, let us recall that by definition the class of a closed
irreducible subscheme Z ⊂ X in the Chow group of X is

[Z ] = `(OX,Zred/IZ ) · [Zred],
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as explained for example in [Voisin 2002, Section 21.1.1].

Corollary 2.6 (bound on the discrepancy). In the setup above, assume that X is
Cohen–Macaulay, let B =

⋃r
i=1 Bi be the decomposition of the scheme-theoretic

base locus of f into its scheme-theoretic irreducible components, and let ei :=

multBi X. If L is nef , then
δ ≥

∑
i

ei degBi,red
L .

In particular, if B is nonempty and L is ample, then the discrepancy δ is strictly
positive.

Proof. Fix an irreducible component Bi of B and denote by k := dim X − dim Bi .
We will single out an irreducible component Zi of V k such that Zi,red = Bi,red and

ei =multBi X =multZi X = `(OX,Zi,red/IZi ).

Since Bi is contained in each divisor Dj , it follows that Bi is contained in Rk−1,
and, for dimensional reasons, Bi,red is the support of an irreducible component Zi

of Rk−1
∩ Dk . By construction of the v-cycles, this means that Zi is an irreducible

component of V k. In particular, we have Zi,red = Bi,red. Let (R,m) be the local
ring of X at the generic point of Zi,red. The ideal q defining Bi in the local
ring R is generated by the image in R of the linear system W. Recall that sj is
the section defining Dj . The subscheme Zi is defined in R by the image of the
sections s1, . . . , sk . These sections vanish on Bi , so they lie in q. The sections
are generic elements of W, so we can apply Proposition 2.5 to conclude that
`(OX,Zi,red/IZi )=multZi X =multBi X .

We now use the nefness of L , which implies that its degree is nonnegative on
any subscheme Y ⊂ X . Thus Theorem 2.2 implies

δ =

n∑
j=1

degV j L ≥
r∑

i=1

degZi
L .

where Z1, . . . , Zr is the list of irreducible components of v-cycles associated to the
irreducible components B1, . . . , Br of the base locus by the procedure described
above. (Note that if B is zero-dimensional we do not need to get rid of higher
codimension v-cycles, so the inequality becomes an equality.)

The degree degZi
L is an intersection number which can be computed in the

Chow group of X , so degZi
L = ei degBi,red

L . �

Let us compute the cycles Zi of the previous proof in a particular example.

Example 2.7. Let X be the singular quadric surface defined by x2
+ y2
+w2

= 0
in P3, with coordinates [x : y :w : z]; let p = [0 : 0 : 0 : 1] be the singular point. Let
L be OP3(1)|X , and consider the linear system W on X generated by the restrictions
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of x , y, and w. The base locus is the point p endowed with the reduced scheme
structure. On the other hand, if we run Vogel’s algorithm using as sections s1 = x ,
s2= y, and s3=w, the v-cycle V 2 is defined in P3 by the ideal (x2

+ y2
+w2, x, y);

thus V 2 is supported at p but is not reduced. This is a case where Z and B have
the same support and the same multiplicity in X , but they are different as schemes.

Remark 2.8 (zero-dimensional base locus). Suppose B =
⋃

i Bi , where each Bi

is a possibly nonreduced scheme supported on a closed point pi . In this case, as
explained in the proof of Corollary 2.6,

δ = degV n L =
∑

multBi X.

This formula has a down to earth proof. Take n general effective Cartier divisors Di

in |W |: they intersect in a point q ∈ PW∨; the intersection of the Di in X consists
of the points pi counted with multiplicity multBi X and other degX L −

∑
multBi X

distinct reduced points qi . These points qi are exactly the fibre of f over q , proving
the formula for δ in this case.

The case we are interested in is when X =2 is the theta divisor of a ppav (A,2)
of dimension g, and f = G is the Gauss map. We thus obtain

degG = g! − δ.

3. The multiplicity bound for theta divisors

In this section we prove Theorem 1.1 bounding the multiplicity of the theta divisor,
by an analysis of the discrepancy associated to the Gauss map. It is well-known
[Birkenhake and Lange 2004, Section 4.4] that for an indecomposable ppav the
Gauss map is dominant and has positive degree. We start with the following
observation.

Lemma 3.1. For an indecomposable ppav the degree of the Gauss map degG is
even. If g ≥ 3, then

4≤ degG ≤ g!.

Moreover, degG = g! if and only if the theta divisor is smooth.

Proof. Let ι : z 7→−z be the involution of the ppav; since the Gauss map is invariant
under ι, its degree is even.

If the degree of the Gauss map for a ppav of dimension g ≥ 3 were equal to 2,
then 2/ι would be rational. However, the quotient 2/ι cannot be rational because
there exist nonzero holomorphic ι-invariant 2-forms on 2.

The inequality degG ≤ g! follows from Corollary 2.6 and the fact that the Gauss
map is given by an ample line bundle. The last claim holds because the base locus
of the Gauss map is exactly Sing(2). �
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Since the base locus of the Gauss map is equal to Sing(2), the results of the
previous section combined with this lemma yield

δ = g! − degG ≤ g! − 4,

where δ is the discrepancy associated to G. To translate this into geometric infor-
mation about the singularities of the theta divisor, we need another commutative
algebra statement.

Proposition 3.2. Let D ⊂ X be an irreducible divisor in an n-dimensional smooth
variety X , and let Z be a d-dimensional irreducible component of Sing(D). Let
m :=multZred D and e :=multZ D. Then

e≥ m(m− 1)n−d−1.

Proof. Let (S, n) be the local ring of Zred ⊂ X . It is an (n−d)-dimensional regular
local ring. A local equation of D is an element f ∈nm. Let (R,m)= (S/( f ), n/( f ))
be the local ring of Zred ⊂ D. It is a Cohen–Macaulay ring of dimension n− d− 1.
Since m :=multZred D,

e(m, R)= m.

Let q := ( f1, . . . , fn) be the ideal of Z ⊂ D, where the fi are the classes of the
partial derivatives of f . Note that q⊆mm−1. Let s1, . . . , sn−d−1 ∈ q be a system of
parameters. Then

`(R/(s1, . . . , sn−d−1))≥ (m− 1)n−d−1e(m, R)= (m− 1)n−d−1m

by [Matsumura 1986, Theorem 14.9 on p. 109]. Choosing s1, . . . , sn−d−1 to be a
general linear combination of f1, . . . , fn we can apply Proposition 2.5. Then

e(q, R)= `(R/(s1, . . . , sn−d−1))≥ (m− 1)n−d−1m,

proving the proposition. �

We can now prove our main result.

Proof of Theorem 1.1. The theorem follows by combining the bound δ ≤ g! − 4,
Corollary 2.6, and Proposition 3.2. �

The estimates on the degree of the Gauss map and on the multiplicity of the singu-
larities of Theorem 1.1 can be improved using the vast literature on lower bounds of
degVi,red

2 for d-dimensional subvarieties V ⊆ A. For any p we denote by HAp,p(A)
the algebraic cohomology, that is the subgroup of H p,p(A,C)∩ H 2p(A,Z) gener-
ated by the dual classes to the fundamental cycles of (g−p)-dimensional subvarieties
of A (so in particular HA1,1 is the Néron–Severi group).

When d = 1, a refinement of Matsusaka’s criterion due to Ran states that if V
generates the abelian variety, then degV2≥ g, with equality if and only if A is a
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Jacobian and V is the Abel–Jacobi curve [Ran 1981, Corollary 2.6 and Theorem 3].
Combining this with Theorem 1.1 immediately yields the following:

Corollary 3.3. For a one-dimensional irreducible component V of Sing(2), denote
by m :=multVred2. If A is a simple abelian variety that is not a Jacobian, then

m(m− 1)g−2(g+ 1)≤ g! − degG ≤ g! − 4.

In general for d = dim V > 1, Ran [1981, Corollary II.6] shows that

degV2≥
(g

d

)
if V is nondegenerate in the sense of that paper.

If the class of V in HAg−d,g−d(A) is an integer multiple of the so-called minimal
class

θg−d :=
1

(g−d)!
2g−d

(which must be the case if HAg−d,g−d(A)= Z), then we have the bound

degV2≥
g!

(g−d)!
,

by noticing that V must then be a positive integral multiple of the minimal class,
since it has positive intersection number with 2d, we get in particular the following:

Corollary 3.4. For a d-dimensional irreducible component V of Sing(2), denote
by m :=multVred2. If HAg−d,g−d(A)= Z, then

m(m− 1)g−d−1 g!
(g−d)!

≤ g! − degG ≤ g! − 4.

Note that the case of d= g−2 of the above corollary gives precisely Corollary 1.2.
By applying Theorem 1.1, we can also obtain further results for the case of

isolated singular points, extensively studied in the literature. For an isolated point z
of Sing(2), let Bz be the irreducible component of Sing(2) supported at z, and let
e(z) :=multBz 2. We first need the following proposition:

Proposition 3.5. If z ∈ Sing(2) is an isolated double point such that the Hessian
matrix of θ (second partial derivatives) at z has rank at least g−1, then there exists
a local coordinate system in which locally the theta function can be written as

θ = x2
1 + · · ·+ x2

g−1+ x`g

for some `≥ 2. In this case e(z)= `.

Proof. The existence of a local coordinate system where θ can be written as
above follows immediately from the holomorphic Morse lemma [Żołądek 2006,
Theorem 2.26].
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Let si be as in Proposition 2.5; since we are interested just in the linear span
of the si , applying Gauss elimination algorithm we can assume that si = xi , for
i = 1, . . . , g− 2 and sg−1 = xg−1+ x`−1

g . Since

e= dimC S/( f, s1, . . . , sn−d−1),

where S is the local ring of the abelian variety at z, the statement follows. �

In genus 4 the proposition immediately gives the following corollary, which was
obtained by completely different methods in [Smith and Varley 2012].

Corollary 3.6. Let (A,2) ∈A4 be a Jacobian of a smooth nonhyperelliptic curve
with a semicanonical g1

3 (i.e., with a theta-null). Then locally around the unique sin-
gular point z of the theta divisor, the theta function can be written in an appropriate
local coordinate system as θ = x2

1 + x2
2 + x2

3 + x4
4 .

Proof. Recall that the degree of the Gauss map for any nonhyperelliptic genus 4
Jacobian is

(2·4−2
4−1

)
= 20= 4! − 4, so the discrepancy δ is equal to 4.

By [Arbarello et al. 1985, p. 232], in this case Sing(2)red = {p} and the rank of
the Hessian of the theta function at p is equal to 3. The result now follows from
Proposition 3.5 and Corollary 2.6. �

Remark 3.7. Smith and Varley [2012] prove that coordinates xi in the corollary
above can furthermore be chosen to be equivariant, i.e., such that they all change
sign under the involution z 7→ −z of the ppav. This also follows from the above
proof: indeed, in Proposition 3.5 note that if the point z is two-torsion, i.e., fixed
by the involution, then since the theta divisor is also invariant under the involution,
as a set, one can use the equivariant version of the holomorphic Morse lemma to
ensure that the coordinates xi are equivariant under the involution as well.

The proposition also immediately yields the following easy general bound, which
seems not to have been previously known.

Corollary 3.8. If the point z is an isolated singular point of 2, and the rank of
the Hessian of the theta function at z is at least g− 1, then, with the notation of
Proposition 3.5, we have `≤ g! − 4.

In a similar spirit, we can also prove the following bound

Corollary 3.9. A theta divisor contains at most 1
2(g! − 4) isolated singular points.

Proof. For any isolated point z ∈ Sing(2), we can apply the multiplicity one
criterion, which states that a primary ideal in a local ring has Samuel multiplicity
one if and only if the ring is regular and the ideal is the maximal ideal, to see that
e(z)≥ 2; references for the criterion are [Fulton 1984, Proposition 7.2] or [Nowak
1997]. Then the corollary follows from Theorem 1.1. �
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Perhaps the next interesting case of ppavs with singular theta divisors beyond
Jacobians of curves are intermediate Jacobians of smooth cubic threefolds. In this
case the degree of the Gauss map can be computed from the geometric description
given by Clemens and Griffiths [1972]; see [Krämer 2016, Remark 7(b)]. Let us
sketch the computation. In [Clemens and Griffiths 1972], the authors consider the
Fano surface S of lines of a cubic 3-fold F and a natural rational map:

9 : S× S −→2,

where 2 ⊂ J (F) is the theta divisor. They prove that 9 is generically 6 to 1,
[op. cit., p. 348]. The composition G ·9 associates to an ordered pair of lines
(`1, `2) ∈ S × S the hyperplane H := 〈`1, `2〉 ⊂ P4. The degree of G ·9 equals
the number of ordered pairs of nonintersecting lines contained in the cubic surface
H ∩ F for a general H ∈ P4∨. There are 27× 16 ordered pairs of nonintersecting
lines on a nonsingular cubic surface; therefore the degree of G is

deg(G)=
deg(G ◦9)

deg(9)
=

27× 16
6
= 72.

We remark that since the degree of the Gauss map for Jacobians of genus 5 curves
is either 16 (for hyperelliptic curves) or

(8
4

)
= 70 (for nonhyperelliptic curves),

this computation already shows that the intermediate Jacobian of a smooth cubic
threefold is not a Jacobian of a curve, allowing one to bypass a longer argument for
this in [Clemens and Griffiths 1972].

Our machinery gives a quick alternative computation for this degree.

Proposition 3.10. The degree of the Gauss map of the intermediate Jacobian of a
smooth cubic threefold is equal to 72.

Proof. It is well-known [Beauville 1982] that B = Sing(2) is supported on a single
point z, which has multiplicity 3; the tangent cone of that singularity is the cubic
threefold. In this case, as explained in Remark 2.8, the discrepancy δ equals the
multiplicity e of 2 along B.

We use Proposition 2.5 to compute e. Locally near its singularity, the theta
function is a cubic polynomial defining the cubic, plus higher order terms. Since
the cubic is smooth, its partial derivatives are independent, and thus in the setup of
Proposition 2.5 we can choose si to be the theta function (which vanishes at z to
order 3), and four of its partial derivatives (each of which vanishes to second order).
Thus we compute the Samuel multiplicity of z, or equivalently degB2, to be equal
to 3 · 24

= 48. It follows that the discrepancy is equal to 48. Thus the degree of the
Gauss map in this case is degG = 5! − 48= 72. �
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4. The stratification by the degree of the Gauss map

The moduli space of ppavs Ag is an orbifold of complex dimension g(g+ 1)/2.
The classical Andreotti–Mayer loci N (g)

k are defined to be the loci of ppav such that
dim Sing(2)≥ k. These loci are closed. In analogy with the Andreotti–Mayer loci,
we define the Gauss loci.

Definition 4.1 (Gauss loci). For any d ∈ Z≥0 we let G(g)
d ⊆ Ag be the set of all

ppavs for which the degree of the Gauss map is less than or equal to d .

For a decomposable ppav, the Gauss map is not dominant, so the degree of the
Gauss map is 0; in other words Adec

g ⊂ G(g)
0 , where we denoted by Adec

g the locus
of decomposable ppavs. By definition we have G(g)

0 ⊆ G(g)
1 ⊆ · · · ⊆ G(g)

g! = Ag.
Since degG is always even, G(g)

2d = G(g)
2d+1 for any d. For g ≥ 3, since the degree

of the Gauss map on an indecomposable ppav is at least 4, G(g)
0 = G(g)

1 = G(g)
2 =

G(g)
3 =Adec

g .
We now discuss in detail the Gauss loci in low genus. In genus g = 2 the theta

divisor of any indecomposable principally polarised abelian surface is smooth, and
the degree of the Gauss map is equal to two. To summarise,

G(2)
0 =Adec

2 and G(2)
2 =A2.

In genus 3 the theta divisor of any nonhyperelliptic Jacobian is smooth, while
the theta divisor of a hyperelliptic Jacobian has a unique singular point, which is an
ordinary double point. Thus,

G(3)
0 = G(3)

2 =Adec
3 , G(3)

4 =H3, and G(3)
6 =A3,

where H3 denotes the locus of hyperelliptic Jacobians, and we note that the boundary
of H3 in A3 is in fact equal to the decomposable locus. We note that in this case
the Gauss loci are equal to the Andreotti–Mayer loci, but already in genus 4 this is
not the case.

We now turn to genus 4. Recall that N (4)
1 =H4, and the degree of the Gauss map

for a Jacobian of a smooth hyperelliptic genus 4 curve is equal to 24−1
= 8; this is

to say H4 ⊂G(4)
8 \G(4)

6 . We also recall from [Beauville 1977] that N (4)
0 =J4∪θnull,

where J4 denotes the locus of Jacobians, and θnull denotes the theta-null divisor —
the locus of ppavs with a singular 2-torsion point on the theta divisor. Recall
also that the degree of the Gauss map for any nonhyperelliptic genus 4 Jacobian
is equal to 20. Furthermore, as is well-known, and as also immediately follows
from our bound for the discrepancy, an indecomposable 4-dimensional ppav cannot
have an isolated singular point z on the theta divisor with m =multz2> 2 (since
3 · 23

= 24> 20= 4! − 4). Finally, Grushevsky and Salvati Manni [2008] showed
that if the theta divisor of a 4-dimensional indecomposable ppav has a double point
that is not ordinary, it is the Jacobian of a curve. To summarise (and further using
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[Beauville 1977]), if a 4-dimensional indecomposable ppav that is not a Jacobian
has a singular theta divisor, the only singularities of it are at two-torsion points
(vanishing theta-nulls), and each of those is an ordinary double point.

We can now describe the Gauss loci in genus 4.

Proposition 4.2. (1) All the Gauss loci G(4)
2d are closed.

(2) All the Gauss loci G(4)
2d , for d = 2, . . . , 12 are distinct.

(3) The locus G(4)
4 is equal to the union of the locus of decomposable ppavs

Adec
4 = G(4)

0 (which has two irreducible components A1×A3, of dimension 7,
and A2×A2 of dimension 6), and one point {AV }, the fourfold discovered by
Varley [1986].

(4) The 9-dimensional locus J4 is an irreducible component of G(4)
20 , which has

another 8-dimensional irreducible component.

(5) The 7-dimensional locus H4 is an irreducible component of G(4)
8 , which has

another 2-dimensional irreducible component.

Proof. Indeed, the above results imply that for a 4-dimensional indecomposable
ppav that is not a Jacobian, the only possible singularities of the theta divisor are
theta-nulls that are ordinary double points, each of which contributes precisely two
to the discrepancy by Proposition 3.5. The degree of the Gauss map is then 24−2k,
where k is the number of vanishing theta constants. Since the vanishing of an even
theta constant defines a divisor on a level cover A4(4, 8) of A4, the locus where a
given collection of theta constants vanishes is always closed in A4(4, 8), and thus
its image is closed in A4. Thus all the Gauss loci are closed within A4 \ N (4)

1 . Since
N (4)

1 =H4 ∪Adec
4 ⊂ G(4)

8 , it follows that G(4)
2d are closed for d ≥ 4, and to prove (1)

it remains to show that G(4)
4 and G(4)

6 are closed. The statement about G(4)
4 follows

from (3), which we will prove shortly. To prove that G(4)
6 is closed, all we need to

show is that a family in G(4)
6 can not degenerate to a smooth hyperelliptic Jacobian,

which lies in G(4)
8 \ G(4)

6 . We will do this once we are done with the rest of the
proof.

To show that all Gauss loci are distinct, recall that Varley [1986] constructed an
indecomposable principally polarised abelian fourfold AV , which is not a Jacobian,
but has 10 vanishing even theta-nulls (and note that the above discussion reproves
that a 4-dimensional indecomposable ppav can have at most k = 10 vanishing theta
constants). Thus the degree of the Gauss map for AV is equal to 4, so that AV ∈G(4)

4 .
Debarre [1987] showed that AV is the unique indecomposable ppav in A4 such
that the singular locus of the theta divisor consists of 10 isolated points; in our
language, this implies (3), which also shows that the locus G(4)

4 is closed. Thus
locally on A4(4, 8) the point AV is defined by the vanishing of the corresponding 10
theta constants. The vanishing locus of each theta constant is a hypersurface in
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A4(4, 8), and since all 10 of them locally intersect in expected codimension 10, any
subset also locally intersects in expected codimension. Thus for any k ≤ 10, there
is a (10− k)-dimensional locus of ppavs near AV with exactly k vanishing theta
constants (and which do not lie on J4, since AV is not a Jacobian). Thus locally
near AV there exist ppavs with the degree of the Gauss map equal to 24− 2k, for
any k ≤ 10.

Furthermore, by the above discussion we see that there exists an irreducible
(10−k)-dimensional component of G(4)

24−2k containing AV . Taking k = 2 and k = 8
shows the existence of irreducible components of G(4)

20 \J4 and of G(4)
8 \H4 of the

claimed dimensions. Furthermore, we note that the boundary of H4 within A4 is

(H2×H2)∪(H1×H3)= (A2×A2)∪(A1×H3)(Adec
4 = (A2×A2)∪(A1×A3).

Recalling that J4 and H4 are irreducible, and that the Gauss map on these loci
generically has degree 20 and 8, respectively, proves parts 4 and 5.

Finally, we return to statement (1). Suppose we have a family At of ppavs
contained in G(4)

6 , degenerating to some A0 ∈H4. We want to prove that A0 cannot
be a smooth hyperelliptic Jacobian, which is equivalent to showing that A0 ∈Adec

4 .
Indeed, a generic At must be a ppav that has at least 9 vanishing theta constants,
and thus the same configuration of 9 theta constants must also vanish on A0. It is
known that for any smooth hyperelliptic Jacobian there are exactly 10 vanishing
even theta constants, every three of them forming an azygetic triple (this results
seems to go back to Riemann originally, we refer to [Mumford 1984] for a detailed
discussion). Thus if among the 9 vanishing theta constants on At there exists a
syzygetic triple, then a syzygetic triple of theta constants vanishes at A0, and so A0

cannot be a smooth hyperelliptic Jacobian. On the other hand, if an azygetic 9-tuple
of theta constants vanishes on At , then At is a hyperelliptic Jacobian or a product,
by [Igusa 1981, Lemma 6]. But then since At ∈ G(4)

6 , it follows that At ∈Adec
4 . �

In genus 5, if the theta divisor is smooth, the degree of the Gauss map is 120.
For intermediate Jacobians of cubic threefolds the degree of the Gauss map is 72,
for the Jacobian of any nonhyperelliptic curve it is 70, while for the Jacobian of any
hyperelliptic curve it is 16. In this case our results show that if all singular points of
theta divisor are isolated (i.e., on N (5)

0 \N (5)
1 ), there are at most (5!−4)/2= 58 such

singular points — which in particular is much better than the conjectured bound
of 24(25

+ 1)− 35
= 285 for the number of vanishing even theta constants in this

case; see [Auffarth et al. 2017] for the recent results on this conjecture.
All irreducible components of the Andreotti–Mayer locus N (5)

1 were described
explicitly by Debarre [1988, Proposition 8.2] via the Prym construction, using the
fact that the Prym map is dominant onto A5. While it appears possible to compute
the degree of the Gauss map for a generic point of every irreducible component
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of N (5)
1 , determining the degree of the Gauss map for every point of N (5)

1 would
require computing the degree of the Gauss map for Pryms of all admissible covers
that arise as degenerations, which involves a large number of cases, and which
we thus do not undertake. Furthermore, we have G(5)

16 ⊃H5, and Debarre showed
that N (5)

2 \A
dec
5 =H5 [Ciliberto and van der Geer 2000, Section 1], while Ein and

Lazarsfeld [1997] showed that N (5)
3 =Adec

5 , which is thus equal to G(5)
4 . We do not

know whether various Gauss loci are distinct.
In higher genus, other than the classical case of Jacobians, the degree of the

Gauss map is known for a generic Prym: Verra [2001] showed that it is equal to
D(g)+2g−3, where D(g) is the degree of the variety of all quadrics of rank at most
3 in Pg−1. We note that for g = 5 a generic ppav is a Prym, with a smooth theta
divisor, and thus the result of Verra recovers the degree 5! = 120 of the Gauss map
in this case.
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Correction to the article
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Rankeya Datta and Karen E. Smith

Volume 10:5 (2016), 1057–1090

Theorem 5.1 is corrected in the paper Frobenius and valuation rings.

The characterization of F-finite valuation rings of function fields (Theorem 5.1)
is incorrect. The corrected characterization is as follows:

Theorem 0.1. Let K be a finitely generated extension of an F-finite ground field k.
Let V be any nontrivial valuation ring of K/k. Then V is F-finite if and only if V is
divisorial.

A proof of this corrected theorem follows a complete accounting of affected
statements in the paper. Notation and theorem and page numbers are as in [Datta
and Smith 2016].

1. List of affected statements

The source of the error is Proposition 2.2.1 (page 1061), which is misquoted from
the original source [Bourbaki 1998]. Specifically, the last sentence in the statement
of Proposition 2.2.1 should read: Furthermore, equality holds if the integral closure
of Rν in L is a finitely generated Rν-module, not if and only if . The statement
is correct, however, under the additional assumption that the valuation ring Rν is
Noetherian [Bourbaki 1998, VI, §8.5, Remark (1)].

This error has consequences in the following statements from the paper.

THEOREM 4.3.1 should read: Let V be a valuation ring of an F-finite field K of
prime characteristic p. If V is F-finite, then

[0 : p0][κ : κ p
] = [K : K p

],

where 0 is the value group and κ is the residue field of V .
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The paper had incorrectly stated the converse, which does hold if the valuation
ring is Noetherian [Bourbaki 1998, VI, §8.5, Remark (1)].

COROLLARY 4.3.2 should read: With hypotheses as in Theorem 4.3.1, if [K :
K p
] = [κ : κ p

], then V is F-finite. See Section 2 below for the proof. The original
statement holds as stated if V is Noetherian.

EXAMPLES 4.4.1 and 4.4.2 (page 1069): The computations here are correct but
the conclusions are not. Rather, Theorem 0.1 ensures these valuation rings are not
F-finite.

EXAMPLE 4.5.1 (page 1070) is correct as stated, as it follows from the correct
implication of Theorem 4.3.1.

PROPOSITION 4.6.1 (page 1071): This statement is correct. However, the proof
of (iii) is not, because it cited the incorrect implication of Proposition 2.2.1. The
corrected proof is in Section 3 below.

THEOREM 5.1 (page 1072): The equivalence of (ii) and (iii) is correct, and both
imply (i). Under the additional assumption that the valuation is discrete, also (i)
implies (ii) and (iii). The proof of Theorem 5.1 in the paper proves:

Theorem 1.1. Let K be a finitely generated field extension of an F-finite ground
field k of characteristic p. The following are equivalent for a valuation v on K/k:

(i) The valuation v is Abhyankar.

(ii) [0 : p0][κ : κ p
] = [K : K p

], where 0 is the value group, and κ is the residue
field of v.

COROLLARY 5.2 (page 1072) is correct as stated; it is a consequence of Theorem 0.1.

COROLLARY 6.6.3 (page 1086) is correct as stated; the proof should invoke
Theorem 0.1 instead of Theorem 5.1.

The remaining statements in Section 5 (Remark 5.3, Proposition 5.4, Lemma 5.5,
Proposition 5.6, Lemma 5.7, Lemma 5.8) and Section 6 are correct, because they
do not rely on Proposition 2.2.1 or its consequences.

2. Proof of Theorem 0.1

Lemma 2.1. Let (V,m) be a valuation ring of prime characteristic p. If m is not
principal, then

m=m[p].

Proof. Take any x ∈m. It suffices to show that there exists y ∈m such that y p
| x .

Note that since m is not principal, the value group 0 of the corresponding valuation
v does not have a smallest element > 0. This means we can choose β0 ∈ 0 such
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that 0< β0 < v(x), and then also choose β1 ∈ 0 such that

0< β1 <min{β0, v(x)−β0}.

Let y1 ∈m be such that v(y1)= β1. Then

v(y2
1)= 2β1 < β0+ (v(x)−β0)= v(x).

Thus, y2
1 | x . Repeating this argument inductively, we can find yn ∈ m such that

y2
n | yn−1 for all n ∈N. For n> log2 p, we have that y2n

n , and hence y p
n , divides x . �

Lemma 2.2. Let (V,m, κ) be a valuation ring of characteristic p. Then the dimen-
sion of V/m[p] over κ p is

(a) [κ : κ p
] if m is not finitely generated.

(b) p[κ : κ p
] if m is finitely generated.

Proof. Consider the short exact sequence of κ p-vector spaces

0→m/m[p]→ V/m[p]→ κ→ 0. (1)

If m is not finitely generated, then Lemma 2.1 implies that m/m[p] = 0, and (a)
follows. Otherwise, m is principal, so m[p] =mp and we have a filtration

m)m2 ) · · ·)mp−1 )m[p] =mp.

Since mi/mi+1 ∼= κ , we see that dimκ p(m/m[p])= (p− 1)[κ : κ p
]. From the short

exact sequence (1), dimκ p(V/m[p])= p[κ : κ p
], proving (b). �

Proof of Theorem 0.1. If V is divisorial, it is a localization of a finitely generated
algebra over the F-finite ground field k, hence it is F-finite.

For the converse, let m be the maximal ideal and κ the residue field of V . Since
V is F-finite, by (the corrected) Theorem 4.3.1,

[0 : p0][κ : κ p
] = [K : K p

], (2)

where 0 is the value group of V . Thus, the valuation is Abhyankar by Theorem 1.1
above. To show it is divisorial, we need to show it is discrete.

Because the value group of an Abhyankar valuation is finitely generated, 0∼=Z⊕s

for some integer s ≥ 1. Hence it suffices to show that s = 1.
Since V is F-finite, we know V is free over V p of rank [K : K p

]. Tensoring
with the residue field κ p of V p, we have that V/m[p] is also a free κ p-module of
rank [K : K p

]. Thus, from (2) we have

dimκ p V/m[p] = [K : K p
] = [0 : p0][κ : κ p

]

=
∣∣Z⊕s/pZ⊕s

∣∣[κ : κ p
] = ps

[κ : κ p
]. (3)

But now, since ps
6= 1, Lemma 2.2 forces s = 1, and the proof is complete. �
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Remark 2.3. Theorem 0.1 does not hold without some assumption on the field K .
For instance, if K is perfect, Frobenius is an isomorphism (hence a finite map)
for any valuation ring of K . The proof of Theorem 0.1 does show that an F-
finite valuation ring with finitely generated value group must be Noetherian (hence
discrete), without any restriction on its fraction field. Furthermore, the proof
also shows that a valuation ring cannot be F-finite if its value group 0 satisfies
[0 : p0]> p.

Proof of revised COROLLARY 4.3.2. In general, [0 : p0][κ : κ p
] ≤ [K : K p

] by
[Bourbaki 1998, VI, §8.1, Lemma 2]. Hence our hypothesis forces [0 : p0] = 1.
Thus 0 = p0, so that 0 cannot have a smallest positive element, which means that
the maximal ideal m of V is not finitely generated. Lemma 2.2(a) now ensures
dimκ p(V/m[p])= [κ : κ p

] = [K : K p
]. Then V is F-finite by [Bourbaki 1998, VI,

§8.5, Theorem 2(c)]. �

3. Proof of Proposition 4.6.1(iii)

We recall PROPOSITION 4.6.1(iii): Let K ↪→ L be a finite extension of F-finite
fields of characteristic p. Let w be a valuation on L and v its restriction to K . Then
the valuation ring of v is F-finite if and only if the valuation ring of w is F-finite.

Lemma 3.1. With notation as in Proposition 4.6.1(iii), the maximal ideal of the
valuation ring of v is finitely generated if and only if the maximal ideal of the
valuation ring of w is finitely generated.

Proof. For ideals in a valuation ring, finite generation is the same as being principal.
Principality of the maximal ideal is equivalent to the value group having a smallest
element > 0. Thus, it suffices to show that the value group 0v of v has this property
if and only if 0w does.

Assume 0w has a smallest element g > 0. We claim that for each t ∈ N, the
only positive elements of 0w less than tg are g, 2g, . . . , (t − 1)g. Indeed, suppose
0 < h < tg. Since g is smallest, g ≤ h < tg, whence 0 ≤ h − g < (t − 1)g. So
by induction, h − g = ig for some i ∈ {0, 1, . . . , t − 2}, and hence h is among
g, 2g, . . . , (t − 1)g.

Now, because [0w : 0v] ≤ [L : K ]<∞ by [Bourbaki 1998, VI, §8.1, Lemma 2],
every element of 0w/0v is torsion. Let n be the smallest positive integer such that
ng ∈ 0v . We claim that ng is the smallest positive element of 0v . Indeed, the only
positive elements smaller than ng in 0w are g, 2g, . . . , (n− 1)g, and none of these
are in 0v by our choice of n.

Conversely, if 0v has a smallest element h > 0, then the set

S := {g ∈ 0w : 0< g < h}
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is finite because for distinct g1, g2 in this set, their classes in 0w/0v are also distinct,
while 0w/0v is a finite group. Then the smallest positive element of 0w is the
smallest element of S, or h if S is empty. �

Proof of Proposition 4.6.1(iii). A necessary and sufficient condition for the F-
finiteness of a valuation ring (V,m, κ)with F-finite fraction field K is, by [Bourbaki
1998, VI, §8.5, Theorem 2(c)], that

dimκ p(V/m[p])= [K : K p
]. (4)

Lemma 2.2 gives a formula for dimκ p(V/m[p]) in terms of [κ : κ p
] that depends on

whether the maximal ideal is finitely generated, which is the same for v and w by
Lemma 3.1. Proposition 4.6.1(i) and (ii) tell us that both [K : K p

] = [L : L p
] and

[κv : κ
p
v ] = [κw : κ

p
w]. Thus Lemma 2.2 and (4) guarantee that the valuation ring of

v is F-finite if and only if the valuation ring of w is F-finite. �
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