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Mass formulas for local Galois
representations and quotient singularities
II: Dualities and resolution of singularities

Melanie Matchett Wood and Takehiko Yasuda

A total mass is the weighted count of continuous homomorphisms from the
absolute Galois group of a local field to a finite group. In the preceding paper,
the authors observed that in a particular example two total masses coming from
two different weightings are dual to each other. We discuss the problem of
how generally such a duality holds and relate it to the existence of simultaneous
resolution of singularities, using the wild McKay correspondence and the Poincaré
duality for stringy invariants. We also exhibit several examples.
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1. Introduction

In [Wood and Yasuda 2015] we found a close relationship between mass formulas
for local Galois representations, studied in the number theory, and stringy invariants
of singular varieties. In the present paper we discuss dualities of mass formulas in
relation with the existence of some kinds of desingularization.

For a local field K and a finite group 0, let G K = Gal(K sep/K ) be the absolute
Galois group of K and SK ,0 be the set of continuous homomorphisms G K → 0.
For a function c : SK ,0→ R, the total mass of (K , 0, c) is defined as

M(K , 0, c) := 1
]0

∑
ρ∈SK ,0

q−c(ρ),

with q the cardinality of the residue field of K . For the symmetric group Sn , fixing
the standard representation

ι : Sn ↪→ GLn(OK )⊂ GLn(K ),

with OK the integer ring of K , we can associate the Artin conductor aι(ρ) to each
continuous homomorphism ρ :G K→ Sn . According to Kedlaya [2007], Bhargava’s
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mass formula [2007] for étale extensions of a local field is expressed as

M(K , Sn, aι)=
n−1∑
m=0

P(n, n−m)q−m,

where P(n, n−m) is the number of partitions of the integer n into exactly n−m
parts. It was found in [Wood and Yasuda 2015] that for another function ρ 7→w2ι(ρ)

originating in the wild McKay correspondence [Yasuda 2013] we have

M(K , Sn,−w2ι)=

n−1∑
m=0

P(n, n−m)qm .

Here 2ι stands for the direct sum of two copies of the representation ι. The right-
hand sides of the two formulas are interchanged by replacing q with q−1: this is
what we call a duality. It is then natural to ask how generally the duality holds: what
about other groups and other representations? There exists yet another function
vτ on SK ,0 for each representation τ of 0 over OK . It was shown in [Wood and
Yasuda 2015] that if τ is a permutation representation, then we have aτ = v2τ . It
turns out that the function vτ is more appropriate when discussing dualities for
nonpermutation representations. The most basic question we would like to ask
is: when are the total masses M(K , 0, vτ ) and M(K , 0,−wτ ) dual to each other
in the same way as M(K , Sn, aι) and M(K , Sn,−w2ι)? We will observe that the
duality does not always hold, but is closely related to the existence of a simultaneous
resolution of singularities or to equisingularities.

To discuss the duality more rigorously, we need to consider total masses for all
unramified extensions of the given local field K . For each integer r > 0, let Kr be
the unramified extension of K of degree r . For a representation τ : 0→GLd(OK ),
we can naturally generalize functions vτ and wτ to ones on SKr ,0, which we
continue to denote by the same symbols. We then regard total masses M(Kr , 0, vτ )

and M(Kr , 0,−wτ ) as functions in the variable r ∈ N. When they belong to a
certain class of nice functions (which we call admissible), we can define their dual
functions D(M(Kr , 0, vτ )) and D(M(Kr , 0,−wτ )) in such a way that the dual of
the function qr is q−r . A duality which we are interested in is now expressed by
the equality

D(M(Kr , 0, vτ ))= M(Kr , 0,−wτ ). (1-1)

We call it the strong duality.
It is the wild McKay correspondence which relates total masses to singularities.

Given a representation τ : 0 → GLd(OK ), we have the associated 0-action on
the affine space Ad

OK
and the quotient scheme X := Ad

OK
/0, which is a normal

Q-Gorenstein variety over OK . In general, for a normal Q-Gorenstein variety Y
over OK , we can define the stringy point count ]st(Y ) as a volume of the OK -point
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set Y (OK ) (see [Yasuda 2014b]). This is an analogue of the stringy E-function
defined in [Batyrev and Dais 1996; Batyrev 1998] and is a generalization of the
number of k-points on a smooth OK -variety. For a k-point y ∈ Y (k), we can
similarly define the stringy point count along {y} (or the stringy weight of y),
denoted by ]st(Y )y , so that we have

]st(Y )=
∑

y∈Y (k)

]st(Y )y .

Yasuda [2014b] proved that if the representation τ is faithful and the morphism
Ad
OK
→ X is étale in codimension one, then

]st(X)= M(K , 0, vτ )qd and ]st(X)o = M(K , 0,−wτ ),

where o is the origin of X (k). This is a version of the wild McKay correspondence
discussed in [Yasuda 2013; 2014a; 2016; Wood and Yasuda 2015]. Special cases
were previously proved in [Yasuda 2014a; Wood and Yasuda 2015]. If X has a nice
resolution, then ]st(X) and ]st(X)o are explicitly computed in terms of resolution
data. Using it, we can deduce a few properties of the functions M(Kr , 0, vτ ) and
M(Kr , 0,−wτ ): obtained properties depend on what sort of resolution exists.

Remark 1.1. The assumption that the morphism Ad
OK
→ X is étale in codimension

one is just for notational simplicity. We may drop this assumption by considering
the pair of X and a Q-divisor on it rather than the variety X itself.

Let us think of X as a family of singular varieties over SpecOK . If X admits a
kind of simultaneous resolution, then

]st(X)− ]st(X)o
qr − 1

satisfies a certain self-duality, which can be understood as the Poincaré duality of
stringy invariants proved in [Batyrev and Dais 1996; Batyrev 1998] over complex
numbers. Using the wild McKay correspondence, we can transform this duality
into the form:

M(Kr , 0, vτ ) · qrd
−M(Kr , 0,−wτ )

= D(M(Kr , 0,−wτ )) · qrd
−D(M(Kr , 0, vτ )). (1-2)

We call it the weak duality between M(Kr , 0, vτ ) and M(Kr , 0,−wτ ), which is
indeed weaker than the strong duality (1-1).

There are three possibilities: both dualities hold, both dualities fail, and the
weak one holds but the strong one does not. Examples we compute show that each
possibility indeed occurs. In the tame case, the strong duality holds. For permutation
representations, the weak duality holds in all examples we compute, but the strong
duality does not generally hold. When OK = Fq [[t]] and the given representation τ
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is defined over Fq , the strong duality holds in all computed examples. However,
when the representation is not defined over Fq , then the weak duality tends to fail.
These examples suggest that we may think of the two dualities as a test of how
equisingular the family X is.

In particular, when OK = Fq [[t]] and τ is defined over Fq , the associated quotient
scheme X = Ad

Fq [[t]] would be equisingular in any reasonable sense. If there exists a
nice resolution of the Fq -variety X⊗OK Fq , we obtain an equally nice simultaneous
resolution of X just by base change. Therefore, if one believes that there exists as
nice a resolution in positive characteristic as in characteristic zero, then at least
the weak duality (1-2) would hold for such τ . If, on the contrary, one finds an
example such that weak duality fails, this would give an example of an Fq -variety
not admitting any nice resolution. However, every example we have computed
satisfies strong duality.

The study in this paper thus gives rise to interesting open problems related to
dualities and equisingularities and their interaction (see Questions 4.7, 4.8 and 5.2,
and Section 6). Further studies are required.

The paper is organized as follows. In Section 2, we define admissible functions
and their duals. In Section 3, we discuss properties of stringy point counts. In
Section 4, we define total masses and discuss how the wild McKay correspondence
relates dualities of total masses with equisingularities. In Section 5, we exhibit
several examples. Section 6 contains concluding remarks.

Convention and notation. We denote the set of positive integers by N. A local
field means a finite extension of either Qp or Fp((t)) for a prime number p. For
a local field K , we denote its integer ring by OK and its residue field by k. We
denote the characteristic of k by p and the cardinality of k by q. For r ∈ N, we
denote the unramified extension of K of degree r by Kr and its residue field (that
is, the extension of k of degree r) by kr . For a variety X defined over either OK

or k, we put

]X := ]X (k),

the cardinality of k-points of X . More generally, for r ∈ N, we put

]r X := ]X (kr ).

2. Admissible functions and their duals

In this section, we set the foundation to discuss dualities of total masses and stringy
point counts by introducing admissible functions.
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Definition 2.1. We call a function f : N→ C admissible if there exist numbers
0 6= c ∈Q, ni ∈ Z and αi ∈ C (1≤ i ≤ m) such that for every r ∈ N,

f (r)= 1
qcr−1

l∑
i=1

niα
r
i .

We denote the set of admissible functions by AF. For an admissible function f (r)
as above, we define its dual function D f : N→ C by

(D f )(r) := 1
q−cr−1

l∑
i=1

niα
−r
i .

It is easy to see that the set of admissible functions is closed under addition and
multiplication, thus AF has a natural ring structure. For f ∈AF, the dual D f is also
an admissible function. Therefore D gives an involution of the set AF. Moreover it
is easily checked that D : AF→ AF is a ring isomorphism.

A typical admissible function is a rational function in q1/n for some n ∈ N with
a denominator of the form qcr

− 1. In that case, the dual function is obtained just
by substituting q−1 for q. Another example is given as follows: let k = Fq and
kr := Fqr . For a k-variety X the function

r 7→ ]r X := ]X (kr )

is admissible from the Grothendieck–Lefschetz trace formula.

Lemma 2.2. The dual function D f does not depend on the choice of the expression
of f (r) as 1/(qcr

− 1)
∑l

i=1 niα
r
i .

Proof. Let
1

qdr−1

l ′∑
j=1

m jβ
r
j

be another such expression of f (r). For every r ∈ N, we have

(qdr
− 1) ·

l∑
i=1

niα
r
i = (q

cr
− 1) ·

l ′∑
j=1

m jβ
r
j .

It suffices to show that for every r ∈ N,

(q−dr
− 1) ·

l∑
i=1

niα
−r
i = (q

−cr
− 1) ·

l ′∑
j=1

m jβ
−r
j .

This follows from the following claim:
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Claim 2.3. Suppose that for every r , we have

l∑
i=1

niα
r
i =

l ′∑
j=1

m jβ
r
j .

Suppose also that αi , ni , βj and m j are nonzero, that α1, . . . , αl are distinct, and so
are β1, . . . , βl ′ . Then we have l = l ′, αi = βi and ni = mi , up to permutation.

In turn, this claim follows from:

Claim 2.4. Suppose that α1, . . . , αl are distinct nonzero complex numbers and that
for every r ,

l∑
i=1

niα
r
i = 0.

Then ni = 0 for every i .

The last claim follows from the regularity of the Vandermonde matrix

(αr
i )1≤i≤l, 0≤r≤l−1. �

For a smooth proper k-variety X of pure dimension d, the Poincaré duality for
the l-adic cohomology shows that the function r 7→ ]r X satisfies

]r X = qdr
·D(]r X).

3. Stringy point counts

Stringy point counts. Let K be a local field, that is, a finite extension of either
Qp or Fp((t)). We denote its residue field by k and its integer ring by OK . An
OK -variety means an integral separated flat OK -scheme of finite type such that
there exists an open dense subscheme U ⊂ X which is smooth over OK . For an
OK -variety X , we denote by Xk the closed fiber X ⊗OK k and by X K the generic
fiber X ⊗OK K . For a constructible subset C ⊂ Xk , we let X (OK )C be the set of
OK -points SpecOK → X sending the closed point into C .

Suppose now that X is normal. From [Kollár 2013, Definition 1.5], X has a
canonical sheaf ωX/OK . If d is the relative dimension of X over OK , then ωX/OK

coincides with �d
X/OK

=
∧d

�X/OK on the OK -smooth locus of X . The canonical
divisor K X = K X/OK is defined as a divisor such that ωX/OK =OX (K X ), which is
determined up to linear equivalence. Let us suppose also that X is Q-Gorenstein,
that is, K X is Q-Cartier. Then, for a constructible subset C ⊂ Xk , we can define
the stringy point count along C ,

]st(X)C ∈ R≥0 ∪ {∞},
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as a certain p-adic volume of X (OK )C . For details, see [Yasuda 2014b]. However,
what is important for our purpose is not the definition but the explicit formula in
the next subsection.

For r ∈ N, let Kr be the unramified extension of K of degree r and let kr be
its residue field. We then define ]r

st(X)C to be the stringy point count X ⊗OK OKr

along the preimage of C in (X ⊗OK OKr )⊗OKr
kr = X ⊗OK kr . We often regard

]r
st(X)C as a function in r . When X is smooth over OK , then ]r

st(X)C is equal to
the number of kr -points of X contained in C .

An explicit formula and the Poincaré duality. Let X be a normal Q-Gorenstein
variety over either OK or k. For a proper birational morphism f : Y → X with Y
normal, the relative canonical divisor

KY/X := KY − f ∗K X

is uniquely determined as a Q-divisor on Y supported in the exceptional locus of f .
We are especially interested in the case where Y is regular and KY/X is a simple
normal crossing divisor, a notion that we define on regular OK -varieties as follows.

Definition 3.1. Let Y be a regular variety over OK and E ⊂ Y a reduced closed
subscheme of pure codimension one. We call E a simple normal crossing divisor if

• for every irreducible component E0 of E and for every closed point x ∈ E0

where Y is smooth over OK , the completion of E0 at x is irreducible, and

• for every closed point x ∈ Y where Y is smooth over OK , the support of E is,
in a certain Zariski neighborhood, defined by a product yi1 · · · yim for a regular
system of parameters y0 =$, y1, . . . , yd ∈ÔY,y with $ a uniformizer of K
and 0≤ i1 < · · ·< im ≤ d .

We call a Q-divisor on Y a simple normal crossing divisor if its support is one.

The reason why we look only at closed points where Y is OK -smooth is that
there is no OK -point passing through a closed point where Y is not OK -smooth,
and hence such a point is irrelevant to stringy point counts.

Definition 3.2. Let f : Y → X be a proper birational morphism of varieties over
either OK or k such that X is normal and Q-Gorenstein:

• We call f a resolution if Y is regular.

• We call f a WL (weak log) resolution if f is a resolution and the support of
KY/X is simple normal crossing.

• When f is defined over OK , we call f an SWL (simultaneous weak log)
resolution if f is a WL resolution and Y is smooth over OK or k.
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Remark 3.3. The word weak indicates that we look only at the support of KY/X

rather than the whole exceptional locus. In particular, every resolution Y → X with
KY/X = 0 is a WL resolution, whatever the exceptional locus is.

Remark 3.4. We cannot usually expect that an SWL resolution exists, unless X is
thought of as an equisingular family over OK in some sense. If OK = k[[t]] and
if X = X0 ⊗k k[[t]] for some k-variety X0, then X would be equisingular in any
reasonable sense. In this situation, an SWL resolution of X exists if and only if a
WL resolution of X0 exists.

For a normal Q-Gorenstein OK -variety X and a WL resolution f : Y → X , we
can uniquely decompose KY/X as

KY/X =

l∑
h=1

ah Ah +

m∑
i=1

bi Bi +

n∑
j=1

cj C j , (3-1)

where all the Ah , Bi , C j are prime divisors on Y , the coefficients ah , bi , cj are
nonzero rational numbers, every Ah is contained in Xk and Y is OK -smooth at the
generic point of Ah , every Bi is contained in Xk and Y is not OK -smooth at the
generic point of Bi , and every C j dominates SpecOK . We denote by A◦h the locus
in Ah where Y is OK -smooth. For a subset J ⊂ {1, . . . , n}, we define

C◦J :=
⋂
j∈J

C j

∖⋃
j /∈J

C j .

For a constructible subset W of a k-variety Z , let ]r (W ) denote the number of
kr -points of W .

Proposition 3.5 (An explicit formula, [Yasuda 2014b]). Let f : Y → X be a WL
resolution of a normal Q-Gorenstein OK -variety X and write KY/X as in (3-1). Let
Ysm be the OK -smooth locus of Y :

(1) We have ]r
st(X)C <∞ for all r ∈N if and only if cj >−1 for every j such that

C j ∩ f −1(C)∩ Ysm 6=∅.

(2) If the two equivalent conditions of (1) hold, then

]r
st(X)C =

l∑
h=1

q−rah
∑

J⊂{1,...,n}

]r ( f −1(C)∩ A◦h ∩C◦J )
∏
j∈J

qr
− 1

qr(1+cj )− 1
.

Proof. In [Yasuda 2014b] it was proved that ]st(X)C is equal to ]st(Y,−KY/X ) f −1(C),
the stringy point count of the pair (Y,−KY/X ) along f −1(C). The proposition
follows from the explicit formula for the stringy point count of a pair with a simple
normal crossing divisor in the same paper. �
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In particular, if K has characteristic zero and if the generic fiber X K has only
log terminal singularities (for instance, quotient singularities), then ]r (X)C <∞
for every r and C . The following is a direct consequence of the proposition.

Corollary 3.6. Suppose that X is Q-Gorenstein, that there exists a WL resolution
f : Y → X and that ]r

st(X)C <∞ for every r > 0. Then the function ]r
st(X)C in the

variable r is admissible.

The following result was proved by Batyrev–Dais [1996] and Batyrev [1998] in
a slightly different setting.

Corollary 3.7 (The Poincaré duality). Let X be a d-dimensional proper normal
Q-Gorenstein OK -variety. Suppose that there exists an SWL resolution f : Y → X
and that ]r

st(X) <∞ for every r ∈ N. We then have

]r
st(X)= D(]r

st(X)) · q
dr .

Proof. We follow arguments in the proof of [Batyrev 1998, Theorem 3.7]. Since
f is an SWL resolution, if we write KY/X as in (3-1) then the terms

∑
ah Ah and∑

bi Bi do not appear. Therefore Proposition 3.5 reads

]r
st(X)=

∑
J⊂{1,...,n}

]r (C◦J )
∏
j∈J

qr
− 1

qr(1+cj )− 1
.

Putting
CJ :=

⋂
j∈J

C j ,

we have CJ :=
⊔

J ′⊃J C◦J ′ and ]r (CJ )=
∑

J ′⊃J ]
r (C◦J ′). From this and the inclusion-

exclusion principle (or the Möbius inversion formula see, for instance, [Stanley
1997]), we deduce

]r (C◦J )=
∑
J ′⊃J

(−1)]J ′−]J]r (CJ ′).

Hence

]r
st(X)=

∑
J⊂{1,...,n}

( ∑
J ′⊃J

(−1)]J ′−]J]r (CJ ′)

)∏
j∈J

qr
− 1

qr(1+cj )− 1

=

∑
J⊂{1,...,n}

]r (CJ )
∏
j∈J

(
qr
− 1

qr(1+cj )− 1
− 1

)

=

∑
J⊂{1,...,n}

]r (CJ )
∏
j∈J

(
qr
− qr(1+cj )

qr(1+cj )− 1

)
.

Now we have

D

(
qr
− qr(1+cj )

qr(1+cj )− 1

)
=

q−r
− qr(−1−cj )

qr(−1−cj )− 1
=

qr
− qr(1+cj )

qr(1+cj )− 1
· q−r .
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Since ]r (CJ ) = ]
r (CJ ⊗K k) and CJ ⊗K k are proper smooth k-varieties of pure

dimension d − ]J , the Poincaré duality for the l-adic cohomology gives

D(]r (CJ ))= ]
r (CJ ) · qr(]J−d).

Since D : AF→ AF is a ring homomorphism, the corollary follows. �

Set-theoretically free Gm-actions.

Definition 3.8. An action of the group scheme Gm = Gm,k = Spec k[t, t−1
] on a

k-variety Z is said to be set-theoretically free if for every field extension k ′/k and
every point x ∈ Z(k ′), the stabilizer subgroup scheme Stab(x)⊂ Gm,k′ consists of
a single point.

A set-theoretically free Gm-action naturally appears as the Gm-action on the
quotient variety (Ad

k /0)\{o} with the origin o removed for a linear action of a finite
group 0 on an affine space Ad

k . In general, the Gm-action may have nonreduced
stabilizer subgroups and not be free. See [Yasuda 2014a] for such an example. If
X is the quotient variety Z/Gm for a set-theoretically free Gm-action on a smooth
variety Z and if X is proper, then the function ]r X satisfies the same Poincaré
duality as a smooth proper variety does. Note that X is not necessarily smooth
because of nonreduced stabilizers. To prove the duality, we need to use Artin stacks.

Based on [Olsson 2015; Laszlo and Olsson 2008a; 2008b], Sun [2012] defined
étale cohomology groups H i (X ⊗k k,Ql) and H i

c (X ⊗k k,Ql) for Artin stacks X
of finite type over k and a prime number l 6= p. For r ∈ N, we define

]r (X ) :=
∑

i

(−1)i Tr(Fr
|H i

c (X ⊗k k,Ql))

with Fr the r -iterated Frobenius action. This is a generalization of ]r X = ]X (kr )

for a k-variety X .

Proposition 3.9. Let X be an Artin stack of finite type over k with finite diagonal,
and X its coarse moduli space. Then we have

]r (X )= ]r (X ).

Moreover, if X is smooth and proper of pure dimension d over k, then

]r (X )= D(]r (X )) · qrd .

Proof. In the proof of [Sun 2012, Proposition 7.3.2], Sun proved that

H i
c (X ⊗k k,Ql)= H i

c (X ⊗k k,Ql)

and that if X is smooth and proper, then we have the Poincaré duality,

H i (X ⊗k k,Ql)
∨
= H 2d−i (X ⊗k k,Ql)⊗Ql(d).
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The proposition is a direct consequence of these results. �

Let Z be a k-variety endowed with a set-theoretically free Gm-action. Then the
quotient stack W := [Z/Gm] is an Artin stack with finite diagonal and hence admits
a coarse moduli space, which we write as W = Z/Gm .

Proposition 3.10. We have

]r (W)= ]r (W )=
]r (Z)
qr − 1

.

Proof. The left equality was proved in the last proposition. We show the right
equality. For every field extension k ′/k and every point x ∈ Z(k ′), we have

Stab(x)= Spec k ′[t, t−1
]/(t pa

− 1)

for some nonnegative integer a. Let U ⊂ Z be the locus where this number a takes
the minimum value, and let U ⊂W be its image. The algebraic spaces U and U
are open dense subspaces of Z and W respectively. If we put

H := Spec k[t, t−1
]/(t pa

− 1),

then the given set-theoretically free Gm-action on U induces a free action of the
quotient group scheme Gm/H , which is isomorphic to Gm , on U . This action
makes the projection U→U a Gm-torsor. From Hilbert’s Theorem 90 [Milne 1980,
p. 124], every Gm-torsor is Zariski locally trivial, hence

]r (U )= (qr
− 1) · ]r (U ).

It is now easy to show ]r (Z)= (qr
− 1) · ]r (W ) by induction. �

Definition 3.11. Let X be an OK -variety with a Gm,OK -action. We suppose that
the induced Gm,k-action on Xk is set-theoretically free. For the quotient stack
[X/Gm,OK ], we put

]r
st([X/Gm,OK ]) :=

]r
st(X)

qr − 1
.

Definition 3.12. For a normal Q-Gorenstein OK -variety X endowed with a Gm,OK -
action, we call a resolution f : Y → X an ESWL (equivariant simultaneous weak
log) resolution if f is an SWL resolution and Gm,OK -equivariant (that is, Y also
has a Gm,OK -action so that f is Gm,OK -equivariant).

Proposition 3.13. Let X be a normal Q-Gorenstein OK -variety X endowed with a
Gm,OK -action. Suppose that the induced action of Gm,k on Xk is set-theoretically
free and the quotient stack [Xk/Gm,k] is proper over k. Suppose also that there
exists an ESWL resolution f : Y → X and that ]r

st(X) <∞ for all r . Then

]r
st([X/Gm,OK ])= D(]r

st([X/Gm,OK ])) · q
r(d−1)
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with d the dimension of X over OK .

Proof. From Proposition 3.5, if we write KY/X =
∑n

j=1 cj C j , then we obtain

]r
st([X/Gm,OK ])=

∑
J⊂{1,...,n}

]r (C◦J )
qr − 1

∏
i∈J

qr
− 1

qr(1+cj )− 1

=

∑
J⊂{1,...,n}

]r (CJ )

qr − 1

∏
j∈J

(
qr
− qr(1+cj )

qr(1+cj )− 1

)
as in the proof of Corollary 3.7. Each CJ ∩ Yk is stable under the Gm,k-action
and the action on CJ ∩ Yk is set-theoretically free. Hence [(CJ ∩ Yk)/Gm,k] is a
smooth proper Artin k-stack of dimension d − 1− ]J with finite diagonal. From
Proposition 3.9,

]r (CJ )

qr − 1
= D

(
]r (CJ )

qr − 1

)
· qr(d−1−]J ).

Following the proof of Corollary 3.7 we obtain the result. �

4. Total masses of local Galois representations

Total masses. Let K be a local field and G K = Gal(K sep/K ) its absolute Galois
group. For a finite group 0, we define SK ,0 to be the set of continuous homomor-
phisms G K → 0. To each representation τ : 0→ GLd(OK ), we can associate,
among others, three functions SK ,0→ R denoted by aτ , vτ and wτ .

The first one, aτ , is called the Artin conductor. For ρ ∈ SK ,0 , let H be the image
of ρ and L/K the associated Galois extension, having H as its Galois group. The
Galois group H has the filtration by ramification subgroups with lower numbering

H ⊃ H0 ⊃ H1 ⊃ · · · ,

(see [Serre 1979]). We define

aτ (ρ) :=
∞∑

i=0

1
(H0 : Hi )

codim (K d)Hi .

The second function vτ is defined as follows. For ρ ∈ SK ,0 let Spec M→Spec K
be the corresponding étale 0-torsor and OM the integer ring of M . Note that the
spectrum of the extension L mentioned above is a connected component of Spec M .
Then the free OM -module O⊕d

M has two (left) 0-actions: firstly the action induced
from the map

0 τ
−→GLd(OK )⊂ GLd(OM)

and secondly the diagonal action induced from the given 0-action on OM . We
define the associated tuning submodule 4⊂O⊗d

M to be the subset of those element
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on which the two actions coincide. It turns out that 4 is a free OK -module of
rank d. We define

vτ (ρ) :=
1
]0
· length

(
O⊕d

M

OM ·4

)
.

Note that we may also use OL and the subgroup H = Im(ρ) in the definition of vτ
instead of OM and 0.

The last function wτ is called the weight function. Let ρ ∈ SK ,0, M and 4 ⊂
O⊕d

M be as above. We identify 4 with the subgroup of 0-equivariant maps of
HomOK (O

⊕d
K ,OM) = O⊕d

M . For an OK -basis φ1, . . . , φd of 4, we define an OK -
algebra homomorphism u∗ :OK [x1, . . . , xd ] →OM [y1, . . . , yd ] by

u∗(xi )=

n∑
j=1

φj (xi )yj .

Let u :Ad
OM
→Ad

OK
be the corresponding morphism of schemes and o :Spec k ↪→Ad

OK

the k-point at the origin. We define

wτ (ρ) := dim u−1(o)− vτ (ρ).

Remark 4.1. Our definition of wτ follows the one in [Yasuda 2014b] and is slightly
different from the one in the earlier paper [Wood and Yasuda 2015]. Let us consider
the left 0-action on Ad

OK
induced from the one on OK [x1, . . . , xd ]. To be precise, an

element γ ∈ 0 gives the automorphism of Ad
OK

corresponding to the automorphism
on OK [x1, . . . , xd ] given by the inverse γ−1 of γ . In [Wood and Yasuda 2015] we
defined

wτ (ρ) := codim((Ad
k )

H0,Ad
k )− vτ (ρ),

where H0 is the zeroth ramification subgroup of H , that is, the inertia subgroup.
However, as proved in [Yasuda 2014b], the two definitions coincide in the following
three cases with which we are mainly concerned:

(1) The order of the given group 0 is invertible in k.

(2) The given representation τ is a permutation representation.

(3) The given local field K has positive characteristic, and hence K = k((t)), and
the image of τ is contained in GLd(k).

Definition 4.2. For a function c : SK ,0→R, we define the total mass of (K , 0, c) as

M(K , 0, c) := 1
]0
·

∑
ρ:∈SK ,0

q−c(ρ)
∈ R≥0 ∪ {∞}.

For r ∈ N, let Kr/K be the unramified extension of degree r . We continue to
denote the induced representations 0 τ

−→GLn(OK ) ↪→ GLn(OKr ) by τ . Then we
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can consider total masses M(Kr , 0, aτ ), M(Kr , 0, vτ ) and M(Kr , 0,−wτ ), and
regard them as functions in r .

Kedlaya studied total masses for c= aτ and used them to interpret and generalize
the mass formula of Bhargava [2007]. Wood [2008] studied total masses for different
choices of c. In the context of the wild McKay correspondence, explained below,
functions vτ and wτ occur. For permutation representations, functions aτ and vτ
are related as follows.

Lemma 4.3 [Wood and Yasuda 2015]. If τ is a permutation representation, then

2vτ = vτ⊕τ = aτ .

The wild McKay correspondence. A representation τ : 0 → GLd(OK ) defines
0-actions on the polynomial ring OK [x1, . . . , xd ] as above. Let X be the quotient
variety Ad

OK
/0 = SpecOK [x1, . . . , xd ]

0, which is a normal Q-Gorenstein OK -
variety. The following theorem, which we call the wild McKay correspondence,
connects total masses and stringy point counts. This was proved in [Yasuda 2014a;
Wood and Yasuda 2015] for special cases and in [Yasuda 2014b] in full generality.

Theorem 4.4 (The wild McKay correspondence). Suppose that the representation τ
is faithful and the quotient morphism Ad

OK
→ X is étale in codimension one. We have

]r
st(X)= M(Kr , 0, vτ ) · qdr and ]r

st(X)o = M(Kr , 0,−wτ ).

The next corollary is a direct consequence of this theorem and Proposition 3.5.

Corollary 4.5. If X admits a WL resolution and if M(Kr , 0, vτ ) < ∞ (resp.
M(Kr , 0,−wτ ) < ∞) for every r ∈ N, then the function M(Kr , 0, vτ ) (resp.
M(Kr , 0,−wτ )) is admissible.

Dualities of total masses. To discuss dualities, let us assume that both functions
M(Kr , 0, vτ ) and M(Kr , 0,−wτ ) have finite values for all r and are admissible.
The quotient variety X associated to a faithful representation τ :0→GLd(OK ) has a
natural Gm,OK -action. Let X∗ be the complement of the zero section SpecOK ↪→ X .
The Gm,k-action on X∗k is set-theoretically free. By definition, we have

]r
st([X

∗/Gm,OK ])=
]r

st(X)− ]
r
st(X)o

qr − 1
.

If there exists an ESWL resolution Y → X∗, then from Proposition 3.13, we have

]r
st(X)− ]

r
st(X)o

qr − 1
= D

(
]r

st(X)− ]
r
st(X)o

qr − 1

)
· qr(d−1). (4-1)

Remark 4.6. When 0 = Z/pZ ⊂ GLd(k) with k a perfect field of characteristic
p> 0, the motivic version of (4-1) was checked in [Yasuda 2014a, Proposition 6.36],
not by using a resolution but by an explicit formula for motivic total masses.
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If Ad
OK
→ X is étale in codimension one, then the wild McKay correspondence,

Theorem 4.4, shows that the last equality is equivalent to:

M(Kr , 0, vτ ) · qrd
−M(Kr , 0,−wτ )

= D(M(Kr , 0,−wτ )) · qrd
−D(M(Kr , 0, vτ )). (4-2)

We call this the weak duality. The equality may be regarded as a constraint imposed
by the existence of an ESWL resolution of X∗. If this duality fails for some
representation τ , then the associated X∗ would have no ESWL resolution. In
particular, it is interesting to ask the following question.

Question 4.7. Suppose that K has positive characteristic so that K = k((t)), that
τ : 0→ GLd(OK ) is a faithful representation factoring through GLn(k) and that
the quotient morphism Ad

OK
→ Ad

OK
/0 is étale in codimension one. Then, does

the weak duality always hold?

If this has the negative answer and some representation τ does not satisfy (4-2),
then the associated k-variety Xk = Ad

k /0 does not admit any Gm,k-equivariant
WL resolution.

In some examples, even a stronger equality,

D(M(Kr , 0,−wτ ))= M(Kr , 0, vτ ), (4-3)

holds: we call this the strong duality. A special case of this was the duality involving
Bhargava’s formula and the Hilbert scheme of points observed in [Wood and Yasuda
2015] (see Section 5). Actually, as far as the authors know, even the strong duality
holds in all examples satisfying the assumptions of Question 4.7. It is thus natural
to ask:

Question 4.8. With the same assumptions as in Question 4.7, does the strong
duality always hold?

5. Examples

The tame case.We first consider the tame case. Suppose p -]0. Let τ :0→GLd(OK)

be a representation. Then SK ,0 is a finite set and every ρ ∈ SK ,0 factors through
the Galois group G tame

K of the maximal tamely ramified extension K tame/K . It is
topologically generated by two elements a and b with one relation bab−1

= aq (see
[Neukirch et al. 2008, p. 410]). Here a is the topological generator of the inertia
subgroup of G tame

K . Therefore SK ,0 is in one-to-one correspondence with

{(g, h) ∈ 02
| hgh−1

= gq
}.

The last set admits the involution (g, h) 7→ (g−1, h). Let ι be the corresponding
involution of SK ,0.
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Lemma 5.1. For ρ ∈ SK ,0, we have vτ (ι(ρ))= wτ (ρ).

Proof. Let K ′ be the completion of the maximal unramified extension of K . Both ρ
and ι(ρ) define the same cyclic extension L/K ′ of order l := ord(g) with (g, h) ∈
02 corresponding to ρ. We can regard the element a ∈ G tame

K as a generator of
Gal(L/K ′). Let $ ∈ L be a uniformizer and ζ ∈ K ′ an l-th root of unity such that
a($)= ζ$ .

If ζ a1, . . . , ζ ad with 0 ≤ ai < l are the eigenvalues of g ∈ 0 ⊂ GLd(K ′), then,
from [Wood and Yasuda 2015, Lemma 4.3], we have

vτ (ρ)=
1
l

l∑
i=1

ai .

In the tame case, our definition of wτ coincides with the one in [Wood and
Yasuda 2015] (see Remark 4.1). Therefore

wτ (ρ)= ]{i | ai 6= 0}− vτ (ρ)=
1
l

∑
ai 6=0

l − ai = vτ (ι(ρ)). �

From the lemma,

M(K , 0,−wτ )=
1
]0

∑
ρ∈SK ,γ

qwτ (ρ)

=
1
]0

∑
ρ∈SK ,γ

qvτ (ι(ρ))

=
1
]0

∑
ρ∈SK ,γ

qvτ (ρ)

= D(M(K , 0, vτ )).

The strong duality thus holds in the tame case. Moreover it is a term-wise duality:
qwτ (ρ) and qvτ (ι(ρ)) are dual to each other. This is no longer true in wild cases
satisfying dualities.

Quadratic extensions: characteristic zero. We consider an unramified extension
K of Q2 and compute some total masses counting quadratic extensions of K .
Namely we consider the case 0 = Z/2Z. Let mK be the maximal ideal of OK ,
quadratic extensions are divided into 4 classes:

• The trivial extension K × K .

• The unramified field extension of degree two.

• Ramified extensions with discriminant m2
K . There are 2(q − 1) of them.

• Ramified extensions with discriminant m3
K . There are 2q of them.
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For instance, this follows from Krasner’s formula [1966] (see also [Serre 1978]).
They are in one-to-one correspondence with elements of SK ,0 . Let σ be the two-

dimensional representation of 0 = Z/2Z by the transposition and for n ∈N, σn the
direct sum of n copies of σ . From [Wood and Yasuda 2015, Lemma 2.6], the values
aσ (ρ), for ρ ∈ SK ,0, are respectively 0, 0, 2, 3 depending on the corresponding
class of quadratic extension. We have

M(K , 0, vσn )= M
(
K , 0, 1

2 aσn

)
=

1
2(1+ 1+ 2(q − 1)q−2n/2

+ 2q · q−3n/2)

= 1+ q−n+1
− q−n

+ q−3n/2+1.

As for the total mass with respect to −wσn , we have wσn (ρ) = n − vσn (ρ)

if ρ corresponds to a totally ramified extension, and wσn (ρ) = vσn (ρ) otherwise.
Therefore,

M(K , 0,wσn )=
1
2(1+ 1+ 2(q − 1)q−n+n

+ 2q · q−3n/2+n)= q + q−n/2+1.

We easily see that the strong duality holds for n= 1. For n> 1, the strong duality
does not hold, but the weak one holds.

This phenomenon seems to be rather general. For a few other examples of
permutation representations σ of cyclic groups, the authors checked that the weak
duality holds, but the strong duality does not always hold. From these computations
as well as the example in Section 5, it is natural to ask:

Question 5.2. Suppose that the given representation τ is a permutation representa-
tion. Does the weak duality (4-2) always hold? Does the quotient scheme Ad

OK
/0

always admit an ESWL resolution?

Quadratic extensions: characteristic two. Next we consider the case K = Fq((t))
with q a power of two and 0 = Z/2Z. As in the last example, there are exactly two
unramified quadratic extensions of K : the trivial one K×K and the unramified field
extension. As for the ramified extensions, for i ∈ N, there are exactly 2(q − 1)q i−1

extensions with discriminant m2i
K . There is no extension with discriminant of odd

exponent. This again follows from Krasner’s formula.
Let σ be the two dimensional 0-representation by transposition and σn the direct

sum of n copies of it as above. We have

M(K , 0, vσn )= 1+
∞∑

i=1

(q − 1)q i−1q−in
= 1+

(q − 1)q−n

1− q−n+1 ,

and

M(K , 0,−wσn )= 1+
∞∑

i=1

(q − 1)q i−1q−in+n
= 1+

q − 1
1− q−n+1 ,
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We see that the strong duality and hence the weak duality hold for every n. Thus
the answer to Question 4.8 in this case is positive.

For an integer m ≥ 0, let us now consider the representation τm : 0→GL2(OK )

given by the matrix (
1 tm

0 1

)
.

We have τ0 ∼= σ . If m > 0, then τm is not defined over k = Fq .
To compute the functions vτm and wτm , let L be a ramified quadratic extension

of K with discriminant m2i
K , ι its unique K -involution and $ its uniformizer. Then

δ($) := ι($)−$ ∈ OK and vK (δ($)) = i with vK the normalized valuation
of K . Therefore the tuning submodule 4 is computed as follows:

4= {(x, y) ∈O⊕2
L | x + tm y = ι(x), y = ι(y)}

= {(x, t−mδ(x)) | x ∈OL , vK (δ(x))≥ m}

= {(x, t−mδ(x)) | x ∈OK · 1⊕OK · ta$ }

= 〈(1, 0), (ta$, ta−mδ($))〉OK ,

where a = sup{0,m− i}. Therefore,

O⊕2
L

OL ·4
∼=

OL

OL · ta−mδ($)
∼=

OL

OL · ta−m+i .

For ρ ∈ SK ,0 corresponding to L ,

vτm (ρ)= a−m+ i =
{

0 i ≤ m,
i −m i > m.

The map u∗ :OK [x, y] →OL [X, Y ] in the definition of w is explicitly given as

u∗(x)= X + ta$Y, u∗(y)= ta−mδ($)Y.

The induced morphism Spec k[X, Y ] → Spec k[x, y] is an isomorphism if i ≤ m
and a linear map of rank one if i > m. Therefore

wτm (ρ)=

{
0 i ≤ m,
1− i +m i > m.

To obtain quotient morphisms which are étale in codimension one, we consider the
direct sums υm,n := τm ⊕ σn . We have

M(K , 0, vυm,n )= 1+
m∑

i=1

(q − 1)q i−1
· q−in

+

∞∑
i=m+1

(q − 1)q i−1
· q−i+m−in

= 1+ (q − 1)q−n 1− q(1−n)m

1− q1−n + (q − 1)
qm−(m+1)n−1

1− q−n ,
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and

M(K , 0,−wυm,n )= 1+
m∑

i=1

(q−1)q i−1
·q−in+n

+

∞∑
i=m+1

(q−1)q i−1
·q1−i+m−in+n

= 1+(q−1)
1−q(1−n)m

1−q1−n +(q−1)
qm−mn

1−q−n .

One can easily see that the weak duality does not generally hold, for instance,
by putting (m, n) = (1, 1). From our viewpoint, this is explained by noting that
the entry tm in the matrix defining τm causes the degeneration of singularities of
Ad
OK
/0, namely it makes the family over OK nonequisingular.

Bhargava’s formula. We discuss an example from [Wood and Yasuda 2015] and
the duality observed there. Let Sn be the n-th symmetric group and σ : Sn →

GLd(OK ) the standard permutation representation. According to Kedlaya [2007],
the mass formula of Bhargava [2007] for étale extensions of a local field is formu-
lated as

M(K , Sn, aσ )=
n−1∑
m=0

P(n, n−m) · q−m .

Here P(n, n−m) denotes the number of partitions of n into exactly n−m parts.
Let

τ := σ ⊕ σ : Sn→ GL2n(OK ).

From Lemma 4.3, we have

M(K , Sn, vτ )= M(K , Sn, aσ )=
n−1∑
m=0

P(n, n−m) · q−m .

In [Wood and Yasuda 2015], we verified that

M(K , Sn,−wτ )=

n∑
m=0

P(n, n−m) · qm .

These show that the functions M(Kr , Sn,−wτ ) and M(Kr , Sn, vτ ) satisfy the strong
duality (4-3). Thus the answer to Question 5.2 is positive in this situation.

The quotient scheme X = A2n
OK
/Sn associated to τ is nothing but the n-th sym-

metric product of the affine plane over OK . It admits a special ESWL resolution,
namely the Hilbert–Chow morphism

f : Hilbn(A2
OK
)→ X,

from the Hilbert scheme of n points on A2
OK

defined over OK .
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Using a stratification of Hilbn(A2
k) into affine spaces [Ellingsrud and Strømme

1987; Conca and Valla 2008], we can directly show

]Hilbn(A2
k)=

n∑
m=0

P(n, n−m) · q2n−m .

These together with Theorem 4.4 gives a new proof of Bhargava’s formula without
using the mass formula of Serre [1978] unlike [Bhargava 2007; Kedlaya 2007].

Kedlaya’s formula. We suppose p 6=2 and let G be the group of signed permutation
matrices in GLn(OK ). A signed matrix is a matrix such that every row or column
contains one and only one nonzero entry which is either 1 or −1. The group is
isomorphic to the wreath product (Z/2Z) o Sn . Let

ι : G ↪→ GLn(OK )

be the inclusion and τ := ι⊕ ι.

Lemma 5.3. We have aι = vτ .

Proof. We construct a representation ι′ : G→ GL2n(OK ) by replacing entries of
matrices in G as follows: replace 0 with

( 0
0

0
0

)
, 1 with

( 1
0

0
1

)
, and −1 with

( 0
1

1
0

)
. The

obtained ι′ is a permutation representation of G and, from Lemma 4.3,

aι′ = vι′⊕ι′ .

If τ : G→ GLn(OK ) is the trivial representation, then ι′ ∼= ι⊕ τ . The facts that
aτ ≡ vτ ≡ 0, aι⊕τ = aι+ aτ and vι⊕τ = vι+ vτ , which were proved in [Wood and
Yasuda 2015], prove the lemma. �

We then have

M(K ,G, vτ )= M(K ,G, aι)=
n∑

j=0

j∑
i=0

P( j, i)P(n− j)q i−n, (5-1)

where the right equality is due to Kedlaya [2007, Remark 8.6] and P(m) denotes
the number of partitions of m.

We can construct a resolution of X := A2n
OK
/G as follows. First consider the

involution of A2
OK
= SpecOK [x, y] sending x to −x and y to −y. Let

Z := A2
OK
/(Z/2Z)= SpecOK [x2, xy, y2

]

be the associated quotient scheme. We have a natural isomorphism

X ∼= Sn Z := Zn/Sn.

Since Z is the trivial family of A1-singularities over SpecOK (actually it is a toric
variety), there exists the minimal resolution W→ Z of Z such that W is OK -smooth,



Mass formulas and quotient singularities II 837

the exceptional locus is isomorphic to P1
OK

and KW/Z = 0. Let Hilbn(W ) be the
Hilbert scheme of n points of W over OK , which is again smooth over OK . We
have the proper birational morphism

f : Hilbn(W ) Hilbert–Chow
−−−−−−−→ SnW → Sn Z ∼

−→ X

and KHilbn(W )/X = 0.
We now compute ] f −1(o)(k). Let E ⊂ Wk be the exceptional divisor of

Wk → Zk , which is isomorphic to P1
k . Each k-point of f −1(o) corresponds to

a zero-dimensional subscheme of Wk of length n supported in E . There exists a
stratification

E = E1 t E0

such that E1 ∼= A1
k is a coordinate line of an open subscheme A2

k
∼= U ⊂ Wk and

E0 ∼= Spec k is the origin of another open subscheme A2
k
∼= U ′ ⊂ Wk . Let Cm be

the set of zero-dimensional subschemes U of length m supported in E1 and Dm

the set of zero-dimensional subschemes of U ′ of length m supported in E0. From
[Conca and Valla 2008, Corollary 3.1],

]Cm = P(m)qm and ]Dm =

m∑
i=0

P(m, i)qm−i .

Since f −1(o)(k) decomposes as

f −1(o)(k)=
n⊔

j=0

Cn− j × Dj ,

we have

] f −1(o)(k)=
n∑

j=0

(
P(n− j)qn− j

j∑
i=0

P( j, i)q j−i
)

=

n∑
j=0

j∑
i=0

P( j, i)P(n− j)qn−i .

From the wild McKay correspondence,

M(K ,G,−wτ )=

n∑
j=0

j∑
i=0

P( j, i)P(n− j)qn−i .

Comparing this with (5-1), we verify the strong duality for M(Kr ,G,−wτ ) and
M(Kr ,G, vτ ).

In a similar way to computing ] f −1(o)(k), we can directly compute ]Hilbn(W )(k)
and obtain a new proof of Kedlaya’s formula (5-1).
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6. Concluding remarks and extra problems

As far as we computed, we observed the following phenomena. The weak duality
and the strong duality may fail. Tame representations satisfy both the strong
and weak dualities. Permutation representations satisfy the weak duality but not
necessarily the strong duality. When K = Fq((t)), representations defined over Fq

satisfy both the strong and weak dualities.
We may interpret these as follows. We might be able to measure by the two

dualities how equisingular the family Ad
OK
/0 is. If the strong duality holds, then

the family would be very equisingular. If only the weak duality holds, then the
family would be moderately so. If both dualities fail, then it is rather far from being
equisingular. It may be interesting to look for a numerical invariant refining this
measurement.

As we saw, the weak duality is derived from the Poincaré duality of stringy
invariants if there exists an ESWL resolution. What about the strong duality? Is
there any geometric interpretation of it?

Although it is still conjectural, there would be the motivic counterparts of total
masses, stringy point counts and the McKay correspondence between them (see
[Wood and Yasuda 2015; Yasuda 2013; 2014a; 2016]). We may discuss dualities
in this motivic context as well. Indeed, some dualities for motivic invariants were
verified in [Yasuda 2014a; 2016].
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