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Let K be a complete, algebraically closed nonarchimedean valued field, and let
ϕ(z) ∈ K (z) have degree d ≥ 2. We show there is a canonical way to assign
nonnegative integer weights wϕ(P) to points of the Berkovich projective line
over K in such a way that

∑
P wϕ(P)= d−1. When ϕ has bad reduction, the set

of points with nonzero weight forms a distributed analogue of the unique point
which occurs when ϕ has potential good reduction. Using this, we characterize the
minimal resultant locus of ϕ in analytic and moduli-theoretic terms: analytically,
it is the barycenter of the weight-measure associated to ϕ; moduli-theoretically, it
is the closure of the set of points where ϕ has semistable reduction, in the sense
of geometric invariant theory.

Let K be a complete, algebraically closed nonarchimedean valued field with
absolute value | · | and associated valuation ord( · ). Write O for the ring of integers
of K , m for its maximal ideal, and k̃ for its residue field. Let P1

K be the Berkovich
projective line over K : a compact, path-connected Hausdorff space which contains
P1(K ) as a dense subset (a nonmetric tree in the sense of [Favre and Jonsson 2004]).

Our main result is:

Theorem A. Let ϕ(z) ∈ K (z) be a rational function with degree d ≥ 2. There is a
canonical way, determined by the variation in the resultant under conjugation of ϕ,
to assign nonnegative integer weights wϕ(P) to points of P1

K in such a way that∑
P

wϕ(P)= d − 1,

where wϕ(P)= 0 for each P ∈ P1(K ).
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We call the finite set of points which receive weight the crucial set of ϕ. Write δP

for the Dirac measure at a point P ∈ P1
K . We call the discrete probability measure

νϕ :=
1

d−1

∑
P

wϕ(P)δP

the crucial measure of ϕ.
The crucial set and crucial measure are conjugation equivariants of ϕ which live in

the interior of the Berkovich projective line. It is natural to ask about their meaning.
The crucial set, decorated with the weights, adjacency data, and the reductions of ϕ
at its points, appears to be a kind of “analytic special fiber” for ϕ, analogous to the
algebraic special fiber for a model of a curve over a nonarchimedean valued field.
When ϕ has potential good reduction in the sense of nonarchimedean dynamics, the
crucial set consists of the unique point where ϕ has good reduction and that point
has weight d−1. When ϕ has bad reduction, the single point of good reduction
splits into a collection of points with total weight d−1.

Explicit formulas for the weights wϕ(P) are given Section 6, and there are only
finitely many ways a point can receive weight. The crucial set, decorated with
adjacency data and information about how each point receives weight, appears to
the classify possible reduction types for a functions ϕ of given degree: the author
and students in a University of Georgia VIGRE group have shown that for quadratic
rational functions and cubic polynomials [Doyle et al. 2016; Rumely et al. ≥ 2017],
the finitely many possible configurations of the crucial set lead to a stratification of
the dynamical moduli space which governs where ϕ lies in the moduli space, and is
compatible with reduction (modm). This is analogous to the fact that for an elliptic
curve E over a nonarchimedean local field, E has good reduction if and only if its
j -invariant satisfies | jE | ≤ 1, while E has bad reduction (with semistable reduction
a loop of curves), if and only if | jE |> 1. It seems likely that such a stratification
holds in general.

The crucial measure appears to be an intrinsic discrete approximation to the
canonical invariant measure µϕ supported on the Berkovich Julia set: Kenneth
Jacobs [2014] has shown that the crucial measures of the iterates of ϕ converge
weakly to µϕ; for a given test function, the convergence is geometrically fast.

Our construction of the crucial set is an analytic one. It depends on the theory
of the function ordResϕ( · ) introduced in [Rumely 2015]. We associate to ϕ a
canonical, finitely generated tree 0Fix,Repel ⊂ P1

K . The weights wϕ(P) and the
crucial set are obtained by taking the Laplacian of ordResϕ( · ) restricted to 0Fix,Repel.
It would be interesting to have a more algebraic construction.

Under conjugation of ϕ by an element γ ∈GL2(K ) (given by ϕγ =γ−1
◦ϕ◦γ ), the

crucial set Cr(ϕ) and the crucial measure νϕ have the same equivariance properties
as fixed points: P is a fixed point of ϕ if and only if γ−1(P) is a fixed point of ϕγ .
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Analogously, Cr(ϕγ )= γ−1(Cr(ϕ)) and νϕγ = γ ∗(νϕ) (see Proposition 6.6). The
construction of the crucial set applies in arbitrary characteristic. The crucial set is
unchanged under enlargement of K (see Proposition 6.7), and is Galois-equivariant
(see Proposition 6.8).

One application of the theory is as follows: by the formulas in Section 6, each
repelling fixed point of ϕ in H1

K := P1
K \P1(K ) receives weight. Hence ϕ can have

at most d−1 nonclassical repelling fixed points (Corollary 6.2); previously it seems
not to have been known that there were finitely many. In [Rumely 2014] it is shown
that the bound d−1 is sharp.

A second application concerns the minimal resultant locus of ϕ, the set of points
in P1

K where, under change of coordinates, ϕ achieves its minimal resultant. We
show that the minimal resultant locus is the barycenter of the crucial measure: the
set of points P such that each component of P1

K \ {P} has νϕ-mass at most 1
2 . We

also show that the minimal resultant locus characterizes the elements γ ∈ GL2(K )
for which ϕγ has semistable reduction in the sense of geometric invariant theory
(see Theorems B and C below). Thus, the minimal resultant locus forms a bridge
between analytic and moduli-theoretic properties of ϕ.

A third application is a new fixed point theorem, showing the existence of fixed
points in balls which ϕ maps onto P1

K (Theorem 4.6).
We will now give an overview of the paper. Suppose (F,G) is a normalized

representation for ϕ: a pair of homogeneous functions F(X, Y ),G(X, Y )∈O[X, Y ]
of degree d such that ϕ(z)= F(z, 1)/G(z, 1) and some coefficient of F or G is a unit
in O. Such a pair (F,G) is unique up to scaling by a unit. Let Res(F,G) be the resul-
tant of F and G; then ordRes(ϕ) :=ord(Res(F,G)) is well-defined and nonnegative.

Let P1
K be the Berkovich projective line over K . By Berkovich’s classification

theorem (see [Berkovich 1990, p. 18]), points of P1
K \ {∞} correspond to discs

D(a, r) ⊂ K or to nested sequences of discs; points corresponding to discs with
radius r ∈ |K×| are said to be of type II. The point ζG corresponding to D(0, 1)
is called the Gauss point. The action of GL2(K ) on P1(K ) extends continuously
to P1

K , and GL2(K ) acts transitively on type II points.
In [Rumely 2015] it is shown that the map γ 7→ ordRes(ϕγ ) factors through a

function ordResϕ( · ) on P1
K , given on type II points by

ordResϕ(γ (ζG))= ordRes(ϕγ ).

By [Rumely 2015, Theorem 0.1] the function ordResϕ( · ) is piecewise affine and
convex upwards on paths in P1

K and it achieves a minimum. The set MinResLoc(ϕ)
where the minimum occurs is called the minimal resultant locus of ϕ. For each
a ∈ P1(K ), MinResLoc(ϕ) is contained in the tree 0Fix,ϕ−1(a) spanned by the
classical fixed points of ϕ and the preimages of a. It is either a type II point or a
segment joining two type II points.
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In this paper, we show that the intersection of the trees0Fix,ϕ−1(a) for all a∈P1(K )
is the tree 0Fix,Repel spanned by the classical fixed points of ϕ and the repelling
fixed points in H1

K (Theorem 4.2). Although ordResϕ( · ) does not belong to the
domain of the Laplacian on P1

K (it is increasing too fast, in too many directions), one
can compute its graph-theoretic Laplacian on the finitely generated tree 0Fix,Repel.
Comparing this Laplacian with the so-called “branching measure” µBr of 0Fix,Repel

(which depends only on the topology of the tree), leads to the construction of the
weights wϕ(P) and the proof of Theorem A. An intrinsic formula for νϕ is given in
Corollary 6.5. Only points of type II can receive weight. The weights wϕ(P), the
crucial set, and the crucial measure are canonical because ordResϕ( · ), 0Fix,Repel,
and µBr are canonical.

The following pair of theorems justify our claim that the minimal resultant locus
forms a bridge between analytic and moduli-theoretic properties of ϕ:

Theorem B (analytic characterization of MinResLoc(ϕ)). Let ϕ(z) ∈ K (z) have
degree d ≥ 2. Then MinResLoc(ϕ) is the barycenter of νϕ in P1

K . If d is even,
MinResLoc(ϕ) is a vertex of the tree 0ϕ spanned by the crucial set. If d is odd,
MinResLoc(ϕ) is either a vertex or an edge of 0ϕ .

Using geometric invariant theory (GIT), Silverman [1998] has constructed a mod-
uli space Md/Spec(Z) for rational functions of degree d , modulo conjugacy. The
construction involves the notions of semistable and stable reduction for ϕ, explained
in Section 7. Building on work of Szpiro, Tepper, and Williams [2014], we show

Theorem C (moduli-theoretic characterization of MinResLoc(ϕ)). Let ϕ(z)∈K (z)
have degree d ≥ 2. Suppose γ ∈ GL2(K ) and put P = γ (ζG), then:

(A) P belongs to MinResLoc(ϕ) if and only if ϕγ has semistable reduction in the
sense of GIT.

(B) MinResLoc(ϕ) consists of the single point P if and only if ϕγ has stable
reduction in the sense of GIT.

The plan of the paper is as follows. In Section 1 we recall basic facts and
definitions. In Sections 2 and 3 we establish some preliminaries concerning surplus
multiplicities sϕ(P, Ev) and repelling fixed points and in Section 4 we prove the tree
intersection theorem (Theorem 4.2). In Section 5 we carry out slope computations
needed to find the Laplacian of ordResϕ( · ) on 0Fix,Repel and in Section 6 we prove
Theorem A as Theorem 6.1. In Section 7, we prove Theorems B and C as Theorems
7.1 and 7.4, respectively.

1. Background

The Berkovich projective line is a path-connected Hausdorff space containing P1(K ).
We denote the Berkovich projective line by P1

K (in [Baker and Rumely 2010], it
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was written P1
Berk). By Berkovich’s classification theorem (see e.g., [Baker and

Rumely 2010, p. 5]), points of P1
K \ {∞} correspond to discs, or nested sequences

of discs, in K . There are four kinds of points: Type I points are the points of
P1(K ), which we regard as discs of radius 0. Type II points correspond to discs
D(a, r)={z ∈ K : |z−a| ≤ r} such that r belongs to the value group |K×|. Type III
points correspond to discs D(a, r) with r /∈ |K×|. We write ζa,r for the point
corresponding to D(a, r). The type II point ζ0,1 plays a special role; it is called
the Gauss point and is denoted ζG . Type IV points serve to complete P1

K ; they
correspond to (cofinal equivalence classes of) sequences of nested discs with empty
intersection. If {D(ai , ri )}i≥1 is such a sequence, by abuse of notation we continue
to write ζa,r for the associated point in P1

K .
Paths in P1

K correspond to ascending or descending chains of discs or unions of
chains sharing an endpoint. For example the path from 0 to 1 in P1

K corresponds to
the chains {D(0, r) : 0≤ r ≤ 1} and {D(1, r) : 1≥ r ≥ 0}; here D(0, 1)= D(1, 1).
Topologically, P1

K is a tree: there is a unique path [P, Q] between any two points
P, Q ∈ P1

K . We write (P, Q) for the interior of that path, with similar notation for
half-open segments.

If P ∈ P1
K , the tangent space TP is the set of equivalence classes of paths (P, x]

as x varies over P1
K \ {P}; we call paths (P, x] and (P, y] equivalent if they share

a common initial segment. We call elements of TP tangent vectors or directions
and denote them by vectors; given Ev ∈ TP , we write

BP(Ev)
−
= {x ∈ P1

K : (P, x] ∈ Ev}

for the associated path-component of P1
K \ {P}. If x ∈ BP(Ev)

−, we will say that x
lies in the direction Ev at P . If P is of type I or type IV, then TP has one element;
if P is of type III, TP has two elements; and if P is of type II then TP is infinite.
When P = ζG , there is a natural one-to-one correspondence between elements of
TζG and P1(k̃). More generally, for any type II point P , a map γ ∈ GL2(K ) with
γ (ζG)= P induces a parametrization of TP by P1(k̃); if a ∈P1(k̃) we write Eva ∈ TP

for the corresponding direction.
The set H1

K = P1
K \P1(K ) (written HBerk in [Baker and Rumely 2010]) is called

the Berkovich upper half-space; it carries a metric ρ(x, y) called the logarithmic
path distance, for which the length of the path corresponding to {D(a, r) : R1 ≤ r ≤
R2} is log(R2/R1). (We normalize the function log t so that ord(x) = − log|x |.)
There are two natural topologies on P1

K , called the weak and strong topologies. The
weak topology on P1

K is the coarsest one which makes the evaluation functionals
z→| f (z)| continuous for all f (z)∈ K (z); under the weak topology, P1

K is compact
and P1(K ) is dense in it. The basic open sets for the weak topology are the path-
components of P1

K \ {P1, . . . , Pn} as {P1, . . . , Pn} ranges over finite subsets of H1
K .

The strong topology on P1
K (which is finer than the weak topology) restricts to the
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topology on H1
K induced by ρ(x, y). The basic open sets for the strong topology are

the ρ(x, y)-balls in H1
K together with the basic open sets from the weak topology.

Type II points are dense in P1
K for both topologies.

The action of ϕ on P1(K ) extends functorially to P1
K . If ϕ is nonconstant, the

induced map ϕ : P1
K → P1

K is surjective, open and continuous for both topologies
and takes points of a given type to points of the same type; if ϕ(P)= Q, there is
an induced surjection ϕ∗ : TP → TQ . The action of GL2(K ) on P1(K ) extends to
an action on P1

K which is continuous for both topologies and preserves the type of
each point. GL2(K ) acts transitively on type II points. It preserves the logarithmic
path distance:

ρ(γ (x), γ (y))= ρ(x, y),

for all x, y ∈H1
K and γ ∈ GL2(K ).

At each P ∈ P1
K , the map ϕ has a local degree degϕ(P) (called the multiplicity

mϕ(P) in [Baker and Rumely 2010]), which is a positive integer in the range
1≤ degϕ(P)≤ d. It has the property that for each Q ∈ P1

K ,∑
ϕ(P)=Q

degϕ(P)= d.

When P ∈ P1(K ), degϕ(P) coincides with the classical algebraic multiplicity of ϕ
at P .

For additional facts about P1
K , see [Berkovich 1990; Rivera-Letelier 2003b; Favre

and Rivera-Letelier 2006; 2010; Baker and Rumely 2010; Faber 2013a; 2013b;
Benedetto et al. 2014].

We will use two notions of “reduction” for ϕ. The first, which we simply call the
reduction of ϕ, is defined as follows. If (F,G) is a normalized representation of ϕ,
the reduction ϕ̃ is the rational map on P1(k̃) obtained by reducing F and G (modm)
and eliminating common factors. Explicitly, let F̃, G̃ ∈ k̃[X, Y ] be the reductions
of F,G (modm) and put Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y )). Write F̃(X, Y )=
Ã(X, Y )F̃0(X, Y ) and G̃(X, Y ) = Ã(X, Y )G̃0(X, Y ). Then ϕ̃ : P1(k̃)→ P1(k̃) is
the map defined by (X, Y ) 7→ (F̃0(X, Y ) : G̃0(X, Y )). If ϕ̃ has degree d = deg(ϕ),
then ϕ is said to have good reduction.

The second, which we call the reduction of ϕ at P , is obtained by fixing a
type II point P ∈ HBerk, choosing a γ ∈ GL2(K ) with γ (ζG)= P , and taking the
reduction ϕ̃P of ϕγ = γ−1

◦ϕ ◦ γ in the sense above. (If (FP ,G P) is a normalized
representation of ϕγ , we call (FP ,G P) a normalized representation of ϕ at P .)
When P = ζG and γ = id, this notion of reduction coincides with previous one. The
map ϕ̃P depends on the choice of γ , but if γ ′ ∈ GL2(K ) also satisfies γ ′(ζG)= ζ

and ϕ̃′P is the reduction of ϕ at P corresponding to γ ′, there is an η̃ ∈ GL2(k̃)
such that ϕ̃′P = η̃

−1
◦ ϕ̃P ◦ η̃. Thus deg(ϕ̃P), and the properties that ϕ̃P is constant,

is nonconstant or is the identity map, are independent of the choice of γ with
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γ (ζG)= P . If ϕ does not have good reduction but after a change of coordinates by
some γ ∈ GL2(K ) the map ϕγ has good reduction, then ϕ is said to have potential
good reduction.

A theorem of Rivera-Letelier [2003a] (see [Baker and Rumely 2010, Corol-
lary 9.27]) says that when P is of type II, then ϕ(P) = P if and only if ϕ̃P is
nonconstant. Rivera-Letelier shows that in this situation degϕ(P) = deg(ϕ̃P); he
calls P a repelling fixed point if deg(ϕ̃P) ≥ 2 and an indifferent fixed point if
deg(ϕ̃P) = 1. When ϕ(P) = P , the induced map ϕ∗ : TP → TP on the tangent
space comes from the action of ϕ̃P on P1(k̃). If ϕ(P) 6= P , the map ϕ̃P is constant,
and in that case, if ϕ̃P(z)≡ a ∈ P1(k̃), then ϕ(P) belongs to the ball BP(Eva)

−.
Another result of Rivera-Letelier [2003a, Lemma 2.1] (see [Faber 2013a, Propo-

sition 3.10] for a definitive version) says that for each P ∈ P1
K and each Ev ∈ TP ,

there are integers m = mϕ(P, Ev)≥ 1 and s = sϕ(P, Ev)≥ 0 such that

(a) for each y ∈ Bϕ(P)(ϕ∗(Ev))− there are exactly m+ s solutions to ϕ(x)= y in
BP(Ev)

− (counted with multiplicities), and

(b) for each y ∈ P1
K \

(
Bϕ(P)(ϕ∗(Ev))− ∪ {ϕ(P)}

)
, there are exactly s solutions to

ϕ(x)= y in BP(Ev)
− (counted with multiplicities).

The number mϕ(P, Ev) is called the directional multiplicity of ϕ at P in the di-
rection Ev, and sϕ(P, Ev) is called the surplus multiplicity of ϕ at P in the direc-
tion Ev. Several formulas relating mϕ(P, Ev) to geometric quantities are given in
[Baker and Rumely 2010, Theorem 9.26]. In particular, when P is of type II and
ϕ(P) = P , then mϕ(P, Eva) is the algebraic multiplicity of ϕ̃P at a, for each for
a ∈ P1(k̃). An important result due to Faber [2013a, Lemma 3.17] says that if P is
of type II and ϕ(P) = P , if (F,G) is a normalized representation of ϕ at P and
if F̃(X, Y )= Ã(X, Y )F̃0(X, Y ) and G̃(X, Y )= Ã(X, Y )G̃0(X, Y ), then sϕ(P, Eva)

is the multiplicity of a as a root of Ã(X, Y ).
Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let (F,G) be a normalized representa-

tion of ϕ. Writing F(X, Y ) = fd Xd
+ fd−1 Xd−1Y + · · · + f0Y d and G(X, Y ) =

gd Xd
+ gd−1 Xd−1Y + · · ·+ g0Y d the resultant of F and G is

Res(F,G)= det





fd fd−1 · · · f1 f0

fd fd−1 · · · f1 f0
...

fd fd−1 · · · f1 f0

gd gd−1 · · · g1 g0

gd gd−1 · · · g1 g0
...

gd gd−1 · · · g1 g0




. (1)
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The quantity ordRes(ϕ) := ord(Res(F,G)) is independent of the choice of nor-
malized representation; by construction, it is nonnegative. It is well-known (see
e.g., [Silverman 2007, Theorem 2.15]) that ϕ has good reduction if and only if
ordRes(ϕ)= 0.

The starting point for the investigation in [Rumely 2015] was the following
observation. By standard formulas for the resultant (see for example [Silverman
2007, p. 75]), for each γ ∈ GL2(K ) and each τ ∈ K× ·GL2(O), one has

ordRes(ϕγ )= ordRes(ϕγ τ ).

On the other hand, K× ·GL2(O) is the stabilizer of the Gauss point. Since GL2(K )
acts transitively on the type II points in P1

K , the map γ 7→ ordRes(ϕγ ) factors
through a well-defined function ordResϕ( · ) on type II points given by

ordResϕ(γ (ζG)) := ordRes(ϕγ ). (2)

The main theorem in [Rumely 2015] (Theorem 0.1 of that paper) is:

Theorem 1.1. Let ϕ(z) ∈ K (z) and suppose d = deg(ϕ) ≥ 2. The function
ordResϕ( · ) on type II points extends to a function ordResϕ : P1

K →[0,∞] which is
continuous for the strong topology, is finite on H1

K , and takes the value∞ on P1(K ).
The extended function f ( · )= ordResϕ( · ) has the following properties:

(A) f ( · ) is piecewise affine and convex upwards on each path in P1
K relative to

the logarithmic path distance; the slope of each affine piece is an integer m in
the range−(d2

+d)≤m ≤ d2
+d satisfying m ≡ d2

+d (mod 2d); the breaks
between affine pieces occur at type II points.

(B) f ( · ) achieves a minimum value on P1
K . The set MinResLoc(ϕ) on which the

minimum is taken is a single type II point if d is even and is either a single
type II point or a segment with type II endpoints if d is odd.

(C) For each a ∈ P1(K ), the extended function f ( · ) is strictly increasing away
from the tree 0Fix,ϕ−1(a) ⊂ P1

K spanned by the classical fixed points of ϕ and
the preimages of a in P1(K ).

In particular, MinResLoc(ϕ) belongs to 0Fix,ϕ−1(a), for each a ∈ P1(K ).

2. Identification lemmas

The surplus multiplicity sϕ(P, Ev) plays an important role in the study of ordResϕ( · ).
It turns out that there is a relation between directions Ev ∈ TP for which sϕ(P, Ev) > 0
and directions containing type I fixed points. This is expressed in two lemmas
which we call “identification lemmas”, because they identify the directions which
can have sϕ(P, Ev) > 0.
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If P ∈ H1
K is a type II fixed point of ϕ and ϕ̃P is the reduction of ϕ at P , we

say that P is id-indifferent for ϕ if ϕ̃P is the identity map. (This is part of a more
general classification of fixed points given in Section 3.)

Definition 1 (directional and reduced fixed point multiplicities). Suppose ϕ ∈ K (z)
is nonconstant:

(A) For each P ∈ H1
K and each Ev ∈ TP , we define the directional fixed point

multiplicity #Fϕ(P, Ev) to be the number of classical fixed points of ϕ in
BP(Ev)

− (counting multiplicities).

(B) If P ∈ H1
K is a type II fixed point of ϕ, which is not id-indifferent for ϕ, let

ϕ̃P be the reduction of ϕ at P and parametrize TP by P1(k̃) in such a way that
ϕ∗(Eva) = Evϕ̃P (a) for each a ∈ P1(k̃). If Ev = Eva , we define the reduced fixed
point multiplicity #F̃ϕ(P, Ev) to be the multiplicity of a as a fixed point of ϕ̃P .

Clearly
∑
Ev∈TP

Fϕ(P, Ev)= deg(ϕ)+1. If P is a type II point with ϕ(P)= P and P
is not id-indifferent for ϕ, then

∑
Ev∈TP

#F̃ϕ(P, Ev)= degϕ(P)+ 1.

Lemma 2.1 (first identification lemma). Suppose P ∈ H1
K is of type II, and that

ϕ(P)= P , but P is not id-indifferent. Let Ev ∈ TP ; then

#Fϕ(P, Ev)= sϕ(P, Ev)+ #F̃ϕ(P, Ev). (3)

In particular, BP(Ev)
− contains a type I fixed point of ϕ if and only if at least one of

the following hold:
ϕ∗(Ev)= Ev or sϕ(P, Ev) > 0.

Proof. Choose γ ∈ GL2(K ) with γ (P) = ζG and put 8 = ϕγ ; then 8(ζG) = ζG .
Note that ξ ∈ P1(K ) is fixed by ϕ if and only if γ−1(ξ) is fixed by 8 and that
Ev ∈ TP is fixed by ϕ∗ if and only if (γ−1)∗(Ev)∈ TζG is fixed by8∗. Hence it suffices
to prove the result under the assumption that P = ζG .

Choose F(X, Y ),G(X, Y ) ∈O[X, Y ] so (F,G) is a normalized representation
of ϕ. Let F̃, G̃ ∈ k̃[X, Y ] be the reductions of F and G and put

Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y )).

Write F̃(X, Y )= Ã(X, Y ) · F̃0(X, Y ) and G̃(X, Y )= Ã(X, Y ) · G̃0(X, Y ). Then ϕ̃
is the map on P1(k̃) defined by (X, Y ) 7→ (F̃0(X, Y ) : G̃0(X, Y )).

Put H(X, Y )=XG(X,Y )−Y F(X,Y ) and H̃0(X,Y )= XG̃0(X,Y )−Y F̃0(X,Y ).
Here H(X, Y ) 6=0 since deg(ϕ)>1 and H̃0(X, Y ) 6=0 since ϕ̃(z) 6≡ z by assumption.
The fixed points of 8 are the zeros of H(X, Y ) in P1(K ) and the fixed points of ϕ̃
are the zeros of H̃0(X, Y ) in P1(k̃).

Reducing H(X, Y ) modulo m, we see that

H̃(X, Y )= XG̃(X, Y )− Y F̃(X, Y )= Ã(X, Y ) · H̃0(X, Y ). (4)
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Since K is algebraically closed, H(X, Y ) factors over K [X, Y ] as a product of linear
factors. After scaling the factors if necessary, we can assume that the factorization
has the form

H(X, Y )= C ·
d+1∏
i=1

(bi X − ai Y ), (5)

where max(|ai |, |bi |)= 1 for each i = 1, . . . , d + 1. We claim that |C | = 1 as well.
To see this, note that if we choose u, v in O so that (ũ : ṽ) is not a zero of either
Ã(X, Y ) or H̃0(X, Y ), then H̃(ũ, ṽ) 6= 0 by (4).

It follows that

H̃(X, Y )= C̃ ·
d+1∏
i=1

(b̃i X − ãi Y ) 6≡ 0. (6)

Since k̃[X, Y ] is a unique factorization domain, comparing (4) and (6) we see that
after reordering factors if necessary, there are constants C̃1, C̃2 ∈ k̃× and an integer
0≤ n ≤ d such that

Ã(X, Y )= C̃1 ·

n∏
i=1

(b̃i X − ãi Y ) and H̃0(X, Y )= C̃2 ·

d+1∏
i=n+1

(b̃i X − ãi Y ). (7)

The fixed points of 8(X, Y ) are the points (ai : bi ) ∈ P1(K ), i = 1, . . . , d + 1.
By (4) and (7), each fixed point of 8(X, Y ) specializes to a zero of H̃0(X, Y )
or Ã(X, Y ) and conversely each such zero is the specialization of a fixed point of
8(X, Y ). For a given Ev ∈ TζG , if ã ∈ P1(k̃) is such that Ev = Evã , then #Fϕ(P, Ev)
is the multiplicity of ã as a zero of H̃(X, Y ), sϕ(P, Ev) is the multiplicity of ã as
a zero of Ã(X, Y ), and #F̃ϕ(P, Ev) is the multiplicity of ã as a root of H̃0(X, Y ).
Thus #Fϕ(P, Ev)= sϕ(P, Ev)+ #F̃ϕ(P, Ev). �

Lemma 2.2 (second identification lemma). Suppose P ∈H1
K is of type II and that

ϕ(P)= Q 6= P. Let Ev ∈ TP . Then BP(Ev)
− contains a type I fixed point of ϕ if and

only if at least one of the following hold

(A) Q ∈ BP(Ev)
−,

(B) P ∈ BQ(ϕ∗(Ev))
−, or

(C) sϕ(P, Ev) > 0.

Proof. Let Q = ϕ(P). We claim that there is a γ ∈ GL2(K ) such that γ (ζG)= P
and γ−1(Q) = ζ0,r for some 0 < r < 1. To see this, take any τ0 ∈ GL2(K )
with τ0(ζG) = P . Then τ−1

0 (Q) 6= ζG , since τ0 is one-to-one. Let α ∈ P1(K )
be such that the path [α, ζG] contains τ−1

0 (Q) and choose τ1 ∈ GL2(O) with
τ1(0) = τ−1

0 (α). (Such a τ1 exists because GL2(O) acts transitively on P1(K )).
Setting γ =τ0◦τ1, we see that γ (ζG)= P and γ (0)=γ0(τ1(0))=α. This means that
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γ−1(Q) = τ−1
1 (τ−1

0 (Q)) belongs to τ−1
1 ([α, ζG]) = [0, ζG], so γ−1(Q) = ζ0,r for

some 0< r < 1. Here r ∈|K×|, since ζ0,r = γ
−1(ϕ(P)) is of type II. Since the fixed

points of ϕ and conditions (A), (B), (C) are equivariant under conjugation, replacing
ϕ with ϕγ = γ−1

◦ϕ ◦ γ we are reduced to the case where P = ζG and Q = ζ0,r .
Take any c∈K× with |c|=r . Put γ1(z)= id and γ2(z)=cz; then γ1(ζG)=ζG= P

and γ2(ζG)= ζ0,r = Q. Put 8= γ−1
2 ◦ϕ ◦ γ1, noting that ϕ(z)= c ·8(z).

Choose F(X, Y ),G(X, Y ) ∈O[X, Y ] so (F,G) is a normalized representation
of 8. Let F̃, G̃ ∈ k̃[X, Y ] be their reductions and put

Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y )).

Write F̃(X, Y ) = Ã(X, Y ) · F̃0(X, Y ) and G̃(X, Y ) = Ã(X, Y ) · G̃0(X, Y ). The
reduction 8̃ of 8 is the map (X, Y ) 7→ (F̃0(X, Y ) : G̃0(X, Y )), so by Faber’s
theorem [2013a, Lemma 3.17], the directions Eva ∈ TP with sϕ(P, Eva) > 0 (which
are the same as the ones with s8(P, Eva) > 0) are precisely those corresponding to
points a ∈ P1(k̃) with Ã(a)= 0.

Since ϕ = c ·8, the pair (cF,G) is a normalized representation of ϕ. The fixed
points of ϕ in P1(K ) are the zeros (ai : bi ) of H(X, Y )= XG(X, Y )−Y ·cF(X, Y ).
As in the proof of Lemma 2.1, we can write

H(X, Y )= C ·
d+1∏
i=1

(bi X − ai Y ), (8)

where max(|ai |, |bi |)=1 for each i=1, . . . , d+1 and |C |=1. Absorbing C into the
coefficients a1, b1, we can assume that C = 1. Reducing H(X, Y ) modulo m gives

H̃(X, Y )=
d+1∏
i=1

(b̃i X − ãi Y ) 6≡ 0. (9)

On the other hand, since H(X, Y )= XG(X, Y )−Y · cF(X, Y ) with |c|< 1, we
also have

H̃(X, Y )= XG̃(X, Y )= X · Ã(X, Y ) · G̃0(X, Y ). (10)

Comparing (9) and (10), we see that after reordering the factors if necessary, there
are constants C̃1, C̃2, C̃3 ∈ k̃× and an integer 1≤ n ≤ d such that in k̃[X, Y ]

X = C̃1 · (b̃1 X − ã1Y ), (11)

Ã(X, Y )= C̃2 ·

n∏
i=2

(b̃i X − ãi Y ), (12)

G̃0(X, Y )= C̃3 ·

d+1∏
i=n+1

(b̃i X − ãi Y ), (13)

and each fixed point of ϕ corresponds to a factor of one of these terms.
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From (11) it follows that |a1| < 1 and |b1| = 1. Thus the fixed point (a1 : b1)

belongs to BP(Ev0)
−, where Ev0 ∈ TP is the tangent direction corresponding to

0 ∈ P1(k̃). We can express this in a coordinate-free way by noting that BP(Ev0)
−

is the ball containing Q = ζ0,r = ϕ(P).
From (12) and the fact that the zeros of Ã(X, Y ) correspond to the directions Eva

for which sϕ(P, Eva) > 0, we see that each direction Ev ∈ TP with sϕ(P, Ev) > 0
contains a fixed point of ϕ.

Finally, from (13), we see that each direction Eva ∈ TP corresponding to a zero
of G̃0(X, Y ) contains a fixed point of ϕ. However, the zeros of G̃0(X, Y ) are the
poles of 8̃ and if 8̃(a)=∞ then 8∗(Eva)= Ev∞ ∈ TP . Since ϕ = c ·8 and |c|< 1,
it follows that ϕ∗(Eva) ∈ TQ = Tζ0,r is the “upwards” direction EvQ,∞ ∈ TQ . This can
be expressed a coordinate-free manner by noting that BQ(ϕ∗(Eva))

−
= BQ(EvQ,∞)

−

is the unique ball containing P = ζG . �

As a consequence of Lemmas 2.1 and 2.2 we obtain

Corollary 2.3. Let P be of type II and suppose P is not id-indifferent for ϕ. Then
for each Ev ∈ TP such that sϕ(P, Ev) > 0, the ball BP(Ev)

− contains a type I fixed
point of ϕ.

Remark. Later, when we have proved the tree intersection theorem (Theorem 4.2)
we will establish a third identification lemma for id-indifferent points P (Lemma 4.5)
and we will strengthen Corollary 2.3, obtaining a fixed point theorem for arbitrary
balls BP(Ev)

− which ϕ maps onto P1
K (Theorem 4.6).

3. Classification of fixed points in H1
K

Recall that a fixed point P of ϕ in H1
K is called indifferent if degϕ(P) = 1 and

repelling if degϕ(P) > 1. We begin by introducing two trees which will play an
important role:

Definition 2 (the trees 0Fix and 0Fix,Repel). Suppose ϕ(z) ∈ K (z) has degree d ≥ 2.
Let 0Fix be the tree in P1

K spanned by the type I (classical) fixed points of ϕ. Let
0Fix,Repel be the tree in P1

K spanned by the type I fixed points of ϕ and the type II
repelling fixed points of ϕ in H1

K .

Clearly 0Fix ⊂ 0Fix,Repel. Since ϕ has at most d + 1 distinct type I fixed points,
0Fix is a finitely generated tree. It is possible that ϕ has a single type I fixed point
of multiplicity d + 1, in which case 0Fix is reduced to a point.

Below, we refine the notions of indifferent and repelling fixed points in H1
K .

Definition 3 (refined classification of indifferent fixed points in H1
K ). Let P ∈H1

K
be a type II indifferent fixed point of ϕ and let ϕ̃P be the reduction of ϕ at P . After
a change of coordinates, ϕ̃P is of one of three types:
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(A) ϕ̃P(z)= z; in this case we will say P is id-indifferent for ϕ.

(B) ϕ̃P(z) = ã · z for some ã ∈ k̃× with ã 6= 1; in this case we will say P is
multiplicatively indifferent for ϕ and that ϕ̃P has reduced rotation number ã.
(We remark that the reduced rotation number is only well-defined as an element
of {ã, ã−1

}: if coordinates on P1(k̃) are changed by conjugating with 1/z, then
ã is replaced by ã−1. If we need to be more precise, we will speak as follows.
Note that the directions Ev0, Ev∞ ∈ TP corresponding to 0,∞∈ P1(k̃) are the
only directions Ev ∈ TP fixed by ϕ∗. Let points P0 ∈ BP(Ev0)

−, P∞ ∈ BP(Ev∞)
−

be given. We will say that ϕ has reduced rotation number ã for the axis
(P0, P∞) and that it has reduced rotation number ã−1 for the axis (P∞, P0).)

(C) ϕ̃P(z) = z+ ã for some ã ∈ k̃ with ã 6= 0; in this case we will say that P is
additively indifferent for ϕ, with reduced translation number ã. The reduced
translation number is well-defined: it is the same for any choice of coordinates
on P1(k̃) with ϕ̃P(∞)=∞.

Definition 4 (reduced multipliers for fixed directions). Suppose P ∈H1
K is a type II

fixed point of ϕ and let Ev ∈ TP be a direction with ϕ∗(Ev)= Ev and mϕ(P, Ev)= 1. Let
ϕ̃P be the reduction of ϕ at P; without loss, assume coordinates have been chosen
so that Ev = Ev0. Then 0 is a fixed point of ϕ̃P . Put ã = ϕ̃′P(0) ∈ k̃. We will call ã the
reduced multiplier of ϕ in the direction Ev.

Definition 5 (refined classification of repelling fixed points in H1
K ). Let ϕ(z)∈K (z)

have degree d ≥ 2 and let P ∈H1
K be a repelling fixed point of ϕ. The directions

Ev1, . . . , Evm ∈ TP such that BP(Evi )
− contains a classical fixed point of ϕ, will be

called the focal directions of ϕ at P:

(A) P will be called unifocused (or just focused) if it has a unique focal direction Ev1.

(B) P will be called bifocused if it has exactly two distinct focal directions Ev1, Ev2.

(C) P will be called multifocused if it has m ≥ 3 focal directions.

Below are some properties of unifocused repelling fixed points.

Proposition 3.1. A repelling fixed point of ϕ in H1
K is a focused repelling fixed

point if and only if it does not belong to 0Fix. Each focused repelling fixed point is
an endpoint of 0Fix,Repel. If P is a focused repelling fixed point, with focus Ev1, then:

(A) ϕ∗(Ev1)= Ev1, mϕ(P, Ev1)= 1, and #F̃ϕ(P, Ev1)= degϕ(P)+ 1≥ 3.

(B) sϕ(P, Ev1) = d − degϕ(P) and Ev1 is the only direction Ev ∈ TP for which one
could have sϕ(P, Ev) > 0.

(C) For each Ev ∈ TP with Ev 6= Ev1 we have ϕ∗(Ev) 6= Ev and ϕ(BP(Ev)
−) is the ball

BP(ϕ∗(Ev))
−.

(D) For each Ew ∈ TP , there is at least one Ev ∈ TP with Ev 6= Ev1 such that ϕ∗(Ev)= Ew.



854 Robert Rumely

Proof. Let P be a repelling fixed point of ϕ. If P /∈0Fix all the type I fixed points of
ϕ lie in a single ball BP(Ev1)

−, so P is a focused repelling fixed point. Conversely,
suppose P is a focused repelling fixed point with focus Ev1. By assumption, all the
type I fixed points of ϕ belong to BP(Ev1)

−, so 0Fix ⊂ BP(Ev1)
−. Thus, P /∈ 0Fix.

We next show that if P is a focused repelling fixed point, it must be an endpoint
of 0Fix,Repel, and the only Ev ∈ TP fixed by ϕ∗ is Ev1. After a change of coordinates,
we can assume that P = ζG . Index directions Ev ∈ TP by points α̃ ∈ P1(k̃) and
choose coordinates so that Ev1 corresponds to α̃ = 1. Take any Ev ∈ TP with Ev 6= Ev1.
Since BP(Ev)

− contains no type I fixed points, Lemma 2.1 shows that sϕ(P, Ev)= 0
and ϕ∗(Ev) 6= Ev. Thus ϕ(BP(Ev)

−) is a ball, necessarily BP(ϕ∗(Ev)
−). If P were

not an endpoint of 0Fix,Repel, there would be a direction Ev ∈ TP with Ev 6= Ev1 such
that BP(Ev)

− contained a repelling fixed point Q of ϕ. This is impossible, since
ϕ(BP(Ev)

−)= BP(ϕ∗(Ev))
− where ϕ∗(Ev) 6= Ev, yet Q ∈ BP(Ev)

− and ϕ(Q)= Q. From
the fact that ϕ∗(Ev) 6= Ev for all Ev 6= Ev1, it follows that ϕ∗(Ev1)= Ev1, since the action of
ϕ∗ on TP corresponds to the action of the reduction ϕ̃ on P1(k̃) and ϕ̃ has at least
one fixed point.

Since P is a repelling fixed point, necessarily degϕ(P) ≥ 2. Since Ev1 is the
only direction fixed by ϕ∗, α̃ = 1 is the only point of P1(k̃) fixed by ϕ̃(z). Thus,
α̃ = 1 is a fixed point of ϕ̃ of multiplicity deg(ϕ̃)+ 1= degϕ(P)+ 1. This means
ϕ∗(Ev1)= Ev1 and #F̃ϕ(P, Ev1)= degϕ(P)+ 1≥ 3. Since α̃ = 1 is a fixed point of ϕ̃
of multiplicity > 1, α is not a critical point of ϕ̃, so mϕ(P, Ev1)= 1.

Since all the classical fixed points belong to BP(Ev1)
−, one has #Fϕ(P, Ev1)=d+1.

By Lemma 2.1, #Fϕ(P, Ev1) = sϕ(P, Ev1)+ #F̃ϕ(P, Ev1). We have seen above that
#F̃ϕ(P, Ev1)= degϕ(P)+ 1, so sϕ(P, Ev1)= d − degϕ(P). Since #Fϕ(P, Ev)= 0 for
all Ev ∈ TP with Ev 6= Ev1, Lemma 2.1 shows that Ev1 is the only direction in TP for
which one could have sϕ(P, Ev) > 0.

Finally, we show that for each Ew ∈ TP , there is a Ev ∈ TP with Ev 6= Ev1 satisfying
ϕ∗(Ev)= Ew. If Ew 6= Ev1, this is trivial, since ϕ∗ : TP→ TP is surjective and ϕ∗(Ev1)= Ev1.
If Ew = Ev1, it follows from the fact that mϕ(P, Ev1)= 1, since∑

Ev∈TP ,ϕ∗(Ev)=Ev1

mϕ(P, Ev)= degϕ(P)≥ 2. �

It may be worthwhile to note that focused repelling fixed points can exist. Here
is a class of maps with a focused repelling fixed point at ζG , with focal direction Ev0:

Example (maps with a focused repelling fixed point at ζG). Fix d ≥ 2 and let
L̃(X, Y )∈ k̃[X, Y ] be a homogeneous form of degree d−1 with L̃(X, Y ) 6= C̃ Xd−1.
Let L1(X, Y ), L2(X, Y ) ∈O[X, Y ] be homogeneous forms of degree d−1 whose
reductions satisfy

L̃1(X, Y )≡ L̃2(X, Y )≡ L̃(X, Y ) (mod m).
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Put
F(X, Y )= X L1(X, Y ) and G(X, Y )= Xd

+ Y L2(X, Y ).

For generic L1(X, Y ) and L2(X, Y ) we will have GCD(F,G) = 1; if this fails,
perturb L1(X, Y ) or L2(X, Y ) slightly. Henceforth we will assume GCD(F,G)= 1.

Consider the map ϕ with representation (F,G). Write

F̃(X, Y )= Ã(X, Y )F̃0(X, Y ) and G̃(X, Y )= Ã(X, Y )G̃0(X, Y ).

The reduced map ϕ̃ is represented by (F̃0, G̃0). Since F̃(X, Y ) = X L̃(X, Y ) and
G̃(X, Y )= Xd

+ Y L̃(X, Y ), we have

Ã(X, Y )= GCD(F̃(X, Y ), G̃(X, Y ))= GCD(Xd−1, L̃(X, Y )).

Since L̃(X, Y ) 6= C̃ Xd−1, we must have Ã(X, Y ) = X s for some 0 ≤ s ≤ d − 2.
Putting n = d− s, it follows that deg(ϕ̃)= n ≥ 2. Thus ζG is a repelling fixed point
of ϕ and degϕ(ζG)= n. Let Ev0 ∈ TζG be the direction corresponding to 0∈ k̃⊂P1(k̃).

The fixed points of ϕ in P1(K ) are the zeros of H(X, Y ) = XG(X, Y ) −
Y F(X, Y ). The reduction of H(X, Y ) is

H̃(X, Y )= XG̃(X, Y )− Y F̃(X, Y )

= X · (Xd
+ Y L̃2(X, Y ))− Y · (X L̃1(X, Y ))= Xd+1, (14)

since L̃1(X, Y ) = L̃2(X, Y ). By the theory of Newton polygons, the type I fixed
points all belong to BζG (Ev0)

−. We claim that ζG is a focused repelling fixed point
for ϕ. To see this, note that 0Fix is contained in BζG (Ev0)

−, so ζG /∈ 0Fix. Since ζG

is a repelling fixed point of ϕ, it belongs to 0Fix,Repel. By Proposition 3.1, ζG must
be a focused repelling fixed point.

By taking L̃(X, Y )= X sY d−1−s for a given integer 0≤ s ≤ d−2, we can arrange
that Ã(X, Y )= X s . Thus for any pair (n, s) with 2 ≤ n ≤ d and n+ s = d, there
is a ϕ ∈ K (z) of degree d which has a focused repelling fixed point at ζG with
degϕ(ζG)= n and sϕ(ζG, Ev0)= s. �

We next consider the properties of bifocused repelling fixed points. First, we
will need a lemma.

Lemma 3.2. Suppose P ∈H1
K is of type II and Ev∈TP . If there is a focused repelling

fixed point Q ∈ BP(Ev)
− whose focus Ev1 points towards P , then sϕ(P, Ev) > 0.

Proof. We must show that ϕ(BP(Ev)
−)= P1

K . Since (P1
K \ BQ(Ev1)

−)⊂ BP(Ev)
−, it

suffices to show that
ϕ
(
P1

K \ BQ(Ev1)
−
)
= P1

K .

To see this, note that P1
K \ BQ(Ev1)

−
= {Q}∪

(⋃
Ev∈TQ ,Ev 6=Ev1

BQ(Ev)
−
)
. By assumption

ϕ(Q)= Q. Since ϕ∗ : TQ→ TQ is surjective, Proposition 3.1 shows that for each
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Ew ∈ TQ there is at least one Ev ∈ TQ with Ev 6= Ev1 for which ϕ∗(BQ(Ev)
−)= BQ( Ew)

−.
Since P1

K = {Q} ∪
(⋃
Ew∈TQ

BQ( Ew)
−
)
, the claim follows. �

Proposition 3.3. A repelling fixed point of ϕ in H1
K is a bifocused repelling fixed

point if and only if it belongs 0Fix but is not a branch point of 0Fix,Repel. Suppose P
is a bifocused repelling fixed point and let Ev1, Ev2 ∈ TP be its focal directions, then:

(A) ϕ∗(Ev)= Ev, mϕ(P, Ev)= 1, and #F̃ϕ(P, Ev)≥ 2, for at least one Ev ∈ {Ev1, Ev2}.

(B) For each Ev ∈ TP with Ev 6= Ev1, Ev2, we have ϕ∗(Ev) 6= Ev and sϕ(P, Ev)= 0.

Proof. Suppose P is a bifocused repelling fixed point. By definition, there are
type I fixed points α1, α2 of ϕ belonging to distinct directions in TP , so P ∈ 0Fix.
However, P cannot be a branch point of 0Fix, because if it were there would be at
least three distinct directions in TP containing type I fixed points. It also cannot
be a branch point of 0Fix,Repel which is not a branch point of 0Fix, because if it
were there would be at least one branch of 0Fix,Repel \ 0Fix off P . If Ev ∈ TP is
the corresponding direction, then BP(Ev)

− would contain a type II repelling fixed
point Q but no type I fixed points. Since Q is a focused repelling fixed point, whose
focus Ev1 ∈ TQ points towards 0Fix, by Lemma 3.2 we would have sϕ(P, Ev) > 0.
However, this contradicts Lemma 2.1 since BP(Ev)

− contains no type I fixed points.
Conversely, suppose P ∈ 0Fix is a type II repelling fixed point but is not a vertex

of 0Fix,Repel. Then there are exactly two directions Ev1, Ev2 ∈ TP containing type I
fixed points, so P is a bifocused repelling fixed point.

To prove assertions (A) and (B), let P be any bifocused repelling fixed point.
After a change of coordinates, we can assume that P= ζG and that 0 and∞ are fixed
points of ϕ. Let (F,G) be a normalized representation of ϕ. Since ϕ(z) fixes P , it
has nonconstant reduction. Thus there are nonzero homogeneous polynomials

Ã(X, Y ), F̃0(X, Y ), G̃0(X, Y ) ∈ k̃[X, Y ]

such that (F̃, G̃) = ( Ã · F̃0, Ã · G̃0), with GCD(F̃0, G̃0) = 1. Since P is a re-
pelling fixed point, we have δ := degϕ(P)≥ 2 and deg(F̃0)= deg(G̃0)= δ. Write
H(X, Y )= XG(X, Y )−Y F(X, Y ) and put H̃0(X, Y )= XG̃0(X, Y )−Y F̃0(X, Y ).
Then H̃(X, Y ) = Ã(X, Y ) · H̃0(X, Y ). Since 0,∞∈ P1(K ) are fixed points of ϕ
and P is a bifocused repelling fixed point, Ev0, Ev∞ ∈ TP are the only directions
Ev ∈ TP for which the balls BP(Ev)

− can contain type I fixed points. It follows
from Lemma 2.1 that H̃(X, Y )= c̃ · X`Y d+1−` for some c̃ ∈ k̃× and some `. Since
H̃0(X, Y ) | H̃(X, Y ), we must have H̃0(X, Y )= h̃ ·X`0Y δ+1−`0 for some h̃ ∈ k̃× and
some 0≤ `0 ≤ δ+1. Since δ+1≥ 3, either #F̃ϕ(P, Ev0)≥ 2 or #F̃ϕ(P, Ev∞)≥ 2. If
i ∈{1, 2} is such that #F̃ϕ(P, Evi )≥ 2 then necessarily ϕ∗(Evi )= Evi and mϕ(P, Evi )= 1.
This proves assertion (A).

For each Ev ∈ TP with Ev 6= Ev0, Ev∞, there are no type I fixed point in BP(Ev)
−, so

Lemma 2.1 shows that ϕ∗(Ev) 6= Ev and sϕ(P, Ev)= 0. Thus assertion (B) holds. �
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Finally, we consider multifocused repelling fixed points. Recall that the valence
of a point P in a graph 0 is the number of edges of 0 emanating from P .

Proposition 3.4. A fixed point of ϕ in H1
K is a multifocused repelling fixed point

if and only if it is a repelling fixed point and is a branch point of 0Fix. If P is a
multifocused repelling fixed point, then its valence in 0Fix,Repel is the same as its
valence in 0Fix.

Remark. Branch points of 0Fix need not be repelling fixed points: there can be
branch points of 0Fix which are indifferent fixed points of ϕ or are moved by ϕ.

Proof of Proposition 3.4. If P is a multifocused repelling fixed point, then at least
three directions in TP contain type I fixed points of ϕ, so P is a branch point of 0Fix.
Conversely, if a repelling fixed point P is a branch point of 0Fix, at least three
directions in TP contain type I fixed points of ϕ, so P is multifocused.

The second assertion can be reformulated as saying that if P is a multifocused
repelling fixed point of ϕ, then there are no branches of 0Fix,Repel \ 0Fix which
fork off 0Fix at P . Suppose to the contrary that there were such a branch and let
Ev ∈ TP be the corresponding direction. By the same argument as in the proof of
Proposition 3.3, BP(Ev)

− would contain a type II repelling fixed point Q but no type
I fixed points. Since Q is a focused repelling fixed point, whose focus Ev1 points
towards P , by Lemma 3.2 we would have sϕ(P, Ev) > 0. However, this contradicts
Lemma 2.1 since BP(Ev)

− contains no type I fixed points. �

The fact that focused repelling fixed points are endpoints of 0Fix,Repel, while
bifocused repelling fixed points and multifocused repelling fixed points belong
to 0Fix, leads one to ask about the nature of points of 0Fix,Repel \0Fix which are not
endpoints of 0Fix,Repel.

Proposition 3.5. Suppose P is a focused repelling fixed point of ϕ and let P0 be the
nearest point to P in 0Fix. Then each type II point Q ∈ (P, P0] is an id-indifferent
fixed point of ϕ.

Proof. Let Q be a type II point in (P, P0]. Let Ew ∈ TQ be the direction for which
P ∈ BQ( Ew)

−. The focus Ev1 of P points towards 0Fix and hence towards Q. By
Lemma 3.2, we have sϕ(Q, Ew) > 0. If ϕ(Q)= Q but Q is not id-indifferent, this
contradicts Lemma 2.1 since BQ( Ew)

− does not contain any type I fixed points of ϕ.
If ϕ(Q) 6= Q, it contradicts Lemma 2.2 for the same reason. Thus, Q must be
id-indifferent. �

4. The tree intersection theorem

In this section we study the tree 0Fix,Repel. We first note that it is never a single point.
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Lemma 4.1. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then either ϕ has at least two
type I fixed points or it has one type I fixed point and one or more type II repelling
fixed points. In either case, 0Fix,Repel has at least one edge.

Proof. If ϕ has at least two type I fixed points, we are done. If it has only one, that
point is necessarily a fixed point of multiplicity d+1, hence has multiplier 1 and is
an indifferent fixed point. By a theorem of Rivera-Letelier (see [Rivera-Letelier
2003b, Theorem B] or [Baker and Rumely 2010, Theorem 10.82]), ϕ has at least
one repelling fixed point in P1

K (which may be in either P1(K ) or H1
K ), so in this

case ϕ must have a repelling fixed point in H1
K . �

Theorem 4.2 (the tree intersection theorem). Let ϕ ∈ K (z) have degree d ≥ 2. Then
0Fix,Repel is the intersection of the trees 0Fix,ϕ−1(a), for all a ∈ P1(K ).

Proof. Write 00 for the intersection of the trees 0Fix,ϕ−1(a), for all a ∈ P1(K ).
We first show that 0Fix,Repel ⊆ 00. For this, it is enough to show that each

repelling fixed point of ϕ in H1
K belongs to 00, since 00 is connected and clearly

contains the type I fixed points. Let P be a repelling fixed point of ϕ in H1
K and fix

a ∈ P1(K ). We claim that P belongs to 0Fix,ϕ−1(a).
By a theorem of Rivera-Letelier (see [Rivera-Letelier 2000, Proposition 5.1]

or [Baker and Rumely 2010, Lemma 10.80]), P is of type II. By [Baker and
Rumely 2010, Corollary 2.13(B)], there is a γ ∈GL2(K ) for which γ (∞)= a and
γ (ζG)= P . After conjugating ϕ by γ , we can assume that a =∞ and P = ζG . Let
(F,G) be a normalized representation of ϕ. The poles of ϕ are the zeros of G(X, Y )
and the fixed points of ϕ are the zeros of H(X, Y ) := Y F(X, Y )− XG(X, Y ). Let
F̃, G̃ ∈ k̃[X, Y ] be the reductions of F and G. Put

Ã = GCD(F̃, G̃).

Write F̃= Ã·F̃0, and G̃= Ã·G̃0. Then ϕ̃ is the map (X, Y ) 7→ (F̃0(X, Y ), G̃0(X, Y ))
on P1(k̃). Since P is a repelling fixed point of ϕ, we have d̃ := deg(ϕ̃)≥ 2.

Put H̃0(X, Y ) = Y F̃0(X, Y ) − XG̃0(X, Y ), so deg(H̃0) = d̃ + 1. The fixed
points of ϕ̃ are the zeros of H̃0(X, Y ) in P1(k̃), listed with multiplicities. Since
GCD(F̃0, G̃0) = 1 and GCD(H̃0, G̃0) = GCD(Y F̃0, G̃0), we must have either
GCD(H̃0, G̃0)= 1 or GCD(H̃0, G̃0)= Y .

If GCD(H̃0, G̃0) = 1, the fixed points and poles of ϕ̃ are disjoint. Since each
fixed point of ϕ̃ is the reduction of at least one fixed point of ϕ (Lemma 2.1) and
each pole of ϕ̃ is the reduction of at least one pole of ϕ, we conclude that ϕ has a
fixed point z0 and a pole z1 lying in different directions in TP . Thus P belongs to
[z0, z1] and P ∈ 0Fix,ϕ−1(a).

If GCD(H̃0, G̃0) = Y , then Y divides G̃0, so ∞̃ is a pole of ϕ̃. This means ϕ
has a pole z1 in the ball BζG (Ev∞)

−
⊂ P1(K ). On the other hand, Y 2 cannot divide

both H̃0 and G̃0. If Y 2 does not divide H̃0, then ϕ̃ has at least one fixed point in k̃,
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so ϕ has a fixed point z0 in O. Since z0 and z1 lie in different tangent directions
at ζG , we conclude that ζG ∈ 0Fix,ϕ−1(a) in this case. On the other hand, if Y 2 does
not divide G̃0, then ϕ̃ has at least one pole in k̃, so ϕ has a pole z0 ∈O, and again
P = ζG ∈ 0Fix,ϕ−1(a).

We next show that 0Fix,Repel = 00. Since 0Fix,Repel ⊆ 00, it will suffice to show
that each endpoint of 0Fix,Repel which does not belong to 0Fix is an endpoint of the
intersection of some set of trees {0Fix,ϕ−1(ai ) : i ∈ I }, for an appropriate index set I .

By Proposition 3.1, each endpoint of 0Fix,Repel not in 0Fix is a focused repelling
fixed point of ϕ. Let P ∈ H1

K be a focused repelling fixed point, with focus Ev1.
Choose distinct directions Ev2, Ev3 ∈ TP \ {Ev1} and take a2 ∈ P1(K )∩ BP(Ev2)

− and
a3 ∈P1(K )∩ BP(Ev3)

−. We claim that P is an endpoint of 0Fix,ϕ−1(a2)∩0Fix,ϕ−1(a3).
To see this, note that if ξ2 ∈P1(K )∩(P1

K \BP(Ev1)
−) is a solution to ϕ(ξ2)= a2 and

ξ3 ∈P1(K )∩(P1
K \BP(Ev1)

−) is a solution to ϕ(ξ3)= a3, the directions Ew2, Ew3 ∈ TP

such that ξ2 ∈ BP( Ew2)
− and ξ3 ∈ BP( Ew3)

− are necessarily distinct. This follows
from Proposition 3.1, which asserts that for each Ew ∈ TP with Ew 6= Ev1, the image
ϕ(BP( Ew)

−) is precisely BP(ϕ∗( Ew))
−. �

The tree 0Fix,Repel is spanned by finitely many points.

Corollary 4.3. If ϕ(z) ∈ K (z) has degree d ≥ 2, then

(A) ϕ has at most d focused repelling fixed points, and

(B) 0Fix,Repel is a finitely generated tree with at most 2d + 1 endpoints. Each
endpoint of 0Fix,Repel is either a type I fixed point or a type II focused repelling
fixed point.

Proof. If ϕ(z) has no focused repelling fixed points, part (A) holds trivially. Other-
wise, choose any focused repelling fixed point P . By Proposition 3.1, it is an
endpoint of 0Fix,Repel; let Ev ∈ TP be a direction pointing away from 0Fix,Repel. Fix
a point α ∈ P1(K ) ∩ BP(Ev)

− and consider the solutions ξ1, . . . , ξd to ϕ(z) = α.
By Proposition 3.1, for each focused repelling fixed point Q there is a direction
EwQ ∈ TQ pointing away from 0Fix,Repel such that α ∈ ϕ(BQ( EwQ)

−); it follows that
some ξi belongs to BQ( EwQ)

−. For distinct Q, the balls BQ( EwQ)
− are pairwise

disjoint. Thus ϕ has at most d focused repelling fixed points.
Since ϕ has at most d + 1 type I fixed points, the tree 0Fix,Repel is spanned by at

most 2d + 1 points. Its endpoints are clearly as claimed. �

We will sharpen Corollary 4.3 in Corollary 6.2. Below are some additional
consequences of Theorem 4.2. A trivial but important one is:

Corollary 4.4. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then MinResLoc(ϕ) is con-
tained in 0Fix,Repel.

Proof. By Theorem 1.1, MinResLoc(ϕ) is contained in0Fix,ϕ−1(a) for each a∈P1(K ).
Hence it is contained in the intersection of those trees, which is 0Fix,Repel. �
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Another is an “identification lemma” for id-indifferent fixed points.

Lemma 4.5 (third identification lemma). Suppose P is a type II id-indifferent fixed
point of ϕ. Then for each Ev ∈ TP such that sϕ(P, Ev) > 0, the ball BP(Ev)

− contains
either a type I fixed point or a type II focused repelling fixed point of ϕ.

Proof. Suppose sϕ(P, Ev) > 0. This means ϕ(BP(Ev)
−)= P1

K . If BP(Ev)
− contains a

type I fixed point, we are done.
If not, then there must be some Ev0 ∈ TP with Ev0 6= Ev such that BP(Ev0)

− contains
a type I fixed point. Since ϕ(BP(Ev)

−)= P1
K , for each a ∈P1(K ) there is a solution

to ϕ(x)= a in BP(Ev)
−. The path from this solution to the type I fixed point passes

through P , so P ∈ 0Fix,ϕ−1(a). Letting a vary, we see that

P ∈
⋂

a∈P1(K )

0Fix,ϕ−1(a) = 00 = 0Fix,Repel.

Since P is id-indifferent, we must have mϕ(P, Ev) = 1. Hence by a theorem
of Rivera-Letelier (see [Rivera-Letelier 2003b, §4] or [Baker and Rumely 2010,
Theorem 9.46]) there is a Q ∈ BP(Ev)

− such that ϕ maps the annulus Ann(P, Q)
to itself and fixes each point in [P, Q]. Take any type II point Z ∈ (P, Q) and let
Ew ∈ TZ be the direction towards Q. We claim that sϕ(Z , Ew) > 0. If not, ϕ maps
BZ ( Ew)

− to a ball and that ball must be BZ ( Ew)
− since ϕ(Z)= Z and ϕ∗( Ew)= Ew.

However, this means that

ϕ(BP(Ev)
−)= ϕ(Ann(P, Q)∪ BZ ( Ew)

−)

= ϕ(Ann(P, Q))∪ϕ(BZ ( Ew)
−)

= Ann(P, Q)∪ BZ ( Ew)
−

= BP(Ev)
−,

which contradicts that sϕ(P, Ev) > 0. Hence it must be that sϕ(Z , Ew) > 0 and, by
the same argument as above, it follows that Z ∈ 0Fix,Repel.

Thus 0Fix,Repel contains points in BP(Ev)
−, so it has an endpoint in BP(Ev)

−.
Since BP(Ev)

− does not contain type I fixed points, the endpoint must be a focused
repelling fixed point. �

As Lemma 4.5 shows, when P is a type II id-indifferent fixed point, the linkage
between directions Ev ∈ TP for which sϕ(P, Ev) > 0 and directions containing a
type I fixed point breaks down. It turns out that for id-indifferent fixed points it is
the “primary terms” in a normalized representation at P which determine when
sϕ(P, Ev) > 0 and the “secondary terms” which determine the type I fixed points.
This is made precise by the following class of examples:

Example (maps with an id-indifferent fixed point at ζG). Fix d ≥ 2 and let
Ã(X, Y ) ∈ k̃[X, Y ] be a nonzero homogeneous form of degree d−1. Lift Ã(X, Y )
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to A(X, Y ) ∈O[X, Y ] and fix π ∈O with ord(π) > 0. Let F1(X, Y ),G1(X, Y ) ∈
O[X, Y ] be arbitrary homogeneous forms of degree d. Put

F(X, Y )= A(X, Y ) · X +πF1(X, Y ),

G(X, Y )= A(X, Y ) · Y +πG1(X, Y ).

For generic F1(X, Y ) and G1(X, Y ) we will have GCD(F,G) = 1; if that is the
case, let ϕ be the map with normalized representation (F,G). Then

(1) (F̃(X, Y ), G̃(X, Y ))= Ã(X, Y ) · (X, Y ), while

(2) H(X, Y )= XG(X, Y )− Y F(X, Y )= π(XG1(X, Y )− Y F1(X, Y )).

Thus the directions Ev ∈ TζG with sϕ(ζG, Ev) > 0 come from the roots of Ã(X, Y ),
while the type I fixed points of ϕ are the roots of XG1(X, Y )− Y F1(X, Y ). �

By combining the three identification lemmas we obtain a new fixed point
theorem which concerns balls which ϕ maps onto P1

K . Previously known fixed
point theorems (see [Baker and Rumely 2010, Theorems 10.83, 10.85, and 10.86])
concern domains D ⊂ P1

K whose image ϕ∗(D) is another domain, with D ⊂ ϕ∗(D)
or ϕ∗(D)⊂ D, or closed sets X with ϕ(X)⊆ X .

Theorem 4.6 (full image fixed point theorem). Let ϕ(z) ∈ K (z), with deg(ϕ)≥ 2.
Suppose P ∈ P1

K and Ev ∈ TP . If ϕ(BP(Ev)
−)= P1

K , then BP(Ev)
− contains either a

(classical) fixed point of ϕ in P1(K ) or a repelling fixed point of ϕ in H1
K .

Proof. Given points P, Q ∈P1
Berk with Q 6= P , write Ann(P, Q) for the component

of P1
K \ {P, Q} containing (P, Q).

Assume ϕ(BP(Ev)
−) = P1

K . If P is of type II, then sϕ(P, Ev) > 0 and the result
follows by combining Lemmas 2.1, 2.2, and 4.5. If P is of type III or IV, one
reduces to the case of type II as follows: There is a point Q ∈ BP(Ev)

− such that
ϕ(Ann(P, Q)) = Ann(ϕ(P), ϕ(Q)). Take any type II point Z ∈ (P, Q) and let
Ew ∈ TZ be the direction towards Q. We claim that ϕ(BZ ( Ew)

−)= P1
K . Otherwise,

ϕ∗(BZ ( Ew)
−)would be the ball Bϕ(Z)(ϕ∗( Ew))−. By the mapping properties of annuli

ϕ∗( Ew) is the direction in Tϕ(Z) containing ϕ(Q), so

ϕ(BP(Ev)
−)= ϕ(Ann(P, Q))∪ϕ(BZ ( Ew)

−)=Ann(ϕ(P), ϕ(Q))∪ Bϕ(Z)(ϕ∗( Ew))−

omits the point ϕ(P), contradicting that ϕ(BP(Ev)
−)= P1

K .
If P is of type I and BP(Ev)

−
= P1

K \ {P} contains no type I fixed points of ϕ,
then P is the only type I fixed point of ϕ. Hence it is a fixed point of multiplicity
d + 1> 1 and necessarily has multiplier 1. By a theorem of Rivera-Letelier (see
[Rivera-Letelier 2003b, Theorem B] or [Baker and Rumely 2010, Theorem 10.82])
ϕ has at least one repelling fixed point in P1

K , so it has a repelling fixed point in H1
K ,

which clearly lies in BP(Ev)
−. �
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The author does not know whether Theorem 4.6 can be generalized to domains
D with ϕ(D)= P1

K , when D has more than one boundary point.

5. Slope formulas

In this section we establish formulas for the slope of ordResϕ( · ) at an arbitrary
point P ∈H1

K , in an arbitrary direction Ev ∈ TP . These formulas will be used in the
proof of the weight formula in Section 6.

Let f (z) be a function on H1
K and write ρ(P, Q) for the logarithmic path distance.

Given a point P ∈H1
K and a direction Ev ∈ TP , the slope of f at P in the direction

Ev is defined to be

∂Ev f (P)= lim
Q→P

Q∈BP (Ev)
−

F(Q)− F(P)
ρ(Q, P)

, (15)

provided the limit exists. For any two points P1, P2 ∈ BP(Ev)
−, the paths [P, P1]

and [P, P2] share a common initial segment, so the limit in (15) exists if and only
if it exists for Q restricted to [P, P1]. Since ρ(P, Q) is invariant under the action
of GL2(K ) on H1

K , ∂EvF(P) is independent of the choice of coordinates.
For the remainder of this section we will take f ( · )= ordResϕ( · ).

Definition 6 (tangent space and valence in 0Fix,Repel). For a point P ∈ 0Fix,Repel,
we write TP,FR for the tangent space to P in 0Fix,Repel, the set of directions Ev ∈ TP

such that there is an edge of 0Fix,Repel emanating from P in the direction Ev. We
write vFR(P) for the valence of P in 0Fix,Repel, the number of edges of 0Fix,Repel

emanating from P .

Definition 7 (shearing directions). If P is a fixed point of ϕ in P1
K (of any type I, II,

III, or IV), a direction Ev ∈ TP will be called a shearing direction if there is a type I
fixed point in BP(Ev)

− but ϕ∗(Ev) 6= Ev. Let NShearing(P) be the number of shearing
directions in TP .

We will now give formulas for the slope of ordResϕ( · ) at each type II point P ,
in each direction Ev ∈ TP . The formulas break into several cases, depending on the
nature of P . For the convenience of the reader, we first state all the formulas, then
give the proofs.

Proposition 5.1. Let P ∈H1
K be a type II fixed point of ϕ which is not id-indifferent.

Then for each Ev ∈ TP , the slope of f ( · )= ordResϕ( · ) at P in the direction Ev is

∂Ev f (P)= (d2
− d)− 2d · #Fϕ(P, Ev)+ 2d ·max(1, #F̃ϕ(P, Ev))

= (d2
− d)− 2d · sϕ(P, Ev)+ 2d ·

{
0 if ϕ∗(Ev)= Ev,
1 if ϕ∗(Ev) 6= Ev.

(16)
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Furthermore, if P ∈ 0Fix,Repel, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
−d) ·(vFR(P)−2)+2d ·(degϕ(P)−1+NShearing(P)). (17)

Proposition 5.2. Let P ∈H1
K be a type II id-indifferent fixed point of ϕ. Then for

each Ev ∈ TP , the slope of f ( · )= ordResϕ( · ) at P in the direction Ev is

∂Ev f (P)= (d2
− d)− 2d · sϕ(P, Ev). (18)

Furthermore, if P ∈ 0Fix,Repel, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (vFR(P)− 2). (19)

Proposition 5.3. Let P ∈ H1
K be a type II point with ϕ(P) 6= P. Then for each

Ev ∈ TP , the slope of f ( · )= ordResϕ( · ) at P in the direction Ev is

∂Ev f (P)= d2
+ d − 2d · #Fϕ(P, Ev). (20)

Furthermore, if P ∈ 0Fix,Repel, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (vFR(P)− 2)+ 2d · (vFR(P)− 2). (21)

Finally, we consider the “slope of ordResϕ( · ) in the direction away from Q”, at
a type I point Q. Since ordResϕ(Q)=∞, the definition of the slope given in (15)
does not make sense. Instead, for a suitable Q1 near Q, we show that ordResϕ( · )
has constant slope in the direction of Q1, for each P ∈ (Q, Q1).

Proposition 5.4. Let Q be a type I point. Then there is a Q1 ∈ H1
K such that for

each P ∈ (Q, Q1), the slope of f ( · )= ordResϕ( · ) at P , in the direction Ev1 ∈ TP

which points towards Q1, is

∂Ev1 f (P)=
{
−(d2

− d) if Q is fixed by ϕ,
−(d2

+ d) if Q is not fixed by ϕ.

We will now prove Propositions 5.1–5.4.

Proof of Proposition 5.1. After a change of coordinates, we can assume that P = ζG

and Ev = Ev0. Let (F,G) be a normalized representation of ϕ; write F(X, Y ) =
ad Xd

+· · ·+a0Y d and G(X, Y )= bd Xd
+· · ·+b0Y d . For each A ∈ K× we have,

by [Rumely 2015, formula 13],

ordResϕ(ζ0,|A|)− ordResϕ(ζG)

= (d2
+ d)ord(A)− 2d ·min

(
min

0≤i≤d
ord(Ai ai ), min

0≤ j≤d
ord(A j+1b j )

)
.
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By hypothesis, the reductions F̃ and G̃ are nonzero; thus there are indices i and j
such that ãi 6= 0 and b̃ j 6= 0 or equivalently that ord(ai )= 0 and ord(b j )= 0. Let `1

be the least index i for which ord(ai )= 0 and let `2 be the least index j for which
ord(b j )= 0. If ord(A) > 0 and ord(A) is sufficiently small, then

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
=min

(
ord(A`1a`1), ord(A`2+1b`2)

)
=min(`1, `2+ 1) · ord(A).

It follows that the slope of ordResϕ( · ) at P in the direction Ev = Ev0 is

d2
+ d − 2d ·min(`1, `2+ 1). (22)

We will now reformulate (22) using dynamical invariants. Letting F̃, G̃ ∈ k̃[X, Y ]
be the reductions of F and G, we can factor F̃ = Ã · F̃0 and G̃ = Ã · G̃0 where
Ã=GCD(F̃, G̃). Write ordX (F̃) and ordX (G̃) for the power with which X occurs
as a factor of F̃ and G̃. Using Faber’s theorem [2013a, Lemma 3.17], it follows that

sϕ(P, Ev0)= ordX ( Ã)=min
(
ordX (F̃), ordX (G̃)

)
=min(`1, `2).

On the other hand, since P is not id-indifferent for ϕ, by Lemma 2.1

sϕ(P, Ev0)= #Fϕ(P, Ev0)− #F̃ϕ(P, Ev0).

Note that #F̃ϕ(P, Ev0)= 0 holds if and only if ordX (F̃0)= 0, which in turn holds
if and only if `1 ≤ `2. Thus, if #F̃ϕ(P, Ev0)= 0, then `1 ≤ `2 and

min(`1, `2+ 1)= `1 = sϕ(P, Ev0)= #Fϕ(P, Ev0).

On the other hand, if #F̃ϕ(P, Ev0) > 0 then `2 < `1 and sϕ(P, Ev0)= `2, so

min(`1, `2+ 1)= `2+ 1= sϕ(P, Ev0)+ 1= #Fϕ(P, Ev0)− #F̃ϕ(P, Ev0)+ 1.

It follows that

min(`1, `2+ 1)=
{

#Fϕ(P, Ev0) if #F̃ϕ(P, Ev0)= 0,
#Fϕ(P, Ev0)− #F̃ϕ(P, Ev0)+ 1 if #F̃ϕ(P, Ev0) > 0

= #Fϕ(P, Ev0)−max(1, #F̃ϕ(P, Ev0))+ 1. (23)

Inserting (23) in (22) yields the first formula in (16). The second formula in (16)
follows from sϕ(P, Ev) = #Fϕ(P, Ev)− #F̃ϕ(P, Ev), since ϕ∗(Ev) = Ev if and only if
#F̃ϕ(P, Ev) > 0.

If P ∈0Fix,Repel, note that by Lemma 2.1, for a direction Ev∈TP,FR, then ϕ∗(Ev) 6= Ev
if and only if Ev is a shearing direction. To obtain (17), sum the second formula in
(16) over all Ev ∈ TP,FR, getting∑
Ev∈TP,FR

∂Ev f (P)= (d2
−d) ·vFR(P)−2d ·

∑
Ev∈TP,FR

sϕ(P, Ev)+2d ·NShearing(P). (24)
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By Lemma 2.1, TP,FR contains all Ev ∈ TP such that sϕ(P, Ev) > 0. It follows that∑
Ev∈TP,FR

sϕ(P, Ev)= d − degϕ(P).

Inserting this in (24) yields (17). �

Proof of Proposition 5.2. After a change of coordinates, we can assume that P = ζG

and Ev = Ev0. Let (F,G) be a normalized representation of ϕ; write F(X, Y ) =
ad Xd

+ · · · + a0Y d and G(X, Y ) = bd Xd
+ · · · + b0Y d . Letting `1 and `2 be

the least index such that ord(ai ) = 0 and ord(b j ) = 0, respectively, just as in
Proposition 5.1 one sees that the slope of ordResϕ( · ) at P in the direction Ev= Ev0 is

d2
+ d − 2d ·min(`1, `2+ 1). (25)

Since P is id-indifferent for ϕ, the reductions F̃ and G̃ are nonzero and if
Ã = GCD(F̃, G̃) then F̃(X, Y )= X · Ã(X, Y ) and G̃(X, Y )= Y · Ã(X, Y ). Thus
`1 = ordX ( Ã(X, Y ))+ 1 and `2 = ordX ( Ã(X, Y )). By Faber’s theorem [2013a,
Lemma 3.17], we have sϕ(P, Ev0)= ordX ( Ã). Hence

min(`1, `2+ 1)= ordX ( Ã)+ 1= sϕ(P, Ev0)+ 1. (26)

Inserting (26) in (25) yields (18).
When P ∈ 0Fix,Repel, to obtain (19) sum (18) over all Ev ∈ TP,FR, getting∑

Ev∈TP,FR

∂Ev f (P)= (d2
− d) · vFR(P)− 2d ·

∑
Ev∈TP,FR

sϕ(P, Ev). (27)

By Lemma 4.5, TP,FR contains all Ev∈TP such that sϕ(P, Ev)>0. Since degϕ(P)=1,
it follows that ∑

Ev∈TP,FR

sϕ(P, Ev)= d − degϕ(P)= d − 1.

Inserting this in (27), and simplifying, yields (19). �

Proof of Proposition 5.3. To prove (20) we use the machinery from Lemma 2.2. As
in that lemma, we choose γ ∈GL2(K ) such that γ (ζG)= P and γ−1(ϕ(P))= ζ0,r ,
for some r ∈ |K×| with 0 < r < 1. By replacing ϕ with ϕγ we can assume that
P = ζG and ϕ(P)= ζ0,r .

Let c ∈ K× be such that |c| = r ; put 8(z)= (1/c)ϕ(z). Then 8(ζG)= ζG , so 8
has nonconstant reduction and ϕ(z)= c ·8(z). Let (F,G) be a normalized represen-
tation of8; then (cF,G) is a normalized representation of ϕ. Using this representa-
tion, put H(X, Y )= XG(X, Y )−Y ·cF(X, Y ); this yields H̃(X, Y )= X · G̃(X, Y ).
On the other hand, if the type I fixed points of ϕ (listed with multiplicities) are
(ai : bi ) for i = 1, . . . , d+1, normalized so that max(|ai |, |bi |)= 1 for each i , there
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is a constant C with |C | = 1 such that H(X, Y )=C ·
∏d+1

i=1 (bi X −ai Y ). Reducing
this (modm) gives

XG̃(X, Y )= H̃(X, Y )= C̃ ·
d+1∏
i=1

(b̃i X − ãi Y ). (28)

We will now consider what this means for the slope of ordResϕ( · ) at P in a
direction Ev ∈ TP . We parametrize the directions Ev ∈ TP by points a ∈P1(k̃). We will
consider three cases, corresponding to the directions Ev0, Eva for 0 6= a ∈ k̃, and Ev∞.

First consider the direction Ev0∈TP . We use the normalized representation (cF,G)
for ϕ, expanding cF(X, Y )= ad Xd

+· · ·+a0Y d and G(X, Y )= bd Xd
+· · ·+b0Y d .

As usual, for each A ∈ K×,

ordResϕ(ζ0,|A|)− ordResϕ(ζG)

= (d2
+ d)ord(A)− 2d ·min

(
min

0≤i≤d
ord(Ai ai ), min

0≤ j≤d
ord(A j+1b j )

)
. (29)

Let N = N0 = #Fϕ(P, Ev0) be the number of fixed points of ϕ in BP(Ev0)
−. By (28)

we have X N−1
‖ G̃(X, Y ), so ord(b`) > 0 for `= 0, . . . , N −2 and ord(bN−1)= 0.

Since |c| < 1 we see that ord(a`) > 0 for all `. It follows that if ord(A) > 0 and
ord(A) is sufficiently small, then

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
= ord(A(N−1)+1bN−1)= N · ord(A).

Inserting this in (29) shows that the slope of ordResϕ( · ) at P in the direction Ev0 is

∂Ev0 f (P)= d2
+ d − 2d · N0 = d2

+ d − 2d · #Fϕ(P, Ev0). (30)

Next consider a direction Eva ∈ TP , where 0 6= a ∈ k̃. Choose an α ∈ O with
α̃ = a and conjugate ϕ by

γα =

[
1 α

0 1

]
.

A normalized representation for ϕα := (ϕ)γα is given by(
Fα(X, Y )
Gα(X, Y )

)
=

[
1 −α
0 1

]
·

(
cF
G

)
·

[
1 α

0 1

]
=

(
cF(X +αY, Y )−αG(X +αY, Y )

G(X +αY, Y )

)
.

Reducing this gives F̃α(X, Y )=−aG̃(X+aY, Y ) and G̃α(X, Y )= G̃(X+aY, Y ).
Let N = Na = #Fϕ(P, Eva) be the number of fixed points of ϕ in BP(Eva)

−;
from (28) it follows that (X − aY )N

‖ G̃(X, Y ). The direction Evα for ϕ pulls
back to Ev0 for ϕα, so N = #Fϕα (P, Ev0). Thus X N

‖ F̃α(X, Y ) and X N
‖ G̃α(X, Y ).

Expanding Fα(X, Y )= ad Xd
+· · ·+a0Y d and Gα(X, Y )= bd Xd

+· · ·+b0Y d , we
see that ord(a`), ord(b`) > 0 for `= 0, . . . , N − 1, while ord(aN )= ord(bN )= 0.
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If ord(A) > 0 is sufficiently small, it follows that

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
= ord(AN aN )= N · ord(A).

Inserting this in (29) shows that the slope of ordResϕ( · ) at P in the direction Eva is

∂Eva f (P)= d2
+ d − 2d · Na = d2

+ d − 2d · #Fϕ(P, Eva). (31)

Finally, consider the direction Ev∞ ∈ TP . Conjugate ϕ by

γ∞ =

[
0 1
1 0

]
.

A normalized representation for ϕ∞ := (ϕ)γ∞ is given by(
F∞(X, Y )
G∞(X, Y )

)
=

[
0 1
1 0

]
·

(
cF
G

)
·

[
0 1
1 0

]
=

(
G(Y, X)
cF(Y, X)

)
.

Reducing this gives F̃∞(X, Y )= G̃(Y, X) and G̃∞(X, Y )= 0.
Let N = N∞ = #Fϕ(P, Ev∞) be the number of fixed points of ϕ in BP(Ev∞)

−;
by formula (28) we have Y N

‖ G̃(X, Y ). The direction Ev∞ for ϕ pulls back to
Ev0 for ϕ∞, so N = #Fϕ∞(P, Ev0). Thus X N

‖ F̃∞(X, Y ). Writing F∞(X, Y ) =
ad Xd

+ · · ·+ a0Y d and G∞(X, Y )= bd Xd
+ · · ·+ b0Y d , we see that ord(a`) > 0

for ` = 0, . . . , N − 1, while ord(aN ) = 0; we have ord(b`) > 0 for all `. Thus if
ord(A) > 0 is sufficiently small,

min
(

min
0≤i≤d

ord(Ai ai ), min
0≤ j≤d

ord(A j+1b j )
)
= ord(AN aN )= N · ord(A).

Inserting this in (29) shows that the slope of ordResϕ( · ) at P in the direction Ev∞ is

∂Ev∞ f (P)= d2
+ d − 2d · N∞ = d2

+ d − 2d · #Fϕ(P, Ev∞). (32)

Combining (30), (31) and (32) yields (20).
If P ∈ 0Fix,Repel, to obtain (19) sum (20) over all Ev ∈ TP,FR, getting∑

Ev∈TP,FR

∂Ev f (P)= (d2
+ d) · vFR(P)− 2d ·

∑
Ev∈TP,FR

#Fϕ(P, Ev). (33)

By Lemma 2.2, TP,FR contains all Ev ∈ TP such that #Fϕ(P, Ev) > 0. Since ϕ has
d + 1 type I fixed points (counting multiplicities), it follows that∑

Ev∈TP,FR

#Fϕ(P, Ev)= d + 1.

Inserting this in (33) yields (21). �



868 Robert Rumely

Proof of Proposition 5.4. After a change of coordinates, we can assume that Q = 0.
Since ordResϕ( · ) is piecewise affine on paths in H1

K (relative to the logarithmic
path distance), it suffices to prove the result when P = ζ0,r is a type II point with r
sufficiently small and Ev1 ∈ TP is the direction Ev∞.

Write F(X, Y )=ad Xd
+· · ·+a0Y d , G(X, Y )=bd Xd

+· · ·+b0Y d and let (F,G)
be a normalized representation of ϕ. Take A ∈ K× and put r = |A|; by [Rumely
2015, formula (19)]

ordResϕ(ζ0,r )

= ordRes(F,G)+(d2
+d)ord(A)−2d min

(
min

0≤`≤d
ord(A`a`), min

0≤`≤d
ord(A`+1b`)

)
.

First suppose that Q is fixed by ϕ, so ϕ(0) = 0. In this situation a0 = 0 and
b0 6= 0, so if r = |A| is sufficiently small, then

min
(

min
0≤`≤d

ord(A`a`), min
0≤`≤d

ord(A`+1b`)
)

coincides with

min
(
ord(Aa1), ord(Ab0)

)
= ord(A)+min

(
ord(a1), ord(b0)

)
.

For such r we have

ordResϕ(ζ0,r )= ordRes(F,G)− 2d min
(
ord(a1), ord(b0)

)
+ (d2

− d)ord(A),

and since ord(A) measures the logarithmic path distance and increases as r→ 0,
the slope of ordResϕ( · ) at ζ0,r in the direction Ev∞ is −(d2

− d).
Next suppose Q is not fixed by ϕ, so ϕ(0) 6=0. In this case a0 6=0. If r=|A| is suf-

ficiently small, then min
(
min0≤`≤d ord(A`a`),min0≤`≤d ord(A`+1b`)

)
= ord(a0).

For such r we have

ordResϕ(ζ0,r )= ordRes(F,G)− 2dord(a0)+ (d2
+ d)ord(A),

so the slope of ordResϕ( · ) at ζ0,r in the direction Ev∞ is −(d2
+ d). �

6. The weight formula and the crucial set

In this section, we prove the weight formula (Theorem A) as Theorem 6.1. We then
give an intrinsic formula for the crucial measure (Corollary 6.5) and note some of
the functoriality properties of the crucial set and crucial measure.

We begin by defining weights wϕ(P), motivated by Propositions 5.1, 5.2, and 5.3.

Definition 8 (weights). For each P ∈ P1
K , let wϕ(P) be the following nonnegative

integer:

(1) If P ∈H1
K and P is fixed by ϕ, put

wϕ(P)= degϕ(P)− 1+ NShearing(P).
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(2) If P ∈H1
K and P is not fixed by ϕ, let v(P) be the number of directions Ev ∈ TP

such that BP(Ev)
− contains a type I fixed point of ϕ, and put

wϕ(P)=max(0, v(P)− 2).

(3) If P ∈ P1(K ), put wϕ(P)= 0.

Our main theorem (Theorem A) is:

Theorem 6.1 (weight formula). Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then∑
P∈P1

K

wϕ(P)= d − 1. (34)

Corollary 6.2. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Then∑
repelling fixed points

P ∈H1
K

(degϕ(P)− 1)≤ d − 1. (35)

In particular ϕ can have most d−1 repelling fixed points in H1
K .

In [Rumely 2014] it is shown that for each d ≥ 2, there exist functions ϕ ∈ K (z)
of degree d which have d−1 repelling fixed points in H1

K , so Corollary 6.2 is sharp.
Although the weight formulas in Definition 8 are mysterious, they arise naturally,

as shown by the proof of Theorem 6.1 and by Corollary 6.5 which gives an intrinsic
formula for the crucial measure νϕ .

The author’s efforts to understand the weights lead to the following observations.
It is not surprising that for a fixed point in HBerk, the degree should enter into
the weight. Given that (35) holds, if there are infinitely many fixed points, most
must have degree 1 and weight 0, so the contribution degϕ(P)− 1 to the weight is
understandable. The contribution from the shearing directions is more unexpected.
The presence of a shearing direction Ev ∈ TP indicates a difference between the
local and global behavior of ϕ: “ near P” points in the direction Ev are moved to
another direction Ew but “far away from P” there is a classical fixed point in the
direction Ev. There is a hidden similarity between the weight formulas for fixed
points and points that are moved. If P is fixed by ϕ, there need be no shearing
directions, and all the shearing directions count in the weight. For a point P ∈H1

K
which is moved by ϕ, there are automatically some shearing directions: If P is
outside 0Fix,Repel all the classical fixed points lie in one direction and that direction
is sheared. If P is in 0Fix,Repel but is not a branch point, there are two directions
containing classical fixed points and those directions are sheared. Such points must
have weight 0. However, if P is a branch point of 0Fix,Repel, there are more than
two shearing directions, and the weight counts the excess.
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The following proposition makes the weights more explicit and describes which
points have positive weight and which have weight zero:

Proposition 6.3 (properties of weights). Let P ∈ P1
K . If P is a focused repelling

fixed point, then wϕ(P)= degϕ(P)− 1. If P is an additively indifferent fixed point
in 0Fix or is a multiplicatively indifferent fixed point which is a branch point of 0Fix,
then wϕ(P) = NShearing(P). If P is an id-indifferent fixed point, then wϕ(P) = 0.
If P is a nonfixed branch point of 0Fix, then wϕ(P)= v(P)− 2. For all P , wϕ(P)
is an integer with 0≤ wϕ(P)≤ d − 1 and:

(A) wϕ(P) > 0 if

(1) P is a type II repelling fixed point of ϕ, or
(2) P is an additively indifferent fixed point of ϕ which belongs to 0Fix, or
(3) P is a multiplicatively indifferent fixed point of ϕ which is a branch point

of 0Fix, or
(4) P is a branch point of 0Fix which is moved by ϕ.

(B) wϕ(P)= 0 if

(1) P /∈ 0Fix,Repel, or
(2) P is not of type II, or
(3) P is an additively indifferent fixed point which is not in 0Fix, or
(4) P is a multiplicatively indifferent fixed point which is not a branch point

of 0Fix, or
(5) P is an id-indifferent fixed point, or
(6) P is moved by ϕ and is not a branch point of 0Fix.

Proof. If P is a focused repelling fixed point, the unique direction Ev ∈ TP such
that BP(Ev)

− contains type I fixed points is fixed by ϕ∗, so NShearing(P) = 0 and
wϕ(P)=degϕ(P)−1. If P is an additively indifferent or multiplicatively indifferent
fixed point, then degϕ(P)= 1 so wϕ(P)= NShearing(P). If P is id-indifferent, then
degϕ(P)= 1 and each Ev ∈ TP is fixed by ϕ∗, so NShearing(P)= 0; thus wϕ(P)= 0.
If P is a nonfixed branch point of 0Fix, then v(P) > 2 so wϕ(P)= v(P)− 2.

Clearly each type II repelling fixed point has wϕ(P) > 0. By results of Rivera-
Letelier [2003b, Lemmas 5.3 and 5.4] (or [Baker and Rumely 2010, Lemma 10.80]),
each fixed point of type III or IV has degree 1 and each of its tangent directions is
fixed by ϕ∗, hence wϕ(P)= 0. By definition, each point of type I has wϕ(P)= 0.

Each additively indifferent fixed point P /∈ 0Fix has type I fixed points in exactly
one tangent direction and Lemma 2.1 shows that direction is fixed by ϕ∗; hence
wϕ(P) = 0. On the other hand, each additively indifferent fixed point P ∈ 0Fix

has type I fixed points in at least two tangent directions, one of which must be a
shearing direction since an additively indifferent fixed point has exactly one fixed
direction; hence wϕ(P) > 0.
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Likewise, a multiplicatively indifferent fixed point P has two fixed directions and
Lemma 2.1 shows each of them must contain type I fixed points; thus P belongs
to 0Fix. If P is not a branch point of 0Fix, its two fixed directions are the only ones
containing type I fixed points, so it has no shearing directions, and wϕ(P) = 0.
If P is a branch point of 0Fix, there is at least one Ev ∈ TP containing a type I fixed
point besides the two fixed directions and that direction is a shearing direction,
so wϕ(P) > 0.

If P ∈ H1
K is not fixed by ϕ, there are three possibilities. Recall that v(P) is

the number of directions in TP containing a type I fixed point. If P /∈ 0Fix, there
is only one direction Ev ∈ TP containing type I fixed points, so v(P) = 1, giving
wϕ(P)= 0. If P ∈ 0Fix but P is not a branch point of 0Fix, then v(P)= 2, giving
wϕ(P)= 0. If P is a branch point of 0Fix, then v(P)≥ 3, so wϕ(P) > 0.

The fact that 0≤ wϕ(P)≤ d − 1 follows from Theorem 6.1, whose proof only
uses the formulas in Definition 8. �

Using Proposition 6.3, the weight formula (34) in Theorem 6.1 can be made
more explicit:∑

focused
repelling f.p.s

(degϕ(P)− 1) +
∑

bifocused and
multifocused f.p.s

(degϕ(P)− 1 +NShearing(P))

+

∑
additively

indifferent f.p.s in 0Fix

NShearing(P) +
∑

multiplicatively
indifferent f.b.p.s of 0Fix

NShearing(P) +
∑

nonfixed
b.p.s of 0Fix

(v(P)− 2)

= d − 1, (36)

where f.p.s, b.p.s, and f.b.p.s stand for fixed points, branch points, and fixed branch
points, respectively.

The idea for the proof of Theorem 6.1 is to take the Laplacian of ordResϕ( · ) on
finite metrized subgraphs of 0Fix,Repel; by simplifying the Laplacians and taking
a limit over a cofinal sequence of subgraphs, we obtain the result. By a finite
metrized graph we mean a connected subgraph with a finite number of vertices and
edges, such that each edge is equipped with a metric which makes it isometric to an
interval of finite length in R. For subgraphs of H1

K we will always take the metric
to be the one induced by the logarithmic path distance ρ(x, y).

If 0 ⊂H1
K is a finite metrized subgraph, let CPA(0) be the space of functions

on 0 which are continuous and piecewise affine (with a finite number of pieces)
with respect to the logarithmic path distance. For each P ∈ 0, we write TP,0 for
the tangent space to P in 0, namely the set of Ev ∈ TP such that there is an edge
of 0 emanating from P in the direction Ev. If the valence of P in 0 is v(P), then
TP,0 has v(P) elements. If f ∈ CPA(0), the Laplacian of F (as defined in [Baker
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and Rumely 2007]) is the measure

10( f )=
∑
P∈0

−

( ∑
Ev∈TP,0

∂Ev( f )(P)
)
δP(z), (37)

where δP(z) is the Dirac measure at P . Here 10(F) is a discrete measure, since
the inner sum in (37) is 0 at any P which is not a branch point of 0 and where F
does not change slope. It is well known (see for example [Baker and Rumely 2007])
that 10(F) has total mass 0. The proof is as follows. Note that for any partition of
0 into finitely many segments [Pi , Qi ] (disjoint except for their endpoints), such
that the restriction of F to each [Pi , Qi ] is affine, the slopes of F at Pi and Qi , in
the directions pointing into [Pi , Qi ], are negatives of each other.

Before proving Theorem 6.1, we will need an identity relating the number of
endpoints of a tree to the valences of its internal branch points. If 0 is a finite graph
and P ∈ 0, the valence v0(P) is the number of edges of 0 incident at P .

Lemma 6.4. Let 0 be a finite tree with D endpoints. Then

D −
∑

b.p.s P∈0

(v0(P)− 2)= 2, (38)

where b.p.s stands for “branch points”.

Proof. This is a reformulation of Euler’s formula V − E + F = 2 for planar graphs.
If B is the number of branch points of 0, then V = D+ B. Each edge has two

endpoints, so E = 1
2

(∑
vertices v(P)

)
. Since 0 is a tree, if it is embedded as a planar

graph then F = 1. Inserting these in Euler’s formula yields

2D+ 2B −
∑
e.p.s

v(P) −
∑
b.p.s

v(P)= 2, (39)

where e.p.s stands for end points. At each endpoint we have v(P) = 1, so∑
e.p.s v(P)= D. There are B branch points, so 2B =

∑
b.p.s 2. Combining terms

in (39) gives (38). �

Proof of Theorem 6.1. The idea is to restrict ordResϕ( · ) to finite subgraphs of
0Fix,Repel, take its Laplacian and simplify. Since 0Fix,Repel has branches of infinite
length, to apply the theory of graph Laplacians for metrized graphs from [Baker and
Rumely 2007], we cut off segments at the type I endpoints of 0Fix,Repel, obtaining
a finite metrized tree 0FR. We then exhaust 0Fix,Repel by a sequence of such trees.

For each type I fixed point αi of ϕ, choose a type II point Qi ∈ 0Fix,Repel close
enough to αi that

(1) there are no branch points of 0Fix,Repel in [Qi , αi ], and

(2) at each P ∈ [Qi , αi ), the slope of ordResϕ( · ) at P in the (unique) direction
Ev ∈ TP pointing away from αi in 0Fix,Repel is −(d2

− d).
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Since any two paths emanating from αi share a common initial segment, such Qi

exist by Proposition 5.4.
Let 0FR be the subtree of 0Fix,Repel spanned by the focused repelling fixed points

and the points Qi . Suppose there are D1 distinct type I fixed points (ignoring
multiplicities) and D2 focused repelling fixed points. Then the number of endpoints
of 0FR is

D = D1+ D2.

Let f ( · ) be the restriction of ordResϕ( · ) to 0FR. Then f belongs to CPA(0FR).
For each P ∈ 0FR, write TP,FR for its tangent space in 0FR (the set of Ev ∈ TP

such that there is an edge of 0FR emanating from P in the direction Ev). If P ∈
0FR \ {Q1, . . . , Q D1}, then TP,FR = TP,FR and the valence of P in 0FR coincides
with vFR(P). If P ∈ {Q1, . . . , Q D1} then TP,FR consists of the single direction
EvP,1 ∈ TP pointing into 0FR.

For the Laplacian 1FR( f ) we have

−1FR( f )

=

∑
P∈{Q1,...,Q D1 }

∂EvP,1 f (P)δP(z) +
∑

P∈0FR\{Q1,...,Q D1 }

( ∑
Ev∈TP,FR

∂Ev f (P)
)
δP(z). (40)

By Proposition 5.4, if P ∈ {Q1, . . . , Q D1} then ∂EvP,1 f (P)=−(d2
− d). We claim

that if P ∈ 0FR \ {Q1, . . . , Q D1}, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (vFR(P)− 2)+ 2d ·wϕ(P). (41)

If P ∈ 0FR \ {Q1, . . . , Q D1} is of type II and is a repelling fixed point, or is
a multiplicatively or additively indifferent fixed point, then (41) follows from
Proposition 5.1 and the definition of wϕ(P). If P is an id-indifferent fixed point,
then (41) follows from Proposition 5.2 since wϕ(P)= 0 by Proposition 6.3.

If P ∈0FR\{Q1, . . . , Q D1} is a type II point with ϕ(P) 6= P , then by Propositions
3.1 and 3.5, P belongs to 0Fix and is not a point where a branch of 0Fix,Repel \0Fix

attaches to 0Fix. It follows that vFR(P) (which is the valence of P in 0FR and
0Fix,Repel) coincides with v(P) (its valence in 0Fix). Hence (41) follows from
Proposition 5.3 and the definition of wϕ(P).

If P ∈0FR\{Q1, . . . , Q D1} is a type III point, then vFR(P)=2 andwϕ(P)=0, so
the right side of (41) is 0. The left side of (41) is also 0, since ordResϕ( · ) can change
slope only at points of type II (see Theorem 1.1). Each P ∈ 0FR \ {Q1, . . . , Q D1}

is either of type II or type III, so this establishes (41) in all cases.
Since 1FR( f ) has total mass 0, it follows from (40) and (41) that

D1 · (−(d2
−d)) +

∑
P∈0FR\{Q1,...,Q D1 }

(
(d2
−d) · (vFR(P)−2)+2d ·wϕ(P)

)
= 0. (42)
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If P is a focused repelling fixed point, then vFR(P)= 1, so vFR(P)− 2=−1. If P
is not an endpoint or a branch point of 0FR then vFR(P)−2= 0. Moving the terms
in (42) involving (d2

− d) to the right side, and noting that there are D2 focused
repelling fixed points, it follows that∑

P∈0FR\{Q1,...,Q D1 }

2d ·wϕ(P)= (d2
− d) ·

(
D1+ D2 −

∑
b.p.s of 0FR

(vFR(P)− 2)
)
, (43)

where b.p.s stands for branch points. By Lemma 6.4 the sum on the right side
of (43) equals 2. Dividing through by 2d gives∑

P∈0FR\{Q1,...,Q D1 }

wϕ(P)= d − 1. (44)

If we let the endpoints points Qi approach the type I fixed points αi , the cor-
responding graphs 0FR exhaust 0Fix,Repel ∩ H1

K . By Proposition 6.3, we have
wϕ(P)= 0 for each type I fixed point and for each P ∈ P1

K \0Fix,Repel. Thus∑
P∈P1

K

wϕ(P)= d − 1. �

Definition 9 (the crucial set, crucial weights, and crucial measure). The set of
points P ∈ P1

K with weight wϕ(P) > 0 will be called the crucial set and their
weights wϕ(P) will be called the crucial weights. The probability measure

νϕ =
1

d−1

∑
P∈P1

K

wϕ(P)δP(z) (45)

will be called the crucial measure of ϕ.

The crucial set consists of the repelling fixed points in H1
K , the indifferent fixed

points with a shearing direction, and the branch points of 0Fix which are moved
by ϕ. It has at most d−1 elements. If ϕ has potential good reduction, it consists
of the unique point where degϕ(P) = d. However, it can also consist of a single
point in other ways: for each k = 1, . . . , d − 1, it could be a fixed point P with
degϕ(P) = k and d − k shearing directions or it could be a branch point of 0Fix

with valence d + 1, which is moved. All of these possibilities actually occur; see
[Rumely 2014].

If 0 is a finite metrized graph, there is a natural measure of total mass 1 attached
to 0, its “Branching Measure” µ0,Br. This measure was introduced in [Chinburg
and Rumely 1993], where it was called the canonical measure and used to define a
pairing on the Arakelov divisor class group of a curve. It was studied in detail in
[Baker and Rumely 2007] and was generalized by Shouwu Zhang [1993], who used
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it to construct the dualizing metric for the Serre duality theorem in nonarchimedean
Arakelov theory.

When 0 is a tree, µ0,Br is supported on the branch points and endpoints of 0
and is given by the formula

µ0,Br =
∑
P∈0

(
1− 1

2v0(P)
)
δP(z).

This formula makes sense even when 0 has edges of infinite length. Note that
µ0,Br gives mass 1

2 to each endpoint of 0 and negative mass 1− 1
2v0(P) to each

branch point, so it is not in general a positive measure. The fact that µ0,Br has total
mass 1 follows from Lemma 6.4. When 0 = 0Fix,Repel, we will write µBr for its
branching measure.

We can obtain an intrinsic formula for νϕ by taking the Laplacian of ordResϕ( · )
on the tree 0Fix,Repel: suitably normalized, the Laplacian decomposes as the dif-
ference of µBr and νϕ . Note that µBr depends only on the topology of 0Fix,Repel,
while νϕ encodes analytic properties of ϕ. Thus, νϕ is the analytic part of a
decomposition of the normalized Laplacian into topological and analytic parts.

Corollary 6.5. Let ϕ(z) ∈ K (z) have degree d ≥ 2. Let f ( · ) be the restriction of
ordResϕ( · ) to 0Fix,Repel and let 1Fix,Repel( f ) be its Laplacian. Then

1
2d(d−1)

1Fix,Repel( f )= µBr− νϕ.

Proof. Since 0Fix,Repel has edges of infinite length and ordResϕ( · ) is unbounded,
the Laplacian 1Fix,Repel( f ) must be defined in a more sophisticated way than
formula (37). (See [Baker and Rumely 2010, §5] and [Jonsson 2015, §2] for
general discussions of Laplacians on mildly infinite graphs.) Here is a distri-
butional definition for it. Let C(0Fix,Repel) be the space of continuous functions
η : 0Fix,Repel → R. Since 0Fix,Repel is compact, such functions are necessarily
bounded. Let 3 f : C(0Fix,Repel)→R be the continuous linear functional defined by

3 f (η)= lim
−→

0⊂0Fix,Repel

∫
0

η10( f ),

where the limit is taken over the set of finite subgraphs 0 ⊂ 0Fix,Repel, partially
ordered by inclusion. Then 1Fix,Repel( f ) is the Radon measure representing 3 f .

Let 0 = 0FR be a finite subgraph of 0Fix,Repel of the type considered in the proof
of Theorem 6.1. Reformulating (40) using (41) and Proposition 5.4, one has

10( f )=
∑

P∈{Q1,...,Q D1 }

(d2
−d)δP −

∑
P∈0\{Q1,...,Q D1 }

(
(d2
−d)(v0(P)−2)+2d ·wϕ(P)

)
δP .
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Using the definitions of µ0,Br and νϕ , this can be rewritten as

10( f )= 2d(d − 1) · (µ0,Br− νϕ).

Letting Q1, . . . , Q D1 approach the type I endpoints of 0Fix,Repel, one sees that for
any test function η ∈ C(0Fix,Repel),∫

0

η µ0,Br→

∫
0Fix,Repel

η µBr.

Hence 1Fix,Repel( f )= 2d(d − 1) · (µBr− νϕ). �

We close this section by noting some functoriality properties of the crucial set.
First, the weights, crucial set, and crucial measure have the same equivariance
properties under conjugation as fixed points:

Proposition 6.6. Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let γ ∈GL2(K ). Viewing
γ as a linear fractional transformation, put ϕγ = γ−1

◦ ϕ ◦ γ . Then the weights,
crucial set, and crucial measure satisfy

wϕγ (γ
−1(P))= wϕ(P), Cr(ϕγ )= γ−1(Cr(ϕ)), and νϕγ = γ

∗(νϕ).

Proof. The group GL2(K ) acts transitively on type II points and, by the defini-
tion of ordResϕ( · ) on type II points, for each τ ∈ GL2(K ), if P = τ(ζG) then
ordResϕ(τ (ζG))= ord(Res(ϕτ )). It follows that

ordResϕγ (τ (ζG))= ord(Res((ϕγ )τ ))= ordResϕ(γ (τ (ζG))).

Since ordResϕ( · ) is determined by continuity from its values on type II points,
we have ordResϕγ (P)= ordResϕ(γ (P)) for all P ∈ P1

K . Replacing P by γ−1(P)
shows that

ordResϕγ (γ−1(P))= ordResϕ(P).

Furthermore, P is a fixed point of ϕ if and only if γ−1(P) is a fixed point of
ϕγ and in that case the points have the same local degrees. This implies that
0Fix,Repel(ϕ

γ ) = γ−1(0Fix,Repel(ϕ)). The assertions in the Proposition follow by
taking Laplacians. �

Next, we show the crucial set and crucial measure are preserved under extension
of the ground field. If L ⊃ K is another complete, algebraically closed field, there
is a canonical embedding P1

K ↪→ P1
L . This is a special case of a general result about

what Berkovich [1990] called peaked points and Poineau [2013] renamed universal
points. Poineau1 shows that whenever K is algebraically closed and L/K is any
field extension, if X K is any Berkovich space over K , then there is a canonical
embedding X K ↪→ X L .

1The author thanks one of the anonymous referees for bringing Poineau’s result to his attention.
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Proposition 6.7. Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let L ⊇ K be another
complete algebraically closed valued field, whose valuation extends the one on K .
Using subscripts L and K to denote objects computed over the corresponding
ground fields, we have

CrL(ϕ)= CrK (ϕ) and νϕ,L = νϕ,K .

Proof. Faber [2013a, §4] constructs the embedding P1
K ↪→ P1

L in an elementary
way and shows that it respects the action of ϕ on points and tangent spaces and
preserves path distances and degrees of points. By the formulas in Definition 8,
for each P ∈ P1

K we have wϕ,L(P)≥wϕ,K (P). Applying Theorem 6.1 over L and
over K we see that ∑

P∈P1
L

wϕ,L(P)= d − 1=
∑

P∈P1
K

wϕ,K (P).

Hencewϕ,L(P)=wϕ,K (P) for each P ∈P1
K andwϕ,L(P)= 0 for each P ∈P1

L \P
1
K .

The assertions in the proposition follow from this. �

Finally, the weights, crucial set, and crucial measures are Galois-equivariant.
Recall that if σ is a continuous automorphism of K , then the action of σ on K
extends to an action of σ on P1

K which is continuous for both the weak and strong
topologies, respects the logarithmic path distance, and is given on points of type II
and type III by σ(ζa,r )= ζσ(a),r .

Proposition 6.8. Let ϕ(z) ∈ K (z) have degree d ≥ 2 and let σ be a continuous
automorphism of K . Then the weights, crucial set, and crucial measure satisfy

wσ(ϕ)(σ (P))= wϕ(P), Cr(σ (ϕ))= σ(Cr(ϕ)), and νσ(ϕ) = σ∗(νϕ).

Proof. Since σ respects absolute value on K and since the resultant is defined by a
determinant in the coefficients of ϕ, it follows that for each τ ∈ GL2(K ),

ord(Res(ϕτ ))= ord(Res(σ (ϕτ )))= ord(Res(σ (ϕ)σ(τ))).

Since ζG = ζ0,1, the description of the action of σ on type II points shows that
σ(ζG) = ζG . This means that for the type II point P = τ(ζG), one has σ(P) =
σ(τ)(ζG) and hence

ordResσ(ϕ)(σ (P))= ordResσ(ϕ)(σ (τ )(ζG))= ord(Res(σ (ϕ)σ(τ)))

= ord(Res(ϕτ ))= ordResϕ(τ (ζG))= ordResϕ(P).

By continuity, this holds for all P ∈ P1
K .

Furthermore, P is a fixed point of ϕ if and only if σ(P) is a fixed point of
σ(ϕ) and in that case the points have the same local degrees. This implies that
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0Fix,Repel(σ (ϕ)) = σ(0Fix,Repel(ϕ)). The assertions in the proposition follow by
taking Laplacians. �

7. Characterizations of the minimal resultant locus

In this section, we characterize MinResLoc(ϕ) from analytic and moduli-theoretic
standpoints. We first give an analytic characterization. Before stating it we need
two definitions.

Definition 10 (barycenter). The barycenter of a finite positive measure ν on P1
K is

the set of points Q ∈ P1
K such that for each direction Ev ∈ TQ , at most half the mass

of ν lies in BQ(Ev)
−.

The notion of the barycenter of a measure on P1
K is due to Benedetto and Rivera-

Letelier, who used it in unpublished work on the “s log s” bound for the number of
k-rational preperiodic points of ϕ(z) ∈ k(z), when k is a number field.

Definition 11 (the crucial tree). The crucial tree 0ϕ is the subtree of 0Fix,Repel

spanned by the crucial set of ϕ. We define the vertices of 0ϕ to be the points of
the crucial set (whether they are endpoints or interior points of 0ϕ) and the branch
points of 0ϕ . The edges of 0ϕ are the closed segments between adjacent vertices.

Theorem 7.1 (dynamical characterization of MinResLoc(ϕ)). Let ϕ(z) ∈ K (z)
have degree d ≥ 2. Then MinResLoc(ϕ) is the barycenter of the crucial mea-
sure νϕ . Equivalently, a point Q ∈ P1

K belongs to MinResLoc(ϕ) if and only if for
each Ew ∈ TQ ∑

P∈BQ( Ew)−

wϕ(P)≤
d−1

2
. (46)

If d is even, then MinResLoc(ϕ) is a vertex of the crucial tree 0ϕ . If d is odd, then
MinResLoc(ϕ) is either a vertex or an edge of 0ϕ .

Proof. To show that MinResLoc(ϕ) is the barycenter of νϕ , we must show for each
Q ∈ P1

K that Q ∈MinResLoc(ϕ) if and only if for each Ew ∈ TQ ,

νϕ(BQ( Ew)
−)≤ 1

2 .

If Q /∈ 0Fix,Repel this is trivial: Q /∈MinResLoc(ϕ) since

MinResLoc(ϕ)⊂ 0Fix,Repel ∩H1
K ,

while if Ew ∈ TQ is the direction towards 0Fix,Repel then νϕ(BQ(Ev)
−)= 1. Similar

reasoning applies when Q ∈ 0Fix,Repel ∩P1(K ).
Let Q ∈0Fix,Repel∩H1

K and write f ( · )= ordResϕ( · ). Then Q ∈MinResLoc(ϕ)
if and only if ∂ Ew f (Q)≥ 0 for each Ew ∈ TQ . If Ew ∈ TQ points away from 0Fix,Repel

then ∂ Ew f (Q) > 0 and νϕ(BQ( Ew)
−)= 0. Hence it is enough to show that for each
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Ew ∈ TQ,FR, we have ∂ Ew f (Q)≥ 0 if and only if νϕ(BQ( Ew)
−)≤ 1

2 , or equivalently
that (46) holds. For this, we use an argument like the one in the proof of Theorem 6.1.

Let 0 be the graph consisting of the part of 0Fix,Repel in BQ( Ew)
−, together with Q.

The endpoints of 0 are Q and the type I fixed points and focused repelling fixed
points of ϕ in BQ( Ew)

−. Let D′1 be the number of type I endpoints and let D′2 be the
number of focused repelling endpoints, so 0 has D′ = 1+D′1+D′2 endpoints in all.

Suppose the type I fixed points of ϕ in BQ( Ew)
− are α1, . . . , αD′1 . For each αi ,

choose a type II point Qi in 0Fix,Repel close enough to αi that

(1) there are no branch points of 0 in [Qi , αi ],

(2) at each P ∈ [Qi , αi ), the slope of ordResϕ( · ) at P in the (unique) direction
Evi ∈ TP pointing away from αi in 0 is −(d2

− d), and

(3) each P ∈ [Qi , αi ] has weight wϕ(P)= 0.

Since only finitely many points have positive weight, Proposition 5.4 shows that
such Qi exist. Let 0̂ be the finite metrized graph gotten by cutting the terminal
segments (Qi , αi ] off of 0.

To simplify notation, write Q0 for Q and let Ev0 = Ew ∈ TQ . Then the Laplacian
10̂( f ) satisfies

−10̂( f )

=

∑
P∈{Q0,Q1,...,Q D′1

}

∂Evi f (P)δP(z) +
∑

P∈0̂\{Q0,Q1,...,Q D′1
}

( ∑
Ev∈TP,FR

∂Ev f (P)
)
δP(z). (47)

Put L = ∂ Ew f (Q) = ∂Ev0 f (Q0). By Proposition 5.4, if P ∈ {Q1, . . . , Q D′1} then
∂Evi f (P)=−(d2

− d). By formula (41), if P ∈ 0̂ \ {Q0, Q1, . . . , Q D′1}, then∑
Ev∈TP,FR

∂Ev f (P)= (d2
− d) · (v0̂(P)− 2)+ 2d ·wϕ(P).

Inserting these values in (47) and using that 10̂( f ) has total mass 0, we see that

0= L + D′1 · (−(d
2
− d)) +

∑
P∈0̂\{Q0,Q1,...,Q D′1

}

(
(d2
− d) · (v0̂(P)− 2)+ 2d ·wϕ(P)

)
.

If P ∈ 0̂ is not an endpoint or a branch point, then (d2
−d) ·(v0̂(P)−2)= 0. There

are D′2 focused repelling endpoints of 0̂ in BQ( Ew)
− and for each of them we have

(d2
− d) · (v0̂(P)− 2)=−(d2

− d). Hence

L =
(

D′1+ D′2 −
∑

b.p.s of 0̂

(v0̂(P)− 2)
)
· (d2
− d)− 2d ·

∑
P∈0̂∩BP ( Ew)−

wϕ(P). (48)
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Since 0̂ has D′ = 1+ D′1+ D′2 endpoints, Lemma 6.4 gives

D′1+ D′2 −
∑

b.p.s of 0̂

(v0̂(P)− 2)= 1. (49)

It follows from (48) and (49) that L ≥ 0 if and only if (46) holds. Thus Q belongs
to MinResLoc(ϕ) if and only if Q is in the barycenter of νϕ .

Clearly MinResLoc(ϕ)⊆ 0ϕ . To see that MinResLoc(ϕ) is either a vertex or an
edge of 0ϕ , note that as a point P moves along 0ϕ , the distribution of νϕ-mass in
the various directions Ev ∈ TP can change only when P passes through a vertex.

If MinResLoc(ϕ) consists of a vertex of 0ϕ , then we are done. Otherwise,
MinResLoc(ϕ) contains a point Q in the interior of an edge e of 0ϕ . Since there
are precisely two directions Ev ∈ TQ for which the balls BQ(Ev)

− can contain νϕ-mass
and since each has mass at most 1

2 , each must have mass exactly 1
2 . This continues

to hold for all P in the interior of e but it changes when P reaches an endpoint of e.
At an endpoint P0 of e, for the direction Ev0 ∈ TP0 pointing into e we still

have νϕ(BP0(Ev0)
−) = 1

2 , so for all Ev ∈ TP0 with Ev 6= Ev0 we necessarily have
νϕ(BP( Ew)

−) ≤ 1
2 and P0 belongs to MinResLoc(ϕ). If P0 is an endpoint of 0ϕ ,

this is all that needs to be said. If P0 is a vertex of 0ϕ which is not a branch point,
then P0 belongs to the crucial set, so νϕ({P0}) > 0. Hence when P moves outside e,
for the direction Ev ∈ TP pointing towards e we will have νϕ(BP(Ev)

−) > 1
2 , so

P /∈MinResLoc(ϕ). Finally, if P0 is a branch point of 0ϕ , there are at least two
directions Ev1, Ev2 ∈ TP0 with Ev1, Ev2 6= Ev0 such that νϕ(BP0(Evi )

−) > 0. Hence when
P moves outside e, for the direction Ev ∈ TP pointing towards e, we will again have
νϕ(BP(Ev)

−) > 1
2 and P /∈MinResLoc(ϕ). �

We next give a moduli-theoretic characterization of MinResLoc(ϕ).
The basic theorem in geometric invariant theory (GIT) concerning moduli spaces

of rational functions is due to Silverman. Let R be a commutative ring with 1
and let ϕ : P1

R → P1
R be a morphism of degree d ≥ 2. Fixing homogeneous

coordinates on P1
R , the map ϕ corresponds to a pair of homogeneous functions

F(X, Y )= fd Xd
+· · ·+ f0Y d and G(X, Y )= gd Xd

+· · ·+g0Y d in R[X, Y ] such
that Res(F,G) is a unit in R. Writing f = ( fd , . . . , f0) and g = (gd , . . . , g0), let

Zϕ = Z f,g = ( fd : · · · : f0 : gd : · · · : g0) ∈ P2d+1(R)

be the point corresponding to ϕ. If µ =
(
α
γ
β
δ

)
∈ GL2(R), the usual conjugation

action of µ on ϕ defined by

ϕµ =

(
δ −β

−γ α

)
◦

(
F
G

)
◦

(
α β

γ δ

)
=

(
δF(αX +βY, γ X + δY )−βG(αX +βY, γ X + δY )
−γ F(αX +βY, γ X + δY )+αG(αX +βY, γ X + δY )

)
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induces an algebraic action of GL2 on P2d+1. If R =� is an algebraically closed
field, the groups GL2(�) and SL2(�) have the same orbits in P2d+1(�). For
technical reasons, in GIT it is better to work with the action of SL2; Silverman
[1998, Theorems 1.1 and 1.3] proves:

Theorem 7.2 (Silverman). There are open subschemes of P2d+1/Spec(Z)

Ratd ⊆ (P2d+1)s ⊆ (P2d+1)ss

(the subschemes of rational morphisms of degree d, stable points, and semistable
points), which are invariant under the conjugation action of SL2, such that the
quotients

Md = Ratd/SL2, M s
d = (P

2d+1)s/SL2, and M ss
d = (P

2d+1)ss/SL2

exist. Md is a dense open subset of M s
d and M ss

d , Md and M s
d are geometric

quotients, and M ss
d is a categorical quotient which is proper and of finite type over Z.

Geometrical and categorical quotients are quotients with certain desirable proper-
ties (see [Mumford et al. 1994] for the definitions). The fact that Md is a geometric
quotient includes the fact over any algebraically closed field �, the SL2(�) orbits
of rational functions of degree d are in one-to-one correspondence with the points
of Md(�). The spaces M s

d and M ss
d are called the spaces of stable and semistable

conjugacy classes of rational maps, respectively. Loosely, the stable locus (P2d+1)s

is the largest subscheme such that for any algebraically closed field �, the SL2(�)-
orbits of points in (P2d+1)s(�) are closed and are in one-to-one correspondence
with the points of M s

d(�). Loosely, the semistable locus (P2d+1)ss is the largest sub-
scheme for which a quotient makes sense: SL2(�)-orbits of points in (P2d+1)ss(�)

need not be closed but if one defines two orbits to be equivalent if their closures
meet, points of M ss

d (�) correspond to equivalence classes of SL2(�)-orbits. Each
equivalence class of orbits in (P2d+1)ss(�) contains a unique minimal closed orbit.

Recall that K is a complete, algebraically closed nonarchimedean valued field
with ring of integers O and residue field k̃:

Definition 12 (semistable and stable reduction). Let ϕ(z) ∈ K (z) have degree
d ≥ 2 and let (F,G) be a normalized representation of ϕ. Writing F(X, Y ) =
fd Xd

+ · · ·+ f0Y d and G(X, Y )= gd Xd
+ · · · g0Y d , let

Zϕ = ( fd : · · · : f0 : gd : · · · : g0) ∈ P2d+1(K )

be the point corresponding to ϕ. We will say that ϕ has semistable reduction if

Z̃ϕ = ( f̃d : · · · : f̃0 : g̃d : · · · : g̃0) ∈ P2d+1(k̃)

belongs to (P2d+1)ss(k̃) and that ϕ has stable reduction if Z̃ϕ belongs to (P2d+1)s(k̃).
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Making explicit the Hilbert–Mumford numerical criteria, Silverman [1998, Propo-
sition 2.2] gives necessary and sufficient conditions for a point to be semistable
or stable.

Proposition 7.3. Let SL2 act on P2d+1 as above and suppose Z̃ ∈ P2d+1(k̃). Then:

(A) Z̃ belongs to (P2d+1)ss(k̃) if and only if for each τ̃ ∈SL2(k̃), when Z̃ τ̃ is written
as (ãd : · · · : ã0 : b̃d : · · · : b̃0), either there is some i with (d + 1)/2 ≤ i ≤ d
such that ãi 6= 0 or there is some i with (d − 1)/2≤ i ≤ d such that b̃i 6= 0.

(B) Z̃ belongs to (P2d+1)s(k̃) if and only if for each τ̃ ∈SL2(k̃), when Z̃ τ̃ is written
as (ãd : · · · : ã0 : b̃d : · · · : b̃0), either there is some i with (d + 1)/2 < i ≤ d
such that ãi 6= 0 or there is some i with (d − 1)/2< i ≤ d such that b̃i 6= 0.

Proof. This is [Silverman 1998, Proposition 2.2] in the special case � = k̃, with
two modifications. Silverman formulates conditions (A) and (B) as characterizing
the “unstable” and “not stable” points of P2d+1(k̃). Our assertions are the contra-
positives of his: by definition, “semistable” is “not unstable” and “stable” is “not
not stable”. Second, Silverman writes ϕ(z)= (a0zd

+ · · ·+ ad)/(b0zd
+ · · ·+ bd),

indexing coefficients of rational function in the opposite order. We have adjusted
his coefficient ranges to account for this. �

The connection between semistability and having minimal resultant is due to
Szpiro, Tepper, and Williams, who proved the implication “semistable reduction
implies minimal resultant” in part A of the following theorem using a moduli-
theoretic argument (see [Szpiro et al. 2014, Theorem 3.3]). Here we establish the
converse as well; however, the theorem of Szpiro, Tepper, and Williams holds in
arbitrary dimension n, whereas ours applies only when n = 1.

Theorem 7.4 (moduli-theoretic characterization of MinResLoc(ϕ)). Let ϕ(z)∈K(z)
have degree d ≥ 2. Suppose γ ∈ GL2(K ) and put P = γ (ζG), then:

(A) P belongs to MinResLoc(ϕ) if and only if ϕγ has semistable reduction in the
sense of GIT.

(B) MinResLoc(ϕ) consists of the single point P if and only if ϕγ has stable
reduction in the sense of GIT.

Proof. We first show (A). Fixing γ , put P = γ (ζG). Note that P ∈MinResLoc(ϕ)
if and only if ∂EvordResϕ(P)≥ 0 for each Ev ∈ TP . After replacing ϕ with ϕγ , we can
assume that P = ζG . Let Zϕ ∈ P2d+1(K ) be the point corresponding to ϕ and let
Z̃ϕ ∈P2d+1(k̃) be its reduction. We will index directions Ev∈TζG by points a∈P1(k̃).

Fix a direction Eva ∈ TζG and choose τ̃ ∈ SL2(k̃) so that τ̃ (∞)= a. We will show
that ∂Eva ordResϕ(ζG) ≥ 0 if and only if the condition of Proposition 7.3(A) holds
for (Z̃ϕ)τ̃ .
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Lift τ̃ to τ ∈ SL2(O). Let (F,G) be a normalized representation of ϕτ and write
F(X, Y )= ad Xd

+· · ·+a0Y d and G(X, Y )= bd Xd
+· · ·+b0Y d . Since the action

of SL2 commutes with reduction, it follows that

(Z̃ϕ)τ̃ = (̃Zϕτ )= (ãd : · · · ã0 : b̃d : · · · : b̃0).

Since τ∗(Ev∞)= Eva , the function ordResϕ( · ) is nondecreasing in the direction Eva

at ζG if and only if ordResϕτ ( · ) is nondecreasing in the direction Ev∞. Take A ∈ K×

with |A| ≥ 1. By [Rumely 2015, formula (13)], we have
ordResϕτ (ζ0,|A|)− ordResϕτ (ζG)

= (d2
+ d)ord(A)− 2d · min

0≤i≤d

(
ord(Ai ai ), ord(Ai+1bi )

)
= max

0≤i≤d

(
(d2
+ d − 2di)ord(A)− 2dord(ai ),

(d2
+ d − 2d(i + 1))ord(A)− 2dord(bi )

)
. (50)

The terms in (50) which are nondecreasing as |A| increases are the ones involving
ord(ai ) for (d+1)/2≤ i ≤ d and the ones involving ord(bi ) for (d−1)/2≤ i ≤ d .

Since (F,G) is normalized, we have ord(ai ) ≥ 0 and ord(bi ) ≥ 0 for all i and
there is at least one i for which ord(ai )= 0 or ord(bi )= 0. Hence the terms with
ord(ai ) > 0 or ord(bi ) > 0 cannot be the maximal ones in (50) when ord(A) is
near 0. It follows that ∂Ev∞ordResϕτ (ζG)≥ 0 if and only if

ord(ai )= 0 for some i with (d + 1)/2≤ i ≤ d, or

ord(bi )= 0 for some i with (d − 1)/2≤ i ≤ d.

Since ord(ai )= 0 if and only if ãi 6= 0 and ord(bi )= 0 if and only if b̃i 6= 0, these
are precisely the conditions on (Z̃ϕ)τ̃ from Proposition 7.3(A).

Since τ∗(Ev∞) runs over all Eva ∈ TP as τ̃ runs over SL2(k̃), it follows that P
belongs to MinResLoc(ϕ) if and only if ϕγ has semistable reduction.

Part (B) is proved similarly, using that P = γ (ζG) is the unique point in
MinResLoc(ϕ) if and only if ∂EvordResϕ(P) > 0 for each Ev ∈ TP and that the
terms in (50) which are increasing as |A| increases are the ones involving ord(ai )

for (d + 1)/2< i ≤ d and the ones involving ord(bi ) for (d − 1)/2< i ≤ d . �
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