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Theorem 5.1 is corrected in the paper Frobenius and valuation rings.

The characterization of F-finite valuation rings of function fields (Theorem 5.1)
is incorrect. The corrected characterization is as follows:

Theorem 0.1. Let K be a finitely generated extension of an F-finite ground field k.
Let V be any nontrivial valuation ring of K/k. Then V is F-finite if and only if V is
divisorial.

A proof of this corrected theorem follows a complete accounting of affected
statements in the paper. Notation and theorem and page numbers are as in [Datta
and Smith 2016].

1. List of affected statements

The source of the error is Proposition 2.2.1 (page 1061), which is misquoted from
the original source [Bourbaki 1998]. Specifically, the last sentence in the statement
of Proposition 2.2.1 should read: Furthermore, equality holds if the integral closure
of Rν in L is a finitely generated Rν-module, not if and only if . The statement
is correct, however, under the additional assumption that the valuation ring Rν is
Noetherian [Bourbaki 1998, VI, §8.5, Remark (1)].

This error has consequences in the following statements from the paper.

THEOREM 4.3.1 should read: Let V be a valuation ring of an F-finite field K of
prime characteristic p. If V is F-finite, then

[0 : p0][κ : κ p
] = [K : K p

],

where 0 is the value group and κ is the residue field of V .
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The paper had incorrectly stated the converse, which does hold if the valuation
ring is Noetherian [Bourbaki 1998, VI, §8.5, Remark (1)].

COROLLARY 4.3.2 should read: With hypotheses as in Theorem 4.3.1, if [K :
K p
] = [κ : κ p

], then V is F-finite. See Section 2 below for the proof. The original
statement holds as stated if V is Noetherian.

EXAMPLES 4.4.1 and 4.4.2 (page 1069): The computations here are correct but
the conclusions are not. Rather, Theorem 0.1 ensures these valuation rings are not
F-finite.

EXAMPLE 4.5.1 (page 1070) is correct as stated, as it follows from the correct
implication of Theorem 4.3.1.

PROPOSITION 4.6.1 (page 1071): This statement is correct. However, the proof
of (iii) is not, because it cited the incorrect implication of Proposition 2.2.1. The
corrected proof is in Section 3 below.

THEOREM 5.1 (page 1072): The equivalence of (ii) and (iii) is correct, and both
imply (i). Under the additional assumption that the valuation is discrete, also (i)
implies (ii) and (iii). The proof of Theorem 5.1 in the paper proves:

Theorem 1.1. Let K be a finitely generated field extension of an F-finite ground
field k of characteristic p. The following are equivalent for a valuation v on K/k:

(i) The valuation v is Abhyankar.

(ii) [0 : p0][κ : κ p
] = [K : K p

], where 0 is the value group, and κ is the residue
field of v.

COROLLARY 5.2 (page 1072) is correct as stated; it is a consequence of Theorem 0.1.

COROLLARY 6.6.3 (page 1086) is correct as stated; the proof should invoke
Theorem 0.1 instead of Theorem 5.1.

The remaining statements in Section 5 (Remark 5.3, Proposition 5.4, Lemma 5.5,
Proposition 5.6, Lemma 5.7, Lemma 5.8) and Section 6 are correct, because they
do not rely on Proposition 2.2.1 or its consequences.

2. Proof of Theorem 0.1

Lemma 2.1. Let (V,m) be a valuation ring of prime characteristic p. If m is not
principal, then

m=m[p].

Proof. Take any x ∈m. It suffices to show that there exists y ∈m such that y p
| x .

Note that since m is not principal, the value group 0 of the corresponding valuation
v does not have a smallest element > 0. This means we can choose β0 ∈ 0 such
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that 0< β0 < v(x), and then also choose β1 ∈ 0 such that

0< β1 <min{β0, v(x)−β0}.

Let y1 ∈m be such that v(y1)= β1. Then

v(y2
1)= 2β1 < β0+ (v(x)−β0)= v(x).

Thus, y2
1 | x . Repeating this argument inductively, we can find yn ∈ m such that

y2
n | yn−1 for all n ∈N. For n> log2 p, we have that y2n

n , and hence y p
n , divides x . �

Lemma 2.2. Let (V,m, κ) be a valuation ring of characteristic p. Then the dimen-
sion of V/m[p] over κ p is

(a) [κ : κ p
] if m is not finitely generated.

(b) p[κ : κ p
] if m is finitely generated.

Proof. Consider the short exact sequence of κ p-vector spaces

0→m/m[p]→ V/m[p]→ κ→ 0. (1)

If m is not finitely generated, then Lemma 2.1 implies that m/m[p] = 0, and (a)
follows. Otherwise, m is principal, so m[p] =mp and we have a filtration

m)m2 ) · · ·)mp−1 )m[p] =mp.

Since mi/mi+1 ∼= κ , we see that dimκ p(m/m[p])= (p− 1)[κ : κ p
]. From the short

exact sequence (1), dimκ p(V/m[p])= p[κ : κ p
], proving (b). �

Proof of Theorem 0.1. If V is divisorial, it is a localization of a finitely generated
algebra over the F-finite ground field k, hence it is F-finite.

For the converse, let m be the maximal ideal and κ the residue field of V . Since
V is F-finite, by (the corrected) Theorem 4.3.1,

[0 : p0][κ : κ p
] = [K : K p

], (2)

where 0 is the value group of V . Thus, the valuation is Abhyankar by Theorem 1.1
above. To show it is divisorial, we need to show it is discrete.

Because the value group of an Abhyankar valuation is finitely generated, 0∼=Z⊕s

for some integer s ≥ 1. Hence it suffices to show that s = 1.
Since V is F-finite, we know V is free over V p of rank [K : K p

]. Tensoring
with the residue field κ p of V p, we have that V/m[p] is also a free κ p-module of
rank [K : K p

]. Thus, from (2) we have

dimκ p V/m[p] = [K : K p
] = [0 : p0][κ : κ p

]

=
∣∣Z⊕s/pZ⊕s

∣∣[κ : κ p
] = ps

[κ : κ p
]. (3)

But now, since ps
6= 1, Lemma 2.2 forces s = 1, and the proof is complete. �



1006 Rankeya Datta and Karen E. Smith

Remark 2.3. Theorem 0.1 does not hold without some assumption on the field K .
For instance, if K is perfect, Frobenius is an isomorphism (hence a finite map)
for any valuation ring of K . The proof of Theorem 0.1 does show that an F-
finite valuation ring with finitely generated value group must be Noetherian (hence
discrete), without any restriction on its fraction field. Furthermore, the proof
also shows that a valuation ring cannot be F-finite if its value group 0 satisfies
[0 : p0]> p.

Proof of revised COROLLARY 4.3.2. In general, [0 : p0][κ : κ p
] ≤ [K : K p

] by
[Bourbaki 1998, VI, §8.1, Lemma 2]. Hence our hypothesis forces [0 : p0] = 1.
Thus 0 = p0, so that 0 cannot have a smallest positive element, which means that
the maximal ideal m of V is not finitely generated. Lemma 2.2(a) now ensures
dimκ p(V/m[p])= [κ : κ p

] = [K : K p
]. Then V is F-finite by [Bourbaki 1998, VI,

§8.5, Theorem 2(c)]. �

3. Proof of Proposition 4.6.1(iii)

We recall PROPOSITION 4.6.1(iii): Let K ↪→ L be a finite extension of F-finite
fields of characteristic p. Let w be a valuation on L and v its restriction to K . Then
the valuation ring of v is F-finite if and only if the valuation ring of w is F-finite.

Lemma 3.1. With notation as in Proposition 4.6.1(iii), the maximal ideal of the
valuation ring of v is finitely generated if and only if the maximal ideal of the
valuation ring of w is finitely generated.

Proof. For ideals in a valuation ring, finite generation is the same as being principal.
Principality of the maximal ideal is equivalent to the value group having a smallest
element > 0. Thus, it suffices to show that the value group 0v of v has this property
if and only if 0w does.

Assume 0w has a smallest element g > 0. We claim that for each t ∈ N, the
only positive elements of 0w less than tg are g, 2g, . . . , (t − 1)g. Indeed, suppose
0 < h < tg. Since g is smallest, g ≤ h < tg, whence 0 ≤ h − g < (t − 1)g. So
by induction, h − g = ig for some i ∈ {0, 1, . . . , t − 2}, and hence h is among
g, 2g, . . . , (t − 1)g.

Now, because [0w : 0v] ≤ [L : K ]<∞ by [Bourbaki 1998, VI, §8.1, Lemma 2],
every element of 0w/0v is torsion. Let n be the smallest positive integer such that
ng ∈ 0v . We claim that ng is the smallest positive element of 0v . Indeed, the only
positive elements smaller than ng in 0w are g, 2g, . . . , (n− 1)g, and none of these
are in 0v by our choice of n.

Conversely, if 0v has a smallest element h > 0, then the set

S := {g ∈ 0w : 0< g < h}
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is finite because for distinct g1, g2 in this set, their classes in 0w/0v are also distinct,
while 0w/0v is a finite group. Then the smallest positive element of 0w is the
smallest element of S, or h if S is empty. �

Proof of Proposition 4.6.1(iii). A necessary and sufficient condition for the F-
finiteness of a valuation ring (V,m, κ)with F-finite fraction field K is, by [Bourbaki
1998, VI, §8.5, Theorem 2(c)], that

dimκ p(V/m[p])= [K : K p
]. (4)

Lemma 2.2 gives a formula for dimκ p(V/m[p]) in terms of [κ : κ p
] that depends on

whether the maximal ideal is finitely generated, which is the same for v and w by
Lemma 3.1. Proposition 4.6.1(i) and (ii) tell us that both [K : K p

] = [L : L p
] and

[κv : κ
p
v ] = [κw : κ

p
w]. Thus Lemma 2.2 and (4) guarantee that the valuation ring of

v is F-finite if and only if the valuation ring of w is F-finite. �
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