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We give a new and independent parametrization of the set of discrete series
characters of an affine Hecke algebra Hv , in terms of a canonically defined basis
Bgm of a certain lattice of virtual elliptic characters of the underlying (extended)
affine Weyl group. This classification applies to all semisimple affine Hecke
algebras H, and to all v ∈ Q, where Q denotes the vector group of positive
real (possibly unequal) Hecke parameters for H. By analytic Dirac induction
we define for each b ∈ Bgm a continuous (in the sense of Opdam and Solleveld
(2010)) family Qreg

b :=Qb \Q
sing
b 3 v→ IndD(b; v), such that ε(b; v)IndD(b; v)

(for some ε(b; v) ∈ {±1}) is an irreducible discrete series character of Hv . Here
Qsing

b ⊂Q is a finite union of hyperplanes in Q.
In the nonsimply laced cases we show that the families of virtual discrete series

characters IndD(b; v) are piecewise rational in the parameters v. Remarkably,
the formal degree of IndD(b; v) in such piecewise rational family turns out to
be rational. This implies that for each b ∈ Bgm there exists a universal rational
constant db determining the formal degree in the family of discrete series char-
acters ε(b; v)IndD(b; v). We will compute the canonical constants db, and the
signs ε(b; v). For certain geometric parameters we will provide the comparison
with the Kazhdan–Lusztig–Langlands classification.
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1. Motivation and goals

Let R= (X, R0, Y, R∨0 , F0) be a based root datum. In particular, X, Y are Z-lattices
of finite rank in perfect duality, R0 ⊂ X is the set of roots, R∨0 ⊂ Y is the set of
coroots, and F0 ⊂ R0 is the set of simple roots. Define the (extended) affine Weyl
group W :=W0 n X , where W0 =W (R0) is the finite Weyl group associated with
the root system R0. Let R0,+ ⊃ F0 denote the positive roots. We denote by S0

the set of simple reflections of W0. Associated to R one has a canonical Laurent
polynomial algebra 3 generated by invertible “Hecke parameters”, and the generic
extended affine Hecke algebra H3 over 3 (see, e.g., [Opdam and Solleveld 2010]).
Let Q be the real vector group of the algebraic torus associated with 3. If v ∈Q
then we denote by Hv the corresponding specialization of H3.

The Hecke algebra Hv has a natural structure of a normalized Hilbert algebra
and an abstract Plancherel formula [Opdam 2004]. It is a fundamental question to
classify explicitly the irreducible discrete series characters (the simple summands in
the Plancherel decomposition) and compute their formal degrees, i.e., the Plancherel
mass of the discrete series characters.

For the Hecke algebras Hv with equal parameters of a simply connected root
datum, the classification of the irreducible discrete series modules in terms of
the Kazhdan–Lusztig–Langlands parameters was obtained in the seminal paper of
Kazhdan and Lusztig [1987] and also by Ginzburg [Chriss and Ginzburg 1997].
This classification was generalized later by Lusztig [2002] for the Hecke algebras
that occur in relation with the unipotent representations of quasisimple p-adic
groups with connected center. In the case when the p-adic group is the split form
of SO(2n + 1), the parametrization of irreducible discrete series modules was
also determined by Waldspurger [2004]. By applying Clifford theory to Kazhdan–
Lusztig theory, Reeder [2002] extended the Kazhdan–Lusztig classification to root
data of arbitrary isogeny type in the case when the parameters are equal. For
unequal parameters unipotent Hecke algebras, this method was carried out recently
by Aubert, Baum, Plymen and Solleveld [Aubert et al. 2017]. In the case of the
Hecke algebra of affine type Cn , a different classification in terms of Kato’s “exotic
geometry” was offered in [Ciubotaru and Kato 2011].

Using a different, analytic approach, a complete explicit Plancherel decompo-
sition for affine Hecke algebras of arbitrary isogeny and with arbitrary positive
parameters was obtained in [Opdam 2004; 2007]. The program was continued in
[Opdam and Solleveld 2010], where a classification of irreducible discrete series in
this generality is obtained, except that for root data of type E , the authors had to
also rely on certain results from Kazhdan and Lusztig [1987].

In this paper, we give a new and uniform classification of the set of discrete series
modules of Hv in terms of certain canonical orthonormal subset Bgm of the elliptic



A uniform classification of the discrete series 1091

character lattice of W for arbitrary positive parameters and arbitrary root data,
which is independent of the previous classifications, including the Kazhdan–Lusztig
classification. We also give algebraic models for the discrete series modules and
we study their formal degrees from the perspective of parameter deformations, in
particular, we obtain complete and explicit closed formulas for the formal degrees
of all irreducible discrete series modules. At several places in our proofs, we rely on
[Opdam 2007] and [Opdam and Solleveld 2010] for the classification of the central
characters of irreducible discrete series in terms of residual points, on [Opdam 2004]
and [Opdam and Solleveld 2009] for the elements of elliptic theory for affine Hecke
algebras, and on [Ciubotaru et al. 2014] for several facts about Dirac induction for
graded affine Hecke algebras.

1A. Uniform classification of the discrete series. Let RZ(W ) be the lattice of
elliptic virtual characters of W , equipped with the Euler–Poincaré pairing, and let
RZ(Hv) denote the lattice of elliptic virtual characters of Hv . If π is an element of
RZ(Hv), let us denote by π its image in RZ(Hv).

In this paper we will use a basic tool, the so-called “scaling map”:

lim
v→1
: RZ(Hv)→RZ(W )

[π ] →
[
lim
ε→0

πvε
]
, (1)

where πvε := π ◦ j−1
ε . Here jε :Han

v (U )→Han
vε (σε(U )) (ε > 0) is the isomorphism

between the analytic localizations Han
v (U ) and Han

vε (σε(U )) of the affine Hecke
algebra as introduced in [Opdam 2004, Theorem 5.3]. It is easy to see that the
family of isomorphisms { j−1

ε }ε>0 has a well defined limit at ε = 0, defining a
homomorphism i0 :C[W ]→Han

v (U ) (see [Solleveld 2012, Proposition 4.1.2]). This
explains the existence of the desired “scaling map” limv→1 : RZ(Hv)→RZ(W )

as in (1). The isomorphisms jε (ε > 0) induce isometric isomorphisms [Opdam
and Solleveld 2009, Theorem 3.5(b)]:

( j−1
ε )∗ :RZ(Hv)→RZ(Hvε ). (2)

Consequently, the limit limv→1 of (1) is an isometry too [Opdam and Solleveld
2009, Theorem 3.5(b)].

Let us denote by Yv ⊂ RZ(W ) the image of this map, and by Yv−m ⊂ Yv the
image of the sublattice of RZ(Hv) of the virtual discrete series characters of Hv.
Let Ygm ⊂RZ(W ) be the smallest sublattice which contains all lattices Yv−m (see
Definition 2.5). We call Ygm the lattice of generically massive elliptic characters of
W, and Yv−m the sublattice of v-massive elliptic characters of W.

The lattice Ygm possesses a distinguished orthonormal basis Bgm characterized
by a positivity property to be explained below. To each b ∈ Bgm we will assign a
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subset (nonempty by definition) Qreg
b ⊂Q of the space of parameters by:

Qreg
b :=

{
v ∈Q | ∃ an irreducible discrete series π of Hv such that lim

ε→0
πvε = b

}
.

According to [Opdam and Solleveld 2010], the complement Qsing
b of Qreg

b is a union
of finitely many hyperplanes (depending on b). For y ∈ Ygm in general we put
Qreg

y :=
⋂

b∈Supp(y)Q
reg
b . Combining with the technique of analytic Dirac induction

(introduced in [Ciubotaru et al. 2014] in the context of graded affine Hecke algebras)
we can associate a family of virtual discrete series characters

Qreg
y 3 v→ IndD(y; v) ∈RZ(Hv)

(called the Dirac induction of y at v, see Definition 2.7), which depends linearly on y,
for each fixed v ∈Qreg

y . If b ∈ Bgm and v ∈Qreg
b then IndD(b; v) is an irreducible

character up to a sign, characterized by the property limε→0(IndD(b; vε))= b. We
will prove (see Proposition 3.8) that the family IndD(y; v) depends continuously
on v ∈Qreg

y in the sense of [Opdam and Solleveld 2010]. The “Vogan conjecture”
(see [Ciubotaru et al. 2014]) allows one to compute the generic central character
W0rb of IndD(b) explicitly, where rb ∈ T3 := Hom(X,3×) is a generic residual
point in the sense of [Opdam and Solleveld 2010].

To such an orbit of generic residual points W0rb we associated in [Opdam and
Solleveld 2010] an explicit rational function mQ

b := mW0rb
on Q which is regular

on Q, and with the property that Qreg
b = {v ∈Q | mb(v) 6= 0}.

Let RZ,temp(Hv) denote the Grothendieck group of finite-dimensional tempered
Hv-representations and let RZ,temp(Hv) denote the image of RZ,temp(Hv) in RZ(Hv).
As a consequence of the parabolic Langlands classification, it is easy to see
that RZ,temp(Hv) = RZ(Hv). Extend the notion of formal degree fdeg linearly
to RZ,temp(Hv). Observe that in this way, the function fdeg naturally descends to
RZ,temp(Hv).

Theorem 1.1. Retain the previous notation.

(a) Ygm has a unique orthonormal basis Bgm such that for all b ∈ Bgm, and for all
v ∈Qreg

b , db(v) := mb(v)
−1fdeg(IndD(b; v)) > 0.

(b) IndD(b; v) is represented by a virtual character IndD(b; v) of Hv which is plus
or minus an irreducible discrete series.

(c) The central character of IndD(b; v) is the specialization at v of a W0-orbit of
generic residual points W0rb, with rb ∈ T3 := Hom(X,3×).

(d) The family IndD(b; v) depends continuously on v ∈Qreg
b (in the sense of [Opdam

and Solleveld 2010]).

(e) For all b ∈ Bgm, the signature function Qreg
b 3 v→ ε(b; v) ∈ {±1} such that

ε(b; v) IndD(b; v) is an irreducible discrete series character, is locally constant.
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(f) For each v ∈Q, define Bv−m = {b ∈ Bgm | mb(v) 6= 0}. The assignment

Bv−m 3 b→ ε(b; v) IndD(b; v)

yields a canonical bijection between Bv−m and the set of irreducible discrete series
characters of Hv.

(g) For all b ∈ Bgm: db(v) = db is independent of v ∈ Qreg
b (where db(v) is the

positive function defined in (a)), and db ∈Q+. In other words, for all v ∈Qreg
b ,

fdeg(IndD(b; v))= dbmb(v)

(a rational function of v, regular in all points of Q, with zero locus Qsing
b ).

This represents first of all a new classification of the discrete series of Hv , which
is uniform in the sense that it applies to all irreducible root data and all parameters
v ∈ Q. It is explicit in the sense that for cases where a classification of discrete
series has been given in other terms in the literature (e.g., in terms of Kazhdan–
Lusztig–Langlands parameters) the comparison can be explicitly given. The main
tool for making this uniform classification explicit in specific cases is the Hecke
algebra version of the “Vogan conjecture” established first in [Barbasch et al. 2012]
and sharpened to the version that we need here in [Ciubotaru et al. 2014]. This
enables the explicit computation in terms of b ∈ Bgm of the central character W0rb.
More precisely, motivated by the ideas of Vogan and Huang and Pandžić for (g,K )-
modules of real reductive groups, [Barbasch et al. 2012] introduced the notion of
Dirac cohomology of a finite dimensional graded Hecke algebra module M . The
Dirac cohomology is a finite dimensional representation of the pin double cover
of the finite Weyl group and the main idea is that if M has a central character
(in particular, if it is a simple module), then the Dirac cohomology, if nonzero,
determines its central character. In the present setting, to every b ∈ Bgm, one
can attach canonically an irreducible representation of the pin double cover of an
“endoscopic” subgroup of W0 in such a way that this representation occurs in the
Dirac cohomology of the graded Hecke algebra module supported on IndD(b; v),
and this in turn, using the idea just explained, determines the central character of
IndD(b; v).

Let b ∈ Bgm, let C ⊂ Qb be a connected component (an open cone in Q),
and let v0 ∈ ∂(C) ⊂ Qsing

b . An underlying issue is the behavior of the families
IndD(b; v) near v0 ∈Q

sing
b . These questions play a technical role in the proof of the

above Theorem, and are of independent interest. To be sure, the family IndD(b; v)
is not continuous in any neighborhood of v0, which is one of the reasons that
Theorem 1.1(g) is surprising and noteworthy. We will show that there is a sense
in which the family IndD(b; v) can be extended along smooth curves in QC as an
algebraic family of genuine characters, provided one lifts the condition that the
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characters in the family are discrete series characters. More precisely, consider an
affine smooth curve C⊂QC which intersects C in a real curve containing v0 ∈ C .
Then C∩C 3 v→ IndD(b; v) extends as a rational family of generically irreducible
genuine characters to a finite branched covering C̃ of C. Importantly, this family
is unramified at points of C∩C , and regular at the points of C̃ lying above v0. In
particular one can define a limit IndD(b,C; v0) at v0 of the family of discrete series
along C “from the direction of C”. This “limit of discrete series” is a tempered
character, which depends on (C,v0). We expect that it does not depend on the
choice of C. Notice that if C intersects the boundary of C transversally at v0 then C

will also intersect the chamber C− opposite to C with respect to v0, and thus there
exists also a limit IndD(b,C−,C; v). It would be interesting to investigate how
these two limits are related to each other, in terms of the relevant analytic R-group.

2. Massive pure elliptic virtual characters

2A. Elliptic virtual characters of affine Weyl groups.

2A1. Elliptic virtual characters of affine Weyl groups. We identify X with the
normal subgroup {e}×X ⊂W , and W0 with the subgroup W0×{0}. Let E =R⊗X ;
then W acts naturally on the Euclidean space E as a group of affine isometries.

The lattice X ⊂W is the normal subgroup of elements whose conjugacy class
is finite. A centralizer of an element x ∈ X is called a Levi subgroup of W . There
are finitely many Levi subgroups of W , and this collection is conjugation invariant.
Each Levi subgroup L ⊂W is itself an affine Weyl group L =WL n X , where WL

is a Levi subgroup of W0 (the isotropy group of x in W0). Then WL is a Coxeter
group, and has a unique set of simple reflections SL consisting of reflection rα ∈W0

with α ⊂ R0,+. Every Levi subgroup is conjugate to a standard Levi subgroup. We
call L standard if SL ⊂ S0.

An element w ∈ W is called elliptic if w does not belong to any proper Levi
subgroup L ⊂W (see [Opdam and Solleveld 2009]). The following are easily seen
to be equivalent:

(a) w ∈W is elliptic.

(b) The canonical image of w in W0 is elliptic (with respect to the action of W0

on E).

(c) The centralizer of w in W is finite.

(d) The conjugacy class of w is a union of left (or equivalently right) cosets of a
sublattice of X of maximal rank.

(e) w has isolated fixed points in E .

(f) w has a unique fixed point in E .
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The set of elliptic elements is a finite union of conjugacy classes.
An (extended) parahoric subgroup of W is the pointwise stabilizer of an affine

subspace in E . Given e ∈ E consider the isotropy group We ⊂W . Then We has a
natural faithful linear action on Te(T ) ' E , and an element w ∈ We is said to be
elliptic if w is elliptic in We with respect to the action on Te(T ), in the sense of
Reeder [2001].

We denote by RZ(W ) the Grothendieck group of the category of C[W ]-modules
of finite length, and by RC(W ) its complexification. The character map defines
an embedding of RC(W ) into the space of complex class functions on W . Let
RC(W ) denote the complex valued class functions on W supported on the set of
elliptic conjugacy classes. When we compose the character map with the restriction
map we obtain a surjective map from RC(W ) to RC(W ). In [Opdam and Solleveld
2009] it was shown that the kernel of this map is spanned by the set of characters
which are induced from proper Levi subgroups. We will identify RC(W ) with this
quotient of RC(W ). We denote by RZ(W ) ⊂ RC(W ) the image of RZ(W ), and
refer to this lattice as the group of elliptic virtual characters.

There exists a unique conjugation invariant measure [Opdam and Solleveld 2009,
Theorem 3.3(c)] µell on W , which is supported on the elliptic conjugacy classes,
and which is defined by µell((1−w)(X))= |W0|

−1 if (1−w)(X) has maximal rank,
and µell((1−w)(X))= 0 otherwise. This defines an integral positive semidefinite
Hermitian pairing, the elliptic pairing EPW on RC(W ) by integrating f ḡ over W
with respect to the measure µell. The Euler–Poincaré pairing on RZ(W ) is expressed
by EPW . More precisely [Opdam and Solleveld 2009], given virtual representations
U and V of W , with characters χU and χV respectively, one has

EPW (U, V )=
∫
w∈W

χU (w)χV (w)dµell(w)=

∞∑
i=0

(−1)i dim ExtiW (U,V ). (3)

In particular EPW is integral on RZ(W ). By [Opdam and Solleveld 2009] the
radical of EPW is exactly the kernel of the quotient map RC(W )→RC(W ), hence
in particular EPW descends to a positive definite integral inner product on RZ(W ).

The Weyl group W0 acts naturally on the algebraic torus T = Hom(X,C×).
Clearly w ∈W0 is elliptic if and only if w has finitely many fixed points on T. It
was shown in [Opdam and Solleveld 2009] that the set of elliptic conjugacy classes
of W and the set of W0-orbits of pairs (C, t) with C ∈ Wt an elliptic conjugacy
class (with respect to the faithful action of Wt on Tt(T )) and t ∈ T have the same
cardinality. Here the action of W0 is defined by w(C, t)= (wCw−1, wt).

Elements f ∈RC(W ) can be viewed as tracial functionals f ∈C[W ]∗ supported
on the set of elliptic conjugacy classes. Hence the center

Z(C[W ])= C[X ]W0 ⊂ C[W ]
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acts on RC(W ) by multiplication, i.e., z. f (a) := f (za) for all z ∈ Z(C[W ]),
f ∈ R(W ), and a ∈ C[W ]. Using Mackey theory we showed in [Opdam and
Solleveld 2009] that there exists an isometric isomorphism

Ind :=
⊕

s∈W0\T

Inds :
⊕

s∈W0\T

RC(Ws)→RC(W ). (4)

Here RC(Ws) is equipped with the elliptic inner product [Reeder 2001] for the
isotropy group Ws with respect to its natural faithful representation on the tangent
space Ts(T ) of T at s, and the direct sum is an orthogonal direct sum. Furthermore
Inds is the linear map on RC(Ws) realized by the Mackey induction functor. The
image of Inds equals

Im(Inds)=RC(W )W0s, (5)

the Z(C[W ])-eigenspace in RC(W ) with eigenvalue W0s, hence (4) gives the
orthogonal decomposition of RC(W ) as a direct sum of Z(C[W ])-eigenspaces. By
Mackey theory for W =W0 n X this decomposition is compatible with the integral
structure. It follows that we also have an orthogonal direct sum decomposition of
lattices:

Ind :=
⊕

s∈W0\T

Inds :
⊕

s∈W0\T

RZ(Ws)→RZ(W ). (6)

Definition 2.1 ([Ciubotaru et al. 2014]). Let X be a Z-lattice equipped with an
integral positive definite bilinear form. An element x ∈ X is called pure if x is not
a nontrivial orthogonal sum in X .

2B. Affine Hecke algebras and Dirac induction. Unfortunately we do not know
how to define a Dirac-type operator for affine Hecke algebras. Using appropriate
versions of Lusztig’s reduction theorems and results of [Ciubotaru et al. 2014;
Opdam and Solleveld 2009; 2010], we can nevertheless define Dirac-type induction
from a well-defined subspace of the space of elliptic characters of the affine Weyl
group to the space of virtual discrete series characters of Hv.

For affine Hecke algebras we use the setup and notation of [Opdam and Solleveld
2010, Section 2]. Thus given a based root datum R let 3 denote the canonically
associated Laurent polynomial ring of Hecke parameters v(s), and let H3=H3(R)
denote the associated affine Hecke algebra defined over 3. Let Qc = Hom(3,C),
the group of complex points of an algebraic torus. Let Q⊂Qc be the real vector
group, the identity component of the group of real points.

We denote the canonical 3-basis of H3 by Nw (with w ∈ W ), where the nor-
malization is such that for affine simple reflections s ∈ S we have

(Ns− v(s))(Ns+ v(s)−1)= 0. (7)
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An element v ∈Q is determined by its coordinates v(s) := v(s)(v) with s ∈ S. We
denote by Hv =H3(R)⊗Cv the corresponding specialized affine Hecke algebra,
specialized at v.

According to the Bernstein–Lusztig–Zelevinski presentation of H3 we have a
unique abelian subalgebra A = C[θx | x ∈ X ] ⊂ H such that θx = Nx if x ∈ X is
dominant. Then A' C[X ], and the center Z(H3) is equal to AW0 '3[X ]W0 .

Given v ∈Q, consider the quotient RC(Hv) of the complexified Grothendieck
ring RC(Hv) of finite length representations of Hv by the subspace generated by
the properly parabolically induced representations. By [Ciubotaru and He 2014]
this is a finite dimensional complex vector space for all v ∈ Q. Notice also that
RC(Hv=1) = RC(W ). The image of the lattice of virtual characters is denoted
by RZ(Hv). The center Z(Hv) acts on RC(Hv), and by Schur’s lemma we have a
decomposition

RZ(Hv)=
⊕

t∈W0\T

RZ(Hv)W0t . (8)

If v ∈Q is a positive parameter then [Opdam and Solleveld 2009] asserts that Hv

has finite global dimension, and we define an integral bilinear form EPH on RZ(Hv)

by

EPH(U, V )=
∞∑

i=0

(−1)i dim ExtiHv
(U,V ). (9)

As mentioned above, there exists [Opdam and Solleveld 2009] a “scaling map”
limv→1 : RC(Hv) → RC(W ) which is an isometry. In particular EPH is itself
symmetric and positive semidefinite. One way to understand limv→1 is via Lusztig’s
reduction results to graded affine Hecke algebras, combined with Clifford theory,
and the restriction map from graded affine Hecke algebra representations to repre-
sentations of the corresponding Weyl group. This is what we will look into in the
next paragraph.

2B1. Clifford theory for extensions of graded affine Hecke algebras. Consider
v ∈Q, and let V be an irreducible representation of Hv . Recall the polar decompo-
sition T = TuTv , where Tu = Hom(X, S1) and Tv = Hom(X,R>0). Let the central
character of V be W0t with t = sc where s ∈ Tu is a unitary element, and c ∈ Tv.
Let Fs,1, Rs,1 and 0s be as in [Opdam and Solleveld 2010, Definition 2.5], so that
the isotropy group Ws of s in W0 equals Ws =W(Rs,1)o0s , and α(t) > 0 for all
α ∈ Rs,1. We recall that 0s is a finite abelian group, acting on Fs,1 by diagram
automorphisms preserving ks,1. Lusztig’s reduction theorems [1989a] in the version
discussed in [Opdam and Solleveld 2010, Theorems 2.6 and 2.8, Corollary 2.10]
imply that the category of finite dimensional representations of Hv with central
character W0t is equivalent to the category of finite dimensional representations
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of H(Rs,1, Ts(T ), Fs,1; ks) o 0(t) with real central character W (Rs,1)ξ . Here
H(Rs,1, Ts(T ), Fs,1; ks) is the graded affine Hecke algebra as defined in [Opdam
and Solleveld 2010, Section 2], ξ ∈ Ts(T ) is the unique vector in the real span of
R∨s,1 such that α(t)= eα(ξ) for all α ∈ Rs,1 and 0(t)⊂ 0s is the isotropy group of
the central character W (Rs,1)ξ of H(Rs,1, Ts(T ), Fs,1; ks).

Clifford theory [Ram and Ramagge 2003] for the crossed product

H(Rs,1, Ts(T ), Fs,1; ks)o0s

says that the irreducible characters of this algebra are obtained as follows. Let
U be an irreducible representation of H(Rs,1, Ts(T ), Fs,1; ks). Let 0U ⊂ 0s be
the isotropy subgroup for the equivalence class [U ] of irreducible representations
of H(Rs,1, Ts(T ), Fs,1; ks). Then twisting U by elements of 0U equips U with a
representation of a twisted group algebra C[0U ; ηU ] with respect to a 2-cocycle
ηU of 0U with values in C×. Consider a simple module M of C[0U ; η

−1
U ], then

NH(U,M) := IndH(Rs,1,Ts(T ),Fs,1;ks)o0s
H(Rs,1,Ts(T ),Fs,1;ks)o0U

(U ⊗M)

is an irreducible H(Rs,1, Ts(T ), Fs,1; ks)o0s-module, and all its irreducible mod-
ules are equivalent to such a module. Moreover, NH(U,M)' NH(U ′,M ′) if and
only if U ′ 'U ◦ γ−1 for some γ ∈ 0s , and M ′ ' M ◦ γ−1.

Observe that when U has central character W (Rs,1)ξ then 0U ⊂0(t). Thus Clif-
ford theory implies that the set of irreducible modules of H(Rs,1,Ts(T ),Fs,1;ks)o0s

with central character Wsξ is in natural bijection with the set of irreducible mod-
ules of H(Rs,1, Ts(T ), Fs,1; ks)o 0(t) with central character W (Rs,1)ξ . In fact
it follows from the proof of Lusztig’s reduction theorem that this bijection be-
tween the respective sets of irreducibles arises from a Morita equivalence of the
two algebras, formally completed at the appropriate central characters Wsξ and
W (Rs,1)ξ respectively. Therefore, by the above, the category of finite dimensional
representations of Hv with central character W0t is naturally equivalent with the
category of finite dimensional representations of H(Rs,1, Ts(T ), Fs,1; ks)o0s with
real central character Wsξ . In particular we have a natural isomorphism

RZ(Hv)W0t 'RZ

(
H(Rs,1, Ts(T ), Fs,1; ks)o0s

)
Wsξ
. (10)

It is an interesting question what the central support of RZ(Hv) is. Clearly, if
RZ(Hv)W0t 6= 0 then, by the above, one has Ts(E)Ws = 0.

Since C[Ws] = C[W (Rs,1)]o 0s , we have a similar description of the set of
irreducibles of C[Ws] as modules of the form NWs(X,M) where X is an irreducible
for W(Rs,1).

The restriction functor

ResWs :H(Rs,1,Ts(T ),Fs,1;ks)o0s-modules→C[Ws]=C[W(Rs,1)]o0s-modules,
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induces a homomorphism on the level of the Grothendieck groups of representations
of finite length. Via the above correspondences, the “scaling map” limv→1 (more
precisely, limε→0 πvε ) corresponds to taking the limit ε→ 0 of the family of twists
by linear scaling isomorphisms,

ψε : H(Rs,1, Ts(T ), Fs,1; ks)o0s→ H(Rs,1, Ts(T ), Fs,1; εks)o0s,

defined by φε(ξ)= ε−1ξ . This is the restriction map ResWs . In particular we see:

Corollary 2.2. The map [π ] → limε→0[πvε ] respects the lattices of virtual char-
acters, and defines an isometric map RZ(Hv)→ RZ(W ) sending RZ(Hv)W0t to
RZ(W )W0s , where t = sc ∈ TuTv as before. More precisely, if π corresponds to
the module U of H(Rs,1, Ts(T ), Fs,1; ks) o 0s via (10), and bs = [U |Ws ], then
limε→0[πvε ] = Inds(bs).

2B2. Residual points. Let R1 be the reduced root subsystem of the inmultiplicable
roots of the possibly nonreduced root system

Rnr = R0 ∪ {2α | α∨ ∈ 2Y ∩ R∨0 }. (11)

For β ∈ Rnr, define the parameters vβ∨ in terms of the v(s) as in [Opdam and
Solleveld 2010, (7), (8)]. For every v ∈ Q, recall the Macdonald c-function,
c =

∏
α∈R1,+

cα, a rational function on T, where

cα(t, v)=
(1+ v−1

α∨ α(t)
−

1
2 )(1− v−1

α∨ v−2
2α∨α(t)

−
1
2 )

1−α(t)−1 . (12)

If α ∈ R1 \ R0 then α/2 is a character of T ; however, if α ∈ R0 ∩ R1 then v2α∨ = 1,
and we interpret the numerator of cα as (1− v−2

α∨ α(r)
−1). Thus for all α ∈ R1, the

expression for cα defines a rational function on T indeed. Set η(t)= (c(t)c(t−1))−1.
Define the pole order i{r} of η at r ∈ T as in [Opdam and Solleveld 2010, (34)]. By
[Opdam 2007, Theorem 6.1], i{r} ≥ rk(R0) for all r ∈ T .

Definition 2.3 ([Opdam and Solleveld 2010, Definitions 2.39 and 2.40]). An el-
ement r ∈ T is called a residual point of (R, v) if i{r} = rk(R0). The set of
(R, v)-residual points is denoted by Res(R, v).

A Qc-valued point r ∈ T3 is called a (Q-)generic residual point of R if there
exists an open dense subset U ⊂ Q such that the points r(v) ∈ Res(R, v) for all
v ∈U. The set of generic residual points of R is denoted by Res(R) (or Res(R,Q)
if confusion is possible).

Let r be a Q-generic residual point. As in [Opdam and Solleveld 2010, (40)],
we define the mass function mW0r as the rational function on Q defined by

mW0r = mQ
W0r =

∏
′

α∈R1
(α(r)−1

− 1)∏
′

α∈R1
(v−1
α∨ α(r)

−
1
2 + 1)

∏
′

α∈R1
(v−1
α∨ v
−2
2α∨α(r)

−
1
2 − 1)

. (13)
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Here
∏
′ means that the factors which are identically zero as functions on Q are

omitted. The function mW0r is regular on Q (see [Opdam and Solleveld 2010,
Theorem 2.60, Corollary 4.4, Theorem 4.6]), hence, in particular, continuous. Com-
ments similar to those above concerning the interpretation of the roots α(r)−

1
2 apply.

Observe that the expression in (13) is independent of the choice of representative r
in its W0-orbit.

We will also need the related notions for the graded affine Hecke algebra. Let
R1⊂V ∗ be a semisimple reduced root system and let K be the space of W0-invariant
real valued functions on R1.

Definition 2.4 ([Heckman and Opdam 1997; Opdam and Solleveld 2010, Defini-
tion 2.55]). For k ∈ K, a point h ∈ V is called (R1, k)-residual if∣∣{α ∈ R1 | α(h)= kα}

∣∣= ∣∣{α ∈ R1 | α(h)= 0}
∣∣+ dim(V ). (14)

We denote by Reslin(R1) the set of linear maps ξ :K→ V such that for almost all k,
the point ξ(k) ∈ V is (R1, k)-residual. The elements ξ ∈ Reslin(R1) are called the
generic linear residual points.

2B3. Massive elliptic representations.

Definition 2.5. We define

Yv := lim
v→1

(RZ(Hv))⊂RZ(W ), (15)

and let Yv−m ⊂ Yv be the sublattice generated by the limits limε→0 πvε of dis-
crete series representations of Hv. We call Yv−m the lattice of v-massive elliptic
representations of W . Finally let Ygm ⊂ RZ(W ) be the sublattice generated by⋃

v∈Q Yv−m , the lattice of generically massive elliptic representations of W. In
general, Ygm 6=RZ(W ).

Proposition 2.6. The lattice Ygm admits an orthonormal basis Bgm ⊂ Ygm. If
b ∈ Bgm then b ∈RZ(W )W0s for some s ∈ Tu such that rk(Rs,1)= dim(Tu).

Proof. It follows from the classification [Opdam and Solleveld 2010, Section 5] that
an irreducible discrete series (V, πv) of Hv has central character W0r(v) for some
generic residual point r , and we can write r = sc with s ∈ Tu and c= exp(ξ), where
ξ is a generic linear residual point for H(Rs,1, Ts(T ), Fs,1; ks) whose evaluation at
ks is residual. In particular, the rank of Rs,1 is equal to the dimension of Tu .

By [Opdam and Solleveld 2010] it also follows that π corresponds via (10)
to the representation of H(Rs,1, Ts(T ), Fs,1; ks)o 0s induced by the irreducible
representation U ⊗M of H(Rs,1, Ts(T ), Fs,1; ks)o0U, where U is an irreducible
discrete series character of H(Rs,1, Ts(T ), Fs,1; ks) (here we also use the discussion
in the text above). In Corollary 2.2 we have seen that the limit b := limε→0 πvε

equals b = Inds(bs) with bs = U |Ws . By the results of [Ciubotaru et al. 2014]
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and of [Opdam and Solleveld 2010] we see that the algebraic Dirac induction
for H(Rs,1, Ts(T ), Fs,1; ks) of bs yields an elliptic representation supported by the
central character W (Rs,1)ξ(ks), which is (by [Opdam and Solleveld 2010]) residual
for all v ∈ Qreg

b , a complement in Q of finitely many hyperplanes. Recall that,
by [Opdam 2007], a central character W (Rs,1)ξ(ks) for H(Rs,1, Ts(T ), Fs,1; ks) is
residual if and only if Wsξ(ks) is residual for H(Rs,1, Ts(T ), Fs,1; ks)o0s . (This
is because of the invariance of residual central characters under Dynkin diagram
automorphisms.)

Let v′ ∈ Qreg
b . By the main result of [Ciubotaru et al. 2014], since Wsξ(k ′s) is

residual there exists a virtual discrete series character U ′ of H(Rs,1, Ts(T ), Fs,1; k ′s)
with U ′|Ws = bs (U ′ is the analytic Dirac induction of bs). Again using the classifi-
cation of the discrete series of [Opdam and Solleveld 2010], and (10), there exists a
virtual discrete series character π ′v′ of Hv′ with b = Inds(bs)= limε→0 πv′ε . Since
Ygm ⊂RZ(W ) it is clear that Ygm is finitely generated. Choose a finite collection
of (irreducible) discrete series πi of Hvi such that the corresponding limits bi are
linearly independent and generate Ygm. By the arguments above, if v ∈

⋂
i Q

reg
bi

then there exist virtual discrete series characters π ′i of Hv with

bi := lim
ε→0

π ′i,vε .

Consequently, Ygm = Yv−m . Since the limit map is an isometry and since (by
[Opdam and Solleveld 2009]) the irreducible discrete series form an orthonormal
set with respect to EPH, Yv−m (and thus Ygm) admits an orthonormal basis. �

At this point, the basis Bgm from Proposition 2.6 is not unique. The canonical
choice for the basis Bgm is obtained in Corollary 3.19.

2B4. Dirac induction for affine Hecke algebras.

Definition 2.7. Given b ∈ Bgm and v ∈ Qreg
b , we define IndD(b; v) (the “Dirac

induction of b”) as the unique virtual discrete series character of Hv whose scaling
limit satisfies limε→0 IndD(b; vε)= b. Up to a sign ε(b; v) ∈ {±1}, IndD(b; v) is
an irreducible discrete series character. For all v ∈Q this defines a bijection

Bv−m 3 b→ ε(b; v) Ind(b; v) ∈1v,

where 1v :=1(Hv) denotes the set of isomorphism classes of irreducible discrete
series representations of Hv.

In the proof of Proposition 2.6 we have seen that IndD(b; v) is not directly con-
structed as the index of a Dirac-type operator but rather, it corresponds via (10) and
a Morita equivalence to the discrete series U ⊗M of H(Rs,1, Ts(T ), Fs,1; ks)o0U ,
with U = Indan

D (bs, ks) the analytic Dirac induction (defined in [Ciubotaru et al.
2014]) of bs for H(Rs,1, Ts(T ), Fs,1; ks). The existence of IndD(b; v) follows
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from this construction. It also follows from this construction that ± IndD(b; v) is
irreducible.

2B5. The generic Vogan central character map. Let Bgm be an orthonormal basis
of Ygm. As we have seen, given b ∈ Bgm the set Qreg

b = {v | b ∈ Bv−m} is the
complement of finitely many hyperplanes in Q. As in the proof of Proposition 2.6,
to each b ∈ Bgm we have a canonically associated orbit of generic residual points
W0rb, with rb = s exp ξs , and ξs the generic linear residual point associated to
bs ∈ RZ(Ws) by the generic version of “Vogan’s conjecture” (see [Ciubotaru et al.
2014, Theorem 3.2]). Strictly speaking, the results of [Ciubotaru et al. 2014] apply
to give a residual central character of a nonextended graded affine Hecke algebra,
but as already noted in the proof of Proposition 2.6, one may use the invariance
[Opdam 2007] of these central characters under diagram automorphisms to obtain
the desired central character in our more general setting.

Let us denote the resulting generic central character map (see [Opdam and
Solleveld 2010]) by:

gccB : Bgm→W0 \Hom(X,3×)=W0 \ T3,

b→W0(s exp ξs)

(the generic Vogan central character map). From the proof of Proposition 2.6 and
Definition 2.7 we obtain:

Corollary 2.8. For all b ∈ Bgm and v ∈Qreg
b we have

gccv(IndD(b; v))= gccB(b)=W0rb.

Moreover, W0rb(1)=W0s if and only if b can be written as b = Inds(bs).

Definition 2.9. We put mb := mW0rb , where mW0rb denotes the mass function
associated to the orbit of Q-generic residual points gccB(b) = W0rb in (13). By
[Opdam and Solleveld 2010], and we have for all b ∈ B that

Qreg
b = {v ∈Q | mb(v) 6= 0}.

When Q′ is a subtorus of Q, we will write mQ′
b for the function mW0r ′b defined with

respect to the Q′-generic residual point r ′b obtained from rb by base change to Q′.
Notice that mQ′

b = d ′mb|Q′ for some d ′ ∈Q, with d ′ 6= 0 if and only if Qreg
b ∩Q

′
6=∅.

Theorem 2.10. The generic Vogan central character map gccB is a surjection
gccB : Bgm→W0 \Res(R).

Proof. In [Opdam 2004] it was shown (also see [Opdam and Solleveld 2010]) that
for any v ∈ Q, every orbit of residual points of Hv is the specialization at v of a
generic orbit of residual points W0r at v. The main theorem of [Opdam 2004] states
that for any v ∈Q, and any orbit of residual cosets W0r(v), there exists a discrete
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series character π of Hv such that W0r(v) is the central character of π . The set
W0 \Res(R) is finite, hence

Qgen
:=

{
v ∈

⋂
W0r∈W0\Res(R)

Qreg
W0r

∣∣∣
For all r, r ′ ∈ Res(R): W0r(v)=W0r ′(v) only if Wr =W0r ′

}
is open and dense in Q. Let v ∈ Qgen and W0r ∈ W0 \ Res(R). By the above
there exists a π ∈1v such that cc(π)=W0r(v). Since v ∈Qgen this implies that
gccv(π)=W0r . (For the definition of the generic central character map gccv, see
[Opdam and Solleveld 2010, Definition 5.4].) Put b := limε→0 πvε . By Corollary 2.8
we have gccB(b)=W0r . �

Denote by BW0r ⊂ Bgm the fiber gcc−1
B (W0r) of the map from Theorem 2.10.

3. One-dimensional algebraic families of discrete series representations,
and their limits

3A. One-dimensional algebraic families of discrete series. Given a generic resid-
ual point r ∈ Hom(X,3×) we know that r(v) is a residual point for all v ∈Qreg

W0r ,
which is the complement of finitely many hyperplanes in Q. By [Opdam and
Solleveld 2010, Corollary 5.9]) we have a nonempty set of irreducible discrete
series characters of Hv with generic central character W0r . Denote this nonempty
set by:

DSW0r,v := {π ∈1(Hv) | gcc(π)= b}.

Hence W0r(v) is the central character of the following nonempty union:

DSW0r(v) :=
⋃

{W0r ′ |W0r ′(v)=W0r(v)}

DSW0r ′,v .

Let v ∈ QC. For each r ′(v) ∈ W0r(v), choose a convex open neighborhood
Ur ′(v) of r ′(v) ∈ T such that the only residual cosets of the µ-function µR,v of
Hv which intersect Ur ′(v) in fact contain r ′(v). Let U reg

r ′(v) = Ur ′(v) ∩ T reg be the
complement in Ur ′(v) of the union of the set of residual cosets of µR,v in T . The
choice of Ur ′(v) as above implies that U reg

r ′(v) is homeomorphic to the complement of
a central hyperplane arrangement in a complex vector space with origin r ′(v). In
particular, the homology group Hn(U

reg
r ′(v),Z) only depends on the local structure

of the pole hyperplane arrangement at r ′(v), and if we would shrink Ur ′(v) to a
smaller convex open neighborhood U ′,reg

r ′(v) ⊂ Ur ′(v) of r ′(v) this would induce a
canonical isomorphism Hn(U

′,reg
r ′(v),Z)= Hn(U

reg
r ′(v),Z). Let us denote the direct limit

lim
−−→

Hn(U
′,reg
r ′(v),Z) by Hn,r ′(v)(Z).
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In general, if U ⊂T is homeomorphic to a complex ball B⊂ t, via the exponential
mapping of the complex algebraic torus T , then U reg

:=U ∩T reg is homeomorphic
to the intersection of B with the complement of an affine hyperplane arrangement. In
this section we will need some basic facts about the topology of hyperplane arrange-
ments, see [Orlik and Terao 1992; Schechtman and Varchenko 1991]. By [Schecht-
man and Varchenko 1991, Paragraph 4.4] it easily follows that Hn(U reg,Z) is in a
canonical way a direct sum of the Hn,p(Z) where p runs over the set of points of U
which lie in the intersection lattice generated by the codimension one residual cosets
of µR,v. Let πp : Hn(U reg,Z)→ Hn,p(Z) denote the corresponding projection.

Let us denote the collection of open sets {Ur ′(v)}r ′∈W0r by U . Let OU,v ⊂ QC

be an open ball with center v with the property that for all v′ ∈ OU,v and all
r ′ ∈ W0r we have r ′(v′) ∈ Ur ′(v). Given v ∈ QC and a homology class [ξr ′(v)] ∈

Hn(Ur ′(v),Z) for each r ′(v) ∈W0r(v), this defines for all v′ ∈OU,v a unique class
πr ′(v′)([ξr ′(v′)]) ∈ Hn,r ′(v′)(Z). It is easy to see that this procedure defines a topology
basis of the étale space of a sheaf FH

n,r ′ of abelian groups over QC, with stalks
Hn,r ′(v)(Z). Let Qgen

W0r,C⊂QC be the Zariski-open set of v ∈QC such that |W0r(v′)|
is locally constant at v, and such that if r ′ is a generic residual point such that
W0r(v) = W0r ′(v) then W0r = W0r ′.1 Clearly, the sheaf FH

n,r is locally trivial in
the analytic topology on v ∈Qgen

W0r,C. We have shown:

Lemma 3.1. For each generic residual point r , the homology groups Hn,r(v)(Z)

(v ∈QC) are the stalks of a sheaf FH
n,r (in the analytic topology) of finitely generated

abelian groups on QC, which is locally trivial on the Zariski-open set Qgen
W0r,C.

The main results of [Opdam 2004] and of [Opdam and Solleveld 2010] show that
for each v∈Qreg

W0r we can choose, for each r ′(v)∈W0r(v), classes ξr ′(v)∈Hn,r ′(v)(Z)

and, for each χ ∈ DSW0r(v), constants cχ,C ∈Q+ depending only on the connected
component C=Cχ,v⊂Qreg

gccv(χ)
to which v belongs (where gccv(χ)=W0r ′′ denotes

the generic central character [Opdam 2004, Definition 5.4] of χ ), such that for all
h ∈Hv, ∑

χ∈DSW0r(v)

cχ,Cχv(h) = mW0r (v)
−1

∑
r ′(v)∈W0r(v)

∫
t∈ξr ′(v)

Kv(h, t), (16)

where Kv(h, t) = Et(v; h)1(t)−1µR,v dt is a rational (n, 0)-form in t ∈ T , with
1(t) :=

∏
α>0(1−α(t)

−1) and with Et(v; h) a linear functional in h ∈H3, which
is regular on (t, v) ∈ T ×QC, and such that Et(v; a)= a(t)1(t) for all a ∈A.

We now prove a fundamental continuity property of (16) (or even the full
Plancherel decomposition of the trace of Hv) with respect to the topology of
the sheaves FH

n,r .

1Using the results of [Opdam 2007] it is easy to see that Qgen
W0r,C ∩Q=Qgen

W0r , in the notation of
[Opdam and Solleveld 2010].



A uniform classification of the discrete series 1105

Lemma 3.2. Let r be a generic residual point and let v ∈ Qreg
W0r . For r ′ ∈ W0r

and for v′ in a sufficiently small neighborhood of v, the local homology classes
[ξr ′(v′)] ∈ Hn,r ′(v′)(Z) in (16) form a local section of FH

n,r ′ .

Proof. We use the analogous construction to the above of sheaves FH
n,rL
(Z) for

all rL ∈ TL a generic residual point. Recall the residue lemma [Opdam 2004,
Lemma 3.4]. By [Opdam 2004, Proposition 3.7] we can realize the local traces
Xc defined in [Opdam 2004, Lemma 3.4] “explicitly” by a system of local cycles
ξL(v) ⊂ BL(v)(rL(v), δ)⊂ TL(v) (for all quasiresidual cosets L(v)⊂ T ) such that for
t0 ∈ Tv deep in the negative Weyl chamber, the cycles t0Tu and

⋃
L ξL(v)× T L

u are
homologous. Moreover, the ξL(v) satisfy certain local properties (see [Opdam 2004,
Proposition 3.7], items (i), (ii) and (iii)) which guarantee that for all h ∈Hv, the
functional

C[T ] 3 f →
∫
ξL(v)×T L

u

f (t)Kv(h, t)

can be written as a distribution on rL(v)Tu with support in L(v)temp
= rL(v)T

L
u ,

applied to f (which is zero if Lv is not a residual coset).
The definition of the local sections of the sheaves FH

n,rL′
is such that the local

properties ((i), (ii) and (iii) mentioned in [Opdam 2004, Proposition 3.7]) can be
satisfied by cycles

ξL ′(v′) ⊂ BL ′(v′)(rL ′(v
′), δ)⊂ TL ′(v′)

representing the classes [ξL ′(v′)] ∈ Hn,rL′ (v
′)(Z) for v′ in a small neighborhood of v.

Moreover, it is automatic that t0Tu is homologous to the union of
⋃

L ξL(v′)× T L
u

(union over the generic residual cosets L) with a collection of cycles of the form
ξL ′(v′)× T L ′

u , where L ′(v′) is quasiresidual (which are irrelevant). This implies the
result. �

Corollary 3.3. For v ∈ Qreg
W0r , the left-hand side of (16) extends to a central func-

tional on Hv′ for all v′ in a Zariski-open neighborhood of v in QC. For h ∈ H3

this functional takes values in the quotient field Q3 of 3. The values of this
functional restrict to continuous functions on the connected component C of v in⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

.

Proof. We extend the left-hand side in a neighborhood of v by taking local sections
of classes [ξr ′(v)] in FH

n,r ′ , and use the right-hand side of (16) to define the left-hand
side. We know from [Opdam and Solleveld 2010] that the left-hand side extends,
for all h ∈ H3, continuously on

⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

. Let χ ∈ DSW0r(v) and let
gccv(χ) :=W0r ′. Let

v′ ∈
⋂

χ∈DSW0r(v)

Cχ,v ∩Q
gen
gccv(χ)

.
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Then the left-hand side of (16) can be written as
∑
{W0r ′|W0r ′(v)=W0r(v)}6W0r ′(h; v′),

with
6W0r ′(h; v′) :=

∑
χ∈DSW0r ′,v′

cχ,Cχv′(h). (17)

We have

6W0r ′(h; v′) = mW0r ′(v
′)−1

∑
r ′′(v′)∈W0r ′(v′)

∫
t∈ξr ′′(v′)

Kv′(h, t),

where, for v′ in a sufficiently small neighborhood of v, the class [ξr ′′(v′)] is equal to
the image πr ′′(v′)(ξr ′′(v)) ∈ Hn,r ′′(v′)(Z) of the constant cycle ξr ′′(v), by Lemmas 3.1
and 3.2. It follows that in a small analytic neighborhood of v the expression
6W0r ′(h; v′′) is given by an element of Q3. This extends v′→ 6W0r ′(h; v′) to a
rational function on a Zariski-open set of QC.

The continuity of the values of 6W0r ′(h; v′) in the connected component C ⊂
Qreg

W0r ′ of v′ follows from [Opdam and Solleveld 2010, Theorem 3.4, Proposition 3.7],
and this implies the continuity assertion in the theorem. �

Remark 3.4. We note that 6W0r (h; ·) is not rational on
⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

. The
rational functions of Corollary 3.3 depend on the connected component of v in⋂
χ∈DSW0r(v)

Qreg
gccv(χ)

.

Let C⊂Q be (the set of complex points of) an irreducible real algebraic curve
which is not contained in

⋃
W0r Q

sing
W0r . Let R be the ring of regular functions of

C, with quotient field K. Thus R is a quotient of 3, and we can form HR :=

H3 ⊗3 R. Let P = v0 ∈ C be a smooth point of C, and let C ⊂ Qreg
W0r be a

connected component such that v0 ∈C . Let v′ ∈C∩Qgen
W0r , and consider6W0r (h; v′).

According to Corollary 3.3, this positive rational linear combination of the discrete
series characters with central character W0r(v′) extends as a rational function in v′

which is continuous on C . By Corollary 3.3 we can restrict the values of6W0r (h; v′)
to v′ ∈ C∩C . By the argument of [Kollár and Nowak 2015, Proposition 7] it is
clear that this restriction defines a rational function on C which we will denote
by 6C

W0r,C(h) ∈ K, depending linearly on h ∈ HR. These rational functions are
continuous on C∩C .

Lemma 3.5. Assume that C∩C consists of smooth points and let P = v0 ∈ C∩C.
For all h ∈HR we have: The rational function6C

W0r,C(h) is regular in P= v0. There
exists a Zariski-open neighborhood U ⊂ C of C∩C such that 6C

W0r,C(h) ∈R(U)
for all h ∈HR(U).

Proof. Since 6C
W0r,C(h) is rational and P is a smooth point of the curve C, it is

enough to show that v→6C
W0r,C(h; v) is bounded in a neighborhood of v0= P ∈C

for v ∈ C∩C . But 6W0r ( · ; v) is a positive functional on Hv for all v ∈ C , and
if v ∈ C ∩ C then 6W0r (Te; v) =

∑
χ∈DSW0r,v

cχ,C deg(χ) = C ∈ Q+ is constant.
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By [Opdam 2004, Corollary 2.17(i)] we see that |6C
W0r,C(h; v)| ≤ C‖h‖o. This

implies the regularity at P of the rational function v→6C
W0r,C(h; v) for all h ∈HR.

Note that for z ∈ Z ⊂HR we have 6C
W0r,C(zh; v)= z(W0r(v))6C

W0r,C(h; v), while
v→ z(W0r(v))∈R is regular on C. Since HR is finitely generated over Z it follows
that we can find an open neighborhood U of C∩C on which v→6C

W0r,C(h; v) is
regular for all h ∈HR. �

From now on we will assume that C∩C consists of smooth points of C, and that
U⊂ C is as in Lemma 3.5. We have shown that

6C
W0r,C ∈H

∗

R(U) := HomR(U)(HR(U),R(U))

is a central functional in the HR(U)⊗R(U)H
op
R(U)-module H∗R(U), supported by the

central character W0r .

Definition 3.6. MU
W0r,C ⊂H∗R(U) denotes the HR(U)⊗H

op
R(U)-submodule generated

by 6C
W0r,C .

We will now show that a generic family χ of discrete series characters as discussed
in [Opdam and Solleveld 2010] always admits an algebraic model when we restrict
the parameter space to a curve C in Q. Moreover, we can find such models that
are regular at the intersection of the curve with the boundary of the connected
component C ⊂Qreg

gcc(χ) (an open cone) on which χ lives. More precisely:

Proposition 3.7. (i) MU
W0r,C is an HR(U)⊗R(U)H

op
R(U)-module. The central subalge-

bra ZR(U)⊗R(U)ZR(U) acts via scalar multiplication via the character (z1⊗ z2)→

(z1z2)(W0r) ∈R(U).

(ii) MU
W0r,C is a locally free R(U)-module of finite rank.

(iii) MU
W0r,C has a canonical HR(U)-algebra structure such that, if we put e =

mW0r6
C
W0r,C ∈ MU

W0r,C ⊂H∗R(U), the map HR(U) 3 h→ he is an algebra homomor-
phism.

(iv) If v ∈ U∩C then

MU
W0r,C ⊗Cv '⊕χ∈DSW0r,v EndC(Vχv

),

where Vχv
is a vector space on which the discrete series character χv is realized.

(v) We may assume without loss of generality that U is smooth. There exists a
Zariski-open subset U∗ ⊂ U with C∩C ⊂ U∗ such that

MU∗

W0r,C := MU
W0r,C ⊗R(U)R(U

∗)

is a locally free separable R(U∗)-algebra of finite rank.

(vi) There exists a branched covering φ : Ũ→ U such that the following holds true.
Let L ⊃ K denote the function field of Ũ, and let R̃(U) := R(Ũ) be the integral
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closure of R(U) in L. Put M̃U
W0r,C := MU

W0r,C ⊗ R̃(U). There exists a finite set of
projective R̃(U)-modules of finite rank {L i }i∈I , such that

M̃U
W0r,C ⊂ M̃U,max

W0r,C '
⊕
i∈I

EndR̃(U)(L i )

is an R̃(U)-order. This turns L i into an HR̃(U)-module, for each i ∈ I.

(vii) With U∗ as in (v), define Ũ∗ := φ−1(U∗) and let R(Ũ∗) ⊂ L be the integral
closure of R(U∗) (which is the localization of R(U∗) at Ũ∗). Put M̃U∗

W0r,C :=

MU∗

W0r,C ⊗R(U∗)R(Ũ
∗). Then we have an isomorphism

M̃U∗

W0r,C = M̃U∗,max
W0r,C '

⊕
i∈I

EndR̃(U)(L
∗

i ),

with L∗i := L i ⊗R̃(U)R(Ũ
∗).

(viii) The covering φ (as in (vi)) is not branched at points of C∩C. Let v ∈ C∩C
and let ṽ be a closed point lying above v ∈ C∩C. There exists a unique bijection
i→ χi from I onto DSW0r,v such that L i,ṽ := L i ⊗Cṽ ' Vχi,v as representation of
Hv, via the canonical isomorphism Hv 'HR̃(U),ṽ.

Proof. Assertion (i): This is immediate from the definition.

Assertion (ii): Since 6C
W0r,C is central and is a ZU-eigenfunction with eigen-

value W0r , it is clear that MU
W0r,C is finitely generated over R(U). It is also obviously

torsion free over R(U), implying that the localization MU
W0r,C,Q is free over RQ

for all Q ∈ U (since the local rings are principal ideal domains). Since MU
W0r,C is

finitely generated, this implies that it is a locally free module.

Assertion (iii): We need to verify that the kernel of the surjective HR(U)-module
homomorphism HR(U) 3 h→ he ∈ MR(U)

W0r,C is a two-sided ideal. This is a trivial
consequence of the centrality of e. This turns MR(U)

W0r,C into an HR(U)-algebra.

Assertions (iv) and (v): We have already established that MR(U)
W0r,C is a locally free

HR(U)-algebra of finite rank. When we specialize at v ∈C ∩U, we may use the fact
[Delorme and Opdam 2008, Corollary 5.8] that ev ∈Sv ⊂H∗v is a central idempotent
of the Schwartz algebra Sv to see that the specialization MW0r,C,v = MU

W0r,C ⊗Cv

equals the finite dimensional semisimple algebra as stated in (iv). Hence the trace
form of MU

W0r,C is nondegenerate over K, and by shrinking U∗ sufficiently we may
assume that the discriminant of the trace form of MU

W0r,C is nonvanishing on U∗.
We arrive at the conclusion of (v) (see, e.g., [Artin 1999, Section IV.3]).

Assertion (vi): By (v) it follows that MK
W0r,C :=MU

W0r,C⊗R(U)K is a finite separable
K-algebra. Hence MK

W0r,C isomorphic to a finite direct sum of central simple algebras
over finite separable field extensions Ki of K (see [Artin 1999, Section IV.3]). Tsen’s
Theorem [Artin 1999, Section III.15] implies that in fact MK

W0r,C is a direct sum
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of full matrix algebras Matdi×di (Ki ). Consider the compositum L of the Ki . It is
easy to see that for all i , the tensor product Ki ⊗K L is isomorphic to a finite direct
sum of copies of L. It follows that L is a finite separable extension of K such that
ML

W0r,C := MU
W0r,C ⊗R(U) L= MK

W0r,C ⊗K L is isomorphic to a finite direct sum of
full matrix algebras ML

W0r,C,i ' EndL(Ldi ) over L. Let 5i denote the projection
homomorphism ML

W0r,C→ML
W0r,C,i . Let R̃(U) be the integral closure of R(U) in L,

which is a Dedekind domain with fraction field L. The inclusion R(U) ⊂ R̃(U)

gives rise to a ramified covering φ : Ũ→ U. We may assume, by shrinking U∗ (as
in (v)) if necessary, that φ : Ũ∗ := φ−1(U∗)→ U∗ is finite étale.

Now M̃U
W0r,C :=MU

W0r,C⊗R(U)R̃(U)⊂ML
W0r,C is clearly an R̃(U)-order in ML

W0r,C .
Hence the projection 5i (M̃U

W0r,C) is an R̃(U)-order in ML
W0r,C,i ' EndL(Ldi ). By

[Artin 1999, Theorem IV.4.1, Proposition IV.4.7] this is contained in a maximal
R̃(U)-order in ML

W0r,C,i which must be a trivial Azumaya algebra of the form
EndR̃(U)(L i ) where L i ⊂ Ldi denotes an R̃(U)-lattice. Hence we have

M̃U
W0r,C ⊂

⊕
i

5i (M̃U
W0r,C)⊂

⊕
i

EndR̃(U)(L i )=: M̃
U,max
W0r,C .

This turns L i into an HR̃(U)-module, and proves (vi).

Assertions (vii) and (viii): Localizing at Ũ∗ we obtain M̃U∗

W0r,C ⊂
⊕

i EndR̃(U)(L
∗

i ),
where L∗i := L i ⊗R̃(U)R(Ũ

∗) is an R(Ũ∗)-lattice in Ldi . Since M̃U∗

W0r,C is separable,
by (v), we have M̃U∗

W0r,C = (M̃
U∗

W0r,C)
∗
:=HomR(Ũ∗)(M̃

U∗

W0r,C ,R(Ũ
∗)). As in the proof

of [Artin 1999, Corollary IV.4.5] this implies that M̃U∗

W0r,C is a maximal R(Ũ∗)-order,
hence we actually have M̃U∗

W0r,C =
⊕

i EndR̃(U)(L
∗

i ), proving (vii). When we take
ṽ lying above a v ∈ U∗ ∩ C , then specializing at ṽ and comparing (iv) and (vii)
we obtain (viii). Observe that the structural result (vi) implies that φ can not be
ramified at v. Indeed, when assuming the contrary then (vi) would imply that the
number of discrete series characters of Hv with generic central character W0r would
be strictly smaller than the number of such discrete series characters of Hv′ with
v′ ∈ C in a small neighborhood of v. This contradicts [Opdam and Solleveld 2010,
Corollary 5.11]. �

Proposition 3.8. Let b ∈ Bgm. The family Qreg
b 3 v→ ε(b; v) IndD(b; v) is contin-

uous (in the sense of [Opdam and Solleveld 2010, Section 3]).

Proof. The discrete series character ε(b; v) IndD(b; v) of Hv has generic central
character gccv(πv)=W0r with r = rb by Corollary 2.8. By [Opdam and Solleveld
2010, Definition 5.10] we know therefore that ε(b; v) IndD(b; v) is also the spe-
cialization at v of a unique continuous family of generic irreducible discrete series
characters χ ∈1gen

W0rb
(R) with generic central character W0rb on Qgen

b . By [Opdam
and Solleveld 2010, Corollary 5.8] 1W0rb(R), is a constant sheaf with finite fiber.
Let C be a connected component of Qreg

b , and let C be any irreducible real curve in
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Q which intersects C . Let IC ⊂ C∩C be connected. By the above it is enough to
show that ε(b; v) IndD(b; v) and χv are equivalent when v ∈ IC. In other words, it
is enough to show that for all v ∈ IC we have limε→0[χvε ] = b. By Proposition 3.7,
the restriction of χ to C∩C is realized by an algebraic model L defined over some
Zariski-open set Ũ of a ramified cover C̃ of C, such that IC ⊂ U and there is no
ramification at the points of IC. Choose a lift ĨC of IC.

By Corollary 2.8 we know that b = Inds(bs), where gccB(b) = W0r for some
generic residual point r = sc with s ∈ Tu a fixed special point, and c= exp(ξ) with
ξ a generic linear residual point for H(Rs,1, Ts(E), Fs,1; ks). By Proposition 3.7
we know that ε(b,C) IndD(b,C; v) is realized by an algebraic family L defined
over R(Ũ∗). By shrinking U∗ if necessary, we may assume that for all ṽ ∈ Ũ∗

we have, for all r, r ′ ∈ W0r , that sWsc 6= s ′Ws′c′ (with r ′ = s ′c′) if and only
if sWsc(v) ∩ s ′Ws′c′(v) = ∅ with v = φ(ṽ). Let ms be the ideal in R(Ũ∗)[X ]
corresponding to the finite set sWsc of R(Ũ∗)-points of T . By our choice of R(Ũ∗),
we have that ms+m′s =R(Ũ∗)[X ] whenever sWsc 6= s ′Ws′c′. Hence by the Chinese
remainder theorem we have

(R(Ũ∗)[X ])W0r̂ '

⊕
s′∈W0s

(R(Ũ∗)[X ])s′Ws′c
̂ .

Let 1 =
∑

s′∈W0s es′ be the corresponding decomposition into orthogonal idem-
potents of 1 ∈ (R(Ũ∗)[X ])W0r̂ . Let HR(Ũ∗) = H3 ⊗3 R(Ũ∗). Since HR(Ũ∗) con-
tains the Bernstein subalgebra AR(U∗) ' R(U∗)[X ], we can define the idempo-
tents es ∈ (HR(Ũ∗))W0r̂ . Since gcc(Lb) = W0r , we can consider L as a module
over (HR(Ũ∗))W0r̂ . Hence the es act on L , and are mapped to idempotent elements
in EndR(Ũ∗)(L) such that Id=

∑
s′∈W0s es′ .

Following Lusztig [1989a, Lemmas 8.14, 8.15] we know that

Hs,R(Ũ∗) := (HR(Ũ∗)(Rs))Wsĉ o0s

is isomorphic to the algebra (HR(Ũ∗))s,W0r̂ := es(HR(Ũ∗))W0r̂ es , via the map (in the
notation of [loc. cit.]) f.Tw,s .γ → f.es .Tw.es .Tγ .es . Hence the finite, locally free
R(U∗) module Ls := es L is a module over Hs,R(Ũ∗), and in particular over the
finite-type Hecke subalgebra

Hs,R(Ũ∗),0 :=HR(Ũ∗)(W (R1,s))o0s

in the obvious way. By shrinking R(Ũ∗) if necessary we may assume that Ls

is actually a free R(Ũ∗)-module. Let χs denote the character of Ls (considered
as a function of v ∈ IC). By Corollary 2.2 we see that for each v ∈ IC we have
limε→0[χvε ] = Inds(bv,s), where bv,s = limε→0[χs,vε ]. This limit clearly only
depends on the restriction of Ls to Hs,R(Ũ∗),0. Now it is well known that (see, e.g.,
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[Opdam 1995, Theorem 5])2 the irreducible characters of Hs,R(Ũ∗),0 take values in
3. This implies that bv,s is independent of v ∈ IC, as desired. �

Corollary 3.9. ε(b, · ) is locally constant on Qreg
b .

Proof. The continuity of Qreg
b 3 v → ε(b; v) IndD(b; v) implies that on each

connected component C of Qreg
b the sign C 3 v→ ε(b, v) is continuous, hence

constant. �

Definition 3.10. If C ⊂ Qreg
b is a connected component, we define ε(b,C) :=

ε(b, v) ∈ {±1} for any choice of v ∈ C .

3B. Limits of discrete series. Let b ∈Bgm let C ⊂Qreg
b be a connected component,

and let v0 ∈ ∂C . Choose a connected real algebraic curve Cr = C ∩ Q ⊂ Q
which meets C , and contains v0 ∈ Cr as a smooth point of Cr . Extend Cr to a
complex affine algebraic curve C ⊂ QC. Assume we have chosen the structures
as in Proposition 3.7 with respect to W0r = gccB(b), v0, C and C. Let v be a
point in C∩C such that v0 and v are in the same connected component of C∩C .
Given a ṽ ∈ Ũ∗ above v ∈ C∩C , let us denote by Lb the unique R̃(U)-lattice as in
Proposition 3.7(vi) such that L i,ṽ ' Vχb,v (according to Proposition 3.7(viii)), where
χb,v = ε(b; v) IndD(b; v). The interval IC ⊂ Cr connecting v to v0 has a unique lift
ĨC starting at ṽ ∈ Ũ∗. Let ṽ0 ∈ Ũ be the unique endpoint of this lifted interval lying
above v0.

Definition 3.11. We denote by IndD(b,C; v0) the unique virtual character of Hv0

such that ε(b,C) IndD(b,C; v0) is realized by Lb,ṽ0 . We call this representation
the limit of the family of discrete series χb = ε(b; v) IndD(b; v) along C from C
at v0.

Remark 3.12. A priori IndD(b,C; v0) may depend on the chosen curve and the
model Lb of ε(b; v) IndD(b) defined over R̃(U), but we suppress this from the
notation.

Corollary 3.13. ε(b,C) IndD(b,C; v0) is a genuine tempered character.

Proof. Since the limit ε(b,C) IndD(b,C; v0) was defined by specializing the R̃(U)-
module Lb at ṽ = ṽ0, it is by definition a genuine character.

The central character of Lb(ṽ) is W0r(v) (with v=φ(ṽ)), hence for all z ∈ZR(U)

we have z(W0r) ∈R(U). Recall that ZR(U) =AW0
R(U), hence the generalized AR(U)

weight spaces belongs to the set W0r ⊂ T (R(U)).
Let r ′(v0) ∈W0r(v0), and let ṽ ∈ ĨC be close to ṽ0. Choose a basis {x1, . . . , xn}

of X , and consider the corresponding commuting elements θi ∈A acting in Lb(ṽ).
For each i consider the set Si,r ′(v0) := {r

′′
∈ W0r | xi (r ′′(v0)) = xi (r ′(v0))} of

2For a discussion of the rationality properties of characters for finite Hecke algebras, see also
[Geck and Pfeiffer 2000, Section 9.3], and the references therein.
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generalized eigenvalues of θi (acting in Lb(ṽ)) which coalesce to xi (r ′(v0)) at
v = v0. Then the projection 5r ′,ṽ onto the direct sum of the generalized A-weight
spaces in Lb(ṽ) which coalesce to r ′(v0) is the composition of the commuting
projection operators5i,r ′,ṽ onto the direct sum of the generalized eigenspaces r ′′(v)
of θi (ṽ) with r ′′ ∈ Si,r ′(v0). By holomorphic functional calculus we have

5i,r ′,ṽ =
1

2π i

∫
∂Di

(z Id−θi (ṽ))
−1 dz,

where Di is a fixed disk around xi (r ′(v0)) such that xi (r ′′(v)) ∈ Di if and only if
r ′′ ∈ Si,r ′(v0) (such Di clearly exist, provided v is sufficiently close to v0). Hence
the 5i,r ′,ṽ are continuous in ṽ. In particular 5r ′,ṽ is continuous in ṽ, implying that
the dimension of its image is independent of v. Therefore r ′(v0) is a generalized
A-weight of Lb(ṽ0) if and only if for some v∈ IC sufficiently close to v0, there exists
a r ′′(v) with r ′′(v0)= r ′(v0) (i.e., r ′′ ∈

⋂
i Si,r ′(v0)) such that r ′′(v) is a generalized

A-weight of the discrete series representation Lb(ṽ). In particular, r ′(v) is a limit
of A-weights which meet the Casselman condition for temperedness [Opdam 2004,
Lemma 2.20]. This is a closed condition, hence the generalized A-weights of
Lb(ṽ0) satisfy the Casselman conditions themselves. The mentioned lemma implies
that Lb(ṽ0)= ε(b,C) IndD(b,C; v0) is tempered. �

Corollary 3.14. The tempered character ε(b,C) IndD(b,C; v0) is a member of
an algebraic family of characters of HR̃(U)-characters with values in R̃(U). For
generic element ṽ ∈ Ũ this character is irreducible, and for ṽ ∈ Ũ∗ ∩ C it is an
irreducible discrete series.

Remark 3.15. The limit ε(b,C) IndD(b,C; v0) may be irreducible or not. In the
case of the Hecke algebras of type C(1)n the limits of discrete series were constructed
using the geometric model [Kato 2009] of characters of the generic affine Hecke
algebra of this type. In this situation it is known that the limits of the discrete series
at nontrivial singular parameters are always irreducible [Ciubotaru et al. 2012]. In
general the limit to the trivial parameter v = 1 will be a reducible character of
the affine Weyl group (the only exceptions being the “one W -type” discrete series
characters).

Proposition 3.16. lim
ε→0
[IndD(b,C; vε0)] = b ∈ Bgm ⊂RZ(W ).

Proof. The proof is exactly the same as the proof of Proposition 3.8. �

Corollary 3.17. The covering φ is not ramified at the points of C∩C.

Proof. The argument of Proposition 3.8 proves that bs = limε→0[χs,vε ] for any v in
a neighborhood of v0. On the other hand, the discrete series of Hv are parametrized
by the b ∈Bv−gm =Bgm∩Yv−gm by Corollary 2.2, Proposition 2.6 and Section 2B4.
Moreover, for b in the image of Inds , the limit map b → bs is an isometry by
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Corollary 2.2. Hence the generic discrete series with generic central character W0r
are also parametrized by the corresponding elliptic class bs of Ws . Therefore the
algebraic continuation of the discrete series characters ε(b,C) IndD(b; v) (realized
by Lb) on Ũ∗ can not have monodromy around v0, by the above. We conclude that
the character values are regular functions in a neighborhood of v0 ∈ U. �

3C. The rationality of the generic formal degree.

3C1. The universality of the rational factors of the generic formal degree. The fol-
lowing result follows now simply from [Ciubotaru and Opdam 2015, Corollary 5.7;
Ciubotaru et al. 2014; Opdam and Solleveld 2010]:

Theorem 3.18. Fix b ∈ Bgm. The formal degree of a continuous family of virtual
discrete series characters Qreg

b 3 v → IndD(b; v) as a function of v ∈ Qreg
b is a

rational function of the form dbmb, with db ∈Q×.

Proof. By [Ciubotaru and Opdam 2015, Corollary 5.7] the formal degree of
IndD(b; v) is a linear combination of rational functions of the vs , which only
depends on the elliptic class limε→0 IndD(b; vε). This is, by definition, b (and
therefore independent of v). On the other hand we have shown that this family is
continuous and (by [Ciubotaru et al. 2014]) has generic central character W0rb. By
[Opdam and Solleveld 2010, Theorem 4.6] we conclude that the formal degree has
the form db(C)mb for some constants db(C) depending on the connected component
C of Qreg

b in which v lies. But the rationality implies that these constants need to
be equal on all chambers. �

Corollary 3.19. We can choose the basis vector b ∈ Bgm uniquely such that db > 0.
With this choice, ε(b,C) will be equal to the sign of mb(v) for v ∈ C.

3D. Proof of Theorem 1.1. The proof of Theorem 1.1 is all completed now, and we
point out where the various parts of it have been proved. Part (a) is in Proposition 2.6
and Corollary 3.19. Part (b) is in Section 2B4. Part (c) is Corollary 2.8. Part (d) is
in Proposition 3.8. Part (e) is Corollary 3.9. Part (f) follows from Corollary 2.2,
Proposition 2.6, and Section 2B4. Part (g) is Theorem 3.18.

4. Explicit results; comparison with the Kazhdan–Lusztig–Langlands
classification

In this section we will compare the uniform classification of the discrete series
with the Kazhdan–Lusztig–Langlands classification when an affine Hecke algebra
arises in the context of a unipotent type of an unramified simple group defined
over a nonarchimedean local field. We will also compute, for all affine Hecke
algebras of simple type, the canonically positive basis Bgm and the fundamental
rational constants db appearing in the generic Plancherel measure. We will moreover
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explain how the general semisimple case can be reduced to the case of simple type.
In addition, we will show that in each connected component of Qreg

b the generic
discrete series character ε(b; v) IndD(b; v) takes values in Q3, the quotient field
of 3. Needless to say, the results in this section are based on case-by-case methods.

4A. Determination of the canonically positive basis Bgm.

4A1. The sign of mb(v). In light of Corollary 3.19, we need to analyze the sign
of mb(v). Specialize

v(s)= v fs , with v > 1, fs ∈ R.

Write r = sc as before and let H(Rs,1, Ts(T ), Fs,1; ks) denote the corresponding
graded affine Hecke algebra. Recall that the parameter function ks is given by
[Opdam and Solleveld 2010, (26)]

ks(α)=

{
logv(v

2
α∨) if α ∈ R0 ∩ R1, or if α = 2β, β ∈ R0 and β(s)= 1,

logv(v
2
α∨v

4
2α∨) if α = 2β, β ∈ R0, β(s)=−1.

(18)
Write c = vc̄. The following proposition says that the sign of the function mW0,r

can in fact be detected at the graded Hecke algebra level.

Proposition 4.1. The sign of mW0,r from (13) equals the sign of the expression

mW0c̄ =

∏
′

α∈Rs,1
α(c̄)∏

′

α∈Rs,1
(α(c̄)− ks(α))

. (19)

This expression is a polynomial which equals the product of n rational linear forms
in the parameters ks(α) (where n is the rank of R0).

Proof. For every α ∈ R1, α(s) is a root of unity. Write R1 = Rs,1 t Rs,−1
1 t Rs,z

1 ,
where Rs,−1

1 = {α ∈ R1 | α(s)=−1} and Rs,z
1 = {α ∈ R1 | α(s)2 6= 1}. If α is a root

in R1 \ R0, then α is a root of type A1 in Bn and from the classification of isolated
semisimple elements s in this situation, we see that α ∈ Rs,1.

We break up the product expression for mW0r according to the three types
of roots: Rs,1, Rs,−1

1 , Rs,z
1 . Take Rs,−1

1 first and we analyze the contribution
of its numerator and denominator. The numerator is a product of expressions
(−α(c)− 1)(−α(c)−1

− 1) > 0, since α(c) > 0, one factor for each positive root
α ∈ Rs,−1

1 . For the denominator, for each positive root α ∈ Rs,−1
1 (which by the

remark above it is in R0), we have a factor (−v−2
α∨ α(c)

−1
− 1)(−v−2

α∨ α(c)− 1) > 0.
Therefore, the part of the expression corresponding to Rs,−1

1 is positive.
Consider now Rs,z

1 . Its contribution equals∏
′

α∈Rs,z
1
(α(s)α(c)− 1)∏

′

α∈Rs,z
1
(α(s)v−2

α∨ α(c)− 1)
.
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The argument in [Opdam 2004, Theorem 3.27(v)] shows that both the numerator
and the denominator are polynomial expressions in v with rational (in fact integer)
coefficients. Moreover, since α(s) is not real, these polynomials do not afford real
roots in v. It follows that they are always positive or always negative for real v. But
it is clear that for v = 0 the fraction above equals 1> 0, and therefore it is always
positive.

In conclusion, the sign of mW0r equals the sign of the expression

mW0r =

∏
′

α∈Rs,1
(α(c)−1

− 1)∏
′

α∈Rs,1
(v−1
α∨ α(c)

−1/2+ 1)
∏
′

α∈Rs,1
(v−1
α∨ v
−2
2α∨α(c)

−1/2− 1)
.

The numerator can be rewritten as
∏
α∈R+s,1

α(c)−1(−1)(α(c)− 1)2 and therefore
its sign is (−1)ns , where ns = #{α ∈ R+s,1 | α(c) 6= 1} = #{α ∈ R+s,1 | α(c̄) 6= 0}. But
this is also the sign of the numerator in (19).

Let α∈ R+0 ∩Rs,1 be given. Then α and−α give a contribution in the denominator
of v−4

α∨ (α(c)
−1
− v2

α∨)(α(c)− v
2
α∨) = v

−4
α∨ (v

−α(c̄)
− vks(α))(vα(c̄)− vks(α)). Clearly,

the sign of this expression is the same as the sign of (−α(c̄)−ks(α))(α(c̄)−ks(α)).
Now suppose that α = 2β with β ∈ R0. If β(s) = 1, the factors of the form

(v−1
α∨ α(r)

−1/2
+ 1)= (vα∨β(c)−1

+ 1) are all positive and can be ignored. So the
contribution in the denominator comes from the factors (v−1

α∨ v
−2
2α∨α(r)

−1/2
− 1)=

(v−ks(α)/2β(c)−1
− 1). Grouping together the factors corresponding to α and −α

as before and multiplying by powers of v, we see that the contribution to the sign
is given by (vα(c̄)/2− vks(α)/2)(v−α(c̄)/2− vks(α)/2). But this has the same sign as
(−α(c̄)− ks(α))(α(c̄)− ks(α)).

Finally, if β(s)=−1, then the factor

(v−1
α∨ v
−2
2α∨α(r)

−1/2
− 1)=−(v−1

α∨ v
−2
2α∨β(c)

−1
+ 1)

is negative and the contributions of these factors for α and −α cancel out. Thus
we remain with the factor (v−1

α∨ α(r)
−1/2
+ 1)= (−v−ks(α)/2β(c)+ 1) and the same

analysis as in the previous case applies.

The regularity of mW0r on Q implies that mW0c̄ is bounded if the ks(α) take
arbitrary real values. At the same time, mW0c̄ is a rational function whose numerator
and denominator are products of rational linear expressions in the ks(α), with
(as follows from Definition 2.3) exactly n more factors in the numerator than in
the denominator. It follows that the denominator divides the numerator, leaving a
polynomial in the ks(α) of degree n of the desired form. �

Example 4.2. Consider the affine Hecke algebra of type G2 with parameters k1

and k2 as in Section 4B3 below and in Table 1. In particular, let

c̄1 = [k1, k2], c̄2 = [k1,−k1+ k2], and c̄3 =
[
k1,

1
2(−k1+ k2)

]
,
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be the three generic linear residual points in the graded affine Hecke algebra of
type G2. The corresponding polynomials in Proposition 4.1 are:

mW0c̄1 =
1
36(k1+ 2k2)(2k1+ 3k2),

mW0c̄2 =−
1
36(2k1− 3k2)(k1− 2k2),

mW0c̄3 =
1
36 k1k2.

(20)

Notice that the zeros of these polynomials give precisely the sets Qsing
bi

, 1≤ i ≤ 3,
see [Heckman and Opdam 1997, Proposition 4.15; Opdam and Solleveld 2010,
Table 4].

Remark 4.3. Fix b ∈ Bgm and suppose v0 ∈Q
reg
b \Q

gen
b is a nongeneric, but regular

parameter. By definition, b is in Bv0−m and let r0 = limv→v0 rb(v). The irreducible
discrete series at v0 in the family defined by b is ds(b, v0)= ε(b; v0) IndD(b; v0).
By Theorem 1.1, the sign ε(b; v) is locally constant and therefore taking limv→v0 in
the formula of Theorem 1.1(g), we see that ε(b; v0) equals the sign of mW0r (v0)=

limv→v0 mW0rb(v), where mW0rb is defined by (13). This equals the sign of mW0c̄b .

4B. Tables. We present the explicit form of the canonically positive basis Bgm,
as well as the generic residual central characters W0rb, the constants db in the
case when R is a simple root datum of type C (1)

n (with three parameters), B(1)n ,
Cn adjoint, G2, and F4 (with two parameters). For the affine Hecke algebra of
a simple, nonsimply laced root datum of arbitrary isogeny, one may deduce the
relevant information from the cases listed above, by specializing the parameters
appropriately and by the use of induction and restriction (see Section 4E).

4B1. C (1)
n . Let

X = Zn
= 〈ε1, . . . , εn〉, R0 = {±εi ± ε j , i 6= j, ±εi }, F0 = {εi − εi+1, εn}.

For simplicity of notation, we use the coordinates εi for the basis of Y as well. We
have W = X o W0 = ZR0 o W0. The affine simple roots are

F = {(εi − εi+1, 0} ∪ {(2εn, 0)} ∪ (−2ε1, 1)

and the affine Dynkin diagram (with parameters) is

v0 v1+3 v1 · · · v1 v2ks . (21)

Here the affine simple root is α0= (−2ε1, 1) and it gets the label v0. Let H(v0,v1,v2)

be the affine Hecke algebra with generators N0, N1, . . . , Nn . We need to switch to
the Bernstein presentation. The algebra H(v0, v1, v2) is generated by N1, . . . , Nn
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and θ±1
1 , . . . , θ±1

n (here θi = θεi ) subject to the relations

θi Ni − Niθi+1 = (v1− v
−1
1 )θi , 1≤ i ≤ n− 1,

θi N j = N jθi , |i − j | ≥ 2,

θn Nn − Nnθ
−1
n = (v2− v

−1
2 )θn + (v0− v

−1
0 ),

(22)

the usual Hecke relations and the commutation of the θi ’s. In the change of
presentation, we set θi = N0 Nsεi , where sεi ∈W0 is the reflection corresponding to
the root εi .

It is immediate that the assignment N0 7→ −v
−1
0 gives a surjective algebra

homomorphism onto the finite Hecke algebra H f (Cn, v1, v2) of type Cn with param-
eters v1, v2. Translating to the Bernstein presentation, we find that the assignment

Ni 7→ Ni , θi 7→ −v
−1
0 Nsεi , 1≤ i ≤ n, (23)

extends to a surjective algebra homomorphism onto the Hecke algebra H f (Cn,v1,v2)

of finite type. This allows us to lift every simple H f (Cn,v1,v2)-module to a sim-
ple module of the affine Hecke algebra. The simple H f (Cn,v1,v2)-modules are
parametrized by bipartitions (λ, µ) of n. It is particularly useful to use Hoefsmit’s
construction of such modules, see [Geck and Pfeiffer 2000, pages 322–325], since
in that realization the Nsεi act diagonally.

We recall the construction. Denote by V(λ,µ)(v) the simple module of H f (Cn)

parametrized by (λ, µ). Its basis is indexed by left-justified decreasing standard
tableaux of shape (λ, µ). Let † denote such a Young tableau. Then

Nsε j
·†= ct(†, n− j + 1)†, where ct(†, k)=

{
v

2(y−x)
1 v2 if k occurs in λ,
−v

2(y−x)
1 v−1

2 if k occurs in µ,

where (x, y) are the coordinates of the box in which k occurs. (The coordinates
(x, y) of a box in the Young tableau increase to the right in y and down in x .)

This means that in Ṽ(λ,µ)(v), the lift of V(λ,µ) to the affine Hecke algebra, we
have

θ j · †=−v−1
0 ct(Y, n− j + 1)†. (24)

The condition that a simple module is a discrete series module is that the eigenvalues
of the product θ1·θ2 · · · θ j are all smaller than 1 in absolute value, for all j=1, . . . , n.
From (24), we see that when the absolute value of the specialization of v0 is
much larger than that of v1 and v2, every V(λ,µ)(v) is a discrete series module.
Moreover, the central characters of these modules are all distinct at generic values
of the parameters, and since, by [Opdam and Solleveld 2010], the dimension of
the space RZ(W ) equals the number of bipartitions of n, it follows that the set
{limv→1 Ṽ(λ,µ)(v)} is an orthonormal basis of Ygm =RZ(W ). In order to determine
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the canonically positive basis Bgm, it remains therefore to determine the signs
ε(b, v) for each b = limv→1 Ṽ(λ,µ)(v).

To this end, we need to examine the formal degrees of these modules. Denote by
Rsh

0 = {±εi }, the short roots, and by Rlo
0 = {±εi ± ε j }, the long roots. Specialize

v1 = v, v2 = v
k++k−, v0 = v

k+−k−,

where v > 1 and k−, k+ ∈ R. Notice that R1 \ R0 = {±2εi }. The formula for the
generic formal degree [Opdam and Solleveld 2010, Theorem 4.6 and (40)] gives in
our particular case that the formal degree of a discrete series π(b, v) with central
character W0rb(v) is

fdeg(π(b, v))=
db ε(b, k+, k−)

∏
′

α∈R1
(α(rb(v))

−1
− 1)∏

′

α∈Rlo
0
(v−2α(rb(v))−1− 1)

·
1∏

′

α∈Rsh
0
(v−2k+α(rb(v))−1− 1)

∏
′

α∈Rsh
0
(v−2k−α(rb(v))−1+ 1)

,

where ε(b, k+, k−) is a sign to be made explicit (see (28)). From [Ciubotaru et al.
2012, Theorem 4.7] (see the remark in the proof of [Opdam 2016, Theorem 4.12]),
we know that

db = 1. (25)

Fix a bipartition (λ, µ). The corresponding central character W0rb(v) is the W0-orbit
of the string

r(λ,µ) =
(
(−v2(y−x)v2k− | (x, y) ∈ λ); (v2(y′−x ′)v−2k+ | (x ′, y′) ∈ µ)

)
. (26)

and therefore

c̄(λ,µ) = (c̄λ(k−), c̄µ(−k+)), where c̄λ(k)= ((y− x)+ k | (x, y) ∈ λ).

We will use Proposition 4.1 to compute the signs. Denote by B|λ| the root subsystem
of R0 given by the roots that involve only coordinates εi , 1≤ i ≤ |λ|. Similarly, let
B|µ| be the root subsystem in coordinates ε j , |λ| < j ≤ n. Let D|λ| = B|λ| ∩ Rlo

0
and A|λ|1 = B|λ| ∩ Rsh

0 , and similarly for µ. Notice that H(Rs,1, Ts(T ), Fs,1; ks) is
isomorphic to the product of graded affine Hecke algebras H(B|λ|, k−)×H(B|µ|, k+),
where by H(B`, k) we denote the graded affine Hecke algebra of type B` with
parameters 1 on the long roots and m on the short roots. Define for λ (and similarly
for µ):

mλ(k)=

∏
′

α∈B|λ| α(c̄λ(k))∏
′

α∈D|λ|(α(c̄λ(k))− 1)
∏
′

α∈A|λ|1
(α(c̄λ(k))− k)

,

ε(λ, k)= the sign of mλ(k).

(27)
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Then from Proposition 4.1, mλ(k) is a degree n polynomial and

ε(b, k+, k−)= ε(λ, k−)ε(µ,−k+)= ε(λ, k−)ε(µT , k+), (28)

where µT denotes the transpose partition to µ.
As noticed before, in the chamber where k− � k+ � 0, the discrete series

are V(λ,µ)(v). Let ε(λ, µ)= limk±→∞ ε(b, k+, k−). In conclusion, we have proved:

Proposition 4.4. For the affine Hecke algebra of type C (1)
n , the canonically positive

basis Bgm,C of Ygm =RZ(W ) is

Bgm,C =
{
b(λ,µ) := ε(λ, µ)Ṽ(λ,µ)(1) | (λ, µ) bipartition of n

}
,

where Ṽ(λ,µ)(1) is the irreducible W-representation with central character W0s(λ,µ),

s(λ,µ) = (−1, . . . ,−1︸ ︷︷ ︸
|λ|

, 1, . . . , 1︸ ︷︷ ︸
|µ|

),

and whose restriction to W0 is the irreducible W0-representation labeled by the
bipartition (λ, µ).

4B2. B(1)n , Cn adjoint. The Iwahori–Hecke algebra of Spin2n+1(F) is associated
with the root datum of type B(1)n , for which the parameter space Q is two dimensional.
This two parameter family is isogenous to a specialization HB of the generic
affine Hecke algebra HC of type C (1)

n discussed in the previous section, namely
HB =HC |v0=1 (or equivalently k− = k+). Observe that HB is associated with the
extended diagram of type B(1)n , i.e., R0 has type Cn , and X is its weight lattice. The
Iwahori–Hecke algebra of PGSp2n(F) is associated with the extended diagram of
type C (1)

n , and has a root datum with R0 of type Bn with X its weight lattice. The
generic affine Hecke algebra HC,ad of this type has a two dimensional parameter
space Qad ⊂Q given by v0 = v2. Clearly, HC,ad is isogenous to the specialization
HC,Qad =HC |v0=v2 (or equivalently k−= 0) of the generic affine Hecke algebra HC

of type C (1)
n . To find the bases Bgm of these two parameter generic Hecke algebras,

we use some general results on isogeny (see Section 4E) in conjunction with the
following remark:

Remark 4.5. Consider an arbitrary generic affine Hecke algebra H3 over the
parameter ring3 as in Section 2B, with parameter space Q and canonically positive
basis Bgm. Suppose that we have a quotient 3′ of 3 corresponding to a subtorus
Q′ ⊂Q, and let B′gm be the corresponding basis for H3′ . For any b ∈ Bgm we have
mQ′

b = d ′bmb|Q′ (see Definition 2.9) with

±b ∈ B′gm⇐⇒Qreg
b ∩Q

′
6=∅⇐⇒ d ′b 6= 0,

and
B′gm =

{
sign(d ′b)b | b ∈ Bgm and Qreg

b ∩Q
′
6=∅

}
. (29)
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Proposition 4.6. (1) The canonically positive basis of HB is Bgm,B = Bgm,C .

(2) The canonically positive basis of HC,Qad is (see [Opdam and Solleveld 2010,
Proposition 6.4] for the notion of λ-regular)

Bgm,C,Qad = {εC,Qad(λ)b(λ,µ) | 0 is λ-regular },

where εC,Qad(λ) is the sign of mC,Qad
λ (0) ·mλ(0).

Proof. By Remark 4.5 and formula (28) we need to compute the sign

sign
(

lim
(k+,k−)→(k0,+,k0,−)

m′λ(k−)m
′

µT (k+)
)
· ε(λ, k0,−)ε(µ

T , k0,+),

where k0,+ = k0,− = k in the first case, and k0,+ = k, k0,− = 0 in the second
case (here k is a generic real number), and m′ denotes the polynomial m B

λ (in the
first case) or mC,Qad

λ (in the second case) defined as m, but with c̄ generic on the
relevant 2-dimensional parameter space instead of the 3-dimensional parameter
space of HC . The combinatorial condition that 0 is λ-regular is precisely designed
so that mλ(0) 6= 0.

It is obvious that in the first case the sign is +1. Since in the second case the
contribution of k+ is +1 again, the claim follows. �

Remark 4.7. Let λ be an arbitrary partition. The signs εC,Qad(λ) that appear in
Proposition 4.6 can be computed in the terms of the diagram of the partition. We
need to count the signs contributed by the nonzero linear factors that appear in
mλ(k), k generic but which become zero at k = 0. These are all factors of the
form ±k, ±2k. One combinatorial answer is that the resulting sign is (−1)`, where
` is the number of pairs of distinct boxes {x1, x2} in the Young diagram of λ that
are “almost symmetric” with respect to the main diagonal. I.e., suppose x1 is the
box on or below the diagonal and x ′1 is the flip of x1 with respect to the diagonal,
then x2 is one unit away from x ′1 in one of the four directions.

4B3. G2, F4. For the affine Hecke algebras of types G2 and F4, we work with the
following coordinates. For G2, the affine diagram is

α0 α1 α2+3 ,

with parameters v(si )= v
2ki, i = 1, 2, while for F4, it is

α0 α1 α2 α3+3 α4 ,

with parameters v(s1)= v
2k1, v(s3)= v

2k2. In both cases, v > 1 and ki ∈ R.
Let ω∨i denote the fundamental coweights. A central character is of the form

rb = sc, where c= v
∑

i aiω
∨

i , where s is a compact element of the torus. The generic
residual central characters are listed in Tables 1 and 2 (Parts 1 and 2). In these
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b s W0c db G2 ε

b1 1 [k1, k2] 1 [G2, 1] 1
b2 1 [k1,−k1+ k2] 1 [G2(a1), (21)] −1
b3 1 [k1,

1
2(−k1+ k2)] 1/2 [G2(a1), (3)] 1

b4 2A1 [−
1
2 k1−

3
2 k2, k2] 1/2 [2A1, 1] 1

b5 A2 [k1,−k1] 1/3 [A2, 1] 1

b E6 ⊂ E8 ε 3E6 ε

b1 [A2 E6, θ] 1 E6 1
b2 [A2 E6(a1), θ] −1 E6(a1) −1
b3 [A2 E6(a3), θ] 1 E6(a3) 1
b4 [A1 A2 A5, θ] 1 A1 A5 1
b5 [A8, θ] 1 A3

2 1

Table 1. G2.

tables, if s 6= 1, we specify it by the type of its centralizer in the second column. In
the third column, we give c in the form [ai ].

For each generic residual central character W0rb, we compute the function mb(v)

using formula (40) from [Opdam and Solleveld 2010]. To obtain the constant db,
we compute the limits of mb(v) in equal parameter case, e.g., k1→ 1, k2→ 1 and
also in the unequal parameter cases that appear in E8. Then we compare the results
with the formulas for formal degrees in [Reeder 2000; 1994]. To complete the
determination of the Langlands parameter, i.e., the representation of the component
group, we computed, when needed, the W0-structure of the specialization of the
family of discrete series and compared it with the K -structure of the representations
in Reeder’s tables. The relevant unequal parameter cases that appear in E8 are:
the affine Hecke algebra of type F4 that controls the subcategory of unipotent
representations where the parahoric subgroup is D4 in E8, and the affine Hecke
algebra of type G2 for the subcategories of unipotent representations where the
parahoric subgroup is E6 in E8. For this comparison, we need to multiply the
specialization of the formal degree in the unequal parameters Hecke algebra by the
factor ρ(1)/PJ (v

2), where ρ is the appropriate cuspidal unipotent representation
(whose dimension is given in the tables of [Carter 1985]) and PJ (v

2) is the Poincaré
polynomial of the finite Hecke algebra corresponding to the parahoric J .

In addition, the Iwahori–Hecke algebra for the quasisplit exceptional p-adic group
3E6 (respectively, 2E7) is isomorphic to a direct sum of three (respectively, two)
copies of an affine Hecke algebra with unequal parameters of type G2 (respectively,
F4). To compare the formal degrees in these cases against the results of [Reeder
1994], we need to multiply the specialization of formal degrees for the affine Hecke



1122 Dan Ciubotaru and Eric Opdam

b s W0c db F4 ε

b1 1 [k1, k1, k2, k2] 1 [F4, 1] 1
b2 1 [k1, k1, k2− k1, k2] 1 [F4(a1),−] −1
b3 1 [k1, k1, k2− k1, k1] 1 [F4(a1),+] 1
b4 1 [k1, k1, k2− 2k1, k2] 1 [F4(a3), (211)] 1
b5 1 [k1, k1, k2− 2k1, 2k1] 1 [F4(a2),+] 1
b6 1 [k1, k1, k2− 2k1, k1] 1 [F4(a3), (31)] −1
b7 1 [k1, k1, k2− 2k1,−2k2] 1 [F4(a2),−] −1
b8 1 [0, k1, 0, k2− k1] 1/6 [F4(a3), (4)] 1
b9 1 [0, k1, 0, k2− k1] 1/3 [F4(a3), (22)] 1
b10 B4 [k1/2, k1, k2,−3k1− 2k2] 1/2 [B4,+] 1
b11 B4 [2k1,−k1, k2,−k1− 2k2] 1/2 non-ds
b12 B4 [0, k1,−k1+ k2,−2k2] 1/2 [B4(531), ε′′] −1
b13 B4 [k1, k1,−2k1+ k2, k1− 2k2] 1/2 [B4(531), 1] 1
b14 B4 [k1, k1,−3k1+ k2, 3k1− 2k2] 1/2 [B4(531), ε′] −1
b15 C3 A1 [−2k1− 3k2, k1, k2, k2] 1/2 [C3× A1,+] 1
b16 C3 A1 [−2k1, k1,−k2, 2k2] 1/2 [C3(42)× A1,++] 1
b17 C3 A1 [−2k1+ 3k2, k1,−k2,−k2] 1/2 [C3(42)× A1,+−] −1
b18 2A2 [k1,−k1− 2k2, k2, k2] 1/3 [2A2, 1] 1
b19 A3 A1 [k1, k1,−3k1/2− k2/2, k2] 1/4 [A1 A3, 1] 1

Table 2. (Part 1) F4.

algebra by the factor
(q1/2

− q−1/2)n+1

|�|
∏

O(q |O|/2− q−|O|/2)
,

where n+ 1 is the number of nodes in the affine Dynkin diagram, and O ranges
over the Galois orbits in the affine Dynkin diagram. See [Opdam 2016, (25)] for
more details. For the nonsplit inner forms, this procedure allows us to find the
L-packet to which the representation should belong, but it is not sufficient to enable
us to attach the representation of the component group.3

4C. Relation with Kazhdan–Lusztig parameters. Let R be a semisimple root
datum. Let G be the connected complex semisimple group with root datum
R. Consider the generic affine Hecke algebra H with root datum R and equal
parameters, i.e., v(s) = v(s′) = v for all s, s′ ∈ S. If G is simply connected,
the Kazhdan–Lusztig classification [Kazhdan and Lusztig 1987] applies to give a

3This is a subtle question, see [Opdam 2016] for results in this sense. We plan to return to this
question in future work.
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b D4 ⊂ E8 ε 2E7 ε

b1 [A1 E7,−] 1 E7 1
b2 [A1 E7(a4),−−] −1 E7(a1) −1
b3 [A1 E7(a2),−] 1 E7(a2) 1
b4 [A1 E7(a3),+−] 1 E7(a3) 1
b5 [A1 E7(a3),−+] −1 E7(a3) −1
b6 [A1 E7(a4),+−] 1 E7(a4) 1
b7 [A1 E7(a1),−] −1 E7(a4) −1
b8 [A1 E7(a5),−3] 1 E7(a5) 1
b9 [A1 E7(a5),−21] 1 E7(a5) 1
b10 [D8,−] 1 A1 D6 1
b11 [D8(5, 11),−] 1 A1 D6(3, 9) −1
b12 [D8(1, 3, 5, 7), r ] 1 A1 D6(5, 7) −1
b13 [D8(7, 9),−] −1 non-ds
b14 [D8(3, 13),−] −1 non-ds
b15 [A3 D5,−1] 1 A1 D6 1
b16 [A3 D5(3, 7),−1] −1 A1 D6(5, 7) 1
b17 non-ds A1 D6(3, 9) −1
b18 [A1 A2 A5,−1] 1 A2 A5 1
b19 [A1 A7,−] 1 A1 A2

3 1

Table 2. (Part 2) F4.

parametrization of the simple discrete series Hv0-modules, v0 > 1, in terms of

DSKL(R)=G \
{
(x, φ) | x ∈G elliptic, φ ∈ Â(x) such that H top(Bx)

φ
6= 0

}
. (30)

This result has been extended by Reeder [2002] (also see [Aubert et al. 2017]) to the
case where R has arbitrary isogeny type. Recall that we say that x is elliptic in G
if the conjugacy class of x does not meet any proper Levi subgroup of G. Here we
denoted by A(x)= ZG(x)/ZG(x)0 Z(G) the component group of the centralizer of
x in G (mod the center of G), by Bx the Springer fiber of x in G, and by H top(Bx)

φ

the φ-isotypic component of A(x) in the top cohomology of Bx .
As is well known, by the construction of Springer extended by Lusztig and Kato

in the simply connected case (see, for example, [Reeder 2000, Section 8]), and
further extended by Reeder [2002, Section 3] to the arbitrary semisimple case, the
full cohomology groups H •(Bx)

φ carry an action of W . We define

BKL
DS = {hx,φ := H •(Bx)

φ
⊗ ε | (x, φ) ∈ DSKL(R)}, (31)

where ε is the sign character of W .
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Let x be an elliptic parameter as above and write x = su for the Jordan decom-
position, with s ∈ Tu . Let ψ : SL(2,C)→ G be the Lie homomorphism such that
φ
((

1 1
0 1

))
= u. Set

τ = sφ
((
v−1 0

0 v

))
∈ TuTv and q = v2.

The following Proposition follows easily from the work of Kazhdan and Lusztig
[Kazhdan and Lusztig 1987; Lusztig 1995; 1989b] and the definitions.

Proposition 4.8. Let πv,hx,φ be the Kazhdan–Lusztig representation of H associated
to the elliptic Kazhdan–Lusztig parameter (x, φ). Then

πv,hx,φ = IndD(hx,φ, v). (32)

In particular, πv,hx,φ is a discrete series character with central character W0τ .

Proof. By [Kazhdan and Lusztig 1987], the representation πv,hx,φ is an irre-
ducible discrete series with central character W0τ . We know by [Reeder 2001,
Theorem 5.11.1] that limv→1 πv,hx,φ = hx,φ , hence (32) follows directly from
Definition 2.7. �

If R is of simply connected type then the formal degree is given by the formula
[Opdam 2016; Reeder 2000]:

fdeg(πv,hx,φ )=
φ(1)

|A(x)||Z(G)|
mKL
v (τ ), (33)

where

mKL
v (τ )= q |R|/2

∏
′

α∈R(α(τ)− 1)∏
′

α∈R(qα(τ)− 1)
.

Proposition 4.9. Equation (33) holds for all semisimple root data R.

Proof. Let G ′ be an arbitrary connected complex semisimple group with root
datum R′, and let 1→C→G→G ′→ 1 be the universal covering of G ′. Consider
x ′ = s ′u′ ∈ G ′ elliptic, and let x = su ∈ G be a lifting of x . Let A(x), A(x ′)⊂ Gad

be the centralizers of the unramified Langlands parameters associated to x and x ′

as in the text above Proposition 4.9 (these are finite subgroups, since x and x ′ are
elliptic). We define a homomorphism A(x ′)→ C by a→ asa−1s−1

∈ C , whose
image we denote by Cx . Similar to [Reeder 2002, Section 3.3], this give rise to an
exact sequence:

1→ A(x)→ A(x ′)→ Cx → 1

(more precisely, A(x) and A(x ′) are the images in Gad of Reeder’s Aτ,u and A+τ,u
respectively). Let (x, φ)∈DSKL(R). Let Cx,φ ⊂Cx be the isotropy group of φ with
respect to the natural action of Cx on the set of equivalence classes of irreducible
characters of A(x). Let µ denote the complex 2-cocycle of Cx,φ associated to φ,
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and Ex,φ =C[Cx,φ, µ] the corresponding twisted group algebra. By Mackey theory
(see [Reeder 2002, Section 3.3]) we have

Ex,φ ' EndC[A(x ′)](IndA(x ′)
A(x) φ),

and thus
IndA(x ′)

A(x) φ =
⊕

ψ∈Irr(Ex,φ)

ψ ⊗ ρ
ψ
φ , (34)

with ρψφ ∈ Irr(A(x ′)) as Ex,φ⊗C[A(x ′)]-module. Moreover, all irreducible charac-
ters ρ of A(x ′) appear as some ρ ' ρψφ , and ρψφ ' ρ

ψ ′

φ′ if and only if φ′ is a twist of
φ by an element of Cx , and ψ ′ and ψ correspond accordingly via this twist. By
counting the multiplicity of ρψφ in the regular representation of A(x ′) using (34) we
see:

dim(ρψφ )=
|Cx |

|Cx,φ|
dim(φ) dim(ψ). (35)

On the other hand we consider the affine Hecke algebras Hv and H′v. Reeder
[Reeder 2002, Section 1.5, Lemma 3.5.2] showed H′v = (Hv)

C , and

πv,hx,φ |H′v =
⊕

ψ∈Irr(Ex,φ)

ψ ⊗πv,hx ′,ρψ
φ
. (36)

Now πv,hx ′,ρψ
φ

will arise as a summand of πv,h x̃,φ̃
|H′v if and only if (x̃, φ̃) is a

twist of (x, φ) by an element of C . The Plancherel decomposition of the trace
τ ′ of the normalized Hecke algebra H′v is obtained by restricting the Plancherel
decomposition of the trace τ of Hv , since (see [Opdam 2016, Paragraph 2.4.1]) we
have τ ′ = τ |H′v . The above shows that in this restriction, the character of πv,hx ′,ρψ

φ

will appear with formal degree equal to the formal degree of πv,hx,φ with respect
to Hv, multiplied by the multiplicity

|C |
|Cx,φ|

dim(ψ). (37)

Considering that clearly mKL
v (τ )= mKL

v (τ ′), and using (33), (34), (35), and (37),
we see that

fdeg(πv,hx ′,ρψ
φ
)=

ρ
ψ
φ (1)

|A(x ′)||Z(G ′)|
mKL
v (τ ′),

as was to be proved. �

By [Reeder 2000, Proposition 7.2], mKL
v (τ )= qdimBu (q − 1)`|M s

0 |R(q), where
`= dim T , M s

0 is as in [Reeder 2000, Lemma 7.1], and R(q) is a rational function
in q that has the property that R(0)= 1 and R(1) 6= 0. On the other hand, we know
by [Opdam 2004, Proposition 3.27(v)] that mKL

v (τ )q− dimBu must equal a scalar
times a rational function in cyclotomic polynomials in q . This means that R(q) is a
scalar times a rational function where both the numerator and the denominator are
products of cyclotomic polynomials 8n(q) with n ≥ 2. Since R(0)= 1, the scalar
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must be in fact 1. But then R(q) > 0 whenever q is specialized to any real number
greater than −1, which implies that mKL

v (τ ) > 0 whenever q > 1.
Notice that the same conclusion follows from our sign formula (19). In the equal

parameter case, we have ks ≡ 1, and therefore the number of contributions of (−1)
in (19) equals the number of roots α(c̄) < 0 plus the number of roots α(c̄) < 1.
Because of integrality of the central character c̄ and the fact that the roots of c̄ that
vanish come in pairs, it follows, that this is an even number, thus the sign of mW0c̄

is positive.

Proposition 4.10. Suppose R is a semisimple root datum and let v0 denote the
specialization in the equal parameters case.

(a) Bv0−m = {bx,φ := ε(x, φ)hx,φ | hx,φ ∈ BKL
DS }, where ε(x, φ)= ε(bx,φ; v0) is the

sign of mQ
W0rb

(v0) (see Remark 4.3).

(b) If R is simply laced, then Bgm = BKL
DS and

dbx,φ =
φ(1)

|A(x)||Z(G)|
for all bx,φ ∈ Bgm.

(c) Suppose R is a root datum of type G2 or F4. Then

Bgm(G2)= {ε(x, φ)hx,φ | hx,φ ∈ BKL
DS }

and

Bgm(F4)= {ε(x, φ)hx,φ | hx,φ ∈ BKL
DS } ∪ {b11 = H •(BxB4

)triv⊗ ε},

with xB4
= sB4

u(711), where ZG(sB4
) is of type B4 and u(711) is a representative

of the subregular unipotent class in B4. The explicit signs ε(x, φ) are given in
the sixth column in Tables 1 and 2 (Part 1), while the constants dbx,φ are listed
in the fourth column of the tables.

Proof. As in Remark 4.3, for every b∈Bv0−m , ds(b; v0)=ε(b; v0) Ind(b; v0) and we
know that the sign ε(b, v0) is given by the sign of the generic m-function. Applying
the restriction map, we get that Res(ds(b; v0))= ε(b; v0) Ind(b; v0). On the other
hand, as explained above Res(ds(b; v0)) equals an hx,φ for some (x, φ)∈DSKL(R).
This is the claim in part (a).

Part (b) follows immediately from (a) by Proposition 4.9 and the discussion
preceding the present proposition: in the simply laced case, the generic m-function
equals mKL

v (τ ), which is positive.
Part (c) is contained in Section 4B3, where Tables 1 and 2 were computed. �

Remark 4.11. If R is a simply connected root datum of type B or C , then one can
relate the elements of BKL

DS to the bipartitions in the basis Bgm from Proposition 4.4
using the combinatorial algorithms of Slooten [2008], see also [Opdam 2016]. If
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(x, φ) is a discrete Kazhdan–Lusztig parameter as above, let (λ(x, φ), µ(x, φ)) be
the bipartition associated by the algorithms in [loc. cit.]. Then

BKL
DS =

{
ε(λ(x, φ), µ(x, φ)) · b(λ(x,φ),µ(x,φ)) | (x, φ) ∈ DSKL(R)

}
,

where ε(λ(x, φ), µ(x, φ)) equals the sign of limks(α)→1 mW0c̄ from (19).

4D. Pin cover of the Weyl group. Suppose W is a finite Weyl group with its
reflection representation E . Fix a positive definite W-invariant symmetric bilinear
form on E . Define the Clifford algebra C(E) and the pin cover p : W̃→W as in
[Ciubotaru et al. 2014, Section 3.1]. Let det be the determinant character of W̃ acting
on E . As in [Ciubotaru et al. 2014, Section 4.1], define W̃ ′ to be equal to W̃ , when
dim E is odd, and to equal ker det (an index two subgroup), when dim E is even.

If dim E is odd, then C(E) has two nonisomorphic simple complex modules;
we denote them S+ and S−. When dim E is even, C(E) has a unique simple
complex module whose restriction to the even part C0(E) splits into a direct sum of
two nonisomorphic modules, denoted again S+ and S−. We fix the choice of S+

(and S−) in both cases once and for all.
An irreducible W̃ ′-representation is said to be genuine if it does not factor

through p(W̃ ′). Two nonisomorphic irreducible W̃ ′-representations are said to be
associate if one is the det-dual of the other, when dim E is odd, and if they both
occur in the restriction to W̃ ′ of an irreducible W̃-module, when dim E is even. For
example {S+, S−} is a pair of associate W̃ ′-representations. Denote by Irr2 W̃ ′ the
set of associate genuine pairs.

We apply these constructions in the case when R is a semisimple, simply con-
nected root datum, W =Ws , with s an isolated element of Tu and E = Ts(T )∼= E .
For the connections with elliptic theory, see [Ciubotaru et al. 2014, Section 4] for
example. Given {̃σ+, σ̃+}, let ξs (̃σ

+)= ξs (̃σ
−) be a representative of the generic

central character defined by [Ciubotaru et al. 2014, Theorem 3.2]. Let

Irr2
gm W̃s

′
=
{
{̃σ+, σ̃−} ∈ Irr2 W̃ ′s

∣∣ ξs (̃σ
+) is generically residual for (Rs,1, ks)

}
and

Irr2
KL W̃s

′
=
{
{̃σ+, σ̃−} ∈ Irr2

gm W̃ ′s
∣∣ ξs (̃σ

+)(1) is residual for (Rs,1, ks = 1)
}
,

where ξs (̃σ
+)(1) denotes the specialization at the equal parameter case ks = 1.

Write Bgm =
⊔

s Inds(Bgm,s) for the canonically positive basis, where Bgm,s is a
certain orthonormal subset of RZ(Ws). By [Ciubotaru et al. 2014, Theorem 4.2],
for each bs ∈ Bgm,s there exists a pair (̃σ+bs

, σ̃−bs
) of associate genuine irreducible

W̃ ′s-representations such that

bs =1(̃σ
+

bs
, σ̃−bs

) :=
σ̃+bs
− σ̃−bs

S+− S−
in RZ(Ws).
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Moreover, as explained in Section 2B4, ξs (̃σ
+

bs
)= rbs ; in particular,

{̃σ+bs
, σ̃−bs
} ∈ Irr2

gm W̃s
′
.

By the same results in [loc. cit.], the assignment bs 7→ {̃σ
+

bs
, σ̃−bs
} is injective. Thus

if we define Irr2
gmW̃s

′
= {(̃σ+bs

, σ̃−bs
) | bs ∈ Bgm,s}, then the map 1 defines a bijection

1 : Irr2
gmW̃s

′
→ Bgm,s .

In fact, Irr2
gmW̃s

′ is just Irr2
gm W̃s

′ with a particular choice of σ̃+ versus σ̃−.
We can explain this choice independently in the case of Irr2

KL W̃s
′. Since

ξs (̃σ
+)(1) is a residual point, we know by [Opdam 2004] that ξs (̃σ

+)(1) satisfies
the same combinatorial condition as the Bala–Carter condition for half of the middle
element of a distinguished Lie triple in ZG(s). Thus, the pair {̃σ+, σ̃−} ∈ Irr2

KL W̃s
′

determines the (conjugacy class of an) element u, and therefore the elliptic element
x = su in the Kazhdan–Lusztig parametrization. To formalize this, denote by
u({̃σ+, σ̃−}) a representative of the unipotent class attached in this way.

Let �W̃s
be the Casimir element of W̃s , e.g., [Ciubotaru et al. 2014, (3.2.5)]. The

scalar σ̃+(�W̃s
) by which �W̃s

acts in σ̃+ (which does not depend on the choice of
σ̃+ versus σ̃−) equals the squared norm of ξs (̃σ

+).
It remains to discuss how to associate a representation φ of the component

group A(x). This will also lead to the desired canonical choice for σ̃±. Let x = su
be an elliptic element of G. Recall that this means that u is distinguished in ZG(s).
Let Xs(u, φ) and σs(u, φ) denote the standard and irreducible Ws-representations
afforded via Springer theory by H •(Bs

u)
φ
⊗ ε and H 2ds

u (Bs
u)
φ
⊗ ε respectively,

where Bs
u is the Springer fiber of u in ZG(s) and ds

u = dimBs
u . As above, there exist

associate irreducible representations σ̃s(u, φ)± such that

Xs(u, φ)⊗ (S+− S−)= σ̃s(u, φ)+− σ̃s(u, φ)−.

As noticed in [Ciubotaru and Trapa 2013; Ciubotaru and He 2015], if we write

Xs(u, φ)= σs(u, φ)+
∑
u′>u

a(u′,φ′)Xs(u′, φ′)

(by the results of Borho and Macpherson), then one can deduce that σ̃s(u, φ)± can
only appear in σs(u, φ)⊗ S± and in no other Xs(u′, φ′)⊗ S±. Moreover, by the
Dirac theory, the scalar σ̃s(u, φ)±(�W̃s

) equals the squared norm of half a middle
element for a Lie triple of u, and this is the minimal such scalar that may appear for
an irreducible constituent of σs(u, φ)⊗ S±. By [Ciubotaru 2012] (case-by-case) or
[Ciubotaru and He 2015] (uniformly), σ̃s(u, φ)+ appears with multiplicity one in
σs(u, φ)⊗ S+ (and similarly for the − case).

The conclusion is that σ̃s(u, φ)+ is characterized by the property that it is the
unique irreducible constituent of σs(u, φ)⊗ S+ for which the scalar by which �W̃s
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acts in it is minimal among all the constituents of the tensor product. Moreover,
σ̃s(u, φ)+ does not appear as such a “minimal representation” in any other tensor
product of this form. This gives a one-to-one correspondence between the sets
{σs(u, φ)} and {̃σs(u, φ)+}. Given a σ̃+ in the latter set, denote by φ(̃σ+) the local
system φ for the Springer representation in the former set. In particular, we have a
preferred representation σ̃+ in any pair belonging to Irr2

KL W̃s
′. Thus we get a set

Irr2
KLW̃s

′ of ordered pairs. In summary we have:

Proposition 4.12. Suppose R is a simply connected semisimple root datum. Then,
with the canonical choice of representations σ̃+ as above,⊔

s

Inds ◦1(Irr2
KLW̃s

′
)= BKL

DS .

Given a pair (̃σ+, σ̃−) ∈ Irr2
KL(W̃s

′
), the Kazhdan–Lusztig parameter (x = su, φ)

is given by u = u({̃σ+, σ̃−}) and φ = φ(̃σ+) with the notation as in the previous
paragraph.

Remark 4.13. If, in addition R is simply laced, this also implies that

Bgm =
⊔

s

Inds ◦1(Irr2
KLW̃s

′
).

When R is not simply laced, the relation between Bv0−m and BKL
DS

(
and therefore⊔

s Inds ◦1(Irr2
KLW̃s

′
)
)

was given in Section 4C.

Remark 4.14. The case of root data of type E is particularly interesting. Suppose
R is a simply connected, type E , root datum. Let {̃σ+, σ̃−} ∈ Irr2(W̃s

′
) be given,

with the notation as above. We know a priori that ξs (̃σ
+) equals k/2 times the

middle element of a Lie triple of a quasidistinguished unipotent element u of ZG(s)
(see [Ciubotaru et al. 2014, Section 5]). By [Opdam 2004, Appendix] (also see
[Opdam and Solleveld 2010]), this is a residual point for (Rs, k) if and only if
u is distinguished in ZG(s). The key, empirical, observation is that for the root
systems Rs occurring in a type E root system, the squared norms of the middle
element of a quasidistinguished Lie triple uniquely identifies the unipotent class.
In particular, the scalar by which �W̃s

acts in σ̃+ already identifies uniquely the
unipotent class of u({̃σ+, σ̃−}), and in particular if {̃σ+, σ̃−} ∈ Irr2

gm(W̃s
′
). In this

way we can effectively determine the base BKL
DS = Bgm of Proposition 4.12, and for

each b ∈ Bgm, the central character W0τ (with τ = s exp(ξs)) of IndD(b; v). This
recovers the classification of the discrete series characters of H starting from the
Springer theory of Ws .

4E. The general semisimple case. Let us consider the determination of the basis
Bgm for an arbitrary semisimple root datum R. Recall that if H⊂H′ are isogenous
extended affine Hecke algebras such that Rnr = R′nr (see (11)), so that in particular
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we have a canonical identification Q=Q′, then the functors induction IndH′
H and

restriction ResH
′

H respect the discrete series [Delorme and Opdam 2011, Lemma 6.3]
in the sense that an irreducible discrete series is mapped to a finite direct sum of
irreducible discrete series. From this we easily obtain:

Proposition 4.15. Let b∈Bgm (respectively b′ ∈B′gm), and let v ∈Qreg
b (respectively

v ∈Qreg
b′ ). Let δ′ (respectively δ) be an irreducible summand of IndH′

H (IndD(b; v))
(respectively ResH

′

H (IndD(b′; v))). Then limv→1 δ
′ is an element of B′gm and all

elements of B′gm are of this form, and similarly, limv→1 δ is an element of Bgm and
all elements of Bgm are of this form.

The following result reduces the explicit computation of the restrictions and
inductions of discrete series to the case of restriction and induction of representations
of the extended affine Weyl groups W ⊂W ′.

Proposition 4.16. We have IndH′
H (IndD(b; v)) = IndD(IndW ′

W (b); v) and similarly
ResH

′

H (IndD(b; v))= IndD(ResW ′
W (b); v).

Proof. This follows easily from Definition 2.7 and the proof of [Delorme and
Opdam 2011, Lemma 6.3], by taking the limit limv→1 on both sides. �

Remark 4.17. From Propositions 4.15 and 4.16, it follows that for every b ∈ Bgm,
the induced character IndW ′

W (b) is a positive integral linear combination of elements
of B′gm. Therefore, in practice, in order to obtain the elements of B′gm that lie in the
support of IndW ′

W (b), it is sufficient to decompose IndW ′
W (b) as a positive integral

linear combination of unit vectors in R(W ′). The resulting unit vectors are all in
B′gm automatically by the canonical positivity property of B′gm.

The same analysis holds for the restrictions ResW ′
W (b).

By the results of Sections 4B, 4C, and 4D we have determined the basis Bgm

for at least one representative of each isogeny class of irreducible root data. Using
Remark 4.17 it is now easy to determine Bgm for an arbitrary irreducible root datum.

Now suppose that R is an arbitrary semisimple based root datum. The finite
abelian group � acts faithfully on the affine Coxeter diagram of R by special
affine diagram automorphisms, and it is easy to see that the special affine diagram
automorphisms respect the irreducible components of the diagram of R. Let Di with
i = 1, 2, . . . , e denote the irreducible components of the affine Coxeter diagram
of R, and let �i denote the image of � in the group of special affine diagram
automorphisms of Di . Then � ⊂ �1× · · · ×�e. Let R′ = R1×R2 · · · ×Re be
the root datum which is isogenous to R, such that �′ =�1× · · ·×�e.

Proposition 4.18. We have Q=Q′=Q1×· · ·×Qe. In particular, Propositions 4.15
and 4.16 apply to the isogeny H⊂H′.
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Proof. We need to verify that Rnr = R′nr. But this reduces to the actions of the
groups � and �′ on the irreducible components. The result follows easily from the
definition of Rnr (see, e.g., [Opdam and Solleveld 2010, Section 2]). �

In the notation of Proposition 4.18, we have B′ = B′1 × · · · × B′e, which can
be determined explicitly since the factors are of irreducible type. Hence we can
determine B using Propositions 4.15 and 4.16.

4F. Rationality of characters of discrete series. In this subsection, we discuss the
character value ring for the families of generic discrete series considered before. In
light of Corollary 3.3, we know that for every generic residual central character W0r
and for every v ∈Qreg

W0r , the central functional given by the “stable combination” of
generic characters (16) takes values in Q3, the quotient field of 3, i.e.,∑

χ∈DSW0r(v)

cχ,Cχv(h) ∈ Q3, for all h ∈H3. (38)

Proposition 4.19. Suppose the root datum R of the generic affine Hecke algebra
H3 is simple and not simply laced. Let W0r be a generic residual central character
and let v ∈Qreg

W0r be given. Then for every discrete series character χ ∈ DSW0r(v),
we have χv(h) ∈ Q3, for all h ∈H3.

Proof. By the classification of generic discrete series families [Opdam 2004;
Opdam and Solleveld 2010], we know that, when R is not simply laced, the
cardinality of DSW0r(v) is always 1, except if R = F4 and W0r is the central
character [0, k1, 0, k2− k1] from Table 2. Therefore, with this exception, the claim
immediately follows from (38).

Let’s consider now this exceptional residual central character in F4. In the same
coordinates as in Table 2, we have r = v2[0,k1,0,k2−k1] and

Qreg
W0r = {k1, k2 ∈ R | k1k2 6= 0}.

There are always two families of discrete series πv,I = ε(b8; v) IndD(b8; v) and
πv,II= ε(b9; v) IndD(b9; v) for v ∈Qreg

W0r , where b8, b9 are as in Table 2. From (38),
we know that πv,I+πv,II takes values in Q3, so it suffices to show that πv,II has the
same property. Assume first that k1 > 0 and k2 > 0. Then πv,II is a 10-dimensional
module that has the property that it is A-semisimple, i.e., each generalized weight
space under the action of Bernstein’s abelian subalgebra A is one-dimensional.
This claim follows from [Reeder 2000, page 80], where the weight diagram of this
module is given under the label [A1 E7(a5),−21]. Let Wt(πv,II) denote the set of
weights. As it is well known, we may choose a basis of the module consisting of
weight vectors †λ, λ∈Wt(πv,II) such that for every s ∈ S0, the action of Ns is given
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by

Ns · †λ =


v(s)−v(s)−1

1−θ−α(λ)
†λ, if s(λ) /∈Wt(πv,II),

v(s)−v(s)−1

1−θ−α(λ)
†λ+

(
v(s)−1

+
v(s)−v(s)−1

1−θ−α(λ)

)
†s(λ) if s(λ) ∈Wt(πv,II),

where s = sα . This means that both types of generators, θx and Ns act in this basis
via matrices with entries in Q3, and the claim follows.

To treat the other three quadrants in k1, k2, notice that the affine Hecke algebra
of type F4 has three involutions of the form Ns 7→ −N−1

s , where s ranges over the
long simple reflections, the short simple reflections, and all the simple reflections,
respectively. (The last one is the Iwahori–Matsumoto involution.) Applying these
involutions to the modules πv,I and πv,II from the k1 > 0, k2 > 0 case, we obtain
the discrete series in the other three cases. �
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