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We use the probabilistic method to construct examples of conjectured phenomena about asymptotic
syzygies. In particular, we use Stanley–Reisner ideals of random flag complexes to construct new examples
of Ein and Lazarsfeld’s nonvanishing for asymptotic syzygies and of Ein, Erman, and Lazarsfeld’s
conjecture on how asymptotic Betti numbers behave like binomial coefficients.

Using the probabilistic method, we produce examples of conjectured behavior on asymptotic syzygies.
One of these provides the first known example of a phenomenon conjectured by Ein, Erman, and
Lazarsfeld.

Our central construction involves random flag complexes. We use G ∼ G(n, p) to denote an Erdős–
Rényi random graph on n vertices, where each edge is attached with probability p. We turn G into a
flag complex by adjoining a k-simplex to every (k + 1)-clique in the graph, and 1 ∼1(n, p) denotes
a flag complex chosen with respect to this distribution. The properties of random flag complexes have
been studied extensively in recent years; see [Kahle 2014b] for a survey of recent results. From 1,
Stanley–Reisner theory yields a squarefree monomial ideal I1 ⊆ k[x1, x2, . . . , xn] [Bruns and Herzog
1993, Chapter 5], and we analyze the Betti numbers of I1.

A recent paper by De Loera, Petrovíc, Silverstein, Stasi, and Wilburne [Loera et al. 2017] also produces
random monomial ideals via a construction similar to Erdős–Rényi random graphs, and one of their
constructions specializes to ours. They study thresholds and the distribution of algebraic invariants in this
framework, and they provide an array of results and conjectures.

We are motivated by questions and conjectures about asymptotic syzygies. These questions are
generally outside of the range computable in Macaulay2 or elsewhere, and so there is a lack of known
examples. By contrast, results on random flag complexes are asymptotic in nature. By using probabilistic
techniques to analyze the syzygies of I1, we produce new examples of behaviors conjectured in [Ein and
Lazarsfeld 2012; Ein et al. 2015].

We now summarize Ein and Lazarsfeld’s central result on asymptotic syzygies. For a graded module
M over a polynomial ring, we recall that βi, j (M) denotes the number of minimal generators of degree j
of the i-th syzygy module of M ; see [Eisenbud 2005, §1B] for a review. We define ρk(M) as the ratio of
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Figure 1. Each dot represents a known nonzero entry in the Betti table of P3 embedded
by O(n) for n = 10. By Ein and Lazarsfeld’s Theorem 1.1, the density of the dots in rows
1, 2, and 3 will approach 1 as n→∞. Theorem 1.3 shows a similar phenomenon holds
for ideals of random flag complexes.

nonzero entries in the k-th row of the Betti table:

ρk(M) :=
#{i ∈ [0, pdim(M)] where βi,i+k(M) 6= 0}

pdim(M)+ 1
.

Under increasingly positive embeddings, [Ein and Lazarsfeld 2012] shows that these densities approach 1.

Theorem 1.1 (Ein and Lazarsfeld 2012). Let X be a smooth, d-dimensional projective variety and let A
be a very ample divisor on X. For any n ≥ 1, let Sn be the homogeneous coordinate ring of X embedded
by n A. For each 1≤ k ≤ d , ρk(Sn)→ 1 as n→∞.

See [Ein and Lazarsfeld 2012, Theorem A] for the sharper result and Figure 1 for an illustration.
A similar nonvanishing phenomenon was shown to hold for integral varieties [Zhou 2014, Theorem,
p. 2256], arithmetically Cohen–Macaulay varieties [Ein et al. 2016, Theorem 3.1], and certain iterated
subdivisions of Stanley–Reisner rings [Conca et al. 2018]. Moreover, experiments in Macaulay2 with
different asymptotic families of ideals (graph curves, unions of linear spaces, etc.) suggest that this
asymptotic nonvanishing behavior occurs in a broad range of examples. This motivates the following
question:

Question 1.2. Let {In} be a family of ideals where pdim(In)→∞. Fix some k. Under what conditions
will ρk(S/In)→ 1 as n→∞?

One way to understand these asymptotic nonvanishing results is by considering the overlaps between
the nonzero entries in the rows of the Betti table. The Hilbert function of a graded module will determine
the alternating sum of the entries along the slope one diagonals of the Betti table. We define overlapping
Betti numbers as Betti numbers that are not determined by the Hilbert function: e.g., when βi, j and βi+1, j

are both nonzero. Theorem 1.1 and the related followup results show that such overlapping Betti numbers
are the norm in many different families of examples.

While Question 1.2 addresses qualitative expectations about asymptotic syzygies, the corresponding
quantitative behavior of asymptotic syzygies was raised in [Ein et al. 2015]. They introduce a random
Betti table model to provide a heuristic for the asymptotic behavior of certain families of Betti tables.
Their analysis suggests that, roughly speaking, each row of the Betti table of any very positive embedding
displays the pattern of a large Koszul complex [Ein et al. 2015, Conjecture B and Theorem C]. Yet despite
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the expectation that this behavior should be common, the only known occurrence is for a smooth curve of
high degree [Ein et al. 2015, Proposition A].

Our main results provide new families whose Betti tables exhibit the conjectured behaviors described
above. We write f (n)� g(n) if limn→∞ f (n)/g(n)= 0.

Theorem 1.3. Fix some r ≥ 1. Let 1∼1(n, p) with 1/n1/r
� p� 1. For each 1≤ k ≤ r + 1, we have

ρk(S/I1)→ 1 in probability.

Saying that ρk(S/I1)→ 1 in probability is equivalent to asking that for any ε > 0, the probability
that ρk(S/I1) ≥ 1− ε goes to 1 as n→∞. In particular, for the given parameter range, random flag
complexes in the 1(n, p) model provide a positive answer to Question 1.2, similar to Theorem 1.1. See
Example 5.1.

The proof of Theorem 1.3 uses randomness to find particular subcomplexes of 1. As we will review
in Section 2, the boundary complex of the (s+ 1)-dimensional octahedron has the minimal number of
edges possible for a flag complex with (s+ 1)-th homology, and it is thus the most likely subcomplex
to contribute to the (s + 1)-th row of the Betti table of S/I1. The main step of the proof comes from
Theorem 1.6 below, where we show that the bound 1/n1/s

� p is the threshold for the existence of this
particular subcomplex. Once we have crossed this threshold, we can find this particular subcomplex, and
minor variants of it, yielding nonzero Betti numbers throughout nearly the entire (s+ 1)-th row.

Next we construct examples whose Betti tables exhibit the more detailed asymptotics suggested in [Ein
et al. 2015]. For any I1, the Hilbert function of S/I1 will have the form (1, n, . . . ), and thus as n→∞,
the Betti table will necessarily scale with n. To account for this growth, we normalize the Betti table,
defining β(S/I1) := (1/n)β(S/I1).1

Theorem 1.4. Fix a constant 0< c < 1 and let 1∼1(n, c/n) be a random flag complex. If {in} is an
integer sequence satisfying in = n/2+ o(n), and if C := (1− c)/2, then

β̄in,in+1(S/I1)
C
(n

in

) → 1

in probability.

Theorem 1.4 is a local limit theorem, in the sense that it is a pointwise convergence rather than a global
result about the whole distribution. Moreover, the theorem is entirely focused on Betti numbers near the
middle of the first row. Yet, by a standard change of variables, this suffices to provide an example of the
behavior predicted by [Ein et al. 2015, Conjecture B].

Corollary 1.5. Fix a constant 0 < c < 1 and let 1 ∼ 1(n, c/n) be a random flag complex. If {in} is a
sequence of integers converging to n/2+ a

√
n/2, then

√
2π

(1− c)2n
√

n
·βin,in+1(S/I1)→ e−a2/2

in probability.

1For a similar reason, [Ein et al. 2015, Conjecture B] also allows for a rescaling function.
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Figure 2. We plot the function i 7→ βi,i+1(S/I1) for a random 1 ∼ 1
(
10, 1

20

)
and

1∼1
(
15, 1

30

)
, respectively. These appear consistent with the appearance of binomial

coefficients, as in the heuristic of [Ein et al. 2015] and in Theorem 1.4.

See Figure 2 for a couple of examples.
The only previously known example of this kind comes from smooth curves [Ein et al. 2015, Theorem A].

However, that example avoids the complexity of overlapping Betti numbers. By contrast, for the family
of ideals in Theorem 1.4, the Betti numbers are not always clustered in a single row (see Remark 6.1).
Thus, Theorem 1.4 produces the first known families of ideals which exhibit overlapping Betti numbers
and behave like [Ein et al. 2015, Conjecture B].

The following simple computation suggests why the Betti numbers of random flag complexes should
behave like rescaled binomial coefficients. For a subset α of the vertices, we write 1|α for the restricted
flag complex. Hochster’s formula [Bruns and Herzog 1993, Theorem 5.5.1] shows that βi,i+1(S/I1) is the
sum over all α ∈

(
[n]
i

)
of dim H̃0(1|α). By linearity of expectations, the expected value of βi,i+1(S/I1) is

E[βi,i+1(S/I1)] =
∑
α∈([n]i )

dim H̃0(1|α)=
(n

i

)
E[H̃0(1

′)],

where 1′ ∼1(i, c/n) is a random flag complex. So it suffices to control how the expectation E[H̃0(1
′)]

varies with i . The main issue in proving Theorem 1.4 thus arises in showing convergence in probability,
stemming from the fact that βi,i+1(S/I1) is a sum of dependent random variables.

Not coincidentally, the choice p = c/n (as in Theorem 1.4) is a much-studied regime in the random
graph literature. See [Alon and Spencer 2016, §11; Frieze and Karoński 2016, §2.1], among other
references. We rely on some of those structural results about random graphs in this regime for our proofs
of Proposition 6.2 and Theorem 1.4.

We also prove some results on the algebraic invariants of S/I1. For instance, we prove the following
threshold result for individual Betti numbers:

Theorem 1.6 (Betti number thresholds). Fix i, v with 1≤ i and i + 1≤ v ≤ 2i and let s := v− i − 1. Fix
some constant 0< ε ≤ 1

2 and let 1∼1(n, p):
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(1) If 1/n1/s
� p ≤ ε then P[βi,v(S/I1) 6= 0] → 1.

(2) If p� 1/n1/s then P[βi,v(S/I1)= 0] → 1.

We use this to bound the Castelnuovo–Mumford regularity of S/I1 in Corollary 5.2. Corollary 7.1 also
shows that while S/I1 is almost never Cohen–Macaulay, the depth and codimension of S/I1 converge as
n→∞.

This paper is organized as follows. Section 2 provides some essential definitions. Section 4 provides a
threshold for the vanishing/nonvanishing of individual Betti numbers, the nonvanishing half of which
relies on a variance bound proven Section 3. In Section 5 we use the Betti number threshold to prove
Theorem 1.3. In Section 6 we prove Theorem 1.4 and Corollary 1.5. Section 7 contains estimates on the
projective dimension of the ideal I1.

2. Background and notation

We work over an arbitrary field k. We write P[−] for the probability of an event and E[−] for the
expected value of a random variable.

A flag complex is a simplicial complex obtained from a graph by adjoining a k-simplex to every
(k+ 1)-clique in the graph. We use G ∼ G(n, p) to denote an Erdős–Rényi random graph on n vertices,
where each edge is attached with probability p, and we use 1∼1(n, p) to denote the corresponding
random flag complex. If H is a subset of the n vertices, then we use 1|H for the induced flag complex.

The generators of I1 correspond to the maximal nonfaces of 1 [Bruns and Herzog 1993, Chapter 5],
and since 1 is flag this means that I1 is generated by quadrics. Hochster’s formula (Theorem 5.5.1 in the
same reference), which relates the Betti table of S/I1 to topological properties of 1, is our key tool for
studying the syzygies of S/I1.

Remark 2.1. As discussed in the introduction, our goal is to use the I1 to model asymptotic syzygies.
The ideals of high degree Veroneses always admit a quadratic Gröbner basis [Eisenbud et al. 1994], and
this is one reason why we chose to use random flag complexes. By contrast, models in [Loera et al. 2017]
often produce ideals with generators in different degrees, and those would thus provide better models for
other families of examples.

Example 2.2. Hochster’s formula implies that βr+1,2r+2(S/I1) is the number of subcomplexes1|H ⊆1,
where H has 2r + 2 vertices and where H̃r (1|H ) 6= 0. For instance β1,2(S/I1) is the number of pairs of
disjoint vertices in 1, or equivalently it is the number of nonedges of the 1, and β2,4(S/I1) is the number
of squares in 1. On the other hand, β2,5(S/I1) counts subcomplexes on five vertices with nonzero H̃1.
There are several different types of examples, such as

•

• •

•

•

•

• •

•

• •

• •

•

• •

• •

•

•
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Lemma 2.3. If 1 is a flag complex, then βi, j (S/I1)= 0 for all j > 2i .

Proof. Since 1 is flag, I1 is a monomial ideal generated by quadrics. The Taylor resolution of S/I1 thus
involves monomials of degree 0, 1, or 2 [Peeva 2011, Construction 26.5]. �

The boundary complex of the (r + 1)-dimensional octahedron plays a key role in our results (for
instance, see Remark 3.1), and we denote this flag complex by ♦r . We note that ♦r is also the r-fold
suspension of 2 points. See Figure 3. Since a pair of points is disconnected, we have H̃0(♦0)∼= Z, and
since taking suspensions shifts reduced homology groups up by one degree, we have that H̃r (♦r )∼= Z.
We now observe that any flag complex with nonzero r -th homology will have at least as many vertices
and edges as ♦r .

Lemma 2.4. Let 1 be a flag complex with H̃r (1) 6= 0:

(1) Then 1 has at least 2r + 2 vertices.

(2) If v ∈1 is a vertex such that H̃r (11−v)= 0, then deg(v)≥ 2r .

(3) 1 has at least 2r(r + 1) edges.

Proof. This result is folklore. Part (1) is proven in [Conca et al. 2018, Lemma 3.6]. Parts (2) and (3)
follow easily by standard topological arguments. �

Remark 2.5. The complex ♦r shows that the bounds in Lemma 2.4 are sharp.

3. Variance bound

In this section we prove a variance bound that is used in our convergence results. The proof is similar to
those in [Bollobás and Erdős 1976, Theorem 1; Kahle 2014a, Lemma 2.2].

Remark 3.1. We are particularly interested in the appearance of subcomplexes of the form ♦s , as by
Lemma 2.4 these are the flag complexes with the fewest edges and nonzero s-th homology. Since in our
models p goes to 0 as n→∞, subcomplexes with fewer edges are more likely to appear, and so we
expect these ♦s to control the (s+ 1)-th row of β(S/I1).

Remark 3.2. In ♦s , every vertex has a unique antipodal vertex, and thus as a subgraph of 1, ♦s is
determined by s+ 1 pairs of vertices, all distinct. In particular, given a set of vertices V ∈

(
[n]

2(s+1)

)
, there

• •

♦0

•

•

•

•

♦1

•
•
•

•

•

•

♦2

Figure 3. Among flag complexes with nonzero r-th homology, the boundary complex
of the (r + 1)-dimensional octahedron, which we denote ♦r , has the fewest edges.
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are multiple ways that 1|V could be an ♦s-subcomplex; to simplify the computations in this section,
it will be useful to parametrize each potential ♦s separately, even those that involve the same vertices.
We define 3s as vertex sets V ∈

(
[n]

2(s+1)

)
of size 2(s + 1) together with an unordered decomposition

V = P0 ∪ · · · ∪ Ps , where each Pi is an unordered pair of vertices. With this definition, there is then a
bijection between elements of 3s and potential subcomplexes ♦s ⊆ 1. Thus, given any H ∈ 3s , the
probability that 1|H is ♦s is given precisely by the probability that 1|H has exactly the specified edges,
which is p2s(s+1)(1− p)(

2(s+1)
2 )−2s(s+1).

Definition 3.3. Let Xs = Xs(n, p) denote the random variable for the number of copies of ♦s appearing
as a subgraph of a random graph G ∼G(n, p). Given H ∈3s we then define XH as the indicator random
variable for whether the subgraph on H has the form ♦s .

Thus we have Xs =
∑

H∈3s
XH . We will now use this to bound the variance Var[Xs].

Lemma 3.4 (variance bound). If np(s+1/2)
→∞ and p ≤ (1− p), then Var[Xs]/E[Xs]

2
→ 0.

Proof. We start by computing

E[X2
s ] =

∑
H,J∈3s

E[XH XJ ] =
∑

H,J∈3s

P[XJ = 1 |XH = 1]P[XH = 1]

=

∑
H∈3s

P[XH = 1]
∑
J∈3s

P[XJ = 1 |XH = 1].

Since
∑

J∈3s
P[XJ = 1 |XH = 1] is independent of the choice of H , we may fix an H ′ to decouple the

factors, yielding

=

(∑
H∈3s

P[XH = 1]
) ∑

J∈3s

P[XJ = 1 |XH ′ = 1] = E[Xs]E[Xs |XH ′ = 1].

Since Var[Xs] = E[X2
s ] − E[Xs]

2, the above computation allows us to compute

Var(Xs)/E[Xs]
2
=

E[Xs |XH = 1] − E[Xs]

E[Xs]
=

∑2s+2
m=0

∑
|J∩H |=m P[XJ = 1 |XH = 1] − P[XJ = 1]

E[Xs]
.

If J and H are disjoint or intersect in only a single vertex, then P[XJ = 1 |XH = 1] = P[XJ = 1]. We
can thus ignore the terms with m = 0 or m = 1 in this sum:

=

∑2s+2
m=2

∑
|J∩H |=m P[XJ = 1 |XH = 1] − P[XJ = 1]

E[Xs]
.

By Lemma 3.5, we obtain the bound

≤

∑2s+2
m=2

∑
|J∩H |=m p−m(m−1)/2 P[XJ = 1] − P[XJ = 1]

E[Xs]
.
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Since the probability P[XJ = 1] does not depend on J , we can use the bound from Lemma 3.6 to pull
P[XJ = 1]/E[Xs] outside, and simplify the expression, where C is a constant:

≤ Cn−2(s+1)
2s+2∑
m=2

∑
|J∩H |=m

p−m(m−1)/2
− 1.

Up to a constant, for a fixed H there are n2(s+1)−m choices of J where |J ∩ H | = m. Absorbing those
constants into our C we get

≤ Cn−2(s+1)
2s+2∑
m=2

n2(s+1)−m(p−m(m−1)/2
− 1)= C

2s+2∑
m=2

n−m(p−m(m−1)/2
− 1)≤ C

2s+2∑
m=2

(np(m−1)/2)−m .

Since 0< (m− 1)/2 ≤ s+ 1
2 we have np(m−1)/2

→∞ by hypothesis. It follows that all of the finitely
many terms in the sum go to 0, and thus Var(Xs)/E[Xs]

2
→ 0. �

Lemma 3.5. Given J, H ∈3s such that |J ∩ H | = m,

P[XJ = 1 |XH = 1] ≤ p−m(m−1)/2 P[XJ = 1].

Proof. If XH = 1 then the edges in J ∩ H are completely determined. If those edges do not match the
required edges for J , then P[XJ = 1 |XH = 1] = 0. If they do match the required edges, then since
the probability of any edge existing or not existing is p or 1− p, and since p ≤ 1− p, we get that
P[XJ = 1 |XH = 1] ≤ p−m(m−1)/2 P[XJ = 1]. �

Lemma 3.6. For any fixed H ∈3s , we have P[XH = 1]/E[Xs] ≤ Cn−2(s+1) for some constant C.

Proof. Since Xs =
∑

H XH we have E[Xs] =
∑

H P[XH = 1]. But since P[XH = 1] does not depend on
H , this amounts to counting the number of possible choices of H , which is the cardinality of 3s . Each
element of 3s corresponds to s+ 1 pairs of vertices in 1, of which there (1/(s+ 1)!)

( n
2,2,2,...,n−2(s+1)

)
choices. It follows that, for an appropriate constant C , we have P[XH = 1]/E[Xs] ≤ Cn−2(s+1). �

4. Betti number thresholds

In this section, we determine thresholds of nonvanishing for individual Betti numbers. Lemma 2.3 shows
that βi,v(S/I1)= 0 whenever v ≤ i or v ≥ 2i , and Theorem 1.6 computes thresholds in the remaining
cases. To prove that theorem, we first bound the expected values of the Betti numbers. For 1∼1(n, p)
we define Bi,v where Bi,v(1) := βi,v(S/I1). By convention, when s = 0 we interpret 1/n1/s

� p as a
trivial bound.

Lemma 4.1. Fix any constant 0<ε < 1. Let 1/n1/s
� p≤ ε and1∼1(n, p). We have E[Bs+1,2s+2]→

∞ as n→∞.

Proof. By Hochster’s formula [Bruns and Herzog 1993, Theorem 5.5.1], since H̃s(♦s) 6= 0, we have
E[Bs+1,2s+2] ≥

∑
H E[XH ], where as in Definition 3.3, H is a set of s+ 1 pairs of vertices, all distinct.
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Since any ♦s involves s(2s+ 2) edges and s+ 1 nonedges, we have

E[XH ] = P[XH = 1] = ps(2s+2)(1− p)s+1.

As in the proof of Lemma 3.6, the number of choices for H is at least Cn2s+2 for some positive constant C ,
and thus

E[Bs+1,2s+2] =
∑

H

E[XH ] ≥ Cn2s+2 ps(2s+2)(1− p)s+1
≥ C ′(nps)2s+2,

where C ′ = C(1− ε)s+1. Since nps
→∞ it follows that E[Bs+1,2s+2] →∞. �

To prove the other threshold, we introduce new random variables.

Definition 4.2. Let Ys
v =Ys

v(n, p) be the number of subgraphs with m ≤ v vertices and at least ms edges.
If K is a subset of m vertices, we let Ys

K be the indicator random variable for whether the subgraph on K
has at least ms edges.

Lemma 4.3. If p� 1/n1/s then E[Bi,v] → 0.

Proof. Lemma 2.4 shows that if K is a minimal subset of vertices of 1 such that H̃s(1|K ) 6= 0, then each
vertex in 1|K has degree ≥ 2s. In particular, if βi,v(S/I1) 6= 0, then there must exist some subgraph K
of size at most v (and with at least 2s+ 2 vertices) where every vertex has degree ≥ 2s. It thus suffices to
prove that E[Ys

v] → 0.
We have Ys

v =
∑

K ,|K |≤v Ys
K . For a fixed K with |K | = m, we want to compute the probability that

1|K has at least ms edges. We use M :=
(m

2

)
to denote the maximal number of possible edges. We thus

have

P[Ys
K = 1] =

M∑
e=ms

(M
e

)
pe(1− p)M−e.

We then compute

E[Ys
v] =

v∑
m=2s+2

∑
K ,|K |=m

P[Ys
K = 1] =

v∑
m=2s+2

( n
m

) M∑
e=ms

(M
e

)
pe(1− p)M−e

≤

v∑
m=2s+2

( n
m

) M∑
e=ms

(M
e

)
pe
≤

v∑
m=2s+2

( n
m

)
pms

M∑
e=ms

(M
e

)
pe−ms .

However, we can bound
∑M

e=ms

(M
e

)
pe−ms by a constant Cs,m depending only on s and m, and we can

bound
(n

m

)
by nm . This yields

≤

v∑
m=2s

nm pmsCs,m =

v∑
m=2s

(nps)mCs,m .

Finally, since nps
→ 0 by assumption, we conclude that E[Ys

v] → 0. �
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Proof of Theorem 1.6. For statement (1), we first consider the case where v = 2i = 2s+ 2. Lemma 4.1
implies that E[Bs+1,2s+2] →∞. Thus to prove that P[Bs+1,2s+2 6= 0] → 1, we may bound the variance
of Bs+1,2s+2. This is done in Lemma 3.4 since Bs+1,2s+2 = Xs . There we show that

Var[Bs+1,2s+2]

E[Bs+1,2s+2]2
→ 0.

Thus we can apply Chebyshev’s inequality to say the following:

P[Bs+1,2s+2 = 0] ≤ P[|E[Bs+1,2s+2] −Bs+1,2s+2| ≥ E[Bs+1,2s+2]] ≤
Var[Bs+1,2s+2]

(E[Bs+1,2s+2] − 1)2
→ 0.

We now let v < 2i . The case v = 2s + 2 implies the existence of some ♦s ⊆ 1 with probability
1−o(1). Fix some vertex u ∈ ♦s . Let J be the set of vertices w ∈1 which don’t lie in ♦s and which are
not connected with u. Since the complement of ♦s consists of n− (2s+2) vertices, the expected number
of vertices in J is (n− (2s+ 2))(1− p)= n− o(n). Moreover, since those conditions are independent,
the weak law of large numbers implies that this happens with high probability. Let J ′ ⊆ J be any subset
of cardinality v− (2s+ 2). Since the only edges in ♦s ∪ J ′ through the vertex u are the ones from ♦s , it
follows H̃s(♦s ∪ J ′) is still nonzero. Hence Bi,v 6= 0 with high probability as desired.

For (2), we must show that Bi,v converges to 0 in probability. Hochster’s formula [Bruns and Herzog
1993, Theorem 5.5.1] implies that βi,v(S/I1) is nonzero if and only there is some subset K ⊆1 with
|K | = v and where H̃v−i−1(1|K ) 6= 0. By Lemma 2.4 it suffices to show that P[Ys

v = 0] → 1 for
s = v− i − 1. But by Lemma 4.3, we know E[Ys

v] → 0, and since Ys
v ≥ 0 and Ys

v takes integer values,
this implies that P[Ys

v = 0] → 1. �

5. Ein–Lazarsfeld asymptotic nonvanishing of syzygies

Whereas Theorem 1.6 provides the nonvanishing thresholds for individual Betti numbers, Question 1.2
asks about the simultaneous nonvanishing of more and more Betti numbers as n→∞. However, as we
now illustrate, the proof of Theorem 1.6 is sufficiently strong to obtain simultaneous nonvanishing of the
various Betti numbers.

Proof of Theorem 1.3. For each n, we partition the vertices into r + 1 sets S0, S1, . . . , Sr each of size
approximately n/(r+1). Since1|Ss is a random flag complex for any 0≤ s ≤ r , the proof of Theorem 1.6
implies the existence of some ♦s in 1|Ss with probability 1− o(1). Moreover, since r is fixed, we can
assume that these all occur simultaneously. By construction, the vertices involved in ♦0,♦1, . . . ,♦r are
all disjoint.

Fix some 0< ε < 1. For each 0≤ s ≤ r , fix some vertex v ∈ ♦s . Since the complement of
⋃r

s=0♦s

consists of n− O(1) vertices, the expected number of vertices w /∈
⋃r

s=0♦s that are not connected with
vertex v is (n − O(1))(1− p) ≥ n − n1−ε , at least for n sufficiently large. Since those conditions are
independent, the weak law of large numbers implies that this happens with high probability. Call that
set J and J ′ ⊆ J be any subset. Since the only edges in ♦s ∪ J ′ through the vertex v are the ones from
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♦s , it follows H̃s(1|♦s∪J ′) is still nonzero. Since |♦s ∪ J ′| ranges from 2s+ 2 to n− n1−ε
+ 2s+ 2, it

follows that βi+1,i+s+2(S/I1) 6= 0 for all s ≤ i ≤ n− n1−ε
+ s with high probability. In particular, with

high probability we have

lim
n→∞

ρs+1(S/I1)≥ lim
n→∞

n−n1−ε
+1

n
= 1.

Moreover, since the ♦s involve disjoint vertices, these nonvanishing conditions are independent in s, and
we thus obtain the desired convergence of ρs+1 for all s simultaneously. �

The proof of Theorem 1.3 shows that if we cross the threshold for the appearance of subcomplexes
of the form ♦s , then we get nonvanishing across nearly the entire (s+ 1)-th row of the Betti table. The
appearance of ♦s subcomplexes thus accounts for why ρs+1(S/I1) goes to 1.

Example 5.1. Here is the Betti table of S/I1 for a randomly chosen 1∼1(18, 1/180.6), as computed
in Macaulay2:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 • • • • • • • • • • • • • • • • •

1 • 126 1203 5986 19491 45278 78385 103667 106356 85548 54408 27541 11118 3550 873 156 18 1
2 • • 1 24 233 1282 4568 11261 19911 25743 24538 17229 8815 3204 786 117 8 •

As predicted by Theorem 1.3, the entries in rows 1 and 2 are almost all nonzero.

Though we do not compute a precise threshold for the Castelnuovo–Mumford regularity of S/I1, we
do obtain a linear bound.

Corollary 5.2. If 1/n1/r
� p� 1/n2/(2r+1), then with high probability r + 1≤ reg(S/I1)≤ 2r .

Proof. Since 1/n1/r
� p we have that βr+1,2r+2(S/I1) 6= 0 and thus reg(S/I1)≥ r , with high probability.

For the other direction, we let s = 2r + 1 so that p � 1/n2/s . A simple computation shows that the
expected number of (s+ 1)-cliques in 1 is( n

s+1

)
p(

s+1
2 ) ≤ ns+1(ps/2)s+1

� ns+1(n−1)s+1
= 1.

Since the expected number of (s+ 1)-cliques goes to zero, it follows that with high probability 1 has no
subcomplex with (s+ 1)-th homology and thus reg(S/I1) < s = 2r + 1. �

Question 5.3. Does reg(S/I1) converge in probability (with appropriate conditions on p)? More precisely,
if 1/n1/r

� p� 1/n1/(r+1) does reg(S/I1) converge to r + 1 in probability?

6. Normal distribution of quadratic strand

In this section, we prove Theorem 1.4 and Corollary 1.5.

Remark 6.1. For 1 as in Theorem 1.4, the second row of the Betti table of S/I1 is interesting as
well, because p = c/n is a boundary case for the nonvanishing in Theorem 1.3. In [Erdős and Rényi
1960, Theorem 5b], they prove that the 1-skeleton of 1 will contain a cycle with probability 1 −
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√
1− ce(c/2)+(c

2/4). Among graphs containing at least one cycle, an argument similar to the proof of
Theorem 1.3 yields n− n1−ε nonzero entries in the second row of the Betti table of S/I1, and thus in
this case, S/I1 will have overlapping Betti numbers throughout two rows, similar to the case of a smooth
surface in Theorem 1.1.

Given a graph G, we define
H0(G, k)=

∑
α∈([n]k )

H̃0(G|α)

as the sum of H̃0(G|α), where α ∈
(
[n]
k

)
is a subset of the vertices of size k and where G|α is the induced

subgraph. Hochster’s formula [Bruns and Herzog 1993, Theorem 5.5.1] implies that if I1 is a Stanley–
Reisner ideal, then the Betti number βk,k+1(S/I1) equals H0(G, k), where G is the one-skeleton of the
simplicial complex 1. We can thus reduce Theorem 1.4 to the following computation about graphs:

Proposition 6.2. Let G ∼ G(n, c/n) be a random graph with 0 < c < 1. If {in} is an integer sequence
satisfying in = n/2+ o(n), and if C := (1− c)/2, then

H0(G, in)

Cn
(n

in

) → 1

in probability.

Proof. If we remove graphs from the distribution G ∈G(n, p) which arise with probability o(1), then this
will not affect facts about convergence in probability. For instance, with probability 1− o(1) a random
G ∼ G(n, c/n) with c < 1 will be the disjoint union of trees and components with a single cycle [Frieze
and Karoński 2016, p. 31]. Thus, we may restriction attention to graphs G which are the disjoint union of
trees and components with a single cycle. Moreover, since the expected number of cycles is constant
when c< 1, we conclude that with probability 1−o(1), 1 has at most n1−ε cycles for any fixed 0< ε < 1.
We thus further restrict attention to the case where 1 is the disjoint union of trees and at most n1−ε

components each with a single cycle. We denote this restricted distribution of graphs by G̃(n, c/n) and
we henceforth choose G ∼ G̃(n, c/n).

To prove the main result, we introduce several auxiliary random variables. For a graph G, we now set
E(G) to be the number of edges in G and we define C(G) to be the number of cycles in G. Finally, for a
pair of vertices e ∈

(
[n]
2

)
, we define Ze to be the indicator random variable of whether that pair of vertices

is an edge in G.
With this notation, and using our assumption that G is a disjoint union of trees and components

containing a single cycle, we have

H0(G, in)=
∑
α∈([n]in )

in −E(G|α)+C(G|α).

Ignoring the cycles, we get

≥

∑
α∈([n]in )

in −E(G|α)=
( n

in

)
in −

∑
α∈([n]in )

E(G|α).
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We may rewrite the right-hand sum in terms of individual edges to obtain

=

( n
in

)
in −

∑
e∈([n]2 )

( n
in−2

)
Ze.

But E(G) is the sum of the Ze, and thus we have

=

( n
in

)
in −

( n
in−2

)
E(G).

By a similar argument, but where we do not ignore C(G|α), we can use the fact that G has at most n1−ε

cycles to obtain an upper bound H0(G, in)≤
(n

in

)
in −

( n
in−2

)
(E(G)− n1−ε):( n

in

)
in −

( n
in−2

)
E(G)≤ H0(G, in)≤

( n
in

)
in −

( n
in−2

)
(E(G)− n1−ε). (6.3)

We have ( n
in−2

)
=

( n
in

) in(in − 1)
(n− in + 2)(n− in + 1)

and since in = n/2+ o(n) this yields that
( n

in−2

)
=
(n

in

)
(1+ o(1)). Applying this to (6.3) yields:( n

in

)(
in − (1+ o(1))E(G)

)
≤ H0(G, in)≤

( n
in

)(
in − (1+ o(1))(E(G)− n1−ε)

)
.

Recall that C = (1− c)/2. We now divide through by 1/
(
Cn
(n

in

))
. By rewriting in = n/2+ o(n) and

absorbing the n1−ε term into the o(n), the left-hand and right-hand bounds have the same form, and we
obtain

H0(G, in)

Cn
(n

in

) = (n/2)−E(G)+o(n)+o(1)E(G)
Cn

.

Since E(G) is a sum of independent random variables, one for each potential edge, this now essentially
reduces to a weak law of large numbers argument. In particular, we have that the variance of E(G) is(n

2

)
p(1− p) and the mean is

(n
2

)
p = c(n−1)/2. We apply Chebyshev’s inequality to the random variable

E(G)/n:

P
[∣∣∣c(n−1)

2n
−

E(G)
n

∣∣∣≥ ε]≤ Var(E(G)/n)
ε2 =

(n
2

)
p(1− p)
n2ε2 .

Since p = c/n and 1− p < 1 this simplifies to c(n− 1)/(2n2ε2). For fixed ε we have

lim
n→∞

c(n− 1)
2n2ε2 = 0.

Since limn→∞ c(n − 1)/(2n) = c/2, we conclude that E(G)/n converges to c/2 in probability. This
implies that

H0(G, in)

Cn
(n

in

) → 1

in probability. �
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Proof of Theorem 1.4. Let G be the 1-skeleton of 1. By Hochster’s formula [Bruns and Herzog
1993, Theorem 5.5.1], βin,in+1(S/I1) = H0(G, in). The statement is now an immediate corollary of
Proposition 6.2. �

Proof of Corollary 1.5. Let C = (1− c)/2. Using Theorem 1.4 and the normal approximation of the
binomial distribution, e.g., [Boas 2006, (8.3), p. 762], we obtain that

βin,in+1(S/I1)∼ Cn
( n

in

)
∼ Cn

2n+1
√

2πn
e−a2/2.

Therefore we have
√

2πn
Cn2n+1βin,in+1(S/I1)=

√
2π

(1− c)2n
√

n
βin,in+1(S/I1)∼ e−a2/2.

Since the right-hand side is a constant, we have convergence in probability. �

Conjecture 6.4. In cases where Theorem 1.3 yields nonvanishing Betti numbers in row k, we conjecture
that the k-th row of the Betti table will be normally distributed, in a manner similar to Corollary 1.5.

7. Projective dimension estimates

We conclude with a corollary about Cohen–Macaulayness. For many values of p, we show that S/I1
will essentially never be Cohen–Macaulay. However, while the projective dimension almost never equals
the codimension of S/I1, with high probability the ratio of these quantities converges to 1 as n→∞.

Corollary 7.1. For any k ≥ 1, and any p satisfying 1/n2/3
� p � (log n/n)2/(k+3) we have that

codim(S/I1)/pdim(S/I1)→ 1 in probability, yet the probability that S/I1 is Cohen–Macaulay goes to 0.

First we prove a quick lemma bounding the dimension of 1.

Lemma 7.2. If p ≤ ε for some 0< ε < 1 then P[dim1≥ ε · n] → 0 as n→∞.

Proof. The dimension of 1 is the size of the largest k-clique in 1. Let N :=
(n

k

)
. The expected number of

k-cliques in 1 is N pN
≤ NεN , which goes to zero as n→∞. �

Note that [Bollobás and Erdős 1976, Theorem 1] provides a much sharper estimate of the dimension
of 1, though we will not need that.

Proof of Corollary 7.1. Lemma 7.2 shows that dim1 = o(n) with high probability. By Auslander–
Buchsbaum, this implies that

n− o(n)≤ codim(S/I1)≤ pdim(S/I1)≤ n.

Thus the ratio between pdim(S/I1) and codim(S/I1) goes to 1 in probability.
For the statement on Cohen–Macaulayness, using Reisner’s criterion [Bruns and Herzog 1993, Corol-

lary 5.3.9] it suffices to show that there exists a vertex v ∈ 1 and an integer i < dim(link1(v)) where
H̃i (link1(v)) 6= 0. For 1∼1(n, p) and a vertex v, the link of v is itself a random flag complex, namely
link1(v)∼1(np, p).
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For convenience we write m := np. In terms of m we can rewrite the left-hand side of the original
constraints on p as 1/m2

� p. For the right-hand side of the constraint, since 1/n � p, we have
log m ∼ log n so we get p� (log n/n)2/(k+3)

∼ (log m/m)2/(k+1). Thus the constraints in terms of m are

1
m2 � p�

( log m
m

)2/(k+1)
.

For 1 ≤ t ≤ k, we consider the interval 1/m2/t
� p � (log m/m)2/(t+1). Since 1/m2/(t+1)

�

(log m/m)2/(t+1), the successive intervals overlap, and it suffices to show that for each of these intervals
1 is not Cohen–Macaulay with probability approaching 1.

First let us consider the case where t ≥ 2. Setting i := bt/2c and applying [Kahle 2014a, Theorem 1.1]
we have H̃i (link1(v)) 6= 0 with probability 1− o(1). Since 1/m2/t

� p, there exist (t + 1)-cliques and
thus dim(link1(v))≥ t with probability 1− o(1). Together these imply that 1 is not Cohen–Macaulay
with probability 1− o(1)

We now consider the case t = k = 1, where we have 1/m2
� p� log m/m. Thus we apply [Erdős

and Rényi 1959, Theorem 1] to get H̃0(link1(v)) 6= 0 with probability 1− o(1). On the other hand, since
1/m2

� p, we have 2-cliques and thus dim(link1(v))≥ t with probability 1− o(1) �
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