CORRECTION TO "NONVANISHING OF HYPERELLIPTIC ZETA FUNCTIONS OVER FINITE FIELDS"

JORDAN S. ELLENBERG, WANLIN LI, AND MARK SHUSTERMAN

published in Algebra and Number Theory 14:7 (2020), 1895–1909

Revision of Theorem 1.7 and Corollary 1.8

A few corrections are required in the part of the paper that treats superelliptic curves of degree $\ell > 2$; we summarize these corrections below, then for ease of reading include corrected versions of Theorem 1.7 and Corollary 1.8 and their proofs.

- The statement of Theorem 1.7 part 1 is modified to reflect the fact that the cycle lengths k_i being mutually coprime implies $q \equiv 1 \mod \ell$, and changing the assertion "every zero of Z_C is simple" to the correct "every zero of Z_C has degree ℓ -1."
- In the statement of Theorem 1.7 part 2, when *q* is congruent to 1 mod ℓ and r = 2, we added the requirement that the two cycles are of odd length.
- In the proof of Theorem 1.7, we corrected the statement that the permutation π acts trivially on $\mathbb{F}_{\ell} div(y)$ (instead it acts as multiplication by q), removed a footnote that rested on that statement, and clarified some discussion in the penultimate paragraph where the not-well-defined expression \sqrt{q} was used in the original draft.
- The statement of Corollary 1.8 is changed to include necessary conditions on the order of q modulo ℓ , and the proof is rewritten with more details.
- A new reference [1] is added.

The authors apologize for any inconvenience incurred by the lapses in the original paper.

Theorem 1.7. Let ℓ be an odd prime different from the characteristic of \mathbb{F}_q . Let C be a smooth projective curve over \mathbb{F}_q which admits a degree ℓ map $f : C \to \mathbb{P}^1_{\mathbb{F}_q}$ such that f is Galois over \mathbb{F}_q with Galois group isomorphic to $\mathbb{Z}/\ell\mathbb{Z}$. Let $S \subset \mathbb{P}^1(\overline{\mathbb{F}}_q)$ be the set of branch points of f. Let π be the permutation induced by the Frobenius action on S, and suppose that π is the composition of disjoint cycles of orders k_1, k_2, \ldots, k_r , all prime to ℓ .

- (1) Suppose the k_i are mutually coprime and $r \leq 3$. Then every zero of Z_C has degree $\ell 1$.
- (2) Define κ_i to be k_i if k_i is odd and $k_i/2$ if k_i is even. Suppose that either
 - q is congruent to 1 modulo ℓ and r = 2, with both cycles of odd length; or
 - There is no i such that q^{κ_i} is congruent to 1 modulo ℓ .

Then the point $s = \frac{1}{2}$ is not a zero of Z_C .

Proof. Let $x_1, ..., x_m$ be the ramification points of the $(\mathbb{Z}/\ell\mathbb{Z})$ -cover of \mathbb{P}^1 in S, where $m = k_1 + \cdots + k_r$. The Jacobian J(C) of C carries an action of $\mathbb{Z}[(\mathbb{Z}/\ell\mathbb{Z})]$; write $\lambda \in \mathbb{Z}[(\mathbb{Z}/\ell\mathbb{Z})]$ for $\zeta_{\ell} - 1$, where ζ_{ℓ} is a generator of $(\mathbb{Z}/\ell\mathbb{Z})$. A Riemann-Hurwitz computation shows that the genus of C is $(m - 2)(\ell - 1)/2$, so the Tate module $T_{\ell}J(C)$ is a free $\mathbb{Z}_{\ell}[\zeta_{\ell}]$ -module of rank m - 2, and $J(C)[\lambda]$ has dimension m - 2.

The λ -torsion subgroup of J(C) is spanned by the degree-0 λ -torsion divisors $x_i - x_j$. That is, the group of divisors of the form $\sum a_i x_i$ with $\sum a_i = 0$ surjects onto $J(C)[\lambda]$. This surjection is not an isomorphism; there is a 1-dimensional kernel, which we can describe as follows. Over $\overline{\mathbb{F}}_q$, the curve *C* has an affine model of the form $y^{\ell} = f(x)$ with *f* a rational function with no zeroes or poles at ∞ . Then the principal divisor associated to *y* is $\sum a_i x_i$ where $a_i = \operatorname{ord}_{x_i} f$. We have now expressed $J(C)[\lambda]$ as an explicit subquotient of \mathbb{F}_{ℓ}^m .

This identification is equivariant for the Frobenius action on both sides, so it allows us to describe the mod ℓ Galois representation afforded by J(C) in terms of the permutation π which Frobenius induces on x_1, \ldots, x_m .

The action of π splits x_1, \ldots, x_m into cycles of length k_1, \ldots, k_r , which by hypothesis are prime to ℓ , and which must be multiples of d, where d is the order of q in \mathbb{F}_{ℓ}^* . So the eigenvalues of π in its action on \mathbb{F}_{ℓ}^m are the union (as multisets) $\bigcup_{j=1}^r \mu_{k_j}$. Now the composition factors of \mathbb{F}_{ℓ}^m as a representation of the cyclic group $\langle \pi \rangle$ are $J(C)[\lambda]$, $\mathbb{F}_{\ell} \operatorname{div}(y)$, and the π -trivial one-dimensional representation onto which \mathbb{F}_{ℓ}^m maps by summing coordinates. The action of π on the latter factor is trivial, while π acts on $\mathbb{F}_{\ell} \operatorname{div}(y)$ as multiplication by q. If the zeta function Z_C had a zero at 1/2, then \sqrt{q} would be a Frobenius eigenvalue of C, which would mean that some eigenvalue μ of the action of π on $J(C)[\lambda]$ satisfied $\mu^2 = q$.

In case *q* is congruent to 1 modulo ℓ (i.e., d = 1) the eigenvalues of π in its action on $J(C)[\lambda]$ are the multiset $\bigcup_{j=1}^{r} \mu'_{k_j}$ together with r - 2 copies of 1, where μ'_n denotes the nontrivial *n*th roots of unity. The hypotheses r = 2 and k_j odd now guarantee that the eigenvalues of π on $J(C)[\lambda]$ contain no copies of either 1 or -1, completing the proof in this case.

If d > 1, we note that our condition on q^{κ_j} can be satisfied only when d is even. (If d is odd, then κ_j is always a multiple of d, so $q^{\kappa_j} = 1$.) When d is even, our condition in fact says precisely that each k_i is a multiple of d but not of 2d. The two square roots of q in $\bar{\mathbb{F}}^*_{\ell}$ both have order 2d, and thus neither can appear among the eigenvalues of Frobenius on $J(C)[\lambda]$.

We now turn to the first assertion of the theorem. We note that the coprimality of the k_i implies that d = 1, or in other words that q is conguent to 1 modulo ℓ . The fact that J(C) carries an action of $\mathbb{Z}/\ell\mathbb{Z}$ defined over \mathbb{F}_q with trivial invariant subspace implies that the Frobenius eigenvalues on J(C) all appear with multiplicity a multiple of $\ell - 1$, and that a root of multiplicity $k(\ell - 1)$ reduces to a root of multiplicity k in the action of Frobenius on $J(C)[\lambda]$. So we just need to show that the action of Frobenius on $J(C)[\lambda]$ has no repeated eigenvalues. The coprimality of the k_i guarantees that the union $\bigcup_{j=1}^r \mu'_{k_j}$ is disjoint; the remaining eigenvalues are r - 2 copies of 1, so since $r \leq 3$ we are done.

Corollary 1.8. Let ℓ be an odd prime different from the characteristic of \mathbb{F}_q . Let d be the order of $(q \mod \ell)$ in $(\mathbb{Z}/\ell\mathbb{Z})^*$. Let N(X) be the number of primitive degree ℓ Dirichlet characters $\chi_f : (\mathbb{F}_q[t]/f)^* \to \mathbb{C}^*$ with conductor f satisfying $q^{\deg f} \leq X$ and $L(1/2, \chi_f) \neq 0$. We show the following:

• *if*
$$d = 1$$
, then $N(X) \gg \frac{X}{\log X}$ for $X \to \infty$;

• *if d is even, then* $N(X) \gg \frac{X}{(\log X)^{1-\frac{\ell-1}{2d}}}$ *for* $X \to \infty$. *In particular, since* $d \mid \ell - 1$ *, we have* $N(X) \gg \frac{X}{(\log X)^{1/2}}$ *for* $X \to \infty$.

We do not get a lower bound of this quality in the case where *q* has odd order modulo ℓ .

Proof. We first consider the case d = 1 (i.e., q is congruent to 1 modulo ℓ).

Let f_1, f_2 be two distinct monic irreducible polynomials in $\mathbb{F}_q[t]$ of degrees being odd and prime to ℓ . Let $d_1 = \deg f_1$ and $d_2 = \deg f_2$. Let $e \in \{1, \dots, \ell - 1\}$ be such that $\ell \mid d_1 + ed_2$. The smooth projective curve *C* with affine model $y^{\ell} = f_1 f_2^e$ admits a cyclic degree ℓ map to $\mathbb{P}^1_{\mathbb{F}_q}$ where the set of branch points are roots of $f = f_1 f_2$ in the affine line (the condition on $d_1 + ed_2$ guarantees there is no branching at ∞ .) By Theorem 1.7(2), the zeta function Z_C does not vanish at s = 1/2. Thus, all degree ℓ Dirichlet characters with conductor f have *L*-functions nonvanishing at the central point. Evidently, the number of such pairs f_1, f_2 with $d_1 + d_2 \leq n$ is at least the number of irreducible polynomials of degree n - 3; the number of characters with non-vanishing L-functions is thus bounded below by a constant multiple of $q^n/n = X/(\log X)$. This concludes the proof in the d = 1case.

We now turn to the case where $q \neq 1 \mod \ell$. We recall that d is the order of $q \mod \ell$ in $(\mathbb{Z}/\ell\mathbb{Z})^*$. Let $\Sigma_{d,2d}$ be the set of monic squarefree polynomials such that all of their irreducible factors have degree divisible by d but not divisible by 2d. For any $f \in \Sigma_{d,2d}$ there exists a $(\mathbb{Z}/\ell\mathbb{Z})$ field extension $K/\mathbb{F}_q(x)$ with conductor f. The field K is the function field of a curve C/\mathbb{F}_q which admits a cyclic degree ℓ map to $\mathbb{P}^1_{\mathbb{F}_q}$ whose set of branch points are roots of f. By Theorem 1.7(2), the zeta function Z_C does not vanish at s = 1/2. Thus, all degree ℓ Dirichlet characters with conductor f have their L-functions do not vanish at the central point. The number of such characters is $(\ell - 1)^{\omega(f)}$ where $\omega(f)$ denotes the number of irreducible factors of f.

So it remains to count the number of degree ℓ Dirichlet characters whose conductor is in $\Sigma_{d,2d}$, which by the above discussion is given by

$$\sum_{f \in \Sigma_{d,2d}, |f| \le X} (\ell - 1)^{\omega(f)}$$

To estimate this sum, we start by considering the Dirichlet series

j

$$G(s) = \sum_{f \in \Sigma_{d,2d}} (\ell - 1)^{\omega(f)} |f|^{-s}$$

where $|f| = q^{\deg f}$. Then G(s) has a Euler product expansion

$$G(s) = \prod_{P \in \Sigma_{d,2d}, \text{ irrd.}} (1 + (\ell - 1)|P|^{-s}).$$

Taking

$$H(s) = \prod_{P \in \Sigma_{d,2d}, \text{ irrd.}} (1 + |P|^{-s})^{2d},$$

we see that $G(s)^{2d}/H(s)^{\ell-1}$ is holomorphic at s = 1. Now define

$$Z_d(s) = \prod_{d \mid \deg P, P \text{ irrd.}} (1 + |P|^{-s})^d$$

so that $H(s) = (Z_d(s))^2 / Z_{2d}(s)$. Since $Z_d(s)$ and $Z_{2d}(s)$ each have a simple pole at s = 1, so does H(s).

We conclude that $G(s)^{2d}$ has a pole at s = 1 with order $\ell - 1$ and is absolutely convergent for $\Re(s) > 1$. By [1, Theorem 3.1], the sum of coefficients of G(s) has the following asymptotic relation

$$\sum_{f \in \Sigma_{d,2d'} |f| \le X} (\ell - 1)^{\omega(f)} \sim C \cdot X(\log X)^{\frac{\ell - 1}{2d} - 1}$$

where the constant

$$C = \frac{\left| (\lim_{s \to 1} G(s)^{2d} (s-1)^{\ell-1})^{\frac{1}{2d}} \right|}{\Gamma((\ell-1)/(2d))}.$$

And it gives the desired result.

REFERENCES

[1] Ryo Kato, A remark on the Wiener-Ikehara Tauberian theorem, Comment. Math. Univ. St. Pauli 64 (2015), no. 1, 47–58. MR3410120