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On self-correspondences on curves
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À la toute fin du processus de révision, le comité éditorial d’Algebra & Number Theory a eu l’immense tristesse
d’apprendre le décès de Joël Bellaïche. Joël faisait des maths comme il respirait, avec une immense joie.

Les mathématiques n’étaient pas pour lui séparées de la vie, elles étaient la vie même — la vie vraiment vivante.

At the very end of the reviewing process, the editorial board of Algebra & Number Theory learned with
great sadness that Joël Bellaïche had passed away. Joël did math as he breathed, with immense joy.

For him mathematics was not disconnected from life; it was life itself, and his way of living it to the fullest.

We study the algebraic dynamics of self-correspondences on a curve. A self-correspondence on a (proper
and smooth) curve C over an algebraically closed field is the data of another curve D and two nonconstant
separable morphisms π1 and π2 from D to C . A subset S of C is complete if π−1

1 (S) = π−1
2 (S). We show

that self-correspondences are divided into two classes: those that have only finitely many finite complete
sets, and those for which C is a union of finite complete sets. The latter ones are called finitary, and
happen only when deg π1 = deg π2 and have a trivial dynamics. For a nonfinitary self-correspondence in
characteristic zero, we give a sharp bound for the number of étale finite complete sets.
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Introduction

Let k be a field, and let C a be smooth, proper and geometrically irreducible curve over k. By a self-
correspondence on C (defined over k),1 we mean the data of a smooth and proper scheme D over k,
such that every connected component of D is a geometrically irreducible curve, and two k-morphisms
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1We adopt the definition of [Bullett and Penrose 2001] and [Krishnamoorthy 2018]. In part of the literature, a self-
correspondence is defined instead as a divisor in the surface C × C . The two notions are equivalent. To get a divisor of C × C
using our definition, take (π1 × π2)(D), with multiplicities if several components of D have the same image in C × C . To
get from a divisor 1 of C × C a self-correspondence according to our definition, take the union of the normalization of each
component of 1 repeated according to multiplicity. Our definition makes clearer the concepts of étale or equiramified complete
sets, which are central in our study.
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π1 and π2 from D to C , nonconstant and separable on every connected component of D. We denote by
(D, π1, π2), or often simply by D, that self-correspondence.

Fixing an algebraic closure k̄ of k, the intuitive way to think of a self-correspondence is as a mulitvalued
map from C(k̄) to itself defined by polynomial equations with coefficients in k, namely the map x 7→

π2(π
−1
1 (x)). We call this mulitvalued map the forward map of the self-correspondence D.

Self-correspondences generalize endomorphisms: given an endomorphism f of a curve C , one can
think of it as the self-correspondence D f := (C, IdC , f ). Like endomorphisms, two self-correspondences
D and D′ on C can be composed into a self-correspondence DD′ (see Section 1.10) whose forward
map is the composition of the (mulitvalued) forward maps of D and D′. Thus, like endomorphisms, a
self-correspondence can be iterated. Better than endomorphisms, a self-correspondence D = (D, π1, π2)

always has a transpose (which plays in part the role of an inverse), denoted by tD and defined by
tD = (D, π2, π1). The forward-map of tD, namely x 7→ π1(π

−1
2 (x)) is called the backward map of D.

Let us introduce our fundamental terminology. A forward-complete (resp. backward-complete) set
is a subset S of C(k̄) that is stable by the forward (resp. backward) map (i.e., π−1

1 (S) ⊂ π−1
2 (S), resp.

π−1
2 (S) ⊂ π−1

1 (S)), and a complete set is a set which is both backward and forward-complete. An
irreducible complete set is a minimal nonempty complete set.

The aim of this article is to answer elementary questions about finite complete sets for self-
correspondences, such as when can there be infinitely many finite complete sets? This is a basic
and fundamental question on the dynamics of self-correspondence. There is a relatively extensive
literature on the subject of dynamics of self-correspondences on curves and even, less often, algebraic
varieties. Most of this literature is concerned about correspondences over the complex numbers, see for
instance [Fatou 1922; Bullett 1988; 1991; 1992; Bullett and Penrose 1994; 2001; Bullett and Lomonaco
2020; Bharali and Sridharan 2016; Pakovich 1996; 1995; 2008; Dinh 2002] (on P1), [Dinh 2005] (on Pk),
[Dinh and Sibony 2006] (on general varieties), [Dinh et al. 2020] (on general curves), but also over
number fields; see [Autissier 2004; Ingram 2017; 2019], finite fields [Hallouin and Perret 2014] and
general fields [Truong 2020]. To the best of our knowledge, the question we have in mind has not been
solved, and not even asked, except in some very particular cases by Pakovich (see [Pakovich 1995] and
Remark 3.3.7 below). A partial exception is the recent article of Krishnamoorthy [2018], essentially the
second chapter of his PhD thesis at Columbia University. Though the focus of the paper is different, as
Krishnamoorthy is concerned with general correspondences rather than self-correspondences, we borrow
several ideas and concepts from him, and we gladly acknowledge our debt to his work.

Our first main result concerning finite complete sets is the following (see Theorem 2.2.1).

Theorem 1. A self-correspondence (D, π1, π2) on a curve C over k has infinitely many finite complete
sets if and only if there exists a nonconstant k-morphism

f : C → P1
k

such that
f ◦ π1 = f ◦ π2.
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The method of proof of Theorem 1 is number-theoretic. Specifically, we use the famous theorem of
Mordell, Weil and Néron asserting that the group of rational points of an abelian variety over a finitely
generated field is a finitely generated abelian group. Theorem 1 seems difficult to prove by purely
algebro-geometric methods or by complex-analytic ones in the case k = C.

As a trivial consequence of Theorem 1, one sees that as soon as a self-correspondence has infinitely
many finite complete sets, then in fact all its irreducible complete sets are finite, and moreover they have
cardinality bounded by some integer M . A self-correspondence satisfying this property will be said finitary;
its dynamical study is essentially trivial, in the sense that it reduces to dynamical questions over finite sets.

It is clear that only self-correspondences for which deg π1 = deg π2 (such a self-correspondence is
said to be balanced) can be finitary. This explains why the notion of being finitary does not appear
in the classical theory of complex dynamics, where one consider endomorphisms of P1, which as
correspondences have (deg π1, deg π2) = (1, d), the case d = 1 being excluded as trivial. Even among
balanced self-correspondences, the notion of finitary self-correspondence is very restrictive. They are
in practice exceptions to all interesting general statements about the dynamics of self-correspondences.
Nonfinitary self-correspondences are the natural domain of study of the dynamics of self-correspondences.
For instance, an interesting result on the existence of a canonical invariant measure for a balanced self-
correspondence on a curve over C has recently been proved by Dinh, Kaufmann and Wu [Dinh et al. 2020]
but only under a quite restrictive condition on the self-correspondence (see Remark 2.2.6). We believe that
their main result (that the iterated pull-back of every smooth measure converges to the canonical measure)
holds for all nonfinitary correspondences, and we plan to come back to this question in a subsequent work.

For a nonbalanced correspondence, there are no étale finite complete set, and finitely many nonétale
ones. Moreover one can give an upper bound (in terms of the genera and degrees of the curves and maps
involved) on the size of their union (see Proposition 2.1.1).

Balanced nonfinitary correspondences are much more subtle: they may have (finitely many) étale and
nonétale finite complete sets; it is easy to give a bound on the number of finite nonétale complete sets,
but we do not know how to bound their size. Our main objective is to bound the number of finite étale
complete sets. With methods similar to those of the proof of Theorem 1, we are able to offer a bound
(which happens to be optimal) only in some specific cases: when k is algebraic over a finite field (see
Proposition 3.2.1); when k is arbitrary but C = P1

k (see Proposition 3.2.3); and two other results when D
is symmetric, that is D ≃

tD (see Propositions 3.2.5 and 3.3.3). But for more general results we need
different, operator-theoretic, methods.

A self-correspondence D over C defines in a natural way a k-linear endomorphism TD of the field of
rational functions k(C) of C , see Section 4.1. Whenever S is a forward-complete set, TD stabilizes the
subring BS of k(C) of functions whose all poles are in S. If moreover π1 is étale on S, TD stabilizes as
well the natural filtration (BS,n)n≥0, “by the order of the poles” of BS .

The dynamical study of that action of TD on the filtered ring BS , when S is in particular étale complete,
was the original motivation of this work. In fact, Hecke operators appearing in the theory of modular forms
are of this type. Surprising results concerning the dynamics of the operators TD for self-correspondences
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over finite fields have been obtained in a recent work by Medvedovsky [2018], and, applied to Hecke
operators, those results provide a new and elementary proof of certain deep modularity result of Gouvêa
and Mazur [1998]. We plan to come back to these questions on a subsequent work. But in this paper, we
content ourselves to use the operators TD to obtain new informations on the dynamics of D.

We say that D is linearly finitary if there is a monic polynomial Q in k[X ] such that Q(TD) = 0 as
endomorphisms of k(C). That D is linearly finitary means that the dynamics of TD is trivial, in the sense
that it is similar to the one of an operator on a finite-dimensional vector space. We prove the following:

Proposition 1. A finitary self-correspondence is linearly finitary. The converse is true in characteristic
zero.

The direct sense is very easy. We prove the converse using graph-theoretic methods and Theorem 1
(see Proposition 4.4.7).

Our second main result is the following (see Theorem 4.5.3 which is slightly more precise).

Theorem 2. If a self-correspondence D has three irreducible étale finite complete sets, then it is linearly
finitary. In particular, in characteristic zero, a nonfinitary correspondence has at most two irreducible
finite étale complete sets.

We give a brief description of the idea of the proof, which uses only elementary methods: the theorem
of Riemann and Roch and linear algebra. The first étale finite complete set S is used to define, as above,
the natural filtration (BS,n)n≥0, “by the order of the poles” of BS , which is stabilized by TD. Is this
filtration split as a k[TD]-filtration? In general, this has no reason to be true. But with a second irreducible
étale complete set S′, one can show that this filtration is “almost split”, namely that there exists for
every n a TD-stable subspace VS,S′,n in BS,n+1 such that BS,n + VS,S′,n = BS,n+1 and dim VS,S′,n bounded
independently of n.2 We prove this by defining VS,S′,n as the space of functions in BS,n+1 that vanishes
on S′ at a suitable order, and using Riemann–Roch. Now a third finite étale complete set S′′ give a second
quasisplitting VS,S′′,n of the filtration BS,n . Using Riemann–Roch, we prove that the two filtrations are
orthogonal, in the sense that VS,S′,n ∩ VS,S′′,n = 0 for n large enough. Then, a linear algebra argument
shows that all eigenvalues of TD appearing in BS,n+1 (for n large enough) already appear in BS,n and
Theorem 2 follows.

1. Self-correspondences

1.1. Curves. Let k be a field. By a curve over k we shall mean a nonempty proper and smooth scheme
over Spec k which is equidimensional of dimension 1 and geometrically connected.

If C is a curve over k, we denote by k(C) the function field of C . If C and C ′ are two curves over k, a
nonconstant morphism of k-schemes π : C → C ′ is finite and flat, hence surjective and thus defines a

2The filtration (BS,n) of BS would be TD-split if in addition of BS,n + VS,S′,n = BS,n+1 we required BS,n ∩ VS,S′,n = 0, or
equivalently dim VS,S′,n = dim BS,n+1/BS,n . One has dim BS,n+1/BS,n ≤ |S| for every n (with equality for n large enough),
so requiring that dim VS,S′,n is bounded independently of n is a qualitative version of that property. Hence the phrase “almost
split”.
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morphism of k-extensions π∗
: k(C ′) → k(C), which makes k(C) a finite extension of k(C ′). Explicitly,

if f ∈ k(C) is seen as a morphism from C to P1, π∗ f = f ◦ π . We say that π is separable if k(C) is a
separable extension of k(C ′).

1.2. Self-correspondences. Given a curve C over k, a self-correspondence (D, π1, π2) on C is the data
of a noetherian reduced k-scheme D whose connected components are curves Di over k, with two
morphisms π1 and π2 from D to C whose restrictions to each Di are nonconstant and separable. Often,
the morphisms π1 and π2 will be implicit and we shall simply denote by D the self-correspondence
(D, π1, π2)

Self-correspondences on a fixed curve C over k naturally form a category: a morphism from (D, π1, π2)

to (D′, π ′

1, π
′

2) is a surjective k-morphism h : D → D′ such that π ′

i ◦ h = πi for i = 1, 2. In particular we
have a notion of isomorphism of self-correspondences.

Example 1.2.1. Let k be a field of characteristic p (a prime or zero), P(x, y) ∈ k[x, y] be a polynomial
in two variables x and y, which has at least one nonzero monomial of the form xa yb with p ∤a and one
of the form xa′

yb′

with p ∤b′. Let D be the normalization of the projective curve defined by the affine
curve D0 of equation P(x, y) = 0. Then the maps (x, y) 7→ x , and (x, y) 7→ y, are algebraic functions
on D0, and they define rational functions on D, or equivalently maps π1, π2 : D → P1. These maps are
nonconstant and separable in view of our condition on P . Thus (D, π1, π2) is a self-correspondence
over P1.

Example 1.2.2 (the arithmetic-geometric mean; see [Bullett 1991]). If a and b are two positive real
numbers with a < b, we define two recurrence sequences a0 = a, b0 = b, and for n ≥ 1, an =

√
an−1bn−1,

bn = (an−1 + bn−1)/2. Then it is well-known (Gauss) and elementary that (an) is strictly increasing, (bn)

is strictly decreasing, and both converge to a same positive real number M(a, b) called the arithmetic
geometric mean of a and b. Since the formulas giving an and bn are homogenous of degree 1, nothing
is lost by fixing all the an equal to 1. That is, if we define cn = bn/an for any n, we have that c0 = b/a
and for n ≥ 1, cn = (1 + cn−1)/2

√
cn−1, and from cn we can retrieve an by an = a

√
c0 · · ·

√
cn−1 and

bn = cnan . The sequence cn is strictly decreasing and converges to 1.
Inspired by these classical facts, one define the arithmetic-geometric correspondence (Dagm, π1, π2)

on C = P1
C

, with Dagm = P1
C

, π1(z) = z2 and π2(z) = (1 + z2)/2z. Thus π2(π
−1
1 (z) is the multiset

{(1 + z)/2
√

z} where
√

z is allowed to be either of the two determinations of the square root of z. Its
dynamics, studied in [Bullett 1991], is related to works of Gauss ant his successors on the arithmetic-
geometric mean.

Note that (Dagm, π1, π2) is a special case of the correspondences of Example 1.2.1, namely it is
equivalent to the self-correspondence over P1 attached to the equation 4xy2

= (x + 1)2.

Example 1.2.3. Let C be the complete Igusa curves of level N (with (N , p) = 1) over Fp. Recall ([Gross
1990, pages 460–462], where the curve is denoted by I1(N )) that C is the smooth completion of the
affine Igusa curve, which is defined as the moduli space for triples (E, α, β), where E is an elliptic curve
over a scheme of characteristic p, α an embedding µN ↪→ E and β an embedding µp ↪→ E .
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For l a prime number not dividing N p, we define the Hecke correspondence Dl , moduli space for
quadruples (E, α, β, H) where (E, α, β) is as above and H is a subgroup scheme of E locally of order l.
Define π1 : Dl → C as just forgetting H , and π2 as sending (E, α, β, H) to (E/H, α′, β ′) where α′

and β ′ are defined in the obvious manner. Then (Dl, π1, π2) is a self-correspondence, called the Hecke
correspondence at l, on the Igusa curve C .

1.3. Bidegree. If D is a finite disjoint union of curves D =
∐

i Di , C a curve, and π : D → C a map
nonconstant on every component Di of D, then we define deg π as

∑
i deg π|Di .

The bidegree of a self-correspondence (D, π1, π2) on a curve C is the ordered pair of integers
(deg π1, deg π2). It is often denoted (d1, d2). A self-correspondence is balanced when d1 = d2. For
example, the bidegree of the arithmetic-geometric self-correspondence of Example 1.2.1 is (2, 2), and the
bidegree of the Hecke correspondence Dl of Example 1.2.3 is (l + 1, l + 1).

1.4. Transpose. If (D, π1, π2) is a self-correspondence on C , so is (D, π2, π1), called the transpose of
(D, π1, π2). We shall denote this correspondence by tD. Its bidegree is (d2, d1), if the degree of D is
(d1, d2).

1.5. Self-correspondence of morphism type. Let f be a nonconstant separable morphism from C to C .
We denote by D f the self-correspondence (C, IdC , f ). A self-correspondence D over C is of morphism
type if it is isomorphic to some D f . Equivalently, D is of morphism type if and only if its bidegree has
the form (1, d). Thus we see that the transpose of a self-correspondence of the form D f is of morphism
type only when f is an isomorphism, and in this case tD f ≃ D f −1 .

1.6. Minimal self-correspondences. A self-correspondence is minimal if the map π1 × π2 : D → C2

is generically injective, that is there are only finitely many points of C2 such that the fiber of π1 × π2

has more than one element. Equivalently, D is minimal if k(D) is generated, as a k-algebra, by its two
subfields π∗

1 (k(C)) and π∗

2 (k(C)).
For any self-correspondence D on C , there is a unique pair (Dmin, h) where Dmin is a minimal self-

correspondence over C and h : Dmin → D a morphism of self-correspondences on C : take Dmin the
normalization of the image of D by π1 × π2.

A minimal self-correspondence is rigid, i.e., has a trivial group of automorphism. Indeed, an automor-
phism σ of a self-correspondence D stabilizes every fibers of π1 ×π2. If D is minimal, all those fibers
but finitely many are singletons, so σ fixes all points of D but finitely many, which implies that σ = IdD .

1.7. Symmetric self-correspondences. A self-correspondence D is symmetric if tD ≃ D. Obviously a
symmetric self-correspondence is balanced. A self-correspondence is symmetric if and only if there exists
an automorphism η of the k-scheme D such that π1 ◦ η = π2. When D is minimal, this automorphism η

is necessarily an involution, since η2 is an automorphism of the self-correspondence D, which is rigid.
The Hecke correspondence Dl on the Igusa curve (see Example 1.2.3) is symmetric with η(E,α,β, H)=

(E/H,α′,β ′, E[l]/H).
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1.8. Terminology on directed graphs. By a directed graph we shall mean the data 0 = (V, Z , s, t) of
two sets V and Z and two maps s, t : Z → V . Elements of V are called vertices, elements of Z are called
edges, and for z ∈ Z , s(z) is the source and t (z) the target of z. In particular, self-loops (i.e., edges z
such that s(z) = t (z)) and repeated edges (i.e., edges z1 ̸= z2 such that s(z1) = s(z2) and t (z1) = t (z2))
are allowed.

We use the usual terminology for a directed graph: a forward-neighbor (resp. backward-neighbor) of
a vertex x is a vertex y such that there is an edge z with source x and target y (resp. with source y and
target x). More generally, we say that y is a k-forward-neighbor of x if y = x when k = 0, or if y is a
forward-neighbor of a (k−1)-forward-neighbor when k ≥ 1.

A subset S of V is said to be forward-complete (resp. backward-complete) if it contains every
forward-neighbors (resp. backward-neighbors) of its vertices.3 A subset S of V is complete if it is both
backward-complete and forward-complete. A complete subset S is irreducible if it is nonempty and has
no complete proper nonempty subset.4

It is clear that the irreducible complete subsets of a directed graph are the connected components of
the nondirected graph it defines, and that the complete sets are the union of connected components. A
union and intersection of complete sets is complete, as is the complement of any complete set. Every
complete set is a disjoint union of irreducible complete sets.

If x, y are in V , a directed path of length n from x to y is a sequences of n edges p = (z1, . . . , zn)

such that s(z1) = x , t (zn) = y and t (zi ) = s(zi+1) for i = 1, . . . , n − 1. A directed path from x to x is
called a directed cycle.

We shall denote by npx,y,n the number of directed paths from x to y of length n.
If k is a ring, and 0 = (V, Z , s, t) is a directed graph, we define the adjacency operator of 0,

A0 : C(V, k) → C(V, k) on the k-module C(V, k) of maps from V to k, by the formula

(A0 f )(y) =

∑
z∈Z ,t (z)=y

f (s(z)).

The matrix of A0 in the canonical basis of C(V, k) is the adjacency matrix of 0. By induction, we check
that if x, y ∈ V and n ≥ 1 an integer, then

(An
0(δx))(y) = npx,y,n . (1)

We shall sometimes consider functions f : V → k ∪ {∞} where ∞ is a symbol not in k. For such a
function, we define A0 f by the same formula as above, with the convention that the sum of the right
hand-side is ∞ if exactly one of its term is ∞, and is undefined if two or more of its terms are ∞.

3Another widely used terminology for the same notion is forward-invariant.
4An irreducible complete set S is sometimes called a grand orbit of the self-correspondence. Indeed, such a set S can be

obtained by starting with any of its point and applying the forward (mulitvalued) map π2 ◦ π−1
1 or the backward map π1 ◦ π−1

2
repeatedly, which may explain this terminology.
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1.9. The directed graph attached to a self-correspondence. If (D, π1, π2) is a self-correspondence of
C over k, and k̄ is a fixed algebraic closure of k, we define the oriented graph 0D attached to D as
(C(k̄), D(k̄), π1, π2). It is clear that for a subset S of C(k̄), the notions of being forward-complete,
backward-complete, or complete, as defined in the introduction (first page), and the same notions as
defined for a subset of a directed graph defined in Section 1.8, coincide.

If z ∈ D(k̄) is an edge, we write ei,z for the index of ramification of πi at z. An edge z ∈ D(k̄)

is said ramification-increasing (resp. equiramified, resp. étale) if e1,z ≤ e2,z (resp. e1,z = e2,z , resp.
e1.z = e2,z = 1). We observe that there are only finitely many edges that are not étale (and a fortiori, not
equiramified or ramification-increasing). This is because π1 and π2 are assumed separable.

A subset S of C(k̄) is said ramification-increasing, equiramified, étale if all the edges whose both
source and target are in S are ramification-increasing, etc.

For any vertex x ∈ C(k̄), we have the formula∑
z∈D(k̄),π1(z)=x

e1,z = d1, (2)

∑
z∈D(k̄),π2(z)=x

e2,z = d2. (3)

In particular, there are at most d1 edges with source x and d2 edges with target x , and the directed graph
0D is locally finite. Given a finite set of vertices S ⊂ C(k̄), one has by summing the above formula∑

z∈π−1
1 (S)

e1,z = d1|S|, (4)

∑
z∈π−1

2 (S)

e2,z = d2|S|. (5)

Remark 1.9.1. The directed graph of tD is the directed graph of D with source and target maps exchanged.

Lemma 1.9.2. Let k be a finitely generated extension of a prime field. Then k has extensions of arbitrary
large prime degrees.

Proof. Let F be the prime subfield of k, and let T1, . . . , Tn be a transcendence basis of k over F. Thus if
k0 = F(T1, . . . , Tn), k has finite degree d over k0. The field k0 admits extension of any prime degree p: if
n = 0, then k0 = Fp or Q and the result is well-known, and if n ≥ 1, for p prime, the polynomial X p

− T1

has no root in k0 hence is irreducible over k0; see [Lang 2002, Theorem 9.1]. If p ∤d , the composition of
an extension of degree p of k0 with k is an extension of k of degree p. □

Proposition 1.9.3. The directed graph 0D has infinitely many irreducible complete sets. All but finitely
many of them are étale.

Proof. Let us consider C and D as embedded in a projective space over k (say P3
k), and let k0 be the

subfield of k generated over the prime subfield of by the coefficients of the projective equations of C and
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D and the coefficients of the polynomials defining π1 and π2. Replacing k by k0 we may assume that k is
of finite type over its prime subfield.

If k is a finite type extension of its prime subfield, and x ∈ C(k) is a vertex, then if z ∈ D(k̄) is an
edge with source (resp. target) x , one has z ∈ D(k ′) for k ′ some finite extension of k of degree ≤ d1 (resp.
≤ d2). Indeed, z belongs to the schematic fiber of π1 at x , which is a finite k1-scheme of degree d1. It
follows that any forward-neighbor (resp. backward-neighbor) of x ∈ C(k) is defined on an extension of
degree ≤ d1 (resp. ≤ d2) of k ′. By induction, any vertex in the same irreducible complete set as x is
defined over an extension of k of degree whose all prime factors are ≤ max(d1, d2).

Given a finite family S1, . . . , Sl of irreducible complete sets in C(k̄), pick points x1 ∈ S1, . . . , xl ∈ Sl .
By replacing k by a finite extension, we may assume that x1, . . . , xl all belong to C(k), and thus every
points x in S1 ∪ · · · ∪ Sl belong to C(k ′) for k ′ a finite extension of k (depending on x) of some degree
whose all prime factors are less than max(d1, d2). By the above lemma, k has extensions of arbitrary
large prime degrees, hence has an extension k ′′ of prime degree p > max(d1, d2) and C has a point whose
field of definition contains k ′′. Such a point cannot belong to S1 ∪ · · · ∪ Sl , which shows that there are
other irreducible complete sets in C(k̄). Therefore the number of irreducible complete sets is infinite.

The second assertion is clear since there are only finitely many nonétale edges. □

Example 1.9.4. The directed graph of the Hecke correspondence Dl on the Igusa curve C (see
Example 1.2.3) is well understood. Since Dl is symmetric, we loose no information by forgetting
the orientation of the edges and looking at 0Dl as an undirected graph.

There are two obvious finite completes sets, the set of supersingular points and the sets of cusps.
The complete set of supersingular points is étale (easy since l ̸= p) and irreducible (this can be proved
by direct analysis, or, as Krishnamoorthy notes in [Krishnamoorthy 2018], simply as a consequence
of Proposition 3.2.5 below). The complete set of cusps may be reducible, and none of its irreducible
components are étale (again a consequence of Proposition 3.2.5). The other complete sets are all infinite
and have been called isogeny volcanoes: they consist in a cycle of some order n, with an infinite tree of
valence l + 1 attached to each vertices of that cycle; see [Sutherland 2013; Kohel 1996].

1.10. Sum and composition of self-correspondences. Let (D, π1, π2) and (D′, π ′

1, π
′

2) be two self-
correspondences on a curve C , of bidegrees (d1, d2) and (d ′

1, d ′

2).
The sum of D and D′, denoted D + D′, is by definition the self-correspondence(

D
∐

D′, π1
∐

π ′

1, π2
∐

π ′

2

)
on C . It is obvious that the oriented graph 0D+D′ has the same vertices as 0D and 0D′ and for set of
edges the disjoint union of their set of edges. The bidegree of D + D′ is (d1 + d ′

1, d2 + d ′

2).
We define D′

◦ D as the scheme D ×π2,C,π ′

1
D′. The two projections pr1 and pr2 of this fibered product

over D and D′ are finite and flat, and its total ring of fractions is étale over k(C), since it is the tensor
product of the two separable extensions k(D) and k(D′) over k(C) (they are seen as extensions of k(C)

through π∗

2 and π ′∗

1 respectively). In particular, D′
◦D is proper over k, and all of its irreducible component
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have dimension 1. We denote by D′D the normalization of the reduced scheme attached to D′
◦ D, and

by n : D′D → D ◦ D′ the natural map:

D′D

n
��

D′
◦ D

pr1
{{

pr2 ##

D
π2

##
π1

��

D′

π ′

1

{{
π ′

2   

C C C

Thus D′D is a proper and smooth scheme of dimension 1, that is a disjoint union of curves. Since
n is surjective, the restriction of pr1 ◦n and pr2 ◦n to every connected component of D′D are surjective
onto D and D′ respectively and they are separable since n induces an isomorphism on the total rings of
fractions. Thus, (D′D, π1 ◦ pr1 ◦n, π ′

2 ◦ pr2 ◦n) is a self-correspondence on C , which we shall call the
composition of D′ with D. Its bidegree is (d1d ′

1, d2d ′

2).

Example 1.10.1. If f, g are morphisms from C to C , then D f Dg = D f ◦g.

The directed graph 0D′◦D is the graph whose vertices are those of 0D or 0D′ , and edges (z, z′) where
z is an edge of 0D, z′ is an edge of 0D′ such that the source of z′ is the target of z. The source (resp.
target) of the edge (z, z′) in 0D′◦D is the source of z in 0D (resp. the target of z′ in 0D′). Hence

A0D′◦D
= A0D′ ◦ A0D . (6)

Since n is surjective, generically an isomorphism, the directed graph 0D′ D is that of 0D′◦D described
above, with finitely many new edges added, all those new edges having the same source and target that
an already existing edge in 0D′◦D .

Lemma 1.10.2. If S is a forward-complete (resp. backward-complete, resp. complete) set for D and D′

then it is forward-complete (resp. etc.) for D′D.
If S is a complete étale set for D and D′, then the restrictions of the directed graphs of D′

◦ D and of
D′D to S coincide, S is also étale for D′D and A0D′ D

coincides with A0D′ ◦ A0D on C(S, k).

Proof. The first assertion follows from what was said above. For the second, if x ∈ S, the fibers of D
and D′ at x are both étale, and so is their tensor product Dx ×k D′

x , which is (D′
◦ D)x , so D′

◦ D is
étale at points above x . But then it is smooth, and n : D′D → D′

◦ D is thus an isomorphism on some
neighborhood of the points above x , so D′D is also étale over x , and the last assertion follows from (6). □

It is clear that the composition of self-correspondences is associative up to obvious canonical identifi-
cations. We denote by Dn the composition of n copies of the self-correspondence D.
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2. Finite complete sets

2.1. The unbalanced case.

Proposition 2.1.1. Let (D, π1, π2) be a self-correspondence over C of bidegree (d1, d2) with d1 < d2.
Denote by gD , gC the genera of D and C.5 Then any finite backward-complete set S satisfies

|S| ≤ 2
gD − d2gC + d2 − 1

d2 − d1
.

Moreover if such a set S is ramification-decreasing, then it is empty.

Proof. For the first assertion,

|S|d2 =

∑
z∈π−1

2 (S)

e2,z (by formula (5))

= |π−1
2 (S)| +

∑
z∈π−1

2 (S)

(e2,z − 1)

≤ |π−1
2 (S)| +

∑
z∈D(k̄)

(e2,z − 1)

≤ |π−1
2 (S)| + 2gD − 2d2gC + 2d2 − 2 (by Hurwitz’s formula)

≤ |π−1
1 (S)| + 2gD − 2d2gC + 2d2 − 2 (since S is backward-complete)

≤ |S|d1 + 2gD − 2d2gC + 2d2 − 2,

from which the bound of the statement immediately follows.
Now if S is a ramification-decreasing backward-complete finite set,

|S|d2 =

∑
z∈π−1

2 (S)

e2,z

≤

∑
z∈π−1

2 (S)

e1,z (since S is ramification-decreasing)

≤

∑
z∈π−1

1 (S)

e1,z (since S is backward-complete)

= |S|d1 (by formula (4))

which under our assumption d2 > d1 implies S = ∅. □

We record for later use a consequence of the proof:

Scholium 2.1.2. Let (D, π1, π2) be a self-correspondence with d1 ≤ d2. If S is a ramification-
decreasing backward-complete finite set for D, then S is complete and equiramified. Moreover, if
a self-correspondence admits a complete equiramified nonempty finite set, then it is balanced.

5The genus gD of a finite disjoint union of curves D =
∐

i Di is defined here as the sum of the genera of Di . With this
definition, and that of degree given in Section 1.3, Hurwitz formula is still valid for a map π : D → C .
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Proof. The second chain of inequalities in the proof of the proposition is an equality by assumption
d1 ≤ d2, hence all intermediate inequalities must be equalities. The rest is clear. □

Applying the proposition (resp. the scholium) to tD, we get a dual statement concerning forward-
complete sets in the cases d1 > d2 (resp. d1 = d2) that we let the reader make explicit. Combining the
proposition and its dual statement, we get:

Corollary 2.1.3. Let (D, π1, π2) be a self-correspondence over C of bidegree (d1, d2) with d1 ̸= d2

(that is, D is unbalanced). Let d = max(d1, d2). Then any finite complete set S is not equiramified, in
particular is not étale, and satisfies |S| ≤ 2(gD − dgC + d − 1)/|d2 − d1|.

2.2. Finitary self-correspondences.

Theorem 2.2.1. For a self-correspondence D on a curve C over a field k, the following are equivalent:

(i) There exists a nonconstant k-morphism h : C → P1
k such that h ◦ π1 = h ◦ π2.

(ii) There exists a nonconstant k̄-morphism h : Ck̄ → P1
k̄

such that h ◦ π1 = h ◦ π2.

(iii) There is an integer M such that every irreducible complete set has cardinality less or equal than M.

(iv) All irreducible complete sets of D are finite.

(v) All irreducible complete sets of D but possibly finitely many are finite.

(vi) There are infinitely many finite complete sets.

Proof. When D is unbalanced, (i) and (ii) are false by additivity of the degree, and (iii), (iv), (v) and (vi)
are false by Proposition 2.1.1. The assertions (i) to (vi) are thus equivalent. We may therefore assume
that D is balanced of degree d .

The implication (i) ⇒ (ii) is trivial. For (ii) implies (iii), we just note that the fibers h−1(t), t ∈ P1(k̄)

are complete since π−1
1 (h−1(t)) = (h ◦ π1)

−1(t) = (h ◦ π2)
−1(t) = π−1

2 (h−1(t)), and they all have size
≤ deg h. Therefore every irreducible complete set has cardinality less or equal than deg h, which gives (iii).

That (iii) implies (iv) and (iv) implies (v) is trivial; and (v) implies (vi) by Proposition 1.9.3.
It is also not hard to prove that (ii) implies (i), as in [Krishnamoorthy 2018, Proposition 3.8]. In fact,

assuming (ii), we know that there exists a finite extension k ′ of k and a map h′ from Ck′ to P1
k′ defined

over k ′ such that h′
◦π1 = h′

◦π2. Let V be the Weil’s restriction of scalars of P1
k′ to k, and h̃ : C → V the

k-morphism corresponding to h according to the universal property of Weil’s restriction. The image C ′ of
C by h̃ ◦π1

= h̃ ◦π2 in V , with its reduced scheme structure, is a closed subscheme of V defined over k
and which has positive Krull dimension. There is therefore a rational function u ∈ k(V ) that induces a
nonconstant map on C ′. Thus, if h := u ◦ h̃, h is a k-morphism C → P1

k such that h ◦ π1 = h ◦ π2 and (i)
holds.

It only remains to prove that (vi) implies (ii).
To prove this, we first reduce to the case where k is of finite type over its prime field.
In any case, there is a subfield k0 of k, of finite type over the prime subfield of k such that C , D, π1

and π2 are defined over k0. Assuming (vi), that is that C(k̄) contains infinitely many finite irreducible
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complete sets, we must show that (vi) holds for k0, that is C(k̄0) also contains infinitely many finite
irreducible complete sets. If all the irreducible finite complete sets in C(k̄) are in C(k̄0), we are obviously
done. Otherwise, there is one irreducible finite complete set S in C(k̄) which is not in C(k̄0).

Let k ′ be any subfield of k̄ containing k0 and of finite type over k0 such that all points of S are defined
over k ′. There obviously exist such k ′, and since S is not included into C(k̄0), k ′ is transcendental over
k0. Let V = Spec A be an affine algebraic variety over k0 whose field of fraction is k ′ and such that S
spreads out to V , that is that all points of S are defined over A. Then V has positive Krull’s dimension,
so it has infinitely many k̄0-points. Any k̄0-point t in V gives by specialization of S a finite complete set
St in C(k̄0). It follows that C(k̄0) contains at least one finite irreducible complete S0 in C(k̄0). Replacing
k0 by a finite extension, we may assume that S0 ⊂ C(k0). We may now replace C by C − S(k0), D by
D−π−1

1 (S0)= D−π−1
2 (S0), and π1 and π2 by their suitable restriction to have a new self-correspondence

(C, D, π1, π2) defined over k0, but with now C and D affine. Let us write C = Spec R, where R is a
k-algebra

We now redo the same reasoning from the beginning, namely we prove that we may assume that there is
a irreducible finite complete set S′ in C(k̄) which is not contained in C(k̄0). On can write S′

={x1, . . . , xn}

where each xi is a k0-morphism from R to k̄. We now define A as the k0-subalgebra of k̄ generated by
the images of the xi ’s in k ′, V = Spec A, and k ′ the field of fraction of A. We can thus see the xi as
k0-morphisms from R to A. With these notation, for t ∈ V (k̄0) = Homk0(A, k̄0) = Homk0(k

′, k̄0), the
specialization St of S is by definition the subset {t ◦ x1, . . . , t ◦ xn}. Now we claim that for t ̸= t ′

∈ V (k̄0),
one has St ̸= St ′ as subsets of C(k̄0); for if St = St ′ , then the subalgebra of k̄ generated by the t ◦ xi

(1 = 1, . . . , n) on the one hand, by the t ′
◦ xi (1 = 1, . . . , n) on the other hand, are equal, and thus t = t ′

on the subalgebra generated by the image of xi (i = 1, . . . , n), which is A, and this means t = t ′. We
thus obtain infinitely many distinct finite complete subset in C(k̄0), namely the St where t moves in the
infinite set V (k̄0).

Replacing k by k0, we may henceforth assume that k is of finite type over its prime field.
We now continue the proof of (vi) ⇒ (ii) assuming k is finitely generated over the prime field. Let

ksep and kperf be the separable and perfect closures of k in k̄. Then k̄ = ksep
⊗k kperf and Gal(ksep/k) =

Gal(k̄/kperf). We denote this Galois group by G.
Let J be the Jacobian of C over k. Since k is of finite type over its prime field, J (k) is a finitely

generated abelian group by the theorem of Néron [1952]; see also [Lang and Néron 1959].
Moreover, one has

J (kperf) ⊗Z Q = J (k) ⊗Z Q. (7)

Indeed, there is nothing to prove in characteristic 0, and in characteristic p > 0, J (kperf) = ∪n J (k1/pn
),

so by induction it suffices to prove that pJ (k1/p) ⊂ J (k). But

pJ (k1/p) = V F J (k1/p) ⊂ V J (p)(k) ⊂ J (k) (8)
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where J (p)
= J ⊗k,x 7→x p k, F : J → J (p) and V : J (p)

→ J are the relative Frobenius and Verschiebung
k-morphisms, which completes the proof of (7). (We refer the reader to [Edixhoven et al. 2012, Sec-
tion 5.2], for instance, for the definitions of Frobenius and Verschiebung, and to [Edixhoven et al. 2012,
Proposition 5.19] for the fundamental relation p = V F used above. Since the map F raises the coordinates
of a point to the power p, it sends J (k1/p) into J (p)(k), hence the middle inclusion in (8).)

Let r be the finite dimension of J (kperf) ⊗Z Q.
By assumption, there are infinitely many finite complete sets in C(k̄), and therefore infinitely many

étale finite complete sets. Each of them is a finite subset of C(k̄), hence has a finite G-orbit. By grouping
the irreducible complete sets by G-orbits, we see that there are still infinitely many disjoint étale finite
complete sets invariant by G. Let us chose r + 2 of them, say S0, . . . , Sr+1. To every Si we attach the
Weil divisor

1i =

∑
x∈Si

[x] ∈ Div Ck̄

and let δi = |Si | be its degree. The r + 1 divisors δ01i − δi10 have degree zero, hence they define points
in Pic0(Ck̄) = J (k̄), where J is the Jacobian of C , and those points are G-invariant, hence in J (kperf).
Therefore those points are Q-linearly dependent, hence Z-linearly dependent, which means that there are
integers ni , not all zero, i = 0, . . . , r + 1, and a nonconstant kperf-map h : Ckperf → P1

kperf such that

r+1∑
i=0

ni1i = div h.

Since the Si are étale, for j = 1, 2 one has

π∗

j 1i =

∑
z∈π−1

j (Ss)

[z],

and since the Si are complete, it follows that

π∗

1 1i = π∗

2 1i .

It follows that

div(h ◦ π1) = π∗

1 div h = π∗

2 div h = div(h ◦ π2),

hence that there exists λ ∈ (kperf)∗ such that

λh ◦ π1 = h ◦ π2.

This implies that (reasoning as in the proof of (ii) implies (iii)) if S is any complete set, h(S) is stable
by multiplication by λ and λ−1. By assumption, there exists a finite complete S such that h(S) is not
contained in {0, ∞}. This implies that λ is a root of unity, and if λn

= 1, replacing h by hn gives (ii). This
completes the proof of the implication (vi) implies (ii), hence of the theorem. □
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Remember from the introduction that when the equivalent assertions of the preceding theorem are
satisfied, we say that D is finitary.

Example 2.2.2. The arithmetic-geometric mean self-correspondence introduced in Example 1.2.2 is not
finitary. To see it, it suffices to notice that the irreducible complete set S containing a real number c > 1
also contains all elements c0 = c, cn = (1 + cn−1)/2

√
cn−1 for any n, and that the sequence (cn), being

strictly decreasing, take infinitely many value. Thus S is infinite, and Dagm is not finitary.

Remark 2.2.3. A self-correspondence D is finitary if and only if its transpose tD is finitary. This is seen
trivially on any of the assertion (i) to (vi).

Also, if k ′ is any field containing k, a self-correspondence D is finitary if and only if its base change
Dk′ is finitary. The implication D finitary ⇒ Dk′ finitary is clear on (i), and its converse is clear on (iii)
or on (iv).

Remark 2.2.4. A correspondence of morphism type, say D f , is finitary if and only if f is an automorphism
of finite order. Indeed, if D f is finitary, then deg f = 1 by (i) and f is an automorphism, whose action
on the generic fiber of h is a bijection of a finite set, so some power of f acts trivially on the generic fiber
of h, hence on C , and f has finite order. The converse is trivial.

Remark 2.2.5. The method of using Jacobians in the proof of the theorem is inspired by Krishnamoorthy,
[2018, Chapter 9], and our condition (a) is inspired by the condition he calls “having a core” which gives
the title to his article.6 For Krishnamoorthy, a (general, not self-) correspondence (D, π1 : D → C, π2 :

D → C ′) has a core if there exist nonconstant maps f : C → P1, g : C ′
→ P1 such that f ◦ π1 = g ◦ π2.

For a self-correspondence, his notion is much weaker than our notion of being finitary, where we require
f = g. Indeed, finitary implies balanced, while there are plenty of unbalanced self-correspondences that
have a core, in particular all those of morphism type. Even for balanced self-correspondences, having a
core does not imply being finitary, as the example of D f when f is an automorphism of infinite order
shows (or for less trivial examples, a suitable étale self-correspondence on a curve C of genus 1, for such
a correspondence always have a core in the sense of Krishnamoorthy, but in general is not finitary). In
the case of a symmetric self-correspondence D, however, one can show that D is finitary if and only if it
has a core in the sense of Krishnamoorthy: see Lemma 3.2.4.

Remark 2.2.6. One finds in the literature yet another property akin to “having a core” or “being finitary”,
namely what Dinh, Kaufmann et Wu calls “weakly modular” in [Dinh et al. 2020]. They work in the case
k = C and they say that a balanced self-correspondence D over a curve C is weakly modular if there are
two probability measures m1 and m2 over C(C) such that π∗

1 m1 = π∗

2 m2. To “complete the square”, let
us say that D is weakly finitary if there is one probability measure m on C(C) such that π∗

1 m = π∗

2 m.

6Krishnamoorthy himself is inspired by Mochizuki, which introduces the same notion in the hyperbolic case, under the name
“having an hyperbolic core”; see [Mochizuki 1998]. In the case k = C, a closely related notion has also been considered by Bullett,
Penrose [2001, Section 2.5], and their coauthors, under the name of separable (self-)correspondence. This notion is equivalent to
“having a core” in the minimal case. Apparently, the two sets of authors (Bullett et al., Mochizuki and Krishnamoorthy) were
unaware of each other’s works.
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Thus one has a following square of implications for D a balanced self-correspondence over C, none of
which being an equivalence:

D is finitary +3

��

D has a core

��
D is weakly finitary +3 D is weakly modular

Note that any self-correspondence which has a nonempty finite complete set S is weakly finitary, hence
weakly modular, as taking m the normalized counting measure on S shows. Thus to be weakly modular
is a weak condition.

Theorem 1.1 of [Dinh et al. 2020] states that for any balanced nonweakly modular self-correspondence
D on a curve C over C, there exists a measure µD on C(C) which does not charge polar sets (in particular
finite sets), and such that for every smooth measure µ on C(C),

( 1
d (π1)∗(π2)

∗
)n

µ → µD as n → ∞.7 In
the case of a nonbalanced self-correspondence with d1 < d2, the theorem was known earlier [Bharali and
Sridharan 2016]. One may ask whether this theorem holds more generally for any D that is not finitary.
We conjecture the answer to be yes. (See also Remark 3.4.2.)

3. The exceptional set of a nonfinitary self-correspondence

3.1. Bounding the exceptional set. Let (D, π1, π2) be a self-correspondence over a curve C . The
exceptional set E of C of D is the union of all finite complete sets of C(k̄). Obviously, by Theorem 2.2.1,
D is nonfinitary if and only if E is finite. But we may ask if in this case one can give an effective bound
on the size of E . Unfortunately, the proof of Theorem 2.2.1 does not provide such a bound, even involving
not only gC , gD, and g, but the Mordell–Weil rank r of the Jacobian variety of C over k0, because the
step where we group together finite complete sets to get G-invariant complete sets is not effective.

We can ask two different questions on the exceptional set: we can ask for an upper bound on the
number of elements of E , and for an upper bound on the number of irreducible components of E , that
is the number of complete irreducible finite sets for D. The second question reduces to bounding the
number of irreducible components of E that are étale, because the number of nonétale ones is less than
the number of critical values of π1 and π2, which in turns is bounded, using Hurwitz’s formula, by
2gD − 2 − d(2gC − 2).

In the case of an unbalanced self-correspondence, the two questions are solved by Proposition 2.1.1.
We therefore limit ourselves to the balanced case.

3.2. The number of irreducible complete finite sets, I. Given a balanced nonfinitary self-correspondence
D over C of bidegree (d, d), can we give a bound to the number of étale irreducible complete finite sets

7We recall the standard measure-theoretic notation used here: let π : D(C) → C(C) be an holomorphic map, nonconstant on
every component of D; if µ is a Borel measure on D(C), then π∗µ is the measure on C(C) defined by π∗(µ)(B) = µ(π−1(B));
if µ is a Borel measure on C(C), then π∗µ is the Borel measure on D(C) defined by

∫
f dπ∗µ =

∫
π∗ f dµ for every continuous

function f on D(C), where π∗ f (x) =
∑

z∈π−1(x) f (x).
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in terms of the genera gC and gD of the curve involved and the degree d? We shall give several such
bounds in particular but important situations (namely the case where k is a finite field, or when C = P1,
or when the correspondence D is symmetric) using effective variants of the proof of Theorem 2.2.1. In
the next section, using completely different methods we give a general result in characteristic zero (and
also under a weaker form in characteristic p), namely that a nonfinitary correspondence has at most 2
étale (or even equiramified) finite irreducible sets (see Section 4.5).

Proposition 3.2.1. Assume that k is algebraic over a finite field. If a correspondence D on a curve C
over k is not finitary, then it has at most one nonempty finite equiramified complete set, and in particular
at most one étale nonempty complete set.

Note that the proposition implies that in case there is one nonempty equiramified complete set, it is
automatically irreducible. Of course, D can very well have no nonempty finite complete set, as in the
case of D f , where f is a the translation by a nontorsion element on an elliptic curve.

Remark 3.2.2. The hypothesis made on k is necessary. Indeed, assume that k is not algebraic over a
finite field. Then k has an element t ̸= 0 which is of infinite multiplicative order (take an element which
is transcendental over Fp if k has characteristic p and t = 2 if k has characteristic 0). Consider the map
f (x) = t x from P1 to P1, and the correspondence D f it defines. This correspondence is of bidegree
(1, 1), and has two complete finite sets, obviously étale: {0} and {∞}. Yet D f is not finitary, because f
is not an automorphism of finite order.

Proof. Suppose that there are two distinct finite equiramified nonempty complete sets S and S′. If S ⊂ S′,
replace S′ by S′

− S. If S ̸⊂ S′, replace S by S − (S′
∩ S). This way we may assume that S and S′ are not

only distinct, but disjoint.
In view of our hypothesis on k, we may assume that the self-correspondence is defined over a finite

field k0, that S and S′ are subsets of C(k0), and that π−1
1 (S) and π−1

2 (S′) are subsets of D(k0).
Let 1S =

∑
s∈S[s] and 1S′ =

∑
s∈S′[s] be the effective Weil’s divisors attached to S and S′. The

divisor |S′
|1S − |S|1S′ has degree zero, hence is torsion in Pick0(C) (since it is an element of the finite

group Pic0
k0

(C), the group of k0-rational points of the Jacobian of C). Therefore, there exist n and m such
that n1S − m1S′ is a principal divisor; in other words, there exists a rational function h in k(C) such
that div h = n1S − m1S′ .

We claim that there exists λ ∈ k∗ such that h ◦ π1 = λh ◦ π2 as functions in k(D), up to multipli-
cation by a nonzero scalar. Indeed, for i = 1, 2, div h ◦ πi = π∗

i (n1S − m1S′) =
∑

t∈π−1
i (S) nei,t [t] −∑

t∈π−1
i (S′) mei,t ′[t ′

] where ei,t is the ramification index of πi at t . Using that S and S′ are equiramified
complete sets, we see that div h ◦ π1 = div h ◦ π2, hence the claim.

Now since λ belongs to a finite field, there is an n such that λn
= 1. Replacing h by hn , we see that D

satisfies assertion (i) of Theorem 2.2.1. □

Proposition 3.2.3. Let k be any field. If D a self-correspondence over P1
k which is not finitary, there are

at most two irreducible finite equiramified complete sets, and when there are two of such, there is no other
irreducible finite complete set at all.
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Proof. Arguing as in the case of a finite base field k, but using the fact that Pic0
k P1 is trivial, we see that

if S and S′ are two disjoint irreducible equiramified sets, there is a function f : P1
→ P1 with divisor

|S′
|1S − |S|1S′ . Such a function satisfies f ◦ π1 = λ f ◦ π2 for some λ ∈ k∗, and also by definition

f −1(∞) = S, f −1(0) = S′. Since D is not finitary, λ is not a root of unity, and as in the proof of
Theorem 2.2.1, we see that for T complete, f (T ) is stable by multiplication by λ, and if T is also finite,
this implies f (T ) ⊂ {0, ∞}. Since f −1(0) = S and f −1(∞) = S′ are irreducible, they are the two only
irreducible complete sets. □

Finally, we give two more results in the same vein but for symmetric self-correspondences. They are
based on earlier results in the literature and the following lemma.

Lemma 3.2.4. If a self-correspondence has a core in the sense of Krishnamoorthy (see Remark 2.2.5, or
[Krishnamoorthy 2018, Definition 3.5]) then tDD is finitary. If moreover D is symmetric then it is itself
finitary.

Proof. If (D, π1, π2) has a core, that is if there exists f, g : C → P1 such that f ◦ π1 = g ◦ π2, then the
forward map of D sends fibers of f to fibers of g, and the backward map of D, i.e., the forward map of
tD, sends fibers of g to fibers of f . Thus tDD preserves the fibers of f , and is therefore finitary, which
proves the first assertion.

If moreover D is symmetric, then D2 is finitary and has infinitely many irreducible complete finite sets.
But every irreducible complete set S of D breaks down in at most two irreducible complete sets of D2,
namely the set of points of S which are connected to a given point x0 of S by a path of even length, and
its complement if nonempty. Therefore D must have infinitely many finite complete sets, and is therefore
finitary. □

Proposition 3.2.5 (Krishnamoorthy). If D is a nonfinitary symmetric self-correspondence on a curve C
over a field k, then D has at most one irreducible finite equiramified complete set. If k has characteristic
zero and π1, π2 are étale, then D has no irreducible finite complete set.

Proof. Krishnamoorthy proves that if D is a self-correspondence without a core, it has at most one finite
irreducible finite étale complete set; see [Krishnamoorthy 2018, Theorem 9.6]. In fact his proofs work
with “étale complete” replaced with “equiramified complete”, as in the proofs of Proposition 3.2.1 and
Proposition 3.2.3. By the lemma above, this implies the proposition. □

Corollary 3.2.6. Let D be a nonfinitary symmetric self-correspondence on a curve C over a field k. Let S
be an irreducible finite complete étale set for D. Then the undirected graph of S (obtained by forgetting
the orientation of the edges) is not bipartite.

Proof. If the undirected graph 0S attached to S was bipartite, then the graph 0S,2 with the same set of
vertices S but whose edges are paths of degree 2 in S would be disconnected. But D2 is also not finitary
(by Lemma 3.2.4), and its graph on the set of vertices S is 0S,2 (by Lemma 1.10.2, using that S is étale),
in contradiction with Proposition 3.2.5. □
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Remark 3.2.7. Let S ∈ C(k̄) be a finite complete set for a self-correspondence D on C . We shall say that
the set S is consistently ramified if for every undirected cycle with edges z1, . . . , zn , the rational number∏n

i=1(e2,zi /e1,zi )
ϵi is 1, where the signs ϵi (for i = 1, . . . , n) are defined to be +1 is the edge zi has a

compatible orientation with zi+1 (i.e., the target of zi is the source of zi+1 or the source of zi is the target
of zi+1) or −1 otherwise (we use the convention that zn+1 = z1). If S is equiramified, it is consistently
ramified, since all factors in the above product are 1; but clearly the converse is false.

We claim that Propositions 3.2.1, 3.2.3, and 3.2.5 are still true with the phrase “finite equiramified
complete sets” replaced with “finite consistently ramified complete sets”. Indeed, if S is consistently
ramified, it is easy to see that one can attach to every s ∈ S a positive integer ns such that for every
z ∈ π−1

1 (S) = π−1
2 (S), one has nπ1(z)e1,z = nπ2(z)e2,z . In the proof of Proposition 3.2.1 (for example), it

suffices to change the definition of 1S to be the divisor
∑

s∈S ns[s], to obtain a divisor with support S
and such that π∗

1 1S = π∗

2 1S , and the rest of the proof may remain unchanged.

3.3. Bounding the exceptional set.

Proposition 3.3.1 (Krishnamoorthy). If (D, π1, π2) is a nonfinitary symmetric self-correspondence on a
curve C over a field k of characteristic 0, and if π1 and π2 are étale, then E = ∅.

Proof. Krishnamoorthy proves that if π1 and π2 ate étale and D have no core, and k has characteristic 0,
then E = ∅; see [Krishnamoorthy 2018, Corollary 9.2]. The result follows using Lemma 3.2.4. □

We shall now prove a generalization of the above result. A self-correspondence is critically finite (see
[Bullett 1992]) if every ramification point in C(k̄) of π1 or π2 belongs to a finite complete set. In other
words, the union Ecrit of the irreducible nonétale complete sets is finite.

Example 3.3.2. For the arithmetic geometric mean correspondence (see Example 1.2.2), it is easy to see
that Ecrit = {0, −1, 1, ∞} and this correspondence is critically finite.

Proposition 3.3.3. Let k be a field of characteristic zero. Let D be a critically finite self-correspondence
on C over k having no core (in particular, symmetric and nonfinitary). Assume that the curve D is
irreducible. Then D has no nonempty étale finite complete set. In other words, E = Ecrit.

Proof. (Inspired by Section 3 of [Mochizuki 1998].)
We may assume that k = k̄ = C. If Ecrit is empty, then π1, π2 are étale, and the result follows from the

Proposition 3.2.5. Let C0 := C − Ecrit, and D0 = D − π−1
1 (Ecrit) = D − π−1

2 (Ecrit), and we still denote
by π1 and π2 the restriction of π1 and π2 to D0. They are étale maps, and (D0, π1, π2) is, in an obvious
sense, a self-correspondence over C0 in the category of open curves.

If C = P1, and Ecrit has 1 or 2 elements, then C0 is the affine line or punctured affine line, and it has
at most one étale finite cover of any degree d. Thus π1 = π2 contradicting the assumption that D is not
finitary.

In the remaining cases, the open curve C0 := C − Ecrit is hyperbolic. Let D0 = D − π−1
1 (Ecrit) =

D −π−1
2 (Ecrit). Let us identify the universal cover of D0 (which is also a universal cover of C0) with the

upper half-plane H.
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Fix some x ∈ C0, z1 in π−1
1 (x) ∈ D0 and h1 ∈ H a point that maps to z1 in D0. The fundamental

groups π1(C0, x) and π1(D0, z1) are canonically identified, after those choices, with discrete subgroups
of PSL2(R) that we shall denote respectively by 0C and 0D; we have 0D ⊂ 0C , the inclusion being
of finite index. Choose also a z2 ∈ π−1

2 (z) ∈ D0, h2 ∈ H that maps to z2, and a g ∈ PSL2(R) such that
gz1 = z2. Thus π1(D0, z2) is canonically identified with g0Dg−1, which also is a subgroup of finite index
of 0C , and we have a commutative diagram

H/0D

��

∼
// D0

π1

��

π2

��

H/(0C ∩ g−10C g)

s1
ww

s2
''

H/0C
∼

22H/0C
∼

44C0 C0

where the unnamed horizontal maps (curved or straight) are the identifications fixed above, and the
diagonal maps s1 and s2 are given by respectively the inclusion and the conjugation by g of 0C ∩ g−10C g
into 0C , the vertical map being given by the inclusion

0D ⊂ 0C ∩ g−10C g.

This inclusion shows that 0C ∩g−10C g has finite index in 0C and thus that g belongs to the commensurator
of 0C in PSL2(R).

Let 0 be the closure of the subgroup of PSL2(R) generated by 0C and g−10C g. We claim that 0

has infinite index in 0C . Otherwise, 0 would also be a lattice, and we would have two finite étale
maps (surjective, of analytic stacks of dimension 1) H/0C → H/0 given by the inclusion and the
conjugation by g−1 of 0C into 0. We could then give an algebraic structure on H/0, making it an
algebraic stacks, and choose a nonconstant map of H/0 to P1, which composed with the two finite
étale maps H/0C → H/0 gives two morphisms of Riemann surfaces f, g : H/0C = C0 → P1 such
that f ◦π1 = g ◦π2. Extending f, g to the complete smooth curves C , we thus see that the symmetric
correspondence (D, π1, π2) has a core ( f, g), hence is finitary by Lemma 3.2.4, contradicting our
hypothesis.

We just need to show that the self-correspondence of Riemann surfaces (D0, π0, π1) has no finite
complete sets, and by the commutativity of the diagram above it suffices clearly to show hat the self-
correspondence H/(0C ∩ g0C g−1, s1, s2) on H/0C has no finite complete set. If S was such a complete
set, its preimage S̃ in H would be invariant by 0D (obviously) and by g0Dg−1, hence by 0. The set S̃
would thus be an infinite union of 0C -orbits, contradicting the finiteness of S. □

We conclude this subsection by giving one result for self-correspondence on P1 in characteristic zero.
It is a rephrasing of a result due to Pakovich.
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Proposition 3.3.4. Let k be a field of characteristic zero, (D, π1, π2) a self-correspondence over P1
k of

bidegree (d, d). Let gD be the genus of D. We assume that:

(i) The singleton {∞} is a complete equiramified set.

(ii) There exists a λ ∈ k∗ such that for every z ∈ π−1
1 (∞) = π−1

2 (∞),

ordz(π1 − λπ2) > ordz π1 = ordz π2.

(iii) D is not finitary.

Then |E | ≤ 3 + (2gD − 1)/d , with equality possible only in the case gD = 0, d = 1.

Proof. This is essentially Théorème 1 of [Pakovich 1996]. More precisely, to prove our proposition we
reduce to the case k = C. Assuming that the proposition is false, there is a finite complete set in P1

C
of

cardinality > 3 + (2gD − 1)/d, hence, removing ∞, there is a finite complete set K ⊂ C of cardinality
> 2 + (2gD − 1)/d. Conditions (i) and (ii) allow us to apply Theorem 1 of [Pakovich 1996] which tells
us that there is a rotation σ of the plane C such that σ(K ) = K and π1 = σ ◦π2. Since K is finite, σ (#K )!

is the identity of K , hence of the real affine closure of K , and since #K ≥ 2, the rotation σ (#K )! must fix
a real line in C, hence is the identity of C. Thus h(z) = z(#K )! satisfies h ◦ π1 = h ◦ π2, in contradiction
with (iii). □

Remark 3.3.5. The condition (ii) is the most restrictive in practice. Assuming (i), it is clear that for
every z ∈ π−1

1 (∞) = π−1
2 (∞), there exists a λ ∈ k∗ such that ordz(π1 − λπ2) > ordz π1 = ordz π2, but

the existence of such a λ independent of z ∈ π−1
1 (∞) is problematic — except of course when π−1

1 (∞) is
a singleton.

Moreover, the theorem is false without condition (ii), as the following example given by Pakovich
shows: D = P1, π1(z) = (z2

− z − 1)/(z2
+ z + 1), π2(z) = −(z2

+ 3z + 1)/(z2
+ z + 1). Then

π−1
1 ({∞})=π−1

2 ({∞})={ j, j2
} and {∞} is complete étale so (i) is satisfied, and one can check that (iii) is

also satisfied. But {−1, 1} is also a finite complete set (since π−1
1 ({−1, 1})={−1, 0, ∞}=π−1

2 ({−1, 1})).
This provides an example where C = D = P1, and |E | ≥ 3.

The following special case was proved by Pakovich [1995] in an earlier paper.

Corollary 3.3.6 (Pakovich). Let k be a field of characteristic zero and suppose that (P1
k, π1, π2) is a

nonfinitary correspondence over P1
k , where π1 and π2 are polynomials. Then |E | ≤ 2.

Proof. We can apply the proposition above: (i) is satisfied because π−1(∞) = π−2(∞) = {∞} and (ii) is
satisfied because π−1(∞) is a singleton. It tells us that |E | ≤ 3 + (2gD − 1)/d = 3 − 1/d < 3. □

Remark 3.3.7. This result can be considered as an effective version of Theorems 2.2.1 and 4.5.3 in a very
special case; it states that for a nonfinitary correspondence (P1, π1, π2) over P1, with πi polynomials,
in characteristic zero, (thus having S = {∞} as equiramified complete set), then there is at most one
other complete irreducible set S′, which moreover is also a singleton (if it exists). By contrast, our
Theorem 4.5.3 below, under the same hypothesis will also tell us that there is at most one other complete



1888 Joël Bellaïche

irreducible set, but without affirming that it has to be a singleton. However our conclusion will also hold
without assuming that C = D = P1, nor any condition on π1, π2 and S.

3.4. Complements and questions.

Backward exceptional kernels. If 0 = (V, E, s, t) is a directed graph, we define the backward exceptional
kernel Kbackward as the union in V of all finite backward-complete sets. A symmetric definition could of
course be given for forward exceptional sets and we will let the interested reader reformulate the results
below in this case.

If D is a self-correspondence over C of bidegree (d1, d2), its backward exceptional kernel is the one of
its associated directed graph 0D . A natural question for a self-correspondence is then: when is Kbackward

finite? We cannot offer a complete answer to this question. Here is what the author knows on Kbackward.
First note that it is no restriction to assume that D is minimal, for there is always a minimal self-

correspondence associated to D which has the same dynamics as D, in particular the same Kbackward. So
we assume below that D is minimal

When d1 < d2, Proposition 2.1.1 shows that Kbackward is finite and gives a bound to its size.
What about Kbackward when d1 ≥ d2?
Consider first the case d2 = 1, that is of a transpose of self-correspondence of morphism type: D ≃

tD f .
If d1 = 1, then f is an automorphism of C , of infinite order, and Kbackward is finite. If d1 > 1 however,
then Kbackward is always countable infinite. In the case where d1 > d2 > 1, Kbackward may be finite or
infinite: for instance, consider the case D = C = P1, π1(x) = x3, π2(x) = x2 of bidegree (3, 2), where it
is easy to see that Kbackward = {0, ∞}, or for a balanced case, any symmetric nonfinitary correspondence
(e.g., an Hecke correspondence Dl on the Igusa curve), where by symmetry, Kbackward = E which is
finite. For an example with Kbackward infinite consider the sum D =

tD f +
tDg, where f and g are the

endomorphisms of P1, z 7→ z2 and z 7→ z3. In this example Kbackward is the set of all roots of unity while
this self-correspondence is of bidegree (5, 2), hence minimal since 5 and 2 are relatively prime.

Remains the balanced case d1 = d2 > 1. The finitary self-correspondences trivially have Kbackward =

C(k̄). So let us consider a nonfinitary self-correspondence. Such a self-correspondence, if symmetric,
will have Kbackward = E finite. The only question that remains is:

Question 3.4.1. Does there exist a nonfinitary balanced self-correspondence with Kbackward infinite?

To analyze this question, note that for S a complete irreducible subset of C(k̄), S ∩ Kbackward =

Kbackward(S), and Kbackward =
∐

S Kbackward(S) when S run among irreducible complete subsets. If S is
equiramified, then Kbackward(S) is a union of equiramified finite backward-complete subsets of S, and
those subsets are complete by Scholium 2.1.2; thus, if Kbackward(S) is not empty it is finite and equal
to S. This shows that the answer to the question is no when Kbackward is equiramified, and because the
number of nonequiramified irreducible complete sets S is finite, in general the question reduces to “is
Kbackward(S) finite when S is a nonequiramified complete set?”
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Backward exceptional and forward exceptional sets. If D is a self-correspondence over C of bidegree
(d1, d2), we define the backward exceptional set Ebackward as the smallest forward-complete set containing
Kbackward. Be careful that the backward exceptional set is forward-complete by definition, but not in
general backward-complete.

If D is not finitary, Ebackward is always “small”: it contains the finite exceptional set E and is contained
in the union of E and finitely many nonequiramified irreducible complete sets. In particular, Ebackward

is at most countable, and its complement contains an infinite union of irreducible complete sets. This
follows easily from our study of Kbackward.

If Kbackward is étale, then it is complete and Ebackward = Kbackward is finite. However, Ebackward may be
infinite in general. An example in bidegree (2, 3) due to Dinh and Favre showing this is given in [Dinh
2005, Exemples 3.11]. A similar balanced example is given by π2(z) = z2

− z, π2(z) = z2, for which we
have Kbackward = {0, ∞}, but Ebackward contains a strictly increasing sequence 0, 1, 2

√
5, . . . (each term

xn+1 being the larger number in the pair π2(π
−1
1 (xn))), hence is infinite.

Remark 3.4.2. The significance of the set Ebackward appears most clearly in the ergodic theory of self-
correspondences on curves over C. More precisely, for a balanced nonweakly modular self-correspondence,
it is shown in [Dinh et al. 2020, Theorem 1.2] that for every x ∈ C(C),

( 1
d2

(π1)∗(π2)
∗
)n

(δx) → µD , where
the definition of the measure µD on C is recalled in Remark 2.2.6. Note that in the nonweakly modular
case, it is easy to see that Kbackward = Ebackward =∅. When d1 < d2, it is proved in [Dinh 2005; Dinh and
Sibony 2006] that

( 1
d2

(π1)∗(π2)
∗
)n

(δx) → µD for every x ̸∈ Ebackward. It is therefore natural to conjecture
that in every case d1 ≤ d2, if D is not finitary,

( 1
d2

(π1)∗(π2)
∗
)n

(δx) → µD if and only if x ̸∈ Ebackward.
At any rate, it is not hard to see that if x ∈ Ebackward, if the limit limn→∞

( 1
d2

(π1)∗(π2)
∗
)n

(δx) exists as a
measure, then it charges at least one point in Kbackward, and thus it cannot be µD .

Polarized self-correspondences.

Definition 3.4.3. Let (D, π1, π2) be a self-correspondence on a curve C over a field k. A polarization
of D is an ample line bundle L on C such that π∗

1L
n

= π∗

2L
m for some positive integers n and m. If D

admits a polarization we say that D is polarized.

Recall that on a curve, a line bundle is ample if and only if its degree is positive. If L is a polarization,
one must have d1n = d2m.

A self-correspondence D has a polarization in each of the following cases:

(i) D = P1 (in which case necessarily C = P1)

(ii) k is algebraic over a finite field.

(iii) D has a finite nonempty equiramified complete set S ⊂ C(k).

Indeed, let us consider the group homomorphism h : Pic C → Pic0 D,L → (π∗

1L)d2 ⊗ (π∗

2L)−d1 . Clearly
D is polarizable if and only if ker h ̸⊂ Pic0 C . In particular, D is polarizable in case (i) since in this case
Pic0 D = 0 and ker h = Pic C = Z ̸⊂ Pic0 C = 0). Also D is polarizable in case (ii) for in this case Pic0 D
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is torsion while Pic C/ Pic0 C = Z is torsion free. In case (iii), if the self-correspondence D has a finite
equiramified complete set ∅ ̸= S ⊂ C(k), take L the line bundle attached to the divisor 1S =

∑
s∈S[s].

We now recall the basics of the general height theory of Lang and Néron, following the exposition of
[Chambert-Loir 2011, Section 3] and [Serre 1989]. Assume that k is either a number field or a nontrivial
finite type extension of an algebraically closed field. It is known that we can choose a family M(k) of
pairwise inequivalent absolute values on k and numbers λν > 0 such that for a ∈ k∗, |a|ν = 1 for almost
all ν ∈ M(k) and the product formula holds:

∏
ν∈M(k)|a|

λν
ν = 1. Moreover, if k ′ is a finite extension of

k, one can choose M(k ′) in such a way that there is a surjective map M(k ′) → M(k) with finite fibers,
such that for a ∈ k, ν ∈ M(k), |a|

λν
ν =

∏
ν′∈M(k′),π(ν′)=ν |a|

λν′

ν′ , and the product formula hods. The choice
of M(k) allows one to define the height function on Pn

k̄
by

h([x0, . . . , xn]) = log
( ∏

ν∈M(k′)

max(|x0|ν, . . . , |xn|ν)
λν

)
,

if x0, . . . , xn ∈ k ′ (the result is independent of the choice of the finite extension k ′ containing x0, . . . , xn).
For a k-projective variety V , let us denote by F(V ) the R-vector space of maps from V (k̄) to R

and by Fb(V ) the subspace consisting of these maps that are bounded. There is a unique morphism
Pic V → F(V )/Fb(V ), L 7→ hL, such that if L is very ample and φ is one of the embedding V → Pn

defined by L, then hL = h ◦ φ. It follows that if f : V → W is a morphism of k-projective variety,
h f ∗L = hL ◦ f .

Lemma 3.4.4. If L is ample, then hL ̸= 0 in F(V )/Fb(V ).

Proof. We may assume that L is very ample, and this reduces us to prove that for a projective subvariety in
Pn

k , the function h is unbounded on C(k̄). Up to a linear change of variables, the map π([x0, . . . , xn]) =

[x0, x1] is surjective from V to P1, and it is clear that h(x) ≥ h(π(x)). It suffices therefore to show that
h is unbounded on P1, which is clear. □

Proposition 3.4.5. Let (D, π1, π2) be an unbalanced polarized self-correspondence on a curve C over a
field k that is not algebraic over a finite field. Then there are infinitely many vertices in 0D that do not
belong to any directed cycle.

Proof. Let L be a polarization on D. The self-correspondence D together with L are defined over a
subfield k0 of k which is of finite type over the prime subfield of k, and if k1 is any field such that
k0 ⊂ k1 ⊂ k̄ it suffices obviously to prove the result for D considered as a self-correspondence over k1.
Since k̄ is not the algebraic closure of a finite field, one can assume that k1 is either a number field, or a
nontrivial extension of finite type of an algebraic closed field. Replacing k1 by k, we can now use the
theory of height reminded above.

Let (d1, d2) be the bidegree of D. By symmetry of the statement to prove, we may and do assume that
d1 < d2.
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Since L is a polarization of D, there exists an integer n > 0 such that π∗

1 (Ld2n) = π∗

2 (Ld1n). Thus
d2hL ◦ π1 = d1hL ◦ π2 in F(D)/Fb(D). In other word, if h is any lift of hL in F(C), there exists a
positive real constant M such that for all z ∈ D(k̄), |d2h(π1(z)) − d1h(π2(z))| < M .

If x0, . . . , xn is a directed cycle, then one has

|h(x0) − (d1/d2)h(x1)| < M/d2

· · · < · · ·

|h(xn−1) − (d1/d2)h(x0)| < M/d2

so
|h(x0) − (d1/d2)

nh(x0)| <
M

d2(1 + d1/d2 + · · · + (d1/d2)n−1)
<

M
d2 − d1

.

It follows that if x0 belongs to a directed cycle then h(x0) is bounded by a constant (independent of the
length of the cycle).

By the lemma, h is unbounded on C(k̄). There is therefore infinitely many points in C(k̄) that are not
part of any directed cycle. □

Remark 3.4.6. The proposition is obviously false for a finitary self-correspondence but we do not know
whether the proposition holds for a polarized balanced nonfinitary self-correspondence, nor whether the
polarized hypothesis may be dropped (even in the unbalanced case).

4. The operator attached to a self-correspondence

4.1. Definition of the operator TD. If C is a curve, and (D, π1, π2) a self-correspondence of C , we
denote by TD,π1,π2 or simply TD , the map k(C) → k(C) which sends f to

TD f = trk(D)/π∗
2

k(C) π∗

1 ( f ).

The notations trk(D)/π∗
2

k(C) means the trace map from k(D) to k(C), where k(D) is seen as an algebra
over k(C) of dimension d2 through the map π∗

2 . The map TD is thus a k-linear endomorphism of k(C).

4.2. Local description of the operator TD. First recall some basic terminology. If C/k is a curve, or a
disjoint union of curves, and if f ∈ k(C)∗, x ∈ C(k̄), we denote by ordx( f ) the order of vanishing of
f at x . Thus ordx( f ) > 0 if f (x) = 0, ordx( f ) = 0 if f (x) ∈ k∗, and ordx( f ) < 0 if f (x) = ∞. By
convention, we set ordx 0 = +∞. For S a subset of C(k̄), we set

ordS( f ) := inf
x∈S

ordx( f ).

If S = C(k̄), we simply write ord f for ordS f . One has ord f ≤ 0 for any f ∈ k(C)∗, and ord f = 0 if
and only if f is a nonzero constant.

Now suppose given a self-correspondence (D, π1, π2) of C over k.
Given y ∈ C(k̄), and z ∈ π−1

2 (y), we note K y and Kz the fraction fields of the completions ˆOC,y and
ˆOD,z of the local rings OC,y and OD,z . The valuation ordy on k(C) (resp. ordz on k(D)) extends uniquely
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to K y (resp. Kz), and ˆOC,y (resp. ˆOD,z) is the ring of integers attached to this valuation; it is a complete
discrete valuation ring. The map π∗

2 induces an injective morphism K y → Kz , which makes Kz a finite
separable extension of K y , totally ramified of degree e2,z (which means that ordy( f ) = e2,z ordz( f ) for
any f ∈ K y seen as an element of Kz).

Lemma 4.2.1. Given y ∈ C(k̄), z ∈ π−1
2 (y) and g ∈ Kz , let Pg(X) = Xd2 +

∑d2
i=1 ai,g Xd2−i

∈ K y[X ] be
the characteristic polynomial of the multiplication by g on Kz seen as a K y-vector space of dimension d2

through π∗

2 . Then one has, for i = 1, . . . , d2 − 1, ordz(ai,g) ≥ i ordz(g) and ordz(ad2,g) = d2 ordz(g). In
particular,

ordy trKz/K y (g) ≥ ⌈ordz(g)/e2,z⌉.

Proof. Since Kz/K y is separable, Pg.z(X) =
∏d2

i=1(X −σi (g)) where the σi runs amongst the embedding
on Kz into some normal closure L of Kz over K y . If w is the valuation on L extending ordz on Kz , then
w(σi (g)) = ordz(g) and it follows that ordz(ai,g) = w(ai,g) ≥ iw(g) = i ordz(g), with equality if i = d2.
The last assertion follows since a1,g = ± trKz/K y (g) and ordz(a1,g) = e2,z ordy(a1,g). □

Recall (Section 1.9) that e1,z and e2,z are the degrees of ramification of π1 and π2 at a point z ∈ D(k).

Proposition 4.2.2. Let f ∈ k(C) and y ∈ C(k̄). Set

n = min
z∈D(k),π2(z)=y

⌈
e1,z ordπ1(z) f

e2,z

⌉
.

Then

ordy TD f ≥ n.

Moreover, if for any z such that π2(z) = y, f has no pole at π1(z), then

f (y) =

∑
z∈D(k),π2(z)=y

e2,z f (π1(z)).

Proof. To compute the image of TD f in K y we may extend the scalars from k(C) to K y since the
formation of the trace commutes with base change. This means that TD f = trK y⊗k(C)k(D)/K y π∗

1 ( f ) in K y .
But K y ⊗k(C) k(D) =

∏
z∈π−1

2 (y) Kz (see, e.g., [Serre 1979, Chapter II, Section 3, Theorem 1]) hence

TD f =

∑
z∈π−1

2 (y)

trKz/K y π∗

1 ( f ). (9)

For z ∈ π−1
2 (y), setting x = π1(z), we have ordz π∗

1 f = e1,zordx f hence by Lemma 4.2.1

ordy trKz/K y π∗

1 ( f ) ≥

⌈
e1,z ordπ1(z) f

e2,z

⌉
≥ n.

By (9), ordy TD f ≥ n.
To prove the second assertion, note that under its assumption, for any z such that π2(z) = y, the image

of π∗

1 f in Kz belongs to the complete d.v.r. ˆOD,z and its image in the residue field k̄ is f (π1(z)). Thus
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trKz/K y π∗

1 ( f ) ∈ ˆOD,z and the image of that element in the residue field k̄ is e2,z f (π1(z)). The formula
f (y) =

∑
z∈D(k),π2(z)=y e2,z f (π1(z)) then follows from (9). □

Recall (Section 1.8) that A0D is the adjacency operator of the graph D, and that for f a map from
C(k̄) to k̄ ∪ {∞}, TD( f ) is a map from C(k̄) minus a finite number of points to k̄ ∪ {∞}, the value of
TD( f ) being left undefined at any point where its computation requires to add the values of f at more
than one pole.

Corollary 4.2.3. Let f ∈ k(C) seen as a map f : C(k̄) → k̄ ∪ {∞}. Then the functions TD f and A0D f
agree on all points of C(k̄) but finitely many. They agree in particular on all étale complete sets on which
f has no pole.

Proof. Indeed, the last formula of the above proposition shows that the two functions agree at all points
y ∈ C(k̄) which are étale and not neighbors of a point where f has a pole. □

Corollary 4.2.4. if D′ and D are two self-correspondence on C , TD′ D = TD′ ◦ TD .

Proof. For f ∈ k(C), TD′ D f agrees almost everywhere with A0D′ D
f , which agrees almost everywhere

with A0D′ A0D f , which agrees almost everywhere with T ′

DTD f , and those two functions in k(C) must
then be equal. □

4.3. The filtered ring BS attached to a set of vertices S. Now fix a self-correspondence (D, π1, π2) on
C over k and a set S of C(k̄). We denote by BS ⊂ k(C) the rings of rational functions on C whose poles
are all in S. Thus,

BS = { f ∈ k(C), ordx( f ) ≥ 0 for all x ∈ C(k̄) − S}.

If S = ∅, BS = k. If S is not empty, the ring of fractions of BS is k(C). For n ≥ 0, we set

BS,n = { f ∈ BS, ordS( f ) ≥ −n}.

Lemma 4.3.1. The k-subspaces BS,n for n = 0, 1, . . . form an increasing exhaustive filtration of BS . One
has BS,0 = k. The quotients BS,n/BS,n−1 for n ≥ 1 are spaces of dimensions ≤ |S|, and of dimension
exactly |S| when S is finite and n is large enough relatively to |S|.

Proof. The first two sentences are trivial. The last one follows from Riemann–Roch. □

Proposition 4.3.2. If S is forward-complete, the subring BS of k(C) is stable by TD. If S is forward-
complete and ramification-increasing, the filtration (BS,n) is stable by TD. The converses of both these
statement hold if char k = 0 or char k > d2.

Proof. The first two statements follow from Proposition 4.2.2. The converse statements are left to the
reader. □

Remark 4.3.3. Remember (Proposition 2.1.1) that a forward-complete and ramification-increasing set
S, nonempty and finite, may only exist if d1 ≤ d2. In the balanced case d1 = d2, such a set S has to be
complete and equiramified (Scholium 2.1.2).
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Example 4.3.4. If C is the Igusa curve, and S the supersingular complete set, which is étale, BS is the
space of modular forms of level N , all weights, over Fp and (BS,n) is the weight filtration on that space;
see [Gross 1990].

4.4. Linearly finitary self-correspondences. Let D be a self-correspondence on a curve C over k.

Definition 4.4.1. We say that D is linearly finitary if there is a nonzero polynomial Q ∈ k[X ] such that
Q(TD) = 0 on k(C).

Proposition 4.4.2. If D is finitary, then there is a monic polynomial Q ∈ Z[X ] such that Q(TD) = 0 on
k(C). In particular D is linearly finitary.

Proof. If D is finitary, there exists an M ≥ 0 such that every irreducible finite complete set of D is a
directed graph with ≤ M vertices, with ≤ d1 (resp. ≤ d2) arrows starting (ending) at each point. There
are finitely many such graphs up to isomorphism, so infinitely many irreducible complete sets S must be
isomorphic to some finite directed graph 0. If Q(X) is the characteristic polynomial of the adjacency
matrix of 0, we see that for every f ∈ k(C), Q(TD) f is zero on infinitely many irreducible complete
sets, so Q(TD) f = 0, and therefore Q(TD) = 0. □

Lemma 4.4.3. Given two distinct points p, q in C(k̄), a finite set Z ⊂ C(k̄) not containing p or q, and
an integer n ≥ 0, there exists a rational function f ∈ k̄(C) such that f (q) = 1, f vanishes at every point
of Z at order at least n, and f has no pole outside p.

This follows from Riemann–Roch.

Lemma 4.4.4. Let Q(X) =
∑n

i=0 ai X i
∈ k[X ] be a polynomial. The following are equivalent:

(i) One has Q(TD) = 0 in k(C).

(ii) There exists a nonempty forward-complete S such that Q(TD) = 0 on BS .

(iii) There exists infinitely many irreducible étale complete sets S′ such that Q(A0D ) = 0 on C(S′, k).

(iii’) There exists infinitely many irreducible étale complete set S′ such that for every x, x ′
∈ S′, one has∑n

i=0 ai npx,x ′,i = 0 in k, where npx,x ′,i is the number of paths of length i from x to x ′ in 0D , as
defined in Section 1.8.

(iv) There exists an infinite étale complete set S′ such that Q(A0D ) = 0 on C(S′, k).

(iv’) There exists an infinite étale complete set S′ such that for every x, x ′
∈ S′, one has

∑n
i=0 ai npx,x ′,i =0

in k.

(v) There exists an infinite backward-complete set S′ such that Q(A0D ) f has finite support for every
f ∈ C(S′, k).

NB, the sets S in (ii) and S′ in (iii) and (iii’) are not assumed to be finite.

Proof. To prove that (i) implies (ii) is easy: take S = C(k̄).
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To prove that (ii) implies (iii), let p be a point in S. By Proposition 1.9.3, there exists infinitely many
étale complete sets S′ that do not contain p. Let S′ be one of then, and let x be a point in S′. Let
δx ∈ C(S′, k) be the function whose value at x is 1 and is 0 elsewhere. We provide 0D with the distance
induced by its undirected graph structure. By Lemma 4.4.3, and since 0D is locally finite, there exists a
function f ∈ k̄(C) such that f = δx on all points at distance ≤ 2n of x , and whose only possible pole is
at p. In particular, f ∈ BS , so Q(TD) f = 0. By Corollary 4.2.3, Q(A0D ) f = 0 on S′. Clearly Q(A0D ) f
and Q(A0D )δx agree on all points x ′ at distance ≤ n of x . Since Q(A0D )δx has support in the sets of
points at distance ≤ n of x , this implies that Q(A0D )δx = 0. Since this is true for an arbitrary point x of
S′, Q(A0D ) = 0 on C(S′, k̄), hence (iii).

It is clear that (iii) implies (iv), by taking S′ in (iv) to be the union of all the S′ in (iii). Also, the
equivalences between (iii) and (iii’) and (iv) and (iv’) is just Formula (1).

Finally, (iv) implies (v) is clear, so it just remains to prove that (v) implies (i). Let f ∈ k(C). Since
S′ is backward-complete, Q(AS′) f and TD f agree on every points of S′ at distance > n of a pole of f .
Since the number of such points is finite, Q(AS′) f and TD f agree on every point of S′ except a finite
number of them, and this implies that TD f has finite support on S′, and since S′ is infinite, that TD f has
infinitely many zeros. Hence TD f = 0. □

Proposition 4.4.5. If Q(X) ∈ k[X ] is a polynomial, then Q(TD) = 0 if and only if Q(TtD) = 0. In
particular, D is linearly finitary if and only if tD is. Moreover, if k ′ is any field extension of k, then D is
linearly finitary if and only if Dk′ is linearly finitary.

Proof. All is clear using condition (iii’) or (iv’) of Lemma 4.4.4. □

Lemma 4.4.6. If S is an infinite irreducible étale complete set in 0D , then for every integer m and for
every x ∈ S there exists x ′

∈ S with a directed path from x to x ′ of length m + 1 and no directed path from
x to x ′ of length ≤ m.

Proof. By symmetry of the statement to be proved we may assume that d1 ≥ d2 to begin with. For x ∈ S,
denote by Fx the smallest forward-complete set containing x , that is the set of all end points of directed
paths starting at x . If Fx is finite, then it is complete by Scholium 2.1.2, contradicting the irreducibility of
S which is infinite. Thus Fx is infinite.

Let Fx,m be the subset of Fx consisting of all end points of directed paths of length ≤ m starting at x .
Then Fx,m ⊂ Fx,m+1 and Fx = ∪m Fx,m . If for some m, Fx,m = Fx,m+1, then Fx,m is forward-complete,
hence Fx = Fx,m and Fx is finite, a contradiction. This for every m there exists x ′

∈ Fx,m+1 − Fx,m , which
proves the lemma. □

Proposition 4.4.7. If k has characteristic zero, and if D is linearly finitary, then D is finitary.

Proof. Assume Q(TD) = 0 for Q ∈ k[X ] a nonzero polynomial of degree n and dominant term an ̸= 0.
By Lemma 4.4.4, there exists infinitely many étale irreducible complete sets S′ such that Q(AS′) = 0. For
S′ any of them, we prove by contradiction that S′ is finite. Indeed, choose x ∈ S′, and let x ′ be a point in
S′ with a directed path of length n from x to x ′ but no shorter path, which exists by the lemma above if
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S′ is infinite; then 0 = (Q(AS′)δx) = an npn,x,x ′ , a contradiction since npn,x,x ′ ≥ 1 is nonzero in k. Thus
D has infinitely many finite complete sets, and is therefore finitary. □

Remark 4.4.8. This result is false in positive characteristic p. Take any self-correspondence D on a
curve C which is nonfinitary. Then the self-correspondence D′

:= D + D +· · ·+ D (p times) on C is still
nonfinitary (it has the same complete sets as D), but the linear operator attached to this correspondence is
TD′ = pTD = 0, so D′ is linearly finitary.

Corollary 4.4.9. If D is linearly finitary, there is a monic polynomial Q ∈ Z[X ] such that Q(TD) = 0.

Proof. There is a nonzero monic polynomial Q(X) =
∑

ai X i
∈ k[X ] such that Q(TD) = 0. Let

k0 be the prime subfield of k. Let l be a k0-linear form on k such that l(1) = 1 for some i . Then
Ql(X) =

∑
l(ai )X i

∈ k0[X ] is monic, and by the equivalence between (i) and (iii’) in Lemma 4.4.4, one
has Ql(TD) = 0. If k0 is Fp for some p, it suffices to lift Ql into a monic polynomial in Z[X ]. If not,
then k has characteristic zero, so D is finitary by Proposition 4.4.7, and there exists a monic polynomial
in Z[X ] that kills TD by Proposition 4.4.2. □

4.5. The number of irreducible complete finite sets, II.

Riemann–Roch calculations. Let k be an algebraic closed field, C a curve of genus g ≥ 1 (just to avoid
modifying the formulas in the case g = 0) and S ⊂ C(k) a finite set. We denote as above by 1S the
effective Weil divisor

∑
s∈S[s] in Pic C .

Given a second finite nonempty set S′, disjoint from S, and any integer n ≥ 0, there is clearly a unique
relative integer n′

= n′(S, S′, n) such that

2g − 2 + |S′
| ≥ (n − 1)|S| − n′

|S′
| > 2g − 2. (10)

We denote by VS,S′,n the subspace of BS,n of functions such that ordS′ f ≥ n′ where n′ is that integer, that
is

VS,S′,n = { f ∈ k(C), div f ≥ −(n1S − n′1S′)}. (11)

In plain English, VS,S′,n is the space of all algebraic functions on C with poles of order at most n at every
point of S, and at most n′ at every point of S′. Remember that n′ (defined by (10)) may be negative, so
that the later requirement may mean that f has zeros of order at least −n′ on S′.

Lemma 4.5.1. One has BS,n−1 + VS,S′,n = BS,n and dim VS,S′,n ≤ g − 1 + |S| + |S′
|.

Proof. The divisor D = (n −1)1S −n′1S′ has degree deg D = (n −1)|S|−n′
|S′

| > 2g−2 by assumption.
Let s0 ∈ S. By Riemann–Roch, h(D + [s0]) > h(D), so there exists a function fs0 ∈ k(C) such that
div fs0 ≥ −D − [s0] and ords0 f = −n. Obviously fs0 ∈ VS,S′,n and the functions fs0 , when s0 runs in S,
generate BS,n/BS,n−1. Hence the first assertion.
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The second assertion also follows from Riemann–Roch, which says that

dim VS,S′,n = deg(n1S − n′1S′) − g + 1 (since deg(n1S − n′1S′) > 2g − 2 and g > 0)

= |S| + (n − 1)|S| − n′
|S′

| − g + 1

≤ |S| + 2g − 2 + |S′
| − g + 1 (by (10))

g − 1 + |S| + |S′
|. □

Now let S′′ a third finite nonempty complete set, disjoint from S and from S′. Let n′′ be defined by
(10) with S′ replaced by S′′, and let VS,S′′,n′ be defined similarly with (11). One has:

Lemma 4.5.2. There exists an integer n0 such that for n > n0, VS,S′,n ∩ VS,S′′,n = 0.

Proof. The space VS,S′,n ∩ VS,S′′,n is the space of functions f such that div f ≥ −(n1S −n′1S′ −n′′1S′′).
Using (10) for n′ and n′′, one computes

deg(n1S − n′1S′ − n′′1S′′) = n|S| − n′
|S′

| − n′′
|S′′

|

= (n|S| − n′
|S′

|) + (n|S| − n′′
|S′′

|) − n|S|

≤ 2g − 2 + |S′
| + |S′′

| − n|S|.

This number is negative for n > (2g − 2 + |S′
| + |S′′

|)/|S|, and therefore VS,S′,n ∩ VS,S′′,n = 0. □

The bound.

Theorem 4.5.3. Let D be a self-correspondence on a curve C over an arbitrary field k. Assume that TD

is not linearly finitary. Then D has at most two irreducible complete equiramified finite sets.

Proof. We may and do assume that k is algebraically closed. Also assume (just for simplicity in the
formula) that the genus g of C is ≥ 1, the case C = P1 being taken care of by Proposition 3.2.3. Assume
that D admits three irreducible complete equiramified finite sets, S, S′ and S′′. By Proposition 4.2.2,
VS,S′,n and VS,S′′,n are stable by TD. Let n0 be as in Lemma 4.5.2. We claim that for n > n0, every
eigenvalue λ of TD in BS,n is also an eigenvalue of TD in BS,n−1. We may assume that λ is an eigenvalue
of TD in the quotient BS,n/BS,n−1, otherwise there is nothing to prove. Let us call mλ ≥ 1 its multiplicity
in BS,n/BS,n−1. By Lemma 4.5.1, λ is also an eigenvalue of TD in VS,S′

n
(resp. in VS,S′′,n) with multiplicity

≥ mλ. Thus λ appears as an eigenvalue of TD in VS,S′,n + VS,S′′,n with multiplicity ≥ 2mλ, since the sum
is direct by Lemma 4.5.2. Thus λ appears as an eigenvalue of TD with multiplicity ≥ 2mλ > mλ in BS,n ,
and it must appear in BS,n−1.

By induction, all the eigenvalues of TD on BS,n (hence on VS,S′,n) for any n already appear in BS,n0 .
Thus there are finitely many eigenvalues of TD, say λ1, . . . , λl , appearing in VS,S′,n for any n. Define
Q(X) = (X − λ1)

g−1+|S|+|S′
|
· · · (X − λl)

g−1+|S|+|S′
|. It is clear using Lemma 4.5.1 that Q(TD) kills

VS,S′,n for any n, hence, by Lemma 4.5.1, BS,n for any n, and thus Q(TD) kills BS , and by Lemma 4.4.4,
Q(TD) kills k(C) contradicting the assumption that D is not linearly finitary. □

Corollary 4.5.4. Let D be a self-correspondence on a curve C over a field k of characteristic zero.
Assume that TD is not finitary. Then D has at most two irreducible complete equiramified finite sets.
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This follows from the theorem and Proposition 4.4.7.

Remark 4.5.5. The upper bound, two, given by Theorem 4.5.3 for the number of irreducible complete
equiramified finite sets for a nonlinearly finite self-correspondence is tight, in any characteristic: this
is shown by the example considered in Remark 3.2.2, namely the self-correspondence attached to an
automorphism of infinite order of P1

k , when there exists one (which is the case if and only if k is not
algebraic over a finite field).
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