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Let G be a linear algebraic group over a field. We show that, under mild assumptions, in a family of
primitive generically free G-varieties over a base variety B, the essential dimension of the geometric
fibers may drop on a countable union of Zariski closed subsets of B and stays constant away from this
countable union. We give several applications of this result.

1. Introduction

Let X be a complex algebraic variety (that is, a separated reduced C-scheme of finite type) equipped with
a faithful action of a finite group G. We will refer to X as a G-variety. Assume that the G-action on X
is primitive, that is, G transitively permutes the irreducible components of X . In this paper, we will be
interested in the essential dimension edC(X; G) and how it behaves in families. Essential dimension is
an integer-valued birational invariant of the G-variety X . Its definition can be found in Section 2; for a
more detailed discussion, see [Reichstein 2010] or [Merkurjev 2013]. When the group G is clear from
the context, we will simply write edC(X) for edC(X; G). Clearly, edC(X)⩽ dim(X); if equality holds,
we will say that the G-variety X is incompressible.

To date, the study of essential dimension has been primarily concerned with understanding versal
G-varieties (once again, see Section 2 for the definition). A complete versal G-variety X has the following
special property: X has an A-fixed rational point for every abelian subgroup A ⊂ G; see [Merkurjev 2013,
Corollary 3.21].

At the other extreme are complete G-varieties X , where the action of G is free, i.e., no nontrivial
element has a fixed point. Existing methods for proving lower bounds on edC(X) usually fail here. Until
recently, there was only one family of interesting examples of complete incompressible G-varieties with
a free G-action. These examples concern the action of G = (Z/pZ)n on the product of elliptic curves
X = E1 × · · · × En over C. Here, p is a prime; the generator of the i-th copy of Z/pZ acts on Ei

via translation by a point xi ∈ Ei (C) of order p, and trivially on E j for j ̸= i . Colliot-Thélène and
Gabber [Colliot-Thélène 2002, Appendice] showed that for a very general choice of the elliptic curves Ei

and torsion points xi ∈ Ei [p], a certain degree n cohomological invariant of G does not vanish on C(X)G .
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(Here, “very general” means “away from a countable union of proper subvarieties” in the moduli space
of elliptic curves with a marked torsion point.) This implies that edC(X) = n = edC(G). Additional
examples of complete incompressible G-varieties X with a free G-action can be found in the recent work
of Farb, Kisin and Wolfson [2021a; 2021b] and Fakhruddin and Saini [2022].

In this paper, we will give a systematic procedure for constructing such examples for an arbitrary
finite group. In fact, we will work in a more general setting, where G is a linear algebraic group over an
algebraically closed field k. Essential dimension and versality make sense in this more general setting,
provided that we require our G-actions to be generically free and not just faithful; see Section 2.

If dim(G) > 0, by Borel’s fixed point theorem, G cannot act freely on a complete variety. Nevertheless,
the notion of a free action of a finite group on a projective variety can be generalized to the case of an
arbitrary linear algebraic group G as follows: a generically free primitive G-variety X is said to be strongly
unramified if X is G-equivariantly birationally isomorphic to the total space X ′ of a G-torsor X ′

→ P
over some smooth projective irreducible k-variety P . We are now ready to state our first main result.

Theorem 1.1. Let G be a linear algebraic group over an algebraically closed field k of good characteristic
(see Definition 2.1) and of infinite transcendence degree over its prime field, and let X be a generically
free primitive G-variety. Then there exists a strongly unramified G-variety Y such that dim(Y ) = dim(X)

and edk(Y ) = edk(X).

Applying Theorem 1.1 to a versal G-variety X , we obtain a strongly unramified G-variety Y of
maximal essential dimension, i.e., such that edk(Y ) = edk(G). When G is finite, Y is itself smooth and
projective. Thus, by starting with an incompressible G-variety X , we obtain examples analogous to those
of Colliot-Thélène and Gabber; Farb, Kisin and Wolfson; and Fakhruddin and Saini for an arbitrary
finite group G. Note, however, that Farb, Kisin and Wolfson, as well as Fakhruddin and Saini, produce
examples over k = Q, whereas Theorem 1.1 requires k to be of infinite transcendence degree over the
prime field.

Our proof of Theorem 1.1 will rely on Theorems 1.2 and 1.4 below, which are of independent interest.

Theorem 1.2. Let G be a linear algebraic group over a field k of good characteristic (see Definition 2.1).
Let B be a noetherian k-scheme, and let f : X → B be a flat G-equivariant morphism of finite type such
that G acts trivially on B and the geometric fibers of f are generically free and primitive G-varieties (in
particular, reduced). Then for any fixed integer n ⩾ 0 the subset of b ∈ B such that edk(b̄)(Xb̄; Gk(b̄))⩽ n
for every (equivalently, some) geometric point b̄ above b is a countable union of closed subsets of B.

Furthermore, assume that k is algebraically closed and of infinite transcendence degree over its prime
field. (In particular, the latter condition is satisfied if k is uncountable.) Let m ⩾ 0 be the maximum of
edk(b̄)(Xb̄; Gk(b̄)), where b̄ ranges over all geometric points of B. Then the set of those b ∈ B(k) such that
edk(Xb; G) = m is Zariski dense in B.

Informally, Theorem 1.2 can be restated as follows: in a family of G-varieties X → B, the essential
dimension of the geometric fibers drops on a countable union of Zariski closed subsets of B, and stays
constant away from this countable union. Several remarks concerning Theorem 1.2 are in order.
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Remarks 1.3. (1) The assumption that the G-action on every geometric fiber Xb of f is generically free
and primitive ensures that edk(b)(Xb) is well defined.

(2) The countable union in the statement of Theorem 1.2 (a) cannot be replaced by a finite union, in
general; see Propositions 5.2 and 5.3.

(3) The assumption that f is flat is necessary; see Remark 4.5. On the other hand, this assumption is
rather mild. For example, when X and B are smooth k-varieties, by “miracle flatness”, f is flat if and
only if all of its fibers have the same dimension; see [Matsumura 1989, Theorem 23.1]. In the applications,
one is usually interested in showing that the maximal value of edk(Xb) is attained at a very general
point b ∈ B(k). This can be done under a weaker flatness assumption on f ; see Theorem 9.1. (Here, once
again, “very general” means “away from a countable union of proper subvarieties”.)

(4) If k is not algebraically closed, then the k-points b ∈ B(k) such that edk(Xb)⩽ n do not necessarily
lie on a countable union of closed subvarieties of B; see Section 6. In other words, Theorem 1.2 fails if
we consider fibers of arbitrary closed points instead of just geometric fibers.

Our proof of Theorem 1.2 proceeds as follows: First we choose a subfield k0 ⊂ k finitely generated
over the prime field, such that G = G0 ×Spec(k0) Spec(k), f = f0 ×Spec(k0) Spec(k), and the assumptions
of Theorem 1.2 hold for k0, G0 and f0 : X0 → B0. Then using arguments inspired by Gabber’s appen-
dix [Colliot-Thélène 2002], we reduce Theorem 1.2 to the specialization property Proposition 3.1 and the
rigidity property Lemma 4.2.

Note that the rigidity property may fail if k is not algebraically closed. This is the reason why
in Theorem 1.2 we only consider the geometric fibers; see Remarks 1.3 (4).

Theorem 1.4. Let k be an infinite field, G be a finite group, and let X0 be an equidimensional generically
free G-variety of dimension e ⩾ 1 (not necessarily primitive). Then there exist a smooth irreducible
quasiprojective k-variety B, a smooth irreducible quasiprojective G-variety X and a smooth G-equivariant
morphism f : X → B of constant relative dimension e defined over k such that

(i) G acts trivially on B and freely on X ,

(ii) there exists a dense open subscheme U ⊂ B such that for every b ∈ U , the fiber Xb is smooth,
projective and geometrically irreducible,

(iii) there exists b0 ∈ B(k) such that the fiber Xb0 of f over b0 is G-equivariantly birationally isomorphic
to X0.

In particular, for any geometric point b of U , the G-action on the fiber Xb is strongly unramified.

Our proof of Theorem 1.4 was motivated by Serre’s construction of a smooth projective n-dimensional
complete intersection with a free G-action, for an arbitrary finite group G and an arbitrary positive
integer n; see [Serre 1958, Proposition 15].

The remainder of this paper is structured as follows. In Section 2, we set up notational conventions and
recall some basic definitions concerning essential dimension and versality. Sections 3 and 4 are devoted
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to the proof of Theorem 1.2. As we mentioned above, the proof is in two steps. The specialization
property is proved in Section 3. In Section 4, we prove the rigidity property and complete the proof of
Theorem 1.2. Sections 5 and 6 are devoted to examples, showing that various assumptions in the statement
of Theorem 1.2 cannot be dropped. Section 7 collects elementary results concerning transversal intersection
in projective space; these results are then used in the proof of Theorem 1.4 in Section 8. Theorem 1.1 is
deduced from Theorems 1.2 and 1.4 in Section 9. Along the way we prove Theorem 9.1, a variant of
Theorem 1.2, which is often easier to use in applications. In Section 10, we show that Proposition 3.1 and
Theorems 1.1, 1.2 and 9.1 remain valid (even under slightly weaker assumptions) if essential dimension is
replaced by essential dimension at a prime q . We also give an application of one of these results motivated
by an open question from [Duncan and Reichstein 2014]; see Theorem 10.8. Another application can be
found in Section 11.

This paper is a sequel to [Reichstein and Scavia 2022]. The main result of [Reichstein and Scavia
2022] is used in the proof of Proposition 3.1 (the specialization property of essential dimension). Other
than that, this paper can be read independently of [Reichstein and Scavia 2022].

2. Notation and preliminaries

Group actions and essential dimension. Let k be a field, k̄ be an algebraic closure of k, G be a linear
algebraic group over k and X be a G-variety, i.e., a separated geometrically reduced k-scheme of finite type
endowed with a G-action over k. We will say that a G-variety X is primitive if X ̸=∅ and G(k̄) transitively
permutes the irreducible components of X k̄ := X ×k k̄. We will say that a G-variety X is generically free if
there exists a dense open subscheme U ⊂ X such that for every u ∈ U the scheme-theoretic stabilizer Gu

of u is trivial.
By a G-compression of X , we will mean a dominant G-equivariant rational map X 99K Y , where

the G-action on Y is again generically free and primitive. The essential dimension of X , denoted by
edk(X; G), or edk(X) if G is clear from the context, is defined as the minimal value of dim(Y ), where
the minimum is taken over all G-compressions X 99K Y . The essential dimension edk(G) of the group G
is defined as the supremum of edk(X), where X ranges over all faithful primitive G-varieties.

Good characteristic.

Definition 2.1. Let G be a linear algebraic group defined over a field k. We will say that G is in good
characteristic if one of the following conditions holds:

• char k = 0, or

• char k = p > 0, the connected component G0 is smooth reductive and there exists a finite subgroup
S ⊂ G(k̄) of order prime to p such that the induced map H 1(K , S) → H 1(K , G) is surjective for
every field extension K/k̄, or

• G is a finite discrete group, and if char k = p > 0, then the only normal p-subgroup of G is the
trivial subgroup (that is, G is weakly tame in the sense of [Brosnan et al. 2018]).
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Here are two large families of examples in prime characteristic:

Example 2.2. Suppose G is a smooth group over a field k of characteristic p > 0. Assume that the
connected component G0 of G is reductive. Let T be a maximal torus in G0, r = dim(T )⩾ 0, and let
W = NG(T )/T be the Weyl group. If

(a) G0 is a split reductive group and p does not divide 2r
|W |, or

(b) G is connected and p does not divide |W |,

then G is in good characteristic. For a proof of (a), see [Reichstein and Scavia 2022, Proposition 5.1]. For
a proof of (b), see [Chernousov et al. 2006, Theorem 1.1 (c)] and [Chernousov et al. 2008, Remark 4.1].

The following example shows that conditions (a) and (b) above can sometimes be relaxed.

Example 2.3. The split orthogonal group On , special orthogonal group SOn and the spin group Spinn

over a field k are in good characteristic as long as char k ̸= 2. Indeed, let S be the group of diagonal n ×n
matrices of the form diag(ϵ1, . . . , ϵn), where each ϵi = ±1, let S0 = S ∩ SLn and let S̃ be the preimage
of S0 under the natural map Spinn → SOn . Then |S| = |S̃| = 2n and |S0| = 2n−1. Moreover, if char k ̸= 2,
then the natural maps

H 1(K , S) → H 1(K , On), H 1(K , S0) → H 1(K , SOn) and H 1(K , S̃) → H 1(K , Spinn)

are all surjective. The surjectivity of the first two maps follows from the fact that every quadratic form
over a field of characteristic ̸= 2 can be diagonalized. The surjectivity of the third map is proved in
[Brosnan et al. 2007, Lemma 13.2].

Versality and essential dimension at q. A G-variety X is called weakly versal if every generically free
primitive G-variety T admits a G-equivariant rational map T 99K X . We will say that X is versal if
every dense open G-invariant subvariety U ⊂ X is weakly versal. In particular, if V is a vector space
with a generically free action of G, then V is versal; see [Merkurjev 2013, Proposition 3.10]. If X is a
generically free primitive versal G-variety, then X has maximal possible essential dimension,

edk(X; G) = edk(G); (2.4)

see [Merkurjev 2013, Proposition 3.11].
Recall that a correspondence X ⇝ Z between G-varieties X and Z of degree d is a diagram of

G-equivariant rational maps of G-varieties having the form

X ′

degree d
��   

X Z

(2.5)

where the vertical map is dominant of degree d . We say that X⇝ Z is dominant if the rational map X ′ 99K Z
in the above diagram is dominant. Dominant correspondences may be composed in the obvious way. A
correspondence of degree 1 is the same thing as a rational map.
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The notions of essential dimension and versality have local versions at a prime q . These are obtained
by replacing G-compressions by dominant correspondences of degree prime to q . Specifically, let G be a
linear algebraic group defined over a field k and X be a generically free primitive G-variety. The essential
dimension edk,q(X; G) of X at q is defined as the minimal value of dim(Y ), where the minimum is taken
over all G-equivariant dominant correspondences X ⇝ Y of degree prime to q. When the reference
to G is clear from the context, we sometimes abbreviate edk,q(X; G) to edk,q(X). The maximal value
of edk,q(X; G) is called the essential dimension of G at q and is denoted by edk,q(G). Here, the maximum
is taken over all generically free primitive G-varieties X .

A G-variety X is called weakly q-versal if every generically free primitive G-variety T admits a
G-equivariant rational map T ⇝ X of degree prime to q. We will say that X is q-versal if every dense
open G-invariant subvariety U ⊂ X is weakly q-versal. If a generically free primitive G-variety X is
q-versal, then

edk,q(X; G) = edk,q(G). (2.6)

The proof of (2.6) is the same as the proof of (2.4), with rational maps replaced by correspondences of
degree prime to q .

3. A specialization property

The purpose of this section is to prove the following specialization property of essential dimension:

Proposition 3.1. Let G be a linear algebraic group over a field k of good characteristic. Let R be a
discrete valuation ring containing k having residue field k, and let l be the fraction field of R. Fix algebraic
closures k̄ and l̄ of k and l, respectively. Let X be a flat R-scheme of finite type endowed with a G-action
over R, whose fibers are generically free and primitive G-varieties. Then edl̄(X l̄)⩾ edk̄(X k̄).

For the proof, we will first reduce to the case where X is the total space of a G-torsor X → Y , and
then replace Y by Spec(A), where A is a suitable discrete valuation ring containing R such that the
inclusion R ⊂ A is local. (Note that after the second reduction X is no longer of finite type over R.)
In the latter case, the inequality edl̄(X l̄)⩾ edk̄(X k̄) of Proposition 3.1 is established in [Reichstein and
Scavia 2022, Theorem 6.4].

Proof of Proposition 3.1. By assumption, Xk (respectively, Xl) is a primitive generically free Gk-variety
(respectively, Gl-variety). Our proof will be in several steps.

Claim 3.2. There exists an integer d ⩾ 0 such that the irreducible components of X k̄ and of X l̄ are all of
dimension d.

Proof of Claim 3.2. For any finite field extensions k ′
⊃ k and l ′ ⊃ l, there exists a discrete valuation ring

R′
⊃ R, finite and free over R, such that the residue field of R′ contains k ′ and the fraction field of R′

contains l ′; see [Serre 1979, I.4, Proposition 9 and Remark] and [Serre 1979, I.6, Proposition 15]. Thus,
extending R if necessary, we may assume that the irreducible components of Xk (respectively, Xl) are
geometrically irreducible and transitively permuted by G(k) (respectively, G(l)).
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After this reduction, the problem becomes to show that there exists an integer d ⩾ 0 such that the
irreducible components of Xk and of Xl are all of dimension d . Since G acts transitively on the irreducible
components of the fibers, it suffices to exhibit one irreducible component of Xk and one irreducible
component of Xl of the same dimension.

Since X is flat over R, by [Liu 2002, Lemma 4.3.7] every irreducible component of X dominates
Spec(R). In other words, the open subscheme Xl ⊂ X is dense. Therefore, each irreducible component
of X is the closure of an irreducible component of Xl . Thus, since Xk ̸= ∅, there exists an irreducible
component X ′

⊂ X such that X ′

k contains some irreducible component Z of Xk and such that X ′

l is an
irreducible component of Xl .

The composition X ′ ↪→ X → Spec(R) is surjective, hence [Stacks 2005–, Tag 0B2J] implies that every
irreducible component of X ′

k has dimension dim(X ′

l). In particular, dim(Z) = dim(X ′

l), as desired □

Claim 3.3. There exists a G-invariant R-fiberwise dense open subscheme U ⊂ X such that G acts freely
(i.e., with trivial stabilizers) on U.

Proof of Claim 3.3. Since Gl acts generically freely on Xl , there exists a closed nowhere dense Gl-invariant
subscheme Z ⊂ Xl such that Gl acts freely on Xl \ Z . Let W ⊂ Z be an irreducible component, and let
W be the closure of W in X . By [Stacks 2005–, Tag 0B2J], either (W )k is empty, or

dim((W )k) = dim(W )⩽ dim(Xk) − 1.

It now follows from Claim 3.2 that W does not contain any irreducible component of Xk . Therefore, the
closure Z of Z does not contain any irreducible component of Xk .

Since Gk acts generically freely on Xk , there exists a closed nowhere dense Gk-invariant subscheme
Z ′

⊂ Xk such that Gk acts freely on Xk \ Z ′. It follows that

U := X \ (Z ∪ Z ′)

is a fiberwise dense G-invariant open subscheme of X , such that G acts freely on Ul and Uk . To prove
Claim 3.3, it remains to show that G acts freely on U , i.e., that the stabilizer U -group scheme

G := U ×(U×RU ) (G ×R U )

is trivial. Here, the fibered product is taken over the diagonal morphism U → U ×R U and the action
morphism G×RU →U ×RU . Since G acts freely on Ul and Uk , the Ul-group scheme Gl and the Uk-group
scheme Gk are both trivial. In particular, for every u ∈U , the fiber of the structure morphism π : G→U at u
is k(u)-isomorphic to Spec(k(u)). Thus, [EGA IV4 1967, Proposition 17.2.6] implies that π is a monomor-
phism. Let e : U →G be the identity section. We have π◦e= idU , hence π◦e◦π =π , which implies e◦π =

idG because π is a monomorphism. Therefore, π is an isomorphism (with inverse e), that is, G is trivial. □

Claim 3.4. For the purpose of proving Proposition 3.1, we may assume that X is the total space of a
G-torsor X → Y , where Y is a flat R-scheme of finite type, and that edl(Xl) = edl̄(X l̄).

Proof of Claim 3.4. After replacing X by the open R-fiberwise dense subscheme U constructed in
Claim 3.3, we may assume that G acts freely on X . We write a : G ×R X → X ×R X for the action
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morphism, given by (g, x) 7→ (gx, x), and R := (G ×R X ⇒ X) for the action groupoid induced by a;
see [Stacks 2005–, Tag 03LK]. By Claim 3.3, the map a is an isomorphism, and hence in particular it
is quasi-finite. We apply [Anantharaman 1973, Appendice I, Corollaire 3] to the equivalence relation
determined by R and to a closed point x in Xk . We deduce that there exist a G-invariant dense open
subscheme V ⊂ X containing x , and a locally closed subscheme Z ⊂ V , such that the restriction RZ

of R to Z is flat, quasi-finite, finitely presented (equivalently, finite and locally free, see [Stacks 2005–,
Tag 02KB]), and such that the natural morphism of fppf-sheaves Z/RZ → V/G is an isomorphism. Since
V contains x and the G-variety Xk is primitive, V is R-fiberwise dense in X . We will prove that Z/RZ is
a scheme by applying [Stacks 2005–, Tag 07S6]. Therefore, we need to verify that assumptions (1)-(3) of
[Stacks 2005–, Tag 07S6] are satisfied by RZ . We have already checked (1) and (2), and so it remains to
check (3): for a dense set of points of z ∈ Z , the RZ -equivalence class of z is contained in an affine open
subscheme of Z . By [Berhuy and Favi 2003, Theorem 4.7], there exist an open subscheme U ′

⊂ Vl and a
quotient map U ′

→ U ′/G in the category of schemes which is a G-torsor. Let V ′
⊂ U ′ be the inverse

image of a dense affine open subscheme of U ′/G. Then V ′ is an everywhere dense G-invariant affine
open subscheme of V . Since the map Z/RZ → V/G is an isomorphism, it is in particular surjective, and
hence every G-orbit intersects Z . Thus V ′

∩ Z is a dense affine open subscheme of Z which is a union of
RZ -equivalence classes. In other words, (3) is satisfied by all the points in the dense open subscheme
V ′

∩ Z ⊂ Z . We may now apply [Stacks 2005–, Tag 07S6] to deduce that Z/RZ is represented by a
scheme. Thus V/G ≃ Z/RZ is also a scheme. Therefore, replacing X by V ′, we may assume that X is
the total space of an fppf G-torsor of schemes X → Y . Since G is smooth, X → Y is in fact an étale
G-torsor. The fact that Y is flat over R now follows from [Stacks 2005–, Tag 02JZ], since X is flat over R
(this is one of the assumptions of Proposition 3.1) and over Y (because X → Y is a G-torsor). Since
every G l̄-equivariant compression of X l̄ over l̄ is defined over some finite extension of l, there is a finite
subextension l ⊂ l ′ ⊂ l̄ such that edl ′(Xl ′) = edl̄(X l̄). Let R′

⊃ R be a discrete valuation ring with fraction
field l ′, and let k ′

⊃ k be the residue field of R′. The G R-torsor X → Y over R lifts to a G R′-torsor
on X R′ → YR′ , which is R′-fiberwise generically free and primitive. Since edk′(Xk′)⩾ edk̄(X k̄), we are
allowed to replace R by R′ and thus assume that edl(Xl) = edl̄(X l̄). □

We are now ready to complete the proof of Proposition 3.1. By Claim 3.4, we may assume that X is the
total space of a G-torsor X → Y , where Y is a flat R-scheme of finite type, and that edl(Xl) = edl̄(X l̄).

Let η ∈ Y be the generic point of Yk , and let A :=OY,η. Then A is a discrete valuation ring with residue
field k(Yk) and fraction field l(Yl). We have a Cartesian diagram

P

��

// X

��

Spec(A) // Y

��

Spec(R)
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where P := X ×Spec(R) Spec(A). By construction, the morphism Spec(A) → Spec(R) sends the closed
point of Spec(A) to the closed point of Spec(R), and so it is local. Since G is in good characteristic,
P satisfies the assumptions of [Reichstein and Scavia 2022, Theorem 6.4], hence edl(Pl) ⩾ edk(Pk).
Therefore,

edl(Pl)⩾ edk(Pk)⩾ edk̄(Pk̄).

The morphism Spec(A) → Y induces isomorphisms at the level of residue fields of the special and generic
point. Thus edl(Xl) = edl(Pl) and edk̄(X k̄) = edk̄(Pk̄). Therefore,

edl̄(X l̄) = edl(Xl) = edl(Pl)⩾ edk̄(Pk̄) = edk̄(X k̄). □

4. Proof of Theorem 1.2

Lemma 4.1. Let k/k0 be a field extension of infinite transcendence degree such that k is algebraically
closed. Let B0 be an irreducible k0-variety and B := B0 ×k0 k. Then the set of k-rational points of B
mapping to the generic point of B0 is dense in B.

Proof. Let U be a nonempty open k-subscheme of B. It suffices to prove that U has a k-point which
maps to the generic point of B0.

To prove this claim, note that the open embedding U ↪→ B is defined over some intermediate subfield
k0 ⊂ k1 ⊂ k such that the extension k1/k0 is finitely generated. In other words, U ↪→ B is obtained by
base change from an affine open embedding U1 ↪→ B0 ×k0 k1 defined over k1. In particular, the morphism
U1 → B0 is dominant. Let η1 : Spec(K1) → U1 be the generic point of U1.

Now consider a subfield k1 ⊂ L1 ⊂ K1 such that L1/k1 is purely transcendental of finite transcendence
degree and K1/L1 is finite. Since k/k1 has infinite transcendence degree, there exists a field embedding
ι : L1 ↪→ k compatible with the k1-algebra structures of L1 and k. Since k is algebraically closed and
K1/L1 is finite, we may extend ι to a field embedding K1 ↪→ k, again compatible with the k1-algebra
structures of K1 and k. This gives rise to a scheme morphism

u1 : Spec(k) → Spec(K1)
η1
−→ U1.

Since U = U1 ×k1 k, the point u1 uniquely lifts to a k-point u of U mapping to the generic point of U1.
Since the morphism U1 → B0 is dominant, the k-point u maps to the generic point of B0. This completes
the proof of claim, and also completes the proof of Lemma 4.1. □

We will make use of the following “rigidity property” of essential dimension. For a proof, see [Reich-
stein and Scavia 2022, Lemma 2.2].

Lemma 4.2. Let k be an algebraically closed field, G be a k-group and X be a generically free primitive
G-variety defined over k. Then edk(X) = edl(Xl) for any field extension l/k.

Now let f : X → B be as in Theorem 1.2. For every integer n, we set

8 f (n) :=
{
b ∈ B | edk(b̄)(Xb̄)⩽ n for some geometric point b̄ with image b

}
.
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Lemma 4.3. (a) A point b ∈ B belongs to 8 f (n) if and only if edk(b̄)(Xb̄)⩽ n for every geometric point
b̄ with image b.

(b) Let π : B ′
→ B be a morphism of schemes, and let f ′

: X ×B B ′
→ B ′ be the base of change of f

along π . Then 8 f ′(n) = π−1(8 f (n)).

Proof. (a) Let b̄1 and b̄2 be two geometric points of B with image b. The ring A := k(b̄1)⊗k(b) k(b̄2) is
not zero. If m is a maximal ideal of A, the quotient A/m is a field containing k(b̄1) and k(b̄2). By consid-
ering an algebraic closure of A/m, we are thus reduced to the case when there is a field homomorphism
k(b̄1) ↪→ k(b̄2). We may, thus, assume that k(b̄1) ⊂ k(b̄2). In this case, (a) follows from Lemma 4.2.

(b) Let b′
∈ B ′ and b ∈ B be such that π(b′) = b. Let b̄′ be a geometric point of B with image b′, so that

b̄ := π ◦ b̄′ is geometric point of B with image b. Then there is a natural isomorphism Xb̄′ ≃Xb̄ ×k(b̄) k(b̄′)

of G b̄′-varieties, and

edk(b̄)(Xb̄) = edk(b̄′)(Xb̄ ×k(b̄) k(b̄′)) = edk(b̄′)(Xb̄′)

by Lemma 4.2. In particular, b ∈ 8 f (n) if and only if b′
∈ 8 f ′(n), as desired. □

Proof of Theorem 1.2. We must show that 8 f (n) ⊂ B is a union of countably many closed subsets
of B. By noetherian approximation (see [EGA IV3 1966, IV, §8.10] or [Thomason and Trobaugh 1990,
Appendix C]), the G-action on X descends to a subfield k0 of k which is finitely generated over its prime
field. In other words, there exist

• a field k0 ⊂ k finitely generated over its prime field,

• a smooth group scheme G0 of finite type over k0,

• k0-schemes of finite type B0 and X0,

• a G0-action on X0 over k0,

• a flat G0-invariant morphism f0 : X0 → B0 and

• a Cartesian diagram
X X0

B B0,

f f0

π

(4.4)

such that G = G0 ×k0 k, and the base change of the G0-action on X0/B0 along π is isomorphic to
the G-action on X/B.

By Lemma 4.3 (b), we have 8 f (n) = π−1(8 f0(n)). Thus, since π is continuous, it suffices to prove
that 8 f0(n) is a countable union of closed subsets of B0. In other words, we may assume that k is finitely
generated over its prime field and that B is of finite type over k. In this case, the underlying topological
space of B is countable, hence 8 f (n) is countable. It remains to show that 8 f (n) is a union of closed
subsets of B. By elementary topology, it suffices to show that 8 f (n) is closed under specialization;
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see [Stacks 2005–, Tag 0EES]. In other words, if b′
∈ B is a specialization of b ∈ 8 f (n), i.e., b′

∈ {b},
then we want to show that b′

∈ 8 f (n).
By [EGA II 1961, Proposition 7.1.4], there exist a discrete valuation ring R with closed point s and

generic point η, and a morphism Spec(R) → B sending s to b′ and η to b. Precomposing with the
completion map Spec(R̂) → Spec(R), we may assume that R is complete. Since B is a k-scheme, the
residue fields of b, b′, s, η all have the same characteristic as k. Thus, R is complete and equicharacteristic
and hence, by Cohen’s structure theorem we have an isomorphism R ≃ k(s)[[t]]. (In characteristic 0,
this is an isomorphism of k-algebras, whereas in characteristic p, it is only an isomorphism of rings.
For the argument below, we only need an isomorphism of rings.) In particular, the residue field k(s) is
contained in R. By Proposition 3.1, letting η and s̄ be geometric points of Spec(R) lying above η and s,
respectively, we deduce that

edk(η)(Xk(η))⩾ edk(s̄)(Xk(s̄)).

Now, Lemma 4.3 (a) tells us that

n ⩾ edk(b̄)(Xk(b̄))⩾ edk(b̄′)(Xk(b̄′)),

where b̄ and b̄′ are geometric points of B lying above b and b′, respectively. This shows that 8 f (n) is
closed under specialization.

Assume now that k is algebraically closed and of infinite transcendence degree over its prime field,
and let m be the maximum of edk(b̄)(Xb̄; Gk(b̄)), where b̄ ranges over all geometric points of B. Consider
the diagram (4.4). Since 8 f0(m − 1) is a union of closed subsets of B0 and it does not equal B0, it does
not contain the generic point of B0. By Lemma 4.3 (b), we have 8 f (m − 1) = π−1(8 f0(m − 1)), hence
for every k-point b of B mapping to the generic point of B0, we have edk(Xb) = m. By Lemma 4.1, the
set of such k-points is Zariski dense in B. □

Remark 4.5. The following example shows that the flatness assumption in Theorem 1.2 is necessary.
Let n be a positive integer, and let k be an algebraically closed field of characteristic not dividing n.

Consider the affine plane A2
k = Spec(k[x, y]), with coordinates x, y. Let X ⊂ A2 be defined by the

equation x(yn
−1)= 0, let B = A1

k = Spec(k[x]) and let f : X → B be the projection given by (x, y) 7→ x .
The group µn = Z/nZ acts on X by ζ · (x, y) 7→ (x, ζ y) and trivially on B. Clearly, f is µn-equivariant,
and the µn-action on the fibers of f is generically free and primitive. We have edk(Xa) = 0 for every
a ∈ k×, but edk(X0) = edk(µn) = 1.

Remark 4.6. To put Theorem 1.2 in perspective, we will conclude this section by recalling an analogous
result for cohomological invariants from [Colliot-Thélène 2002, Appendix]. For an overview of the theory
of cohomological invariants, see [Garibaldi et al. 2003].

Let k be a field, G be a linear algebraic k-group and X be a generically free primitive G-variety. After
passing to a G-invariant open subvariety of X , we may assume that X is the total space of a G-torsor
τ : X →Y , where Y is irreducible with function field K =k(Y )=k(X)G ; see [Berhuy and Favi 2003, Theo-
rem 4.7]. Note that k(X)G is a field, since X is primitive. Pulling back to the generic point η : Spec(K )→

Y of Y , we obtain a G-torsor τη : Tη → Spec(K ). We denote the class of τη in H 1(K , G) by [X ].
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Now, suppose f : X → B is a family of generically free primitive G-varieties, as in Theorem 1.2. Let
i be a nonnegative integer, C be a finite Gal(ks/k)-module of order prime to the characteristic of k and
F ∈ Invi (G, C) be a cohomological invariant over k with values in the Galois cohomology ring H i (−, C).
We will be interested in how F([Xb]) behaves as b varies over B. First consider the generic point bgen

of B. Passing to a dense open subscheme of B if necessary, we may assume that F([Xbgen]) comes from
a cohomology class α ∈ H i

ét(B, C). In this case, by the compatibility of the specialization map in étale
and Galois cohomology [Garibaldi et al. 2003, p. 15, Footnote], αb̄ = F(k(X b̄)) (up to sign) for every
geometric point b̄ of B. From [Colliot-Thélène 2002, Proposition A7], we deduce that

B0 :=
{
b ∈ B : F(k(X b̄)) = 0 for some geometric point b̄ above b

}
is a countable union of closed subsets of B. Note that by the rigidity property for étale cohomology [Milne
1980, Corollary VI.2.6], one may replace “some” by “every” in the definition of B0, as in Lemma 4.3 (a).

5. Example: Elliptic curves with marked torsion points

In this section we will consider an example, showing that in Theorem 1.2 one may not replace “countable
union” by “finite union”.

Let A be a commutative algebraic group over C. Any choice of v1, . . . , vr ∈ A[ℓ] gives rise to a
(Z/ℓZ)r -action on A via

(n1, . . . , nr ) : a 7→ a + n1v1 + · · · + nrvr .

This action is free if and only if v1, v2, . . . , vr are linearly independent over Z/ℓZ. When we view A as a
(Z/ℓZ)r -variety via this action, we will denote it by (A; v1, . . . , vr ). We will focus on the case, where
r = 2 and A = E × E is the direct product of two copies of a complex elliptic curve E . More specifically,
we will investigate how ed(E × E; v1, v2) depends on the choice of E , v1 and v2.

Recall that for every prime integer ℓ, there exists a complex curve B and a family of elliptic
curves E → B, together with a nowhere zero ℓ-torsion section, such that every pair (E; q) where
E is a complex elliptic curve and q ∈ E(C)[ℓ] \ {0} arises as a fiber of E → B; see [Colliot-Thélène 2002,
Proposition A4]. The group Z/ℓZ acts freely on E over B by translations by the ℓ-torsion section, and so
(Z/ℓZ)2 acts freely on the fiber product

8 : X = E ×B E → B (5.1)

by translation. The fibers of 8 are (Z/ℓZ)2-varieties having the form (E × E; (q, 0), (0, q)), where
q ∈ E(C)[ℓ] \ {0}.

Proposition 5.2. Let ℓ be an odd prime integer, E be an elliptic curve over C, and q ∈ E(C)[ℓ] \ {0}.

(i) Suppose there exists an endomorphism φ : E → E such that φ2 is multiplication by an integer d ,
where d is not a square modulo ℓ. Then ed(E × E; (q, 0), (0, q)) = 1.

(ii) Assume End(E) = Z. Then ed(E × E; (q, 0), (0, q)) = 2.
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(iii) Consider the map 8 : X → B from (5.1). Then there are countably infinite subsets B ′
cm ⊂ Bcm ⊊ B(C)

such that
ed(Xb) =

{
1, if b ∈ B ′

cm,

2, if b ̸∈ Bcm.

Proof. (i) It is obvious from the definition that ed(E × E : (q, 0), (0, q)) ⩾ 1, so we only need to
show that ed(E × E; (q, 0), (0, q)) ⩽ 1. Since φ is an endomorphism, it restricts to a group homo-
morphism E(C)[ℓ] → E(C)[ℓ]. Fixing a (Z/ℓZ)-basis of E(C)[ℓ] ≃ (Z/ℓZ)2, φ gives rise to a matrix
A ∈ GL2(Z/ℓZ). The matrix A does not have any eigenvalues in Z/ℓZ. Indeed, if Av = λv for some
nonzero v ∈ (Z/ℓZ)2 and λ ∈ Z/ℓZ, then dv = A2v = λ2v, hence d = λ2 in Z/ℓZ, which is impossible
as d is not a square modulo ℓ. It follows that q and φ(q) are linearly independent, and so form a basis
of E(C)[ℓ]. Now, φ : (E; q) → (E; φ(q)) is a Z/ℓZ-equivariant morphism and the composition(

E × E; (q, 0), (0, q)
) (id,φ)
−−−→

(
E × E; (q, 0), (0, φ(q))

) +
−→

(
E; (q, φ(q))

)
is a (Z/ℓZ)2-compression. Thus, ed(E × E; (q, 0), (0, q))⩽ 1, as desired.

(ii) Assume the contrary. Then there exists a dominant (Z/ℓZ)2-equivariant rational map

f : E × E 99K C,

where E × E stands for the (Z/ℓZ)2-variety (E × E; (q, 0), (0, q)) and C is some curve with a faithful
action of (Z/ℓZ)2. We may assume that C is smooth and projective. Since ℓ is odd, (Z/ℓZ)2 cannot act
faithfully on P1. Thus, C is not isomorphic to P1. For all but finitely many v, the map f restricts to a well-
defined surjective morphism E ≃ E × {v} → C . We deduce from Hurwitz’s formula that C has genus 1.
After suitably choosing an origin for C , the map f becomes an everywhere defined homomorphism of
abelian varieties. The restrictions of f to E ×{0} and {0}× E give isogenies f1, f2 : E → C such that
the element (1, 0) of (Z/ℓZ)2 acts on C via translation by f1(q), and the element (0, 1) acts on C via
translations by f2(q). Since the (Z/ℓZ)2-action on C is faithful, we conclude that f1(q) and f2(q) form
a basis of C[ℓ]. On the other hand, recall from [Silverman 2009, Lemma III.4.2 (b)] that Hom(E, C) is
torsion-free Z-module. Since

Hom(E, C) ⊗Z Q ≃ Hom(E, E) ⊗Z Q ≃ Q,

we conclude that Hom(E, C) = Z. This implies that there exists homomorphism h : E → C such that
f1 and f2 are multiples of h. In particular, f1(q) and f2(q) are linearly dependent, a contradiction. We
conclude that C does not exist, and thus ed(E × E; (q, 0), (0, q)) = 2, as claimed.

(iii) Recall that the endomorphism ring of an elliptic curve E over C is either Z (in which case we say
that E has no complex multiplication) or the ring of integers in the field Q(

√
d), where d ∈ Z and d < 0;

see [Silverman 2009, Theorem III.9.3, Remark III.9.4.1].
Let Bcm be the set b ∈ B(C) such that Eb = (E, q), where E is an elliptic curve with complex

multiplication and q is an ℓ-torsion point. Let B ′
cm be the set of b ∈ B(C) such that Eb = (E, q), where

End(E) is the ring of integers in Q[
√

d], where d < 0 is a negative integer which is not a square
modulo ℓ and d ≡ 2 or 3 modulo 4. For d of this form, the ring of integers in Q(

√
d) is Z[

√
d].
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By the Chinese remainder theorem, there exist infinitely many integers d of this form. Moreover, every
ring of the form Z[

√
d], with d as above, arises as the endomorphism ring of a complex elliptic curve;

see [Silverman 2009, Proposition VI.4.1]. Since there are only countably many complex elliptic curves
with complex multiplication (see [Silverman 2009, Corollary 11.1.1 on p. 426]), we conclude that Bcm

and B ′
cm are both countably infinite subsets of B(C). By part (i), we have ed(Xb) = 1 for every b ∈ B ′

cm

and by part (ii), we have ed(Xb) = 2 for every b ̸∈ Bcm. □

The case where ℓ = 2 is a bit more complicated but the end result is similar.

Proposition 5.3. Consider the map 8 : X → B from (5.1). Then:

(i) There are countably infinitely many b ∈ B(C) such that ed(Xb) = 1.

(ii) For a very general b ∈ B(C), we have ed(Xb) = 2.

Proof. (i) Let E be an complex elliptic curve, corresponding to a lattice Z ⊕ Zτ ⊂ C, where Q(τ )

is an imaginary quadratic extension of Q. Multiplication by τ respects Z ⊕ Zτ ; hence, it induces an
endomorphism φ : E → E . Since multiplication by τ sends 1/2 to τ/2, there exists a point q ∈ E(C)[2]\{0}

such that τ(q) ̸= q . We may now conclude (as we did in the proof of Proposition 5.2 (i)) that the morphism
φ : (E; q) → (E; φ(q)) is Z/2Z-equivariant and the composition

(E × E; (q, 0), (0, q))
(id,φ)
−−−→(E × E; (q, 0), (0, φ(q)))

+
−→(E; (q, φ(q)))

is a (Z/2Z)2-compression. Thus, ed(E × E; (q, 0), (0, q)) = 1. Since there are countably many such
elliptic curves E , the proof of (i) is complete.

(ii) Suppose that there exists a dominant (Z/2Z)2-equivariant rational map f : E × E 99K C , where C is
a curve on which (Z/2Z)2 acts faithfully. In particular, there exists a surjective morphism E → C . By
the Hurwitz formula, C has genus 0 or 1. Since E is very general, we may suppose that End(E) = Z.
In the proof of Proposition 5.2 (ii), we showed that C cannot have genus 0, because (Z/pZ)2 cannot
act faithfully on P1 for any odd prime p. We then used the condition that End(E) = Z to show that
C cannot have genus 1. The latter argument goes through for p = 2 unchanged. Hence, we may
assume that C has genus 0, i.e., C = P1. However, (Z/2Z)2 has a faithful action on P1, so the case
where C = P1 requires additional consideration. We cannot dismiss it quite as easily as we did in the
proof of Proposition 5.2 (ii). To analyze the case where C = P1, we begin by recalling a construction
due to Garcia-Armas [Garcia-Armas 2016]. Let G be a finite group, V be a finite-dimensional complex
vector space, and ρ : G → PGL(V ) be a faithful complex projective representation. Garcia-Armas [2016,
§4] constructed a cohomological invariant

1ρ : H 1(K , G) → H 2(K , Gm) = Br(K ),

where K/C ranges over all field extensions. If X is a generically free primitive G-variety, we will denote
by [X ] ∈ H 1(C(X)G, G) the class of the G-torsor corresponding to X , as in Remark 4.6. Suppose now
that V is 2-dimensional, so that P(V ) = P1. Then by [Garcia-Armas 2016, Corollary 4.4], for any
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generically free primitive G-variety X , we have 1ρ([X ]) = 0 if and only if there exists a G-equivariant
compression X 99K P(V ). If the finite group G is abelian, then 1ρ is a group homomorphism and, in
particular, it factors through H 2(K , µe) = Br(K )[e], where e ⩾ 1 is the exponent of G. Writing C = P1

as C = P(V ), where V is a 2-dimensional complex vector space, we observe that there is only one
possible faithful action of (Z/2Z)2 on P1 (up to an automorphism of P1), given by the unique faithful
complex projective representation ρ : (Z/2Z)2 ↪→ PGL(V ) = PGL2(C). "

The family E → B considered above contains a special fiber (Z/2Z)-equivariantly isomorphic
to (Gm; −1). It follows that the family 8 : X = E ×B E → B contains a special fiber X0 that is
(Z/2Z)2-equivariantly isomorphic to (G2

m; (−1, 1), (1, −1)). Replacing G2
m by A2, we see that X0 is

(Z/2Z)2-equivariantly birationally isomorphic to a linear action of (Z/2Z)2 on a 2-dimensional vector
space. Hence, X0 is a versal (Z/2Z)2-variety. Consequently, edC(X0) = edC((Z/2Z)2) = 2; see (2.4).
In particular, there does not exist a (Z/2Z)2-compression G2

m 99K P1. Now, [Garcia-Armas 2016,
Corollary 4.4] implies that 1ρ([X0]) ̸= 0 in H 2(K , µ2) = Br(K )[2], where K = C(G2

m)(Z/2Z)2
. By

Remark 4.6, it follows that 1ρ([Xb]) ̸= 0 for all but countably many b ∈ B(C). Applying [Garcia-Armas
2016, Corollary 4.4] one more time, we deduce that for any such b, a (Z/2Z)2-equivariant rational map
f : Xb 99K P1 does not exist. Consequently, ed(Xb) = 2 for all but countably many b ∈ B(C). □

6. Example: Variety of quadratic forms

The following example shows that Theorem 1.2 fails if edk(b̄) is replaced by edk(b). In particular, if k
is not algebraically closed, then the k-points s ∈ B(k), where edk(Xs) ⩽ n do not necessarily lie on a
countable union of closed subvarieties of B.

Let k = R be the field of real numbers and G be the orthogonal group O2 defined over R. Consider the
action of G = O2 on X = GL2 via multiplication on the right. Note that X is the total space of a G-torsor
τ : X → Y , where Y = GL2 /O2 is naturally identified with the space of symmetric 2 × 2 matrices via
τ : A 7→ AAT .

Now consider the morphism

f : X = GL2 −→ B = A1
\ {0},

sending a matrix A to det(A)2. This morphism factors through τ as

f : X τ
−→Y det

−→B = A1
\ {0}.

Denote that fibers of X and Y over s ∈ B by Xs and Ys , respectively. Then Xs is a G-torsor over Ys .

Proposition 6.1. View a nonzero real number s as an R-point of B. Then

ed(Xs) =

{
0, if s < 0,

1, if s > 0.

Proof. Note that Ys is the variety of symmetric matrices B =
(a

b
b
c

)
such that det(B) = s. Thus Ys is a ratio-

nal surface over R whose function field can be identified with R(a, b). Passing to the generic point of Ys ,
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we see that edR(Xs) = edR(τs), where τs ∈ H 1(R(a, b), O2) is the O2-torsor over R(a, b) obtained by
pulling back τ to the generic point of Ys . Examining the long exact cohomology sequence associated
to the exact sequence 1 → O2 → GL2 of algebraic groups and remembering that H 1(R(a, b), GL2) = 1
by Hilbert’s theorem 90, we see that H 1(R(a, b), O2) is in a natural bijective correspondence with the
set of 2-dimensional nonsingular quadratic forms over R(a, b), up to equivalence, and the quadratic
form qs corresponding to τs is the form whose Gram matrix is

(a
b

b
c

)
, where c = (s + b2)/a. Note that, by

definition, edR(τs) = edR(qs) and the discriminant of qs is s.
Since q assumes the value a and has discriminant s, the quadratic form qs is isomorphic to ⟨a, as⟩.

Here, ⟨a, as⟩ denote the 2-dimensional quadratic form qs(z, w) = az2
+ asw2 over R(a, b). If s < 0,

then q is isotropic over R(a, b). Hence, q is hyperbolic over R(a, b), i.e., qs is isomorphic to ⟨1, −1⟩;
see [Lam 2005, Theorem I.3.2]. In particular, qs descends to R and hence, edR(qs) = 0.

On the other hand, suppose that s > 0. Then s is a complete square in R(a, b), so q ≃ ⟨a, a⟩. Clearly,
qs descends to R(a) ⊂ K , so edR(qs)⩽ 1. In order to complete the proof of Proposition 6.1, it remains
to show that edR(qs) ̸= 0. We argue by contradiction. Assume edR(qs) = 0, i.e., qs descends to some
intermediate extension R ⊂ K ⊂ R(a, b), where trdegR(K ) = 0. In other words, K is algebraic over R.
Since R is algebraically closed in R(a, b), this is only possible if K =R, i.e., q descends to a 2-dimensional
form q0 defined over R. Since s > 0, q is anisotropic over R(a, b), and hence, so is q0. Let νa : K ×

→ Z

be the valuation associated to the variable a. It is now easy to see that for any (0, 0) ̸= ( f, g) ∈ (K ×)2,
νa(q0( f, g)) is even, whereas νa(q( f, g)) is odd. This tells us that q and q0 have no values in common,
contradicting our assumption that q descends to q0. □

7. Transversal intersections in projective space

This section contains several preliminary results which will be used in the proof of Theorem 1.4. The
common theme is transversal intersections of projective varieties with linear subspaces in projective space.
Note that there are no algebraic groups or group actions here; they will come into play in the next section.

Recall that a commutative ring with identity is said to be regular if it is noetherian and all its localizations
at prime ideals are regular local rings.

Lemma 7.1. Let A be a regular semilocal noetherian ring and m1,m2, . . . ,mr be the maximal ideals
of A. For each 1 ⩽ i ⩽ r , let Pi ⊂ mi be a prime ideal such that Pi ̸⊂ m j for any j ̸= i and such
that each local ring A/Pi is regular. Assume that the prime ideals P1, . . . , Pr have the same height,
ht(P1) = · · · = ht(Pr ) = c. Then there exist h1, h2, . . . , hc ∈ A such that Pi Ami = (h1, . . . , hc)Ami and
h1, . . . , hc forms a regular sequence in Ami for each i .

Proof. We claim that, for all 1⩽ i ⩽ r , there exist fi,1, . . . , fi,c ∈ Pi whose images in the A/mi -vector
space mi/m

2
i are linearly independent. Indeed, letting mi = mi/Pi be the maximal ideal of A/Pi , we

have a short exact sequence

0 → Pi/(Pi ∩m2
i ) → mi/m

2
i → mi/m

2
i → 0.
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In view of the isomorphism Pi/(Pi ∩m2
i ) ≃ (Pi +m2

i )/m
2
i and the regularity of Ami and A/Pi , this gives

dimk((Pi +m2
i )/m

2
i ) = dimk(mi/m

2
i ) − dimk(mi/m

2
i ) = Kdim(Ami ) − Kdim(A/Pi ) = c,

where Kdim denotes the Krull dimension. Therefore, we may choose fi,1, . . . , fi,c ∈ Pi Ami whose images
in mi/m

2
i are linearly independent. Multiplying each fi, j by a suitable unit in Ami , we may suppose that

fi, j ∈ Pi for all j . This proves the claim.
For any a ̸= b, the ideal Pa + Pb is not contained in any mi , hence Pa + Pb = A. By the Chinese

remainder theorem the natural ring homomorphism

A/(P2
1 · · · P2

r ) → (A/P2
1 ) × · · · × (A/P2

r )

is an isomorphism; see [Stacks 2005–, Tag 00DT] or [Eisenbud 1995, Exercise 2.6]. In particular, the
quotient map A → (A/P2

1 ) × · · · × (A/P2
r ) is surjective. Therefore, for all 1⩽ i ⩽ r and 1⩽ j ⩽ c, we

may find hi, j ∈ Pi whose reduction modulo P2
i coincides with the reduction of fi, j , and whose reduction

modulo P2
s is equal to 1 for all s ̸= i . Then hi,1, . . . , hi,c ∈ Pi satisfy the following conditions:

(1) their images h̄i,1, . . . , h̄i,c in the A/mi -vector space mi/m
2
i form a basis of the subspace (Pi +m2

i )/m
2
i ,

(2) hi, j − 1 ∈ P2
s for all s ̸= i .

For each 1⩽ j ⩽ c, set h j :=
∏r

i=1 hi, j . Then h j ∈ ∩
r
i=1 Pi for all j . Moreover, for all 1⩽ i ⩽ r , the

images of h1, . . . , hc in mi/m
2
i are equal to h̄i,1, . . . , h̄i,c, and so form a basis of (Pi +m2

i )/m
2
i . Thus,

for each i = 1, . . . , r , the images of h1, . . . , hc in mi/m
2
i may be completed to a basis of mi/m

2
i , hence

h1, . . . , hc may be completed to a regular system of parameters for mi Ami . Thus the elements h1, . . . , hc

form a regular sequence in mi Ami .
Finally, we claim that Pi Ami = (h1, . . . , hc)Ami for all 1 ⩽ i ⩽ r . Since h1, . . . , hc are a regular

sequence in Ami , by [Stacks 2005–, Tag 00NQ] the local ring Bi := Ami /( fi,1, . . . , fi,c) is a regular local
ring of Krull dimension

Kdim(Bi ) = Kdim(Ami ) − c = Kdim(A/Pi ).

Consider the surjection φi : Bi → A/Pi . We are going to show that φi is injective. Indeed, suppose
that 0 ̸= x ∈ Bi is in the kernel of φi . By [Stacks 2005–, Tag 00NP], the regular local ring Bi is a
domain, hence by [Stacks 2005–, Tag 00KW], we have Kdim(Bi/(x)) = Kdim(Bi ) − 1 < Kdim(A/Pi ).
On the other hand, φi factors through a surjection Bi/(x) → A/Pi , hence Kdim(Bi/(x))⩾Kdim(A/Pi ),
a contradiction. Therefore, φi is injective. This means that Pi Ami is generated by h1, . . . , hc as an ideal
of Ami , as claimed. □

Let k be a field. For every 0⩽ d ⩽ n, we denote by Gr(n, n−d) the Grassmannian of codimension d hy-
perplanes of Pn

k . If W ⊂ Pn
k is a k-subspace of codimension d , we will denote by [W ] ∈ Gr(n, n−d)(k) the

k-point representing W in the Grassmannian. If Z ⊂Pn
k is a closed subscheme, we will say that W intersects

Z transversely at a smooth k-point z ∈ Z if z ∈ W and the tangent space Tz(Z) intersects W transversely.
Equivalently, W intersects Z transversely at z if W can be cut out by linear forms h1, . . . , hd ∈0(Pn

k ,O(1))

such that h1(z) = · · · = hd(z) = 0 and h1/h, . . . , hd/h form a regular sequence in the local ring OZ ,z

for some (and, thus, any) h ∈ 0(Pn
k ,O(1)) with h(z) ̸= 0; see [Eisenbud 1995, Section 10.3].
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If z ∈ Z is a smooth closed point, not necessarily k-rational, we say that W intersects Z transversely
at z if Wk̄ intersects Z k̄ transversely at every point k̄-point of Z ∩ W lying above z.

Lemma 7.2. Let Z be a closed subscheme of Pn
k , 0⩽ c ⩽ n be an integer,

IZ ,c ⊂ Gr(n, n − c) × Z

be the incidence correspondence parametrizing pairs ([W ], v) such that v ∈ W ∩ Z , and

φ : IZ ,c → Gr(n, n − c), ([V ], v) 7→ V

be the projection to the first component. Let z be a smooth closed point of Z , and let W0 ⊂ Pn
k be a codi-

mension c linear subspace such that W0 and Z intersect transversely at z. Then φ is smooth at ([W0], z).

Proof. Since smoothness may be verified after an fpqc base change [Stacks 2005–, Tag 02VL] and the
morphism Spec(k̄) → Spec(k) is fpqc, we may replace k by k̄ and assume that k is algebraically closed.

We claim that φ is flat at ([W0], z). Note that the fiber W ∩ Z of φ over [W ] is smooth at z, so the
lemma follows from this claim by [Stacks 2005–, Tag 01V8].

To prove the claim, we argue by induction on c. In the base case, c = 0, Gr(n, n − c) is a point, φ is
the identity map, and the claim is obvious.

For the induction step, assume that c⩾ 1 and the claim holds when c is replaced by c−1, for every n⩾ c
and every closed subscheme Z of Pn . Choose linear forms h1, . . . , hc ∈ 0(Pn

k ,O(1)) such that h1, . . . , hc

cut out W0, and h1/h, . . . , hc/h form a regular sequence in the local ring OZ ,z for some h ∈ 0(Pn
k ,O(1))

such that h(z) ̸= 0.
Denote the zero locus of h1 by Pn−1, the intersection Z ∩ Pn−1 by Z ′, the preimage of Z ′ under φ

by I ′

Z ,c, and the restriction of φ to IZ ,c by φ′. By [Eisenbud 1995, Corollary 6.9], it suffices to show that
φ′

: I ′

Z ,c → Gr(n, n − c)′ is flat at ([W0], z). Here, Gr(n, n − c)′ denotes the hypersurface in Gr(n, n − c)
consisting of (n −c)-dimensional linear subspaces of Pn which are contained in Pn−1. We will view Z ′ as
a closed subscheme of Pn−1. Since h1 cuts Z transversely at z, we see that z is a smooth point of Z ′. Now
observe that Gr(n, n − c)′ is naturally isomorphic to Gr(n − 1, n − c) and I ′

Z ,c is naturally isomorphic
to IZ ′,c−1 over Z ′ so that the following diagram commutes:

IZ ′,c−1 I ′

Z ,c IZ ,c

Gr(n − 1, n − c) Gr(n, n − c)′ Gr(n, n − c)

≃

φ′ φ

≃

Since Gr(n − 1, n − c) = Gr(n − 1, (n − 1) − (c − 1)), we can use the induction assumption to conclude
that φ′ is flat at ([W0], z), as desired. □

Lemma 7.3. Let Z be an irreducible quasiprojective k-variety, and let Y ⊂ Z be a closed equidimensional
subvariety, with irreducible components Y1, . . . , Yr . For every 1⩽ i ⩽ r , let zi ∈ Yi be a closed point such
that Y and Z are smooth at zi , and c be the codimension of Yi in Z. Then there exist an integer n ⩾ 0,
a closed embedding Z ↪→ Pn

k and a codimension c subspace W0 ⊂ Pn
k such that W0 intersects Z trans-

versely at zi , and locally around zi we have Y = Yi = Z ∩ W0 (scheme-theoretically) for each i = 1, . . . r .
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We emphasize that in the statement of Lemma 7.3 the closed points z1, . . . , zr are not assumed to be k-
rational but the closed embedding of Z ↪→ Pn

k and the codimension c subspace W0 ⊂ Pn
k are defined over k.

Proof. Since Z is quasiprojective, there exists an affine open subset Spec(B) ⊂ Z containing z1, . . . , zr .
Let Spec(A) ⊂ Z be the semilocalization of Z at {z1, . . . , zr }. By definition, the ring A is the semilocal
ring obtained from B by localizing at the multiplicative subset consisting of elements which do not belong
to the maximal ideal mzi for any i = 1, . . . , r . By Lemma 7.1, there exist f1, . . . , fc ∈ A, such that
f1, . . . , fc form a regular sequence in OZ ,zi and generate the ideal of Yi in OZ ,zi , for each 1⩽ i ⩽ r .

Since Z is a quasiprojective, there exists a locally closed embedding ι : Z ↪→ Pn
k . For every 0⩽ i ⩽ c,

fi is the restriction of a rational function Pi/Qi on Pn
k , where Pi and Qi are homogeneous polynomials

of the same degree and Qi does not vanish at z1, . . . , zr . We deduce that locally near each of the points
z1, . . . , zr the variety Y is the scheme-theoretic intersection of Z and the closed subscheme defined by
P1, . . . , Pc. By a refinement of the graded prime avoidance lemma [Gabber et al. 2013, Lemma 4.11],
there exist an integer d ⩾ 1 and homogeneous polynomials F1, F2 of degrees d and d + 1, respectively,
such that F1 and F2 do not vanish at z1, . . . , zr . Since d and d + 1 are coprime, any sufficiently large
positive integer is of the form n1d +n2(d +1) for some integers n1, n2 ⩾ 0. Therefore, multiplying the Pi

and Qi by suitable powers of F1 and F2, we may assume that P1, . . . , Pc have the same degree D ⩾ 1.
After composing ι with the D-fold Veronese embedding of Pn

k , we may further assume that each Pi has
degree 1, that is, that each Pi cuts out a hyperplane in Pn

k . Now the embedding ι : Z ↪→ Pn
k and the linear

subspace W0 of Pn
k given by P1 = · · · = Pc = 0 have the properties claimed in the lemma. □

8. Proof of Theorem 1.4

Let X0 = X (1)
0 ∪ · · · ∪ X (r)

0 be the irreducible decomposition of X0. Then choose rational functions
α1, . . . , αd : X0 99K A1

k such that the restriction of α1, . . . , αd to X (i)
0 generate the function field k(X (i)

0 )

for every i . After adjoining all G-translates of α1, . . . , αd to this set, we may assume that G permutes
α1, . . . , αd . Consider the G-equivariant rational map α : X0 99KP(V ), with x 7→ (1 : α1(x) : · · · : αd(x)),
for a suitable linear (permutation) representation of G on V = kd+1. Note that since the G-action on X0 is
assumed to be faithful, the G-action on P(V ) is faithful as well. Moreover, by our construction, α induces
a G-equivariant birational isomorphism between X0 and α(X0). After replacing X0 with the closure of
α(X0) in P(V ), we may assume that X0 is a closed subvariety of P(V ).

Let P(V )nonfree be the nonfree locus for the G-action on V , i.e., the union of the fixed point loci P(V )g

as g ranges over the nontrivial elements of G. Since G acts faithfully on P(V ), we have

dim P(V ) > dim P(V )nonfree. (8.1)

Let V m be the direct sum of m copies of V (as a G-representation). We claim that

the codimension of P(V m)nonfree in P(V m) is ⩾ m. (8.2)

Indeed, for each 1 ̸= g ∈ G, let mult(g, V )λ be the dimension of the λ-eigenspace of g and mult(g, V )

be the maximal value of mult(g, V )λ, where λ ranges over k̄. Then dim P(V )nonfree is the maximal value
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of mult(g, V ) − 1, as g ranges over the nontrivial elements of G. Clearly, mult(g, V m) = mult(g, V ) m
for every g. Thus,

dim P(V m)nonfree = (dim P(V )nonfree + 1) m − 1,

and the codimension of P(V m)nonfree in P(V m) is

dim P(V m) − dim P(V m)nonfree = (dim P(V ) + 1) m − 1 −
(
(dim P(V )nonfree + 1) m − 1

)
=

(
dim P(V ) − dim P(V )nonfree

)
m ⩾ m,

where the last inequality follows from (8.1). This completes the proof of (8.2).
The G-equivariant linear embedding V ↪→ V m , given by v 7→ (v, 0, . . . , 0), induces a G-equivariant

closed embedding
X0 ⊂ P(V ) ↪→ P(V m).

This allows us to view X0 as a G-invariant subvariety of P(V m). By [Popov and Vinberg 1994, Theo-
rem 4.14] or [SGA 1 1971, Exposé V, Propositions 1.8 and 3.1], there exists a geometric quotient map
π : P(V m) → P(V m)/G. Explicitly, write

P(V m) = Proj(k[V m
]),

where k[V m
] is a polynomial ring in dim(V )m = (d + 1)m variables. Then P(V m)/G ≃ Proj(A), where

A = k[V m
]
G is the ring of invariants and π is induced by the inclusion A = k[V m

]
G ↪→ k[V m

] of graded
rings. Restricting π to X0 ⊂ P(V m), we obtain the geometric quotient map X0 → X0/G. Note that

dim P(V m)/G = dim P(V m) = (d + 1)m − 1

and dim X0/G = dim X0 = e. Therefore, every irreducible component of X0/G is of codimension
c = (d + 1)m − 1 − e in P(V m)/G.

By assumption (see Section 2), X0 is geometrically reduced. By generic smoothness [Stacks 2005–,
Tag 056V], there exists a dense open subscheme of X0 which is smooth over k. Since the G-action
on X0 is assumed to be generically free, we may choose smooth closed points x1, . . . , xr , one on each
irreducible component of X0, such that the (scheme-theoretic) stabilizer Gxi is trivial for every i . We
now apply Lemma 7.3 to Z = P(V m)/G, Y = X0/G, z1, . . . , zr , where zi = π(xi ) for each i . Note that
by our choice of x1, . . . , xr , both Y and Z are smooth at each zi , for i = 1, . . . , r . We deduce that there
exist a closed embedding P(V m)/G ↪→ Pn defined over k and a subspace W0 ⊂ Pn of codimension c
such that X0/G = W0 ∩ (P(V m)/G) locally around zi for each i . Consider the diagram

T Gr(n, n − c) × P(V m)

IZ ,c Gr(n, n − c) × Z

Gr(n, n − c)f̄

id×π

φ
pr2
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Here, IZ ,c is the incidence correspondence parametrizing pairs ([W ], q), where W is a linear subspace
of Pn

k having codimension c and q ∈ W ∩ Z , as in Lemma 7.2, and T is the preimage of IZ ,e in
Gr(n, n − c) × P(V m).

By Lemma 7.2, φ is smooth at ([W0], zi ) for each i = 1, . . . , r . On the other hand, by our choice
of x1, . . . , xr , the map π is smooth at each of these points; hence, f̄ = φ ◦ (π × id) : T → Gr(n, n − c) is
smooth at ([W ], xi ) for each i .

From now on, we will assume that m > e. Note that e is given in the statement of Theorem 1.4, whereas
m is a feature of our construction, which we are free to choose. We will construct the family f : X → B
by restricting f̄ to a dense open subset X = T \ C , where C = Tsing ∪ Tnonfree. Here, Tsing is the singular
locus of f and

Tnonfree ⊂ Grn,n−c ×P(V m)nonfree

is the nonfree locus for the G-action in T . Recall that P(V m)nonfree was defined at the beginning of
this section. The base B of our family is obtained by removing from Gr(n, n − c) the locus of points
b ∈ Gr(n, n − c) such that the entire fiber Tb lies in C . In particular, f̄ (X ) ⊂ B. Since C is closed in T ,
B is open in Gr(n, n − c). Note also that since f̄ is a proper morphism, f̄ (C) is closed in B.

Let b0 := [W0] ∈ Gr(n, n − c)(k). By our choice of x1, . . . , xr , none of the points ([W0], xi ) lie in C .
Hence, b0 ∈ B(k) and the union of the irreducible components of Xb0 passing through x1, . . . , xr remains
birationally isomorphic to X0. This is close to condition (iii) but a little weaker; we will return to this
point at the end of the proof.

Note that by our construction X and B are irreducible, the G-action on X is free, f is smooth of
constant relative dimension e = dim(X0) = dim(Xb0). In particular, condition (i) of Theorem 1.4 holds
for f . To prove that condition (ii) also holds for f , it suffices to check that when m > e, we have

(a) f̄ (Tnonfree) ̸= Gr(n, n − c),

(b) f̄ (Tsing) ̸= Gr(n, n − c),

(c) there exists a dense open subset U ⊂ Gr(n, n − c) such that the fibers of f over U are projective
and irreducible.

To prove (a), recall that by (8.2), the codimension of P(V m)nonfree in P(V m) is ⩾ m. Remembering
that m > e, dim(P(V m)) = (d + 1)m − 1, and c = (d + 1)m − 1 − e, we obtain

dim π(P(V m)nonfree) = dim P(V m)nonfree ⩽ dim(P(V m)) − m < dim(P(V m)) − e = c.

Consequently, an (n − c)-dimensional linear subspace W in Pn in general position will intersect
π(P(V m)nonfree) = P(V m)nonfree/G trivially. We conclude that f̄ −1(W ) ∩ Tnonfree = ∅. This proves (a).

To prove (b), recall that the fiber of the morphism φ : IZ ,c → Gr(n, n − c) over [W ] is W ∩ Z . By
Bertini’s theorem, there exists a dense open subset U ⊂ Gr(n, n − c) consisting of (n − c)-dimensional
linear subspaces W of Pn such that W ∩ Z is smooth. By generic flatness [Stacks 2005–, Tag 0529],
after replacing U by a smaller open subset, we may assume that φ : φ−1(U ) → U is flat. Appealing



1946 Zinovy Reichstein and Federico Scavia

to [Stacks 2005–, Tag 01V8], as we did in Lemma 7.2, we see that since φ : φ−1(U ) → U is a flat map
with smooth fibers, it is smooth. Finally, after intersecting U with the complement of f̄ (Tnonfree) (which
we know is a dense open subset of Gr(n, n−c) by (a)), we may assume that π ×id is smooth over φ−1(U ).
Hence, the map f̄ : f̄ −1(U ) → U , being a composition of two smooth maps, π × id : f̄ −1(U ) → φ−1(U )

and φ : φ−1(U ) → U , is smooth. This proves (b).
To prove (c), recall that by definition, for b = [W ] ∈ B(k), the fiber φ−1(b) = W ∩ Z = W ∩P(V m)/G

is a complete intersection in P(V m)/G. The fiber X[W ′] = f −1(W ′) is cut out by the same homogeneous
polynomials, now viewed as elements of k[V m

] instead of k[V m
]
G . Thus, Xb is a smooth complete

intersection in P(V m). Since dimXb = e ⩾ 1, by [Serre 1955, n. 78], Xb is connected, hence irreducible.
This completes the proof of (c), and thus of condition (ii) of Theorem 1.4.

As we mentioned above, condition (iii) may not hold for the family f : X → B we have constructed.
Our construction only ensures that X0 is G-equivariantly birationally isomorphic to a union of irreducible
components of the fiber Xb0 , and condition (iii) requires X0 to be birationally isomorphic to the entire
fiber Xb0 . To bridge the gap between the two, we will slightly modify X as follows. (Note that B will
remain unchanged.) Let Y0 denote the union of all other components of Xb0 , the ones that do not pass
through any of the points x1, . . . , xr . Then the open embedding X \ Y0 ↪→ X is flat. After replacing
X by X \ Y0 and f : X → B by its restriction to X \ Y0, we obtain a family satisfying (i), (ii) and (iii).
This completes the proof of Theorem 1.4. □

Remark 8.3. The family f : X → B constructed in the proof of Theorem 1.4 has the additional property
that the fibers of f over the dense open subset U ⊂ B (the open subset in part (ii) of the statement of the
theorem) are complete intersections in the projective space Pn . With a bit of extra effort one can ensure
that every fiber of f over U is of general type. Since we will not need this assertion in this paper, we
leave the proof as an exercise for the interested reader.

We conclude this section with the following consequence of Theorem 1.4, where the group G is not
necessarily finite.

Corollary 8.4. Let k be an infinite field, G be a linear algebraic group, e ⩾ 1 be an integer and X0 be an
equidimensional generically free G-variety of dimension e + dim(G) (not necessarily primitive). Suppose
that there exist a finite subgroup S ⊂ G(k), a generically free S-variety Y0 and a G-equivariant birational
isomorphism Y0 ×

S G ∼ X0.
Then there exist a smooth irreducible k-variety B, a smooth G-variety X and a smooth G-equivariant

morphism f : X → B of constant relative dimension e + dim(G) defined over k such that

(a) G acts trivially on B and freely on X ,

(b) there exists a dense open subscheme U ⊂ B such that for every b ∈ U the fiber Xb is a primitive
G-variety and the total space of a G-torsor Xb → Xb/G, where Xb/G is smooth projective,

(c) there exists a b0 ∈ B(k) such that the fiber Xb0 of f over b0 is G-equivariantly birationally isomorphic
to X0.
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In particular, for any geometric point b of U , the G-action on the fiber Xb is strongly unramified.

Proof. Note that Y0 is equidimensional of dimension

dim(Y0) = dim(X0) − dim(G) = e.

Let h : Y → B be a family obtained by applying Theorem 1.4 to the group S and the S-variety Y0. This
is possible because S is a finite group, Y0 is equidimensional and generically free, and e ⩾ 1.

Set X := Y ×
S G. A priori, X is an algebraic space. However, since the k-variety Y is quasiprojective

and S is finite, by [SGA 1 1971, Exposé V, Proposition 1.8 and Proposition 3.1], the quotient X/G ≃Y/S
exists as a scheme. Since G is affine, the morphism of algebraic spaces X → X/G is affine, hence
representable (see [Stacks 2005–, Tag 03WG]), and so X is a scheme. Let f : X → B be the natural
projection induced by h. Since h satisfies properties (i), (ii) and (iii) of Theorem 1.4, f satisfies
properties (i), (ii) and (iii) of Corollary 8.4. □

9. Proof of Theorem 1.1

Let d := dim(X) and e := edk(X). We must show that there exists an irreducible smooth projective
variety Z and a G-torsor Y → Z such that dim(Y ) = dim(X) and edk(Y ) = edk(X). If e = 0, Theorem 1.1
is obvious: we can take Y = G × Pd , where G acts by translations on the first factor and trivially on
the second. Thus, we may assume without loss of generality that e ⩾ 1 and in particular, d ⩾ 1. In this
case, we use the following strategy: construct a family X → B as in Theorem 1.4 with Xb0 = X , then
take Y = Xb, where b is a k-point of B in very general position. Theorem 1.4 tells us that dim(Y ) = d
and the G-action on Y is strongly unramified. We would like to appeal to Theorem 1.2 to conclude
that edk(Y ) = e. One difficulty in implementing this strategy is that

(i) Theorem 1.4 requires G to be a finite group, whereas in Theorem 1.1, G is an arbitrary linear
algebraic group over a field of good characteristic.

Even if we assume that G is a finite group, there is another problem:

(ii) Theorem 1.2 requires all fibers of f : X → B to be primitive G-varieties, whereas if f is as
in Theorem 1.4, we only have control over fibers Xb when b ∈ U .

We will overcome (i) by using Corollary 8.4 in place of Theorem 1.4 and (ii) by using Theorem 9.1 below
in place of Theorem 1.2.

Theorem 9.1. Let G be a linear algebraic group over an algebraically closed field k of good characteristic
(see Definition 2.1), f : X → B be a G-equivariant morphism of k-varieties such that B is irreducible,
G act trivially on B and the generic fiber of f is a primitive and generically free Gk(B)-variety. Let
b0 ∈ B(k), x0 ∈ Xb0(k) and X0 be a G-invariant reduced open subscheme of Xb0 containing x0 such that

(1) X0 is a generically free primitive G-variety and

(2) f is flat at x0.
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Then for a very general b ∈ B(k), Xb is generically free and primitive, and edk(Xb)⩾ edk(Xb0). Further-
more, if k is of infinite transcendence degree over its prime field (in particular, if k is uncountable), then
the set of those b ∈ B(k) such that edk(Xb)⩾ edk(X0) is Zariski dense in B.

Here, as always, “very general” means “away from a countable union of proper subvarieties”.

Proof. The proof is in several steps.

Claim 9.2. There exists a dense open subscheme V ⊂ B such that for all points v ∈ V the fiber Xv is a
generically free Gk(v)-variety.

Proof. By [EGA IV3 1966, Proposition 9.6.1 (iii), Théorème 9.7.7 (iii)], the locus of points b ∈ B such that
the k(b)-scheme of finite type Xb is separated and geometrically irreducible, that is, a Gk(b)-variety, is a lo-
cally constructible subset of B. (By [EGA III1 1961, Chapitre 0, Proposition 9.1.12], a subset of B is locally
constructible if and only if it is constructible.) Since Xk(B) is a Gk(B)-variety by assumption, we deduce
the existence of a dense open subscheme V1 ⊂ B such that for all v ∈ V1 the fiber Xv is a Gk(v)-variety.

Consider the stabilizer X -group scheme

G := X ×(X×BX ) (G ×B X ),

where the fibered product is taken over the diagonal morphism X → X ×B X and the action morphism
G×BX →X ×BX . Since the Gk(B)-variety Xk(B) is generically free, the geometric fibers of G →X at the
generic points of the irreducible components of Xk(B) are trivial. By [EGA IV3 1966, Proposition 9.6.1 (xi)],
the locus of points x ∈ X such that Gx → Spec(k(x)) is an isomorphism is locally constructible. (Again
by [EGA III1 1961, Chapitre 0, Proposition 9.1.12], a subset of X is locally constructible if and only if
it is constructible.) Therefore, there exists an open subscheme Y ⊂ X such that Yk(B) ⊂ Xk(B) is dense
and such that for all y ∈ Y the scheme-theoretic stabilizer G y is trivial. Since Yk(B) ⊂ Xk(B) is dense, by
[Stacks 2005–, Tag 054X], there exists a dense open subscheme V2 ⊂ B such that Yv ⊂ Xv is dense for
all v ∈ V2. Letting V := V1 ∩ V2, we conclude that Xv is a generically free Gk(v)-variety for all v ∈ V . □

By [Brion 2015, Theorem 1.1], there exists a finite subgroup S ⊂ G(k) such that the projection
S → G/G0 is surjective. By assumption, Gk(B) acts primitively on Xk(B), hence so does S.

Claim 9.3. There exists an S-invariant affine open subscheme U ⊂ X such that Uk(B) is dense in Xk(B)

and the quotient map U → U/S is an étale S-torsor.

Proof. By [Stacks 2005–, Tag 03J1], there exists a separated dense open subscheme X1 ⊂ X . The
intersection X2 of all the S-translates of X1 is an S-invariant dense open subscheme of X , and it is
separated by [Stacks 2005–, Tag 01L8]. Let X3 ⊂ X2 be the S-free locus, which is a separated open
subscheme of X . By [EGA I 1971, Chapitre 0, (2.1.8)], the generic points of the irreducible components
of Xk(B) are also generic points of irreducible components of X . Recall that S acts generically freely
on Xk(B). Therefore, while X3 is not necessarily dense in X , (X3)k(B) is dense in Xk(B).

By [Stacks 2005–, Tag 01ZV], we can find an affine dense open subscheme X4 ⊂ X3. Since X3 is
separated, the intersection of any two affine open subschemes of X3 is affine. Therefore, the intersection U
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of all the S-translates of X4 is an S-invariant affine open subscheme of X on which S acts freely, and
the open embedding Uk(B) ⊂ Xk(B) is dense. In particular, the quotient scheme U/S exists. Since S acts
freely on U , the quotient map U → U/S is étale, hence U is the total space of an étale S-torsor. □

Claim 9.4. There exists a dense open subscheme V ⊂ B such that for all points v ∈ V the fiber Xv is a
generically free and primitive Gk(v)-variety.

Proof. Let U ⊂ X be as in Claim 9.3. Since U → U/S is an S-torsor, the formation of the quotient of U
by the S-action commutes with arbitrary base change B ′

→ B, and in particular, for every b ∈ B the
canonical morphism Ub/S → (U/S)b is an isomorphism. Therefore, for every b ∈ B the S-variety Ub is
either empty or an S-torsor.

By our assumptions Uk(B) is dense open in Xk(B) and S acts transitively on the geometric irreducible
components of Xk(B). Thus S acts transitively on the geometric irreducible components of Uk(B), that
is, the k(B)-variety Uk(B)/S is geometrically irreducible. By [Stacks 2005–, Tag 0559], this implies the
existence of a dense open subscheme V ⊂ B such that the restriction (U/S)V → V has geometrically
irreducible fibers, that is, such that for every v ∈ V the S-variety Uv over k(v) is nonempty and primitive.
Since Uk(B) ⊂ Xk(B) is dense, we deduce from [Stacks 2005–, Tag 054X] that, possibly after shrinking V ,
the open embedding Uv ⊂Xv is dense for all v ∈ V , and so Xv is primitive for all v ∈ V . By Claim 9.2, after
shrinking V one more time, we may suppose that Xv is also a generically free Gk(v)-variety for all v ∈ V . □

We are now ready to complete the proof of Theorem 9.1. Let X ′

0 be the union of irreducible components
of Xb0 which are not contained in X0. By openness of the flat locus [Stacks 2005–, Tag 0398], possibly
after replacing x0 by another k-point of X0, we may assume that x0 ̸∈ X ′

0 and f remains flat at x0.
Furthermore, after replacing X by Y =X \ X ′

0, we may assume without loss of generality that Xb0 = X0.
Indeed, the new projection f ′

: Y → B is the composition of f (which is flat at x0) with the open
immersion Y ↪→ X (which is flat everywhere). Hence, f ′ is flat at x0.

Let V ⊂ B be as in Claim 9.4. By generic flatness [Stacks 2005–, Tag 0529], there exists a dense open
subscheme U ⊂ V such that f is flat over U . If b0 ∈ U (k), the conclusion follows from Theorem 1.2. We
may, thus, assume that b0 does not lie in U , and let u ∈ U be the generic point of U . Since U is dense in B,
b0 is a specialization of u. By [EGA II 1961, Proposition 7.1.9], there exist a discrete valuation ring R
and a separated morphism Spec(R) → B mapping the closed point s of Spec(R) to b0 and the generic
point η of Spec(R) to u.

Since f is flat at x0 and G acts primitively on Xb0 , by the openness of the flat locus [Stacks 2005–,
Tag 0399], the flat locus of the base change fR : XR → Spec(R) is dense in the component of the special
fiber of fR containing (the preimage of) x0. Since we are assuming that the generic fiber is primitive, we
conclude that the flat locus of fR is dense in the generic fiber. Therefore, after removing the complement
of the flat locus from XR , we may assume that fR is flat. Let η and s̄ be geometric points lying above η

and s, respectively. By Proposition 3.1, we have

edk(η)(Xη)⩾ edk(s̄)((X0)s̄).
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On the other hand, by Lemma 4.2,

edk(s̄)((X0)s̄) = edk(X0).

Therefore, edk(η)(Xη)⩾ edk(X0). Since U ⊂ V , the restriction of f to f −1(U ) satisfies the assumptions
of Theorem 1.2. The conclusion of Theorem 9.1 now follows from an application of Theorem 1.2 to the
restriction of f to f −1(U ). □

Conclusion to the proof of Theorem 1.1. As we mentioned at the beginning of this section, in the course
of proving Theorem 1.1, we may assume that e ⩾ 1.

We will now reduce the theorem to the case, where X is incompressible, i.e., d = e + dim(G). Indeed,
by the definition of essential dimension there exists a G-equivariant dominant rational map X 99K X ′

such that dim(X ′) = d ′
:= e + dim(G). Suppose we know that Theorem 1.1 holds for X ′. In other words,

there exists a G-variety Y ′ such that dim(Y ′) = d ′, ed(Y ′) = e, and Y ′ is the total space of a G-torsor
t : Y ′

→ P ′ over a smooth projective variety P . Clearly d ⩾ d ′. Let Y = Pd−d ′

× Y ′, where G acts
trivially on Pd−d ′

. Then dim(Y ) = d and Y is a G-torsor id × t : Y = Pd−d ′

× Y ′
→ Pd−d ′

× P over
the smooth projective variety Pd−d ′

× P . Moreover, by [Reichstein and Scavia 2022, Corollary 8.5],
ed(Y ) = ed(Y ′) = e, as desired (see also [Reichstein 2000, Lemma 3.3 (d)]).

From now on we will assume that d = e+dim(G) and e⩾ 1. Denote by [X ] the class in H 1(k(X)G, G)

associated to the generically free primitive G-variety X , as in Remark 4.6.
Now observe that there exists a finite subgroup S of G, such that for every field extension K/k, the

natural map H 1(K , S) → H 1(K , G) is surjective. This follows from the definition of good characteristic
if char(k) > 0 and from [Chernousov et al. 2006, Theorem 1.1 (a)] if char(k) = 0. (Recall that we
are assuming that k is algebraically closed.) Suppose the S-torsor T → Spec(K ) represents a class
in H 1(K , S) in the preimage of [X ]. Spreading out the S-torsor T → Spec(K ), we obtain a generically
free primitive S-variety X ′ such that X ′

×
S G is G-equivariantly birationally equivalent to X . Therefore,

X satisfies the assumptions of Corollary 8.4.
We let f : X → B be a family obtained by applying Corollary 8.4 with X0 = X . Then f is a smooth

morphism of constant relative dimension d = e +dim(G), G acts freely on X , Xb is a primitive G-variety
for every b ∈ U (k), the G-action on Xb is strongly unramified and X is G-equivariantly birationally
isomorphic to Xb0 . Clearly,

ed(Xb)⩽ dim(Xb) − dim(G) = dim(X) − dim(G) = d − dim(G) = e.

On the other hand, since k is algebraically closed and of infinite transcendence degree over its prime field,
by Theorem 9.1 there exists a k-rational point b of B such that edk(Xb)⩾ edk(X) = e. Setting Y := Xb,
we obtain a generically free primitive G-variety Y such that dim(Y ) = d, edk(Y ) = e and the G-action
on Y is strongly unramified, as desired. □

Corollary 9.5. Let G be a linear algebraic group over an algebraically closed field k of good characteristic
and of infinite transcendence degree over its prime field. Then there exists a strongly unramified generically
free G-variety Y such that dim(Y ) = edk(G) + dim G and edk(Y ) = edk(G).
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Proof. Let V be a generically free G-variety over k of essential dimension e = edk(G). Then there
is a G-compression V 99K X , where X is a generically free G-variety of dimension e + dim(G).
Clearly, edk(X) ⩽ e; on the other hand, edk(X, G) ⩽ edk(V, G) = e = dim(X). We conclude that
dim(X) = e + dim(G) and edk(X) = e. By Theorem 1.1 there exists a strongly unramified generically
free variety Y of dimension e + dim(G) and essential dimension e. □

10. Essential dimension at a prime

In this section, we extend some of the main results of this paper to essential dimension at a prime q and
give an application in this setting.

We will now show that Proposition 3.1 and Theorems 1.1, 1.2 and 9.1 continue to hold if we replace
essential dimension by essential dimension at a prime q . The proofs are largely unchanged; see below.

Note that while Proposition 3.1 and Theorems 1.1, 1.2 and 9.1 all require that the base field k should
be of good characteristic, their q-analogues, Proposition 10.1 and Theorems 10.2, 10.3 and 10.5, do not
need this assumption. These results hold whenever char(k) ̸= q .

Proposition 10.1. Let k be an algebraically closed field, R be a discrete valuation ring containing k and
with residue field k, and l be the fraction field of R. Let G be a linear algebraic group over k and q be a
prime number invertible in k. Let X be a flat R-scheme of finite type endowed with a G-action over R,
whose fibers are generically free and primitive G-varieties. Then edl̄,q(X l̄)⩾ edk,q(Xk).

Proof. The proof is the same as that of Proposition 3.1, except that instead of the [Reichstein and Scavia
2022, Theorem 1.2], one should use [Reichstein and Scavia 2022, Theorem 11.1] which gives an analogous
assertion for essential dimension at q . □

Theorem 10.2. Let G be a linear algebraic group over an algebraically closed field k, and let q be
a prime number invertible in k. Let B be a noetherian k-scheme, f : X → B be a flat G-equivariant
morphism of finite type such that G acts trivially on B and the geometric fibers of f are generically free
and primitive G-varieties (in particular, reduced). Then for any fixed integer n ⩾ 0, the subset of b ∈ B
such that edk(b̄),q(Xb̄; Gk(b̄))⩽ n for every (equivalently, some) geometric point b̄ above b is a countable
union of closed subsets of B.

Proof. Analogous to that of Theorem 1.2, replacing Proposition 3.1 by Proposition 10.1. □

Theorem 10.3. Let G be a linear algebraic group over an algebraically closed field k of infinite tran-
scendence degree over its prime field, q be a prime number invertible in k, and X be a generically free
primitive G-variety. Then there exists an irreducible smooth projective variety Z and a G-torsor Y → Z
such that dim(Y ) = dim(X) and edk,q(Y ) = edk,q(X).

Proof. Analogous to that of Theorem 1.1, replacing Theorem 1.2 by Theorem 10.2. □

The next lemma is the analogue of Lemma 4.2 for essential dimension at a prime.

Lemma 10.4. Let k be an algebraically closed field, q be a prime number, G be a k-group and X be a
generically free primitive G-variety defined over k. Then edk,q(X) = edl,q(Xl) for any field extension l/k.
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Proof. The proof is analogous to that of [Reichstein and Scavia 2022, Lemma 2.2], replacing G-
compressions by G-equivariant (rational) correspondences of degree prime to q . We sketch it for the sake
of completeness.

By a base change, every G-equivariant correspondence X ⇝ Y gives rise to a Gl-equivariant corre-
spondence Xl ⇝ Yl of the same degree. Moreover, if the G-variety Y is generically free and primitive, so
is the Gl-variety Yl . It follows that edk,q(X)⩾ edl,q(Xl).

Conversely, let f : Xl ⇝ Y be a Gl-equivariant correspondence

Z

��   

Xl Y

of degree prime to q defined over l, where the Gl-variety Y is generically free and primitive of smallest
dimension dim(G) + edl,q(Xl). Since Z , Y and f are defined over a finitely generated subextension
of l/k, we may suppose that l is finitely generated over k. Then there exist a k-variety U with function
field k(U ) ≃ l, G-invariant morphisms Y → U and Z → U whose generic fibers are Y and Z , respectively,
and G-equivariant dominant rational maps

Z

�� ##
X ×k U Y

over U , whose base change along the generic point Spec(l) → U is f . Since k is algebraically closed,
U (k) is dense in U . If u ∈ U (k) is a k-point in general position in U , the G-variety Yu is generically
free and primitive, dim(Yu) = dim(Y ) and base change along Spec(k(u)) → U yields a G-equivariant
correspondence X ⇝ Yu of the same degree as f . We conclude that

edk,q(X)⩽ dim(Yu) − dim(G) = dim(Y ) − dim G = edl,q(Xl). □

Theorem 10.5. Let G be a linear algebraic group over an algebraically closed field and q be a prime
number invertible in k. Let f : X → B be a G-equivariant morphism of k-varieties such that B is
irreducible, G acts trivially on B and the generic fiber of f is a primitive and generically free Gk(B)-
variety. Let b0 ∈ B(k), x0 ∈Xb0(k), and X0 be a G-invariant reduced open subscheme of Xb0 containing x0

such that

(1) X0 is a generically free primitive G-variety and

(2) f is flat at x0.

Then, for a very general b ∈ B(k), Xb is generically free and primitive, and edk,q(Xb) ⩾ edk,q(X0).
Furthermore, if k is of infinite transcendence degree over its prime field (in particular, if k is uncountable),
then the set of those b ∈ B(k) such that edk,q(Xb)⩾ edk,q(X0) is Zariski dense in B.

Proof. Analogous to that of Theorem 9.1, replacing Proposition 3.1, Lemma 4.2 and Theorem 1.2 by
Proposition 10.1, Lemma 10.4 and Theorem 10.2, respectively. □
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We will now give an application of Theorem 10.5. Recall from Section 2 that

edk(G) = max edk(X; G) = edk,q(V ; G)

and
edk,q(G) = max

q
edk,q(X; G) = edk,q(W ; G),

where X ranges over all generically free primitive G-varieties and V (respectively, W ) is a versal
(respectively, q-versal) generically free primitive G-variety. By definition,

edk(G)⩾max
q

edk,q(G), (10.6)

where the maximum is taken over all primes q. One can think of edk,q(G) as a local version of edk(G).
There is some tension between the two. On the one hand, the problem of computing edk(G) is more
natural and, in some cases (e.g., for G = Sn or PGLn) is directly motivated by classical problems. On the
other hand, edk,q(G) is usually more accessible: virtually all known techniques for bounding edk(G) from
below actually yield a lower bound on edk,q(G) for some prime q. This means that when the obvious
inequality (10.6) is not sharp, the exact value of edk(G) is difficult to establish.

In an attempt to probe the “gray area” between edk(G) and maxq edk,q(G), Duncan and Reich-
stein [2014] defined poor man’s essential dimension, pmedk(G), as the maximal value of edk(V ; G),
where V is a generically free primitive G-variety, which is q-versal for every prime q (but not necessarily
versal). Clearly,

edk,q(G)⩽ pmedk(G)⩽ edk(G)

for every prime q. It is shown in [Duncan and Reichstein 2014, Theorem 1.4, Proposition 11.1] that

pmedk(G) = max
q

edk,q(G) (10.7)

for many finite groups G. Here the maximum is taken over all primes q, and |G| is assumed to be
invertible in k. Conjecturally, (10.7) holds for every finite group G; see [Duncan and Reichstein 2014,
Conjecture 11.5] (again, under the assumption that |G| is invertible in k). We will now use Theorem 10.5
to prove the following result in a similar spirit:

Theorem 10.8. Let G be a linear algebraic group defined over an uncountable algebraically closed
field k. Suppose that at least one of the following conditions is satisfied:

(i) char k = 0,

(ii) char k = p > 0, G0 is reductive, and there exists a finite subgroup S ⊂ G(k) of order prime to p such
that for every q ̸= p and every q-closed field L containing k the natural map H 1(L , S) → H 1(L , G)

is surjective.

Then there exists a strongly unramified generically free primitive G-variety X of dimension

max
q ̸=char(k)

edk,q(G) + dim(G)

such that edk,q(X; G) = edk,q(G) for every prime q that is invertible in k.
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To explain the relationship between Theorem 10.8 and the conjectural identity (10.7), assume for a
moment that the G-variety X of Theorem 10.8 has been constructed. Then, on the one hand,

edk(X; G)⩽ dim(X) − dim(G) = max
q ̸=char(k)

edk,q(G)

and on the other hand,
edk(X; G)⩾ edk,q(X; G) = edk,q(G)

for every prime q invertible in k. Thus,

edk(X; G) = dim(X) − dim(G) = max
q ̸=char(k)

edk,q(G). (10.9)

If we knew that X is q-versal for every prime q, then this equality would imply (10.7). Unfortunately,
since X is strongly unramified, it will usually not be q-versal for every prime q different from char(k),
and the conjectural equality (10.7) remains open. On the other hand, one can think of the equality
edk,q(X; G) = edk,q(G) as a weaker substitute for q-versality. In this sense, one may view (10.9) (and
thus, Theorem 10.8) as a weaker substitute for (10.7), valid for a wider class of algebraic groups G (not
necessarily finite).

Our proof of Theorem 10.8 relies on the following well-known lemma. We include a proof for the
sake of completeness.

Lemma 10.10. Let G be a linear algebraic group defined over a field k. Then edk,q(G) = 0 for all but at
most finitely many primes q.

Proof. By [Merkurjev 2009, Proposition 4.4], edk,q(G) > 0 if and only if q is a torsion prime for G. It
remains to show that every linear algebraic group G has only finitely many torsion primes.

Recall that q is a torsion prime for G if and only if q divides nT for some G-torsor T →Spec(K ), where
K is a field containing k. Here, nT denotes the index of T → Spec(K ), i.e., the greatest common divisor
of [L : K ], as L ranges over finite field extensions of K such that T splits over Spec(L). For any G-torsor
T → Spec(K ) as above, the index nT divides the so-called torsion index t (G) of G; see [Grothendieck
1958, Theorem 2]. Recall that the torsion index t (G) is ind(Tvers), where Tvers → Spec(Kvers) is a versal G-
torsor. For an alternative definition and a discussion of the properties of the torsion index, see [Totaro 2005].

In summary, edk,q(G) > 0 only if q is a prime factor of t (G), and the lemma follows. □

Proof of Theorem 10.8. By Lemma 10.10, there are only finitely many primes q such that edk,q(G) > 0.
Denote them by q1, . . . , qn . If n = 0, i.e., edk,q(G) = 0 for every prime q ̸= char(k), we can take X = G,
viewed as a G-variety with respect to the translation action of G on itself. Then

max
q ̸=char(k)

edk,q(G) = 0 = dim(X) − dim(G) and edk,q(X; G) = 0 = edk,q(G)

for every prime q ̸= char(k), as required.
We may thus assume without loss of generality that n ⩾ 1. Let di = edk,qi (G) + dim(G), and let

d = max (d1, . . . , dn). For each i = 1, . . . , n, let X i be a qi -versal G-variety of minimal possible
dimension di . Let X0 be the disjoint union of d-dimensional G-varieties X i × Pd−di , where G acts
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trivially on Pd−di . The variety X0 is equidimensional and the G-action on it is generically free. Note,
however, that this action is not primitive unless n = 1.

There exists a subgroup S ⊂ G(k) of order invertible in k such that for every q ̸= p and every q-closed
field L containing k the natural map H 1(L , S) → H 1(L , G) is surjective. Indeed, if char k = p > 0,
this follows from assumption (ii) of Theorem 10.8. If char(k) = 0, then S exist by [Chernousov et al.
2006, Theorem 1.1 (a)]. In other words, for every i = 1, . . . , n there exists a G-equivariant dominant
rational correspondence X ′

i 99K X i of degree prime to q and a generically free primitive S-variety Yi

such that Yi ×
S G is G-equivariantly birationally equivalent to X ′

i . Now, let the S-variety Y0 be the
disjoint union of the Yi × Pd−di , where S acts trivially on Pd−di for each i . By our construction, Y0 ×

S G
and X0 are G-equivariantly birationally equivalent. Since X ′

i 99K X i has degree prime to q, we have
edk,q(X ′

i ; G) = edk,q(X i ; G) for all i = 1, . . . , n. Therefore, replacing X i by X ′

i , we may assume that
X0 admits reduction of structure to S, so that the assumptions of Corollary 8.4 apply to X0.

Let f : X → B be a morphism constructed in Corollary 8.4, with respect to the G-variety X0 we
have just defined. We now want to take X = Xb to be the fiber of X over a very general point b ∈ B(k).
By Corollary 8.4, X is strongly unramified (again, for a very general b ∈ B(k)). By our construction,

dim(Xb) = d = max
(
edk,q1(G), . . . , edk,qi (G)

)
+ dim(G) = max

q ̸=char(k)
edk,q(G) + dim(G),

as desired. Moreover, by Theorem 10.5,

edk,qi (Xb)⩾ edk,qi (X i × Pd−di ) = edk,qi (X i ) = edk,qi (G).

Here, the equality edk,qi (X i × Pd−di ) = edk,qi (X i ) follows from [Reichstein and Scavia 2022, Corol-
lary 10.3]. (It can also be deduced directly from the definition of essential dimension at qi .) The opposite
inequality, edk,qi (Xb)⩽ edk,qi (G), follows from the definition of edk,qi (G). Thus,

edk,qi (Xb) = edk,qi (G), for each i = 1, . . . , n.

In summary, a very general fiber X = Xb of f : X → B has the properties claimed in Theorem 10.8. □

11. Example: Finite group actions on hypersurfaces

In this section, we give yet another application of Theorems 1.2 and 10.2.

Proposition 11.1. Let k be an algebraically closed field of infinite transcendence degree over its prime
field, W be a finite-dimensional k-vector space, G be a finite group and G ↪→ GL(W ) be a faithful linear
representation over k. Set V := W ⊕ k, where G acts trivially on k. Let f (x1, . . . , xn) ∈ k[W ] be a
G-invariant homogeneous polynomial of degree d and f0(xn+1) be an (inhomogeneous) polynomial of de-
gree d with d distinct roots in k. Assume that the G-action on the affine hypersurface Z( f )⊂A(V )≃An+1

is primitive. Then

(a) the G-action on the hypersurface Z( f + f0) is generically free and primitive,

(b) edk(Z( f + f0)) = edk(G),

(c) edk,q(Z( f + f0)) = edk,q(G) for every prime integer q.
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Proof. For (0, 0) ̸= (s, t) ∈ A2, set

f(s,t) = s f (x1, . . . , xn) + t f0(xn+1)

and Z[s:t] = V ( f(s,t)). Note that Z[s:t] depends only on the projective point [s : t] ∈ P1. The 2-dimensional
torus G2

m acts on V = W ⊕ k by scalar multiplication in W and k. This action commutes with the action
of G on V . The hypersurfaces Z[s:t] with s, t ̸= 0 all lie in the same orbit of this G2

m-action; hence, they
are isomorphic as G-varieties.

We now proceed with the proof of part (a). We claim that Z[s:t] is generically free and primitive
whenever s, t ̸= 0. As we saw above, the G-variety Z[s:t] is isomorphic to Z[1,1] whenever s, t ̸= 0. Hence,
the claim is equivalent to part (a). It will, however, be convenient for us to let [s : t] vary over P1, rather
than focusing solely on Z[1:1].

To show that Z[s,t] is primitive, assume the contrary. Then f(s,t) can be written as a product of two
polynomials, α and β ∈ k[x0, . . . , xn+1] of degree ⩽ d − 1 such that G preserves α and β up to a
scalar. Setting xn+1 = 0, we see that f (x1, . . . , xn) = α(x1, . . . , xn) · β(x1, . . . , xn), which contradicts
our assumption that Z( f ) = Z[1:0] is primitive.

To prove that the G-action on Z[s:t] is generically free, assume the contrary. Then Z[s:t] is contained in
Vnonfree = Wnonfree × k, where Vnonfree the union of the fixed point loci V g as g ranges over the nontrivial
elements of G, as in Section 8, and similarly for Wnonfree. Consider the family X → B = P1 of G-varieties,
where X ⊂ A(V )×P1 consists of pairs (v, [s : t]) such that v ∈ Z[s:t]. In other words, the fiber over [s : t]
is Z[s:t]. The set of [s : t] such that the entire fiber X[s:t] = Z[s:t] lies in Vnonfree is closed in P1. On the
other hand, note that Z[0:1] = Z( f0) is a disjoint union of d copies of W . Since the G-action on W is
faithful, hence generically free, we see that Z[0:1] = Z( f0) is not contained in Vnonfree. Thus, the G-action
on Z[s:t] can be nonfree for only finitely many [s : t] ∈ P1. Since Z[s:t] ≃ Z[1,1] whenever s, t ̸= 0, we
conclude that the G-action on Z[s:t] is generically free whenever s, t ̸= 0. This completes the proof of the
claim and, hence, of part (a).

To prove part (b), let us examine the family X → B = P1 more closely. This family is obtained by a
pullback from the universal family of affine hypersurfaces of degree ⩽ d in V . In particular, it is flat. As
we pointed out above, the fiber X[0:1] = Z[0:1] is a disjoint union of d copies of W (as a G-variety). Every
copy of W has essential dimension equal to edk(G); see (2.4). Let X ′

⊂ X be the Zariski open subvariety
obtained by removing all irreducible components of X[0:1] but one. Since the inclusion map X ′ ↪→ X is
an open embedding, and open embeddings are flat, we conclude that the composition X ′ ↪→ X → B is
also flat. Theorem 1.2 now tells us that for a very general [s : t] in P1, we have

edk(Z[s:t]) = edk(X[s:t]) = edk(X ′

[s:t])⩾ edk(X ′

[0:1]
) = edk(G).

In particular, edk(Z[s:t]) ⩾ edk(G) for some s, t ̸= 0. The opposite inequality, edk(Z[s:t]) ⩽ edk(G), is
immediate from the definition of edk(G). Thus, edk(Z[s:t]) = edk(G) for some s, t ̸= 0. As we saw above,
Z[s,t] ≃ Z[1:1] for any s, t ̸= 0. We conclude that edk(Z[1:1]) = edk(G). This proves part (b).

The proof of part (c) is the same, except that we use Theorem 10.2 in place of Theorem 1.2. □
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