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The principal block of a Zℓ-spets
and Yokonuma type algebras
Radha Kessar, Gunter Malle and Jason Semeraro

We formulate conjectures concerning the dimension of the principal block of a Zℓ-spets (as defined in our
earlier paper), motivated by analogous statements for finite groups. We show that these conjectures hold
in certain situations. For this we introduce and study a Yokonuma type algebra for torus normalisers in
ℓ-compact groups which may be of independent interest.

1. Introduction

This paper is a contribution to the following broad question: Do there exist structures associated to finite
complex reflection groups that play the same role as finite reductive groups play for finite Weyl groups?
Broué, Michel and the second author [Malle 1995; Broué et al. 1999; 2014] discovered that to certain
complex reflection groups can be associated data sets, called spetses, satisfying properties analogous to
those of unipotent characters of finite reductive groups. Their construction is based upon generalisations
of Hecke algebras which in turn arise from the braid groups associated to the space of regular orbits of
complex reflection groups. On the other hand, ℓ-adic reflection groups for a prime number ℓ arise as the
“Weyl” groups of certain topological spaces called ℓ-compact groups which possess much of the structure
of compact groups [Dwyer and Wilkerson 1994; Grodal 2010]. Thus, spetses and ℓ-compact groups
widen the context of group theory in two different directions — combinatorics/representation theory and
algebraic topology.

We introduced [Kessar et al. 2020] the notion of a Zℓ-spets, a new object to which both the spetsial
theory and ℓ-compact group theory can be applied. It can be thought of as a finite reductive group which
possesses a representation theory in characteristic zero and at the single prime ℓ. It thus allows one to
investigate aspects of the yet not well understood ℓ-modular representation theory of finite reductive groups
in a more general setting. We used this to exhibit a surprising consistency of spetses data with the famous
Alperin weight conjecture [loc. cit.]. Our results lead us to hope that putting the modular representation
theory of finite reductive groups in a broader context will pave the way to a better understanding of some
of the deep open problems of representation theory.
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In this paper, we develop this theme further. In order to describe our results we recall some features
of [Kessar et al. 2020]. Let ℓ be a prime number. Formally, a Zℓ-spets G = (Wϕ−1, L) is a spetsial
ℓ-adic reflection group W on a Zℓ-lattice L together with an element ϕ ∈ NGL(L)(W ). Via the theory of
ℓ-compact groups if q is a power of a prime different from ℓ, then under certain conditions, by [Broto and
Møller 2007] one can associate a fusion system F on a finite ℓ-group S to the pair G(q) := (G, q). In this
situation, S should be considered as a Sylow ℓ-subgroup of G(q). It turns out that the ℓ-compact theory
provides us, for any s ∈ S, with a centraliser which again is a Zℓ-spets. Using this we attached, in [Kessar
et al. 2020], a “principal ℓ-block” B0 to G(q), with defect group S. It consists of a collection Irr(B0) of
sets (“irreducible characters”) in bijection with the unipotent characters attached to the centralisers of
elements s ∈ S (up to F-conjugation), defined in terms of a collection of Hecke algebras. The construction
of B0 is modelled on and generalises the case of blocks of finite groups of Lie type in nondescribing
characteristic. When W is rational and under some natural assumptions on ℓ, we recover the ℓ-fusion
system Fℓ(G(q)) and principal ℓ-block B0(G(q)) of the associated finite reductive group G(q). See
Section 4 for a description of B0 and comparison with the rational case.

A primary concern in [Kessar et al. 2020] was the translation of certain local-global statements in
modular representation theory to purely local statements using the language of Zℓ-spetses. Here, our
considerations are more on the global side, so that actual degrees of characters in Irr(B0) (as defined in
[loc. cit., Definition 6.7]) play a more significant role. Firstly, we investigate the dimension

dim(B0) :=

∑
γ∈Irr(B0)

γ (1)2 ∈ Z[x]

of B0. Motivated by results concerning the divisibility properties of this number for principal blocks of
finite groups, we make the following conjecture:

Conjecture 1. Let G = (Wϕ−1, L) be a simply connected Zℓ-spets for which ℓ is very good, let q be a
power of a prime different from ℓ, and B0 be the principal ℓ-block of G(q) with defect group S. Then:

(1) (dim(B0)|x=q)ℓ = |S|.

(2) (dim(B0)|x=q)ℓ′ ≡ |Wϕ−1ζ−1 |ℓ′ (mod ℓ), where ζ ∈ Z×

ℓ is the root of unity with q ≡ ζ (mod ℓ), and
Wϕ−1ζ−1 is the associated relative Weyl group; see [Kessar et al. 2020, Theorems 2.1 and 3.6] for the
definition and role of the relative Weyl group.

For a finite group G with principal ℓ-block B0 the equality (dim(B0))ℓ=|S| is closely related to the fact
that |S| divides the dimension of each projective indecomposable module 8ν associated to ν ∈ IBr(B0).
When B0 is as in Conjecture 1, and under the additional hypotheses that W is an ℓ′-group, ϕ is trivial and
q ≡ 1 (mod ℓ), in Section 4B we formulate analogues of IBr(B0), decomposition numbers and deg8ν
for which we make the following additional conjecture:

Conjecture 2. In the setting of Conjecture 1 if W is an ℓ′-group, ϕ is trivial and q ≡ 1 (mod ℓ) we have:

(3) |S| divides deg8ν |x=q for all ν ∈ IBr(B0).
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Conjecture 1 combines the statements of Conjectures 4.2 and 4.3 and Conjecture 2 is restated as
Conjecture 4.5 in Section 4. In Proposition 4.6, we prove that Conjectures 1 and 2 hold when W is
rational or when q ≡ 1 (mod ℓ) and W is primitive. The general case for Conjecture 1 appears quite
elusive, so we choose to simplify matters by assuming that W is an ℓ′-group, q ≡ 1 (mod ℓ) and ϕ = 1.
Under these conditions we are able to show that our conjectures are closely related to certain previously
studied properties of Hecke algebras which we discuss next.

Recall that the generic Hecke algebra H(W, u) of W is a certain quotient of the group algebra of the
braid group B(W ) of W where u is a set of parameters indexed by conjugacy classes of distinguished
reflections in W . To each irreducible character χ of H(W, u) over a splitting field one associates a Schur
element fχ which, in turn, is used to define a canonical form

tW,u :=

∑
χ∈Irr(H(W,u))

1
fχ
χ

on H(W, u). This is conjectured to be a symmetrising form [Broué et al. 1999]; see Conjecture 3.3. It is
expected that the form tW,u behaves well under restriction to parabolic subgroups and with respect to the
natural map B(W )→ W ; if that is the case we say H(W, u) is strongly symmetric; see Definition 3.4.
Our main result is the following:

Theorem 1. Let G = (W, L) be a simply connected Zℓ-spets. Suppose that H(W, u) is strongly symmetric,
W is an ℓ′-group and q ≡ 1 (mod ℓ). Then Conjectures 1 and 2 hold.

Since the strongly symmetric condition is known to hold in many cases (see Proposition 3.5), we
obtain:

Corollary 2. Suppose W is a spetsial irreducible ℓ′-group, ϕ = 1 and q ≡ 1 (mod ℓ). Then Conjecture 1
holds for G = (W, L), and Conjecture 2 also holds, except possibly when W is primitive of rank at least 3.

The method behind our proof of Theorem 1 may be even more interesting than the theorem itself. For
our approach we introduce and study a Yokonuma type algebra Y attached to an arbitrary finite ℓ-adic
reflection group. We conjecture that Y is finitely generated and free over its base ring (Conjecture 5.12)
and show that this holds in many cases. It seems likely that if ℓ is very good for (W, L), then Y is a
symmetric algebra with respect to a trace form whose Schur elements are derived from those of various
parabolic subalgebras of H(W, u) (Question 5.18).

When G is a rational spets which satisfies the hypotheses of Theorem 1, the principal block B0 of
G(q) is known to be Morita equivalent to SW over a finite extension of Zℓ. The endomorphism algebra
of the permutation module which captures this equivalence is a Yokonuma algebra isomorphic to a
certain Zℓ-algebra specialisation Yψ of Y; see Section 5E. Moreover, the quantities dim(B0) and deg8ν
(ν ∈ IBr(B0)) can be reexpressed in terms of the corresponding Schur elements of Yψ .

This motivates the study of Yψ and associated numerical properties for arbitrary ℓ-adic reflection
groups. In Theorem 5.9 we show that if the parabolic subgroups of the underlying ℓ-adic reflection group
are generated by reflections, then Yψ is finitely generated and free over Zℓ; a result of Külshammer,
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Okuyama and Watanabe then allows us to conclude that when the order of W is relatively prime to ℓ,
then Yψ is isomorphic to the group algebra of SW ; see Theorem 5.10. We obtain Theorem 1 by applying
general results concerning the arithmetic behaviour of Schur elements in symmetric algebras (as discussed
in Section 2C) to Yψ , by playing off the form on Yψ inherited from Y against the standard symmetrising
form on the group algebra of SW .

We close the introduction by discussing how the hypotheses on ℓ and W in Theorem 1 might be relaxed.
If ℓ | |W | we have carried out explicit computations in support of Conjecture 1 when q ≡ 1 (mod ℓ),
such as when W = G(e, 1, 3) for ℓ= 3 and when W = G29 for the bad prime ℓ= 5 assuming Irr(B0) is
defined appropriately; see [Kessar et al. 2020, Remark 6.16]. In these situations, Irr(B0) is only partially
describable in terms of the Schur elements of the Yokonuma algebra Yψ . Even for Weyl groups it is a
major open problem to find a description involving the Schur elements of a suitable larger algebra.

Structure of the paper. In Section 2 we collect some general material necessary for our proofs. In
particular, we discuss certain divisibility properties of Schur elements in symmetric algebras. In Section 3
we recall the construction of Hecke algebras H(W, u) for complex reflection groups W and the origin
of the trace form tW,u, define the property of being strongly symmetric (Definition 3.4) and introduce
the relevant specialisations. In Section 4, we recall the description of the principal block of a Zℓ-spets,
introduce the notion of dimension and formulate our main conjectures. Our new Yokonuma type algebra Y
attached to an ℓ-adic reflection group (W, L) is defined and studied in Section 5. In Theorem 5.7 we
describe the structure of Y over the field of fractions of the base ring and in Theorem 5.10 we obtain,
under additional conditions, a similar structural result for ℓ-adic specialisations of Y . In Sections 5C
and 5D we formulate general freeness and symmetrising form conjectures for Y and show that the freeness
conjecture holds for Coxeter groups (Theorem 5.13) and for most of the imprimitive complex reflection
groups (Theorem 5.14). We also discuss the relationship of Y to the algebra considered by Marin [2018a;
2018b] and in Section 5E we show that when (W, L) arises from a Weyl group the principal block of the
classical Yokonuma algebra over Zℓ is a certain specialisation of Y . Section 5F contains the proof of
Theorem 1 (Theorem 5.20) and Corollary 2.

2. Background material

2A. Finite generation of modules. First we record a few general facts on finite generation of modules.
The first is a variation on Nakayama’s lemma for nilpotent ideals which allows for the dropping of the
finite generation hypothesis. Let R be a commutative ring with 1. Recall that the Jacobson radical J (R)
of R is the intersection of all maximal left ideals of R.

Lemma 2.1. Let I ⊆ J (R) be an ideal of R and let M, N be R-modules with N ⊆ M and M = N + I M.
Suppose that either M/N is finitely generated or that I is nilpotent. Then N = M.

Proof. The case that M/N is finitely generated is the usual case of the Nakayama Lemma. Suppose that
I r

= 0 for some r ≥ 1. By hypothesis, M/N = I (M/N ). Hence M/N = I r (M/N )= 0, showing that
M = N . □
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Lemma 2.2. Let R be a discrete valuation ring with uniformiser π . Suppose that N ⊆ M are R-modules
such that M/πM is finitely generated, M/N is finitely generated and torsion free, and πr N = 0 for some
positive integer r . Then M is finitely generated.

Proof. Since M/N is finitely generated, it suffices to show that N is finitely generated. Now πr N = 0.
So, in order to show that N is finitely generated it suffices to show that π i N/π i+1 N is finitely generated
for any i ≥ 1. Multiplication by π i induces a surjective R-module homomorphism from N/πN onto
π i N/π i+1 N , hence it suffices to show that N/πN is finitely generated. By hypothesis, M/πM is
finitely generated and N/(πM ∩ N ) is isomorphic to a submodule of M/πM . Thus, as R is Noetherian,
N/(πM ∩ N ) is finitely generated. But since M/N is torsion free, πM ∩ N = πN . □

2B. Clifford theory. The following is standard Clifford theory adapted to quotients of infinite group
algebras with respect to finite normal subgroups. For a ring R and ideal I , we will regard without further
comment an R/I -module as an R-module via pullback along the canonical homomorphism R → R/I .

Lemma 2.3. Let G be a group, T a finite normal subgroup of G and K a field of characteristic 0. For
θ ∈ IrrK (T ), denote by eθ the corresponding primitive central idempotent of K T and by Gθ the stabiliser
of θ in G of (finite) index nθ := |G : Gθ |. Let I be an ideal of K G and set Iθ := eθ I eθ = I ∩ eθK Geθ :

(a) There is a K -algebra isomorphism

K G/I ∼=

∏
θ

Matnθ (eθK Geθ/Iθ )

where θ runs over a set of representatives of G-orbits on IrrK (T ). Moreover, eθK Geθ/Iθ =

eθK Gθeθ/Iθ = K Gθeθ/Iθ for all θ ∈ IrrK (T ).

(b) The map (θ,U ) 7→ IndG
Gθ

U induces a bijection between the set of pairs (θ,U ), where θ runs over
representatives of G-orbits on IrrK (T ) and U runs over a set of isomorphism classes of simple
K Gθeθ/Iθ -modules, and the set of isomorphism classes of simple K G/I -modules.

Proof. Set Y = K G/I and for a ∈ K G denote by ā its image in Y . Let X be the set of orbits of the
conjugation action of G on IrrK (T ) and for each x ∈ X , let ex =

∑
θ∈x eθ . So {ex | x ∈ X} is a set of

pairwise orthogonal central idempotents of K G with 1K G =
∑

x∈X ex . Consequently, {ēx | x ∈ X} is a set
of pairwise orthogonal central idempotents of Y with 1Y =

∑
x∈X ēx . Here, we abuse notation to allow

for the possibility that some ēx are equal to zero. Thus

Y =

⊕
x∈X

Y ēx

and this is also a decomposition of Y into a direct product of K -algebras. Let x ∈ X and θ ∈ x . Then,

ēx =

∑
g∈G/Gθ

gēθg−1

is a decomposition of ēx into orthogonal, conjugate idempotents. Hence,

Y ēx ∼= Matnθ (ēθY ēθ )
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as K -algebras. Now the first assertion of (a) follows since the inclusion of eθK Geθ in K G induces an
isomorphism eθK Geθ/Iθ ∼= ēθY ēθ .

Since eθgeθ = 0 for any g ∈ G \ Gθ , and since eθ is central in K Gθ ,

eθK Geθ/Iθ = eθK Gθeθ/Iθ = K Gθeθ/Iθ ,

proving the second assertion of (a).
Let V be a simple Y -module. There exists a unique x ∈ X such that ēx V ̸= 0 (equivalently ex V = V ).

By the statement and proof of (a), if θ ∈ x , then

V =

⊕
g∈G/Gθ

gēθV, (∗)

ēθV is a simple ēθY ēθ -module, and the map V 7→ (θ, ēθV ) induces a bijection between the set of
isomorphism classes of simple Y -modules and the set of pairs (θ,U ), where θ runs over representatives
of G-orbits on IrrK (T ) and U runs over a set of isomorphism classes of simple ēθY ēθ -modules. Finally,
identifying ēθY ēθ -modules with K Gθeθ/Iθ -modules via the isomorphism K Gθeθ/Iθ ∼= ēθY ēθ given in
the proof of (a), the equation (∗) gives that V = IndG

Gθ
(eθV ). This proves (b). □

2C. Symmetrising forms and divisibility. Let R be a commutative ring with 1 and let Y be a symmetric
R-algebra which is free and finitely generated as R-module. If X is an R-basis of Y , then any symmetrising
form t : Y → R determines a dual basis X∨

= {x∨
| x ∈ X} satisfying

t (xy∨)=

{
1 for x = y ∈ X,
0 for x, y ∈ X, x ̸= y.

The relative projective element of Y in Z(Y ) with respect to t is defined by zt :=
∑

x∈X xx∨. It depends
on t but not on the choice of the basis X ; see [Linckelmann 2018, Sections 2.11 and 2.16] for details.

Now suppose that t is a symmetrising form on Y and let s : Y → R be a symmetric form (also known
as trace form). Then there exists u ∈ Z(Y ) such that s = tu , where tu ∈ Y ∗

:= HomR(Y, R) is defined by
tu(x) := t (ux) for x ∈ Y . The map u 7→ tu is an R-module isomorphism between Z(Y ) and the R-module
of symmetric forms on Y . Moreover, tu is a symmetrising form if and only if u ∈ Z(Y )×. If X is an
R-basis of Y and X∨ is the dual basis with respect to t and if u ∈ Z(Y )×, then the dual basis of X with
respect to tu is equal to X∨u−1, and hence the relative projective element in Z(Y ) with respect to tu is
equal to zt u−1.

If Y is a split semisimple algebra over a field K then for any symmetric form s : Y → K , there exist
elements sχ ∈ K , χ ∈ IrrK (Y ), such that s =

∑
χ∈IrrK (Y ) sχχ . Moreover, we claim that s is a symmetrising

form if and only if all sχ are nonzero. For this, note that s is a symmetrising form for Y if and only of its
restriction to any block of Y is a symmetrising form for the block. Thus we may assume that Y is split
simple, that is, a matrix algebra over K and here the claim is immediate from the fact that the trace map
on a matrix algebra is a symmetrising form; see for instance [Linckelmann 2018, Theorem 2.11.3].



The principal block of a Zℓ-spets and Yokonuma type algebras 403

Lemma 2.4. Suppose that K is a field and Y is a split semisimple K -algebra. Let s : Y → K be a
symmetrising form and let sχ , χ ∈ IrrK (Y ), be elements of K such that s =

∑
χ sχχ . Let z = zs ∈ Z(Y ):

(a) If V is a Y -module affording the irreducible character χ , then the trace of z−1 on V equals sχ .

(b) The trace of z−2 in the left regular representation of Y equals
∑

χ∈IrrK (Y ) s2
χ .

Proof. A straightforward calculation using the standard bases of matrix algebras shows that

z =

∑
χ∈IrrK (Y )

s−1
χ χ(1)eχ

where eχ ∈ Z(Y ) is the central idempotent corresponding to χ . In particular, z is invertible in Y with
z−1

=
∑

χ sχχ(1)−1eχ . The trace formula is an immediate consequence of this.
For (b) we note that the K -linear map

s ⊗ s : Y ⊗K Y op
→ K , (s ⊗ s)(y ⊗ y′) := s(y)s(y′),

is a symmetrising form on Y ⊗K Y op with corresponding relative projective element z ⊗ z. Further,
Y ∼=

⊕
χ∈IrrK (Y ) Vχ ⊗ V ∗

χ as (Y ⊗K Y op)-modules, where Vχ is an irreducible Y -module with character χ
and V ∗

χ is an irreducible Y op-module with character χ . So, by part (a) applied with Y ⊗K Y op in place of
Y , s ⊗ s in place of s and Vχ ⊗ V ∗

χ in place of V ,
∑

χ s2
χ equals the trace of z−1

⊗ z−1 on Y . Since z is
central in Y , this trace is just the trace of left multiplication by z−2 on Y . □

Lemma 2.5. Let G be a finite group and K a field such that K G is split semisimple. Let t be the canonical
symmetrising form on K G. Let u ∈ Z(K G)×, let α ∈ K be the coefficient of 1 when u2 is written as a
K -linear combination of elements of G and suppose that tu =

∑
χ sχχ , sχ ∈ K . Then∑

χ∈IrrK (Y )

s2
χ =

α

|G|
.

Proof. By a straightforward calculation using the set of group elements as basis, the relative projective
element of K G with respect to t is |G|1K G . Hence the relative projective element of K G with respect to
tu is |G|u−1. Now the result follows from Lemma 2.4 since for any y ∈ K G, the trace of the action of
y on K G via the left regular representation equals |G|β, where β is the coefficient of 1 in the standard
basis presentation of y. □

Lemma 2.6. Let O be a complete discrete valuation ring with field of fractions K of characteristic zero
and residue field O/J (O) of characteristic ℓ. Let G = T ⋊W be the semidirect product of a finite abelian
ℓ-group T with an ℓ′-group W acting faithfully on T . Let t be the canonical symmetrising form on K G
and s a symmetrising form on K G with s = tu , u ∈ Z(K G)×. Let α be the coefficient of 1 when u2 is
expressed as a K -linear combination of elements of G.

Suppose that the restriction of s to OG takes values in O and for any x ∈ T , s(x) = δx,1. Then
u ∈ Z(OG), α ∈ O and α ≡ 1 (mod ℓ).



404 Radha Kessar, Gunter Malle and Jason Semeraro

Proof. The restriction t ′
:= t |OG is a symmetrising form OG →O and by hypothesis s ′

:= s|OG :OG →O
is a symmetric form. Thus there exists u′

∈ Z(OG) such that s ′
= t ′

u′ . Extending scalars, by linearity we
have that s = tu′ . Since by hypothesis s = tu , we conclude u = u′

∈ Z(OG). This proves the first and
second assertions.

For a conjugacy class C of G, denote by Ĉ the corresponding class sum. Let

u = 1 +

∑
C

αC Ĉ

where C runs over the nonidentity conjugacy classes of G. Then for 1 ̸= x ∈ T we have 0 = s(x) =

t (ux)= αD where D is the conjugacy class of G containing x−1. It follows that

u = 1 +

∑
C∈C

αC Ĉ

where C is the set of conjugacy classes of G \ T and

α = 1 +

∑
C∈C

αCαC−1 |C |,

where C−1 denotes the class containing the inverses of the elements of C . Since W acts faithfully on T , ℓ
divides |C | for all C ∈ C. Since u ∈ Z(OG), all αC are elements of O and we obtain the last assertion. □

The following is a consequence of Tate duality for symmetric algebras over complete discrete valuation
rings exhibited in [Eisele et al. 2018]. For an integral domain O with field of fractions K and Y an
O-algebra which is finitely generated free as O-module, we set K Y := K ⊗O Y .

Proposition 2.7. Suppose O is a complete discrete valuation ring with field of fractions K of characteristic
zero, Y is a symmetric O-algebra such that K Y is split semisimple. Let s : K Y → K be a symmetrising
form with s =

∑
χ sχχ . Suppose that the restriction of s to Y takes values in O.

Let U be a projective Y -module and suppose that there is an isomorphism of K Y -modules

K ⊗O U ∼=

⊕
χ∈Irr(K Y )

V dχ
χ ,

where Vχ is a simple K Y -module with character χ and dχ ∈ N0. Then∑
χ∈Irr(K Y )

sχdχ ∈ O.

Proof. Let t : Y →O be a symmetrising form and let z be the relative projective element of Y with respect
to t . By [Eisele et al. 2018, Proposition 2.2], for any γ ∈ EndY (U ), the trace of z−1γ on K ⊗O U lies
in O. Here by z−1γ ∈ EndK Y (K ⊗O U ) we denote the composition of (the extension to K of) γ with
multiplication by z−1.

Denote by t̃ : K Y → K the K -linear extension of t to K Y . Then t̃ is a symmetrising form for K Y
with relative projective element z. Hence s = t̃u for some u ∈ Z(K Y ). Since the restriction of s to Y
takes values in O, we have as in the proof of Lemma 2.6 that u ∈ Z(Y ). Let γ : U → U be multiplication



The principal block of a Zℓ-spets and Yokonuma type algebras 405

by u. Since u ∈ Z(Y ), γ ∈ EndY (U ). Thus the trace of z−1γ on K ⊗O U is an element of O. Further,
zu−1 is the relative projective element of K Y with respect to s and z−1γ is multiplication by (zu−1)−1.
Thus the result follows from Lemma 2.4. □

The first statement of the next proposition is a theorem of Brauer. The second is also well known to
experts; we provide a proof of it for the convenience of the reader.

Proposition 2.8. Let G be a finite group, S a Sylow ℓ-subgroup of G and H a subgroup of G containing
NG(S). Denote by B0(G) (respectively B0(H)) the principal ℓ-block of G (respectively H ). Then,

(dim B0(G))ℓ = (dim B0(H))ℓ = |S| and (dim B0(G))ℓ′ ≡ (dim B0(H))ℓ′ (mod ℓ).

Proof. Let O be a complete discrete valuation ring in characteristic zero with algebraically closed residue
field of characteristic ℓ. Let b ∈OG be the block idempotent corresponding to B0(G) and c ∈OH the one
corresponding to B0(H). The group S is a defect group of the principal block B0(G). Hence as O[G ×G]-
module, B0(G) has vertex 1S = {(x, x) | x ∈ S}; see [Linckelmann 2018, Remark 6.7.14]. Further, the
O[H × H ]-module B0(H) is the Green correspondent of B0(G) in H × H (see [loc. cit., Theorem 6.7.2],
and note that by [loc. cit., Theorem 6.13.14], B0(G) and B0(H) are Brauer correspondents). Thus, by
properties of the Green correspondence (see [loc. cit., Thm 5.2.1])

IndG×G
H×H (OHc)= OGb ⊕ Y

where every indecomposable O[G × G]-module summand of Y has vertex of order strictly smaller than
|1S| = |S|. Comparing O-ranks,

|G|
2

|H |2
rk(OHc)= rk(OGb)+ rk(Y ).

By a standard application of Green’s indecomposability theorem and the properties of vertices and sources
(see [loc. cit., Section 5.1, Theorem 5.12.3]), the ℓ-part of the rank of any indecomposable OX -lattice, for
X a finite group, is greater than or equal to |X |ℓ/|Q| where Q is a vertex of the lattice. Thus, (rk(Y ))ℓ is
strictly greater than |S| and we obtain

|G|
2

|H |2
rk(OHc)≡ rk(OGb) (mod ℓ|S|).

Now by a theorem of Brauer (see [loc. cit., Theorem 6.7.13]), the ℓ-part of dim(B0(G)) = rk(OGb)
equals |S| and similarly for B0(H). The result follows since |G : H | ≡ 1 (mod ℓ) by Sylow’s theorem. □

2D. Tits deformation theorem. We recall some features of Tits’ deformation theorem. Let R and R′ be
integral domains with field of fractions K and K ′ respectively and let ψ : R → R′ be a ring homomorphism.
Let Y be an R-algebra which is finitely generated and free as R-module and let Y ′ denote the R′-algebra
R′

⊗Y obtained via extension of scalars through ψ . Let t : Y → R be an R-linear map and let t ′
: Y ′

→ R′

be its R′-linear extension through ψ .
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Theorem 2.9. Suppose that K Y and K ′Y ′ are both split semisimple:

(a) The map ψ induces a bijection Irr(K Y )→ Irr(K ′Y ′), χ 7→ χ ′, such that

χ ′(1 ⊗ y)= ψ∗(χ(y)) for all y ∈ Y.

Here ψ∗
: R∗

→ K ∗ is an extension of ψ to the integral closure R∗ of R in K and K ∗ is some
extension field of K ′. The bijection preserves dimensions of underlying simple modules.

(b) If t is the restriction to Y of a linear combination
∑

χ∈Irr(K Y ) sχχ with sχ ∈ Rp, then the R′-linear
map t ′

: Y ′
→ R′ is the restriction to Y ′ of

∑
χ∈Irr(K Y ) ψ(sχ )χ

′. Here p is the kernel of ψ , Rp is the
corresponding localisation and ψ(sχ ) is the image of sχ under the unique extension of ψ to a ring
homomorphism Rp → K ′.

Proof. For part (a) see [Curtis and Reiner 1981, Theorem 68.17, Corollary 68.20]. Note that the bijection
given in [loc. cit.] is between the sets Irr(K Y ) and Irr(K ′Y ′) where K and K ′ are algebraic closures of
K and K ′ respectively. Since K Y and K ′Y ′ are split, this descends via restriction on both sides to a
bijection Irr(K Y )→ Irr(K ′Y ′). Now (b) is an immediate consequence of (a). □

3. Hecke algebras and their Schur elements

Let W be a finite complex reflection group, that is, a finite subgroup of GLn(C) for some n ≥ 1 generated
by complex reflections. We denote by QW the field generated by the traces of elements of W , a finite
extension of Q. Attached to any reflection r ∈ W is its reflecting hyperplane H = ker(1 − r) in Cn; its
point-wise stabiliser WH in W is cyclic, generated by reflections. We say that r ∈ WH is the distinguished
reflection associated to H if r generates WH and has nontrivial eigenvalue exp(2π i/o(r)) of smallest
possible argument.

3A. From braid groups to trace forms. Let B(W ) be the topological braid group of W (see Broué, Malle
and Rouquier [Broué et al. 1998]), that is, the fundamental group of the space of regular orbits of W
on Cn . So there is an associated exact sequence

1 → P(W )→ B(W )→ W → 1,

with kernel the pure braid group P(W ). Let A := ZW [u±1
], where ZW denotes the ring of integers of QW

and where u = (ur j ) are algebraically independent elements indexed by conjugacy classes of distinguished
reflections r ∈ W and 1 ≤ j ≤ o(r). By [Broué et al. 1998, Definition 4.21] the (generic) Hecke algebra
H(W, u) of W is defined to be the quotient of the group algebra A[B(W )] of B(W ) over A by the ideal
generated by the elements (called deformed order relations)

o(r)∏
j=1

(r − ur j ) (H)
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for r running over the braid reflections of B(W ) (introduced as generators of the monodromy around a
hyperplane in [loc. cit., 2B]), with r denoting the image of r in W , a distinguished reflection. We will
write A[B(W )] → H(W, u), x 7→ hx , for the associated quotient map.

We have the following result, first conjectured in [Broué and Malle 1993], with the final cases having
been established by Chavli [2018], Marin [2019] and Tsuchioka [2020].

Theorem 3.1 (freeness conjecture). The algebra H(W, u) is A-free of rank |W |.

By results of the second author [Malle 1999, Corollary 4.8] there is a positive integer z such that the
field of fractions KW of Ã := ZW [ũ±1

] ⊇ A is a splitting field of H(W, u), where ũ = (ũr j ) are such that
ũz

r j = exp(−2π i j/o(r))ur j for all r, j .
Furthermore, by [Malle 2000, Proposition 7.1] to each irreducible character χ of KW ⊗A H(W, u) is

associated an element fχ ∈ Ã called the Schur element of χ . The Schur element pW := pW (u) := f1W of
the trivial character 1W is called the Poincaré polynomial of H(W, u) (a Laurent polynomial in the ũr j ).
For simply laced Coxeter groups, this is in fact the homogenisation of the usual Poincaré polynomial of W .

The collection {(χ, fχ ) | χ ∈ Irr(H(W, u))} is Galois-invariant, so in particular

tW,u(h) :=

∑
χ∈Irr(H(W,u))

1
fχ
χ(h)

lies in Frac(A) for all h ∈ H(W, u). Thus, this defines a symmetric A-linear map

tW,u : H(W, u)→ Frac(A), h 7→ tW,u(h),

called the canonical trace form on H(W, u). We denote also by tW,u its Frac(A)-linear extension to
HFrac(A)(W, u) := Frac(A)⊗A H(W, u). This form satisfies the following property:

Proposition 3.2. There exists a set B ⊂ H(W, u) consisting of monomials in images of braid reflections
with 1 ∈ B, such that tW,u(b)= δ1,b for b ∈ B, and the images in W of the b ∈ B under the canonical map
form a system of representatives of the conjugacy classes of W .

Proof. First note that the claim easily reduces to the case of irreducible reflection groups. For those, it
holds by the construction of the Schur elements fχ ; see [Malle 1997; 2000] for the exceptional types,
and [Geck et al. 2000, Theorem 1.3, Lemma 4.3 and Section 4.5] for the infinite series. □

Furthermore, tW,u satisfies a duality with respect to a certain central element, but this will not be of
importance here. In analogy with the case of finite Coxeter groups; the theory of spetses predicts the
following, see [Broué et al. 1999, Theorem-Assumption 2.1].

Conjecture 3.3. The form tW,u takes values in A and is a symmetrising form on H(W, u).

The above conjecture has been established for all imprimitive complex reflection groups G(e, 1,m),
for example, by Malle and Mathas [1998, Theorem].

Let W0 ≤ W be a reflection subgroup. We denote by H(W0, u0) the Hecke algebra of W0 whose
parameters u0 consist of those parameters for W whose corresponding reflections are, up to conjugacy,
contained in W0. Since nonconjugate reflections in W0 might be conjugate in W , H(W0, u0) is a
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specialisation of the generic Hecke algebra of W0 corresponding to an identification of certain of its
parameters. It follows from the freeness conjecture (Theorem 3.1) that H(W0, u0) is naturally a subalgebra
of H(W, u). Moreover, by the explicit results in [Malle 1999, Theorem 5.2] the field KW is also a splitting
field for H(W0, u0). By tW0,u0 we will mean the corresponding specialisation of the canonical form of
the generic Hecke algebra of W0. Recall that, by a theorem of Steinberg, all parabolic subgroups of W ,
that is, stabilisers in W ≤ GLn(C) of subspaces of Cn , are reflection subgroups of W .

Definition 3.4. We will say that H(W, u) is strongly symmetric if the following hold:

(1) tW,u is a symmetrising form on H(W, u) and there is a section W → W ⊂ B(W ) of the natural map
B(W )→ W containing 1 whose image in H(W, u) is an A-basis of H(W, u) with tW,u(hw)= δw,1

for all w ∈ W .

(2) For any parabolic subgroup W0 ≤ W , tW0,u0 is a symmetrising form on H(W0, u0) and

tW,u|H(W0,u0) = tW0,u0 .

Note that the assertion that (2) holds is referred to as the parabolic trace conjecture in [Chavli and
Chlouveraki 2022]. Strong symmetry is known to be satisfied in many cases; here we use the Shephard–
Todd notation for irreducible complex reflection groups.

Proposition 3.5. For the following irreducible groups, H(W, u) is strongly symmetric:

(a) For W a Coxeter group.

(b) For W = G(e, p, n) with n ̸= 2 or p odd.

(c) For W = Gi , i ∈ {4, 5, 6, 7, 8}.

Proof. First note that property (2) of being strongly symmetric follows for a parabolic subgroup W0 of W
if there exists W ⊂ B(W ) as in (1) such that

{hw | w ∈ W0} is an A-basis of H(W0, u0) and tW0,u0(hw)= δw,1 for all w ∈ W0. (2’)

For Coxeter groups, (1) and (2’) hold for any section W consisting of reduced expressions in the standard
generators; see [Geck and Pfeiffer 2000, Proposition 8.1.1]. For W = G(e, p, n) the existence of W
satisfying (1) is shown in [Malle and Mathas 1998, Theorem 5.1]. Since any parabolic subgroup of W
is a Young subgroup, that is, a product of symmetric groups with a group G(e, p, n′) for n′

≤ n, the
Ariki–Koike basis of H(W, u) considered in [Malle and Mathas 1998] also satisfies (2’); see also [Broué
et al. 1999, page 177]. The claim for Gi , i ∈ {4, 5, 6, 7, 8}, follows from the explicit results in [Boura
et al. 2020]. □

3B. Specialisations. By a specialisation we will mean a ring homomorphism ψ : A′
→ R where A′ and

R are commutative rings with A′
⊇ A. We then set Hψ(W, u) := R ⊗ (A′

⊗A H(W, u)). If ψ is inclusion
we will sometimes write HR(W, u) instead of Hψ(W, u). The restriction of any specialisation ψ to a
subring of A′ will again be denoted by ψ as will the composition of ψ with any inclusion R ↪→ R′.
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We will consider certain types of specialisations. For the remainder of this section, let R be an
integral domain containing ZW and let K be its field of fractions. Let ψ1 : R[ũ] → R be the R-linear
homomorphism defined by ψ1(ũr j ) := 1 for all r and j . So, ψ1 restricts to the specialisation

A → ZW , ur j 7→ exp(2π i j/o(r)).

By [Bessis 2001, Theorem 0.1], the Hecke algebra maps to the group algebra RW of W under ψ1.
Combining this with the freeness conjecture, the Tits deformation theorem gives that HK̃ (W, u) :=

K̃ ⊗A H(W, u) is isomorphic to the group algebra K̃ W , where K̃ = Frac(R[ũ]); see Theorem 2.9 and
note that KW ⊆ K̃ . Thus, we may and will identify the irreducible characters of HK̃ (W, u) with Irr(W )

via the bijection χφ ↔ φ induced by ψ1. This also induces a labelling of Schur elements of H(W, u)
by Irr(W ) and we will henceforth denote them as fφ , φ ∈ Irr(W ). Since KW is also a splitting field for
the Hecke algebra H(W0, u0) of any reflection subgroup W0 of W we also have HK̃ (W0, u)∼= K̃ W0. We
will similarly identify the irreducible characters of H(W0, u0) over K̃ with Irr(W0).

Now let q be a prime power and suppose that R contains q±1/z . We also consider R-linear specialisations
of the form

ψq : R[ũ±1
] → R, ũr j 7→ qar j/z,

for integers ar j . Any such ψq restricts to a specialisation

A → ZW , ur j 7→ ζ
j

o(r)q
ar j ,

with ζo(r) ∈ ZW an o(r)-th primitive root of unity.

Lemma 3.6. For all φ ∈ Irr(W ) we have ψ1( fφ)= φ(1)/|W | and ψq( fφ) ̸= 0.

Proof. The assertion on ψ1 follows since by construction the set B from Proposition 3.2 specialises
under ψ1 to a system of representatives of the conjugacy classes of W . Next, the following can be
observed from the explicit form of the Schur elements (and was first stated explicitly in [Chlouveraki
2009, Theorem 4.2.5]): any fφ is a product of a scalar, a monomial in the ũr j and a product of cyclotomic
polynomials 9i over KW evaluated at monomials Mi in the ũ±1

r j of total degree 0. Thus we need to see
that ψq(9i (Mi )) ̸= 0. This is clear if ψq(Mi ) is not a root of unity. Now ψq(Mi ) can only be a root
of unity, if the powers of q cancel completely in ψq(Mi ), which means that ψq(Mi )= ψ1(Mi ) and so
ψq(9i (Mi ))= ψ1(9i (Mi )). But the latter is a factor of ψ1( fφ)= φ(1)/|W | and hence nonzero. □

For the next result we note that symmetrising forms remain symmetrising after specialisation, that is if
θ : O → O′ is a ring homomorphism, Y is an O-algebra which is finitely generated and free as O-module
and τ : Y → O is a symmetrising form, then the induced O′-linear form τ ′ on Y ′

:= O′
⊗O Y satisfying

τ ′(1 ⊗ y)= τ(y) for y ∈ Y is a symmetrising form on Y ′.

Lemma 3.7. Assume that H(W, u) is symmetric over A with respect to the form tW,u with Schur elements
fφ ∈ Ã, φ ∈ Irr(H(W, u)), and let K = Frac(R). The algebra KHψq (W, u) is split semisimple. Let t ′ be
the induced form on Hψq (W, u). For each φ ∈ Irr(W ), ψq( fφ) is the corresponding Schur element of t ′.
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Proof. By Lemma 3.6 we have ψq( fφ) ̸= 0 for all φ ∈ Irr(W ). Now ψq is a concatenation of specialisation
maps whose kernel is a prime ideal of height 1. So by [Chlouveraki 2009, Theorem 2.4.12], KHψq (W, u)
is also split semisimple. The result thus follows by Tits’ deformation theorem (Theorem 2.9). □

Finally, for an indeterminate x we will also consider the spetsial specialisation

ψs : R[ũ±1
] → R[x±1/z

], ũr j 7→

{
x1/z if j = o(r),
1 if 1 ≤ j < o(r)

(so ψs(ur,o(r)) = x , ψs(ur j ) = exp(2π i j/o(r)) for j < o(r)). Clearly ψ1 factorises through ψs by
composition with x1/z

7→ 1 as does any specialisation ψq for the case ar j = 1 if j = o(r) and ar j = 0 if
j < o(r) by composition with x1/z

7→ q1/z . We write ψs,q for this latter specialisation, which will become
important in Section 5F. The spetsial specialisation links Schur elements of Hecke algebras to unipotent
character degrees of spetses; see Section 4D.

4. Conjectures for the principal block of a Zℓ-spets

In this section we define the dimension of the principal block of a Zℓ-spets, introduced in [Kessar et al.
2020, Section 6.2], and propose some conjectures around this notion.

4A. The principal block of a Zℓ-spets. Let ℓ be a prime and let q be a prime power not divisible by ℓ.
Recall that (under some conditions) the set of characters of the principal ℓ-block of a finite reductive
group G over Fq can be described as a union of sets of characters in bijection with the principal e-Harish-
Chandra series of unipotent characters of dual-centraliser subgroups CG∗(s)∗ where G∗ is the “Langlands
dual” of G and s runs over conjugacy classes of ℓ-elements of G∗. The principal block of a Zℓ-spets as
constructed in [Kessar et al. 2020] is modelled on this description: unipotent characters and the appropriate
Harish-Chandra series are provided by the theory of spetses whereas the indexing set of ℓ-elements and
corresponding centralisers comes from the theory of ℓ-compact groups and fusion systems. In the next
paragraph, we briefly recall this construction. Before doing so, we point out that the description of the
principal block of a Zℓ-spets does not involve going over to the dual as one would expect from analogy
with the group case. The reason for this is that the fusion system construction that we rely on is for the
moment only available for simply connected ℓ-compact groups. However, this departure does not lead to
an inconsistency in the group case under the conditions on ℓ with which we are concerned; see [Kessar
et al. 2020, Proposition 6.8].

We assume from now till the end of the section that ℓ > 2. Let W ≤ GL(L) be a finite spetsial (see
[Malle 1998, Section 3]) ℓ-adic reflection group on a Zℓ-lattice L , and let X be the associated connected
ℓ-compact group; see [Broto and Møller 2007, Theorem 1.1]. We assume moreover that X is simply
connected and that ℓ is very good for (W, L), in the sense of [Kessar et al. 2020, Definition 2.4]. Let
ϕ ∈ NGL(L)(W ) be of ℓ′-order and G = (Wϕ−1, L) be the associated simply connected Zℓ-spets. For
example any Weyl group W for which ℓ is very good (in the classical sense) determines a Zℓ-spets
satisfying the above conditions.
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Set G(q) := (Wϕ−1, L , q). Broto and Møller [2007] showed how to attach to these data a fusion system
F on a finite ℓ-group S, via the associated ℓ-compact group X ; see [Kessar et al. 2020, Theorem 3.2].
Here, S is an extension of a homocyclic ℓ-group T (the toral part) by a Sylow ℓ-subgroup of the associated
relative Weyl group Wϕ−1ζ−1 ; see [Kessar et al. 2020, Theorem 3.6]. Note that S and F only depend on
the ℓ-part ℓa of q − ζ , where ζ ∈ Z×

ℓ is the root of unity with q ≡ ζ (mod ℓ), not on q itself.
If G(q) arises from a connected reductive algebraic group G over Fq with Weyl group W and a

Frobenius morphism F : G → G with respect to an Fq-structure acting as ϕ on W , then S is a Sylow
ℓ-subgroup of GF and F is the ℓ-fusion system of GF on S; see [Kessar et al. 2020, Remark 3.3 and
Section 5.3]. In particular, T = (T F )ℓ where T is a maximal e-split torus of G.

Under our assumptions, for any s ∈ S the centraliser W (s) := CW (s) of s is again an ℓ-adic reflection
group, a reflection subgroup of W (see the proof of Theorem 5.2 or Proposition 2.3 of [Kessar et al.
2020]), and by [loc. cit., Proposition 6.2], it is again spetsial. We let CG(s) := (W (s)ϕ−1

s , L) be the
associated Zℓ-spets, where ϕs ∈ NWϕ(W (s)) is defined as in [loc. cit., Section 5.2].

Now recall from [Malle 1995] (for the infinite series of irreducible complex reflection groups) and
[Broué et al. 2014] (for the primitive ones) that associated to G as well as to the various CG(s) there are
sets of unipotent characters Uch(G) and Uch(CG(s)), respectively. If W is a Weyl group, these are just
the unipotent characters of an associated finite reductive group. For s ∈ S we let

E(G, s)= {γs,λ | λ ∈ Uch(CG(s))}

denote a set in bijection with Uch(CG(s)) and call it the characters of G in the series s. The sets
Uch(CG(s)) are in canonical bijection for conjugate elements s. Moreover, these sets only depend on ℓa ,
not on q itself. Any unipotent character λ comes with a degree (polynomial) λ(1) ∈ Zℓ[x]. The degree of
γs,λ ∈ E(G, s) is defined as

γs,λ(1) := |G : CG(s)|x ′λ(1) ∈ Zℓ[x].

Here, |G : CG(s)|x ′ means the prime-to-x part of the polynomial |G|/|CG(s)| ∈ Zℓ[x], where |G|, |CG(s)|
are the respective order polynomials; note that the latter divides the former by [Kessar et al. 2020,
Lemma 6.6].

Now by [Malle 1995, Folgerung 3.16 and 6.11] and [Broué et al. 2014, 4.31] for any Zℓ-spets H,
for any root of unity η the set of unipotent characters Uch(H) is naturally partitioned into so-called
η-Harish-Chandra series, and one among them, the principal η-Harish-Chandra series E(H, 1, η) of
Uch(H) containing 1G, is in bijection with the irreducible characters of the corresponding Springer–Lehrer
relative Weyl group. In particular, E(H, 1, 1) is in bijection with Irr(W ϕ).

With this, for ζ as above denote by E(G, s)ζ the subset of E(G, s) in bijection with the principal
ζ -Harish-Chandra series of Uch(CG(s)), and hence also in bijection with the irreducible characters of the
relative Weyl group W (s)ϕ−1

s ζ−1 .
The following definition from [Kessar et al. 2020, Section 6.2] is inspired by the results of Cabanes–

Enguehard on unipotent ℓ-blocks of finite reductive groups; indeed, if G is a rational spets for which ℓ is
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very good, then what we define are exactly the characters in the principal ℓ-block of the corresponding
finite group of Lie type G(q); see [loc. cit., Proposition 6.8].

Definition 4.1. Let G = (Wϕ−1, L) be a simply connected Zℓ-spets with ϕ of ℓ′-order such that ℓ is very
good for G (in the sense of [Kessar et al. 2020, Definition 2.4]) and q a prime power with q ≡ ζ (mod ℓ).
The characters in the principal block B0 of G(q) are

Irr(B0) :=

∐
s∈S/F

E(G, s)ζ ,

where the union runs over a set S/F of representatives s of F-conjugacy classes in S. The dimension of
B0 is defined as

dim(B0)=

∑
γ∈Irr(B0)

γ (1)2 =

∑
s∈S/F

∑
λ∈E(CG(s),1,ζ )

γs,λ(1)2 ∈ Zℓ[x].

Again, these do not depend on q but only on ℓa
= (q − ζ )ℓ.

The dimension of the principal ℓ-block B0 of a finite group G with Sylow ℓ-subgroup S satisfies
(dim B0)ℓ = |S| (see Proposition 2.8). We conjecture that our dimension of the principal block dim(B0)

of G(q) behaves similarly.

Conjecture 4.2. Let G = (Wϕ−1, L) be a simply connected Zℓ-spets such that ℓ is very good for G. Let
q be a prime power not divisible by ℓ and S the associated ℓ-group. Then

(dim(B0)|x=q)ℓ = |S|.

By further analogy with the group case (see Proposition 2.8) we also conjecture the following global-
local statement:

Conjecture 4.3. In the setting of Conjecture 4.2, if ζ ∈ Z×

ℓ with q ≡ ζ (mod ℓ) we have

(dim(B0)|x=q)ℓ′ ≡ |Wϕ−1ζ−1 |ℓ′ (mod ℓ).

Note that Conjectures 4.2 and 4.3 combine to form Conjecture 1.

Example 4.4. We describe S, F , and Irr(B0) in a special case relevant to Theorem 1. Suppose that
q ≡ 1 (mod ℓ) and ϕ = 1. Then T may be identified with L/ℓa L where ℓa

∥ (q − 1), W = Wϕ−1ζ−1 and
the action of W on T in S is the one inherited from the action of W on L . Assume in addition that W
is an ℓ′-group. Then the condition that ℓ is very good for (W, L) always holds; see [Kessar et al. 2020,
Proposition 2.6]. Further, S = T and F is the ℓ-fusion system FSW (S) of the group SW on S; see [Kessar
et al. 2020, Theorem 3.4] and [Broto and Møller 2007, Theorem 9.8]. Moreover, for any s ∈ S = T the
subgroup W (s)ϕ−1

s ζ−1 equals W (s) and hence E(G, s)1 is in bijection with Irr(W (s)). So Irr(B0) is in
bijection with W -classes of pairs (s, φ) where s ∈ S and φ ∈ Irr(W (s)).
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4B. Decomposition numbers. Suppose in this section that |W | is prime to ℓ, that ℓ | (q − 1) and that
ϕ = 1. Recall the description of the principal block B0 under these assumptions given in Example 4.4.

Since W is an ℓ′-group and S an ℓ-group, we may identify IBr(SW ) with the subset Irr(W ) of Irr(SW ).
Similarly, we think of the unipotent characters in B0 as the irreducible Brauer characters of B0 and set

IBr(B0) := E(G, 1)1 ⊆ Irr(B0).

We associate decomposition numbers, and formal degrees of projective indecomposable characters to B0

as follows.
The F-classes of elements of S are the W -conjugacy classes of S. Further, since (|W |, ℓ) = 1, the

Glauberman–Isaacs correspondence gives that the actions of W on S and on Irr(S) are permutation
isomorphic. Thus there is a bijection between the set of W -classes of Irr(S) and the set of W -classes of S
such that if the class of s ∈ S corresponds to the class of ŝ ∈ Irr(S), then Ws = Wŝ where Ws,Wŝ denotes
the stabiliser in W of s, ŝ respectively. Note that Ws was denoted W (s) in Example 4.4. Such a bijection
between the set of W -classes of Irr(S) and of S will be called W -equivariant if in addition the (class of)
1 ∈ S is sent to the (class of the) trivial character of S. Note that a W -equivariant bijection always exists.

By Clifford theory,

Irr(SW )=

∐
θ∈Irr(S)/W

Irr(SW |θ),

where the union runs over a set Irr(S)/W of representatives θ of W -conjugacy classes of Irr(S) and where
Irr(SW |θ) denotes the set of irreducible characters of SW covering θ . Moreover, since |W | is prime to ℓ,
Irr(SW |θ) is in bijection with Irr(Wθ ).

By the description of Irr(B0) given in Example 4.4, |Irr(B0)| = |Irr(SW )|. A bijection 2 : Irr(SW )→

Irr(B0), γ 7→ γ̂ , will be said to be W -equivariant if there exists a W -equivariant bijection Irr(S)→ S
such that for corresponding elements s ∈ S and ŝ ∈ Irr(S), 2 restricts to a bijection Irr(SW |ŝ)→ E(G, s)1.
Since IBr(SW ) is in bijection with Irr(W |1), any W -equivariant bijection Irr(SW )→ Irr(B0) restricts to
a bijection IBr(SW )→ IBr(B0).

Let Irr(SW )→ Irr(B0), γ 7→ γ̂ , be a W -equivariant bijection. We declare the decomposition matrix of
B0 to be the ℓ-decomposition matrix of SW via this bijection, that is if dγ ν is the decomposition number in
SW corresponding to γ ∈ Irr(SW ) and ν ∈ IBr(SW ), then we regard dγ ν also as the decomposition number
for γ̂ ∈ Irr(B0) and ν̂ ∈ IBr(B0). Recall that for any γ ∈ Irr(SW ), we have γ (1)=

∑
ν∈IBr(SW ) dγ νν(1).

In Proposition 4.11 we show that the analogous equations hold in B0. We define

deg8ν̂ :=

∑
γ∈Irr(SW )

dγ ν deg(γ̂ ) ∈ Zℓ[x] for ν̂ ∈ IBr(B0),

to be the formal degrees of projective indecomposable characters of B0. The following is a restatement of
Conjecture 2.

Conjecture 4.5. In the setting of Conjecture 4.2, if W has order coprime to ℓ, ϕ is trivial and q ≡ 1
(mod ℓ), then for some W -equivariant bijection Irr(SW ) ∼

−→ Irr(B0)we have that |S| divides (deg8ν̂)|x=q

for all ν̂ ∈ IBr(B0).
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4C. The rational and the primitive cases. We’ll prove the above conjectures for most W of order coprime
to ℓ in Theorem 5.20. For the moment, let us see why they hold in the rational case:

Proposition 4.6. Conjectures 4.2, 4.3 and 4.5 hold if G is a rational spets underlying a finite reductive
group.

Proof. Let G be a connected reductive group over an algebraically closed field of characteristic p and
F : G → G a Frobenius endomorphism with respect to an Fq -structure, such that G is the underlying spets.
That is, ϕ is the automorphism of W induced by F . Recall that S may be identified with a Sylow ℓ-subgroup
of GF and F with the fusion system FGF (S); see [Kessar et al. 2020, Remark 3.3(a) and Section 5.3].
Let d be the order of ζ , hence the order of q modulo ℓ. By [loc. cit., Proposition 6.8], there is a degree
preserving bijection between Irr(B0) and the set of irreducible characters of the principal ℓ-block B0(GF ).
Note that the bijection given in [loc. cit., Proposition 6.8] is stated to preserve defects but it is easy to check
from the setup that for any irreducible character γs,λ in B0, γs,λ(1)|x=q is the degree of the corresponding
character of B0(GF ). Now the assertion regarding Conjecture 4.2 follows from Proposition 2.8.

As described in Section 4A, S = T .(W1)ℓ with W1 := Wϕ−1ζ−1 . Under our assumptions on ℓ, L :=CG(T )
is a Levi subgroup, and moreover NG(S)F

≤ NG(T )F
= NG(L)F ; see [Malle 2007, Theorems 5.9 and 5.14].

Let H := NG(L)F . Then Proposition 2.8 shows that in order to prove Conjecture 4.3 for G it suffices to
see that (dim B0(H))ℓ′ ≡ |W1|ℓ′ (mod ℓ). Now B0(H) is isomorphic to the principal block of H/Oℓ′(LF ).
Since S/T acts faithfully on T , T is a Sylow ℓ-subgroup of LF , so H/Oℓ′(LF )∼=T (NG(L)F/LF )∼=T W1,
the latter by the definition of relative Weyl groups. The result follows as T W1 has a unique ℓ-block.

Finally, we prove Conjecture 4.5 in this situation. So assume ϕ = 1 and q ≡ 1 (mod ℓ). Then W1 = W .
As recalled above, there is a degree preserving bijection Irr(B0)→ Irr(B0(GF )). On the other hand, by a
result of Puig [1994, Theorem 5.5, Corollary 5.10], as explained in [Cabanes 2018, Proposition 8.11], the
principal block of GF over a suitably large complete discrete valuation ring O of characteristic 0, is Morita
equivalent to the group algebra O[SW ] (note here S = T as |W | is prime to ℓ and that W = NG(T )F/T F ,
where T is a Sylow 1-torus of G with T the Sylow ℓ-subgroup of T F ). In particular the decomposition
numbers of O[SW ] are decomposition numbers of B0(GF ). Thus (deg8ν̂)|x=q is the dimension of a
projective indecomposable module of B0(GF ). Now Conjecture 4.5 follows since the dimension of any
projective indecomposable module of a finite group algebra OG is divisible by |G|ℓ (for instance, apply
Proposition 2.7 with respect to the standard symmetrising form on OG.) □

To deal with the primitive cases, we use the following:

Lemma 4.7. Let (W, L) be a finite ℓ-adic reflection group with |W | prime to ℓ and let W0 ≤ W be a
parabolic subgroup. For 1 ≤ k ≤ rk(W0) there exist bW0

k ∈ Z such that for any prime power q ≡ 1 (mod ℓ)
and F the fusion system attached to (W, L , q), on a homocyclic ℓ-group T of exponent a, the number of
W -orbits (F-classes) of elements of T with stabiliser conjugate to W0 is given by

1
|NW (W0) : W0|

rk(W0)∏
k=1

(ℓa
− bW0

k ).
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Proof. Let A denote the set of 1-eigenspaces of reflections in T and denote by L = L(A) the lattice
of all intersections of elements of A with minimal element T . By Steinberg’s theorem (see [Kessar
et al. 2020, Proposition 2.3]), each Y ∈ L is the centraliser in T of some parabolic subgroup. Thus by
inclusion/exclusion, the number of W -orbits of elements of T with stabiliser conjugate to W0 is given by
the Euler characteristic of the sublattice {Y ∈ L | CT (W0) ≤ Y } divided by |NW (W0) : W0|. This Euler
characteristic has the stated form by [Orlik and Solomon 1982, Theorem 1.2]. □

The tables in [Orlik and Solomon 1982] explicitly list the integers bW0
k (and the quantities |NW (W0) :W0|)

for all parabolic subgroups W0 of all exceptional complex reflection groups W . An immediate consequence
is the following result:

Proposition 4.8. Conjectures 4.2 and 4.3 hold for all primitive spetsial ℓ-adic reflection groups with
q ≡ 1 (mod ℓ).

Proof. If W is a Weyl group, the claim follows from Proposition 4.6. For the remaining Coxeter groups,
it follows from Theorem 5.20. Otherwise since ℓ is very good, we must have ℓ∤|W | and

W ∈ {G4,G6,G8,G14,G24,G25,G26,G27,G29,G32,G33,G34}.

For all of these only ϕ = 1 is possible, by [Broué et al. 1999, Proposition 3.13]. We explicitly calculate
dim(B0) as a polynomial in x using Lemma 4.7 and the tables in [Broué et al. 2014, Appendix]. The
required congruences for dim(B0)|x=q are readily checked via the substitution q 7→ 1 + rℓa for r ∈ Z. □

4D. Character degrees and Schur elements. The proof of Theorem 1 goes through the connection
between unipotent character degrees of spetses and Schur elements of corresponding Hecke algebras. We
describe this connection in the relevant special case. Let G = (W, L) be a simply connected Zℓ-spets
such that ℓ is very good for G and q a prime power and let ψs : Zℓ[ũ±1

] → Zℓ[x1/z
] be the spetsial

specialisation described in Section 3B with R = Zℓ. The degrees of the unipotent characters Uch(G) of
G in the principal 1-Harish-Chandra series E(G, 1)1 are given by

ψs( f1W )/ψs( fφ) for φ ∈ Irr(W );

see [Malle 1995, Sätze 3.14, 6.10] for the infinite series and [Broué et al. 2014, Axiom 4.16] for the
exceptional types. This leads to the following formula for character degrees in the principal block B0

of G(q).

Lemma 4.9. Assume q ≡ 1 (mod ℓ). Then the degrees of the characters in Irr(B0) are given by∐
s∈S/F

{
|CG(T)|x ′

|CCG(s)(Ts)|x ′

ψs(pW )

ψs( fs,φ)

∣∣∣ φ ∈ Irr(W (s))
}

where T, Ts is a Sylow 1-torus of G, CG(s), respectively, and the fs,φ denote the Schur elements of the
Hecke algebra H(W (s), us) of W (s), with the parameters us inherited from H(W, u).
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Proof. As mentioned above for any s ∈ S the degrees of the unipotent characters in the principal 1-series
of E(CG(s), 1) are given by

{ψs(pW (s))/ψs( fs,φ) | φ ∈ Irr(W (s))} ⊂ Zℓ[x].

Now by [Malle 2000, Proposition 8.1] we have ψs(pW ) = ψs( f1) = |G : CG(T)|x ′ and accordingly
ψs(pW (s))= |CG(s) : CCG(s)(Ts)|x ′ . Since by definition the degree of γs,φ ∈ Irr(B0) is

|G : CG(s)|x ′ψs(pW (s))/ψs( fs,φ),

our claim follows. □

Lemma 4.10. In the situation of Lemma 4.9, assume moreover that |W | is coprime to ℓ. Then the degrees
of the characters in Irr(B0) are given by∐

s∈S/F

{ψs(pW )/ψs( fs,φ) | φ ∈ Irr(W (s))},

where fs,φ denotes the Schur elements of the Hecke algebra H(W (s), us).

Proof. If ℓ does not divide |W | then we have S = T , that is, the centraliser of any ℓ-element s ∈ S contains
the Sylow 1-torus T, whence Ts = T for all s. Now the centraliser of a Sylow 1-torus is a maximal torus
since the coset Wφ always contains a 1-regular element by [Malle 2006, Proposition 3.3]; for this note
that none of the exceptions in [loc. cit.] is spetsial. So in fact CG(T)= CCG(s)(T) and the stated formula
follows from Lemma 4.9. □

By analogy with the group case, we now establish a Brauer reciprocity formula for the Brauer characters
and decomposition numbers defined in Section 4B.

Proposition 4.11. Suppose that W is ℓ-adic spetsial of order coprime to ℓ, ϕ = 1 and q ≡ 1 (mod ℓ).
Then for any W -equivariant bijection ˆ : Irr(SW )→ Irr(B0) we have

deg(γ̂ )=

∑
χ∈IBr(SW )

dγ,χ deg(χ̂).

Proof. By Clifford theory the ordinary irreducible characters of SW =T W are obtained as

Irr(T W )= {IndT W
T Wθ

(θ ⊗ ν) | θ ∈ Irr(T ), ν ∈ Irr(Wθ )}.

Since T = Oℓ(T W ) and |W | is prime to ℓ, IBr(T W ) consists of the restrictions to ℓ′-classes of the
irreducible characters 1 ⊗ ν, ν ∈ Irr(W ), and we may (and will) thus identify IBr(T W ) with Irr(W ). The
ℓ-decomposition numbers of T W are then described as follows: If η ∈ Irr(T W ) then its restriction to
ℓ′-classes η0 can be considered as character of W , and the multiplicity of χ ∈ IBr(T W )= Irr(W ) in η0 is
just ⟨η, χ⟩. That is, if η = IndT W

T Wθ
(θ ⊗ ν) as above, then this multiplicity is ⟨ν, χ |Wθ

⟩.
Now assume that γ ∈ Irr(B0). Then there is s ∈ T and λ ∈ Uch(CG(s))1 such that γ = γs,λ. Let

φ ∈ Irr(W (s)) be the irreducible character indexing λ ∈ Uch(CG(s))1. Now by Lemma 4.10 we have
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γs,λ(1) = ψs(pW )/ψs( fs,φ). On the other hand, for γ ′
∈ E(G, 1)1 labelled by χ ∈ Irr(W ) we have

γ ′(1)= ψs(pW )/ψs( fχ ). Thus the required equality reads

ψs( fs,φ)
−1

=

∑
χ∈Irr(W )

⟨φ, χ |Ws ⟩ψs( fχ )−1.

But this holds for spetsial W by the validity of 1-Howlett–Lehrer theory; see [Malle 1995, Sätze 3.14,
6.10] for the infinite series and [Broué et al. 2014, Axiom 4.16] for the exceptional types. □

5. Yokonuma type algebras for torus normalisers for ℓ-adic reflection groups

When the order of W is prime to ℓ our definition of principal block and Conjectures 4.2, 4.3 and 4.5 are
related to a generalisation of Yokonuma algebras to ℓ-adic reflection groups. The classical Yokonuma
algebra was defined as the endomorphism algebra of the permutation representation of a finite Chevalley
group on a maximal unipotent subgroup [Yokonuma 1967]. It is a deformation of the group algebra
of the normaliser of a maximally split torus, to which it becomes isomorphic over a splitting field; see
[Lusztig 2005, Section 34]. We propose to extend this construction over the ℓ-adic integers to “torus
normalisers” arising from ℓ-compact groups attached to arbitrary ℓ-adic reflection groups. This will allow
us in Section 5F to prove Conjectures 4.2, 4.3 and 4.5 in the case q ≡ 1 (mod ℓ) and ϕ = 1.

5A. Definition and first properties. Let ℓ be a prime and W be a finite ℓ-adic reflection group, that is,
W ≤ GL(L) with L = Zn

ℓ . Let q be a prime power with q ≡ 1 (mod ℓ) and a the positive integer such
that ℓa

∥ (q − 1). Let T = L/ℓa L . Then T is homocyclic of exponent ℓa and is equipped with a natural
action of W . For any reflection r ∈ W we set Tr := [T, r ] := ⟨[t, r ] | t ∈ T ⟩ ≤ T .

The topological braid group B := B(W ) of W (see Section 3A) acts naturally on T through its
quotient W . We let B̂ be the semidirect product of T with B. Observe that P(W ) acts trivially on T , so
B̂ is a (nonsplit) extension of T × P(W ) by W .

Recall from Section 3A the indeterminates u = (ur j ) attached to W . We define a new set v = (vr j ) of
indeterminates by the linear relations

ur j = ζ
j

o(r)(1 + |Tr |vr j ) for r ∈ W, 1 ≤ j ≤ o(r),

where, for any k | (ℓ− 1), ζk ∈ Zℓ denotes a primitive k-th root of unity. Let Â = Zℓ[v, u−1
].

Definition 5.1. Define Y(W, a, v) to be the quotient of the group algebra Â[B̂] of B̂ = T ⋊ B over Â by
the ideal generated by the deformed order relations

o(r)∏
j=1

(r − ζ
j

o(r)(1 + vr j Er )) with Er :=

∑
t∈Tr

t ∈ Â[T ], (†)

where r runs over the braid reflections of B ≤ B̂ and r denotes the image of r in W . We will write
x 7→ yx for the canonical map Â[B̂] → Y(W, a, v).
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When W is a Weyl group, the deformed order relation (†) generalises the quadratic one from the
classical Yokonuma algebra [Juyumaya and Kannan 2001, Theorem 2(2.1)], see also [Marin 2018a,
2.2(3)]. In Section 5E, we show that in this case a suitable specialisation of Y is isomorphic to a truncation
of the classical Yokonuma algebra.

As far as we can tell, there is no direct relation between the algebra Y(W, a, v) defined above and the
“cyclotomic Yokonuma–Hecke algebra” considered by Chlouveraki and d’Andecy [2016, Section 2] for
the reflection group W = G(d, 1, n); in their algebra, the underlying reflection group W only acts via
its quotient G(1, 1, n) ∼= Sn on the torus. On the other hand, our construction is related to an algebra
defined by Marin [2018a], see Remark 5.16 below.

Henceforth, for simplicity we set Y := Y(W, a, v). Note that the specialisation ψ1 : Zℓ[u±1
] → Zℓ,

ur j 7→ ζ
j

o(r), extends to a homomorphism Â → Zℓ, vr j 7→ 0.

Lemma 5.2. The following hold:

(a) Under the specialisation ψ1 : Â → Zℓ, vr j 7→ 0 (so ur j 7→ ζ
j

o(r)), the algebra Y specialises to the
group algebra of T W .

(b) The quotient of Y by the ideal I generated by the {yt − 1 | t ∈ T } is isomorphic to the extension
Â ⊗A H(W, u) of the generic Hecke algebra of W .

(c) The natural Â-module homomorphism Y → H(W, u), yr 7→ hr , in (b) has a splitting H(W, u)→

Â[ℓ−1
] ⊗ Â Y given by hr 7→ |T |

−1 ∑
t∈T yt yr .

Proof. The first parts follows directly from the deformed order relation (†) and the corresponding result
of Bessis [2001] for B. For (b), let J1 be the ideal of Â[B̂] generated by the elements {t − 1 | t ∈ T }.
Then I is the ideal of Â[B̂] generated by J1 and the elements (†) as r runs over the braid reflections.
Let L be the ideal of Â[B̂] generated by J1 and the

∏o(r)
j=1(r − ur j ) as r runs over braid reflections.

Then H(W, u) = Â[B]/L . For an element x =
∏o(r)

j=1(r − ζ
j

o(r)(1 + Ervr j )) ∈ J1 of the form (†) set
x ′

=
∏o(r)

j=1(r − ur j ). Then x + J1 = x ′
+ J1, whence I = L .

For (c), note that |T |
−1 ∑

t∈T yt is a central idempotent of Â[ℓ−1
] ⊗ Â Y . □

We make some further straightforward observations. First, since for ℓ > 2 all reflections r in an ℓ-adic
reflection group have order prime to ℓ, in that case Tr ∼= Z/ℓaZ.

For all braid reflections r , the element Er commutes with r and E2
r = |Tr |Er . Thus, over Â[ℓ−1

],
the element E ′

r = |Tr |
−1 Er is idempotent. Multiplying (†) with E ′

r respectively 1 − E ′
r we obtain the

elements

(1 − E ′

r )(r
o(r)

− 1) and E ′

r

o(r)∏
j=1

(r − ur j ), (†′)

which generate the same ideal as (†) over Â[ℓ−1
]. Thus, (†) “interpolates” between the group relation for

r and the deformed Hecke algebra relation (H) for r . Let us also note the following:
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Lemma 5.3. The constant coefficient in the deformed order relation (†) is invertible in Â[T ].

Proof. The constant term in the polynomial relation (†) for a braid reflection r is (up to a root of unity) a
product of factors 1 + vr j Er , which has inverse

1 − ζ
j

o(r)vr j/ur j Er ∈ Â[T ]. □

We now give a more tangible description of Y(W, a, v). Recall that the braid group B has a presentation
in terms of certain sets of braid reflections together with so-called braid relations, encoded in braid
diagrams, such that adding the order relations for the chosen braid reflections, we obtain a presentation of
W ; see [Broué et al. 1998, Theorem 2.27] and [Bessis 2001, Theorem 0.1]. Choose reflections r1, . . . , rm

in W corresponding to a braid diagram for B. It is known that any distinguished reflection of W is then
conjugate to one of the ri , and by their construction all braid reflections projecting onto a fixed reflection of
W are conjugate in B. Then using Lemma 5.3 we see that Y is the associative unital Â-algebra generated
by elements {yt , yri | t ∈ T, 1 ≤ i ≤ m} subject to:

• The yt satisfy the same relations as the corresponding group elements t (i.e., they generate a
subalgebra isomorphic to (possibly a quotient of) the group algebra Â[T ]).

• The action relations between the t, ri , with t replaced by yt and ri by yri .

• The braid relations between the yri .

• The deformed order relations (†) for the yri .

5B. On the structure of specialised Yokonuma type algebras. We show that under some additional
hypothesis certain specialisations of Y are isomorphic to the group algebra of T W . The main results are
Theorems 5.7 and 5.10.

For a specialisation ψ : Â → R to a commutative ring R, let Yψ := R ⊗ Â Y denote the extension of
scalars by ψ . Then Yψ is the quotient of the group algebra RB̂ by the ideal

〈 o(r)∏
j=1

(r − ζ
j

o(r)(1 +ψ(vr j )Er )) | r ∈ B braid reflection
〉
.

Let W0 be a parabolic subgroup of W and B0 = B(W0) be its braid group. In [Broué et al. 1998,
Section 2D] is constructed an embedding B0 ↪→ B, well-defined up to P-conjugation, where B = B(W ),
P = P(W ). By [loc. cit., Propositions 2.29 and 2.18] this satisfies:

Lemma 5.4. Let W0 be a parabolic subgroup of W . Let B̃0 be the inverse image of W0 in B and let P̃0 be
the subgroup of P generated by the elements ro(r), as r runs over the distinguished reflections in W \ W0.
Let B0 be the braid group of W0. The above inclusion B0 ↪→ B has image contained in B̃0 and induces an
isomorphism B0

∼
−→ B̃0/P̃0.
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So we have the following diagram with exact columns:

1

��

1

��

1

��

P0
� � //

��

P

��

P̃0 ⋊ P0 P

��

B0
� � //

��

B̃0

��

P̃0 ⋊ B0
� � // B

��

W0

��

W0
� � //

��

W
��

1 1 1

Remark 5.5. Examples show that the isomorphism B0
∼

−→ B̃0/P̃0 might more generally hold for
all reflection subgroups W0 of W generated by distinguished reflections (see e.g., [Broué et al. 1998,
Proposition 3.24]), so that the assumptions of the subsequent Theorem 5.7 might be relaxed accordingly.
We will not need this here.

If Wθ is a parabolic subgroup of W , we will denote by uθ the set u0 in the notation of Section 3A if
Wθ is the reflection subgroup W0.

Lemma 5.6. Let R be an integral domain containing the |T |-th roots of unity with field of fractions K of
characteristic 0 and let ψ : Â → R be a specialisation. Let I be the ideal of R B̂ generated by{ o(r)∏

j=1

(r − ζ
j

o(r)(1 +ψ(vr j )Er ))

∣∣∣ r ∈ B braid reflection
}
.

Let θ ∈ IrrK (T ) and eθ ∈ K T the corresponding central idempotent. Suppose that the stabiliser Wθ of θ
is a parabolic subgroup of W . Then eθ RB̂eθ/eθ I eθ ∼= Hψ(Wθ , uθ ) as R-algebras. Here we regard RB̂
as a subset of K B̂.

Note that the assumption that R contains the |T |-th roots of unity is needed in order to ensure that any
ordinary irreducible character of T is R-valued.

Proof. Let B̃θ be the full inverse image of Wθ in B. For a braid reflection r ∈ B set

ir :=

o(r)∏
j=1

(r − ζ
j

o(r)(1 +ψ(vr j )Er ))= (1 − E ′

r )(r
o(r)

− 1)+ E ′

r

o(r)∏
j=1

(r −ψ(ur j ))

where E ′
r = |Tr |

−1 Er . Then

{eθ xir yeθ | x, y ∈ B̂, r ∈ B braid reflection}

generates eθ I eθ as R-module. The set of braid reflections is invariant under conjugation by B, and
vr j = vr ′ j whenever r and r ′ are conjugate. Thus, if x = tg, y = hs with t, s ∈ T and g, h ∈ B and r is a
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braid reflection, then

eθ xir yeθ = θ(t)θ(s)eθ igr gheθ , where θ(t), θ(s) ∈ R.

Thus, eθ I eθ is the R-span of {eθ ir xeθ | x ∈ B, r ∈ B braid reflection}.
Now r ∈ Wθ if and only if θ(t−1tr )= 1 for all t ∈ T . Thus, eθ E ′

r = eθ if r ∈ Wθ and zero otherwise,
and so

eθ ir =

{
eθ (ro(r)

− 1) if r /∈ Wθ ,

eθ
∏

j (r −ψ(ur j )) if r ∈ Wθ .

Further, since ro(r)
∈ P commutes with T , we have eθ (ro(r)

− 1)xeθ = (ro(r)
− 1)eθ xeθ and if r ∈ Wθ ,

then

eθ
∏

j

(r −ψ(ur j ))xeθ =

∏
j

(r −ψ(ur j ))eθ xeθ .

For any x ∈ B, eθ xeθ = xeθ if x ∈ B̃θ and zero otherwise. Hence eθ I eθ is the R-span of

{(ro(r)
− 1)xeθ | x ∈ B̃θ , r /∈ Wθ } ∪

{∏
j

(r −ψ(ur j ))xeθ
∣∣∣ x ∈ B̃θ , r ∈ Wθ

}
.

By the same argument we have that eθ R B̂eθ =eθ R[T B̃θ ]eθ and since eθ is T B̃θ -stable and eθ is idempotent
we also have eθ R[T B̃θ ]eθ = R[T B̃θ ]eθ . Since θ is linear and B̃θ -stable, there is an R-algebra isomorphism
R B̃θ ∼= R[T B̃θ ]eθ given by x 7→ xeθ . This induces an isomorphism

RB̃θ/J ∼= R[T B̃θ ]eθ/eθ I eθ

where J ⊴RB̃θ is the ideal generated by {ro(r)
−1 | r /∈ Wθ }∪{

∏
j (r −ψ(ur j )) | r ∈ Wθ }. By Lemmas 5.4

and 5.2(b), RB̃θ/J ∼= Hψ(Wθ , uθ ). □

Theorem 5.7. Assume all stabilisers Wθ of elements θ ∈ Irr(T ) are parabolic subgroups of W . Let K be
a field of characteristic 0 containing the |T |-th roots of unity and let ψ : Â → K be a ring homomorphism.
Then:

(a) Yψ ∼=

∏
θ

Mat|W :Wθ |(K )⊗K Hψ(Wθ , uθ )

as θ runs over a set of representatives of W -orbits on IrrK (T ).

(b) dimK Yψ = |T W |.

(c) Suppose that KW ⊆ K and ψ is the inclusion homomorphisms. Then Yψ ∼= K [T W ].

Proof. Part (a) is immediate from Lemmas 2.3 and 5.6 applied with R = K . Part (b) follows from part (a)
by Theorem 3.1 and Lemma 2.3(b) applied with G = T W .

Now assume K and ψ are as in (c). As explained in Section 3B, for all θ ∈ Irr(T ), Hψ(Wθ , uθ ) =

K ⊗ Â H(Wθ , uθ )∼= K Wθ . Now (c) follows from (a) and Lemma 2.3(a) applied with G = T W and I = 0,
noting that K (T W )θeθ ∼= K Wθ . □
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We now turn to specialisations of Â to finite extensions of Zℓ. For the rest of this section, the following
notation will be in effect. Let Zℓ ⊆ O be a complete discrete valuation ring with uniformiser π , residue
field k and field of fractions K . Let ψ : Â → O be a Zℓ-algebra homomorphism and denote by ψ the
composition of ψ with the canonical map O → k. Recall that for x ∈ Â[B̂] we denote by yx its image in
Y . For y ∈ Y let ỹ := 1O ⊗ y ∈ Yψ , and ȳ := 1k ⊗ y ∈ Yψ .

Lemma 5.8. Let W be a set of coset representatives of P in B and let J be the ideal of Yψ generated by
{ỹt −1 | t ∈ T } and π . Then, kW ∼= Yψ/J via the map which sends w ∈ W to ỹw + J for w ∈ W lifting w.

Proof. For a distinguished reflection r ∈ W , ℓ divides |Tr |, hence ur j ∈ I . Now the result follows from
Lemma 5.2(b) (suitably adapted to the coefficient ring O). □

Theorem 5.9. Let W be a set of coset representatives of P in B. If all stabilisers Wθ of elements θ ∈ Irr(T )
are parabolic subgroups of W , then X := {ỹt ỹw | t ∈ T,w ∈ W} is an O-basis of Yψ .

Proof. We first show that {ȳt ȳw | t ∈ T,w ∈ W} generates Yψ as k-vector space. Let R ⊆ Yψ be the
k-span of {ȳt | t ∈ T }. Then R is a commutative k-subalgebra of Yψ . Let Q be the ideal of R generated
by {ȳt − 1 | t ∈ T }. Since T is a finite abelian ℓ-group, Q is a nilpotent ideal of R. We consider Yψ as a
left R-module. Since T is normal in B̂, the R-submodule QYψ of Yψ is an ideal of Yψ . Further, QYψ
is the image of the ideal J of Lemma 5.8 in Yψ/πYψ ∼= Yψ and for any w ∈ W , ȳw + QYψ = ỹw + J .
So, by Lemma 5.8, {ȳw + QYψ | w ∈ W} generates Yψ/QYψ as k-vector space and hence as R-module.
Applying Lemma 2.1 with M = Yψ and the nilpotent ideal Q we obtain that {ȳw | w ∈ W} generates Yψ
as R-module. Since R is generated by {ȳt | t ∈ T } as k-vector space we have the required result.

Now we claim that in order to prove the theorem it suffices to prove that Yψ is finitely generated as
O-module. Indeed, suppose that Yψ is finitely generated as O-module. Then by the previous paragraph
and the standard Nakayama lemma (Lemma 2.1) applied to the ring O and ideal πO, the set X = {ỹt ỹw |

t ∈ T,w ∈ W} generates Yψ as O-module. Then 1 ⊗ X generates K ⊗O Yψ as K -vector space and since
the latter has dimension |T W | by Theorem 5.7(b), X is an O basis of Yψ .

It remains only to show that Yψ is finitely generated as O-module. For this, suppose first that O-contains
the |T |-th roots of unity. Let I be the ideal of O B̂ generated by the (†)-relations, let

I ′
=

⊕
θ,µ∈Irr(T )

eθ I eµ ⊆

⊕
θ,µ∈Irr(T )

eθO B̂eµ

with eθ ∈ K T as in Lemma 5.6 and let Ĩ =O B̂∩ I ′. Since I ′ is an ideal of
⊕

eθO B̂eµ, Ĩ is an ideal of O B̂
containing I . On the other hand, |T |eθ ∈ O B̂ for all θ , hence |T |

2eθ I eµ ⊆ I and |T |
2 Ĩ ⊆ I . The kernel

of the composition of the inclusion O B̂ ↪→
⊕

eθO B̂eµ with the surjection
⊕

eθO B̂eµ↠
⊕

eθO B̂eµ/I ′

is Ĩ . Thus, O B̂/ Ĩ is isomorphic to a submodule of
⊕

eθO B̂eµ/I ′. On the other hand,⊕
θ,µ∈Irr(T )

eθO B̂eµ/I ′ ∼=

⊕
θ,µ∈Irr(T )

eθO B̂eµ/eθ I eµ.
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If µ=
x θ for x ∈ B, then eθO B̂eµ/eθ I eµ ∼= eθO B̂eθ/eθ I eθ via right multiplication by x and it follows

from Lemma 5.6 and Theorem 3.1 that eθO B̂eθ/eθ I eθ is finitely generated free as O-module. If θ, µ
are in different W -orbits, then eθO B̂eµ = 0. By the above displayed equation,

⊕
eθO B̂eµ/I ′ is finitely

generated free as O-module. Since O is a principal ideal domain, and since O B̂/ Ĩ is isomorphic to
a submodule of

⊕
eθO B̂eµ/I ′, it follows that O B̂/ Ĩ is finitely generated free as O-module. Also,

πr ( Ĩ/I )= 0 for r equal to twice the π -adic valuation of |T |. We saw above that Yψ/πYψ ∼=Yψ is finitely
generated as k-vector space and hence as O-module. Thus by Lemma 2.2 applied with M = Yψ = O B̂/I
and N = Ĩ/I we have Yψ is finitely generated as O-module.

Now consider the general case. Let O′ be a finite extension of O containing the |T |-th roots of unity
and let ψ ′ be the composition of ψ with inclusion of O in O′. By the previous part, applied with ψ ′ in
place of ψ , Yψ ′ is finitely generated as O′-module. Since O′ is a finite extension of O, Yψ ′ is also finitely
generated as O-module. Since O is a direct summand of O′ as O-module, the inclusion O ↪→ O′ is pure.
Thus the map Yψ → O′

⊗O Yψ ∼= Yψ ′ , y 7→ 1 ⊗ y, is injective and consequently Yψ is isomorphic to
an O-submodule of Yψ ′ . Since O is Noetherian and since as shown above Yψ ′ is finitely generated as
O-module, Yψ is finitely generated as O-module. □

The following is an application of a theorem of Külshammer, Okuyama and Watanabe; see [Linckelmann
2018, Theorem 4.8.2]. Recall that if R is a commutative ring and C is a subalgebra of an R-algebra B,
then B is relatively C-separable if B is a direct summand of B ⊗C B as a (B, B)-bimodule.

Theorem 5.10. Suppose that W is an ℓ′-group. Then there exists an O-algebra isomorphism Yψ ∼=O[T W ]

sending ỹt to t for any t ∈ T .

Proof. Let W be a set of coset representatives of P in B. Since W is an ℓ′-group, Wθ is a parabolic
subgroup of W for all θ ∈ Irr(T ). Thus, by Theorem 5.9, {ỹt ỹw | t ∈ T,w ∈ W} is an O-basis of Yψ .
Further, we may regard OT as an O-subalgebra of Yψ via the identification of OT with the subalgebra
generated by {ỹt | t ∈ T }. Under this identification, again via Theorem 5.9, there is a homomorphism of
(OT,OT )-bimodules γ : O[T W ] → Yψ defined by γ (tw)= ỹt ỹw.

Let J be the ideal of Yψ generated by {ỹt − 1 | t ∈ T } and π . It follows from Lemma 5.8 that the
composition of γ with the natural surjection Yψ → Yψ/J is an O-algebra homomorphism. Now we may
apply [Linckelmann 2018, Theorem 4.8.2] to obtain an O-algebra homomorphism σ : O[T W ] → Yψ
extending the O-algebra homomorphism O[T W ]→Yψ/J obtained above from γ and satisfying σ(t)= ỹt

for all t ∈ T . For this one needs to have that J is contained in the radical of Yψ and that O[T W ] is relatively
OT -separable. The second condition holds since W is an ℓ′-group (see [loc. cit., Proposition 2.6.9])
whereas the first condition holds since T is a finite normal ℓ-subgroup of B̂ and, by Theorem 5.9, Yψ is
finitely generated as O-module.

The surjectivity of σ follows by Nakayama’s lemma since the composition of σ with Yψ → Yψ/I is
surjective and then the injectivity follows since both algebras are free of the same rank. □

Remark 5.11. The assumption of Theorem 5.7 on stabilisers is satisfied whenever ℓ is very good for W ,
e.g., when |W | is coprime to ℓ, or if W = G(e, 1, n) with e ≥ 2; see [Kessar et al. 2020, Proposition 2.3].
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5C. Freeness. We propose the following, analogous to the (now proven) freeness conjecture (Theorem 3.1)
for cyclotomic Hecke algebras:

Conjecture 5.12. The algebra Y is free over Â of rank |T W |. More precisely, there is a section
W → W ⊂ B of the natural map B → W containing 1 such that {yt yw | t ∈ T,w ∈ W} is an Â-basis of Y .

For Weyl groups and parameters occurring in finite reductive groups, the freeness follows from the
construction as an endomorphism algebra, and the dimension from the number of double cosets of a
maximal unipotent subgroup, that is, the Bruhat decomposition; see [Lusztig 2005, 34.2–34.10] for a
detailed investigation. We propose a proof in the case of finite Coxeter groups and for most infinite series
of complex reflection groups.

Theorem 5.13. Conjecture 5.12 holds for any finite Coxeter group.

Proof. Assume that W is a Coxeter group and choose a presentation of B on braid reflections r1, . . . , rm ∈ B
mapping to the Coxeter generators of W . Clearly, the set of all monomials in the yt , yri forms a generating
system for Y as an Â-module. By the ‘action relations’ any such monomial can be rewritten into an
Â-linear combination of elements yt yw with t ∈ T and w a monomial in the generators ri , 1 ≤ i ≤ m.
Now by Matsumoto’s lemma, by using the braid relations plus the quadratic relations (†) expressing y2

ri

as a linear combination of smaller powers of yri , w can be rewritten into an Â[T ]-linear combination of
elements from a fixed set W ⊂ B of reduced expressions of elements of W .

Thus any monomial in the generators is an Â-linear combination of elements yt yw with t ∈ T and
w ∈ W . Since the yt satisfy the same relations as the corresponding t ∈ T , there are at most |T | distinct
elements yt , so we have identified a generating system for Y of cardinality |T W |. By Theorem 5.7 this
must be free over K , hence an Â-basis of Y . □

Theorem 5.14. Conjecture 5.12 holds for W = G(e, p, n) with e | (ℓ− 1) for any divisor p of e, except
possibly when n = 2, e, p are both even and p ̸= e.

Proof. The group W = G(e, p, n) is a normal reflection subgroup of W1 := G(e, 1, n) of index p. First
assume that p < e. Then the braid group B of W is normal in the braid group B1 of W1 of index p by
[Broué et al. 1998, Section 3.B1]. Also, the corresponding tori T can be identified, such that T .B is
normal in T .B1 of index p. A system of coset representatives is given by {r i

1 | 0 ≤ i ≤ p − 1}, where
r1 ∈ B1 lifts a distinguished reflection r ∈ W1 of order e. Let ζe be a primitive e-th root of unity and
set p′

:= e/p. Recall the parameters ur j , 1 ≤ j ≤ p′, for Y at the reflection r . Let K be a sufficiently
large extension of Frac( Â). Consider parameters u′

r j := u1/p
r j for 1 ≤ j ≤ p′, and u′

r, j+p′ := ζ
p′

e u′

r j for
1 ≤ j ≤ e − p′. Now over K , the relation (†) for y1 := yr1 can be rewritten as

(1 − E ′)(ye
1 − 1)+ E ′

e∏
j=1

(y1 − u′

r j )= 0,
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with E ′
:= |Tr |

−1 Er ; see (†) above. Note that
∏p−1

i=0 (y1 − u′

r, j+p′i )= y p
1 − ur j for any j . Similarly, over

K the relation (†) for the generator y p
1 of Y can be written as

(1 − E ′)(y pp′

1 − 1)+ E ′

p′∏
j=1

(y p
1 − ur j )= 0.

Thus, we obtain the same relation for y p
1 in Y as before.

Let Y1 be the quotient of Â[T .B1] by the deformed order relations, which agree with those for Y as
we just saw and hence can be written over Â, except in the excluded case n = 2, e, p both even, when
G(e, p, 2) contains an additional class of reflections.

We claim that the conjecture holds for W1. Our proof for this closely follows some arguments in [Bremke
and Malle 1997]. Let r1, . . . , rn ∈ B be braid reflections corresponding to the standard presentation, so
that r2, . . . , rn generate the braid group on n strands (of type An−1) and (r1r2)

2
= (r2r1)

2. Set y2 := yr2 .
Now by Lemma 5.15 below for any a, b ≥ 1 we have

y2 ya
1 y2 yb

1 = αyb
1 y2 ya

1 y2 +

b∑
i=1

(αi ya+b−i
1 y2 yi

1 +α′

i yi
1 y2 ya+b−i

1 )

for suitable α ∈ Â[T ]
× and αi , α

′

i ∈ Â[T ]. With this, one deduces as in the proof of [loc. cit., Proposi-
tion 2.4] that there is a set B1 ⊂ B1 of cardinality |W1| consisting of monomials in the ri , as in [loc. cit.,
Lemma 1.5], such that any monomial in the yt , yi can be rewritten in Y1 into an Â-linear combination of
the |T W1| products B := {yt yw | t ∈ T,w ∈ B1}. Thus, B is linearly independent over K by Theorem 5.7
and so an Â-basis of Y1. This proves our claim for W1.

Now Â[T .B1] =
⊕p−1

i=0 Â[T .B]r i
1 is Z/pZ-graded and multiplication by r1 defines Â-module isomor-

phisms between the summands. Furthermore, the defining ideal I for Y in Â[T .B] is contained in the defin-
ing ideal I1 of Y1 in Â[T .B1], and I1 =

⊕p−1
i=0 I r i

1 is graded. So Y1 = Â[T .B1]/I1 =
⊕p−1

i=0 Y yi
1 and multi-

plication with y1 induces Â-module isomorphisms between the summands on the right. By construction the
Â-basis B of Y1 has the property that B=

⋃p−1
i=0 (B∩Y yi

1), hence B∩Y is an Â-free generating system of Y .
Finally assume that p = e. Since G(e, e, 2) is a Coxeter group (the dihedral group of order 2e), by

Theorem 5.13 we may assume n ≥ 3. In this case, the braid group B of W = G(e, e, n) is a normal
subgroup of index e of the quotient B1 = B1/⟨re

1⟩ of the braid group of W1; see [Broué et al. 1998,
Proposition 3.24]. Thus, Y is an Â-subalgebra of Â[T .B1]/I where I is generated by re

1 − 1 and the
relations (†) for r2, . . . , rn . We can now argue precisely as in the previous case. □

The following was used in the preceding proof:

Lemma 5.15. Let Y = Y(G(e, 1, n)) and y1, y2 ∈ Y images of braid reflections satisfying y2 y1 y2 y1 =

y1 y2 y1 y2 and such that the corresponding reflections r1, r2 ∈ W have order e, 2 respectively. Then for all
integers a, b ≥ 1 there exist α ∈ Â[T ]

× and αi , α
′

i ∈ Â[T ] such that

y2 ya
1 y2 yb

1 = αyb
1 y2 ya

1 y2 +

b∑
i=1

(αi ya+b−i
1 y2 yi

1 +α′

i yi
1 y2 ya+b−i

1 ).
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Proof. Write the relation (†) for y2 as y2
2 =λy2+µ with µ∈ Â[T ]

× and λ∈ Â[T ], so y−1
2 =µ−1 y2−λµ−1.

The relation between y1, y2 implies ya
1 y2 y1 y2 = y2 y1 y2 ya

1 for all a ≥ 1. Thus we find

y2 ya
1 y2 y1 = y2 ya

1 y2 y1 · y2 y−1
2

= y2
2 y1 y2 ya

1 y−1
2

= (λy2 +µ)y1 y2 ya
1 (µ

−1 y2 − λµ−1)

= µy1 y2 ya
1 y2µ

−1
+ λy2 y1 y2 ya

1 y−1
2 −µy1 y2 ya

1λµ
−1

= µy1 y2 ya
1 y2µ

−1
+ λya

1 y2 y1 −µy1 y2 ya
1λµ

−1

= µ′y1 y2 ya
1 y2 + λya

1 y2 y1 − λ′y1 y2 ya
1

for suitable µ′
∈ Â[T ]

× and λ′
∈ Â[T ], giving the claim for b = 1. For b = 2, using the previous result

twice we find

y2 ya
1 y2 y2

1 = (µ′y1 y2 ya
1 y2 + λya

1 y2 y1 − λ′y1 y2 ya
1 )y1

= µ′y1 y2 ya
1 y2 y1 + λya

1 y2 y2
1 − λ′y1 y2 ya+1

1

= µ′y1(µ
′y1 y2 ya

1 y2 + λya
1 y2 y1 − λ′y1 y2 ya

1 )+ λya
1 y2 y2

1 − λ′y1 y2 ya+1
1

= µ′′y2
1 y2 ya

1 y2 +

2∑
i=1
(αi ya+2−i

1 y2 yi
1 +α′

i yi
1 y2 ya+2−i

1 )

for suitable µ′′, αi , α
′

i . A straightforward induction yields the claim for arbitrary b. □

Remark 5.16. Marin [2018a, Definition 5.4] defines for arbitrary complex reflection groups W an Â-
algebra M attached to W as follows: let L be the lattice of intersections of the hyperplane arrangement
of W . Then M is the quotient of the group algebra over Â of the semidirect product L⋊ B(W ) by the
deformed order relations (†) for the braid reflections of B(W ). This algebra is generated by images of
braid reflections r ′ and idempotents er , r ∈ W a reflection; by [loc. cit., 5.1]. Marin [2018b, Theorem 1.3]
shows that M is a free Â-module of rank |W ||L|. If W is ℓ-adic, there is a natural morphism

iW : M → Â[ℓ−1
] ⊗ Â Y, r ′

7→ yr , er 7→ ℓ−a Er ,

from Marin’s algebra to ours. We expect this to be injective, but in general far from surjective, since his
algebra is free of rank independent of ℓ (compare to Theorem 5.7).

5D. A trace form. Assume for the rest of the section that Wθ is a parabolic subgroup of W for all
θ ∈ Irr(T ); this holds whenever ℓ is very good for (W, L); see Remark 5.11. Let K be an extension
of Qℓ by the ℓa-th roots of unity. Let ũ = (ũr j ) be as in Section 3A and let K̃ = Frac(K [ũ]). Recall
from Section 3B that for any θ ∈ Irr(T ), K̃ ⊗H(Wθ , uθ )∼= K̃ Wθ is split semisimple and the irreducible
characters of H(Wθ , uθ ) over K̃ are identified with Irr(Wθ ). Here, as before we denote by uθ the set u0 in
the notation of Section 3A if Wθ is the reflection subgroup W0. Then, with U a K̃ ⊗H(Wθ , uθ )-module
affording φ and Uθ,φ := IndB̂

B̂θ
(U ), Theorem 5.7(a) shows

Irr(YK̃ )= {Uθ,φ | θ ∈ Irr(T )/W, φ ∈ Irr(Wθ )}.
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We let χθ,φ denote the character of Uθ,φ .
We consider the following nondegenerate trace form Y → K̃ :

τ := τY :=

∑
θ/W

∑
φ∈Irr(Wθ )

1
fθ,φ

χθ,φ. (1)

Here, for any θ ∈ Irr(T ), fθ,φ ∈ Ã is the Schur element of the Hecke algebra H(Wθ , uθ ) indexed by φ as
in Section 3A.

Proposition 5.17. Assume that Wθ is a parabolic subgroup of W for all θ ∈ Irr(T ). Assume also that
H(W, u) is strongly symmetric with respect to W ⊂ B as in Definition 3.4. Then we have

τ(yt yw)= δt,1δw,1|T | for any t ∈ T,w ∈ W .

Proof. For θ ∈ Irr(T ) let Cθ be a system of coset representatives of Wθ in W , and Cθ ⊆ W the
corresponding system of coset representatives of T .B̃θ in T .B. Let θ ∈ Irr(T ) and φ ∈ Irr(Wθ ), and let U
be a corresponding representation of H(Wθ , uθ ) (which we consider as a representation of B̂θ = T B̃θ as
above). Let us set U 0(x) := U (x) if x ∈ T .B̃θ and 0 otherwise. Then

Uθ,φ(yt yw)=

∑
x∈Cθ

U 0((yt yw)
x)=

∑
x∈Cθ ,yx

w∈B̃θ

θ(yx
t )U (y

x
w),

so ∑
φ∈Irr(Wθ )

1
fθ,φ

χθ,φ(yt yw)=

∑
x∈Cθ ,yx

w∈B̃θ

θ(yx
t )

∑
φ∈Irr(Wθ )

1
fθ,φ

χθ,φ(yx
w)=

∑
x∈Cθ ,yx

w∈B̃θ

θ(yx
t )tWθ ,uθ (y

x
w)

with tWθ ,uθ as in Definition 3.4. By the choice of W we have

tWθ ,uθ (y
x
w)= tW,u(yx

w)= tW,u(yw)= δw,1.

Thus the form τ evaluates to

τ(yt yw)=

∑
θ/F

∑
x∈Cθ

θ(yx
t )δw,1 =

∑
θ∈Irr(T )

θ(yt)δw,1 = δt,1δw,1|T |,

as desired. □

It seems natural to ask the following:

Question 5.18. Let (W, L) be a simply connected ℓ-adic reflection group for which ℓ is very good. Does
the form |T |

−1τ take values in Â and is it then a symmetrising form on Y over Â?

Note that an affirmative answer to the first part of Question 5.18 follows under the assumptions of
Proposition 5.17.
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5E. Relation to classical Yokonuma algebras. Suppose that W is the Weyl group with respect to a
maximally split torus T0 of a connected reductive group G with an Fq-structure defined by a split
Frobenius map F : G → G. Set G = GF and set T0 = T F

0 . Let U be the unipotent radical of an
F-stable Borel subgroup of G containing T0, and let U = U F . Let ℓ be a prime dividing q − 1 and set
eU = |U |

−1 ∑
u∈U u ∈ ZℓG. Then

Y ′
:= EndZℓG(Zℓ[G/U ])= eU ZℓGeU

is the associated classical Yokonuma Hecke algebra [Yokonuma 1967].
Let r1, . . . , rm be Coxeter generators of the Weyl group W . For t ∈ T0, let t ′

= eU teU and for each i ,
let Ei := E[T0,ri ]eU , where for any subgroup A ≤ G we denote by E A the sum of elements of A. By
[Juyumaya and Kannan 2001, Theorm 2], Y ′ has a generating set {t ′, si | t ∈ T0, 1 ≤ i ≤ m} such that:

• The t ′ satisfy the same relations as the corresponding group elements t .

• The action relations between the t, ri , with t replaced by t ′ and ri by si hold in Y ′.

• The braid relations between the ri , with ri replaced by si hold in Y ′.

• s2
i = 1 − q−1(Ei − si Ei ).

Note that Juyumaya–Kannan work over the complex numbers but it can be checked from the explicit
description of the si s in terms of the standard generators coming from the Bruhat decomposition, that the
above holds over any ring in which q is invertible.

Proposition 5.19. Suppose that there is a W -equivariant isomorphism between T and the Sylow ℓ-
subgroup of T0. Let H be the ℓ′-Hall subgroup of T0, let eH = |H |

−1 EH be the principal block idempotent
of ZℓT0 and set f = eH eU . Let ψq : Â → Zℓ be the specialisation corresponding to u r1 7→ −1, u r2 7→ q
for all r . Then there is an isomorphism of Zℓ-algebras Yψq

∼= f Y ′ f .

Proof. Note that f is an idempotent of ZℓG. By considering the generating set of Y ′ described above, one
sees that f is central in Y ′ and for any x ∈ H , x f = f , hence {t ′ f, si f | t ∈ T0, 1 ≤ i ≤ m} is a generating
set for Y ′ f = f Y ′ f .

It follows from the description of Y via generators and relations given after Lemma 5.3 that there is a sur-
jective Zℓ-algebra homomorphism Yψq →Y ′ f which sends the image ỹt ∈Yψq of yt to (q−1ℓa/(q−1))t ′ f
and ỹri to −si f . By Theorem 5.13, Yψq is Zℓ-free of rank |T W | and the same is true for Y ′ f . The last
assertion can be seen by considering the standard basis {eU neU | n ∈ NG(T0)} of Y ′ given by the Bruhat
decomposition. Thus Yψq is isomorphic to f Y ′ f as claimed. □

5F. Proofs of Theorem 1 and Corollary 2. Throughout this section ℓ > 2 is a prime, q is a prime power
with q ≡ 1 (mod ℓ) and a > 0 such that ℓa

∥ (q − 1). Let G = (W, L) be a simply connected Zℓ-spets
with W an ℓ′-group. Let F be the fusion system associated to (W, L) as described in Section 4A, with
underlying ℓ-group S. Recall that with the stated assumptions we have S = T ∼= (Z/ℓa)n where T is the
homocyclic group L/ℓa L of exponent ℓa . We let Y be the Yokonuma algebra associated to (W, L , q) as
in Section 5.
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Recall the indeterminates ũr j with ũz
r j = ζ

− j
o(r)ur j . By [Malle 1999, Corollary 4.8], z may be chosen to

divide the order of the group of roots of unity in Qℓ, that is, ℓ− 1. As ℓa
∥ (q − 1), by Hensel’s lemma

there is a unique root of X z
− q ∈ Zℓ[X ] in Zℓ, say q1/z , with ℓa

∥ (q1/z
− 1). Let Zℓ ⊆ O be a complete

discrete valuation ring containing the |T |-th roots of unity. Let

ψs,q : O[ũ±1
] → O, ũr j 7→

{
q1/z if j = o(r),
1 if 1 ≤ j < o(r),

be the specialisation ψs,q from Section 3B with R = O. Since |Tr | divides ℓa , ψs,q extends to an O-linear
homomorphism O[ũ±1, v] → O which we still denote ψs,q . Let K̃ = Frac(O[ũ±1

]) and K = Frac(O).
We restate Theorem 1.

Theorem 5.20. Let G be as above. Suppose that H(W, u) is strongly symmetric as in Definition 3.4. Then
Conjectures 4.2, 4.3 and 4.5 hold for G.

Proof. Let W0 be a reflection subgroup of W . By Lemma 3.7, K ⊗OHψs,q (W0, u0) is split semisimple and
ψs,q induces a bijection Irr(K̃ ⊗A H(W0, u0))→ Irr(K ⊗O Hψs,q (W0, u0)). Also recall from Section 3B,
Irr(K̃ ⊗A H(W0, u0)) is identified with Irr(W0) via ψ1. Henceforth we identify Irr(K ⊗O Hψs,q (W0, u0))

and Irr(W0) via the bijections induced by ψs,q and ψ1.
Denoting the restriction of ψs,q to Â again by ψs,q , set Yq := Yψs,q . Since W is an ℓ′-group, Wθ is a

parabolic subgroup of W for all θ ∈ IrrK (T ). Then by Theorem 5.7(a) and the above K ⊗O Yq is split
semisimple and Irr(K ⊗O Yq) is in bijection with pairs (θ, φ) as θ runs over representatives of W -orbits
of Irr(T ) and φ ∈ Irr(Wθ ). Let χ ′

θ,φ be the irreducible character corresponding to the pair (θ, φ). Then
χ ′

θ,φ is afforded by the simple module U ′

θ,φ := IndB̂
B̂θ
(U ) for U a simple K ⊗O Hψs,q (Wθ , uθ )-module

corresponding to φ. Here as in Section 5D, uθ = u0 in the notation of Section 3A if Wθ = W0.
We consider the following K -linear form on K ⊗O Yq :

τq :=
1

|T |

∑
θ/W

∑
φ∈Irr(Wθ )

1
ψs,q( fθ,φ)

χ ′

θ,φ. (2)

By Lemma 3.6 this is well defined. Since the coefficient of every irreducible character is nonzero, τq is a
symmetrising form on K ⊗O Yψ with Schur elements |T |ψs,q( fθ,φ).

Let W ⊂ B(W ) be as in Definition 3.4. By Theorem 5.9, {ỹt ỹw | t ∈ T,w ∈ W} is an O-basis of Yq .
Here, as earlier, for x ∈ Y , we write x̃ := 1O ⊗ x ∈ Yq . As in Proposition 5.17, we have

τq(ỹt ỹw)= δt,1δw,1 for any t ∈ T,w ∈ W ,

hence the above gives that the restriction of τq to Yq takes values in O.
By the strongly symmetric hypothesis, and by Theorem 5.10 there is an O-algebra isomorphism

σ :O[T W ] →Yq whose restriction to T is the identity on T (where we identify T with its image in Yq via
t 7→ ỹt , t ∈ T ). Denote also by σ the extension K [T W ] → K ⊗O Yq . Then τσ := τq ◦ σ : K [T W ] → K
is a symmetrising form on K [T W ], with Schur element |T |ψs,q( fθ,φ) at the irreducible character of
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K [T W ] corresponding under σ to the character χ ′

θ,φ of K ⊗O Yq . Further, by the above τσ (t)= δt,1 for
all t ∈ T and the restriction of τσ to O[T W ] takes values in O. Thus, by Lemmas 2.5 and 2.6,

1
|T |2

∑
θ/W

∑
φ∈Irr(Wθ )

1
ψs,q( f 2

θ,φ)
=

α

|T W |
,

where α ∈ O is such that α ≡ 1 (mod ℓ).
Recall that S = T and as explained in Section 4B, there exists a W -equivariant bijection between

Irr(T ) and T . Thus the left hand side of the above equals

ψs,q(d)
|T |2ψs,q(p2

W )
,

where d :=
∑

s/F
∑

φ∈Irr(W (s)) p2
W f −2

s,φ . By Lemma 4.10, ψs,q(d) = dim(B0)|x=q . Since ψs,q(pW ) ≡

|W | (mod ℓ), we obtain the validity of Conjectures 4.2 and 4.3 from the displayed equation above.
Finally, we prove Conjecture 4.5. First of all note that since σ is the identity on T , for any pair (θ, φ)

as above the irreducible character of K [T W ] corresponding under σ to the character χ ′

θ,φ of K ⊗O Yq

covers θ and therefore is of the form γθ,φ̃ := IndW
Wθ
(φ̃) for some φ̃ ∈ Irr(Wθ ). In particular, σ induces a

permutation φ 7→ φ̃ of Irr(Wθ ). By Proposition 2.7 we have that for any ν ∈ IBr(T W ),∑
θ/W

∑
φ∈Irr(Wθ )

dγθ,φ̃ν
ψs,q( fθ,φ)

is divisible by |T | in O. Choose a W -equivariant bijection between Irr(T ) and T and let 2 : Irr(T W )→

Irr(B0), γ 7→ γ̂ , be the bijection such that if γ = IndW
Wθ
(φ̃), then γ̂ is the element of Irr(B0) labelled

by (x, φ), where the W -class of x ∈ T corresponds to the W -class of θ for the chosen W -equivariant
bijection between Irr(T ) and T . Then2 is W -equivariant. Moreover, by Lemma 4.10 the above displayed
expression equals ψs,q(pW )

−1(deg8ν̂)|x=q . The result follows since ψs,q(pW ) is an invertible element
of O. □

Remark 5.21. The above holds in a more general setting. Drop the assumption that W is spetsial; so
W is an ℓ-adic reflection group of order prime to ℓ. Let ψq : O[ũ±1, v] → O be any specialisation as in
Section 3B. Suppose that τ : H(W, u)→ A is a symmetrising form such that the following holds:

(1) There is a section W → W ⊂ B of the natural map B → W containing 1 whose image in H(W, u)
is an A-basis of H(W, u) with τ(hw)= δw,1 for all w ∈ W .

(2) For any parabolic subgroup W0 ≤ W , τ |H(W0,u0) : H(W0, u0)→ A is a symmetrising form.

For s ∈ S, φ ∈ Irr(W (s)) let fτ,s,φ denote the Schur element of τ |H(W0,u0) with respect to φ where
W0 = W (s). Set

d :=

∑
s/F

∑
φ∈Irr(W (s))

p2
W

f 2
τ,s,φ
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and for ν ∈ IBr(SW ) set
8ν(1) :=

∑
γ∈Irr(SW )

dγ ν
pW

fτ,s,φ
,

where dγ ν is the decomposition number in SW with respect to γ and ν. Then with the same proof as
above we get:

(a) ψs,q(d)ℓ = |S|.

(b) ψs,q(d)/(ψs,q(pW )|S|)≡ 1 (mod ℓ).

(c) For each ν ∈ IBr(SW ), |S| divides ψs,q(8ν(1)).

Proof of Corollary 2. By [Malle 1998, Section 3] all imprimitive irreducible spetsial reflection groups
are either Coxeter groups, of type G(e, 1, n) or of type G(e, e, n) with n ≥ 3 and therefore strongly
symmetric by Proposition 3.5. Therefore Conjectures 1 and 2 hold for these groups by Theorem 5.20. For
the primitive groups, Conjecture 1 holds by Proposition 4.8. Conjecture 2 holds when W is primitive and
2-dimensional by Proposition 3.5(c) and Theorem 5.20; for G14 Conjecture 2 holds by direct computation
using the description of the decomposition matrix provided in the proof of Proposition 4.11. □
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