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Spectral reciprocity via integral representations
Ramon M. Nunes

We prove a spectral reciprocity formula for automorphic forms on GL.2/ over a number field that is
reminiscent of one found by Blomer and Khan. Our approach uses period representations of L-functions
and the language of automorphic representations.

1. Introduction

In the past few years, some attention has been given to spectral reciprocity formulae. By this we mean
identities of the shape X

�2F

L.�/H.�/D
X
�2 zF

zL.�/ zH.�/; (1)

where F and zF are families of automorphic representations, L.�/ and zL.�/ are certain L-values associated
to � , and H and zH are some weight functions.

The term spectral reciprocity first appeared in this context in a paper by Blomer, Li and Miller [Blomer
et al. 2019] but such identities have been around at least since Motohashi’s formula [1993] connecting the
fourth moment of the Riemann zeta-function to the cubic moment of L-functions of cusp forms for GL.2/.

The more recent results concern the cases where the families F and zF are the same or nearly the same.
Most commonly, these families are taken to be formed by automorphic representations of GL.2/.

There are at least two reasons that help understand the appeal of such formulae. The first one is that
they give a somewhat conceptual way of summarizing a technique often used in dealing with problems
on families of GL.2/ L-functions in which one uses the Kuznetsov formula on both directions in order
to estimate a moment of L-values. The second one comes from their satisfying intrinsic nature relating
objects that have no a priori reason to be linked.

The first versions of these GL.2/ spectral reciprocity formulae [Blomer and Khan 2019a; 2019b;
Andersen and Kıral 2018] used classical techniques such as the Voronoi summation formula and the
Kuznetsov formula. Starting from [Zacharias 2021], it became clear that an adelic approach could be of
interest. Not only does this render generalization to number fields almost immediate, it can also avoid
some of the combinatorial difficulties that arise when applying the Voronoi formula.
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Blomer and Khan [2019a] have shown a reciprocity formula which is the main inspiration for the
present work: Let … be a fixed automorphic representation of GL.3/ over Q. Let q and ` be coprime
integers. We write

M.q; `I h/ WD
1

q

X
cond.�/Dq

L
�

1
2
;…��

�
L
�

1
2
; �
�

L.1;Ad; �/
��.`/

`1=2
h.t�/C . � � � /;

where

� � runs over cuspidal automorphic representations of PGL.2/,

� ��.`/ is the eigenvalue of the Hecke operator T` on � ,

� t� is the spectral parameter,

� h is a fairly general smooth function, and

� . � � � / denotes the contribution of the Eisenstein part, the terms of lower conductor and some
degenerate terms.

Blomer and Khan have showed that

M.q; `; h/DM.`; q; Lh/;

where h 7! Lh is given by an explicit integral transformation. When … corresponds to an Eisenstein series,
this has an application to subconvexity: Let � be a cuspidal automorphic representation for GL.2/ over Q

of squarefree conductor. Then

L
�

1
2
; �
�
�� .cond.�//

1
4
� 1

24
.1�2#/C�; (2)

where # is an admissible exponent towards the Ramanujan conjecture (we know that 7
64

is admissible
and # D 0 corresponds to the conjecture). This was then the best-known bound of its kind but it was later
superseded by the one in [Blomer et al. 2020].

In this article we use the theory of adelic automorphic representations and integral representations of
Rankin–Selberg L-functions to deduce a result on number fields of similar flavor to that of [Blomer and
Khan 2019a, Theorem 1].

With respect to Blomer and Khan’s result, our result has the advantage of being valid for any number
field. On the other hand we need to make some technical restrictions that prevent us from having a full
generalization of their reciprocity formula. For the moment our results only work when the fixed GL.3/
form is cuspidal and our formula only contemplates forms that are spherical at every infinity place. The
first restriction is made for analytic reasons and is due to the fact that unlike cusp forms, the Eisenstein
series are not of rapid decay. This can probably be resolved by means of a suitable notion of regularized
integrals. As for the second restriction, this seems to be of a more representation-theoretic nature. It
requires showing analyticity of certain local factors for nonunitary representations of GL.2/. We hope to
address both of these technical issues in future work.
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1A. Statement of results. Let F be a number field, with ring of integers oF . Let … be a cuspidal
automorphic representation of GL.3/ over F . For each automorphic representation � of GL.2/, we
consider the completed L-functions

ƒ.s; �/; ƒ.s;Ad; �/ and ƒ.s;…��/:

These are, respectively, the Hecke L-function and the adjoint L-function of � , and the Rankin–Selberg
L-function of …�� , where for the Rankin–Selberg L-functions we take the naive definition (20). These
coincide with the local L-functions à la Langlands at all the unramified places but might differ at the
ramified ones. Notice that this might also affect the values of L.s;Ad; �/.

Let �F denote the completed Dedekind zeta function of F , and let ��
F
.1/ denote its residue at 1. Let

ˆ'
N
v ˆv be a vector in the representation space of …. Let s and w be complex numbers, and let H

denote the weight function given by (29). We consider the sums

Cs;w.ˆ/ WD
X

�2C.S/

ƒ.s;…��/ƒ.w; �/

ƒ.1;Ad; �/
H.�/

and

Es;w.ˆ/ WD
X

!2„.S/

Z 1
�1

ƒ.s;…��.!; i t//ƒ.w; �.!; i t//

ƒ�.1;Ad; �.!; i t//
H.�.!; i t//

dt

2�
; (3)

where S is any finite set of places containing all the archimedean ones and those for which ˆv is ramified,
C.S/ (resp. „.S/) denotes the collection of cuspidal automorphic representations of GL.2/ (resp. unitary
normalized idele characters) over F that are unramified everywhere outside S . Finally, �.!; i t/ denotes a
normalized induced representation as in Section 3A1 and ƒ�.1;Ad; �/ denotes the first nonzero Laurent
coefficient of ƒ.s;Ad; �/ at s D 1. The main object of study in this work is the following “moment”:

Ms;w.ˆ/ WD Cs;w.ˆ/C Es;w.ˆ/: (4)

We remark that the values of ƒ.s;… � �.!; i t//, ƒ.w; �.!; i t// and ƒ�.1;Ad; �.!; i t// can be
given in terms of simpler L-functions as follows:

ƒ.s;…��.!; i t//Dƒ.sC i t;…�!/ƒ.s� i t;…� x!/;

ƒ.w; �.!; i t//Dƒ.wC i t; !/ƒ.w� i t; x!/;

ƒ�.1;Ad; �.!; i t//D RessD1Œƒ.sC 2i t; !2/ƒ.s� 2i t; x!2/�F .s/�

Dƒ.1C 2i t; !2/ƒ.1� 2i t; x!2/��F .1/ .t ¤ 0/;

where ƒ.s;…�!/ and ƒ.s; !/ are the (completed) Rankin–Selberg L-function of …�! and Dirichlet
L-function of !, respectively.

We start with the following result which can be seen as a preliminary reciprocity formula.

Theorem 1.1. Let s; w 2 C and define

.s0; w0/ WD
�

1
2
.1Cw� s/; 1

2
.3sCw� 1/

�
: (5)
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Let H be as in (29) and {H be given by (31). Suppose the real parts of s, w, s0 and w0 are sufficiently
large. Then we have the relation

Ms;w.ˆ/CDs;w.ˆ/DMs0;w0. {̂ /CDs0;w0. {̂ /;

where Ds;w.ˆ/ is given by (30).

Theorem 1.1 is a completely symmetrical formula but only holds when the real part of the parameters
s, w, s0 and w0 are sufficiently large. In order to obtain a formula that also holds at the central point
sDwD s0Dw0D 1

2
, we need to analytically continue the term Es;w.ˆ/. This is done in Section 9 under

a technical condition enclosed in Hypothesis 1.

Spectral reciprocity at the central point. Let … be an everywhere unramified cuspidal automorphic
representation for GL.3/ over F . This means that …'

N0
v…v , where for each v, …v is isomorphic to

the isobaric sum
j � j

it1;v

v � j � jit2;v

v � j � jit3;v

v :

We say that … is � -tempered if for all v and i D 1; 2; 3, we have jRe.ti;v/j � � . It follows from a result of
Luo, Rudnick and Sarnak [Luo et al. 1999] that every automorphic representation of GL.n/ is � -tempered
for some � < 1

2
. Therefore we can, and will, let � D �.…/ < 1

2
be such that … is � -tempered.

Suppose that ˆv is spherical for every archimedean place v. The reason for this restriction is twofold.
The first and main reason is that this leads to weight functions satisfying Hypothesis 1. The second is
that this trivializes the transformation Hv !

{Hv on the local archimedean weights. It would be very
interesting to have a better understanding of this transformation. In particular it would be interesting to
have an understanding of {Hv when Hv is taken to be a bump function selecting spectral parameters of a
certain size.

Let s; w 2 C, let q and l be coprime ideals with absolute norms q and `, respectively, and write
U1 WD

Q
vj1fy 2 F�v W jyvj D 1g. Suppose that ˆ D ˆq;l is the vector given in Section 7. It follows

from (34) and Propositions 7.1 and 7.2 that

H.�/D ı1.�/
y��.l; w/

.N l/w
'.q/

q2
hq.s; wI…;�/;

where ı1.�/ is the characteristic function of representations that are unramified at every archimedean
place, y��.l; w/ are modified Hecke eigenvalues given by

y��.l; w/ WD
Y
pnp jjl
np�1

�
��.p

np/�
��.p

np�1/

.N p/w

�
; (6)

' is the Euler function, and finally, hq.s; wI…;�/ D 1 if cond.�/ D q, hq.s; wI…;�/ � q�C� if
cond.�/ j q, and it vanishes otherwise. Thus, choosing ˆ as above, we get

Ms;w.ˆ/DM0.…; s; w; q; l/;
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where
M0.…; s; w; q; l/ WD C0.…; s; w; q; l/C E0.…; s; w; q; l/;

with

C0.…; s; w; q; l/D
'.q/

q2

X
� cusp0

cond.�/jq

ƒ.s;…��/ƒ.w; �/

ƒ.1;Ad; �/

y��.l; w/

`w
hq.s; wI…;�/

and

E0.…; s; w; q; l/D
'.q/

q2

X
!23F�U1nA

�
.1/

cond.!/2jq

Z 1
�1

ƒ.s;…��.!; i t//ƒ.w; �.!; i t//

ƒ�.1;Ad; �.!; i t//

�

y��.!;it/.l; w/

`w
hq.s; wI…;�.!; i t//

dt

2�
:

The notation cusp0 denotes that we are restricting to forms that are unramified at every archimedean place
and the analogous role in the Eisenstein part is played by quotienting by U1. Finally, we let

N0.…; s; w; q; l/ WD Ds0;w0. {̂ /CRs0;w0. {̂ /�Ds;w.ˆ/�Rs;w.ˆ/;

where D is given by (30) and R is given by (53).

Theorem 1.2. Let … be an everywhere unramified cuspidal automorphic representation of GL.3/ over F .
Suppose q and l are coprime ideals with absolute norms q and `, respectively, and that 1

2
� Re.s/ �

Re.w/ < 3
4

. Then we have

M0.…; s; w; q; l/DN0.…; s; w; q; l/CM0.…; s
0; w0; l; q/;

where s0 and w0 are as in (5). Moreover, in this same region, N0 satisfies

N0.…; s; w; q; l/�s;w;� min.q; `/��1C�: (7)

As an application, we may deduce a nonvanishing result which is similar in spirit to [Khan 2012,
Theorem 1.2]: we prove an asymptotic formula for a family of forms of prime level p, and let N p tend
to infinity. It may be worth mentioning that although the results are similar, Khan’s result concerns
modular forms of sufficiently large weight k for GL.2/ over the field of rationals, while our result holds
for everywhere unramified forms for GL.2/ over an arbitrary number field.

Corollary 1.3. Let … be an unramified cuspidal automorphic representation of GL.3/ over F , and let p
be a prime ideal of oF with absolute norm q. Then, for every � > 0,

'.q/

q

X
� cusp0

cond.�/Dp

ƒ
�

1
2
;…��

�
ƒ
�

1
2
; �
�

ƒ.1;Ad; �/
D

4ƒ.1;…/ƒ.0;…/

�F .2/
CO�.q

#� 1
2
C�/:

In particular, for q sufficiently large, there is at least one automorphic representation � of conductor p,
unramified for every archimedean place and such that ƒ

�
1
2
;…��

�
and ƒ

�
1
2
; �
�

are both nonzero.
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Plan of the paper. In Section 2 we lay down our first conventions on number fields and local fields. In
Section 3 we recall the notion of automorphic representations for GL.n/ over F and some of its properties.
Special attention is given to the case nD 2 where, in particular, we recall the construction of Eisenstein
series and write down an explicit spectral decomposition. In Section 4, we introduce the Whittaker models
and their relation to periods of Rankin–Selberg L-functions for GL.nC1/�GL.n/. We work in complete
generality but only use the results in the cases nD 1 and nD 2.

In Section 5 we prove an identity between periods which we call abstract reciprocity. This is connected
to the actual reciprocity via a spectral decomposition which is performed in Section 6. In Section 7 we
make some explicit computation for the local weights. Section 8 is dedicated to analyzing the degenerate
term Ds;w.ˆ/ and we show the meromorphic continuation of the spectral moment in Section 9, thus
introducing the term Rs;w.ˆ/. Theorem 1.1 only uses the results up to Section 6 and a few observations
from Section 8. On the other hand, Theorem 1.2 requires the full power of the results in Sections 7, 8 and 9
and its proof is given in Section 10 along with that of Corollary 1.3.

2. Notation

Number fields and completions. Throughout the paper, F will denote a fixed number field with ring of
integers oF and discriminant dF . For v a place of F , we let Fv be the completion of F at the place v.
If v is nonarchimedean, we write ov for the ring of integers in Fv , mv for its maximal ideal and $v for
its uniformizer. The adele ring of F is denoted by A, its unit group is denoted by A�, and finally, A�

.1/

denotes the ideles of norm 1. We also fix, once and for all, an isomorphism A� ' A�
.1/
�R>0.

Additive characters. We let  D
N
v  v be the additive character  D  Q ıTrF=Q, where TrF=Q is the

trace map and  Q is the additive character on AQ which is trivial on Q and such that  .x/ D e2�ix

for x 2 R. Let dv be the conductor of  v, i.e., the smallest nonnegative integer such that  v is trivial
on m�dv

v . Notice that dv D 0 for every finite place not dividing the discriminant and we have the relation
dF D

Q
v p

dv
v , where pv WD jov=mvj.

Measures. In the group A we use a product measure dxD
Q
v dxv , where for real v, dxv is the Lebesgue

measure on R, for complex v, dxv is twice the Lebesgue measure on C and for each finite v, dxv is
a Haar measure on Fv giving measure p�

1
2

dv
v to the compact subgroup ov. As for the multiplicative

group A�, we also take a product measure d�x D
Q

d�x, where d�xv D �v.1/.dxv=jxvj/ for infinite or
unramified v and we take d�xv WD p

1
2

dv
v �Fv .1/.dxv=jxvj/ for ramified v so that for any finite v, we are

giving measure 1 to o�v . Such measures can naturally give rise to measures on the quotient spaces FnA

and F�nA�
.1/

such that

vol.FnA/D 1 and vol.F�nA�.1//D d
1
2

F
��F .1/:

The first can be found in Tate’s thesis [1950] and the second is [Lang 1994, Proposition XIV.13] (the
factor d

1
2

F
comes from our different normalization of the multiplicative measure).
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3. Preliminaries on automorphic representations

In the course of studying automorphic forms in GL.n/, it will be important to distinguish a few of its
subgroups. For any unitary ring R with group of invertible elements given by R�, we let Zn.R/ denote
the group of central matrices (i.e., nontrivial multiples of the identity) and Nn.R/ denote the maximal
unipotent group formed by matrices with entries 1 on the diagonal and 0 below the diagonal, and we
let An.R/ denote the diagonal matrices with lower-right entry 1.

We extend our additives character to Nn in the following way: If n D .xi;j /1�i;j�n 2 Nn.A/, then
 .n/ WD  .x1;2C� � �Cxn�1;n/ and similarly for  v . We can extend the measures on the local fields Fv

and their unit groups F�v to measures on the groups Zn.Fv/, Nn.Fv/ and An.Fv/ using the obvious
isomorphisms Zn.R/'R�, Nn.R/'R

1
2

n.n�1/ and An.R/' .R
�/n�1.

Moreover, let Kv denote a maximal compact subgroup of GLn.Fv/ given by

Kv WD

8<:
O.n/ if Fv D R;

U.n/ if Fv D C;

GLn.ov/ for v <1:

We can now define a Haar measure on GLn.Fv/ by appealing to the Iwasawa decomposition. Let dk

be a Haar probability measure on Kv and consider the surjective map

Zn.Fv/�Nn.Fv/�An.Fv/�Kv! GLn.Fv/; .z; n; a; k/ 7! znak;

and let dgv be the pullback by this map of the measure

�.a/�1
n�1Y
kD1

y
�k.n�k/

k
� dz � dn� da� dk;

where

�

0BB@
y1

: : :
yn�1

1

1CCAD n�1Y
jD1

jyj j
nC1�2j :

In particular, for GL2,Z
GL2.Fv/

f .gv/ dgv D

Z
Kv

Z
F�v

Z
Fv

Z
F�v

f
�
z.u/n.x/a.y/k

�
d�u dx

d�y

jyjv
dk;

where

z.u/D

�
u

u

�
; n.x/D

�
1 x

1

�
; a.y/D

�
y

1

�
:

Similarly, we shall consider measures on the quotients

Nn.Fv/nGLn.Fv/ and PGLn.Fv/ WDZn.Fv/nGLn.Fv/

by omitting the terms dn and dz respectively. Now, given a group G for which we have attached Haar
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measures dgv to G.Fv/, we attach to G.A/ the product measure dg D
Q
v dgv. Since PGL2.F / ,!

PGL2.A/ discretely, we may use the measure of PGL2.A/ to define one on

X WD PGL2.F /nPGL2.A/DZ2.A/GL2.F /nGL2.A/;

which turns out to have finite total measure vol.X/ <C1.

3A. Automorphic representations for GL.2/. Consider the Hilbert space L2.X/ with an action of
GL2.A/ given by right multiplication and a GL2.A/-invariant inner product given by

h�1; �2iL2.X / D

Z
X

�1.g/�2.g/ dg: (8)

It is well known that this space decomposes as

L2.X/DL2
cusp.X/˚L2

res.X/˚L2
cont.X/; (9)

where L2
cusp.X/ denotes the closed subspace of cuspidal functions given by the functions satisfying the

relation Z
N2.F /nN2.A/

�.ng/ dnD 0;

L2
res.X/ is the residual spectrum consisting of all the one-dimensional subrepresentations of L2.X/,

and L2
cont.X/ is expressed in terms of Eisenstein series which we discuss further below. Moreover,

L2
cusp.X/ decomposes as a direct sum of irreducible representations, which are called the cuspidal

automorphic representations.

3A1. Induced representations and Eisenstein series. Given a character ! WF�nA�!C� (not necessarily
unitary), we denote by �.!/ the isobaric sum !�!�1, i.e., the space of measurable functions f on
GL2.A/ such that

f

��
a b

d

�
g

�
D ja=d j

1
2!.a/!�1.d/f .g/; hf; f iInd <C1;

where j � j denotes the adelic norm, K WD
Q
v Kv, and hf1; f2iInd <1, where we put

hf1; f2iInd WD

Z
F�nA�

.1/
�K

f1.a.y/k/f2.a.y/k/ d�y dk

D vol.F�nA�.1//
Z

K

f1.k/f2.k/ dk: (10)

Given such ! and f 2 �.!/, we define an Eisenstein series by a process of analytic continuation. It is
given by the following series, as long as it converges:

Eis.f /.g/ WD
X


2B2.F /nGL2.F /

f .
g/;

where for a ring R,

B2.R/ WD

��
a b

d

�
W a; d 2R�; b 2R

�
:



Spectral reciprocity via integral representations 1389

Suppose ! ¤ 1. We define further the normalized Eisenstein series by takingfEis.f / WDL.1; !2/Eis.f /:

It will be convenient to define the inner product of two normalized Eisenstein series in terms of the inner
product in the induced model of the functions used for generating it. In other words, for f1; f2 2 �.!/

and �i D
fEis.fi/, where i D 1; 2, we write

h�1; �2ieEis WD jL.1; !
2/j2hf1; f2iInd D d

1
2

F
ƒ�.1;Ad�.!//

Z
K

f1.k/f2.k/ dk: (11)

Finally, for a complex parameter s, we use the notation �.!; s/ WD �.! � j � js/. For a character !v
of Fv we can similarly define the induced representation �v.!v; s/ so that if ! '

N0
v !v, we have

�.!; s/'
N0
v �v.!v; s/.

3A2. Spectral decomposition for smooth functions. We already encountered a decomposition of L2.X/

in (9), but in practice we will encounter functions in L2.X/ which are right-invariant by a large compact
subgroup K0 �GL2.A/ and moreover we will need more uniformity than simply L2-convergence. In the
following, we write down a more precise form of this decomposition for functions in C1.X=KS /, where
for a finite set S of places of F containing the archimedean ones, KS is the compact group given by

KS
WD

Y
v 62S

Kv:

The only intervening representations are those that are unramified outside S . That means � 2 C.S/,
� D�.!; i t/ for ! 2„.S/ or � D!ıdet for ! 2„.S/. For each cuspidal automorphic representation � ,
we let Bc.�/ denote an orthonormal basis of the realization of � in L2.X/ with respect to the inner
product h � ; � iL2.X /. Similarly, for an induced representation � D �.!/, we define Be.�/ to be a basis
of normalized Eisenstein series (not vectors in the induced models!) with respect to h � ; � ieEis. We may
therefore state the following version of the spectral theorem:

Proposition 3.1. Let F 2 C1.X=KS / be of rapid decay. Then

F.g/D
X

�2C.S/

X
�2Bc.�/

hF; �i�.g/C vol.X/�1
X

!2„.S/

!2D1

hF; ! ı deti!.det g/

C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

hF; �i�.g/ dt;

where h � ; � i denotes the same integral as in the definition of h � ; � iL2.X / and convergence is absolute and
uniform for g on any compact subset of X .

The result, for pseudo-Eisenstein series, follows from (4.21) and (4.25) in [Gelbart and Jacquet 1979] and
by extending the inner product .a1.iy/; a2.iy// with respect to an orthogonal basis of L2.F�nA�

.1/
�K/.

The general result is a consequence of the fact that the space of cusp forms decomposes discretely and
spans the orthogonal complement to the space of pseudo-Eisenstein series.
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4. Whittaker models and periods

In this section, we consider irreducible automorphic representations � of GLn.A/ and the period integrals
related to some Rankin–Selberg L-functions. We will only be concerned with the generic representations,
which are those admitting a Whittaker model. This is done for arbitrary n but only the cases n D 2

and nD 1 are used in the sequel. Finally, we shall not distinguish between a representation � and its space
of smooth vectors V1� . An automorphic form � will always denote a smooth vector in an irreducible
automorphic representation.

4A. Whittaker functions. Let � be a generic automorphic representation of GLn.A/, and let � 2 � be
an automorphic form. Let W� W GLn.A/! C be the Whittaker function of � given by

W�.g/D

Z
Nn.F /nNn.A/

�.ng/ .n/ dn: (12)

It satisfies W�.ng/D  .n/W�.g/ for all n 2 Nn.A/.
Given a cuspidal automorphic representation of GLn.A/, we might write down an isomorphism

� '
N0
v �v where for each v, �v is a local generic admissible representation of GLn.Fv/, and we might

define Whittaker functions for each local representation such that for every � 2 � with � D
N0
v �v

through the above isomorphism, we have

W�.g/D
Y
v

W�v .gv/; g D .gv/v 2 GLn.A/: (13)

In fact, the map � 7!W� is an intertwiner between � and its image, denoted by W.�;  /, the so-called
Whittaker model of � . We similarly define the local Whittaker models W.�v;  v/. Later on, it will be
convenient to exchange freely between a representation and its associated Whittaker model. The importance
of the latter comes from its close relation to local Rankin–Selberg L-functions, as we will see in Section 4B.

There is a similar story for noncuspidal forms but in this case it is better to work with normalized
Eisenstein series. As we will only need this for nD 2, we shall restrict to this case. Let f 2 �.!/ and
suppose that f is factorable, i.e., f D

N0
v fv with fv 2 �v.!v/. Then it follows by analytic continuation

and Bruhat decomposition that

WeEis.f /.g/DL.1; !2/

Z
N2.A/

f .wng/ .n/ dnD
Y
v

W J
fv
.gv/;

where W J
fv

is the normalized Jacquet integral, given by

W J
fv
.gv/DL.1; !2

v /

Z
N2.Fv/

fv.wng/ .n/ dn:

By putting � D fEis.f / and W�v WDW J
fv

, we see that (13) also holds in this case.

It is also important to consider Whittaker functions with respect to the inverse character  0D x , so we
analogously define W 0

�
and W 0

�v
by replacing  v by  0v D x v and  by  0 D

Q
v  
0
v in all the previous
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definitions. It follows from uniqueness of local Whittaker functions that we may take

W 0x�v DW�v for all places v of F . (14)

If a local generic admissible representation �v is unramified for some finite place v, this mean that
in �v there exists a vector which is right-invariant by the action of GLn.ov/. Such a vector is called
spherical and spherical vectors are unique up to multiplication by scalars. Among the spherical vectors
we shall distinguish a certain one which we call normalized spherical. If v is unramified, the normalized
spherical vector will be the one for which W�v .e/D 1, where e 2 GLn.Fv/ denotes the identity element.
For the finite ramified places we simply define it to be the newform (defined in Section 4C). This avoids
repetition and is justified by the fact that the two notions also coincide for unramified primes.

4B. Integral representations of GLnC1 �GLn L-functions. This theory is an outgrowth of Hecke’s
theory of L-functions for GL2 and has been developed by Jacquet, Piatetski-Shapiro and Shalika. We
start with … and � irreducible automorphic representations of GLnC1.A/ and GLn.A/, respectively, and
let ˆ 2 … and � 2 � be automorphic forms. Suppose momentarily that ˆ is a cusp form and hence
rapidly decreasing. We can thus consider for every s 2 C the integral

I.s; ˆ; �/ WD

Z
GLn.F /nGLn.A/

ˆ

�
h

1

�
�.h/jdet hjs�

1
2 dh:

It follows from the Whittaker decomposition of cusp forms (see [Cogdell 2007, Theorem 1.1]) that if ˆ
is a cuspidal function, then

I.s; ˆ; �/D‰.s;Wˆ;W
0
�/ .Re.s/� 1/; (15)

where

‰.s;W;W 0/ WD

Z
Nn.A/nGLn.A/

W

�
h

1

�
W 0.h/jdet hjs�

1
2 dh: (16)

Our next result gives some of the good properties of ‰.s;W;W 0/, namely, convergence and the fact that
it factors into local integrals whenever ˆ and � also factor.

Proposition 4.1. Let … and � be automorphic representations of GL.nC 1/ and GL.n/ over F , respec-
tively. Let ˆ D

N0
v ˆv 2 … and � D

N0
v �v 2 � be automorphic forms. Let Wˆv and W 0

�v
be as in

Section 4A. Then, for Re.s/� 1, ‰.s;Wˆ;W
0
�
/ converges and we have the factorization

‰.s;Wˆ;W
0
�/D

Y
v

‰v.s;Wˆv ;W
0
�v
/;

where

‰v.s;W;W 0/ WD

Z
Nn.Fv/nGLn.Fv/

W

�
hv

1

�
W 0.hv/jdet hvj

s� 1
2 dhv: (17)

Moreover, if v is finite and both …v and �v are unramified and ˆv and �v are normalized spherical,

‰v.s;Wˆv ;W
0
�v
/D pdvln.s/

v L.s;…v ��v/; where ln.s/D
1
2
n.nC 1/s� 1

12
n.nC 1/.2nC 1/:
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Proof. The first part follows from gauge estimates for Whittaker functions (see [Jacquet et al. 1979, §2]). It
is an important fact that this part does not require the representations to be cuspidal. The reason is that, in
some sense, the integral representation using Whittaker functions only sees the nonconstant terms. For the
local computation this is well known when pv is unramified (see, e.g., [Cogdell 2007, Theorem 3.3]). In
general we may restrict to the unramified situation by following the computation in the proof of [Cogdell
and Piatetski-Shapiro 1994, Lemma 2.1]. �

Remark. When nD 1, we write I.s; �/, ‰.s;W�/ and ‰v.s;W�v / instead of I.s; �; 1/, ‰.s;W� ;W1v /

and ‰v.s;W�v ;W1/, where 1 and 1v denote the constant functions on GL1.A/ and GL1.Fv/ respectively.

4C. Newforms and ramified L-factors. For a finite place v and any admissible irreducible generic
representation of GLn.Fv/, not necessarily unramified, we define a distinguished vector in its Whittaker
model, called newform. This was first introduced by Casselman [1973] when nD 2 by translating the
results of Atkin and Lehner to the representation-theoretic language. This was later generalized by Jacquet,
Piatetski-Shapiro and Shalika [Jacquet et al. 1981] for general n by requiring that they are good test
vectors for representing L-functions via Rankin–Selberg periods as in Section 4B. Moreover, when �v is
unramified, these coincide with normalized spherical vectors.

The fact that these newvectors are test vectors for Rankin–Selberg L-functions can be rephrased
by relating their values to the Langlands parameters of the representation. This was carefully car-
ried out in [Miyauchi 2014]. In order to quote these results we introduce the following notation: for
� D .�1; : : : ; �n�1/ 2 Zn�1, let s.�/D

Pn�1
iD1

1
2
i.n� i/�i , and for y 2 F�v , we write

a.�/ WD

0BBB@
$
�1C���C�n�1
v

$
�2C���C�n�1
v

: : :

1

1CCCA :
The main result of [Miyauchi 2014] states that if  v is unramified, then W�v .a.�//Dps.�/��.�/; where

��v .�/D 0 unless �1; : : : ; �n�1 � 0; (18)

and the ��v .�/ are in general given by Schur polynomials evaluated on the Langlands parameters of �v
(see [Miyauchi 2014] for details).

When v is ramified, this has to be modified. First, we write v.x/D Fv .�x/ for some �2F�v , where
 Fv is an unramified additive character of Fv , and let d D v.�/. We then define the newvector by taking

W�v .g/DW unr
�v
.a.�n.d//g/;

where �n.d/D .d; d; : : : ; d/ 2 Zn�1 and W unr
�v

denotes the newvector for the unramified character  Fv .
The term a.�n.d// is responsible for the change in the additive character.

In addition to Proposition 4.1, we shall also need to compute L-functions for certain ramified local
representations. In particular, we require the following computation that appears, for instance, in the
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work of Booker, Krishnamurthy and Lee [Booker et al. 2020, proof of Lemma 3.1]: Let n > m, and
let …v (resp. �v) be an irreducible admissible generic representation of GLn.Fv/ (resp. GLm.Fv/) with
Langlands parameters .
 .i/

…v
/n
iD1

(resp. .
 .j/�v /
m
jD1

). Supposing further that �v is ramified, one then has

X
�2Zm�1

�1;:::;�m�1�0

�…v .�; 0; : : : ; 0/��v .�/

p
.�1C2�2C���C.m�1/�m�1/s
v

DL.s;…v ��v/; (19)

where

L.s;…v ��v/ WD
Y

1�i�n
1�j�m

.1� 

.i/
…v

 .j/�v

p�s
v /�1: (20)

This coincides with Langlands local L-function when …v is unramified, which we shall suppose.

4D. Relation between inner products on GL.2/. Let � be a generic automorphic representation of GL.2/
over F with trivial central character. We define a GL2.A/-invariant inner product on the representation
space of � as follows: If � is cuspidal, then we may see V� embedded in L2.X/ and therefore � may
inherit the inner product from L2.X/ given by (8). If � is Eisenstein we cannot see the representation
space of � inside L2.X/ and hence we equip it with the inner product given by (11).

There is however another way of defining an inner product for factorable vectors in these representations
which is independent of whether � is cuspidal or Eisenstein. This is done by using the Whittaker model
as follows: For each place v, we have a GL2.Fv/-invariant inner form on W.�v;  v/ by letting

#v.W1;W2/D

R
F�v

W1.a.yv//W2.a.yv// d�yv;

�v.1/Lv.1;Ad�/=�v.2/
: (21)

The fact that the numerator of (21) is indeed right GL2.Fv/-invariant follows from the theory of the
Kirillov model and the inclusion of the denominator is to ensure the following property: Whenever
�v and  v are unramified and W is normalized spherical, we have #v.W;W / D 1. Finally, letting
�1 D

N
�1;v and �2 D

N
�2;v be either cusp forms or normalized Eisenstein series, we define the

canonical inner product by the formula

h�1; �2ican WD 2d
1
2

F
ƒ�.1;Ad�/�

Y
v

#v.W�1;v
;W�2;v

/: (22)

Since every two GL2.A/-invariant inner products in � must be equal up to multiplication by some scalar, it
follows that we can compare the canonical inner product with the ones introduced earlier for cuspidal and
Eisenstein representations. Indeed, Rankin–Selberg theory in the cuspidal case and a direct computation
in the Eisenstein case gives us the following relation:

h�1; �2ican D

�
h�1; �2iL2.X / if � is cuspidal;
2h�1; �2iEis if � is Eisenstein:

(23)
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The computation in the Eisenstein case follows from [Wu 2014, Lemma 2.8]. For the cusp forms we
combine the proof of [Wu 2014, Proposition 2.13] with the value of the residue of an Eisenstein series
computed in [Michel and Venkatesh 2010, (4.6)].1

5. Abstract reciprocity

In this section we show an identity between two periods. At this point we make no attempt to relate them
to moments of L-functions. The proof is a rather simple matrix computation.

Suppose ˆ 2 C1
�
Z3.A/GL3.F /nGL3.A/

�
is such that for every h 2 GL2.A/, the integral

Asˆ.h/ WD jdet hjs�
1
2

Z
F�nA�

ˆ

�
z.u/h

1

�
juj2s�1d�u (24)

converges and such that y 7!Asˆ
��

y
1

�
h
�

is of rapid decay as jyj ! 0 or C1.

Proposition 5.1. Let ˆ be as above, and let I.w; � / be as in the remark on page 1392. Then, for every
s; w 2 C, we have the reciprocity relation

I.w;Asˆ/D I.w0;As0
{̂ /;

where .s0; w0/ are as in (5) and

{̂ .g/ WDˆ.gw23/; w23 D

 
1

1
1

!
: (25)

Proof. By definition,

I.w;Asˆ/D

Z
F�nA�

Z
F�nA�

ˆ

�
z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y: (26)

Now, since ˆ is left-invariant by Z3.A/GL3.F /, we see that for every u;y 2 A�, one has

ˆ

0@uy

u

1

1ADˆ
0@0@u

u

u

1Aw23

0@y

u�1

1

1Aw23

1ADˆ
0@0@y

u�1

1

1Aw23

1AD {̂
0@y

u�1

1

1A :
Applying this to (26) and making the change of variables .u;y/D .u0�1;u0y0/ gives the result. �

6. Spectral expansion of the period

In this section we will give a spectral decomposition of the period I.w;Asˆ/. Let … be an automorphic
cuspidal representation for GL.3/ over F , and let ˆD

N
v ˆv 2… be a cusp form. Let S be a finite set

of places containing all archimedean places and all the places for which ˆ is not normalized spherical.
Since ˆ is of rapid decay, then the same holds for Asˆ. More precisely this follows by combining the

1In [Wu 2014], a factor d
1
2

F
seems to be missing in the computation of this residue.
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rapid decay of Whittaker functions with the action of the Weyl group of GL.3/. We can thus spectrally
decompose it as in Proposition 3.1:

Asˆ.h/D
X

�2C.S/

X
�2Bc.�/

hAsˆ; �i�.h/C vol.X/�1
X

!2„.S/

!2D1

hAsˆ;! ı deti!.det g/

C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

hAsˆ; �i�.h/ dt:

By integrating both sides of the above expression against an additive character and over the compact
set N2.F /nN2.A/, we get the following relation for Whittaker functions:

WAsˆ.h/D
X

�2C.S/

X
�2Bc.�/

hAsˆ; �iW�.h/C
1

4�

X
�2„.S/

Z 1
�1

X
�2Be.�.!;it//

hAsˆ; �iW�.h/ dt:

Notice that since the one-dimensional representations are not generic, they do not contribute to the above
expression. Now, because of rapid decay of the Whittaker functions W� as jyj !C1, if we take Re.w/
sufficiently large, we get

‰.w;Asˆ/

D

X
�2C.S/

X
�2Bc.�/

hAsˆ; �i‰.w;W�/C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

hAsˆ; �i‰.w;W�/ dt: (27)

By using the Fourier decomposition of Asˆ, we see thatZ
A�

WAsˆ.a.y//jyj
w� 1

2 d�y D I.w;Asˆ/� I.w; .Asˆ/0/;

where for any � on C1.X/, �0 is given by

�0.h/ WD

Z
FnA

�.n.x/h/ dx:

The next step is to realize the terms hAsˆ; �i and ‰.w;W�/ as a product of local integrals. First, it
follows from Proposition 4.1 that if � D

N
v �v is decomposable,

‰.w;W�/D
Y
v

‰v.w;W�v /:

Moreover, from the definition of Asˆ, we deduce, after changing variables, that

hAsˆ; �i D I.s; ˆ; x�/:

Since ˆ is a cusp form on GL.3/, it follows from (15) and Proposition 4.1 that for Re.s/ sufficiently
large and factorable �,

I.s; ˆ; x�/D‰.s;Wˆ;W
0
x�
/D

Y
v

‰v.s;Wˆv ;W
0
x�v
/;
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where ‰v.s;W;W 0/ is given by (17). As a consequence, we have

I.w;WAsˆ/D I.w; .Asˆ/0/C
X

�2C.S/

X
�2Bc.�/

Y
v

‰v.s;Wˆv ;W
0
x�v
/
Y
v

‰v.s;W�v /

C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

Y
v

‰v.s;Wˆv ;W
0
x�v
/
Y
v

‰v.s;W�v / dt: (28)

For each generic automorphic representation � we will now construct an orthonormal basis for V�

which is formed exclusively by factorable vectors: We start by choosing for each place v, an orthogonal
basis BW .�v/ of the space W.�v;  v/. Consider now the elements � D

N
v �v such that for every

finite v, W�v lies in BW .�v/, and for all but finitely many v, W�v is normalized spherical. This provides
us with an orthogonal basis for V� . In order to get an orthonormal basis we multiply these vectors by
the correcting factors coming from (23). Applying these steps to (28) leads to the following (the slightly
awkward normalization is justified by the last part of Proposition 4.1):

Proposition 6.1. Let … be a cuspidal automorphic representation, and let ˆD
N
v ˆv 2… be a cusp

form. Then, for complex numbers s and w with sufficiently large real parts, we have

2d
7
2
�3s�w

F
I.w;Asˆ/DMs;w.ˆ/CDs;w.ˆ/;

where

H.�/D
Y
v

Hv.�v/; Hv.�v/ WD pdv.3�3s�w/
v

X
W 2BW .�v/

‰v.s;Wˆv ;W /‰v.w;W /

L.s;…v ��v/L.w; �v/
; (29)

Ms;w.ˆ/ is as in (4), and

Ds;w.ˆ/ WD 2d
7
2
�3s�w

F

Z
F�nA�

Z
FnA

Z
F�nA�

ˆ

�
z.u/n.x/a.y/

1

�
juj2s�1

jyjsCw�1 d�u dx d�y: (30)

We will refer to the function H given by (29) where ˆD
N
ˆv 2… as the .s; w/-weight function of

kernel ˆ. If s and w and ˆ are clear from the context, we shall refer to it simply as the weight function
of kernel ˆ.

Finally, given s; w2C, if H is the .s; w/-weight function with kernelˆ, we let {H be the .s0; w0/-weight
function associated to {̂ , where s0 and w0 are as in (5) and {̂ is as in (25). In other words,

{H .�/D
Y
v

{Hv.�v/; {Hv.�/ WD pdv.3�3s0�w0/
v

X
W 2BW .�v/

‰v.s
0;W {̂v ;W /‰v.w

0;W /

L.s0;…v ��v/L.w0; �v/
: (31)

7. Local computations

Let … be an unramified cuspidal automorphic representation of PGL.3/ over F . For all v, we let ˆ0
v

correspond to the normalized spherical vector in the Whittaker model, that is, Wˆ0
v
DW…v . Let q and l
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be two coprime integral ideals of F . Finally, let ˆq;l D
N
v ˆ

q;l
v , where, for all v ∤ql, we put ˆq;l

v Dˆ
0
v,

for v j q,

ˆq;l
v .g/ WD

1

pn
v

X
ˇ2m�n

v =ov

ˆ0
v

0@g

0@1 ˇ

1

1

1A1A ; (32)

where nD v.q/, and, for v j l,

ˆq;l
v .g/ WD

1

pm
v

X
ˇ2m�m

v =ov

ˆ0
v

0@g

0@1 ˇ

1

1

1A1A ;
with mD v.l/.

We will now proceed to the calculation of Hv for ˆDˆq;l. First notice that if, for some compact group
K0v of GL2.Fv/, we have that ˆv is invariant on the right by matrices of the shape

�
k

1

�
, where k 2K0v ,

then we may restrict the sum over the basis BW .�v/ to a sum over a basis of the right K0v-invariant
vectors. In particular, if v <1 and v ∤ql, this basis will have only one element, which can be taken to be
normalized spherical. Thus, by Proposition 4.1, we see that Hv.�v/D 1 in those cases. We divide the
remaining cases in three subcategories: v j l, v j q and v j1 and treat them in that order.

7A. Nonarchimedean case I: v j l. Even though this is not obvious at first glance, we will show that
Hv vanishes unless �v is unramified. First, notice that by right GL.2/-invariance of the Whittaker norm,
we have that for every orthonormal basis B of W.�v;  v/, one may construct another one by taking
B0 WD f�v.h/W;W 2 Bg. Applying this for h D

�
1 ˇ

1

�
for ˇ 2 m�m

v =ov, changing variables in the
GL.3/�GL.2/ Rankin–Selberg integral and summing over ˇ, we deduce that

Hv.�v/D pdv.3�3s�w/
v

X
W 2BW .�v/

‰v.s;W…v ;W /‰v.w;W
.m//

L.s;…v ��v/L.w; �v/
;

where

W .m/.h/ WD p�m
X

ˇ2m�m
v =ov

W

�
h

�
1 �ˇ

1

��
:

Now, since W…v is spherical, we may restrict the sum over BW .�v/ to only one term for which W is the
normalized spherical vector. Now, by Proposition 4.1, ‰v.s;W…v ;W�v /D pdv.3s� 5

2
/

v L.s;…v ��v/ and

‰v.w;W
.m/
�v

/D

Z
F�v

ıv.y/�m�dW�v

�
y

1

�
jyjw�

1
2 d�y;

D p
dv.w�

1
2
/

v

X
��m

��v .�/

p
�w
v ;

D p�mw
v

�
��v .m/�

��v .m� 1/

pwv

�
p

dv.w�
1
2
/

v L.w; �v/: (33)

Hence we have that

Hv.�v/D p�mw
v

�
��v .m/�

��v .m� 1/

pwv

�
: (34)
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7B. Nonarchimedean case II: v jq. We will show that Hv.�v/ vanishes unless c.�v/ � n and that
Hv.�v/�� p

n.��1C�/
v , and if c.�v/D n, then Hv.�v/D '.p

n
v /p
�2n
v .

We first notice that by a result of Casselman [1973], if we let W0 DW�v be the newvector and for
each j � 0, we let

Wj WD �v

�
1

$
j
v

�
W0: (35)

Then, for each j � 0, fW0;W1; : : : ;Wj g is a basis for the Kv Œn0Cj �-invariant vectors in W.�v;  v/,
where n0 D c.�v/. We now construct an orthonormal basis by employing the Gram–Schmidt process.
This is the local counterpart of the method in [Blomer and Milićević 2015].

Let ��v D ��v .1/ be as in Section 4C and ı�v D ın0D0, and take ˛�v WD ��v=.
p

pv.1C ı�v=pv//.
We put

��v .0; 0/D 1; ��v .1; 1/D
1p

1�˛2
�v

; ��v .1; 0/D�˛�vp
1
2
v ��v .1; 1/;

and

��v .j ; j /D
1p

1�˛2
�v

p
1� ı�v=p

2
v

; ��v .j ; j�1/D���v��v .j ; j /; ��v .j ; j�2/D ı�v��v .j ; j /;

and ��v .j ; k/D 0 for k � j � 2. If one assumes any nontrivial bound towards the Ramanujan conjecture
��v � p#v , with # < 1

2
, one has that j˛�v j is uniformly bounded by some constant C# < 1 and therefore

��v .j ; k/� pj�
v p.j�k/#

v : (36)

More importantly, for j � 0, ffW0;fW1; : : : ;fWj g is an orthonormal basis for the space of Kv Œn0Cj �-
vectors in W.�v;  v/, where

fWj WD
1

hW0;W0i
1=2

jX
kD1

��v .j ; k/p
1
2
.k�j/

v Wk : (37)

To see this we first compute hWk1
;Wk2

i, which, by (35) and the definition of ��j , equals

p�
1
2
jk2�k1jSjk2�k1j

;

where, for t � 0,

St D
�v.2/

Lv.1; �v � x�v/

X
��0

��v .�/��v .�C t/

p�v
:

It follows from the Hecke relations for ��v .�/ that

St D ��vSt�1� ı�vSt�2 for t � 2 and S1 D ˛�vp
1
2
v S0;

from which the claim follows.
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By definition, we have

Wˆv

0@a b

c d

1

1AD 1

pn
v

X
ˇ2m�n

v =ov

 .ˇc/W…v

0@a b

c d

1

1AD ıv.c/�n�dvW…v

0@a b

c d

1

1A :
Hence, if we write h D z.u/n.x/a.y/k, with x 2 Fv, u;y 2 F�v and k D .kij / 2 Kv, then Wˆv

vanishes unless v.uk21/� n�dv . Letting d1 WDmin.n; v.u/Cdv/ and d2 WD n�d1, we see that this is
equivalent to k belonging to Kv Œd2�. This allows us to write

‰v.s;Wˆv ;W /D pdv.2s�1/
v

X
d1Cd2Dn

X
min.�1;n/Dd1

p�2�1.s�
1
2
/

v ‰�1;d2
.W /; (38)

where

‰�1;d2
.W /D

Z
F�v

Z
KvŒd2�

W…v

�
z.$�1�dv

v /a.y/
�
W .a.y/k/jyjs�

3
2 d�y dk:

Now, if W D fWj is an element of our basis, given by (37), then it follows thatZ
KvŒf �

fWj .hk/ dk D

�
vol.Kv Œf �/fWj .h/ if j C n0 � f;

0 otherwise:
(39)

We reason as follows: On the one hand, for every j , fWj is Kv Œn0Cj �-invariant and is orthogonal to
W.�v;  v/

KvŒn0Cj�1�. On the other, the operator

W 7!
1

vol.Kv Œf �/

Z
KvŒf �

�v.k/W dk

is the orthogonal projection into the space of Kv Œf �-invariant vectors.
Applying (38) and (39) to the definition of Hv.�v/ and changing order of summation, we are led to

Hv.�v/D
p

dv.2�s�w/
v

L.s;…v ��v/L.w; �v/

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

X
min.�1;n/Dd1

p�2�1.s�
1
2
/

v

�

Z
F�v

W…v

�
z.$

�1�dv
v /a.y/

1

�fWj .a.y//jyj
s� 3

2 d�y‰v.w;fWj /: (40)

By letting ��v;j .�/D fWj .a.$
��dv
v //p

1
2
� and using (18), we see thatZ

F�v

W…v

 
z.$

�1�dv
v /a.y/

1

! fWj .a.y//jyj
s� 3

2 d�y

D p
dv.s�

3
2
/

v

X
�2�0

��v .�2; �1/��v;j .�2/p
��1
v p��2s

v (41)

and also

‰v.w;fWj /D p
dv.w�

1
2
/

v

X
��0

��v;j .�/p
��w
v : (42)
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Inserting (41) and (42) in (40), we deduce that

Hv.�v/D
1

L.s;…v ��v/L.w; �v/

�

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

X
min.�1;n/Dd1

X
�2�0

X
��0

�…v .�2; �1/��v;j .�2/��v;j .�/

p
.2�1C�2/s
v p

�w
v

:

Combining (35) and (37), we get

��v;j .�/D hW0;W0i
� 1

2

min.j ;k/X
kD1

��v .j ; k/p
k� 1

2
j

v ��v .� � k/ı��k :

As a consequence, we deduce, after changing variables, that

Hv.�v/D
hW0;W0i

�1

L.s;…v ��v/L.w; �v/

�

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

p�j
v

X
k1;k2�j

��v .j ; k1/��v .j ; k2/p
k1.1�w/
v pk2.1�s/

v p�2d1s
v

�

X
min.�1;d2/D0

X
�2�0

�…v .�2C k2; �1C d1/��v .�2/

p
.2�1C�2/s
v

X
��0

��v .�/

p
�w
v

:

We recognize the last sum as L.w; �v/, so that

Hv.�v/D
hW0;W0i

�1

L.s;…v ��v/

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

p�j
v

X
k1;k2�j

��v .j ; k1/��v .j ; k2/

�pk1.1�w/
v pk2.1�s/

v p�2d1s
v

X
min.�1;d2/D0

X
�2�0

�…v .�2C k2; �1C d1/��v .�2/

p
.2�1C�2/s
v

: (43)

We are now ready to prove the following

Proposition 7.1. Let ˆv Dˆ
q;l
v be as in (32), and let nD v.q/. Then for every � > 0 there exists ı > 0

such that

(i) Hv.�v/ vanishes if c.�v/ > n,

(ii) Hv.�v/D '.p
n
v /p
�2n
v if c.�v/D n,

(iii) Hv.�v/�� p
n.��1C�/
v in general for Re.s/;Re.w/ > 1

2
� ı and ı > 0 sufficiently small.

The first assertion follows by observing that if n0 D c.�v/ > n then the sum over j in (43) will vanish
independently of the value of d2.

The second one holds because if n0 D n, we automatically have d2 D n and d1 D j D k1 D k2 D 0

and moreover

hW0;W0i D
�v.2/

Lv.1; �v � x�v/

X
n�1

j��v .n/j
2

pn
v

D

�
1 if n0 D 0;

�v.2/ otherwise.
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Hence,

Hv.�v/D
'.pn

v /p
�2n
v

L.s;…v ��v/

X
�2�0

�…v .�2; 0/��v .�2/;

and we conclude by (19).
Finally, in order to show (iii), we apply the estimate in (36) and the bounds

�…v .�1; �2/� p.�1C�2/�
v ; ��v .�/� p�#v

to (43), which gives

Hv.�v/�� pn.�1C�/
v

X
d1Cd2Dn

p2.d1Cj/ı

d2�n0X
jD0

jX
k1;k2D0

p
.k1Ck2�2j/. 1

2
�#/

v p.d1Ck2/�
v

for <.s/ > 1
2
�; � C # and it follows from the results in [Luo et al. 1999] and the Kim–Sarnak bound

[2003, Appendix 2] that one has � C# < 1
2

. We conclude by taking ı sufficiently small.

7C. Local computations, the archimedean case. The analysis of the archimedean weight functions is
of a somewhat different nature from the nonarchimedean case. For those places, we make the simplest
choice imaginable. Namely we impose that …v is unramified and ˆv is normalized spherical for
every archimedean place v. As a consequence it easily follows that Hv.�v/ vanishes unless �v is itself
unramified, in which case we may choose a basis of BW .�v/ such that each term corresponds to a different
K-type, and then there will be at most one element W of BW .�v/ for which the period ‰v.s;Wˆv ;W /

is nonvanishing, and it must be a spherical vector for �v. Moreover, it follows from Stade’s formula
[2001, Theorem 3.4] that

‰v.s;Wˆv ;W /DLv.s;…v ��v/; ‰v.w;W /DLv.w; �v/:

where W DW�v 2W.�v;  v/ is spherical and such that #v.W;W / D 1. In particular, the following
holds:

Proposition 7.2. Let v be an archimedean place of F . Let …v be an irreducible admissible generic
representation for GL3.Fv/. Then there exists a vectorˆv 2…v such that for every irreducible admissible
generic representation for GL2.Fv/, we have

H.�v/D

�
1 if �v is unramified;
0 otherwise:

7D. Meromorphic continuation with respect to the spectral parameter. Let ˆq;l be as in (32), and
let H be the .s; w/-weight function of kernel ˆq;l. Our goal in this section is to find that for any unitary
character ! of F�v there is a domain of C3 on which the function

.s; w; t/ 7!Hv.�v/

is meromorphic with respect to all three variables with only finitely many polar divisors, where �v D
�v.!v; i t/ (see Section 3A1).
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From our computations so far, we know that Hv.�v/D 1 unless v j l or v j q. Moreover, in the first of
these cases, we saw that

Hv.�v/D p�mw
v

�
��v .m/�

��v .m� 1/

pwv

�
; mD v.l/;

which is clearly an entire function with respect to s, w and t , since it is a combination of terms of the
shape p

˛wCˇt
v , where ˛; ˇ 2 C.

We are now left with the case where v j q. It follows from the proof of Proposition 7.1 that given � < 1
2

,
there exists ı > 0 such that the right-hand side of (43) converges in the region

jIm.t/j< �; Re.s/;Re.w/ > 1
2
� ı;

and defines in it a holomorphic function in the variables s and w. We observe that Hv.�v/ is a linear
combination of terms of the shape

L!;k2;d1;d2
.s; t/ WD

1

L.s;…v ��v/

X
min.�1;d2/D0

X
�2�0

�…v .�2C k2; �1C d1/��v .�2/

p
.2�1C�2/s
v

;

with coefficients given by meromorphic functions in the variables s, w and t . The only possible polar
divisors occur for t satisfying !.$v/2p2it

v D p˙1
v , due to the term .1� ˛2

�v
/�1 appearing as a factor

of ��v .j ; k1/��v .j ; k2/. Moreover, it follows from [Blomer and Khan 2019a, Lemma 14], applied to
the tuple .M; d;g1;g2; q/ D .p

k2
v ;p

d1
v ; 1;p

d2
v ;p

n
v /, that for any � > 0, there exists ı > 0 such that

L!;k2;d1;d2
.s; t/ admits a holomorphic continuation to the region

Re.s/ > 1
4
� ı; Re.s/˙ Im.t/ > �ı: (44)

Moreover, using again the Ramanujan bound for �…v .�2; �2/ and recalling that �v D �v.!v; i t/, so that
��v .�/� p�jIm.t/jC�v , we see that in the region (44) we have

L!;k2;d1;d2
.s; w; t/� p.d1Ck2/.�C�/

v : (45)

As a consequence, Hv.�v/ admits meromorphic continuation to (44). Now, suppose ! D 1 is the trivial
character, and let

Dv.s; w/ WDHv.�v/jtD.1�w/=i : (46)

From what we have just seen, Dv.s; w/D 1 unless v j l or v j q. In the first case, it is clear that Dv.s; w/ is
entire with respect to both s and w. Also, when 1

2
� Re.s/;Re.w/ < 1, we have ��v .m/� p

m.1�Re.w//
v ,

and thus by (34), we see that

Dv.s; w/� 1:

Finally, if v j q, then for sufficiently small ı > 0, Dv is meromorphic in the region

1
2
� ı < Re.s/;Re.w/� 1; (47)
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where the only possible polar divisors are at the values of w such that p2�2w
v D pv. We will now show

that such poles cannot occur. To see this, let

Ej ;k2
.w/ WD ��v .j ; k2/

jX
k1D0

��v .j ; k1/p
k1.1�w/
v :

An easy computation shows that

Ej ;k2
.w/D

8<:
1 if j D 0;

tj ;k2
.w/=.1�p2w�3

v / if j D 1;

0 otherwise;

where tj ;k2
is an entire function. This and the fact that L!;k;d1;d2

.s; w; .1�w/= i/ is holomorphic in (47)
are enough to guarantee that Hv.�v/ is holomorphic in the same region. Moreover, we may argue
analogously to Proposition 7.1(iii), appealing to (45), to deduce that for 1

2
� Re.s/;Re.w/ < 1, we have

the inequality

Dv.s; w/�s;w;� pn.�1C�C�/
v

X
d1Cd2Dn

d2�n0X
jD0

pj.1�2 Re.w//
v Cpj.1�Re.s/�Re.w//

v �� pn.�1C�C�/
v :

We now summarize what we obtained in this subsection as follows:

Proposition 7.3. Let ! D
N0
v !v be an unitary character of F�nA�, and let Hv be given by (29) with

ˆv Dˆ
q;l
v , withˆq;l

v given by (32). Then .s; w; t/ 7!Hv.�v.!v; i t// admits meromorphic continuation to
the region (44) with possible polar divisor of the form t D t0, where t0 is a solution to !.$v/2p

2it0
v Dp˙1

v .
Moreover, if Dv is given by (46), then it admits a holomorphic continuation to the region (47) and
if 1

2
� Re.s/;Re.w/ < 1, it satisfies Dv.s; w/D 1 unless v j ql, in which case

Dv.s; w/�s;w;�

�
pm�
v if v j l;

p
n.�1C�C�/
v if v j q:

8. The degenerate term

In this section we study the term Ds;w.ˆ/ given by (30) and its companion Ds0;w0. {̂ /. First, by rapid
decay of Whittaker functions and the action of the Weyl group of GL.3/, we may see that both converge
for any values of s; w 2 C. This is all that is needed to know with respect to these terms for Theorem 1.1.

Let us now turn to their use in Theorem 1.2. Here we make the specialization to ˆDˆq;l. It turns out
that is easier to study first the term Ds0;w0. {̂ /, so we start with this one and later deduce an analogous
result for the other by using their symmetry. First, we recall that

Ds0;w0. {̂ /D2d
7
2
�3s0�w0

F

Z
F�nA�

Z
FnA

Z
F�nA�

{̂

�
z.u/n.x/a.y/

1

�
juj2s0�1

jyjs
0Cw0�1 d�udx d�y: (48)

We will show that, in the region

Re.3sCw/ > 1; Re.sCw/; Re.2s/ > �; (49)

Ds0;w0. {̂ /�s;w;� `
��Re.s/�Re.w/C�, where ` is the absolute norm of l.
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We begin by noticing that, using the definition of {̂ , reversing the change of variables used in the proof
of Proposition 5.1 and changing the order of summation, we see that the integral in (48) equalsZ

.F�nA�/2

0@Z
FnA

ˆ

0@0@1 x

1

1

1A�z.u/a.y/

1

�1A dx

1A juj2s�1
jyjsCw�1 d�u d�y:

By the Whittaker expansion of ˆ, the inner integral isZ
FnA

X

2N2.F /nGL2.F /

Wˆ

0@�

1

�0@1 x

1

1

1A�z.u/a.y/

1

�1A dx;

which, by elementary manipulations and changing the order of summation and integration, becomesX

2N2.F /nGL2.F /

Wˆ

�

 z.u/a.y/

1

�Z
FnA

 .
21x/ dx;

where 
21 is the lower left entry of 
 . Since 
21 2 F , the inner integral vanishes unless 
21 D 0, in
which case, it equals one. In other words, we may change the sum over N2.F /nGL2.F / into a sum over
N2.F /nB2.F /, which can be parametrized by Z2.F /A2.F /. Altogether, this implies that

Ds0;w0. {̂ /D 2d
7
2
�3s0�w0

F

Z
.F�nA�/2

X

2Z2.F /A2.F /

Wˆ

�

 z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y

D 2d
7
2
�3s0�w0

F

Z
.A�/2

Wˆ

�
z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y: (50)

Suppose that Re.s/ and Re.w/ are sufficiently large. We are now in a fairly advantageous position, as
the integral above can be factored into local ones. These local integrals are

Jv D
Z
.F�v /2

Wˆv

�
z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y:

We notice that for a finite place v for which …v is unramified, this equals

pdv.3sCw�2/
v

X
�1;�2�0

�…v .�1; �2/

p
�1.sCw/C2�2s
v

;

whose inner sum we recognize as being the local factor of Bump’s double Dirichlet series (see, e.g.,
[Goldfeld 2006, §6.6]). In particular, it follows that for Re.s C w/;Re.2s/ > � (recall the bound
�…v .�1; �2/� p

.�1C�2/�
v ) the above equals

J 0
v WD pdv.3sCw�2/

v

L.sCw;…v/L.2s;…v/

�v.3sCw/
�s;w 1: (51)

As for the remaining places, we first observe that for v j q, the unipotent averaging has no effect on the
values of the Whittaker function at diagonal element. Thus, it follows that the local integral Jv will
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also coincide with (51). Furthermore, (51) also holds for archimedean v. For real places this is done in
[Bump 1984] and for the complex places this is [Bump and Friedberg 1989, Theorem 1]. Finally, for v j l,

Wˆv

�
z.u/a.y/

1

�
D ıv.y/�m�dvW…v

�
z.u/a.y/

1

�
;

where mD v.l/. Hence, in this case, the local factor is

Jv D pdv.3sCw�2/
v

X
�1�m;�2�0

�…v .�1; �2/

p
�1.sCw/C2�2s
v

;

which, by using yet again the Ramanujan bound for �…v .�1; �2/, we may see converges in the region
Re.sCw/;Re.2s/ > � , where it satisfies

Jv�� pm.��Re.s/�Re.w/C�/
v :

In particular, if lD 1,

D 1
2
; 1

2
. {̂ /D 2d

3
2

F

ƒ.1;…/ƒ.1;…/

�F .2/
: (52)

Now, notice that Ds;w.ˆ/ is the same as Ds0;w0. {̂ / but with .q; l; s; w/ replaced by .l; q; s0; w0/. This
allows us to immediately reuse our efforts in this section to study the latter function as well. We record
the results for both these functions in a weaker form in the following proposition.

Proposition 8.1. Let Ds;w.ˆ/ and Ds;w.ˆ/ be as defined in (30) with ˆ D ˆq;l and {̂ given by (25).
Then they are entire functions of s and w, and in the region

Re.s/;Re.w/;Re.s0/;Re.w0/ > 1
4
;

they satisfy

Ds;w.ˆ/�s;w;� q��Re.sCw/C� and Ds0;w0. {̂ /�s;w;� `
��Re.sCw/C�:

9. Analytic continuation of the Eisenstein part

The conclusion of our next proposition will be subject to the following hypothesis, whose verification
when ˆDˆq;l follows from the main results of Section 7:

Hypothesis 1. There exists ı > 0 such that for every idele character !, the function

.s; w; t/ 7!H.�.!; i t//

is holomorphic in the region

Re.s/;Re.w/ > 1
2
� ı; jIm.t/j< ı:

Moreover, H.�.!; .1�w// admits a holomorphic continuation to the region

1
2
� ı < Re.s/;Re.w/ < 1:
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We will show that the term Es;w.ˆ/ admits meromorphic continuation for values of s and w with real
parts smaller than 1. The proof follows the same lines as those of Blomer and Khan [2019a, Lemma 16;
2019b, Lemma 3].

Proposition 9.1. Suppose that … is a cuspidal automorphic representation, and let ˆ 2 … be an
automorphic form such that the associated weight function H satisfies Hypothesis 1 for some ı > 0. Let
Es;w.ˆ/ be given by (3), defined initially for Re.s/;Re.w/� 1. It admits a meromorphic continuation
to Re.s/;Re.w/� 1

2
�� for some � > 0 with at most finitely many polar divisors. If 1

2
�Re.s/;Re.w/< 1,

its analytic continuation is given by Es;w.ˆ/CRs;w.ˆ/, where

Rs;w.ˆ/D
X
˙

res
tD˙.1�w/=i

.˙i/
ƒ.sC i t;…/ƒ.s� i t;…/�F .wC i t/�F .w� i t/

��
F
.1/�F .1C 2i t/�F .1� 2i t/

H.�.1; i t//: (53)

Proof. Let ı > 0 to be chosen later. We use nonvanishing of completed Dirichlet L-functions ƒ.s; !/ at
Re.s/D 1 and continuity to define a continuous function � WR 7! .0; ı/ so that neitherƒ.1�2��2i t; !2/

nor H.�.!; i t C �// have poles for 0� � < �.t/.
We start by noticing that we can analytically continue Es;w.ˆ/ to Re.s/;Re.w/ > 1, since in that

region, one does not encounter any poles of ƒ.w; �.1; i t//. Now, suppose that

1< Re.s/ < 1C �.Im.s// and 1< Re.w/ < 1C �.Im.w//:

We shift the contour of the integral defining Es;w.ˆ/ down to Im t D��.Re.t//. We pick up a pole of
ƒ.w� i t; !/ when ! is the trivial character and w� i t D 1.

We observe that in view of our choice for � , the resulting integral defines a holomorphic function in
the region �

1� �.Im.s// < Re.s/ < 1C �.Im.s//;
1� �.Im.t// < Re.w/ < 1C �.Im.w//:

Take now s and w satisfying 1� �.Im.s// < Re.s/ < 1 and 1� �.Im.t// < Re.w/ < 1. We may shift
the contour back to the real line and pick a new pole when ! is trivial and at wC i t D 1. This proves the
desired formula for 1� �.Im.s// < Re.s/ < 1 and 1� �.Im.t// < Re.w/ and it follows in general by
analytic continuation to all s; w such that 1

2
� ı < Re.s/;Re.w/ < 1 by Proposition 7.3. �

10. Conclusion

In this section we put together the results of the last three sections and deduce Theorem 1.2. We have
seen in Proposition 6.1 that for sufficiently large values of Re.s/ and Re.w/, we have the relation

2d
7
2
�3s�w

F
I.w;Asˆ/DMs;w.ˆ/CDs;w.ˆ/:

If we assume that H satisfies Hypothesis 1, then we may apply Proposition 9.1, and deduce that, for
1
2
� ı < Re.s/;Re.w/ < 1,

2d
7
2
�3s�w

F
I.w;Asˆ/DMs;w.ˆ/CDs;w.ˆ/CRs;w.ˆ/: (54)
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Now suppose that {H also satisfies Hypothesis 1 and that 1
2
< Re.s/� Re.w/� 3

4
. The last assertion

implies that
1
2
� Re.s0/;Re.w0/ < 1:

Thus, we may deduce that (54) also holds with H , s and w replaced by {H , s0 and w0, respectively.
The main equality in Theorem 1.2 is now a direct consequence of Proposition 5.1 and the description
of the local weights Hv.�v/ from Section 7. In particular, we showed in Section 7D that the weight
function associated to ˆq;l satisfies Hypothesis 1. As for the inequality (7), it follows from (53) and
Propositions 7.3 and 8.1.

10A. Proof of Corollary 1.3. We use Theorem 1.2 with s D w D 1
2

, lD oF and qD p, a prime ideal.
We obtain that

M.ˆ/D D. {̂ /CR. {̂ /�D.ˆ/�R.ˆ/CM. {̂ /;

where we dropped the 1
2
; 1

2
from the index for brevity. It follows from Proposition 9.1 and the fact that

y��.1;˙ 1
2
/

�
1
2
; q
�
D 1 for any ideal q that

R. {̂ /D 2
ƒ.1;…/ƒ.0;…/

�F .2/
:

Furthermore, we have from (52) that

D. {̂ /D 2d
3
2

F

ƒ.1;…/ƒ.1;…/

�F .2/
D 2

ƒ.1;…/ƒ.0;…/

�F .2/
:

Moreover, in view of Propositions 7.1 and 8.1, we may obtain that

R.ˆ/;D.ˆ/� .N p/��1C�

and

M.ˆ/D
'.q/

q2

X
� cusp0

cond.�/Dp

ƒ
�

1
2
;…��

�
ƒ
�

1
2
; �
�

ƒ.1;Ad; �/
CO.q��1M�/;

where

M� WD
X
� cusp0

cond.�/DoF

ˇ̌
ƒ
�

1
2
;…��

�
ƒ
�

1
2
; �
�ˇ̌

jƒ.1;Ad; �/j
C

X
!23F�U1nA

�
.1/

cond.!/DoF

Z 1
�1

ˇ̌
ƒ
�

1
2
;…��.!; i t/

�
ƒ
�

1
2
; �.!; i t/

�ˇ̌
jƒ�.1;Ad; �.!; i t//j

dt

2�
:

Finally, it is easy to see that we also have the bound

M. {̂ /� q#�
1
2M�:

Corollary 1.3 will follow provided that one is able to show M�� 1. In other words, we just need
to ensure that it converges since it is clearly independent of p. To see that, we notice that the finite part
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of ƒ
�

1
2
;… � �

�
ƒ
�

1
2
; �
�
=ƒ.1;Ad; �/ is bounded polynomially in terms of the eigenvalues of �v for

archimedean v and that, by Stirling’s formula, we have, for archimedean v,

L
�

1
2
;…v ��v

�
L
�

1
2
; �v

�
L.1;Ad; �v/

� jt�v j
C e�2cFv�jt�v j

for �v D �v.1; i t�v /, where

cFv D

�
1 if Fv D R;

2 if Fv D C:

This implies that the factor ƒ
�

1
2
;…��

�
ƒ.1

2
; �/=ƒ.1;Ad; �/ decays exponentially as the t�v grow

and the convergence of M� follows by appealing to the Weyl law for GL.2/ over number fields (see
[Palm 2012, Theorem 3.2.1]).
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