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Brendan Creutz and Bianca Viray

We prove that a smooth complete intersection of two quadrics of dimension at least 2 over a number field
has index dividing 2, i.e., that it possesses a rational 0-cycle of degree 2.

1. Introduction

The index of a variety over a field k is the greatest common divisor of the degrees [k(x) : k] ranging over
the residue fields k(x) of the (zero-dimensional) closed points x of the variety. Equivalently, the index is
the smallest positive degree of a k-rational 0-cycle.

Let X ⊂Pn
k be a smooth complete intersection of two quadrics over a field k of characteristic not equal

to 2. Then the index of X necessarily divides 4, because intersecting with a plane yields a 0-cycle of
degree 4. In general, this is the best possible bound. Indeed, there are examples with index 4 over local
and global fields when n = 3 [Lang and Tate 1958, Theorem 7] and over fields of characteristic 0 when
n = 4, as we show in Theorem 7.6.

Our main result is the following sharp bound on the index when n ≥ 4 and k is a number field or a
local field.

Theorem 1.1. Let X be a smooth complete intersection of two quadrics in Pn
k with n ≥ 4 and assume that

k is either a number field or a local field. Then the index of X divides 2.

This result allows us to complete the list of integers which occur as the index of a del Pezzo surface
over a local field or a number field (see Section 7D). It also allows us to deduce nontrivial index bounds
for other interesting classes of varieties. In particular, if C/k is a genus 2 curve over a number field with
a rational Weierstrass point, then it follows from the result above that any torsor of period 2 under the
Jacobian of C has index dividing 8 (see Theorem 7.7) and the corresponding Kummer variety, which
is an intersection of 3 quadrics in P5, has index dividing 4 (see Remarks 7.8). Again, these results fail
for arbitrary fields (see Remarks 7.8). Theorem 1.2 below shows that Theorem 1.1 also holds for global
function fields of odd characteristic when n ≥ 5 and conditionally in a number of cases when n ≥ 4.

Theorems of Amer [1976], Brumer [1978] and Springer [1956] show that, for X as above, index 1 is
equivalent to the existence of a k-rational point. Analogously one can ask if index 2 implies the existence
of a closed point of degree 2. Colliot-Thélène has recently sketched an argument that if X is a smooth
complete intersection of two quadrics in P4 over a field of characteristic 0 and X has index 2, then X has
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a closed point of degree 14, 6 or 2. Our next result identifies conditions under which we can prove that a
smooth intersection of two quadrics in Pn has a closed point of degree 2. In order to state it we introduce
the following notation: We say that a global field k satisfies (⋆) if Brauer–Manin is the only obstruction
to the Hasse principle for del Pezzo surfaces of degree 4 over all quadratic extensions of k.

Theorem 1.2. Let n ≥ 4 and let X ⊂ Pn
k be a smooth complete intersection of two quadrics over a field k.

In any of the following cases there is a quadratic extension K/k such that X (K ) ̸=∅:

(1) k is a local field and n ≥ 4.

(2) k is a global function field and n ≥ 5.

(3) k is a global function field of characteristic 2 and n = 4.

(4) k is a number field that satisfies Schinzel’s hypothesis and n ≥ 5.

(5) k is a global field that satisfies (⋆) or a number field that satisfies Schinzel’s hypothesis, n = 4 and
the following holds: for any quadratic field extension L/k and rank 4 quadric Q ⊂ P4

L such that
X =

⋂
σ∈Gal(L/k) σ(Q) and NormL/k(disc(Q)) ∈ k×2, we have that Q fails to have smooth local

points at an even number of primes of L.

When n= 4, there are exactly five rank 4 quadrics in the pencil of quadrics containing X (see Section 4
for details). The condition in case (5) holds for most intersections of quadrics and can be easily checked.
In particular, it is satisfied if there is no pair of Galois conjugate rank 4 quadrics in the pencil or if X has
points everywhere locally (for then any quadric containing X will have points over all completions). In
fact, if X is assumed everywhere locally solvable, the proofs of our main results become much easier (see
Corollary 3.4 and Remark 4.8). For further details of the cases covered (and not covered) in case (5), see
Remark 6.2 and Section 7A.

Theorem 1.2(5) naturally raises the question of whether the parity condition is necessary. We have
constructed many examples that fail this parity condition, but in each we have found an ad hoc proof that
(⋆) implies the existence of a quadratic point. Based on our results and this extensive numerical evidence,
we expect the following question to have a positive answer.

Question 1.3. Does every complete intersection of 2 quadrics X ⊂ P4
k over a number field k possess a

K -rational point for some quadratic extension K/k?

One can also pose this question for other classes of fields, e.g., Cr fields. Over C3 fields, the question
has a negative answer (see Section 7C for examples), but it is open for C2 fields.

1A. Obstructions to index 1 over local and global fields. Over local and global fields, necessary and
sufficient conditions for an intersection of two quadrics to have index 1 (equivalently, to have a rational
point) have been well studied. When k is a local field and n ≤ 7 there are examples with X (k) = ∅
(which necessarily have index greater than 1), while for n ≥ 8 and k a p-adic field, X (k) ̸=∅ [Demyanov
1956]. For k a number field, Colliot–Thélène, Sansuc and Swinnerton-Dyer conjecture that a smooth
complete intersection of quadrics in Pn

k satisfies the Hasse principle as soon as n ≥ 5 [Colliot-Thélène
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et al. 1987b, Section 16]. For n ≥ 8, the conjecture is proven in [Colliot-Thélène et al. 1987a; 1987b] and
this has been extended to n ≥ 7 by Heath-Brown [2018]. The analogue of this conjecture over global
function fields of odd characteristic has been established by Tian [2017], allowing us to deduce case (2)
from case (1) of Theorem 1.2.

When n = 4 (in which case X is a del Pezzo surface of degree 4), the Hasse principle can fail [Birch
and Swinnerton-Dyer 1975]. Colliot-Thélène and Sansuc [1980] have conjectured that this failure is
always explained by the Brauer–Manin obstruction. This conjecture implies that all number fields satisfy
the condition (⋆) appearing in Theorem 1.2(5). Most cases of the n = 4 conjecture have been proven
conditionally on Schinzel’s hypothesis and the finiteness of Tate–Shafarevich groups of elliptic curves by
Wittenberg [2007]. This also gives a conditional proof of the Hasse principle when n ≥ 5 as this can be
reduced to cases of the n = 4 conjecture which are covered by Wittenberg’s result.

1B. Outline of the proof of Theorems 1.1 and 1.2. Using an argument of Wittenberg [2007] (which we
review in Section 6B), we can reduce to the case n = 4, when X is a del Pezzo surface of degree 4.

In Section 2 we prove that any del Pezzo surface of degree 4 over a local field must have points over
some quadratic extension, which proves Theorem 1.2(1) and the local case of Theorem 1.1. Our approach
uses the theorems of Amer, Brumer, and Springer to reduce to the case where no integral model of X
has a special fiber that is split (i.e., contains a geometrically integral open subscheme) over a quadratic
extension. We then use semistable models of degree 4 del Pezzo surfaces, introduced by Tian [2017], to
directly show that the remaining types of degree 4 del Pezzo surfaces obtain points over every ramified
quadratic extension of k.

In Section 2F, we give an easy generalization of a result in [Dolgachev and Duncan 2018], showing
that, for k a field of characteristic 2, any del Pezzo surface of degree 4 obtains a point over k1/2. For local
and global fields of characteristic 2 we have [k1/2

: k] = 2, so this proves Theorem 1.2(3) and gives an
alternate proof of Theorem 1.2(1) in characteristic 2. Thus, for the remainder of the paper, it suffices to
assume that k is of characteristic different from 2.

Over a global field, the results of Section 2 show that after base change to a suitable quadratic extension
X becomes everywhere locally solvable. While it is also true that the Brauer group of X becomes constant
after a suitable quadratic extension (this can be deduced from the explicit calculation of Br(X)/ Br0(X)

in [Várilly-Alvarado and Viray 2014]), one cannot deduce that Theorem 1.2 holds for fields k satisfying
(⋆) directly from case (1) in this way because, in general, there is no quadratic extension K/k for which
X K is locally solvable and the Brauer group of X K is trivial modulo constant algebras (see Example 6.4).

To obtain our results when k is a global field of characteristic not equal to 2 we study the arithmetic of
the symmetric square of X , which is birational to the variety G parametrizing lines on the quadrics in the
pencil of quadrics in P4

k containing X (see Section 4 for more details). In Section 5, we develop the main
tools for studying the arithmetic of G over a global field. We determine explicit central simple algebras
over the function field of G representing the Brauer group of G modulo constant algebras and then develop
techniques to calculate the evaluation maps of these central simple algebras at several types of local points.
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Theorem 1.2(1) implies that G is everywhere locally solvable. The results of Section 5 are used in
Section 6 to show further that there is always an adelic 0-cycle of degree 1 on G orthogonal to the Brauer
group and, under the hypothesis of Theorem 1.2(5), that there is an adelic point on G orthogonal to
the Brauer group. This is perhaps surprising given that in this case the Brauer group of G can contain
nonconstant algebras and in general can obstruct weak approximation on G (see Corollary 6.3 and
Example 6.4).

The variety of lines on a smooth quadric 3-fold is a Severi–Brauer 3-fold, so the arithmetic of G is
amenable to the fibration method, as first observed in [Colliot-Thélène and Sansuc 1982]. Results of
Colliot-Thélène and Swinnerton-Dyer [1994] show that, in the number field case, the vanishing of the
Brauer–Manin obstruction on G implies the existence of a 0-cycle of degree 1 on G and, conditionally
on Schinzel’s hypothesis, a k-rational point on G. This yields a 0-cycle of degree 2 on X and, under the
hypothesis of Theorem 1.2(5), a quadratic point on X if we assume Schinzel’s hypothesis. To the best of
our knowledge the function field analogue of these results based on the fibration method have not been
established. This prevents us from considering global function fields in the n = 4 case of Theorem 1.1.

One can ask whether index(G)= 1 always implies that G has a rational point (when k is a global field
this is equivalent to Question 1.3). Our results do not answer this question, but they do show that a
stronger condition on 0-cycles fails over p-adic fields. Namely, G can contain 0-cycles of degree 1 that
are not rationally equivalent to a rational point (see Remarks 7.4(1)).

To deduce the results in case (5) of Theorem 1.2 assuming that k satisfies (⋆) (without assuming
Schinzel), we make use of Proposition 3.6, which may be of interest in its own right. It relates the Brauer–
Manin obstruction on the symmetric square of a variety that has finite Brauer group (modulo constant
algebras) to the Brauer–Manin obstruction over quadratic extensions. (More generally, in Section 3
we collect results relating the Brauer–Manin obstruction on a nice variety Y to the Brauer–Manin over
an extension which may also be of independent interest.) In a similar spirit, we answer a question
posed in [Colliot-Thélène and Poonen 2000] concerning Brauer–Manin obstructions over extensions (see
Remarks 7.4(2)) and give an example of a del Pezzo surface of degree 4 defined over Q which, for any
finite extension k/Q, has a Brauer–Manin obstruction to the existence of k-points if and only if k is of
odd degree over Q (see Section 7B).

Notation. For a field k we use k̄ to denote a separable closure and Gk :=Gal(k̄/k) to denote the absolute
Galois group of k. In Sections 2 and 3, we allow k of arbitrary characteristic; in the remainder of the
paper we restrict to k of characteristic different from 2. For k-schemes Y → Spec(k) and S→ Spec(k)

we define

YS := Y ×Spec(k) S and Y = Y ×Spec k Spec(k̄).

When S = Spec(A) is the spectrum of a k-algebra A, we use the notation YA := YSpec(A). A quadratic
point on Y is a morphism of k-schemes Spec(K )→ Y , where K is an étale k-algebra of degree 2. In
particular, K = k× k is allowed in which case Z K ≃ Z × Z for any k-subscheme Z ⊂ Y .
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The Brauer group of a scheme Y is the étale cohomology group Br(Y ) := H2
ét(Y, Gm); when Y =

Spec(R) is the spectrum of a ring R we define Br(R) := Br(Spec R). If sY : Y → Spec(k) is a k-
scheme, then Br0(Y ) ⊂ Br(Y ) is the image of the pullback map s∗Y : Br(k)→ Br(Y ). We use Br1(Y )

to denote the kernel of the map Br(Y ) → Br(Y ). We recall that there is a canonical injective map
Br1(Y )/ Br0(Y )→ H1(k, Pic(Y )) coming from the Hochschild–Serre spectral sequence [Colliot-Thélène
and Skorobogatov 2021, Proposition 4.3.2] and that this map is an isomorphism if H3(k, Gm)= 0.

An element β ∈Br(Y ) may be evaluated at a k-point y : Spec(k)→ Y by pulling back along y to obtain
β(y) := y∗β ∈ Br(k). For a finite locally free morphism of schemes Y → Z we use CorY/Z : Br(Y )→

Br(Z) to denote the corestriction map. When Y = Spec(A) and Z = Spec(B) are affine schemes this is
also denoted by CorA/B : Br(A)→ Br(B).

A variety over k is a separated scheme of finite type over k. A variety is called nice if it is smooth, pro-
jective and geometrically integral and is called split if it contains an open subscheme that is geometrically
integral.

If Y is an integral k-variety, k(Y ) denotes its function field. More generally, if Y is a finite union of
integral k-varieties Yi , then k(Y ) :=

∏
k(Yi ) is the ring of global sections of the sheaf of total quotient rings.

In particular, if a finite dimensional étale k-algebra A decomposes as a product A ≃
∏

k j of finite field
extensions of k and Y is a reduced k-variety, then k(YA)≃

∏
k(Yk j ), and Cork(YA)/k(Y )=

∑
Cork(Yk j )/k(Y ).

For a global field k, we use �k to denote the set of primes of k. For a prime v ∈�k we use kv to denote
the corresponding completion and for a k-scheme Y we set Yv := Ykv

. We use Ak to denote the adele ring
of k. For a subgroup B ⊂ Br(Y ), Y (Ak)

B
⊂ Y (Ak) denotes the set of adelic points orthogonal to B, i.e.,

Y (Ak)
B
=

{
(yv) ∈ Y (Ak) : ∀β ∈ B,

∑
v∈�k

invv(β(yv))= 0
}
.

We define Y (Ak)
Br
:= Y (Ak)

Br(Y ).

2. Intersections of quadrics in P4 over local fields

Theorem 2.1. Let X ⊂ P4
k be a smooth complete intersection of two quadrics over a local field k. There

is a quadratic extension K/k such that X (K ) ̸=∅.

Outline of proof of Theorem 2.1. In Section 2A, we prove that if there exists an integral model X⊂ P4

with split special fiber, then X (k) ̸=∅. We use this result to reduce to the case that the special fiber is a
union of four planes permuted transitively by the Galois group. We then use the geometric classification
results in Section 2C together with the existence of semistable models proved by Tian [2017] (following
Kollár [1997]) to give explicit models of the remaining cases in Section 2D. Next, we study these explicit
models and show directly that over every ramified quadratic extension there is a change of coordinates so
that the model has split special fiber. Thus, by the results of Section 2A, these models have points over
every ramified quadratic extension. The details of how the ingredients come together are in Section 2E.
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Remark 2.2. The methods of this proof are fairly flexible, but it does rely on two key properties of finite
fields:

(1) There is a unique quartic extension of any finite field, it is Galois, and the Galois group is cyclic.

(2) Every split variety over a finite field has index 1.

If k is a complete field with respect to a discrete valuation and its residue field satisfies the above two
properties, then Theorem 2.1 holds over k.

As mentioned in the introduction, we also give alternate proofs of Theorem 2.1 which work in the case
that k has odd residue characteristic (Section 4B) and in the case that k has characteristic 2 (Section 2F);
this latter proof also holds for global fields of characteristic 2.

2A. Intersections of quadrics with split special fiber.

Proposition 2.3. Let k be a nonarchimedean local field, let O denote the valuation ring of k, and let X/k
smooth complete intersection of quadrics in P4

k . Assume there exists an integral model X/O such that the
special fiber is split (i.e., contains a geometrically integral open subscheme). Then X (k) ̸=∅.

Proof. Since the special fiber is split, it contains a geometrically integral open subscheme U ◦/F. By the
Hasse–Weil bounds, U ◦ contains a smooth F′-point for all extensions with sufficiently large cardinality. In
particular, there exists an extension F′/F of odd degree where U ◦ has a smooth F′-point. Thus, by Hensel’s
Lemma, X has a k ′-point for k ′/k an unramified extension of odd degree. Since X is an intersection
of two quadrics, the theorems of Amer [1976], Brumer [1978] and Springer [1956] then imply that
X (k) ̸=∅. (In characteristic 2, see [Elman et al. 2008, Corollary 18.5 and Theorem 17.14] for proofs of
the Amer, Brumer and Springer theorems; the Amer and Brumer theorem in characteristic 2 is attributed
to an unpublished preprint of Leep.) □

2B. Ranks of a quadratic forms in arbitrary characteristic. Let q be a quadratic form on a vector space V
over a field F . Then (by definition) the mapping Bq :V×V→ F given by Bq(x, y)=q(x+y)−q(x)−q(y)

is bilinear. We say that q is regular if the set {x ∈ V : q(x)= 0 and ∀y ∈ V, Bq(x, y)= 0} contains only
the zero vector in V . (If the characteristic of F is not 2, then the condition q(x)= 0 is superfluous.) We
say that q is geometrically regular if its base change to the algebraic closure of F is regular. Such forms
are called nondegenerate in [Elman et al. 2008, Definition 7.17]. A quadratic form q on a vector space of
dimension at least 2 is geometrically regular if and only if the quadric Q in P(V ) defined by the vanishing
of q is geometrically regular or, equivalently, smooth; see [Elman et al. 2008, Proposition 22.1].

The rank of a quadratic form q is the largest integer m such that there is a subspace W ⊂V of dimension
m such that the restriction of q to W is geometrically regular, i.e., such that the intersection of Q with the
linear space corresponding to W is smooth. The rank of a quadric in Pn is defined to be the rank of any
quadratic form defining it. If F has characteristic different from 2, then the rank of q is the same as the
rank of a symmetric matrix associated to Bq .
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If char(F)= 2, then the rank of q is not necessarily equal to the rank of (a matrix associated to) Bq ,
but the definition yields the lower bound rank(Bq)≤ rank(q). The possible discrepancy between these
two ranks is due to the fact that Bq(x, x)= q(2x)− 2q(x)= 0 for all x ∈ V . Thus a matrix associated to
Bq has zeros along the diagonal and so is skew-symmetric (and symmetric). Skew symmetric matrices
always have even rank, but quadratic forms can have odd rank (e.g., q = x2 has rank 1).

Over an algebraically closed field a quadratic form q has rank 2n if and only if there is a change
of coordinates such that q = x1x2 + x3x4 + · · · + x2n−1x2n , and rank(q) = 2n + 1 if and only if there
is a change of coordinates such that q = x2

0 + x1x2 + x3x4 + · · · + x2n−1x2n; see [Elman et al. 2008,
Propositions 7.29 and 7.31 and Example 7.34].1 It follows from this characterization that a quadric in
Pn of rank 1 with n ≥ 1 is not geometrically reduced and a quadric in Pn of rank 2 with n ≥ 2 is not
geometrically irreducible.

It also follows that, for a quadratic form q over an algebraically closed field, the rank is the smallest
integer r such that there exists a linear change of variables under which q becomes a quadratic form in
the variables x1, . . . , xr alone. This is the definition of rank used in [Heath-Brown 2018]. We will only
require the equivalence of these definitions over algebraically closed fields, but we note that they are
also equivalent if the field is not of characteristic 2 (by the well known fact that q can be diagonalized)
or if the field is perfect of characteristic 2 (as follows from [Elman et al. 2008, Proposition 7.31] using
that in this case c1x2

1 + · · ·+ cs x2
s = (c1/2

1 x1+ · · ·+ c1/2
s xs)

2). In general, the two notions differ as seen
by considering the rank 1 form x2

1 + t x2
2 = (x1+ t1/2x2)

2 over F2(t) for which there is no F2(t)-linear
change of variables writing it as a form in 1 variable.

Lemma 2.4. Suppose q and q̃ are quadratic forms of rank r(q) and r(q̃), respectively, over a field F.
Then r(q ⊥ q̃) = r(q)+ r(q̃) except when char(F) = 2 and r(q) and r(q̃) are both odd, in which case
r(q ⊥ q̃)= r(q)+ r(q̃)− 1.

Proof. For char(F) ̸= 2 see [Elman et al. 2008, Proposition 7.29]. For char(F) = 2 this follows from
[Elman et al. 2008, Proposition 7.31 and Remark 7.21] and the fact that an orthogonal direct sum of rank
1 forms has rank 1; see [Elman et al. 2008, Remark 7.24]. □

2C. Intersections of two quadrics with many irreducible components.

Lemma 2.5. Let X ⊂ P4 be a reduced complete intersection of two quadrics over an algebraically closed
field. If X is reducible, then X contains a 2-plane or an irreducible quadric surface. In addition:

(1) If X contains an irreducible quadric surface, then X is the union of two quadric surfaces (with one
possibly reducible) and X is contained in a rank 2 quadric.

(2) If X contains two distinct 2-planes P1, P2, then X is either the union of four distinct 2-planes or the
union of P1 and P2 with an irreducible quadric surface.

1This characterization shows that, in general, the rank of the symmetric bilinear form can only differ from the rank of the
quadratic form by 1, namely that rank(Bq )≤ rank(q)≤ rank(Bq )+ 1.
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Proof. The components of this proof can be found in [Colliot-Thélène et al. 1987a, Section 1] and
[Heath-Brown 2018, Proof of Lemma 3.2]. We repeat them here for the reader’s convenience.

The degrees of the irreducible components of X sum to 4, so we consider the partitions

3+ 1, 2+ 2, 2+ 1+ 1, 1+ 1+ 1+ 1.

In any of these cases, X contains a surface of degree 1 (i.e., a 2-plane) or a surface of degree 2 (i.e., a
quadric surface). To complete the proof, it remains to show that if X contains an irreducible quadric
surface, then X is contained in a rank 2 quadric, and in the case of the partition 2+ 1+ 1, the union of
the two planes is a quadric surface, i.e., is contained in a hyperplane.

Assume that X contains an irreducible quadric surface, given by the vanishing of a quadratic form
q and a linear form ℓ. The rank of q cannot be 1 because X is reduced and the rank of q cannot be 2
because the quadric surface is irreducible. So q must have rank at least 3. Then the quadratic forms
defining X must be of the form cq + ℓℓ′, for some constant c and some linear form ℓ′. There will be
some linear combination of these where c = 0, and so X is cut out by the ideal

⟨ℓℓ′, q + ℓℓ′′⟩ = ⟨ℓ, q⟩ · ⟨ℓ′, q + ℓℓ′′⟩,

for some linear forms ℓ′, ℓ′′. The first factor gives our original quadric surface, the residual factor will
give a (possibly reducible) quadric surface, and V (ℓℓ′) is a rank 2 quadric hypersurface containing X . □

Lemma 2.6. Let X ⊂ P4 be a complete intersection of two quadrics over an algebraically closed field. If
X is the union of 4 distinct planes, then X is a cone and X is contained in a quadric hypersurface of rank 2.
If , in addition, X has a unique cone point and there is cyclic subgroup of Aut(X) acting transitively on
the irreducible components of X , then, up to an automorphism of P4, X = V (x0x1, x2x3)⊂ P4.

Proof. After a change of coordinates, we may assume that one of the planes is V (x0, x1). If all pairs of
the planes meet in a line, then we may assume that one of the other planes is V (x0, x2). Thus, X must be
defined by x0ℓ= x0ℓ̃+ x1x2 = 0 for some linear forms ℓ, ℓ̃. Note that x0ℓ has rank 2. If x0, x1, x2, ℓ, ℓ̃

are linearly dependent, then X is a cone. If x0, x1, x2, ℓ, ℓ̃ are linearly independent, then, without loss of
generality, we may assume that ℓ= x3 and ℓ̃= x4, so

X = V (x0x3, x0x4+ x1x2)= V (x0, x1)∪ V (x0, x2)∪ V (x3, x0x4+ x1x2).

This is not a union of four planes, so we have a contradiction.
If any pair of the planes meet in a point (in which case any cone point would be unique), then we

may instead assume that one of the other planes is V (x2, x3). Under these assumptions X must be the
intersection of V (ai x0x2+ bi x0x3+ ci x1x2+ di x1x3) for i = 0, 1 and some ai , bi , ci , di . In particular, X
is a cone. In addition, if (a0, d0), (a1, d1) are linearly independent, then one of the defining equations can
be taken to be a rank 2 quadric divisible by xi , and similarly if (b0, c0), (b1, c1) are linearly independent.
Thus, it remains to consider the case that X = V (ax0x2+ dx1x3, bx0x3+ cx1x2), with abcd ̸= 0. Then

bc(ax0x2+ dx1x3)+
√

abcd(bx0x3+ cx1x2)= (
√

abx0+
√

bcdx1)(
√

acx2+
√

bcdx3),

and so X is contained in a rank 2 quadric.
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It remains to show that if X has a unique cone point and admits a transitive cyclic action on its
irreducible components, then, up to an automorphism of P4, X = V (x0x1, x2x3)⊂ P4. Without loss of
generality, we may assume the cone point is [0 : 0 : 0 : 0 : 1], and so X is a cone over an intersection of
quadrics in P3, which is a curve Z of arithmetic genus 1. Since by assumption X is a union of 4 planes,
Z must be the union of 4 lines. Furthermore, since X has a unique cone point, the four lines of Z cannot
all meet. This combined with the transitive Z/4Z-action then implies that any triple of the lines cannot
meet. By enumerating the possible intersection configurations, one can check that the only arrangement
of lines with a transitive Z/4Z-action, with no triple meeting, and whose union is a curve of genus 1 is a
4-gon, i.e., a cycle of rational curves, where each curve meets exactly two of the others. After a change
of coordinates, we may assume that the intersections are

P1∩P2=V (x0, x1, x2), P2∩P3=V (x0, x1, x3), P3∩P4=V (x0, x2, x3), P4∩P1=V (x1, x2, x3),

so

X = V (x0x2, x1x3). □

Corollary 2.7. Let X ⊂ P4
k be a geometrically reduced complete intersection of two quadrics over a

field k. If X is nonsplit, then X is contained in a rank 2 quadric.

Proof. Assume X is nonsplit. Since X is geometrically reduced and nonsplit, it must be geometrically
reducible, and so reducible over a separable closure. Thus the absolute Galois group of k acts on the
geometric components. Since X is nonsplit, none of the components are fixed by Galois, and so, by
Lemma 2.5, X is geometrically either the union of two irreducible quadric surfaces or the union of four
planes. In the first case, Lemma 2.5(1) gives the result, and in the second Lemma 2.6 does. □

2D. Semistable models. Following work of Kollár [1997] in the case of hypersurfaces, Tian [2017,
Section 2.1] has defined a notion of semistability for intersections of two quadrics over discrete valuation
rings. This notion of semistability allows one to find a model of X whose special fiber is fairly well
controlled.

Before stating our results, we first review some of the definitions from Tian’s semistability machinery.
Suppose k is a nonarchimedean local field with ring of integers O and residue field F. We will use π to
denote a uniformizer. Let X⊂ P4

O be an intersection of two quadrics. Given X, we can associate a 2× 15
matrix A such that each row is the coefficient vector of the corresponding defining equation for X. Note
that changing the defining equations corresponds to multiplying A on the left by an element of GL2(O).
Thus, up to this GL2-action, we have a well-defined matrix AX.

Given an nonnegative integer weight vector w ∈ N5, we define the change of coordinates fw : P4
O→

P4
O, xi 7→ πwi xi . Then we define the multiplicity of X with respect to w to be

multw(X) :=min{v(m) : m is a 2× 2 minor of A f ∗wX},
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where v denotes the valuation on O. Then X is said to be semistable if for all weight vectors w and all
automorphisms g ∈ Aut(P4

O)= PGL5(O), we have

multw(g(X))≤ 4
5

( 4∑
i=0

wi

)
.

By [Tian 2017, Theorem 2.7], any smooth intersection of two quadrics X ⊂ P4
k has a semistable integral

model. For more details, see [Tian 2017, Section 2.1 and 2.4].
We will also make use of the following results from [Tian 2017].

Lemma 2.8. Let k be a nonarchimedean local field, let O denote the valuation ring of k, let F denote the
residue field of k, and let X ⊂ P4

k be a smooth complete intersection of two quadrics. Let X⊂ P4
O be a

semistable model of X (which exists by [Tian 2017, Theorem 2.7]). Then:

(1) [Tian 2017, Lemma 2.9] The special fiber of X is a complete intersection of two quadrics.

(2) [Tian 2017, Lemma 2.22(1)] The special fiber is not contained in a reducible quadric hypersurface
defined over F.

(3) [Tian 2017, Lemma 2.22(2)] The special fiber does not contain a plane defined over F.

(4) [Tian 2017, Lemma 2.22(4)] The special fiber is reduced.

Remark 2.9. In [Tian 2017, Sections 2.2–2.4], Tian works over local function fields, but as noted in
[Tian 2017, beginning of Section 2.2], the proofs go through essentially verbatim for any nonarchimedean
local field. In [Tian 2017, Section 2.4] (in which [Tian 2017, Lemma 2.22] is stated and proved), Tian
adds the hypothesis that the residue field has odd characteristic, and so freely interchanges smooth and
nonsingular. However, no assumption on the residue characteristic is needed for the proofs of [Tian 2017,
Lemma 2.22(1), (2), and (4)]. For the sake of completeness, we repeat Tian’s proof of Lemma 2.8(2)–(4).

Proof. If the special fiber is contained in a reducible quadric hypersurface defined over F, then, after
possibly changing variables, one of the quadrics defining X must be of the form x0x1+π q̃ , in which case
mult(1,0,0,0,0)(X)≥1. However, since X is assumed to be semistable we must have mult(1,0,0,0,0)(X)≤ 4·(1)

5 ,
resulting in a contradiction. This proves (2). Similarly, if the special fiber contains a linear subspace of
dimension 2 defined over F, which we may assume is V (x0, x1), then mult(1,1,0,0,0)(X) ≥ 2. However,
the semistability hypothesis implies that mult(1,1,0,0,0)(X)≤ 4·(1+1)

5 =
8
5 , giving a contradiction. Thus, we

conclude (3).
Now we prove (4). By [Tian 2017, Lemma 2.9], the special fiber is a complete intersection, so the

special fiber is reduced if and only if all geometric irreducible components are reduced. Assume that the
special fiber has a nonreduced geometric irreducible component. Since the special fiber has degree 4 and
contains no plane defined over F, the only possibilities are:

(a) A quadric surface of multiplicity 2.

(b) A union of two conjugate planes, each with multiplicity 2.
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Note that in case (b), the two planes must meet in a line, as otherwise a general hyperplane section would
be the union of two skew double lines, which is not possible. Thus, case (b) is subsumed by case (a), and
so the reduced special fiber is given by the vanishing of a linear form ℓ and a quadratic form q. Hence,
the special fiber is defined by quadratic forms of the form ℓℓ1, ℓℓ2+q for some linear forms ℓ1, ℓ2, which
contradicts (2). □

Proposition 2.10. Let k be a nonarchimedean local field, let O denote the valuation ring of k, let F denote
the residue field of k, and let X ⊂ P4

k be smooth complete intersection of two quadrics. Let X⊂ P4
O be a

semistable model of X (which exists by [Tian 2017, Theorem 2.7]). Assume that the special fiber of X/O
is geometrically the union of four 2-planes and that the Galois group acts transitively on the four 2-planes.
Then, for any choice of uniformizer π , X must be given by the vanishing of quadratic forms of the shape

q(x0, . . . , x3)+πm x4ℓ(x0, . . . , x3) and q̃(x0, . . . , x3)+πx2
4 +πnx4ℓ̃(x0, . . . , x3), (2-1)

(with m, n positive integers, and q, q̃ quadratic forms such that every F-linear combination of q and q̃
modulo π has rank at least 2); or

g(x0, x1, x2)+πh(x3, x4)+πax3ℓ3(x0, x1, x2)+πbx4ℓ4(x0, x1, x2), and

g̃(x0, x1, x2)+π h̃(x3, x4)+π cx3ℓ̃3(x0, x1, x2)+πd x4ℓ̃4(x0, x1, x2),
(2-2)

(with a, b, c, d positive integers, ℓi , ℓ̃i linear forms and g, g̃, h, h̃ quadratic forms such that every F-linear
combination of g and g̃ modulo π has rank at least 2 and every F-linear combination of h and h̃ modulo
π has rank at least 1).

Proof. By Lemma 2.6, the special fiber must be isomorphic (over F) to V (x0x1, x2x3) or a cone over a
complete intersection of two quadrics in P2 (i.e., a complete intersection of two conics).

Let us first assume that the special fiber is geometrically isomorphic to V (x0x1, x2x3). Note that this
variety has a unique singular point, the cone point, so it must be defined over F. After a change of
coordinates, we may assume the cone point reduces to V (x0, x1, x2, x3) and hence X is given by

q(x0, . . . , x3)+πm x4ℓ(x0, . . . , x4) and q̃(x0, . . . , x3)+πnx4ℓ̃(x0, . . . , x4),

for some integers m, n ≥ 1, quadratic forms q, q̃ and linear forms ℓ, ℓ̃ that are nonzero modulo π . We
will first use the semistability of X for the weight vector w := (1, 1, 1, 1, 0) to show that one of πmℓ or
πn ℓ̃ must evaluate to a uniformizer at [0 : 0 : 0 : 0 : 1]. Note that A f ∗wX has the following form(

π2coefs(q) πm+1ℓ0 πm+1ℓ1 πm+1ℓ2 πm+1ℓ3 πmℓ4

π2coefs(q̃) πn+1ℓ̃0 πn+1ℓ̃1 πn+1ℓ̃2 πn+1ℓ̃3 πn ℓ̃4

)
,

where ℓ =
∑

i ℓi xi , ℓ̃ =
∑

i ℓ̃i xi and coefs(q), coefs(q̃) denote the coefficient vectors of q, q̃ respec-
tively. Hence, using the strong triangle equality and the definition of multiplicity, one can compute that
multw(X) ≥ min(4, 2+m + v(ℓ4), 2+ n+ v(ℓ̃4)). However, the semistability assumption implies that
multw(X)≤ 4·(1+1+1+1)

5 =
16
5 , and so min(m+ v(ℓ4), n+ v(ℓ̃4))= 1. Thus, after renaming q, q̃ and ℓ, ℓ̃
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and possibly scaling the equations, we may assume the equations are of the form

q(x0, . . . , x3)+πm x4ℓ(x0, . . . , x3) and q̃(x0, . . . , x3)+πnx4ℓ̃(x0, . . . , x3)+πx2
4 .

To see that every F-linear combination of q and q̃ modulo π is rank at least 2, recall that the variety
defined by q and q̃ modulo π is geometrically isomorphic to V (x0x1, x2x3) and note that ax0x1+ bx2x3

has rank 4 for all a, b ̸= 0.
Now assume that the special fiber is a cone over a complete intersection of two quadrics in P2. Then,

up to a change of variables, X must be given by quadratic forms of the shape

g(x0, x1, x2)+πmh(x3, x4)+πax3ℓ3(x0, x1, x2)+πbx4ℓ4(x0, x1, x2) and

g̃(x0, x1, x2)+π m̃ h̃(x3, x4)+π cx3ℓ̃3(x0, x1, x2)+πd x4ℓ̃4(x0, x1, x2),

where a, b, c, d, m, m̃ are positive integers, g, g̃, h, h̃ are quadratic forms, and ℓi , ℓ̃i are linear forms.
Since, by assumption, the special fiber is reduced, the complete intersection in P2

F
defined by the vanishing

of g and g̃ modulo π must also be reduced. This complete intersection is therefore, geometrically, a set
of 4 noncolinear points in P2

F
. These points are not contained in any quadric of rank 1 so every F-linear

combination of g and g̃ modulo π has rank at least 2.
To complete the proof, we need to show that m = m̃ = 1 and that h, h̃ are linearly independent

modulo π . We will again use our semistability hypothesis. Consider the weight vector w= (1, 1, 1, 0, 0).
One can compute that multw(X) is at least min{4, m + m̃, 2+m, 2+ m̃} and, in addition, if h and h̃
are linearly dependent modulo π , then multw(X) ≥ min{4, m + m̃ + 1, 2+m, 2+ m̃}. However, the
semistability assumption implies that multw(X)≤ 4·(1+1+1)

5 =
12
5 . Thus, we must have that h and h̃ are

linearly independent modulo π , and m+ m̃ = 2, which implies that m = m̃ = 1. □

2E. Proof of Theorem 2.1. If k is archimedean, then [k̄ : k] ≤ 2 so the result is immediate. Henceforth
we assume that k is nonarchimedean, and we write O for the valuation ring of k and F for the residue
field of k. By [Tian 2017, Theorem 2.7], there is a linear change of coordinates on P4

k such that the
resulting integral model X⊂ P4

O of X is semistable. In particular, by Lemma 2.8, the special fiber of X is
a reduced complete intersection of quadrics.

If the special fiber of X is split, then the desired result follows from Proposition 2.3. If the special fiber
of X is not split, but becomes split over the quadratic extension of F, then we may apply Proposition 2.3
over k ′, the unique quadratic unramified extension of k, and conclude that X (k ′) ̸=∅.

Thus, we have reduced to the case that the special fiber X◦ of X is nonsplit and remains nonsplit over the
unique quadratic extension F′/F. Since F is perfect and X◦ is reduced, X◦ must be geometrically reduced.
Therefore X◦ must be geometrically reducible and Gal(F/F′) must act nontrivially on the components. By
Lemma 2.5, this is possible only if X◦

F
is the union of four 2-planes. Furthermore, the current assumptions

imply that Gal(F/F) must act transitively on the four 2-planes. Thus, by Proposition 2.10, we may assume
that X is given by quadrics as in (2-1) or (2-2).
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Consider a ramified quadratic extension k ′/k and let ϖ be a uniformizer of k ′. First assume that X is
given by equations of the form (2-1). Over k ′ we may absorb a ϖ into x4 and obtain the model X′/O′

(where O′ is the valuation ring of k ′):

q(x0, . . . , x3)+urϖ 2r−1x4ℓ(x0, . . . , x3) and q̃(x0, . . . , x3)+unϖ 2n−1x4ℓ̃(x0, . . . , x3)+ux2
4 , (2-3)

where u is the unit such that uϖ 2
= π . Every F-linear combination of the forms in (2-3) modulo ϖ is an

orthogonal sum of an F-linear combination of q and q̃ modulo ϖ (which has rank at least 2 by (2-1))
with a quadratic form of rank 1. It follows from Lemma 2.4 that every F-linear combination of the forms
in (2-3) modulo ϖ has rank at least 3. Thus, by Corollary 2.7, the special fiber of X′ is split, so, by
Proposition 2.3, X′ has a k ′-point.

Now assume that X is given by equations of the form (2-2). Then, we may absorb a ϖ into x3 and x4

and obtain the model X′/O given by

g(x0, x1, x2)+ uh(x3, x4)+ uaϖ 2a−1x3ℓ3(x0, x1, x2)+ ubϖ 2b−1x4ℓ4(x0, x1, x2) and

g̃(x0, x1, x2)+ uh̃(x3, x4)+ ucϖ 2c−1x3ℓ̃3(x0, x1, x2)+ udϖ 2d−1x4ℓ̃4(x0, x1, x2),
(2-4)

where u is the unit such that uϖ 2
= π . Then every F-linear combination of the forms in (2-4) modulo ϖ

is an orthogonal direct sum of an F-linear combination of g and g̃ modulo ϖ (which is a form of rank 2
or 3) with an F-linear combination of h and h̃ modulo ϖ (which is a form of rank 1 or 2). Thus, by
Lemma 2.4, every F-linear combination of the forms in (2-4) modulo ϖ has rank at least 3. Hence, by
Corollary 2.7, the special fiber of X′ is split, and so X has a k ′-point, by Proposition 2.3. □

2F. Alternate proof in characteristic 2. The following is a slight generalization of [Dolgachev and
Duncan 2018, Theorem 4.4].

Proposition 2.11. Suppose k is a field of characteristic 2 and X ⊂ P4
k is smooth complete intersection of

two quadrics. Then X (k1/2) ̸=∅. In particular, if k is a local or global field of characteristic 2, then X
contains a point defined over the quadratic extension k1/2 of k.

Proof. By [Dolgachev and Duncan 2018, Theorem 1.1], X can be defined by the vanishing of quadratic
forms of the form

a0x2
0 + a1x2

1 + a2x2
2 + x3ℓ1+ x4ℓ2 and b0x2

0 + b1x2
1 + b2x2

2 + x3ℓ3+ x4ℓ4

where ai , bi ∈ k and ℓi ∈ k[x0, . . . , x4] are linear forms. In particular, the intersection of X with
the plane V (x3, x4) is an intersection of two conics in P2 neither of which is geometrically reduced.
The reduced subschemes of the base changes of these conics to the algebraic closure are the lines
V (a1/2

0 x0 + a1/2
1 x1 + a1/2

2 x2) and V (b1/2
0 x0 + b1/2

1 x1 + b1/2
2 x2), which are defined over k1/2. Their

intersection yields a k1/2-point on X .
It remains to show that [k1/2

: k] = 2 when k is a local or global field of characteristic 2. If k is
local, then k = F((t)) with F a finite field of characteristic 2 and k1/2

= F((t1/2)) which is clearly an
extension of degree 2. Similarly, if k = F(t) is a global function field of genus 0 and characteristic 2, then
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k1/2
= F(t1/2) is clearly a degree 2 extension. For a general global field k of characteristic 2, which is

necessarily a finite extension of k0 = F(t) with F finite characteristic 2, we may reduce to the genus 0 case
as follows; see [Becker and MacLane 1940, Theorem 3]. Frobenius gives an isomorphism F : k1/2

→ k
which restricts to an isomorphism k1/2

0 → k0, and so [k1/2
: k1/2

0 ] = [k : k0]. Since k and k1/2
0 are both

intermediate fields of the extension k0 ⊂ k1/2 we have

[k1/2
: k][k : k0] = [k1/2

: k1/2
0 ][k

1/2
0 : k0].

Taken together these observations show that [k1/2
: k] = [k1/2

0 : k0]. □

3. Brauer–Manin obstructions over extensions

In this section, we prove some general results relating the Brauer–Manin obstruction on a nice variety
Y to the Brauer–Manin obstruction over an extension. Moreover, for quadratic extensions, we relate
the Brauer–Manin obstruction on (a desingularization of) the symmetric square to the Brauer–Manin
obstruction over quadratic extensions.

Lemma 3.1. Let Y/k be a nice variety over a global field k, let K/k be a finite extension, and let B be a
subset of Br(YK ). Then Y (Ak)

CorK/k(B)
⊂ YK (AK )B . In particular,

(1) if Y (Ak)
Br
̸=∅, then YK (AK )Br

̸=∅, and

(2) for any d | [K : k], Y (Ak)⊂ YK (AK )ResK/k Br(Y )[d].

Proof. By [Colliot-Thélène and Skorobogatov 2021, Proposition 3.8.1], for any α ∈ Br(YK ) and for any
local point Pv ∈ Y (kv), we have (CorYK /Y (α))(Pv)= CorKv/kv

(α(Pv)), where Kv = K ⊗k kv. Thus, for
(Pv) ∈ Y (Ak),∑

v∈�k

invv(CorYK /Y (α)(Pv))=
∑
v∈�k

invv(CorKv/kv
(α(Pv)))=

∑
v∈�k

∑
w∈�K ,w | v

invw(α(Pv))

(where the last equality follows from the equality of maps invw= invv ◦CorKw/kv
for any prime w | v), and

so Y (Ak)
CorK/k(α)

⊂ Y (AK )α. The general statement follows by considering the intersection of Y (AK )α

for all α ∈ B.
It remains to prove statements (1) and (2). The first follows from taking B =Br(YK ) and observing that

Y (Ak)
Br(Y )
⊂ Y (Ak)

CorK/k(Br(YK )), and the second follows from taking B = ResK/k Br(Y )[d] and using
that CorK/k ◦ResK/k = [K : k]. □

Remark 3.2. Yang Cao has given an alternative proof of Lemma 3.1(1) which also yields a similar
statement for the étale-Brauer obstruction. This will appear in forthcoming work of Yang Cao and Yongqi
Liang [2022].

The following lemma and corollary extend techniques of Kanevsky [1987] in the case of cubic surfaces.
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Lemma 3.3. Let Y be a nice variety over a field k such that H3(k, Gm)= 0. Assume that

(1) Pic(Y ) is finitely generated and torsion free,

(2) Br(Y ) is finite, and

(3) Br(Y )→ Br(Y )Gk is surjective.

Then there is a finite Galois extension k1/k such that for all extensions K/k linearly disjoint from k1 the
map ResK/k : Br(Y )/ Br0(Y )→ Br(YK )/ Br0(YK ) is surjective.

Proof. The assumption H3(k, Gm)= 0 implies that the injective map Br1(Y )/ Br0(Y )→ H1(k, Pic(Y ))

coming from the Hochschild–Serre spectral sequence [Colliot-Thélène and Skorobogatov 2021, Propo-
sition 4.3.2] is an isomorphism. Assumption (1) implies that H1(k, Pic(Y )) ≃ H1(k0/k, Pic(Y )) for
some finite Galois extension k0/k. By assumption (2), there is a finite Galois extension k1/k0 such
that Resk̄/k1

: Br(Yk1)→ Br(Y ) is surjective. Now suppose K/k is linearly disjoint from k1. In partic-
ular, K is linearly disjoint from k0, so ResK/k : Br1(Y )/ Br0(Y ) ≃ H1(k, Pic(Y ))→ H1(K , Pic(Y )) ≃

Br1(YK )/ Br0(YK ) is an isomorphism. So it will suffice to show that Br(Y ) and Br(YK ) have the same
image in Br(Y ). Since Br(Yk1) → Br(Y ) is surjective, the image of Br(YK ) → Br(Y ) is contained
in Br(Y )G K ∩ Br(Y )Gk1 , which is equal to Br(Y )Gk , since k1 and K are linearly disjoint. Thus, by
assumption (3), Br(Y ) and Br(YK ) have the same image in Br(Y ). □

Corollary 3.4. If Y is a nice variety over a global field k such that Y (Ak) ̸= ∅ and Br(Y )/ Br0(Y ) is
generated by the image of Br(Y )[d], then for any extension K/k of degree d , YK (AK )ResK/k(Br(Y ))

̸= ∅.
Moreover, if Y satisfies the conditions of Lemma 3.3, then there is a finite extension k1/k such that for any
degree d extension K/k which is linearly disjoint from k1 we have YK (AK )Br

̸=∅. □

Proof. For a global field k we have H3(k, Gm) = 0. So the corollary follows immediately from Lem-
mas 3.1(2) and 3.3. □

Remark 3.5. If Y ⊂ P4
k is smooth complete intersection of two quadrics over a global field k of

characteristic not equal to 2 and Y is everywhere locally solvable, then the corollary applies with
d = 2. This gives a proof of the n = 4 case of Theorem 1.2(5) under the additional hypothesis of local
solubility. Note that local solubility is used here in two distinct ways. First it ensures that Br(Y )/ Br0(Y )

is generated by the image of Br(Y )[2] (which is not the case in general even though Br(Y )/ Br0(Y ) is
2-torsion) [Várilly-Alvarado and Viray 2014, Theorem 3.4]. Second, it implies that the canonical maps
Br(k)→Br0(Y ) are isomorphisms, locally and globally. This is used implicitly in the proof of Lemma 3.1.
In general, Br(k)→ Br0(Y ) need not be injective (see Lemma 5.9 for a description of the kernel when Y
is a del Pezzo surface of degree 4) and so ResK/k does not necessarily annihilate [K : k]-torsion elements
of Br0(Y ). Consequently, the exact sequence

0→ Br(k)→
⊕

Br(kv)→Q/Z→ 0

of global class field theory has no analogue for Br0(Y ).
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The following proposition relates the Brauer–Manin obstruction over quadratic extensions to the
Brauer–Manin obstruction on the symmetric square. Note that while the symmetric square Sym2(Y )

is singular if Y has dimension at least 2, there exists a smooth projective model Y (2) over any field of
characteristic different from 2 (see the proof of part (1) of the proposition for details).

Proposition 3.6. Let k be a field of characteristic different from 2, let Y/k be a nice variety of dimension
at least 2 with torsion free geometric Picard group, and let Y (2) be a smooth projective model of the
symmetric square of Y over k:

(1) The rational map Y 2
→ Sym2(Y ) 99K Y (2) induces a corestriction map

CorY 2/Y (2) : Br(Y 2)→ Br(Y (2))

on the Brauer groups of the varieties. Furthermore, if π1 denotes projection onto the first factor of
Y 2
= Y × Y , then the composition CorY 2/Y (2) ◦π∗1 : Br(Y )→ Br(Y (2)) induces an injective map

φ :
Br1(Y )

Br0(Y )
↪→

Br1(Y (2))

Br0(Y (2))
.

(2) Let α ∈ Br(Y ) and let β = CorY 2/Y (2) ◦π∗1 (α) ∈ Br(Y (2)). There exists a dense open U ⊂ Y (2) such
that for any y ∈ U , y corresponds to a quadratic point ỹ : Spec(K )→ Y for some degree 2 étale
k(y)-algebra K and we have β(y)= CorK/k(y)(α(ỹ)).

(3) Suppose k is a global field, Br(Y )/ Br0(Y ) is finite and let B ⊂ Br(Y (2))/ Br0(Y (2)) denote the image
of CorY 2/Y (2) ◦π∗1 modulo constant algebras. If there exists a quadratic extension K/k such that
YK (AK )ResK/k(Br(Y ))

̸=∅, then Y (2)(Ak)
B
̸=∅.

(4) Let B ⊂ Br(Y (2))/ Br0(Y (2)) denote the image of CorY 2/Y (2) ◦π∗1 modulo constant algebras. Suppose
that k is a global field, that Y (2)(Ak)

B
̸=∅, and that Y satisfies the hypotheses of Lemma 3.3. Then

there exists a finite set S⊂�k , degree 2 étale kv-algebras Kw/kv for v ∈ S and a finite extension k1/k
such that for any quadratic extension K/k that is linearly disjoint from k1 and such that K⊗kv ≃ Kw

for v ∈ S we have YK (AK )Br
̸=∅. In particular, there are infinitely many quadratic extensions K/k

such that YK (AK )Br
̸=∅.

Proof. (1) Let 1 = {(y, y) : y ∈ Y } ⊂ Y 2 denote the diagonal subscheme and let Bl1 Y 2 denote the
blow-up of Y along 1. Observe that the S2-action on Y 2 extends to an action on Bl1 Y 2 whose fixed
locus is the exceptional divisor E1; we claim that the quotient (Bl1 Y 2)/S2 is smooth (equivalently
geometrically regular). Since Bl1 Y 2 is smooth, the quotient (Bl1 Y 2)/S2 is automatically smooth away
from the branch locus. Let y ∈ E1. Since E1 is a divisor, the involution acts as a pseudoreflection on the
geometric tangent space of y. Since the order of the group acting is not divisible by the characteristic
of k, the Chevalley–Shephard–Todd theorem (see, e.g., [Smith 1985]) implies that the dimensions of the
geometric tangent spaces of y and its image in the quotient are equal. Hence the quotient is smooth at the
image of y.
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Consider the following commutative diagram:

Bl1 Y 2 //

��

(Bl1 Y 2)/S2

��

Y 2 // Sym2 Y

The left vertical map is birational by definition, and since Y 2
→ Sym2 Y is generically degree 2, the right

vertical map is also birational. The top horizontal map is flat of degree 2 [Stacks 2005–, Tag 00R4], so we
have a corestriction morphism Br(Bl1 Y 2)→ Br((Bl1 Y 2)/S2) that extends to the corestriction map on
function fields [Colliot-Thélène and Skorobogatov 2021, Section 3.8]. Since the Brauer group of smooth
projective varieties is a birational invariant (and pullback along any birational map gives an isomorphism)
[Colliot-Thélène and Skorobogatov 2021, Corollary 6.2.11], this yields the first claim.

It remains to prove injectivity of the induced map φ on the quotient Br1(Y )/ Br0(Y ). Since k(Y 2) is
Galois over k(Y (2)) with Galois group generated by the involution σ interchanging the factors of Y ×Y ,
by [Gille and Szamuely 2006, Chapter 3, Exercise 3], the composition

Resk(Y 2)/k(Y (2)) ◦Cork(Y 2)/k(Y (2)) : Br(k(Y 2))→ Br(k(Y 2))

is given by x 7→ x + σ(x). We may then deduce that the same formula holds for the composition
ResY 2/Y (2) ◦CorY 2/Y (2) : Br(Y 2) → Br(Y 2) by evaluating at generic points [Colliot-Thélène and Sko-
robogatov 2021, Theorem 3.5.4]. Therefore, the composition Res ◦Cor ◦π∗1 is equal to the diagonal map
Br(Y )→ Br(Y )⊕Br(Y )→ Br(Y 2) sending α to π∗1 α+ σ(π∗1 α)= π∗1 α+π∗2 α.

If Pic(Y ) is torsion free, then Pic(Y ) ⊕ Pic(Y ) ≃ Pic(Y
2
); see [Skorobogatov and Zarhin 2014,

Proposition 1.7]. So the diagonal map together with the Hochschild–Serre spectral sequence gives a
commutative diagram:

H1(k, Pic(Y )) // H1(k, Pic(Y ))⊕2 H1(k, Pic(Y
2
))

Br1(Y )/ Br0(Y )
?�

OO

// (Br1(Y )/ Br0(Y ))⊕2
?�

OO

// Br1(Y 2)/ Br0(Y 2)
?�

OO

As the composition along the top row is injective, the same must be true of the composition along the
bottom row. This composition is induced by Res ◦Cor ◦π∗1 and it factors through the map φ in the last
statement of (1), so φ must also be injective.

(2) Since Y (2) is birational to Sym2 Y , there is an open set U ⊂ Y (2) that is isomorphic to an open set of
the regular locus of Sym2 Y , i.e., the image of Y 2

−1. For y ∈U , we obtain ỹ by taking the preimage of
y under Y 2

→ Sym2 Y 99K Y (2). The points y and ỹ fit into a commutative diagram displayed on the left

https://stacks.math.columbia.edu/tag/00R4
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below. This induces the diagram displayed on the right. Commutativity of the latter gives the result:

Spec(k(y))
y
// Y (2) Br(k(y)) Br(Y (2))

y∗
oo

f −1(y)

OO

// Y × Y

f

OO

π1

��

⇒ Br( f −1(y))

Cor

OO

Br(Y × Y )

Cor

OO

oo

Spec(K )
ỹ

// Y Br(K ) Br(Y )

π∗1

OO

ỹ∗
oo

(3) Suppose that K/k is a quadratic extension, YK (AK )ResK/k(Br(Y ))
̸=∅ and that β=CorY 2/Y (2)(π∗1 (α))∈

Br(Y (2)) represents a class in B that is the image of α ∈ Br(Y ). Since Br(Y )/ Br0(Y ) is finite,
YK (AK )ResK/k(Br(Y )) is an open subset of YK (AK ) in the adelic topology which we have assumed is
nonempty. So for any v ∈�k the image of the projection map YK (AK )ResK/k(Br(Y ))

→
∏

w | v YK (Kw)=

Y (K ⊗ kv) is a nonempty open subset and therefore contains a quadratic point ỹv : Spec(K ⊗ kv)→ Y
corresponding to a point yv ∈U (kv), where U is the open set from (2). For the case that v does not split
in K we are using the fact that Y (Kw) ̸= Y (kv) since kv is a local field; see, e.g., [Liu and Lorenzini
2018, Proposition 8.3]. By (2) we have∑

v∈�k

invv β(yv)=
∑
v∈�k

invv CorK⊗kv/kv
(α(ỹv))= 0.

So the adelic point y = (yv) ∈ Y (2)(Ak) is orthogonal to β.

(4) Suppose Y (2)(Ak)
B
̸= ∅. The hypothesis in Lemma 3.3 implies that Br(Y )/ Br0(Y ) and, hence,

B is finite. Thus, Y (2)(Ak)
B is open and, arguing as in (3), we see that, for each v ∈ �k , its image

in Y (kv) contains a point yv ∈ U (kv) corresponding to a quadratic point ỹv : Spec(Kv)→ Y , where
Kv is an étale kv-algebra of degree 2. Moreover, by (2) if α ∈ Br(Y ) and β = CorY 2/Y (2)(π∗1 (α)), then
β(yv)=CorKv/kv

(α(ỹv)). By assumption
∑

v∈�k
invv β(yv)= 0, so (ỹv)v∈�k is an effective adelic 0-cycle

of degree 2 on Y which is orthogonal to the Brauer group of Y . Under the additional hypotheses of (4),
Br(Y )/ Br0(Y ) is finite and, by Lemma 3.3, there is an extension k1/k such that for K/k linearly disjoint
from k1, ResK/k : Br(Y )→ Br(YK )/ Br0(YK ) is surjective. Moreover, for any set α1, . . . , αn ∈ Br(Y ) of
representatives for Br(Y )/ Br0(Y ), there is a finite set S ⊂�k such that for all i = 1, . . . , n and all v ̸∈ S
the evaluation maps invv ◦αi : Y (kv)→Q/Z are constant; see [Colliot-Thélène and Skorobogatov 2013,
Lemma 1.2 and Theorem 3.1]. In particular Y (kv) ̸= ∅ for v ̸∈ S. Let K/k be a quadratic extension
linearly disjoint from k1 and such that K ⊗ kv ≃ Kw for v ∈ S. By weak approximation on k× the map
k×/k×2

→
∏

v∈S′ k
×
v /k×2

v is surjective for any finite set of primes S′ ⊂�k , so such extensions K/k do
in fact exist. Any adelic point (xw)w∈�K ∈ YK (AK ) such that ỹv =

∑
w | v xw for v ∈ S will be orthogonal

to Br(YK ). □
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4. Pencils of quadrics in P4 and associated objects

Let Q ⊂ P4
× P1 be a pencil of quadrics, i.e., the zero locus of a bihomogeneous polynomial Q of

degree (2, 1), defined over a field k of characteristic different from 2. If the projection map Q→ P1

is generically smooth, then we may naturally associate three objects. First, we may consider the base
locus X = XQ ⊂ P4 of the pencil of quadrics, i.e., ∩t∈P1Qt , where Qt ⊂ P4 denotes the fiber over t ∈ P1.
This is a degree 4 projective surface. Second, we may consider the subscheme S⊂ P1 parametrizing the
singular quadrics in the pencil. If Q is any degree (2, 1) form defining Q, then S is given by the vanishing
of det(MQ), where MQ denotes the symmetric matrix corresponding to Q considered as a quadratic form
whose coefficients are linear polynomials in the homogeneous coordinate ring of P1. Since Q→ P1 is
generically smooth, S⊂ P1 is a degree 5 subscheme. Third, we may consider the fourfold G = GQ→ P1

that parametrizes lines on quadrics in the pencil; the generic fiber of G is a Severi–Brauer variety with
index dividing 4 and order dividing 2 [Elman et al. 2008, Example 85.4].

Remark 4.1. Over a field of characteristic 2, det(MQ) is identically 0 since MQ is a 5x5 skew-symmetric
matrix, and so the correspondences between these objects already fails. Due to this, the assumption that k
has characteristic different from 2 will remain in force for the remainder of the paper.

Each of these objects has been well-studied, and their conditions for smoothness are known to be
closely related.

Proposition 4.2. Let Q⊂ P4
×P1 be a pencil of quadrics over a field of characteristic different from 2.

Then the following are equivalent:

(1) The base locus X is smooth and purely of dimension 2, in which case X is a del Pezzo surface of
degree 4.

(2) The degree 5 subscheme S⊂ P1 is reduced.

(3) For every s ∈ S, the fiber Qs is rank 4 and the vertex of Qs does not lie on any other quadric in the
pencil.

(4) The fourfold G is smooth, the map G → P1 is smooth away from S, and above S the fibers are
geometrically reducible.

Proof. The equivalence of conditions (1), (2), and (3) is given by [Reid 1972, Proposition 2.1]. The
equivalence of (4) with any (equivalently all) of the others is given by [Reid 1972, Theoerem 1.10]. □

Definition 4.3. A pencil of quadrics Q over a field of characteristic different from 2 satisfies (†) if
any of the equivalent conditions in Proposition 4.2 hold. Given a pencil Q satisfying (†), we define
εS ∈ k(S)/k(S)×2 to be the discriminant of a smooth hyperplane section of QS; note that the square class
of the discriminant does not depend on the choice of hyperplane, nor on the choice of a defining equation
for QS.

Given a pencil of quadrics satisfying (†), there are even stronger connections among these three objects.
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Proposition 4.4. Let Q be a pencil of quadrics satisfying (†). Let X = XQ,G = GQ, and (S, εS) =

(SQ, εSQ):

(1) The variety G is birational to the symmetric square Sym2(X) of X. Moreover, G(k) ̸=∅ if and only
if X (K ) ̸=∅ for some quadratic extension K/k.

(2) The residues of the Brauer class [Gk(P1)] ∈ Br k(P1) are

εS ∈ k(S)×/k(S)×2
≃ H1(k(S), 1

2 Z/Z
)
⊂

⊕
t∈(P1)(1)

H1(k(t), Q/Z).

In particular, Normk(S)/k(εS) ∈ k×2.

(3) Given a pair (S′, εS′) where S′⊂P1 is a reduced degree 5 subscheme and a class εS′ ∈ k(S′)×/k(S′)×2

of square norm, there exists a unique (up to isomorphism) pencil of quadrics Q such that (S′, εS′)=

(SQ, εSQ). Thus, for any t ∈ P1
− S, [Gt ] ∈ Br(k(t)) is determined by (S, εS).

Remark 4.5. The second statement of Part (2) provides an alternate proof of a proposition by Wittenberg
[2007, Proposition 3.39].

Proof. (1) Consider a point (x, x ′) ∈ X × X −1, where 1 denotes the diagonal image of X , and let
ℓ{x,x ′} be the line joining them. For generic (x, x ′) the line ℓ{x,x ′} is not contained in X , in which case
we claim that ℓ{x,x ′} lies on a quadric in the pencil containing X . This quadric will be unique since a
line that is contained in more than one quadric in the pencil lies on X . To see that ℓ{x,x ′} is contained in
some quadric note that the intersections Qt ∩ ℓ{x,x ′} determine a nonzero pencil of binary quadrics (i.e.,
quadrics in P1) that all contain x and x ′. The singular binary quadrics of this pencil are rank at most 1
and contain the distinct points x and x ′ so they must be identically 0 on ℓ{x,x ′}.

Therefore, we have a rational map

f : X × X 99K G, (x, x ′) 7→ (t{x,x ′}, ℓ{x,x ′}),

defined on the locus of pairs (x, x ′) ∈ X × X −1 such that the line ℓ{x,x ′} is not contained in X , where
t{x,x ′} ∈ P1 is such that ℓ{x,x ′} ⊂Qt{x,x ′}

. Noting that a line ℓ⊂Qt which is not contained in X intersects
X in 0-dimensional scheme of degree 2 we see that f is dominant, generically of degree 2, and factors
through the symmetric square of X . Thus, the induced map Sym2 X 99K G is birational.

If G(k) ̸=∅, then the Lang–Nishimura theorem (see, e.g., [Poonen 2017, Theorem 3.6.11]) (which
applies since G is smooth) implies that Sym2(X)(k) ̸=∅ and, consequently, that there is a quadratic point
on X . In particular, there is a quadratic extension K/k with X (K ) ̸=∅. Conversely, if X (K ) ̸=∅ for some
quadratic extension K/k, then X (K ) is infinite by [Salberger and Skorobogatov 1991, Theorem (0.1)].
The line through any Galois stable pair of distinct points gives a k-rational point on G.

(2) Let t ∈ P1. By [Reid 1972, Theorems 1.2 and 1.8], the fiber Gt is smooth and geometrically
irreducible exactly when Qt has rank 5. Thus, for all t ∈ P1

− S, the class [Gk(P1)] has trivial residue
at t . By Proposition 4.2 and assumption (†), if t ∈ S, then Qt has rank 4. If Qt is rank 4 and has square
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discriminant, then by [Reid 1972, Theorem 1.8] the fiber Gt is reducible and split over k(t). If Qt is rank
4 and has nonsquare discriminant, then the same result of Reid says that Gt is irreducible and nonsplit over
k(t), but becomes split over the quadratic discriminant extension. Thus, the residue of [Gk(P1)] at t is the
discriminant of Qt [Frossard 1997, Proposition 2.3]. By definition of εS, this gives the first statement. The
second statement now follows from the Faddeev exact sequence for Br k(P1); see [Gille and Szamuely
2006, Theorem 6.4.5] or (5-4).

(3) The first statement is a theorem of Flynn [2009] which was expanded upon by Skorobogatov [2010].
The second statement follows from the first together with the Faddeev exact sequence for Br(k(P1)); see
[Gille and Szamuely 2006, Theorem 6.4.5] or (5-4). □

The proceeding proposition together with Theorem 2.1 yields the following.

Corollary 4.6. Assume k is a local field of characteristic not equal to 2. For any pencil of quadric
threefolds Q→ P1 satisfying (†), GQ(k) ̸=∅. □

4A. Notation. For a pencil of quadrics that satisfies (†) we will move freely between the objects
Q, X = XQ,G = GQ, and (S, εS) = (SQ, εSQ). We will assume that S ⊂ A1

= P1
−∞. This can be

arranged by an automorphism of P1, provided k has at least 5 elements. We will write k[T ] for the
coordinate ring of A1 and let f (T ) be the unique monic polynomial whose vanishing defines S.

Let QA1 ∈ k(T )[x0, . . . , x4] be a quadratic form whose coefficients are linear polynomials in k[T ] and
whose vanishing defines QA1 on A1

⊂P1. While QA1 is only defined up to multiplication by an element of
k×, none of our results depend on this choice. For a (possibly reducible) subscheme T⊂A1

= Spec(k[T ]),
the canonical map k[T ] → k(T) can be applied to the coefficients of QA1 to obtain a quadratic form
QT over the k-algebra k(T) whose vanishing defines QT = Q×P1 T. In particular, for a ∈ k = A1(k),
the form Qa is obtained by evaluating the coefficients of QA1 at a. We define Q∞ = Q1− Q0, so that
QA1 = Q0+ T Q∞.

We will write θ for the image of T in k(S) = k[T ]/⟨ f (T )⟩. For a subscheme T ⊂ S we use εT ∈

k(T)×/k(T)×2
⊂ k(S)×/k(S)×2 to denote the discriminant corresponding to QT . We will use N to denote

any map induced in an obvious way by the norm map Normk(S)/k : k(S)→ k. Note that Normk(T)/k(εT)=

Normk(S)/k(εT)= N(εT).

4B. Alternate proof of Theorem 2.1 for odd residue characteristic. We now give an alternate proof
of Theorem 2.1 (valid for local fields of odd residue characteristic) which avoids the classification of
reducible special fibers.

Proposition 4.7. Let X ⊂ P4
k be a smooth complete intersection of two quadrics over a local field k of

characteristic not equal to 2. Then X has index dividing 2. If the residue characteristic of k is odd, then
there is a quadratic extension K/k such that X has a K -point.

Proof. First let us prove that X has a quadratic point assuming that s ∈ S(k) ̸= ∅. After a change of
coordinates on the P1 parametrizing the pencil and a change of coordinates on P4, we may assume that
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s = 0, that Q0 = Q0(x0, x1, x2, x3), and that Q∞ = Q̃∞(x0, x1, x2, x3)+ x2
4 . If Q0 contains a smooth

k-point, then the line joining the vertex of Q0 and this point will intersect X in a degree 2 subscheme,
which shows that X has a quadratic point. Thus, we may restrict to the case that Q0 has no smooth
k-points.

Projection away from the vertex of Q0 ⊂ P4
k gives a double cover X → Y := Q0 ∩ V (x4) onto the

quadric surface Y . Since Q0 has no smooth k-points, Y (k) = ∅. We will prove that, in this case, the
branch curve C of the double cover X→ Y has a quadratic point. Note that by definition of the double
cover, C = X ∩ V (x4) and so is a degree 4 genus 1 curve that is the base locus of the pencil of quadric
surfaces Q′→ P1 with Q′t =Qt ∩ V (x4). Moreover, C is a 2-covering of the degree 2 genus one curve
C ′ given by the equation y2

= det(M) where M is the 4×4 symmetric matrix with entries in H0(OP1(1))

corresponding to a defining equation for Q′; see [An et al. 2001].
Consider the fiber of C ′ → P1 above 0. By definition of Q′, this is given by the equation y2

=

disc(Q0 ∩ V (x4)). By assumption, Q0 ∩ V (x4) has no k-points. Since there is (up to isomorphism) a
unique rank 4 quadric over the local field k that is anisotropic and it has square discriminant, we conclude
that disc(Q0∩V (x4)) is a square and so C ′(k) ̸=∅. Consequently, C ′ ≃ Jac(C) and so the order of C in
H1(k, Jac(C)) divides 2. By a result of Lichtenbaum [1968, Theorems 3 and 4] it follows that C has a
point defined over some quadratic extension of the local field k. The aforementioned result of Lichtenbaum
is stated for k a p-adic field, but the proof works for any local field due to Milne’s extension of Tate’s local
duality results to positive characteristic [Milne 2006, Corollary I.3.4, Remark I.3.5, Theorem III.7.8].

Now we can deduce the statement in the proposition. The scheme S ⊂ P1
k parametrizing singular

quadrics in the pencil has degree 5, so there is an odd degree extension k ′/k such that S(k ′) ̸=∅. By what
we have shown above, X has a K -rational point for some quadratic extension K/k ′. It follows that X has
index at most 2. If the residue characteristic is odd, then the inclusion k ⊂ k ′ induces an isomorphism
k×/k×2

≃ k ′×/k ′×2, so K contains a quadratic extension k2/k as an odd index subfield. By the theorems
of Amer [1976], Brumer [1978] and Springer [1956], we have X (K ) ̸= ∅⇒ X (k2) ̸= ∅, so X has a
k2-point. □

Remark 4.8. The preceding proof can be adapted to give an easy proof that a locally solvable del Pezzo
surface of degree 4 over a global field over a field of characteristic different from 2 must have index
dividing 2. Indeed, over some odd degree extension X may be written as a double cover of a quadric
surface, which is known to satisfy the Hasse principle. Hence X obtains a rational point over some
extension of degree 2m with m odd.

5. Arithmetic of the space of lines on the quadrics in the pencil

In this section we develop the main tools to prove Theorems 1.1 and 1.2 over global fields of characteristic
not equal to 2. We maintain the notation defined in Section 4A. Specifically, Q→ P1 is a pencil of
quadrics in P4

k over a field k of characteristic not equal to 2 which satisfies (†), and we let X = XQ,
G = GQ and (εS, S)= (εSQ, SQ).
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In Section 5A, we compute Br(G)/ Br0(G) and construct explicit representatives in Br(G), denoted by
βT, which are determined by subsets T ⊂ S such that N(εT) ∈ k×2. In Section 5B, we study the rank 4
quadrics QT corresponding to subsets T ⊂ S such that N(εT) ∈ k×2. We use Clifford algebras associated
to these rank 4 quadrics to define constant Brauer classes CT ∈ Br(k) and we show how these are related
to the kernel of the canonical map Br(k)→ Br(X). The two constructions come together in Sections 5C
where we show how the CT arise when evaluating βT at certain local points of G (see Lemmas 5.11
and 5.14). Finally, in Section 5D, we deduce consequences for the evaluation of βT at adelic points of G.

5A. The Brauer group of G. It follows from the Faddeev exact sequence (see [Gille and Szamuely 2006,
Theorem 6.4.5]) that the homomorphism

γ ′ : k(S)× ∋ ε 7→ Cork(S)/k(ε, T − θ) ∈ Br(k(P1))

induces an isomorphism

γ : ker
(

N :
k(S)×

k(S)×2 →
k×

k×2

)
≃ ker(Br(P1

− S)[2] ∞
∗

−→ Br k[2]), (5-1)

where∞∗denotes evaluation of the Brauer class at∞∈P1
−S. Recall that N(εS)∈k×2 by Proposition 4.4(2).

Define β = π∗γ : ker(N : k(S)×/k(S)×2
→ k×/k×2)→ Br(k(G)). For T ⊂ S such that N(εT) ∈ k×2,

we set βT := β(εT).

Proposition 5.1. The map β induces a homomorphism

ker
(

N :
⊕
s∈S

⟨εs⟩ → k×/k×2
)

β
−→ Br(G), (5-2)

whose image surjects onto Br(G)/ Br0(G). Furthermore, βS = [G∞] ∈ Br0(G), and for all T ⊂ S with
N(εT) ∈ k×2 and εT ̸= εS ∈ k(S)×/k(S)×2, we have

βT ∈ Br0(G)⊂ Br(G)⇐⇒ βT = 0 ∈ Br(G)⇐⇒ εT ∈ k(T)×2.

Corollary 5.2. (1) Every nontrivial element of Br(G)/ Br0(G) is represented by βT for some degree 2
subscheme T ⊂ S with N(εT) ∈ k×2.

(2) Br(G)/ Br0(G)≃ (Z/2Z)n for some n ∈ {0, 1, 2}.

(3) If Br(G)/ Br0(G) is not cyclic, then every degree 2 subscheme T ⊂ S with N(εT) ∈ k×2 must be
reducible.

(4) Let s0 ∈ S(k) be such that there exists an s ′ ∈ S(k) with β{s0,s′} ∈ Br(G)−Br0(G). Then {β{s0,s} : s ∈
S(k), N(ε{s0,s}) ∈ k×2

} generates Br(G)/Br0(G).

(5) There is a collection T of degree 2 subschemes of S and an element ε ∈ k×, such that

• N(εT) ∈ k×2 for all T ∈ T;
• {βT : T ∈ T} generates Br(G)/ Br0(G);
• for all s ∈ ∪T∈TT, the image of ε in k(s)×/k(s)×2 is equal to εs ; and
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• for any extension L/k and any s ∈ ∪T∈TT, ε ∈ k(sL)×2 if and only if ε ∈ k(s ′L)×2 for all
s ′ ∈

⋃
T∈T T.

(6) Br(G)/ Br0(G)≃ H1(k, Pic(X)).

(7) If k is a local or global field, then the injective map Br(X)/ Br0(X) → Br(G)/ Br0(G) given
by Proposition 3.6(1) is an isomorphism.

Proof of Corollary 5.2. The proposition implies that βS ∈ Br0(G) and, for any T ⊂ S such that N(εT) ∈

k(T)×2, that βT = βS−T ∈ Br(G)/ Br0(G). Since S has degree 5, it follows that every nontrivial element
in Br(G)/ Br0(G) is represented by some βT with deg(T)≤ 2. But if T has degree 1, then εT = N(εT) ∈

k×2 and βT = 0. Thus we have (1). In particular, if Br(G) ̸= Br0 G, then {deg s : s ∈ S} must be
{3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, or {1, 1, 1, 1, 1}. Now a straightforward case by case analysis of
the possible relations on ⊕s∈S⟨εs⟩∼= ⊕s∈SZ/2Z allows one to deduce statements (2)–(4). Given this
characterization of Br(G)/ Br0(G) in terms of degree 2 subschemes T ⊂ S, (5) can be established using
[Várilly-Alvarado and Viray 2014, Lemma 3.1] for the existence of ε ∈ k×. For (6), we observe that
[Várilly-Alvarado and Viray 2014, proof of Theorem 3.4] gives a description of H1(k, Pic X) in terms
of degree two subschemes T ⊂ S and the square classes εT; comparing this description with (5) gives
the desired isomorphism. Finally, when k is a local or global field, the injective map Br1(X)/ Br0(X)→

H1(k, Pic(X)) coming from the Hochschild–Serre spectral sequence [Colliot-Thélène and Skorobogatov
2021, Proposition 4.3.2] is an isomorphism, so (6) implies that the injective map Br(X)/ Br0(X)→

Br(G)/ Br0(G) from Proposition 3.6(1) is also surjective. □

Remark 5.3. If T ⊂ S is a degree 2 subscheme with N(εT) ∈ k×2 such that the quadric QT has a smooth
k(T)-point, then [Várilly-Alvarado and Viray 2014, Corollary 3.5] yields a rational map ρ : X 99K P1

such that ρ∗γ (εT) ∈ Br(X). One can show that the image of ρ∗γ (εT) under the map Br(X)/ Br0(X)→

Br(G)/ Br0(G) given by Proposition 3.6(1) is equal to the class of βT .

Proof of Proposition 5.1. Let η ∈ P1 be the generic point. Since G is smooth, Br(G) injects into Br(Gη).
Further, by the Hochschild–Serre spectral sequence, we have an exact sequence

0→ Pic(Gη)→ (Pic(Gη))
Gk(η)→ Br(k(η))→ ker(Br(Gη)→ Br(Gη))→ H1(Gk(η), Pic(Gη)).

Since Gη is a Severi–Brauer variety, Pic(Gη)≃ Z with trivial Galois action, and Br(Gη)= 0. Hence, the
exact sequence simplifies to

Z→ Br(k(η))
π∗
−→ Br(Gη)→ 0, (5-3)

where the first map sends 1 to [Gη] ∈ Br(k(η)). Thus, to determine Br(G), it suffices to determine
Br(G)∩π∗ Br(k(η)).
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The projection map π : G→ P1 induces the following commutative diagram of exact sequences where
the top row is the Faddeev exact sequence [Gille and Szamuely 2006, Theorem 6.4.5]:

Br(k) Br(k(η))
⊕

t∈(P1)(1) H1(k(t), Q/Z) H1(k, Q/Z)

Br(G) Br(Gη)
⊕

t∈P1

⊕
x∈G(1)

π(x)=t
H1(k(x), Q/Z),

π∗

(∂t )

π∗Br

∑
t Cork(t)/k

π∗
H1

(∂x )

(5-4)

If t ∈ P1
− S, then the fiber Gt is geometrically irreducible by Proposition 4.2 and hence

π∗H1 : H1(k(t), Q/Z)→ H1(k(Gt), Q/Z)

is an injection. For t ∈ S, the fiber Gt consists of two split components that are conjugate over k(t)(
√

εt).
Therefore, for t ∈ S, the kernel of π∗ : H1(k(t), Q/Z) → H1(k(Gt), Q/Z) is the 2-torsion cyclic

subgroup corresponding to the extension k̄ ∩ k(Gt) = k(t)(
√

εt). Moreover, the residues of the kernel
of π∗Br are (∂t)(ker(π∗Br))= (εt)t∈S = εS ∈ k(S)/k(S)×2. Thus, the commutativity of the above diagram
shows that

ker π∗H1

⋂
ker

∑
t

Cork(t)/k ≃ ker
(

N :
⊕
t∈S

⟨εt ⟩ → k×/k×2
)

.

In particular, the image under β of ker
(
N :

⊕
t∈S⟨εt ⟩ → k×/k×2

)
is contained inside of Br(G). Further,

since π∗Br is surjective, the image of ker
(
N :

⊕
t∈S⟨εt ⟩ → k×/k×2

)
under β generates Br(G)/ Br0(G).

It remains to understand which subsets T⊂S give rise to βT ∈Br0(G). If βT ∈Br0(G), then by definition
of Br0(G) there exists A∈Br(k) such that γ (εT)−A∈ ker π∗Br. By (5-3), the kernel of π∗Br is generated by
[Gη]. Thus, γ (εT)= [Gη]+A or γ (εT)=A, where both equalities are in Br(P1

−S). The final statement
of the proposition follows from these equalities after computing residues and evaluating at∞. □

Recall that BQt denotes the bilinear form corresponding to Qt .

Lemma 5.4. Let f : Sym2(X) 99K G be the birational map given in Proposition 4.4 and let {x, x ′} ∈
Sym2(X) − Indet( f ). Suppose that f ({x, x ′}) = (t, ℓ) =: y ∈ G(k). Then π(y) = t = [BQ0(x, x ′) :
−BQ∞(x, x ′)] ∈ P1(k). If , moreover, T ⊂ S is such that N(εT) ∈ k×2 and π(y) ̸∈ T ∪ {∞}, then

βT(y)= Cork(T)/k

(
εT,−

BQT
(x, x ′)

BQ∞(x, x ′)

)
.

Proof. Observe that for any point ax + bx ′ on the line ℓ{x,x ′} through x and x ′ we have

Qt(ax + bx ′)= BQt (ax + bx ′, ax + bx ′)= a2 Qt(x)+ b2 Qt(x ′)+ 2abBQt (x, x ′)= 2abBQt (x, x ′).

Therefore, the line ℓ{x,x ′} is contained in the quadric Qt precisely when BQt (x, x ′)= 0. If BQ0(x, x ′)=
BQ∞(x, x ′) = 0, then ℓ{x,x ′} ⊂ X in which case f is not defined at {x, x ′}. Otherwise, the relation
BQt (x, x ′) := BQ0(x, x ′)+ t BQ∞(x, x ′) = 0 shows that t = π(y) ∈ P1 must be equal to [BQ0(x, x ′) :
−BQ∞(x, x ′)].
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For the second statement recall that βT=π∗γ (εT)=π∗ Cork(S)/k(εT, T−θ), where T is the coordinate
on Spec(k[T ])= A1

⊂ P1 and θ is the image of T in k(S). We have

π(y)− θ =−
BQ0(x, x ′)+ θ BQ∞(x, x ′)

BQ∞(x, x ′)
=−

BQS
(x, x ′)

BQ∞(x, x ′)
∈ k(S).

As γ (εT) is unramified away from T we may evaluate at π(y) to obtain

βT(y)= γ (εT)(π(y))= Cork(S)/k

(
εT,−

BQS
(x, x ′)

BQ∞(x, x ′)

)
.

The projections of εT ∈
⊕

s∈S k(s)×/k(s)×2 onto the factors corresponding to s ∈ S−T are trivial. So

βT(y)= Cork(S)/k

(
εT,−

BQS
(x, x ′)

BQ∞(x, x ′)

)
= Cork(T)/k

(
εT,−

BQT
(x, x ′)

BQ∞(x, x ′)

)
. □

5B. Clifford algebras and Brauer classes. For a quadratic form F over a field of characteristic not equal
to 2 we use Clif(F) to denote the Clifford algebra of the restriction of F to a maximal regular subspace,
and Clif0(F) to denote the corresponding even subalgebra. By Witt’s theorem [Lam 2005, Chapter I,
Theorems 4.2 and 4.3], these do not depend on the choice of maximal regular subspace. If F has even
rank, then Clif(F) is a central simple algebra, which will be identified with its class in the Brauer group.
This extends to quadratic forms over finite étale algebras in the natural way, i.e., factor by factor.

In particular, we will consider Clif(QT) ∈ Br(k(T)) where QT is a quadratic form defining the quadric
QT corresponding to a subscheme T ⊂ S. This depends on the choice of quadratic form as indicated by
the following lemma.

Lemma 5.5. Let s ∈ S and c ∈ k(s)×. Then

Clif(cQs)= Clif(Qs)+ (εs, c) ∈ Br(k(s)).

Proof. This follows from a short calculation using [Lam 2005, Chapter V, Corollary 2.7]. □

For a rank 4 quadric Qs, s ∈ S with εs ∈ k(s)×2, any quadratic form Qs defining Qs is a constant
multiple of the reduced norm form of a quaternion algebra whose class in Br(k(s)) is equal to Clif(Qs)

[Elman et al. 2008, Proposition 12.4]. The following lemma gives a description of Clif(Qs) in cases
when εs /∈ k(s)×2.

Lemma 5.6. Assume that there exists some s ∈ S with εs /∈ k(s)×2 such that Qs has a smooth k(s)-
point. Let Qs be a quadratic form whose vanishing defines Qs . Then for any Gal(k(s))-stable pair
{x, x ′} ⊂Qs(k̄) and any k(s)-linear form ℓ defining a hyperplane tangent to Qs at a smooth point with
ℓ(x)ℓ(x ′) ̸= 0 we have the following equality in Br(k(s)):

Clif(Qs)=

(
εs,−

BQs (x, x ′)
ℓ(x)ℓ(x ′)

)
,

where BQs denotes the bilinear form corresponding to Qs .
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Proof. By [Várilly-Alvarado and Viray 2014, Lemma 2.1], for any ℓ= ℓ0 tangent to Qs at a smooth point,
the quadric Qs is defined by the vanishing of Qs = c(ℓ0ℓ1− ℓ2

2+ εsℓ
2
3), for some linear forms ℓ1, ℓ2, ℓ3

and some c ∈ k(s)×. In particular, we have ℓ0(x)ℓ1(x)= ℓ2(x)2
− εsℓ3(x)2 and similarly for x ′. Thus,

we may compute

−
BQs (x, x ′)
ℓ(x)ℓ(x ′)

=−c ·
ℓ0(x)ℓ1(x ′)+ ℓ0(x ′)ℓ1(x)− 2ℓ2(x)ℓ2(x ′)+ 2εsℓ3(x)ℓ3(x ′)

ℓ0(x)ℓ0(x ′)

=−c
(

ℓ2(x ′)2
− εsℓ3(x ′)2

ℓ0(x ′)2 +
ℓ2(x)2

− εsℓ3(x)2

ℓ0(x)2 − 2
ℓ2(x)ℓ2(x ′)
ℓ0(x)ℓ0(x ′)

+ 2εs
ℓ3(x)ℓ3(x ′)
ℓ0(x)ℓ0(x ′)

)
=−c

[(
ℓ2(x)

ℓ0(x)
−

ℓ2(x ′)
ℓ0(x ′)

)2

− εs

(
ℓ3(x)

ℓ0(x)
−

ℓ3(x ′)
ℓ0(x ′)

)2]
,

which shows that (εs,−BQs (x, x ′)/(ℓ(x)ℓ(x ′))) = (εs,−c). Thus, it remains to relate the quaternion
algebra (εs,−c) to the Clifford algebra of Qs . By [Lam 2005, Chapter V, Corollary 2.7],

Clif(Qs)≃ Clif(Qs |⟨ℓ0,ℓ1⟩)⊗Clif(c2
· Qs |⟨ℓ2,ℓ3⟩)≃M2(k)⊗ (−c, cεs).

To complete the proof, we observe that (−c, cεs)= (−c, εs)= (εs,−c) ∈ Br(k). □

Definition 5.7. Given T ⊂ S such that N(εT) ∈ k×2, define

CT := Cork(T)/k(Clif(QT)) ∈ Br(k).

Remark 5.8. Even though Clif(QT) may depend on the choice of quadratic form defining the pencil, the
condition N(εT) ∈ k×2 ensures that the class CT does not. Indeed, if one computes CT using instead a form
cQT which differs from QT by c ∈ k×, Lemma 5.5 shows that the result will differ by Cork(T)/k(εT, c)=
(N(εT), c), which is trivial whenever N(εT) is a square.

Lemma 5.9. The kernel of the canonical map Br(k)→ Br(X) is generated by

{Cs : s ∈ S such that εs ∈ k(s)×2
}.

Proof. By the exact sequence of low degree terms coming from the Hochschild–Serre spectral sequence
[Colliot-Thélène and Skorobogatov 2021, Proposition 4.3.2], the kernel of Br(k)→ Br(X) is the image
of the cokernel Pic(X)→ Pic(X)Gk . By [Várilly-Alvarado and Viray 2014, Proposition 2.3] (which
relies on results from [Kunyavskiı̆ et al. 1989]), Pic(X)Gk is freely generated by the hyperplane section
and, for every s ∈ S such that εs ∈ k(s)×2, the divisor class Normk(s)/k([Cs]) where Cs is obtained by
intersecting X with a plane contained in Qs . Since the hyperplane section is k-rational, the cokernel of
Pic(X)→ Pic(X)Gk is generated by

{Normk(s)/k([Cs]) : s ∈ S such that εs ∈ k(s)×2 and Qs contains no k-rational planes}.

By definition, the image of [Cs] in Br(k(s)) is the Severi–Brauer variety whose points parametrize
representatives of the class [Cs]. Since εs is a square, by [Colliot-Thélène and Skorobogatov 1993,
Theorem 2.5], Qs is a cone over the surface Zs× Zs , where Zs is a smooth conic obtained by intersecting
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Qs with a general 2-plane. Since planes in a fixed ruling on Qs correspond to fibers in a projection
Zs × Zs→ Zs , we deduce that [Cs] 7→ Zs ∈ Br(k(s)). By [Elman et al. 2008, Proposition 12.4] we also
have that Clif(Qs)= Zs ∈ Br(k(s)). Hence,

Normk(s)/k([Cs])= Cork(s)/k(Clif(Qs))= Cs . □

5C. Local evaluation maps.

Lemma 5.10. If there exists a degree 2 subscheme T ⊂ S such that for all t ∈ T, εt ∈ k(t)×2 and Qt has a
smooth k(t)-point, then X (k) ̸=∅.

Proof. Let T(k̄) = {t1, t2}. The assumptions in the lemma imply that there are k(ti )-rational planes
contained in Qti . The intersection of one with X gives a k(ti )-rational conic Ci on X . If t1 /∈ T(k), then
we replace C2 with the conjugate of C1. Thus, the pair {C1, C2} are Galois invariant. As computed in
[Várilly-Alvarado and Viray 2014, proof of Proposition 2.2] we have C1.C2 = 1. (We note that our C2

may be either C2 or C ′2 in the notation of [Várilly-Alvarado and Viray 2014], but both have the same
intersection number with C1.) Therefore the intersection of these divisors produces a k-point on X . □

Lemma 5.11. Assume that k is a local field of characteristic not equal to 2 and let T ⊂ S be a degree
2 subscheme such that N(εT) ∈ k×2. Then, for any quadratic extension K/k with εT ∈ k(TK )×2 and
K ̸= k(T), there exists y ∈ G(k) corresponding to a quadratic point Spec K → X. Moreover, for such y,

βT(y)=

{
CT if εT /∈ k(T)×2,

0 if εT ∈ k(T)×2.

Proof. If X (k) ̸=∅, then for any nontrivial extension K/k we have X (k)⊊ X (K ) because k is local; see,
e.g., [Liu and Lorenzini 2018, Proposition 8.3]. Then any pair of Gal(K/k)-conjugate points on X will
give the required y ∈ G(k). Now we prove the first statement in the case where X (k)=∅. Over any local
field, there is a unique rank 4 quadric (up to isomorphism) that fails to have a point, and it has square
discriminant. Furthermore, this anisotropic quadric has a point over any quadratic extension of k(t).

If εt ∈ k(t)×2 for some t ∈ T (equivalently, for all t ∈ T by Corollary 5.2(5)), then Qt may not have
a smooth k(t)-point, but it will have a smooth point over any quadratic extension of k(t). If K/k is a
quadratic extension different from k(T)/k, then k(TK ) will be a quadratic extension of k(T) and hence
we may apply Lemma 5.10. Moreover, since εT ∈ k(T)×2, by definition, βT = 0 ∈ Br(G).

Now we consider the case when εt /∈ k(t)×2, so Qt has nonsquare discriminant, and thus is isotropic.
Hence, Lemma 5.10 gives the existence of K -points on X for any K such that εT ∈ k(TK )×2.

Now suppose y corresponds to the line joining the K/k-conjugate points x, x ′ ∈ X (K ), with K
satisfying the conditions of the lemma. By continuity of the evaluation map, we may reduce to the case
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where π(y) ̸= ∞, π(y) ̸∈ T. By Lemma 5.4 we have

βT(y)= (εT,−BQT
(x, x ′)/BQ∞(x, x ′))

= Cork(T)/k(εT,−BQT
(x, x ′))+ (Nk(T)/k(εT), BQ∞(x, x ′))

= Cork(T)/k(εT,−BQT
(x, x ′)) (since N (εT) ∈ k×2)

= Cork(T)/k[(εT, ℓT(x)ℓT(x ′))+Clif(QT)] (by Lemma 5.6)

= Cork(TK )/k(εT, ℓT(x))+Cork(T)/k Clif(QT)

= Cork(T)/k Clif(QT) (since εT ∈ k(TK )×2)

= CT (by Definition 5.7) . □

Lemma 5.12. Assume that k is a local field of characteristic not equal to 2. Suppose s ∈ S(k) is such that
Qs has a smooth k-point and let vs denote the vertex of Qs . For any t ∈ A1(k)−{s} sufficiently close to s,
we have

Gt(k) ̸=∅⇐⇒ (εs, t − s)= Clif(Qs)+ (εs,−Q∞(vs)) in Br(k).

Remark 5.13. Note that by Lemma 5.5, the sum Clif(Qs)+ (εs,−Q∞(vs)) appearing on the right-hand
side above does not depend on the choice of quadratic form defining the pencil.

Proof. Since t ∈A1(k)−{s} is sufficiently close to s and S is closed, we have t /∈ S and Qt has rank 5. So
by [Elman et al. 2008, Example 85.4] the Severi–Brauer variety Gt and the even Clifford algebra Clif0(Qt)

(which is a central simple k-algebra) determine the same class in Br(k). In particular, Gt(k) ̸=∅ if and
only if Clif0(Qt)= 0 in Br(k).

Since X is smooth, Qt(vs) ̸= 0. So the quadratic forms Qt and Qt |⟨vs⟩⊥⊕Qt |⟨vs⟩ are equivalent by
[Lam 2005, Chapter I, Corollary 2.5]. Therefore,

Clif0(Qt)= Clif(−Qt(vs) · Qt |⟨vs⟩⊥) (by [Lam 2005, Chapter V, Corollary 2.9])

= Clif(Qt |⟨vs⟩⊥)+ (disc(Qt |⟨vs⟩⊥),−Qt(vs)) (by Lemma 5.5).

For t sufficiently close to s, the quadratic forms Qt |⟨vs⟩⊥ and Qs |⟨vs⟩⊥ will be equivalent. For such t ,
Clif(Qt |⟨vs⟩⊥)= Clif(Qs) ∈ Br(k) and disc(Qt |⟨vs⟩⊥)= disc(Qs) ∈ k×/k×2. Hence

Clif0(Qt)= Clif(Qs)+ (εs,−Qt(vs)).

To complete the proof, we note that Qt(vs)= (Qs + (t − s)Q∞)(vs)= (t − s)Q∞(vs). □

Lemma 5.14. Assume that k is a local field of characteristic not equal to 2 and T ⊂ S is a degree 2
subscheme with N(εT) ∈ k×2 and εT /∈ k(T)×2. Then there exists y ∈ GT(k(T)) such that π(y) = T.
Moreover, for any such y,

Cork(T)/k(βT(y))= CT + (ε,−1T N(Q∞(vT))) ∈ Br(k),

where ε∈ k× is an element whose image in k(T)×/k(T)×2 represents εT , 1T is the discriminant of k(T)/k
(which we take to be 1 if T is reducible), and vT is the vertex of QT .
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Proof. By [Várilly-Alvarado and Viray 2014, Lemma 3.1] there exists ε ∈ k× such that ε · εt ∈ k(t)×2 for
all t ∈ T. Fix a closed point s ∈ T, and let s ′ be the unique k(s) point in Tk(s)−{s}.

Since εs ̸∈ k(s)×2, Qs is a cone over an isotropic quadric and as such contains smooth k(s)-points and
k(s)-rational lines (passing through the vertex). Hence Gs(k(s)) is nonempty. By the implicit function
theorem, we can find t ∈ (P1

−{s})(k(s)) arbitrarily close to s such that Gt(k(s)) ̸=∅. In addition, by
Lemma 5.12 and the fact that the evaluation map β : G(k(s))→ Br(k(s)) is locally constant and constant
on the fibers of π : G→ P1 (because βT is the pullback of a element of Br(k(P1))), we may choose such
a t sufficiently close to s so that

(1) (ε, t − s)= Clif(Qs)+ (ε,−Q∞(vs)) ∈ Br(k(s)),

(2) βT(Gs(k(s)))= βT(Gt(k(s))) ∈ Br(k(s)), and

(3) t − s ′ and s− s ′ represent the same class in k(s)×2.

Then for y1 ∈ Gs(k(s)) and y′1 ∈ Gt(k(s)), we have

βT(y1)= βT(y′1)= (ε, (t − s)(t − s ′))= Clif(Qs)+ (ε,−Q∞(vs)(s− s ′))∈ Br(k(s)).

Suppose y : Spec(k(T))→ G is such that π(y)= T. Then, because ε ∈ k× we have Cork(T)/k(ε, s−s ′)=
(ε, Normk(T)/k(s− s ′))= (ε, (s− s ′)(s ′− s)). It follows that

Cork(T)/k(βT(y))= Cork(T)/k[Clif(QT)+ (ε,−Q∞(vT))+ (ε, s− s ′)]

= Cork(T)/k(Clif(QT))+ (ε, N(Q∞(vT)))+ (ε, (s− s ′)(s ′− s))

= CT + (ε, N(Q∞(vT)))+ (ε,−1T). □

5D. Evaluation of Brauer classes on G(Ak).

Definition 5.15. Let k be a global field of characteristic not equal to 2. Given T ⊂ S define

RT := {v ∈�k : εTv
∈ k(Sv)

×2 and CTv
̸= 0}.

Theorem 5.16. Assume that k is a global field of characteristic different from 2:

(1) There exists (yv) ∈ G(Ak) such that for all degree 2 subschemes T ⊂ S with N(εT) ∈ k×2, we have∑
v∈�k

invv(βT(yv))= #RT/2 ∈Q/Z.

(2) For all t ∈S(k) there exists (yv)∈G(Ak) such that for all degree 2 subschemes T⊂S with N(εT)∈ k×2

and t ∈ T, we have
∑

v∈�k
invv(βT(yv))= #Rt/2 ∈Q/Z.

Proof. (1) It suffices to prove the result for {βT : T ∈ T}, where T is a collection of degree 2 subschemes
of S as in Corollary 5.2(5), with corresponding ε ∈ k× simultaneously representing the discriminants of
all T ∈ T.

We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈�k such that ε ∈ k(Tv)
×2 for some T ∈ T

(equivalently, for all T ∈T by Corollary 5.2(5)), let yv ∈G(kv) be any point (which exists by Corollary 4.6).
Note that if ε ∈ k(Tv)

×2, then βT⊗kv = 0 by Proposition 5.1. For each v ∈�k with ε /∈ k(Tv)
×2 for some
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(equivalently all) T ∈ T, let yv ∈ G(kv) be a point corresponding to a kv(
√

ε)-point on X , as provided by
Lemma 5.11. Note that Lemma 5.11 further implies that for such yv, βT(yv)= CTv

for all T ∈ T. Thus,
for any T ∈ T we have∑

v∈�k

invv(βT(yv))=
∑

ε/∈k(Tv)×2

invv(CTv
)=

∑
ε∈k(Tv)×2

invv(CTv
)=

#RT

2
∈Q/Z,

where the penultimate equality follows from quadratic reciprocity.

(2) Let t ∈ S(k) and set ε := εt . If t is not contained in any degree 2 subschemes T⊂ S with N(εT) ∈ k×2,
then we need only show that G(Ak) ̸= ∅, which follows from Corollary 4.6. Thus, we may assume
there is some degree 2 subscheme T ⊂ S containing t such that N(εT) ∈ k×2. For any such T we have
εT = (ε, ε) ∈ k(T)×/k(T)×2

≃ k×/k×2
× k×/k×2.

We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈ �k such that ε ∈ k×2
v , take yv to be any

point of G(kv) (which exists by Corollary 4.6). For v ∈�k such that ε /∈ k×2
v we take yv ∈ G(kv) to be

any point such that π(yv) ∈ P1(kv) is close enough t so that Lemma 5.12 applies (note that Qt is a cone
over an isotropic quadric surface so the hypothesis of the Lemma 5.12 is satisfied) and so that, for all
s ∈ S(k)−{t} with εεs ∈ k×2, (π(yv)− s) and (t − s) have the same class in k×v /k×2

v .
Suppose T = {s, t} ⊂ S(k) is such that N(εT) ∈ k×2. For v ∈ �k such that ε ∈ k×2

v , we have
invv(βT(yv))= 0. For v ∈�k such that ε /∈ k×2

v we have

invv(βT(yv))= invv(ε, (π(yv)− t)(π(yv)− s))

= invv(ε, π(yv)− t)+ invv(ε, t − s)

= invv(Clif(Qt))+ invv(ε,−Q∞(vt))+ invv(ε, t − s) (By Lemma 5.12).

Since (ε,−Q∞(vt)(t − s)) is an element of Br(k), its local invariants sum to 0. Furthermore, for all
v ∈�k with ε ∈ k×2

v , (ε,−Q∞(vt)(t − s)) has trivial invariant. Thus,∑
v∈�k

invv(βT(yv))=
∑

ε/∈k×2
v

invv(βT(yv))=
∑

ε/∈k×2
v

invv(Clif(Qt))=
∑

ε∈k×2
v

invv(Clif(Qt)).

where the last equality follows from the fact that the local invariants of Clif(Qt) ∈ Br(k) sum to 0. For
v ∈�k such that εt ∈ k×2

v we have invv(Clif(Qt))= invv(Ctv ). Hence,∑
v∈�k

invv(βT(yv))=
∑

ε∈k×2
v

invv(Ctv )=
#Rt

2
,∈Q/Z. □

The following lemma relates the set RT to the condition given in (5) of Theorem 1.2.

Lemma 5.17. Let k be a global field of characteristic not equal to 2 and T⊂ S a degree 2 subscheme such
that N(εT) ∈ k×2. Then v ∈ RT if and only if there are an odd number of components of QTv

= ∪tv∈Tv
Qtv

which have no smooth k(tv)-point.

Proof. Let v ∈ �k . First suppose that εTv
̸∈ k(Sv)

×2. Then v ̸∈ RT by definition. Note also that for all
tv ∈ Tv, εtv ̸∈ k(tv)×2 (a priori this must hold for some tv ∈ Tv; the stronger conclusion holds because T
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has degree 2 and N(εT) ∈ k×2). Recall that there is a unique anisotropic quadratic form of rank 4 over
any local field and that it has square discriminant. Hence, when εTv

̸∈ k(tv)×2, all components Qtv have
smooth k(tv)-points.

Now suppose that εTv
∈ k(Sv)

×2. As above εtv ∈ k(tv)×2, for each tv ∈ Tv . Then the rank 4 quadratic
forms Qtv are equivalent to constant multiples of the norm forms of the quaternion algebras Clif(Qtv );
see [Elman et al. 2008, Proposition 12.4]. In particular, Qtv has a smooth k(tv)-point if and only if
Clif(Qtv )= 0 ∈ Br(k(tv)). The corestriction maps Cork(tv)/kv

: Br(k(tv))→ Br(kv) are isomorphisms, so
CTv
=

∑
tv∈Tv

Cork(tv)/kv
Clif(Qtv ) is nonzero if and only if there are an odd number of components of

QTv
with no smooth k(tv)-points. By definition v ∈ RT if and only if CTv

̸= 0. □

Lemma 5.18. Assume that k is a global field of characteristic different from 2 and suppose T ⊂ S is
irreducible of degree 2 such that N(εT) ∈ k×2. For any t ∈ T(k(T)), the cardinalities of the sets

RT ⊂�k and Rt ⊂�k(T)

have the same parity.

Proof. For a prime v ∈�k , we have εT ∈ k(Tv)
×2 if and only if εt ∈ k(t)×2

w for all (equivalently some)
w ∈�k(T) with w | v. For such v we have

invv(CTv
)= invv(Cork(T)/k(Clif(QT)))=

∑
w | v

invw(Clif(Qt))=
∑
w | v

invw(Ctw).

In particular, CTv
̸= 0 if and only if there are an odd number of primes w | v with Ctw ̸= 0. □

6. Proofs of the main theorems

6A. Corollaries of Theorem 5.16.

Corollary 6.1. Assume that k is a global field of characteristic not equal to 2 and that either of the
following conditions hold:

(1) Every nontrivial element of Br(G)/ Br0(G) can be represented by βT for some degree 2 subscheme
T ⊂ S such that N(εT) ∈ k×2 and #RT even.

(2) Every nontrivial element of Br(G)/ Br0(G) can be represented by βT for some degree 2 subscheme
T= {t1, t2} ⊂ S(k) such that N(εT) ∈ k×2.

Then G(Ak)
Br
̸=∅.

Proof. If condition (1) holds, then the corollary follows from Theorem 5.16(1). Now assume condition (2)
holds and (1) fails. Then there exists a nontrivial element of Br(G) of the form β{t,t ′} with t, t ′ ∈ S(k)

such that R{t,t ′} has odd cardinality. Note that R{t,t ′} is the symmetric difference of Rt and Rt ′ . Thus,
interchanging t and t ′ if needed we may assume Rt has even cardinality. Theorem 5.16(2) then gives an
adelic point orthogonal to all βT such that T has degree 2, contains t and N(εT) ∈ k×2. The result follows
since Corollary 5.2(4) shows that such βT generate Br(G)/ Br0(G). □
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Remark 6.2. If both conditions of Corollary 6.1 fail, then Br(G)/ Br0(G)≃ Z/2Z by Corollary 5.2 and
any βT with T of degree 2 which represents the nontrivial class must have T irreducible. Thus, S must
contain an irreducible degree 2 subscheme T such that

• N(εT) ∈ k×2,

• εT ̸∈ k(T)×2,

• if #(S−T)(k)= 3, then εt /∈ k×2 for all t ∈ S−T, and

• #RT is odd, which in particular implies that QT has no smooth k(T)-points.

Corollary 6.3. Assume that k is a global field of characteristic not equal to 2. Suppose there is a degree
2 subscheme T ⊂ S with N(εT) ∈ k×2 such that RT has odd cardinality. Then G(Ak)

Br
̸= G(Ak) and

there exists a quadratic extension K/k such that X K (AK ) ̸= X K (AK )Br
=∅. In particular, G does not

satisfy weak approximation and there exists quadratic extension K/k such that X K has a Brauer–Manin
obstruction to the Hasse principle.

Proof. The first statement follows immediately from Theorem 5.16(1). For the second statement we
construct K by approximating fixed quadratic extensions of kv for the primes v ∈ S := {v : X (kv) =

∅ or invv ◦βT : G(kv)→Q/Z is nonzero}. (In particular, by Lemma 5.11 and the definition of CT, we
will approximate K at every prime where CT ramifies.) For such v, if ε /∈ k×2

v , then we fix Kv := kv(
√

ε). If
v is such that ε ∈ k×2

v , then we let Kv be any quadratic extension such that X (Kv) ̸=∅. Then Lemma 5.11
implies that for every v ∈ S, there exists a yv ∈ G(kv) corresponding to a quadratic point Spec Kv→ X
and for all such yv, βT(yv) = CTv

if ε ̸∈ k×2
v and βT(yv) = 0 otherwise. Furthermore, for v /∈ S (which

necessarily means that CTv
= 0), our assumptions imply that X (Kv) ̸= ∅ and that βT(yv) = 0 for all

yv ∈ G(kv). Thus, for all (yv) ∈ G(Ak) corresponding to an adelic quadratic point Spec(AK )→ X we
have ∑

v

invv βT(yv)=
∑

ε/∈k×2
v

invv βT(yv)=
∑

ε/∈k×2
v

invv CTv
=

∑
ε∈k×2

v

invv CTv
=

#RT

2
∈Q/Z.

By Proposition 3.6(2) and Corollary 5.2(7), this implies that X K (AK )Br
=∅. □

Example 6.4. Let G → P1 be the fibration of Severi–Brauer threefolds corresponding to the pencil
containing the quadrics given by the vanishing of the rank 4 forms

Q0 = x0x1− x2
2 + εx2

3 and Q1 = ax2
0 + bx2

1 − abx2
2 − εx2

4

where a, b, ε ∈ k×. Then T = {0, 1} ⊂ S is a degree 2 subscheme with εT = (ε, ε). Hence, Corollaries 5.2
and 6.1 imply that G(Ak)

Br
̸= ∅. Note that Q0 has smooth k-points, so RT = R1 = {v ∈ �k : ε ∈

k×2
v and invv(a, b) ̸= 0}. Clearly one can choose a, b, ε so that RT has odd cardinality (e.g., for k =Q,

a = 3, b = 7, ε = 2 we have RT = {7}), in which case G has a Brauer–Manin obstruction to weak
approximation and the base locus X of the pencil is a counterexample to the Hasse principle over some
quadratic extension by Corollary 6.3.
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If 4− ab ∈ k×2
v − k×2 for some prime v ∈ RT (which holds for the values indicated above), then there

exists no quadratic extension K/k such that X K is everywhere locally solvable and Br(X K )=Br0(X K ). To
see this first observe that 4−ab= εt is the discriminant of the rank 4 quadric Qt = (Q1−abQ0)/(1−ab)

(here t = 1/(1− ab) ∈ S(k)). Now note that if a prime v ∈ RT splits in a quadratic extension K , then
X K is not locally solvable because Q1 has no smooth Kw-points for the primes w | v. On the other hand,
Proposition 5.1 shows that βT⊗K ∈Br(X K ) lies in the subgroup Br0(X K ) if and only if ε∈ K×2 (in which
case K = k(

√
ε) and all primes of RT split in K ) or εS−T ∈ k(SK )×2 (in which case K = k(

√
4− ab)

and so some prime of RT splits in K by assumption). We conclude that if K/k is a quadratic extension
such that βT ⊗ K ∈ Br0(X K ), then X K (AK )=∅.

Corollary 6.5. Assume that k is a global field of characteristic not equal to 2. There is an adelic 0-cycle
of degree 1 on G orthogonal to Br(G).

Proof. We may assume that G(Ak)
Br
= ∅ (for otherwise the Corollary holds immediately) and hence,

that the hypothesis of Corollary 6.1 fails. As explained in Remark 6.2, this implies that there is an
irreducible degree 2 subscheme T ⊂ S such that N(εT) ∈ k×2, εT /∈ k(T)×2 and RT has odd cardinality.
By Corollary 5.2(3), the existence of such an irreducible T implies that Br(G)/ Br0(G) has order 2.
Moreover, if t ∈ T(k(T)) then, by Lemma 5.18, the set Rt ⊂ �k(T) has odd cardinality. Thus, by
Theorem 5.16 applied over k(T) we obtain an effective adelic 0-cycle of degree 2 over k, denote it
by (zv), such that

∑
v∈�k

invv(βT(zv)) = 1/2. If (yv) ∈ G(Ak) is any adelic point (which exists by
Corollary 4.6), then (zv − yv) is an adelic 0-cycle of degree 1 and, since G(Ak)

Br
= G(Ak)

βT = ∅, we
have

∑
v∈�k

invv(βT(zv − yv))=
∑

v∈�k
invv(βT(zv))−

∑
v∈�k

invv(βT(yv))= 1/2− 1/2= 0. □

Remark 6.6. In the cases not already covered by Corollary 6.1, the proof above hinges on constructing
an adelic 0-cycle of degree 2 on G that is not orthogonal to the Brauer group. Lemma 5.14 can be used to
give an alternative construction of such a 0-cycle. See Section 7A.

6B. Proof of Theorem 1.1. Let X ′ ⊂ Pn
k be a smooth complete intersection of two quadrics over k. By

Bertini’s theorem the intersection of X ′ with a suitable linear subspace will yield a smooth complete
intersection of two quadrics X ⊂ P4

k . If k is a local field, then the result follows from Theorem 2.1. It
remains to consider the case that k is a number field. By Corollary 6.5, G has an adelic 0-cycle of degree
1 orthogonal to the Brauer group. Since G is a pencil of Severi–Brauer varieties, [Colliot-Thélène and
Swinnerton-Dyer 1994, Theorem 5.1] shows that G has a 0-cycle of degree 1. By Proposition 4.4 this
gives a 0-cycle of degree 2 on X .

6C. Proof of Theorem 1.2. Let X ′ ⊂ Pn
k be a smooth complete intersection of two quadrics over k. As

noted above, X ′ contains a smooth of two quadrics in P4
k . Thus, Theorem 2.1 implies that X ′ contains a

quadratic point when k is local. This proves Theorem 1.2(1). Similarly, Theorem 1.2(3) follows from
Proposition 2.11.
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Now assume k is global of characteristic not equal to 2. Theorem 2.1 implies that there is a quadratic
extension K/k such that X ′K is everywhere locally solvable. If k is a global function field and n ≥ 5, then
X ′K satisfies the Hasse principle by [Tian 2017]. This proves Theorem 1.2(2).

We claim that (under the hypotheses of the theorem) X ′ contains a smooth del Pezzo surface X
of degree 4 such that the corresponding Severi–Brauer pencil G has G(Ak)

Br
̸= ∅. If n ≥ 5, then by

[Wittenberg 2007, Section 3.5] the intersection of X ′ with an appropriate linear subspace is a smooth del
Pezzo surface X of degree 4 with Br(X)= Br0(X). Corollary 5.2(7) implies that the corresponding G
has Br(G)/ Br0(G) = 0, so G(Ak)

Br
̸= ∅ by Corollary 6.1. When n = 4, X ′ = X is itself a smooth del

Pezzo surface of degree 4. If all of the nontrivial elements of Br(G)/ Br0(G) can be represented by some
βT with T reducible, then Corollary 6.1(1) implies that G(Ak)

Br
̸=∅. Otherwise, by Corollary 5.2, the

order of Br(G)/ Br0(G) divides 2 and any nontrivial element can be represented by βT with T irreducible
and N (εT) ∈ k×2. Any such element determines a quadratic extension L = k(T) and the assumption in
case (5) of the theorem is that the geometric components of QT (which are defined over L) each fail to
have smooth local points at an even number of primes of L . By Lemma 5.17 this implies that RT has
even cardinality and so G(Ak)

Br
̸=∅ by Corollary 6.1(2).

If k is a number field for which Schinzel’s hypothesis holds, then it is a result of Serre that the
Brauer–Manin obstruction is the only obstruction to the Hasse principle for fibrations of Severi–Brauer
varieties (Serre’s result is unpublished, but a more general result [Colliot-Thélène and Swinnerton-
Dyer 1994, Theorem 4.2] implies this result of Serre). In this case we obtain a k-point on G and,
consequently by Proposition 4.4, a quadratic point on X . To prove the result assuming k satisfies (⋆) it is
enough to find a quadratic extension K/k such that X K (AK )Br

̸=∅. The existence of such a K follows
from Proposition 3.6(4), since as noted in Corollary 5.2(7) the map Br(X)/ Br0(X)→ Br(G)/ Br0(G)

given by Proposition 3.6(1) is an isomorphism.

7. Complements and remarks

7A. Remarks on the cases not covered by Theorem 1.2. Suppose X is a del Pezzo surface of degree 4
over a global field k of characteristic not equal to 2 with corresponding Severi–Brauer pencil G such that
the conditions of Corollary 6.1 are not satisfied. As noted in Remark 6.2 this implies that Br(G)/ Br0(G) is
cyclic of order 2, with the nontrivial class represented by βT for an irreducible subscheme T⊂ S of degree
2 with N(εT) ∈ k×2 for which #RT is odd. By Corollary 6.3, βT obstructs weak approximation and so
G(Ak)

Br
̸=∅ if and only if there exists a prime v ∈�k such that the evaluation map βT : G(kv)→ Br(kv)

is not constant.
Let C′T := CT + (ε,−1T N(Q∞(vT))) ∈ Br(k) be the class from Lemma 5.14 and define

R′T := {v ∈�k : εT /∈ k(Sv)
×2 and invv(C′T) ̸= 0}.

Since RT has odd cardinality, so too must R′T. In particular, R′T is nonempty. If Tv is reducible for a
prime v ∈ R′T, then Lemma 5.14 shows that the evaluation map βT : G(kv)→ Br(kv) is nonconstant



1446 Brendan Creutz and Bianca Viray

and so G(Ak)
Br
= G(Ak)

βT ̸= ∅. If Tv is irreducible at v ∈ R′T, then Lemma 5.14 shows that βT ⊗

k(Tv) : G(k(Tv))→ Br(k(Tv)) is nonconstant. Indeed the lemma gives a k(Tv)-point where βT ⊗ k(Tv)

takes the nonzero value C′Tv
, but βT⊗k(Tv) takes the value 0 at any elements in the subset G(kv)⊂G(k(Tv)).

Unfortunately, this is not enough to conclude that G(Ak)
Br
̸= ∅ because βT : G(kv)→ Br(kv) can still

be constant. Using the lemma below one can check that this occurs at v = 5 for the pencil of quadrics
defined by

Q0 =−55x2
1 + 2x1x2+ x2

3 + 5x2
4 and Q∞ = 33x2

0 − 5x2
1 − x2

2 + 10x3x4.

We note, however, that in this example (and in all others with R′T ̸= ∅ that we have considered) there
is some prime w ∈ �k (in this case w = 2) for which the evaluation map βT : G(kw)→ Br(kw) is not
constant and, hence, G(Ak)

Br
̸=∅.

Lemma 7.1. If v ∈ R′T is such that Tv is irreducible, kv has odd residue characteristic and X (k(Tv))=∅,
then βT : G(kv)→ Br(kv) is constant.

Proof. Suppose X (k(Tv))=∅ and let y ∈ G(kv). Then y corresponds to a quadratic point Spec(K )→ X ,
with K/kv a quadratic field extension such that K ̸= k(Tv). Since kv has odd residue characteristic,
k(TL) is the compositum of all quadratic extensions of kv . In particular, it must contain a square root of
εT (since εT ∈ k×v k(Tv)

×2). Therefore, Lemma 5.11 applies, and its conclusion shows that βT(y) does
not depend on y. □

In contrast, the following lemma shows that for X (in place of G) nonconstancy of an evaluation map
over an extension of kv does imply nonconstancy over kv.

Lemma 7.2. Let X be a del Pezzo surface of degree 4 over a local field k of characteristic not equal to
2 such that X (k) ̸= ∅. If α ∈ Br(X) is such that invk ◦α : X (k)→ Q/Z is constant, then for all finite
extensions K/k, invK ◦αK : X (K )→Q/Z is constant and equal to [K : k](invk ◦α).

Remark 7.3. In the case that kv has odd residue characteristic, Tv is irreducible, εTv
∈k×2

v and invv(C′T) ̸=0,
Lemma 7.2 can be used to prove the converse of Lemma 7.1. Namely, if βT is constant on kv-points, then
X (k(Tv)) must be empty.

Proof. Let P ∈ X (k). By [Salberger and Skorobogatov 1991, Lemma 4.4] (which follows from [Colliot-
Thélène and Coray 1979, Theorem C]), every 0-cycle of degree 0 on X is linearly equivalent to Q− P
for some Q ∈ X (k). Therefore, for any closed point R on X , there is some Q ∈ X (k) such that
R ∼ Q+ (deg(R)− 1)P . Since evaluation of Brauer classes factors through rational equivalence and by
assumption α(P)= α(Q), we see that invK ◦αK = [K : k](invk ◦α) for any extension K/k. □

Remarks 7.4. (1) The result of [Colliot-Thélène and Coray 1979] used in the proof above shows that
every 0-cycle of degree 1 on a conic bundle with 5 or fewer degenerate fibers is rationally equivalent
to a rational point. The example mentioned just before Lemma 7.1 shows that this does not extend to
more general Severi–Brauer bundles (at least over a p-adic fields). Indeed, evaluation of Brauer classes
factors through rational equivalence and in the example there is a Brauer class on G which is nonconstant
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on 0-cycles of degree 1, but is constant on rational points. An example of a Severi–Brauer bundle (in
fact a conic bundle) with a 0-cycle of degree 1 but no rational point was constructed by Colliot-Thélène
and Coray [Colliot-Thélène and Coray 1979, Section 5]; in this example the conic bundle has 6 singular
fibers.

(2) If X/k is a del Pezzo surface of degree 4 over a number field which is a counterexample to the Hasse
principle explained by the Brauer–Manin obstruction, then as shown in [Colliot-Thélène and Poonen
2000, Section 3.5] there exists α ∈ Br(X) such that X (Ak)

α
= ∅ (a priori multiple elements of Br(X)

might be required to give the obstruction). An immediate consequence of Lemma 7.2 is that over any odd
degree extension K/k the same Brauer class will give an obstruction, i.e., X K (AK )αK =∅. This answers
a question posed in [Colliot-Thélène and Poonen 2000, Remark 3, page 95]. In particular, this shows that
the conjecture that all failures of the Hasse principle for del Pezzo surfaces of degree 4 are explained
by the Brauer–Manin obstruction is compatible with the theorems of Amer [1976], Brumer [1978] and
Springer [1956] which imply that an intersection of two quadrics with index 1 has a rational point.

7B. A degree 4 del Pezzo surface with obstructions only over odd degree extensions.

Proposition 7.5. Let X/Q be the del Pezzo surface of degree 4 given by the vanishing of

Q0 = (x0+ x1)(x0+ 2x1)− x2
2 + 5x2

4 and Q1 = 2(x0x1− x2
2 + 5x2

3).

For any finite extension K/Q we have X K (AK )Br
=∅ if and only if [K :Q] is odd.

Proof. This surface was considered by Birch and Swinnerton-Dyer [1975] who showed that X is a
counterexample to the Hasse principle explained by the Brauer–Manin obstruction. It follows from
Lemma 7.2 that for any K with [K :Q] odd, X K is also a counterexample to the Hasse principle explained
by the Brauer–Manin obstruction.

Since X is locally solvable over Q, Br(X)/ Br0(X) is generated by the image of Br(X)[2]. The
singular quadrics in the pencil lie above S(Q) = {0,±1,±4

√
2+ 5/7} ⊂ P1 and the corresponding

discriminants satisfy ε0= ε1= 5, ε−1=−1 and N(ε(±4
√

2+5)/7)=−1. For any K/Q linearly disjoint from
k1=Q(

√
−1,
√

2,
√

5), the restriction map induces an isomorphism Br(X)/ Br0(X)≃Br(X K )/ Br0(X K )

and so X K (AK )Br
̸=∅ by Lemma 3.1(2). On the other hand, if K/Q is not linearly disjoint from k1, we

can check directly that X (K ) ̸= ∅. Indeed, K must contain Q(
√

d) for some d ∈ {−1,±2,±5,±10}.
Over these quadratic fields one can exhibit points

(1 : 1 : 1 : 0 :
√
−1), (1 : −2 : 2

√
2 :
√

2 : 1), (4 : 9 : 6 : 0 : 5
√
−2), (0 : 0 :

√
5 : 1 : 1),

(5 : 0 : 0 : 0 :
√
−5), (2

√
10 : −

√
10 : 0 : 2 : 0), (0 :

√
−10 : 0 : 0 : 2). □

7C. A degree 4 del Pezzo surface with index 4.

Theorem 7.6. There exists a del Pezzo surface X of degree 4 over a field k of characteristic 0 such that X
has index 4.
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Proof. Let k0 be an algebraically closed field of characteristic 0. For i = 1, . . . , 2g, set ki := ki−1((ti ))
and set k := k2g. By a result of Lang and Tate [1958, page 678], if A/k0 is an abelian variety of dimension
g and n is an integer, then there exists a torsor under Ak = A×k0 Spec(k) of period n and index n2g. In
particular, if C/k0 is any genus 2 curve, then there exists a torsor under the Jacobian J = Jac(Ck) of
Ck of period 2 and index 16. Since C is defined over the algebraically closed field k0, it has a rational
Weierstrass point over k. As observed by Flynn [2009], and worked out in detail by Skorobogatov [2010],
if Jλ is a 2-covering πλ : Jλ→ J (i.e., a twist of [2] : J → J corresponding to λ ∈ H1(k, J [2])), then
there are morphisms

Jλ← J̃λ→ Zλ→ Xλ,

where J̃λ→ Jλ is the blow up of Jλ at π−1
λ (0J ), Zλ is the desingularized Kummer variety associated to

Jλ and Zλ→ Xλ is a double cover of a del Pezzo surface of degree 4. In particular, there is a degree 4
morphism J̃λ→ Xλ. So the index of Xλ is at least index(Jλ)/4, which will equal 4 for suitable choice of
λ by the aforementioned result of Lang and Tate. □

Theorem 7.7. Suppose k is a number field and Y is a torsor of period 2 under the Jacobian of a genus 2
curve over k with a rational Weierstrass point. The index of Y divides 8.

Proof. As in the proof of the previous theorem, the index of Y divides 4 index(X) for some del Pezzo
surface X of degree 4. The result follows from Theorem 1.1. □

Remarks 7.8. (1) The conclusion of Theorem 7.7 was known to hold by work of Clark [2004, Theorems 2
and 3] when k is a p-adic field and when k is a number field and Y is locally solvable.

(2) Arguing as in the proof of the theorem we see that the Kummer variety Zλ has index dividing 4 when
k is a local or global field. This is lower than one would expect, given that Zλ is an intersection of 3
quadrics in P5

k .

(3) The result of Lang–Tate quoted in the proof above shows that over general fields of characteristic 0,
there are examples where Zλ and Y have index 8 and 16, respectively.

(4) In response to a preliminary report on this work by the authors, John Ottem suggested the following
alternate proof of Theorem 7.6 which gives an example over the C3 field k(P3

C
). Let D1, D2 ⊂ P3

×P4

be two general (2, 2) divisors over C, and let Y = D1 ∩ D2. Then, by the Lefschetz hyperplane theorem
(applied twice), restriction gives an isomorphism H4(P3

×P4, Z) ∼−→ H4(D1, Z) ∼−→ H4(Y, Z). Note
that the generic fiber of the first projection is a del Pezzo surface of degree 4 over k(P3). Hence any
threefold V ⊂ Y can be expressed as aH 2

1 +bH1 H2+cH 2
2 , where Hi denotes the pullback of O(1) under

the projection πi . Then the degree of V → P3 is given by

V .H 3
1 = V .H 3

1 .X = (aH 2
1 + bH1 H2+ cH 2

2 ).H 3
1 .(2H1+ 2H2)

2,

which must be divisible by 4. Thus Yk(P3) has index 4. Note that to apply the Lefschetz hyperplane
theorem, we need dim Di > 5, so this argument does not extend to k(P2

C
).
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This construction suggested by Ottem generalizes to arbitrary complete intersections. Namely, given
a sequence of degrees (d1, . . . , dr ) and an ambient dimension N , one can consider an intersection of
general (d1, d1), (d2, d2), . . . , (dr , dr ) hypersurfaces in PM

×PN . If M > N −r , then the same argument
as above yields a (d1, . . . , dr ) smooth complete intersection Y ⊂ PN

k(PM )
with index d1d2 · · · dr .

(5) After viewing an early draft of this paper, Olivier Wittenberg [2013] shared a correspondence of
his that provides yet another construction that proves Theorem 7.6. Let k be any field of characteristic
different 2 such that there exists a quadric surface Q with no k-points that remains pointless after a
quadratic extension k ′/k. Wittenberg’s construction gives an example over the field k((t)).

Let f be a general rank 2 quadric in P4 that splits over k ′. Then for a general quadric g, the intersection
Q ∩V ( f + tg) is a smooth del Pezzo surface of degree 4 that has index 4 over k((t)). Indeed, the smooth
locus of the special fiber has index 4 by construction, so (for general enough g), the general fiber must
also have index 4. This construction of Wittenberg extends to give complete intersections of n quadrics
with index 2n (over fields of larger transcendence degree).

7D. The index of a degree d del Pezzo surface. The following table gives sharp upper bounds for the
indices of degree d del Pezzo surfaces over local fields, number fields and arbitrary fields of characteristic 0.
The entries in the column d = 4 are a consequence of the results in this paper, while for d ̸= 4, they can
be deduced fairly easily from known results as described below:

d 9 8 7 6 5 4 3 2 1

k arbitrary 3 4 1 6 1 4 [Theorem 7.6] 3 2 1
k a number field 3 2 1 6 1 2 [Theorem 1.1] 3 2 1

k a local field 3 2 1 2 or 3 1 2 [Theorem 1.1] 3 2 1

When d = 9, Y is a Severi–Brauer surface and so the index of Y divides 3 and examples of index 3
exist whenever Br(k) contains an element of order 3.

When d = 8, Y = ResL/k(C) is the restriction of scalars of a conic C/L defined over a degree 2 étale
algebra L/k [Poonen 2017, Proposition 9.4.12]. Since the conic has a point over some quadratic extension
L ′/L , the index of Y divides 4 and over general fields there are examples with index 4. Over local and
global fields however, the index must divide 2. Indeed, in this case C will have a point over a quadratic
extension L ′/L of the form L ′ = k ′⊗k L for some quadratic extension k ′/k. The universal property of
restriction of scalars then gives Y (k ′) ̸=∅, showing that the index divides 2.

When d = 7, Y (k) ̸= ∅ over any field k and so the index is always equal to 1. The same applies to
d = 1, 5; see, e.g., [Poonen 2017, Theorem 9.4.8 and Section 9.4.11].

For d = 6, Y is determined by a Gal(L/k)-stable triple of geometric points on a Severi–Brauer surface
S/L over a quadratic étale algebra L/k such that if S ̸≃ P2

L then the class of S in the Brauer group
does not lie in the image of Br(k)→ Br(L) [Corn 2005]. If k is a local field and L is a quadratic field
extension, then the map Br(k)→ Br(L) is an isomorphism, so either S = P2

L (in which case Y has index
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dividing 2) or L = k× k in which case the index of Y divides 3. One can construct examples of index 6
over number fields, by arranging to have index 2 at one completion and index 3 at another.

For d = 3 and k local, index 1 implies the existence of a k-rational point [Coray 1976], and so a cubic
surface without points over some local field has index 3. This gives examples of index 3 over number
fields as well.

For d = 2, index 2 examples can be obtained by blowing up a degree 4 del Pezzo surface of index 2 at
a quadratic point. By Theorems 1.1 and 1.2, any del Pezzo surface of degree 4 without points over a local
field gives such an example. The surface considered in Section 7B gives an example over a number field.
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