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Unipotent ℓ-blocks for simply connected p-adic groups
Thomas Lanard

Let F be a nonarchimedean local field and G the F-points of a connected simply connected reductive
group over F . We study the unipotent ℓ-blocks of G, for ℓ ̸= p. To that end, we introduce the notion of
(d, 1)-series for finite reductive groups. These series form a partition of the irreducible representations and
are defined using Harish-Chandra theory and d-Harish-Chandra theory. The ℓ-blocks are then constructed
using these (d, 1)-series, with d the order of q modulo ℓ, and consistent systems of idempotents on the
Bruhat–Tits building of G. We also describe the stable ℓ-block decomposition of the depth zero category
of an unramified classical group.
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Introduction

Let F be a nonarchimedean local field and k its residue field. Let q be the cardinal of k and p its
characteristic. Let G be a connected reductive group over F and denote by G := G(F) the F-points of G.

Let RepC(G) be the category of smooth representations of G with complex coefficients. One way to
study this category is to decompose it in a minimal product of subcategories, called blocks, and describe
them. Bernstein [2] solved this problem by describing the blocks with inertial classes of cuspidal support.

Congruences between automorphic forms were used to solve remarkable problems of arithmetic-
geometry. Hence, it becomes natural to study the smooth representations of p-adic groups with coefficients
in Zℓ, for ℓ a prime number different from p. In the same way, we would like to have a decomposition of
their category Rep

Zℓ
(G) into ℓ-blocks. However, we do not have a result like the Bernstein decomposition,

for the ℓ-blocks. A decomposition of Rep
Fℓ

(GLn(F)) into blocks was proved by Vignéras [28] (see also
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the work of Sécherre and Stevens [27] for inner forms of GLn(F)). After that, Helm [14] reached a decom-
position into ℓ-blocks of Rep

Zℓ
(GLn(F)). He describes these ℓ-blocks with the notion of mod ℓ inertial

supercuspidal support. Apart from GLn and its inner forms, we don’t know much about the ℓ-blocks.

The decomposition of Bernstein and Vignéras–Helm both use the “unicity of the supercuspidal support”,
which is true for GLn and in the complex case, but not in general. Therefore, a new strategy to study the
ℓ-blocks is needed. A new method, using consistent systems of idempotents on the Bruhat–Tits building,
was used in [9] to construct in depth zero the ℓ-blocks for GLn . Then, this was used in [18] and [19] to
obtain decompositions of the depth zero category over Zℓ, for a group which is split over an unramified
extension of F . These decompositions are constructed using Deligne–Lusztig theory. They present a lot
of interesting properties and links with the local Langlands correspondence, but they are not blocks in
general, just unions of blocks.

In this paper, we deal with two problems, the study of the unipotent ℓ-blocks and the stable ℓ-blocks
for unramified classical groups.

Let us start by the unipotent ℓ-blocks. Let Repun
Qℓ

(G) be the subcategory of unipotent representations.
Using [19] (with the system of conjugacy classes composed of the trivial representation for every
polysimplex), we also get a ℓ-unipotent category over Zℓ: Repun

Zℓ
(G). The unipotent ℓ-blocks are the

ℓ-blocks of Repun
Zℓ

(G).

In [19], the idempotents are constructed using Deligne–Lusztig theory. A first difficulty for an ℓ-
block decomposition is that Deligne–Lusztig theory does not produce primitives idempotents. Moreover,
replacing naively Deligne–Lusztig idempotents by primitive central ones won’t produce consistent systems
of idempotents for the p-adic group. This is why we introduce for G, a finite reductive group over k,
the notion of a (d, 1)-series. A (d, 1)-series will be a minimal set of irreducible characters with the
property that it is a union of Harish-Chandra series (in order to get p-adic blocks) and that the idempotent
associated has integer coefficients (to get a decomposition over Zℓ).

Let (G, F) be a connected reductive group over k. The ℓ-blocks of GF are then described using
d-cuspidal pairs; see [4] and [6]. For an integer d , a d-split Levi subgroup is the centralizer of a F stable
torus G, such that the cardinal of TF is a power of 8d(q), where 8d is the d-th cyclotomic polynomial.
The usual Harish-Chandra induction and restriction is then replaced by the Deligne–Lusztig induction
and restriction from these d-split Levi subgroups. An irreducible character χ is said to be d-cuspidal if
and only if ∗RG

L⊆Pχ = 0 for every proper d-split Levi subgroup L and every parabolic P admitting L as
Levi subgroup. Let d be the order of q modulo ℓ. Then we get a bijection (with some restrictions on ℓ)
between conjugacy classes of pairs (M, χ), consisting of a d-split Levi M and a d-cuspidal character
of MF, and ℓ-blocks of GF.

We define a (d, 1)-set to be a subset of Irr(GF) which is both a union of Harish-Chandra series and
of d-series (that is a set of characters having the same d-cuspidal support). A (d, 1)-series is then a
(d, 1)-set with no proper nonempty (d, 1)-subset. In Theorem 3.6.1, we completely compute the unipotent
(d, 1)-series of GF.
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Let BT be the semisimple Bruhat–Tits building associated to G. For σ ∈ BT, we denote by Gσ the
reductive quotient of G at σ , which is a connected reductive group over k. Let T (G) be the set of
G-conjugacy classes of pairs (σ, π), where σ ∈ BT and π is an irreducible cuspidal representation of Gσ .
The work of Morris [26] shows that to an element t ∈ T (G) we can associate Rept

Qℓ
(G), a union of

blocks of depth zero. We define an equivalence relation ∼ on T (G) (see Section 2.2 for more details)
such that Rept

Qℓ
(G) = Rept

′

Qℓ
(G) if and only if t ∼ t′. Denote by [t] the equivalence class of t. Hence,

we get a decomposition of the depth zero category

Rep0
Qℓ

(G) =

∏
[t]∈T (G)/∼

Rep[t]

Qℓ
(G).

Moreover, when G is semisimple and simply connected, the categories Rep[t]

Qℓ
(G) are blocks.

We also denote by T un(G) the subset of T (G) of pairs (σ, π) with π unipotent, and T un
ℓ (G) the subset

of T (G) of pairs (σ, π) with π in a Deligne–Lusztig series associated with a semisimple conjugacy class
in G∗

σ of order a power of ℓ. The equivalence relation ∼ is trivial on T un(G) (see Remark 4.1.1). We have
Repun

Qℓ
(G) =

∏
t∈T un(G) Rep[t]

Qℓ
(G) and Repun

Zℓ
(G)∩Rep

Qℓ
(G) =

∏
[t]∈T un

ℓ (G)/∼ Rep[t]

Qℓ
(G) (see the remark

below for the definition of the intersection).

Remark 0.0.1. Let B be a direct factor subcategory of Rep
Zℓ

(G) and e ∈ ZZℓ
(G) be the corresponding

idempotent in the center of Rep
Zℓ

(G). We then denote by B ∩ Rep
Qℓ

(G) the direct factor of Rep
Qℓ

(G)

cut out by e ∈ ZZℓ
(G) ⊆ ZQℓ

(G).

Now, let us come back to the ℓ-block.

Theorem. Let ℓ be a prime different from p. Assume that G is semisimple and simply connected. Let R
be an ℓ-block of Repun

Zℓ
(G). Then R is characterized by the nonempty intersection R ∩ Repun

Qℓ
(G).

Thus, we need to describe the intersection of the ℓ-blocks and the unipotent category. To achieve that,
we define an equivalence relation on T un(G) in the following way. Let d be the order of q modulo ℓ. Let
t and t′ be two elements of T un(G) and ω ∈ BT. Then we say that t ∼ℓ,ω t′ if and only if t = t′ or there
exist (σ, π) and (τ, π ′) such that t = [σ, π], t′ = [τ, π ′

], ω is a face of σ and τ , and the Harish-Chandra
series in Gω corresponding to the cuspidal pairs (Gσ , π) and (Gτ , π

′) are both contained in the same
(d, 1)-series. Note that by our computation of the (d, 1)-series, for t and ω fixed, we know explicitly the
set of t′ ∈ T un(G) such that t ∼ℓ,ω t′. Now we define ∼ℓ, an equivalence relation on T un(G) by t ∼ℓ t

′ if
and only if there exist ω1, . . . , ωr ∈ BT and t1, . . . , tr−1 ∈ T un(G) such that t∼ℓ,ω1 t1 ∼ℓ,ω2 t2 · · · ∼ℓ,ωr t

′.
We write [t]ℓ for the equivalence class of t.

Theorem. Let ℓ be an odd prime number, different from p, such that ℓ ≥ 5 if a group of exceptional type
(3 D4, G2, F4, E6, 2 E6, E7) is involved in a reductive quotient and ℓ ≥ 7 if E8 is involved in a reductive
quotient. To each equivalence class [t]ℓ ∈ T un(G)/∼ℓ, we can associate Rep[t]ℓ

Zℓ
(G) a Serre subcategory

of Repun
Zℓ

(G), constructed with a consistent system of idempotents such that:
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(1) We have a decomposition

Repun
Zℓ

(G) =

∏
[t]ℓ∈T un(G)/∼ℓ

Rep[t]ℓ
Zℓ

(G).

(2) Rep[t]ℓ
Zℓ

(G) ∩ Repun
Qℓ

(G) =
∏

u∈[t]ℓ
Repu

Qℓ
(G).

(3) We also have a description of Rep[t]ℓ
Zℓ

(G) ∩ Rep
Qℓ

(G). Let (σ, χ) ∈ T un
ℓ (G). Let t be a semisimple

conjugacy class in G∗
σ of order a power of ℓ, such that χ is in the Deligne–Lusztig series associated

to t. Let Gσ (t) be a Levi in Gσ dual to CG∗
σ
(t)◦, the connected centralizer of t , P be a parabolic

subgroup with Levi component Gσ (t), t̂ be a linear character of Gσ (t) associated to t by duality,
and χt be a unipotent character in Gσ (t) such that ⟨χ,RGσ

Gσ (t)⊆P
(t̂χt)⟩ ̸= 0. Let π be an irreducible

component of RGσ

Gσ (t)⊆P
(χt). Let (Gτ , λ) be the cuspidal support of π . Then

Rep(σ,χ)

Qℓ
(G) ⊆ Rep[(τ,λ)]ℓ

Zℓ
(G) ∩ Rep

Qℓ
(G).

(4) When G is semisimple and simply connected, the categories Rep[t]ℓ
Zℓ

(G) are ℓ-blocks.

We also obtain results for the bad prime ℓ = 2 in some special cases (which include classical groups).

Theorem. Let G be a semisimple and simply connected group such that all the reductive quotients only
involve types among A, B, C and D, and p ̸= 2. Then Rep1

Z2
(G) is a 2-block.

As mentioned before, we can compute explicitly the equivalence relation ∼ℓ,ω, so we can also know ∼ℓ.
We work out a few examples here, where we make ∼ℓ explicit, hence also the unipotent ℓ-blocks.

Theorem. Let G be a semisimple and simply connected group:

(1) If ℓ is banal (see Definition 2.2.5), then the unipotent ℓ-blocks are indexed by T un(G).

(2) If ℓ divides q − 1 and satisfies the conditions of the previous theorem, then ∼ℓ is the trivial relation
and the unipotent ℓ-blocks are indexed by T un(G). Moreover, the intersection of an ℓ-block with
Repun

Qℓ
(G) is a Bernstein block.

(3) If G = SLn(F) then Repun
Zℓ

(SLn(F)) is an ℓ-block.

We also work out the case G = Sp2n(F), but to do that we require a few more notations.
Let Sun(G) := {(s, s ′) ∈ N2, s(s + 1)+ s ′(s ′

+ 1) ≤ n}. To (s, s ′) ∈ Sun(G) we can associate t(s, s ′) =

(σ (s, s ′), π(s, s ′)) ∈ T un(G), such that the reductive quotient at σ(s, s ′) is GL1(k)n−s(s+1)+s′(s′
+1)

×

Sp2s(s+1)(k) × Sp2s′(s′+1)(k) and π(s, s ′) is the unique unipotent irreducible cuspidal representation in
this group. The map (s, s ′) 7→ t(s, s ′) gives a bijection between Sun(G) and T un(G). Also denote by Sc

the set

Sc =

{
(s, s ′) ∈ Sun(G),

{
s(s + 1) + s ′(s ′

− 1) > n − d/2
s ′(s ′

+ 1) + s(s − 1) > n − d/2

}}
.

Putting together the previous theorems and making the equivalence relation explicit, we obtain the
following description of the unipotent ℓ-blocks of Sp2n(F).
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Theorem. Let ℓ be prime not dividing q:

(1) If ℓ = 2: Rep1
Z2

(Sp2n(F)) is a 2-block.

(2) If ℓ ̸= 2. Let d be the order of q modulo ℓ:

(a) If d is odd, ∼ℓ is the trivial equivalence relation giving the following decomposition into ℓ-blocks

Repun
Zℓ

(Sp2n(F)) =

∏
t∈T un(G)

Rep[t]ℓ
Zℓ

(Sp2n(F)).

(b) If d is even, the equivalence classes of ∼ℓ are the singletons {t(s, s ′)} for (s, s ′) ∈ Sc and
{t(s, s ′), (s, s ′) ∈ Sun(G) \Sc} thus giving the ℓ-block decomposition

Repun
Zℓ

(Sp2n(F)) = Rep[t(0,0)]ℓ

Zℓ
(Sp2n(F)) ×

∏
(s,s′)∈Sc

Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)).

Remark. (1) In the case d odd, or d even and (s, s ′) ∈ Sc, we see that the intersection of an ℓ-block
with Repun

Qℓ
(G) is a Bernstein block.

(2) If ℓ > n, in the case d even and (s, s ′) ∈ Sc, then Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)) ∩ Rep

Qℓ
(G) is a Bernstein

block.

Let us now turn to the study of the stable ℓ-blocks. Let G be a classical unramified group. In this
case we have the local Langlands correspondence [1; 13; 15; 17; 25]. The block decomposition is not
compatible with the local Langlands correspondence, two irreducible representations may have the same
Langlands parameter but may not be in the same block. However, we can look for the “stable” blocks,
which are the smallest direct factors subcategories stable by the local Langlands correspondence. These
categories correspond to the primitive idempotents in the stable Bernstein center, as defined in [12]. In
[19], the decomposition into stable blocks of the depth zero category is given by

Rep0
Qℓ

(G) =

∏
(φ,σ )∈8̃m(I

Qℓ
F ,L G)

Rep(φ,σ )

Qℓ
(G)

where the set 8̃m(I Qℓ

F , L G) is defined in [19, Definition 4.4.2]. An analogous decomposition is given
over Zℓ and we prove here that this is the stable ℓ-block decomposition.

Theorem. Let G be an unramified classical group and p ̸= 2. Then the decomposition of [19]

Rep0
Zℓ

(G) =

∏
(φ,σ )∈8̃m(I

Zℓ
F ,L G)

Rep(φ,σ )

Zℓ
(G).

is the decomposition of Rep0
Zℓ

(G) into stable ℓ-blocks, that is, these categories correspond to primitive
integral idempotent in the stable Bernstein center.
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1. Notations

Let F be a nonarchimedean local field and k its residue field. Let q be the cardinal of k and p its
characteristic.

We will be interested in reductive groups over F and over k. In order not to confuse the two settings, we
will use the font G for a connected reductive group over F and G for a connected reductive group over k.

Let G be a connected reductive group over F . We denote by G := G(F) the F-points of G. If 3 is a
ring where p is invertible, then we will write Rep3(G) for the abelian category of smooth representations
of G with coefficients in 3. The full subcategory of representations of depth zero will be denoted by
Rep0

3(G) (see Definition 2.1.3).
In the same way, if G is a connected reductive group over k, we denote by G := G(k) the group of its

k-points. This group can be seen as G := G(k̄)F, the group of fixed points of a Frobenius automorphism F.
If P is a parabolic subgroup admitting M a F-stable Levi subgroup, we will write RG

M⊆P for the Deligne–
Lusztig induction from M to G; defined in [10]. It is a map between spaces of virtual representations
RG

M⊆P : Z Irr(M) → Z Irr(G). When P is also F-stable, since the Deligne–Lusztig induction is the same
as the Harish-Chandra induction, we will also use iGM⊆P and rG

M⊆P for the Harish-Chandra induction and
restriction. Let G∗ be in duality with G, a duality defined over k, with Frobenius F on G∗.

In all this paper, ℓ will be a prime number not dividing q. We shall assume that choices have been
made, once and for all, of isomorphisms of k̄∗ with (Q/Z)p′ and of k̄∗ with the group of roots of unity of
order prime to p in Qℓ.

2. Bernstein blocks

Let G be the F-points of a connected reductive group. When the field of coefficients is Qℓ (or C), the
blocks of G are well known thanks to the theory of Bernstein [2]. In this paper, the ℓ-blocks of G will be
constructed using consistent systems of idempotents on the Bruhat–Tits building of G. The purpose of
this section is to explain, in the case where G is semisimple and simply connected, how we can recover
Bernstein blocks using consistent systems of idempotents.

2.1. Consistent systems of idempotents. In this section, we recall the basic definitions and properties of
systems of idempotents.

Let BT be the semisimple Bruhat–Tits building associated to G. This is a polysimplicial complex and
we denote by BT0 the set of vertices, that is of polysimplices of dimension 0. We will usually use Latin
letters x, y, . . . for vertices and Greek letters σ, τ, . . . for polysimplices. We can define an order relation
on BT by σ ≤ τ if σ is a face of τ . Two vertices x and y are adjacent if there exists a polysimplex σ

such that x ≤ σ and y ≤ σ .
Let 3 be a ring where p is invertible. We fix a Haar measure on G and denote by H3(G) the Hecke

algebra with coefficients in 3, that is the algebra of functions from G to 3 locally constant with compact
support.
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Definition 2.1.1 [24, Definition 2.1]. A system of idempotents e = (ex)x∈BT0 of H3(G) is said to be
consistent if the following properties are satisfied:

(1) ex ey = eyex when x and y are adjacent.

(2) ex ezey = ex ey when z is adjacent to x and in the polysimplicial hull of x and y.

(3) egx = gex g−1 for all x ∈ BT0 and g ∈ G.

If e = (ex)x∈BT0 is a consistent system of idempotent, then for σ ∈ BT we can define eσ :=
∏

x ex ,
where the product is taken over the vertices x such that x ≤ σ .

Consistent systems of idempotents are very interesting because we have the following theorem due to
Meyer and Solleveld.

Theorem 2.1.2 [24, Theorem 3.1]. Let e = (ex)x∈BT0 a consistent system of idempotents, then the full
subcategory Repe

3(G) of objects V of Rep3(G) such that V =
∑

x∈BT0
ex V is a Serre subcategory.

It may not be easy to check the conditions of consistency. But, if we are working with the subcategory
of depth zero representations, we can find in [18] the notion of 0-consistent, which implies consistency,
and is easier to check.

Let σ ∈ BT. We denote by G◦
σ the parahoric subgroup at σ and by G+

σ its pro-p-radical. The quotient,
Gσ , is then the group of k-points of a connected reductive group Gσ defined over k.

If σ ∈ BT is a polysimplex, then G+
σ defines an idempotent e+

σ ∈ HZ[1/p](G) by e+
σ = µ(G+

σ )−1χG+
σ

,
where µ is our fixed Haar measure and χG+

σ
is the characteristic function of G+

σ . The system of idempotents
(e+

x )x∈BT0 is consistent and cuts out the category of depth zero.

Definition 2.1.3. An object V of Rep3(G) has depth zero if V =
∑

x∈BT0
e+

x V .

In other words, with the notations of Theorem 2.1.2, the depth zero category is Rep0
3(G) = Repe+

3 (G),
with e+

= (e+
x )x∈BT0 .

Definition 2.1.4 [18, Definition 1.0.5]. We say that a system (eσ )σ∈BT is 0-consistent if:

(1) egx = gex g−1 for all x ∈ BT0 and g ∈ G.

(2) eσ = e+
σ ex = ex e+

σ for x ∈ BT0 and σ ∈ BT such that x ≤ σ .

Proposition 2.1.5 [18, Proposition 1.0.6]. If (eσ )σ∈BT is a 0-consistent system of idempotents, then it is
consistent.

Let us give two examples of systems of idempotents which are 0-consistent. Let σ ∈ BT. Let E(Gσ , 1)

be the Deligne–Lusztig series associated with the trivial conjugacy class, that is the set of unipotent
characters in Gσ . Let e1,Gσ

, be the central idempotent in Qℓ[Gσ ] that cuts out E(Gσ , 1). Thanks to
the isomorphism G◦

σ/G+
σ

∼
−→ Gσ , we can pull back e1,Gσ

to an idempotent e1,σ ∈ HQℓ
(G◦

σ ). The
system e1 = (e1,σ )σ∈BT is then 0-consistent; see [18, Proposition 2.3.2]. Thus it defines Repun

Qℓ
(G) the

full-subcategory of Rep
Qℓ

(G) of unipotent representations.
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In the same way, let Eℓ(Gσ , 1) be the union of the E(Gσ , t), where t is a semisimple conjugacy class in
the dual of Gσ , of order a power of ℓ. By [3] Theorem A’ and Remark 11.3, the idempotent that cuts out
this series is in Zℓ[Gσ ]. We can then pull it back to get eℓ

1,σ ∈ HZℓ
(G◦

σ ). This system eℓ
1 = (eℓ

1,σ )σ∈BT is
also 0-consistent and defines the ℓ-unipotent subcategory Repun

Zℓ
(G).

2.2. Bernstein blocks with system of idempotents. In this section, we want to reinterpret the Bernstein
blocks of depth zero (that is the blocks over Qℓ or C), in terms of consistent systems of idempotents. To
do that, we will construct a 0-consistent system of idempotents from unrefined depth zero types, hence
subcategories of Rep0

Qℓ
(G). When G is semisimple and simply connected, these categories will be blocks.

We define, as in [20], “unrefined depth zero types” to be the pairs (σ, π), where σ ∈ BT and π is
an irreducible cuspidal representation of Gσ . Let T (G) be the set of unrefined depth zero types, up to
G-conjugacy.

If σ, τ ∈ BT are two polysimplices with τ ≤ σ , we can see Gσ as a Levi subgroup of Gτ . Let t and t′

be two elements of T (G) and ω ∈ BT. Then we say that t ∼ω t′ if and only if t = t′ or there exist (σ, π)

and (τ, π ′) such that t = [σ, π], t′ = [τ, π ′
], ω is a face of σ and τ , and the cuspidal pairs (Gσ , π) and

(Gτ , π
′) are conjugated in Gω. Now we define ∼, an equivalence relation on T (G) by t ∼ t′ if and only

if there exist ω1, . . . , ωr ∈ BT and t1, . . . , tr−1 ∈ T (G) such that t ∼ω1 t1 ∼ω2 t2 · · · ∼ωr t
′. We write [t]

for the equivalence class of t.
If G is a connected reductive group over k, then the theory of Harish-Chandra allows us to partition

Irr(G) according to cuspidal support [M, π]:

Irr(G) =

⊔
Irr(M,π)(G).

Now we construct from [t] ∈ T (G)/∼ a system of idempotents e[t] in the following way. Let τ ∈ BT and
define eτ

[t] ∈ Qℓ[Gτ ] the idempotent that cuts out the union of Irr(Gσ ,π)(Gτ ) for every [σ, π] ∈ [t] with
τ ≤ σ . We can then pull pack eτ

[t] to an idempotent e[t],τ ∈ HQℓ
(G◦

τ ) ⊆ HQℓ
(G), giving us e[t] a system

of idempotents.

Lemma 2.2.1. Let x ∈ BT0, σ ∈ BT with x ≤ σ . We have the following properties:

(1) e+
σ =

∑
[t]∈T (G)/∼ e[t],σ .

(2) For all t, t′ ∈ T (G) with [t] ̸= [t′], e[t],x e[t′],σ = 0.

Proof. (1) The partition Irr(Gσ ) =
⊔

Irr(M,π)(Gσ ) and the fact that each Irr(M,π)(Gσ ) can be written as
Irr(M,π)(Gσ ) = Irr(Gτ ,π)(Gσ ) for a polysimplex τ ≥ σ show the wanted equality.

(2) The group Gσ is a Levi quotient of a parabolic Pσ of Gx , and we denote by Uσ the unipotent radical
of Pσ . The idempotent e[t′],σ ∈ HQℓ

(G◦
σ ) ⊆ HQℓ

(G◦
x) gives us in Qℓ[Gx ] the idempotent eUσ

eσ
[t′], where

eUσ
is the idempotent which averages along the group Uσ . We have to prove that ex

[t]eUσ
eσ
[t′] = 0 in

Qℓ[Gx ]. But Qℓ[Gx ]eUσ
eσ
[t′] is the parabolic induction from Gσ to Gx of the module Qℓ[Gσ ]eσ

[t′]. Since
[t] ̸= [t′] no representation in Irr(Gτ ,π)(Gx), with [τ, π] ∈ [t] can be in the induction of a representation in
Irr(Gτ ′ ,π ′)(Gσ ) with [τ ′, π ′

] ∈ [t′]. Hence ex
[t]eUσ

eσ
[t′] = 0. □
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Proposition 2.2.2. The system of idempotents e[t] is 0-consistent.

Proof. An element t ∈ T (G) is defined up to G-conjugacy, hence e[t] is G-equivariant. Let x ∈ BT0

and σ ∈ BT such that x ≤ σ . We have to prove that e[t],σ = e+
σ e[t],x . By 1. in 2.2.1 we have that

e+
σ =

∑
[t′]∈T (G)/∼ e[t′],σ . Hence, e[t],x e+

σ =
∑

[t′]∈T (G)/∼ e[t],x e[t′],σ . Now by 2. in 2.2.1, we have that
if [t] ̸= [t′] then e[t],x e[t′],σ = 0. So e[t],x e+

σ = e[t],x e[t],σ . In the same way, e[t],x e[t],σ = e+
x e[t],σ . So,

e[t],x e+
σ = e[t],x e[t],σ = e+

x e[t],σ = e+
x e+

σ e[t],σ = e+
σ e[t],σ = e[t],σ . □

Let t ∈ T (G). We denote by Rep[t]

Qℓ
(G) the category associated with e[t].

Proposition 2.2.3. We have the decomposition

Rep0
Qℓ

(G) =

∏
[t]∈T (G)/∼

Rep[t]

Qℓ
(G).

Proof. The proof is similar to the proof of [18, Proposition 2.3.5]. Property 2 in Lemma 2.2.1 shows
that these categories are pairwise orthogonal and property 1. in Lemma 2.2.1 shows that the product if
Rep0

Qℓ
(G). □

Theorem 2.2.4. If G is semisimple and simply connected the category Rep[t]

Qℓ
(G) is a block.

Proof. When G is semisimple and simply connected, Theorem 4.9 of [26] shows that we have a
bijection between T (G)/∼ and level zero Bernstein blocks. We then deduce from Proposition 2.2.3 that
Rep0

Qℓ
(G) =

∏
[t]∈T (G)/∼ Rep[t]

Qℓ
(G) is the decomposition of Rep0

Qℓ
(G) into Bernstein blocks. □

We would like to do the same thing to construct ℓ-blocks. The simplest case is when ℓ is banal.

Definition 2.2.5. We say that a prime number ℓ ̸= p is banal when for every vertex x ∈ BT0, ℓ does not
divide the cardinal of Gx .

Therefore, when ℓ is banal each idempotent e[t] is in HZℓ
(G). Thus we have a decomposition

Rep0
Zℓ

(G) =

∏
[t]∈T (G)/∼

Rep[t]

Zℓ
(G)

and the following theorem.

Theorem 2.2.6. If G is semisimple and simply connected, and ℓ is banal, the category Rep[t]

Zℓ
(G) is an

ℓ-block.

In the general case, the idempotents do not have coefficients in Zℓ. The topic of the followings sections
will be to explain how to sum these idempotents to get idempotents with integral coefficients.

3. (d, 1)-theory

We have seen in Section 2.2 how to construct the Bernstein blocks with consistent systems of idempotents
when we have a simply connected group. To construct ℓ-blocks, we need to produce central idempotents
for finite reductive groups with coefficients in Zℓ. In this section, we introduce the notion of a (d, 1)-set.
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This is a subset of Irr(G) which is a union of Harish-Chandra series and gives a central idempotent with
coefficients in Zℓ. These (d, 1)-sets will be used in the next sections to describe the unipotent ℓ-blocks
for simply connected p-adic groups.

This section will only deal with finite reductive groups. Let us take (G, F) a connected reductive group
defined over k, and let G := (G)F. We recall that q = |k|. We will define the (d, 1)-set and (d, 1)-series,
then explain how to compute them, and to finish, we will show that they behave well with respect to
Harish-Chandra induction and Deligne–Lusztig induction from particular Levi subgroups.

3.1. Unipotent ℓ-blocks for finite reductive groups. We recall in this section the theory of ℓ-blocks for
a finite connected reductive group. These blocks will be constructed using a modified Harish-Chandra
induction called d-Harish-Chandra induction, defined using Deligne–Lusztig theory.

For each connected reductive group (G, F) over k, there exists a unique polynomial PG ∈ Z[x] called
the polynomial order of G (see, for example, [4] section 1.A) with the property that there is a ≥ 1 such
that |GFm

| = PG(qm) for all m ≥ 1 such that m ≡ 1 (mod a). The prime factors of PG distinct from x are
cyclotomic polynomials. Let d ≥ 1 be an integer and 8d the corresponding cyclotomic polynomial. We
say that T is a 8d-subgroup if T is a F-stable torus of G whose polynomial order is a power of 8d . A
d-split Levi subgroups of G is the centralizer in G of some 8d -subgroup of G.

Let χ ∈ Irr(G) be an ordinary irreducible character. We say that χ is d-cuspidal if and only if
∗RG

L⊆Pχ = 0 for every proper d-split Levi subgroup L and every parabolic P admitting L as Levi subgroup.
A “unipotent d-pair” is a pair (L, λ) where L is a d-split Levi and λ is a unipotent character of L. Such

a pair is said to be cuspidal if λ is cuspidal. We define an order on unipotent d-pairs by (M, µ) ⪯ (L, λ)

if M is a Levi subgroup of L and there is a parabolic subgroup P of L admitting M as a Levi such that
⟨λ,RL

M⊆P(µ)⟩ ̸= 0. For (L, λ) a unipotent d-cuspidal pair, let us define E(G, (L, λ)) to be the subset of
E(G, 1) of characters χ such that (L, λ) ⪯ (G, χ). We call E(G, (L, λ)) a d-series.

Theorem 3.1.1 [4, Theorem 3.2(1)]. For each d, the sets E(G, (L, λ)) (where (L, λ) runs over a complete
set of representatives of G-conjugacy classes of unipotent d-cuspidal pairs) partition E(G, 1).

An ℓ-block is a primitive idempotent in the center Z(Zℓ[G]) of the group algebra Zℓ[G]. For b an
ℓ-block, we denote by Irr(b) the subset of Irr(G) that is cuts out by the idempotent b. This defines a
partition Irr(G) =

⊔
b Irr(b). The ℓ-unipotent series Eℓ(G, 1), defined as the union of the E(G, t) with t

of order a power of ℓ, defines a central idempotent in Zℓ[G] [3, Theorem A’ and Remark 11.3], hence it
is a union of ℓ-blocks: Eℓ(G, 1) =

⊔
b Irr(b). We will call these blocks the unipotent ℓ-blocks.

Let ℓ be a prime number not diving q . We will say that ℓ satisfies the condition (∗) if

ℓ is odd, ℓ is good for G and ℓ ̸= 3 if 3 D4 is involved in (G, F). (∗)

Let us summarize the condition of being good and (∗) in a table

Types An , 2 An Bn , Cn , Dn , 2 Dn
3 D4 G2, F4, E6, 2 E6, E7 E8

bad ℓ ∅ {2} {2} {2, 3} {2, 3, 5}

(∗) ℓ ≥ 3 ℓ ≥ 3 ℓ ≥ 5 ℓ ≥ 5 ℓ ≥ 7
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Theorem 3.1.2 [5, Theorem 4.4]. We assume that ℓ satisfies (∗) and let d be the order of q modulo ℓ.
Then there is a bijection

(L, λ) 7→ b(L, λ),

between the set of G-conjugacy classes of unipotent d-cuspidal pairs of G and the set of unipotent ℓ-blocks.
Moreover, we have that Irr(b(L, λ))∩ E(G, 1) = {χ, (L, λ) ⪯ (G, χ)}.

If b is a unipotent ℓ-block, then the knowledge of Irr(b)∩E(G, 1) is enough to describe all the characters
in Irr(b). To explain this, we need a few more notations.

Let t ∈ G∗ be a semisimple element of order a power of ℓ. Let ℓ be a good prime for G. Then CG∗(t)◦

is a Levi subgroup; see for example [5, Proposition 2.1]. Let G(t) be a Levi subgroup in G in duality
with CG∗(t)◦ over k and P be a parabolic subgroup with Levi component G(t).

Since t is a central element of (CG∗(t)◦)F, by [11, Proposition 13.30], there exists a linear character
t̂ ∈ Irr(G(t)) such that the tensor product with t̂ defines a bijection from E(G(t), 1) to E(G(t), t). Let
χ ∈ E(G, t). Then, by the Jordan decomposition in the case of nonconnected center (defined in [23])
there exists χt ∈ E(G(t), 1) such that ⟨χ,RG

G(t)⊆P(t̂χt)⟩ ̸= 0.

Theorem 3.1.3 [5, Theorem 4.4]. Let ℓ be a prime good for G. Let χ ∈ E(G, t), for t a semisimple
conjugacy class in G∗ of order a power of ℓ. Let b be the ℓ-block such that χ ∈ Irr(b). Let G(t) be a F-stable
Levi in G dual to CG∗(t)◦, P be a parabolic subgroup with Levi component G(t), and χt ∈ E(G(t), 1) such
that ⟨χ,RG

G(t)⊆P(t̂χt)⟩ ̸= 0. For any such (G(t),P, χt) associated to χ , all the irreducible components of
RG

G(t)⊆P(χt) are in Irr(b) ∩ E(G, 1).

Let (L, λ) be a unipotent d-cuspidal pair. Then we define the ℓ-extension of the d-series E(G, (L, λ)) as
the subset Eℓ(G, (L, λ))⊆Eℓ(G, 1) of characters χ ∈Eℓ(G, 1) such that, with the notation of Theorem 3.1.3,
all the irreducible components of RG

G(t)⊆P(χt) are in E(G, (L, λ)). Hence, if ℓ satisfies (∗), then
Eℓ(G, (L, λ)) = Irr(b(L, λ)).

3.2. (d, 1)-series. We have seen in Section 2.2 that in order to construct Bernstein blocks we needed to
decompose Irr(G) as Harish-Chandra series. But to get ℓ-blocks we need to decompose it as d-series, as
seen in Section 3.1. In this section, we will introduce (d, 1)-series, which will give a partition of Irr(G)

into subsets which are both a union of Harish-Chandra series and a union of d-series.
First, let us remark that 1-series are just Harish-Chandra series, so from now on we will speak of 1-split

Levi, 1-cuspidal pairs and 1-series when we want to talk about “normal” Levi subgroup, cuspidal pairs
and Harish-Chandra series.

Definition 3.2.1. We define a (d, 1)-set to be a subset of Irr(G) which is a union of 1-series and a union
of d-series. A (d, 1)-series is then a (d, 1)-set with no proper nonempty (d, 1)-subset.

A (d, 1)-set, respectively a (d, 1)-series, included in E(G, 1) will be called a unipotent (d, 1)-set,
respectively a unipotent (d, 1)-series.

Remark 3.2.2. (1) By Theorem 3.1.1 E(G, 1) is a (d, 1)-set, so the unipotent (d, 1)-series give a partition
of E(G, 1).
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(2) If 8d does not divide PG, then the only 8d -torus is the trivial one. Hence the (d, 1)-series are just
the 1-series.

Let E be a unipotent (d, 1)-series. Since E can be written as a union of d-series E =
⊔

i Ei , we can
define the ℓ-extension of a (d, 1)-series by

Eℓ :=

⊔
i

Ei,ℓ.

We want to compute the unipotent (d, 1)-series. The first step is to reduce to the case of simple groups.
To every orbit ω of F on the set of connected components of the Dynkin diagram of G there corresponds

a well defined F-stable subgroup G′

ω of [G,G] and a component Gω = Z◦(G)G′

ω of G. The finite group
(Gω/Z(Gω))F is characterized by its simple type {An,

2 An,Bn,Cn,Dn,
2 Dn,

3 D4,G2, F4, E6,
2 E6, E7, E8}

and an extension field Fqm(ω) of Fq of degree m(ω) equal to the length of the orbit of ω. Moreover, when
G = Gad , where Gad denotes the adjoint group of G, then it is a direct product of its components.

Let us begin, by showing how to reduce to G of adjoint type.

Proposition 3.2.3. Let π : G → Gad be the reduction map modulo Z(G). Then π induces a bijection be-
tween E(Gad , 1) and E(G, 1) which commutes with the Deligne–Lusztig induction and preserves unipotent
(d, 1)-series.

Proof. This follows from [4, Proposition 1.36] and [4, Remark 1.25]. □

Let a ∈ N∗. Denote by (G(a), F(a)) the restriction of scalars (or Weil restriction) of (G, F) from Fqa to
Fq . This is a reductive group defined over Fq characterized by the property: for any Fq -algebra A we
have G(a)(A) = G(A ⊗Fq Fqa ). In particular, (G(a))F

(a)

= GFa
(that is G(a)(Fq ) = G(Fqa )). Moreover, the

isomorphism (G(a))F
(a)

≃ GFa
“commutes” with the Deligne–Lusztig induction and map isomorphically

E((G(a))F
(a)

, 1) to E(GFa
, 1). Now a group of adjoint type is a direct product of restriction of scalars of

simple groups. Let us take a look at the behavior of (d, 1)-series with respect to restriction of scalars.

Proposition 3.2.4. Let a ∈ N∗. We have a bijection between the (d, 1)-series in E((G(a))F
(a)

, 1) and the
(d/ gcd(d, a), 1)-series in E(GFa

, 1).

Proof. If p is a prime number, then

8n(x p) =

{
8pn(x) if p | n,

8pn(x)8n(x) otherwise.

From that we can deduce what is 8n(xa). We write a = ana′
n , with a′

n relatively prime with n and all the
prime numbers dividing an also divide n. Then we have

8n(xa) =

∏
k | a′

n

8kann(x).

Let us prove that 8d(x) divides 8n(xa) if and only if n = d/ gcd(d, a).
First assume that n = d/ gcd(d, a). Hence, we want to prove that there exists k | a′

n such that kan =

gcd(d, a). If pe
| an , then p | n =d/ gcd(d, a). So, νp(d)≥νp(a), where νp is the p-adic valuation. Hence,
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νp(gcd(d, a)) = νp(a) = νp(an). Thus an | gcd(d, a). Let k = gcd(d, a)/an . It remains to prove that
k | a′

n . We have that k | a and if p | k, then p ∤ an since it would imply that νp(gcd(d, a)) = νp(a) = νp(an)

and a contradiction. Hence k | a′
n .

Now, let us assume that there exist n and k, such that k | a′
n and kann = d. We want to prove that

n = d/ gcd(d, a). It is enough to prove that kan = gcd(d, a). First k | a′
n and since an and a′

n are relatively
prime, k | a. We also have that kan | d , thus kan | gcd(d, a). Now, if pe

| gcd(d, a), then pe
| a = ana′

n . If
pe

| an , then pe
| kan . If not, pe

| a′
n . Thus p ∤ n. But since pe

| d = kann, we have that pe
| k and pe

| kan .
We conclude that kan = gcd(d, a).

We have just proved that 8d(x) | 8n(xa) if and only if n = d/ gcd(d, a). As a result, if T′ is a
torus in G(a), then T′ is a d-torus in G(a) if and only if it is the maximal d-subtorus of T(a), for T a
d/ gcd(d, a)-torus of G. Thus the d-split Levi subgroup of G(a) are of the form L(a) for L a d/ gcd(d, a)-
split Levi subgroup of G. We then conclude the proof with the following commutative diagram of [4,
Proposition 1.37]:

ZE((G(a))F
(a)

, 1)
∼
// ZE(GFa

, 1)

ZE((L(a))F
(a)

, 1)

RG(a)

L(a)

OO

∼
// ZE(LFa

, 1)

RG
L

OO

□

To compute the (d, 1)-series of E(G, 1), Proposition 3.2.3 allows us to reduce to the case where G is
adjoint. Now, an adjoint group can be written as a product of restriction of scalars of simple groups. The
(d, 1)-series of a direct product is the product of the (d, 1)-series. Hence by Proposition 3.2.4, we can
compute the unipotent (d, 1)-series of G, if we know them for simple groups. This is what we do in the
following sections.

3.3. Computation of (d, 1)-series for type An and 2 An. In this section, we want to compute the unipotent
(d, 1)-series for groups of type An and 2 An .

Let us start by explaining what the d-series are. First, let G be of type An . The unipotent characters
are in bijection with partitions of n + 1. On partitions, there is the well defined notion of d-hook and of
d-core; see for example [16, Chapter 2.7]. The proof of Theorem 3.2 in [4] then shows the following
proposition.

Proposition 3.3.1. The d-cuspidal unipotent characters are precisely those where the partition is itself a
d-core. Moreover, two characters are in the same d-series if and only if they have the same d-core.

In order to get the result for groups of type 2 An , we will use an “Ennola”-duality. We use here the
notation of [4]. Let G = (0, Wφ) be a generic finite reductive group [4, Section 1.A]. We can then define
G− by

G−
:= (0, W (−φ)).

To G we can associate a finite set Uch(G) [4, Theorem 1.26] which is in bijection with the set of unipotent
characters of G = G(q).
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Theorem 3.3.2 [4, Theorem 3.3]. There exists a natural bijective isometry σ G
: Z Uch(G) → Z Uch(G−)

such that whenever L is d-split for some d, the following diagram is commutative:

Z Uch(G)
σ G
// Z Uch(G−)

Z Uch(L)

RG
L

OO

σ L
// Z Uch(L−)

RG−

L−

OO

Note that if G(q) is of rational type (An, q) then G−(q) is of rational type (2 An, q). In particular, we
see that the unipotent characters for 2 An are still parametrized by partitions of n+1. If T is a generic torus
with polynomial order 8d(x), T− has polynomial order 8d(−x). The map L 7→ L− is a bijection between
8d(x)-subgroup of 2 An and 8d(−x)-subgroup of An . Now, for d > 2, we have that 8d(−x) = 82d(x)

if d is odd, 8d(−x) = 8d/2(x) if d is congruent to 2 modulo 4 and 8d(−x) = 8d(x) if d is divisible
by 4. Let d ′ be the integer defined by

d ′
=


2d if d is odd,
d/2 if d ≡ 2 (mod 4),

d if d ≡ 0 (mod 4k).

By Theorem 3.3.2 the d-series of 2 An correspond to d ′-series of An which are given by Proposition 3.3.1.

Remark 3.3.3. If d is the order of q modulo ℓ then d ′ is the order of −q modulo ℓ.

In both cases, it is very important to be able to compute hooks and cores of partitions. In order to
make the computation easier, and also to match with the following Section 3.4, we will use the notion of
a β-set instead of a partition.

A β-set is a subset λ ⊆ N, and we will write λ = (x1 x2 · · · xa) with x1 < x2 < · · · < xa . We define the
rank of a β-set by rank(λ) =

∑a
i=1 xi − a(a − 1)/2. We define an equivalence relation on the β-sets by

(x1 x2 · · · xa) ∼ (0 x1 + 1 x2 + 1 · · · xa + 1). The rank is invariant by this equivalence relation hence can
be extended to equivalence classes. Now, a partition a1 ≤ · · · ≤ ak of n + 1 can be sent to a β-set of rank
n + 1 defined by λ = (a1 a2 + 1 a3 + 2 · · · ak + (k − 1)) and this gives us a bijection between partitions
of n + 1 and equivalence classes of β-set of rank n + 1.

Let λ and λ′ be two β-sets. We say that λ′ is obtained from λ by a d-hook if there exists x ∈ λ such
that x −d /∈ λ and λ′

= λ\ {x}∪ {x −d}. The d-core of λ is then the β-set without d-hook obtained from
λ by repetitively removing d-hooks.

Lemma 3.3.4 [16, Lemma 2.7.13]. Let λ, λ′ be two β-sets and α, α′ be two partitions corresponding
respectively to λ, λ′. Then α′ is obtained from α by a d-hook if and only if λ′ is obtained from λ by a
d-hook.

Now we have everything we need to compute the unipotent (d, 1)-series for type An and 2 An .
For a group G of type An , this is easy because there is no unipotent cuspidal representation. Hence,

there is only one unipotent 1-series E(G, 1) which is thus a (d, 1)-series.
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Proposition 3.3.5. If G is of type An , E(G, 1) is a (d, 1)-series.

Now, we assume that G is of type 2 An . We saw previously that two β-sets are in the same d-series if
and only if they have the same d ′-core and that they are in the same 1-series if and only if they have the
same 2-core.

Remark 3.3.6. As we will see below, there are two different behaviors of the (d, 1)-series depending on
the parity of d ′. When we will apply these results to ℓ-modular representations theory, d will be the order
of q modulo ℓ. The primes ℓ such that d ′ is even are called linear and when d ′ is odd they are called
unitary.

The first case to consider is when d ′ is even (linear prime case). We then have the following result.

Proposition 3.3.7. If d ′ is even (linear prime case) then the unipotent (d, 1)-series for type 2 An are the
unipotent 1-series.

Proof. If d ′ is even, removing a d ′-hook to a β-set can be obtained by removing d ′/2 2-hooks, hence the
unipotent (d, 1)-series are the unipotent 1-series. □

Now, let us assume that d ′ is odd (unitary prime case).
Let λ be a β-set with finite cardinal. Let o be the number of odd numbers in λ and e be the number of

even numbers. We define the defect of λ by defect(λ) = o − e if o ≥ e and e − o − 1 if o < e. The defect
is invariant under the equivalence relation and we extend it to equivalence classes.

The 2-core of a β-set is of the form (1 3 · · · 2k + 1) (possibly ∅) which all have different defect.
Moreover, removing a 2-hook does not change the defect of a β-set, so the defect of a β-set determines its
2-core, hence it characterizes the 1-series. Adding a 2-hook increase the rank of a β-set by 2. Therefore,
we get the following lemma.

Lemma 3.3.8. There exists a β-set of rank m and defect k if and only if m − k(k + 1)/2 is even and
positive.

Let [λ] be an equivalence class of β-sets. We define max([λ]) to be 0 if (0) ∈ [λ] and max([λ]) :=

max(λ′) where λ′ is the unique β-set in [λ] such that 0 /∈ λ′ if (0) /∈ [λ]. Then max([λ]) is the length of
the largest hook in [λ].

Lemma 3.3.9. Let k ≥ 0 and m ≥ 1 such that m − k(k + 1)/2 is even and positive. We have

max{max([λ]), defect(λ) = k, rank(λ) = m} =

{
m − (k2

− 3k + 2)/2 if k ≥ 1,

m if k = 0.

Proof. A β-set of rank m and defect k is obtained by 1/2(m −k(k +1)/2) 2-hooks from (1 3 · · · (2k −1)).
Each 2-hook increase the maximum of the coefficients by at most 2, giving us the result. □

Definition 3.3.10. Let us define for G of type 2 An ,

k(G, d) := max{k ≥ 1, (k2
− 3k + 2)/2 ≤ n + 1 − d}

if it exists and −1 otherwise.
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From Lemma 3.3.9, k(G, d) is the greatest integer k such that there exists λ of defect k and rank n + 1
having a hook of length at least d. In particular, if λ has defect k > k(G, d) and rank n + 1 then it is a
d-core.

Proposition 3.3.11. Assume that d ′ is odd (unitary prime case) and G is of type 2 An . Then, the unipotent
1-series with defect strictly greater than k(G, d ′) are (d, 1)-series, composed uniquely of d-cuspidal
representations, and the union of the unipotent 1-series with defect lower or equal to k(G, d ′) is a
(d, 1)-series.

Proof. The β-sets of rank n + 1 and defect strictly greater than k(G, d ′) are all d ′-core. Therefore the
corresponding unipotent characters are d-cuspidal. Thus the unipotent 1-series with defect strictly greater
than k(G, d ′) are (d, 1)-series.

Since E(G, 1) is a (d, 1)-set, we have that the union of the unipotent 1-series with defect lower or equal to
k(G, d ′) is a (d, 1)-set. It remains to prove that it is a (d, 1)-series. Let k ≤ k(G, d ′). Let us assume that k ≥

3. Let λ := (1 3 · · · (2k−3) (n+1−(k2
−3k+2)/2)) be a β-set of defect k and rank n+1. Let u be an odd

number, 1≤u ≤2k−3 such that u+d ′
̸=n+1−(k2

−3k+2)/2−d ′ (such a u exists since there are more than
two odd numbers between 1 and 2k−3). Let λ′

:= (1 3 · · · u+d ′
· · · (2k−3) (n+1−(k2

−3k+2)/2−d ′))

(with a possible permutation of the coefficients so that they are written in the correct order). The β-set
λ′ is obtain from λ by removing a d ′-hook and then adding a d ′-hook. Hence λ and λ′ are in the same
d-series. Since d ′ is odd, if k ≥ 4 then defect(λ′) = k −4 and if k = 3, defect(λ′) = 0. Hence the unipotent
1-series with defect k ≥ 4 are in the same (d, 1)-series as the unipotent 1-series with defect k − 4. We
have the same result for defects 0 and 3. Thus to prove the result, we are left with the 1-series of defect 1
and 2. By Lemma 3.3.8, depending on the parity of n, we can only have simultaneously β-sets of rank
n + 1 and defects 0, 3 or defects 1, 2. Therefore, we need to prove that, if they exist, the β-sets with
defects 1, 2 are in the same (d, 1)-series.

If there are β-sets of rank n + 1 with defects 1, 2. We start by assuming that n ̸= 4. Either n ̸= 2d ′ or
n ̸= 4 + 2d ′. If n ̸= 2d ′ then we take λ = (1 n + 1) and λ′

= (1 + d ′ n + 1 − d ′), with defect(λ) = 2 and
defect(λ′)= 1. If n ̸= 4+2d ′ then we take λ= (3 n−1) and λ′

= (3+d ′ n−1−d ′), with defect(λ)= 2 and
defect(λ′) = 1 (we can note here that we can well assume that d ′

≤ n − 1 because if not then d ′
≥ (n + 1)

and we can use the previous case since n ̸= 2d ′). So we are left with n = 4. We can then have d ′
= 1, 3

or 5. If d ′
= 1, every β-set has the same 1-core, so the result follows. If d ′

= 3, we take λ = (1 3 4) and
λ′

= (1 2 3 5). Finally, if d ′
= 5 we take λ = (5) and λ′

= (1 5). □

In the case d ′ odd, We will write Ed
1 (G) for the union of the unipotent 1-series of defect lower or

equal to k(G, d ′). Thus, if it is not empty, Ed
1 (G) is the unipotent (d, 1)-series containing the trivial

representation.

3.4. Computation of (d, 1)-series for classical groups. In this section we compute the unipotent (d, 1)-
series for groups of type Bn , Cn , Dn and 2 Dn .
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Just as before, let us start by studying d-series. When G is a classical group we have a classification of
unipotent characters with the notion of symbols that we recall here. Furthermore, with these symbols, we
can describe the decomposition into d-series of Theorem 3.1.1.

A symbol is an unordered set {S, T } of two subsets S, T ⊆ N. We write such a symbol in the following
way

6 =

(
x1 · · · xa

y1 · · · yb

)
with x1 < · · · < xa , y1 < · · · < yb and S = {x1, . . . , xa}, T = {y1, . . . , yb}. Two symbols are said to be
equivalent if they can be transformed into each other by a sequence of steps(

x1 · · · xa

y1 · · · yb

)
∼

(
0 x1 + 1 · · · xa + 1
0 y1 + 1 · · · yb + 1

)
or by interchanging the rows.

We define the defect of 6 by defect(6) = |a − b| and its rank by

rank(6) =

a∑
i=1

xi +

b∑
i=1

yi −

[(
a + b − 1

2

)2]
.

These two notions can be defined on the equivalence classes of symbols.
If G is a group of type Bn , Cn , Dn or 2 Dn , Lusztig has shown that the unipotent characters may be

parametrized by these symbols; see [21]. The unipotent characters of groups of type Bn or Cn are in
bijection with the equivalence classes of symbols of rank n and odd defect. For the groups of type Dn , the
unipotent characters are parametrized by classes of symbols of rank n and defect divisible by 4 (except
that if the two rows are identical, two characters correspond to the same symbol). And the unipotent
characters of groups of type 2 Dn are in bijection with symbols of rank n and defect congruent 2 (mod 4).

Let {S, T } be a symbol and d ≥ 1 an integer. If there exists x ∈ S such that x + d /∈ S, or y ∈ T with
y + d /∈ T , then the symbol {S \ {x} ∪ {x + d}, T } or {S, T \ {y} ∪ {y + d}}, is said to be obtained from
{S, T } by adding a d-hook. We define the d-core of {S, T } as the symbol {U, V } without d-hook obtained
from {S, T } by removing a sequence of d-hooks.

In the same way, if there exists x ∈ S such that x + d /∈ T , or y ∈ T with y + d /∈ S, then the symbol
{S \ {x}, T ∪ {x + d}} or {S ∪ {y + d}, T \ {y}}, is said to be obtained from {S, T } by adding a d-cohook.
And we define like previously the d-cocore of {S, T }.

Proposition 3.4.1. (1) If d is odd, then the d-cuspidal unipotent characters are precisely those where 6

is itself a d-core. Moreover, two characters are in the same d-series if and only if they have the same
d-core.

(2) If d is even, then the d-cuspidal unipotent characters are precisely those where 6 is itself a d/2-cocore.
Moreover, two characters are in the same d-series if and only if they have the same d/2-cocore.

Proof. This is proved in the proof of Theorem 3.2 in [4]. □
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Now let us compute the unipotent (d, 1)-series. The first case is when d is odd (the linear prime case).
To obtain the d-series we need to take the d-core of the symbols by the Proposition 3.4.1. We also obtain
the 1-series by taking the 1-core. But two symbols which have the same d-core have the same 1-core, so
each unipotent 1-series is a (d, 1)-series.

Proposition 3.4.2. If d is odd (linear prime case), the unipotent (d, 1)-series are the unipotent 1-series.

Now, assume that d is even (unitary prime case). This case is a little bit more complicated because we
need to take the d/2-cocore for the d-series and the 1-core for the 1-series. We will do a proof similar to
the case of 2 An done in Section 3.3.

Let 6 be a symbol. We define max(6) to be max(6) := 0 if 6 ∼ {∅,∅}, and otherwise max(6) :=

max(S ∪ T ) where {S, T } is the unique symbol equivalent to 6 with 0 /∈ S ∩ T . Note that max(6) is the
longest length of a hook or cohook in 6.

Lemma 3.4.3. Let k ≥ 0 and n ≥ 1 such that n ≥ (k2
− 1)/4. We have

max{max(6), defect(6) = k, rank(6) = n} =


n − (k2

− 4k + 3)/4 if k is odd,
n − (k2

− 4k + 4)/4 if k is even,k ̸= 0,

n if k = 0.

Proof. Every symbol of defect k is obtained from 6k =
(

0 ··· k−1
)
, for k ≥ 1, and 60 = {∅,∅}, for k = 0,

by adding 1-hooks. Each 1-hook increases the rank of 1. So in order to get a symbol of rank n, we need
to do m := n − rank(6k) 1-hooks. Note that, for k ≥ 1,

rank(6k) =
(k − 1)k

2
−

[(
k − 1

2

)2]
=

{
(k2

− 1)/4 if k is odd,
k2/4 if k is even,

and rank(60) = 0. Remark also, that the hypothesis n ≥ (k2
− 1)/4 is equivalent to m ≥ 0. Each 1-hook

increases the maximum of the coefficients by at most one, so max{max(6), defect(6) = k} = k − 1 + m,
for k ≥ 1, and m for k = 0 (we have equality by adding the 1-hooks on the last coefficient on the top
row). □

Let us define an integer k(G, d) in the following way.

Definition 3.4.4. If G is of type Bn or Cn we define

k(G, d) = max{k ≥ 1, k odd, (k2
− 4k + 3)/4 ≤ n − d/2}

if it exists and k(G, d) = −1 otherwise.
If G is of type Dn or 2 Dn then in the same way

k(G, d) = max{k ≥ 2, k even, (k2
− 4k + 4)/4 ≤ n − d/2}

if it exists and k(G, d) = −1 otherwise.



Unipotent ℓ-blocks for simply connected p-adic groups 1551

As in the case of 2 An , by Lemma 3.4.3 we see that k(G, d) is the greatest integer k such that there
exists 6 of defect k and rank n having a cohook of length at least d . In particular, if defect(6) > k(G, d)

then 6 is a d-cocore.

Remark 3.4.5. Two symbols are in the same 1-series if and only if they have the same 1-core by
Proposition 3.4.1. But removing a 1-hook does not change the defect of a symbol. Hence, every symbol
in a 1-series has the same defect. Moreover, the 1-core of a symbol is of the form

(
0 ··· k−1

)
where k is

the defect of the symbol (or {∅,∅} when the defect is 0). Hence, two symbols are in the same 1-series
if and only if they have the same defect. And the defect associated with a 1-series is the defect of the
cuspidal representation associated to this 1-series.

We have the following partition of E(G, 1) into (d, 1)-series.

Proposition 3.4.6. If d is even (unitary prime case), the unipotent 1-series with defect strictly greater
than k(G, d) are (d, 1)-series, composed uniquely of d-cuspidal representations, and the union of the
unipotent 1-series with defect lower or equal to k(G, d) is a (d, 1)-series.

Proof. Let k > k(G, d) and a unipotent 1-series with defect k. Then by definition of k(G, d) and with
Lemma 3.4.3, d/2 is strictly greater than every coefficient in every symbol in the 1-series chosen. Hence,
this 1-series is composed of d-cuspidal representations, so is a (d, 1)-series.

We also deduce from that, that the union of the unipotent 1-series with defect lower or equal to k(G, d)

is a (d, 1)-set. It remains to prove that this is a (d, 1)-series. Let 3 ≤ k ≤ k(G, d) such that there is a
unipotent 1-series with defect k. We want to prove that the unipotent 1-series with defect k is in the
same (d, 1)-series as a unipotent 1-series with defect strictly less than k, which will finish the proof. Let
6k =

(
0 ··· k−1

)
and m = n − rank(6k) as in the proof of Lemma 3.4.3. Then the symbol

6 =

(
0 · · · k − 2 k − 1 + m

)
has defect k and rank n so is in the 1-series chosen. Now by definition of k(G, d), d/2 ≤ k − 1 + m, we
can then remove a d/2-cohook from 6 to get

6′
=

(
0 · · · k − 2

k − 1 + m − d/2

)
.

Let v ∈ {0, . . . , k − 2} such that v + d/2 ̸= k − 1 + m − d/2. Then we can add a d/2-cohook to 6′ to
obtain

6′′
=

(
0 · · · v − 1 v + 1 · · · k − 2

k − 1 + m − d/2 v + d/2

)
(we possibly have to swap the numbers in the lower row so that they are written in the good order). The
symbol 6′′ is a symbol of defect k − 4 if k > 3 and k − 2 if k = 3, which has the same d/2-cocore as 6.
Hence, 6 and 6 are in the same (d, 1)-series, and defect(6′) < defect(6). □

As before, when d is even, we write Ed
1 (G) for the union of the 1-series of defect lower or equal to

k(G, d), which is, if not empty, the (d, 1)-series containing the trivial representation.
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3.5. Computation of (d, 1)-series for exceptional groups. We have computed the unipotent (d, 1)-series
for groups of type A and for classical groups. We are left with groups of exceptional type, that is of type
3 D4, G2, F4, E6, 2 E6, E7 and E8.

Unfortunately, we do not have a nice classification with partitions or symbols like for groups of types
A, B, C and D. However, since we are working with groups with bounded rank, we can do a case by
case analysis. We will summarize the result in Tables 1 and 2. We need to explain the notations used. To
keep the notation as simple as possible, we are writing the unipotent (d, 1)-series in terms of 1-series. We
will write a 1-series by the corresponding 1-cuspidal representation of the 1-split Levi defining this series.
The notations for the cuspidal representations are the notations of [8, Section 13.9]. So for example for
F4, we have a (2,1)-series

{1, B2, F4[−1], F4[i], F′′

4 [1]}.

This set is composed of the principal series (denoted by 1), the characters coming from the unipotent
cuspidal character of B2 (denoted by B2) and 3 cuspidal representations of F4:

F4[−1], F4[i] and F′′

4 [1].

Thus

{1, B2, F4[−1], F4[i], F′′

4 [1]}

denotes a set composed of 33 unipotent characters.
If a d does not appear in Tables 1 and 2, it means that the unipotent (d, 1)-series are the unipotent

1-series.

Proposition 3.5.1. The unipotent (d, 1)-series for groups of exceptional types are written in the Tables 1
and 2.

Proof. In [8, Section 13.9] we can find tables for the unipotent characters of groups of exceptional types
and the partitions into 1-series. So to compute the unipotent (d, 1)-series, we need to know about the
d-series. In [4], we find in Tables 1 and 2 a list of the d-series E(G, (L, λ)), where (L, λ) is a unipotent
d-cuspidal pair and L is not a torus. So we are missing the cases of L a torus (hence λ is trivial). However,
in the case L = T of a torus, the Deligne–Lusztig induction RG

T is known by the work of Lusztig. Hence
combining all the computations, we prove the results of Tables 1 and 2. □

3.6. Summary for unipotent (d, 1)-series. In this section, we summarize all the computations of the
unipotent (d, 1)-series.

First let us recall some definition. For an integer d we define d ′ by

d ′
=


2d if d is odd,
d/2 if d ≡ 2 (mod 4),

d if d ≡ 0 (mod 4).
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group d unipotent (d, 1)-series

G2 2 {1, G2[1], G2[−1]}, {G2[θ ]}, {G2[θ
2
]}

3 {1, G2[1], G2[θ ], G2[θ
2
]}, {G2[−1]}

6 {1, G2[−1], G2[θ ], G2[θ
2
]}, {G2[1]}

3 D4 2, 6 {1, 3 D4[1], 3 D4[−1]}

3 {1, 3 D4[1]}, {
3 D4[−1]}

12 {1, 3 D4[−1]}, {
3 D4[1]}

F4 2 {1, B2, F4[−1], F4[i], F′′

4 [1]}, {F4[−i]}, {F4[θ ]}, {F4[θ
2
]}, {F′

4[1]}

3 {1, F4[θ ], F4[θ
2
], F′

4[1]}, {B2}, {F4[−i]}, {F4[−1]}, {F4[i]}, {F′′

4 [1]}

4 {1, B2, F4[−i], F4[i], F′

4[1], F′′

4 [1]}, {F4[−1]}, {F4[θ ]}, {F4[θ
2
]}

6 {1, B2, F4[−1], F4[θ ], F4[θ
2
], F′

4[1]}, {F4[−i]}, {F4[i]}, {F′′

4 [1]}

8 {1, F4[−1], F4[−i], F4[i]}, {B2}, {F′

4[1]}, {F4[θ ]}, {F4[θ
2
]}, {F′′

4 [1]}

12 {1, B2, F4[−i], F4[i], F4[θ ], F4[θ
2
]}, {F4[−1]}, {F′

4[1]}, {F′′

4 [1]}

E6 2, 4, 8 {1, D4}, {E6[θ ]}, {E6[θ
2
]}

3, 9 {1, E6[θ ], E6[θ
2
]}, {D4}

5 {1}, {D4}, {E6[θ ]}, {E6[θ
2
]}

6, 12 {1, D4, E6[θ ], E6[θ
2
]}

E7 2, 10, 14 {1, D4, E7[ξ ], E7[−ξ ]}, {E6[θ ]}, {E6[θ
2
]}

3, 9 {1, E6[θ ], E6[θ
2
]}, {D4}, {E7[ξ ]}, {E7[−ξ ]}

4, 8 {1, D4}, {E6[θ ]}, {E6[θ
2
]}, {E7[ξ ]}, {E7[−ξ ]}

5, 7 {1}, {D4}, {E6[θ ]}, {E6[θ
2
]}, {E7[ξ ]}, {E7[−ξ ]}

6, 18 {1, D4, E6[θ ], E6[θ
2
], E7[ξ ], E7[−ξ ]}

12 {1, D4, E6[θ ], E6[θ
2
]}, {E7[ξ ]}, {E7[−ξ ]}

E8 2 {1, D4, E7[ξ ], E7[−ξ ], E8[−1], E′

8[1], E′′

8 [1]}, {E6[θ ], E8[−θ ], E8[θ ]},
{E6[θ

2
], E8[θ

2
], E8[−θ2

]}, {E8[−i]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[i]}

3 {1, E6[θ ], E6[θ
2
], E8[θ

2
], E8[θ ], E′

8[1]}, {D4, E8[−1], E8[−θ2
], E8[−θ ]},

{E7[−ξ ]}, {E7[ξ ]}, {E′′

8 [1]}, {E8[−i]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[i]}

4 {1, D4, E8[−i], E8[i], E′

8[1], E′′

8 [1]}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]}, {E6[θ
2
]}, {E8[ζ

4
]},

{E8[ζ
3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ

2
]}, {E8[−θ2

]}

5 {1, E8[ζ
4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ], E′

8[1]}, {E7[−ξ ]}, {E7[ξ ]}, {D4}, {E6[θ ]}, {E6[θ
2
]},

{E8[−i]}, {E8[i]}, {E′′

8 [1]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

6 {1, E7[−ξ ], E7[ξ ], D4, E6[θ ], E6[θ
2
], E8[−1], E8[−θ2

], E8[−θ ], E8[θ
2
],

E8[θ ], E′

8[1], E′′

8 [1]}, {E8[−i]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[i]}

Table 1. Unipotent (d, 1)-series for groups of exceptional types.

We also have defined k(G, d) by

k(G, d) =


max{k ≥ 1, (k2

− 3k + 2)/2 ≤ n + 1 − d} for type 2 An,

max{k ≥ 1, k odd, (k2
− 4k + 3)/4 ≤ n − d/2} for types Bn, Cn,

max{k ≥ 2, k even, (k2
− 4k + 4)/4 ≤ n − d/2} for types Dn,

2 Dn,

if it exists and −1 otherwise.
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group d unipotent (d, 1)-series

E8 7 {1}, {D4}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]}, {E6[θ
2
]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]},
{E8[ζ

4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ

2
]}, {E8[−θ2

]}

8 {1, D4, E8[−1], E8[−i], E8[i]}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]}, {E6[θ
2
]}, {E8[ζ

4
]},

{E8[ζ
3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E′

8[1]}, {E8[−θ ]}, {E8[θ ]},
{E8[θ

2
]}, {E8[−θ2

]}, {E′′

8 [1]}

9 {1, E6[θ ], E6[θ
2
]}, {D4}, {E7[−ξ ]}, {E7[ξ ]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]},
{E8[ζ

4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]},

{E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

10 {1, E7[−ξ ], E7[ξ ], D4, E8[−1], E8[ζ
4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ], E′′

8 [1]}, {E6[θ ]},
{E6[θ

2
]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

12 {1, D4, E6[θ ], E6[θ
2
], E8[−1], E8[−θ2

], E8[−θ ], E8[−i], E8[θ
2
], E8[θ ], E8[i],

E′′

8 [1]}, {E7[−ξ ]}, {E7[ξ ]}, {E′

8[1]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}

14 {1, E7[−ξ ], E7[ξ ], D4}, {E6[θ ]}, {E6[θ
2
]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]},
{E8[ζ

4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]},

{E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

15 {1, E6[θ ], E6[θ
2
], E8[θ

2
], E8[θ ], E8[ζ

4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ]}, {D4}, {E7[−ξ ]},

{E7[ξ ]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]}, {E8[−1]}, {E8[−θ ]}, {E8[−θ2
]}

18 {1, E7[−ξ ], E7[ξ ], D4, E6[θ ], E6[θ
2
], E8[−θ2

], E8[−θ ], E8[θ
2
], E8[θ ]}, {E8[−i]},

{E8[i]}, {E′

8[1]}, {E′′

8 [1]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}

20 {1, D4, E8[−i], E8[ζ
4
], E8[ζ

3
], E8[ζ

2
], E8[ζ ], E8[i]}, {E7[−ξ ]}, {E7[ξ ]}, {E6[θ ]},

{E6[θ
2
]}, {E′

8[1]}, {E′′

8 [1]}, {E8[−1]}, {E8[−θ ]}, {E8[θ ]}, {E8[θ
2
]}, {E8[−θ2

]}

24 {1, D4, E6[θ ], E6[θ
2
], E8[−θ2

], E8[−θ ], E8[−i], E8[i]}, {E7[−ξ ]}, {E7[ξ ]},
{E′

8[1]}, {E′′

8 [1]}, {E8[ζ
4
]}, {E8[ζ

3
]}, {E8[ζ

2
]}, {E8[ζ ]}, {E8[−1]}, {E8[θ ]}, {E8[θ

2
]}

30 {1, E7[−ξ ], E7[ξ ], D4, E6[θ ], E6[θ
2
], E8[−θ2

], E8[−θ ], E8[ζ
4
], E8[ζ

3
],

E8[ζ
2
], E8[ζ ]}, {E8[−i]}, {E8[i]}, {E′

8[1]}, {E′′

8 [1]}, {E8[−1]}, {E8[θ ]}, {E8[θ
2
]}

2 E6 2 {1, 2 A5,
2 E6[1]}, {

2 E6[θ ]}, {
2 E6[θ

2
]}

3 {1, 2 E6[1], 2 E6[θ ], 2 E6[θ
2
]}, {

2 A5}

4 {1, 2 E6[1]}, {
2 A5}, {

2 E6[θ ]}, {
2 E6[θ

2
]}

6 {1, 2 A5,
2 E6[1], 2 E6[θ ], 2 E6[θ

2
]}

8 {1}, {
2 A5}, {

2 E6[1]}, {
2 E6[θ ]}, {

2 E6[θ
2
]}

10 {1, 2 A5}, {
2 E6[1]}, {

2 E6[θ ]}, {
2 E6[θ

2
]}

12 {1, 2 E6[θ ], 2 E6[θ
2
]}, {

2 A5}, {
2 E6[1]}

18 {1, 2 A5,
2 E6[θ ], 2 E6[θ

2
]}, {

2 E6[1]}

Table 2. Unipotent (d, 1)-series for groups of exceptional types.

Theorem 3.6.1. The unipotent (d, 1)-series are given by the following cases:

(1) Type An: E(G, 1) is a (d, 1)-series.

(2) Type 2 An:

(a) d ′ even (linear prime case): the unipotent (d, 1)-series are the unipotent 1-series.
(b) d ′ odd (unitary prime case): the (d, 1)-series are,
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• the unipotent 1-series with defect strictly greater than k(G, d ′) (composed uniquely of
d-cuspidal representations);

• Ed
1 (G), the union of the unipotent 1-series with defect lower or equal to k(G, d ′).

(3) Type Bn , Cn , Dn and 2 Dn:

(a) d odd (linear prime case): the unipotent (d, 1)-series are the unipotent 1-series.
(b) d even (unitary prime case): the (d, 1)-series are:

• The unipotent 1-series with defect strictly greater than k(G, d) (composed uniquely of d-
cuspidal representations).

• Ed
1 (G), the union of the unipotent 1-series with defect lower or equal to k(G, d).

(4) Type 3 D4, G2, F4, E6, 2 E6, E7 and E8: the unipotent (d, 1)-series are given by Tables 1 and 2.

3.7. Induction and restriction of (d, 1)-series. Now that we know how to compute the unipotent (d, 1)-
series, we want to prove that they are compatible with Harish-Chandra induction and restriction. In
particular, it will be fundamental in order to construct unipotent ℓ-blocks of p-adic groups, to prove that
Harish-Chandra restriction commutes with taking the ℓ-extension of unipotent (d, 1)-series.

Let M be a F-stable Levi of G and E a subset of Irr(M). We denote by RG
M(E) the set of irreducible

characters π of G such that there exists σ ∈ E satisfying ⟨π,RG
M⊆P(σ )⟩ ̸= 0, for P a parabolic subgroup

admitting M as a Levi subgroup. When M is a 1-split Levi of G, we will simply use the notation iGM(E). In
the same way, for any 1-split Levi M of G and E ′ a subset of Irr(G), rG

M(E ′) denotes the set of characters
σ such that there exists π ∈ E ′ satisfying ⟨σ, rG

M⊆P(π)⟩ ̸= 0.
The (d, 1)-series are a union of 1-series and of d-series. We know that the Harish-Chandra induction

of a 1-series is included in a 1-series. But there is no nice result for the Harish-Chandra induction of
a d-series. The following results have for goal to prove that the (d, 1)-series behave well regarding
Harish-Chandra induction.

Lemma 3.7.1. Let M be a 1-split Levi of G and E ⊆ E(M, 1) a (d, 1)-series. Then iGM(E) is included in a
(d, 1)-series.

Proof. By Propositions 3.2.3 and 3.2.4, we can assume that G is simple:

(1) If G is of type An , then E(G, 1) is a (d, 1)-series so we have the result.

(2) If G is of type Bn , Cn , Dn or 2 Dn . The Levi M has type GLn1 × · · ·×GLnr ×H where H as the same
type as G. We deduce that E ≃ E(GLn1(q), 1)×· · ·×E(GLnr (q), 1)×EH , where EH is a (d, 1)-series of
H. We need to differentiate the case d odd and d even.

If d is odd, then EH is a 1-series by Proposition 3.4.2 and so is E . The set iGM(E) is thus included in a
1-series and so in a (d, 1)-series.

If d is even, then by Proposition 3.4.6, EH is either a 1-series or EH = Ed
1 (H), where Ed

1 (H) is the
union of the 1-series with defect lower or equal to k(H, d). If it is a 1-series, we have the result like
previously. And if EH = Ed

1 (H), since k(H, d) ≤ k(G, d) and the fact that the induction preserves the
defect, iGM(E) ⊆ Ed

1 (G) which is a (d, 1)-series.
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(3) If G is of type 2 An . Using “Ennola”-duality, M corresponds to a 2-split Levi of GLn , and the unipotent
(d, 1)-series correspond to (d ′, 2)-series. The proof is then the same as in (2) regarding that d ′ is odd or
even.

(4) If G is of exceptional type. The proof mainly consists of checking case by case the result using
Tables 1 and 2. We explain here the arguments to do so.

The first case to remark is when all the unipotent (d, 1)-series not containing the trivial representation
are composed uniquely of 1-cuspidal representations. In this case, we have directly the result. This
happens for approximately half the cases by looking at Tables 1 and 2 and deals completely with G2 and
3 D4. Now, when d is odd, and the Levi M has only component of types An , Bn , Cn , Dn or 2 Dn , we
know that the unipotent (d, 1)-series are 1-series. Since the induction of a 1-series from a 1-split Levi
is included in a 1-series, we get the result. This is enough to deal with E6. We also get the odd d for
E7, respectively E8, by checking the compatibility from E6, respectively E7, thanks to Tables 1 and 2.
The same argument works for 2 E6 but when d ′ is even (we recall that d ′ is defined in Section 3.3). To
finish E7 and E8, we need to look when d is even. In all these cases, the 1-series corresponding to the
unipotent cuspidal representation of D4 is inside the (d, 1)-series containing the trivial representation.
So we just have to check with Tables 1 and 2 the compatibility with E6 and E7. We are left with the
last case of F4 and d = 8. But in this case 88 does not appear in any of the polynomial orders of the
1-split-Levi, which concludes the proof. □

Lemma 3.7.2. Let M be a 1-split Levi of G and E ⊆ E(G, 1) a (d, 1)-series. Then rG
M(E) is a (d, 1)-set.

Proof. Let σ ∈ rG
M(E). There exists E ′ a unipotent (d, 1)-series in M such that σ ∈ E ′. We need to prove

that E ′
⊆ rG

M(E).
Since σ ∈ rG

M(E), there exists π ∈ E such that ⟨σ, rG
M(π)⟩ ̸= 0. By Frobenius reciprocity, ⟨iGM(σ ), π⟩ ̸= 0,

thus π ∈ iGM(E ′). By Lemma 3.7.1, iGM(E ′) is included in a (d, 1)-series, hence iGM(E ′) ⊆ E . Again, by
Frobenius reciprocity, we have that E ′

⊆ rG
M(E) and the result follows. □

We have proved that the unipotent (d, 1)-series behave well with 1-induction. One may wonder if they
also behave well with d-induction? This is what we are going to prove next. Actually, we will go further.
We are going to check the compatibility with induction but from a dℓa-split Levi, for certain ℓ.

Lemma 3.7.3. Assume that ℓ satisfies (∗) and let M be a dℓa-split Levi of G for some a ≥ 0. Let
E ⊆ E(M, 1) be a (d, 1)-series. Then RG

M(E) is included in a (d, 1)-series.

Proof. By Propositions 3.2.3 and 3.2.4, we can assume that G is simple (notice that if b is an integer then
dla/ gcd(dla, b) = (d/ gcd(d, b))la′

, for some a′ with 0 ≤ a′
≤ a):

(1) If G is of type An , then E(G, 1) is a (d, 1)-series so we have the result.

(2) If G is of type Bn , Cn , Dn or 2 Dn . Then, as stated is the proof of [4, Theorem 3.2], the Levi M has
type GL(dla)

n1
× · · ·×GL(dla)

nr
×H where H as the same type as G. Since E is a (d, 1)-series of M we know

that E = E(GLn1(q
dla

), 1) × · · · × E(GLnr (q
dla

), 1) × EH , where EH is a (d, 1)-series of H.
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Let us first assume that d is odd. Thus EH is a 1-series in H by Proposition 3.4.2. Let π = π1 ⊗

· · · ⊗ πr ⊗ πH ∈ E . The representation πH corresponds to a symbol of H. Now, RG
M is the functor of

dℓa-induction. Since dℓa is odd, the proof of Theorem 3.2 of [4] shows that the symbols in RG
M(π) are

the symbols obtained from the symbol of πH by adding dℓa-hooks. Thus all these symbols have the same
1-core which is the same as the 1-core of πH . But EH is a 1-series, so all the representations have the
same 1-core, hence this is also true for the representations in RG

M(E). We have proved that RG
M(E) is

included in a 1-series and thus in a (d, 1)-series.
Now, let us prove the case where d is even. If M=G there is nothing to do, so we can assume that M is

proper in G. The group M being a proper dℓa-split Levi of G, none of the representations in RG
M(E) are dℓa-

cuspidal. Since dℓa is even, by Proposition 3.4.6 we have that RG
M(E)⊆Edℓa

1 (G), the dℓa-1-series of G con-
taining the trivial representation. But k(G, dℓa)≤ k(G, d). Hence, Edℓa

1 (G)⊆Ed
1 (G) and we have the result.

(3) If G is of type 2 An , the proof is similar as in (2) using “Ennola”-duality and the parity of d ′ instead
of d (notice that (dℓa)′ = (d ′)ℓa since ℓ is odd).

(4) If G is of exceptional type, we will again use Tables 1 and 2.
Let us start with the case a = 0. So we are inducing (d, 1)-series from d-split Levis. If all the unipotent

(d, 1)-series not containing the trivial representation are composed uniquely of d-cuspidal representations
then we have the result. Tables 1 and 2 is written in terms of 1-series. However, we can look at Tables 1
and 2 from [4] to deduce the d-cuspidality. In these tables, the case where the d-split Levi is a torus
is not written, but all the induced representations from a torus of the trivial representation will be in
the (d, 1)-series containing the trivial. Hence, for a unipotent (d, 1)-series not containing the trivial
representation, it is composed uniquely of d-cuspidal representations if none of the representations appears
in Table 2 of [4]. This case deals with almost everyone except for (E6, d = 3), (E7, d = 2), (E7, d = 3),
(E8, d = 2) and (E8, d = 3). We can then check by hand the remaining case with Tables 1 and 2. Now,
we need to do a > 0. There are only 8 cases which satisfies the hypotheses on ℓ, and such that 8d and
8dℓa divide the order of G. In all these cases, all the unipotent (d, 1)-series not containing the trivial
representation are composed uniquely of dℓa-cuspidal representations, and so we have the result. □

Remark 3.7.4. We need the hypothesis on ℓ. For example, if ℓ = 3, the group is 3 D4, d = 1 and a = 1,
then 3 D4[1] is in the induction of the trivial representation from the maximal 3-torus but is not in the
same (d, 1)-series as the trivial.

We define, as in [6] Eq,ℓ := {e, ℓ | φe(q)} = {d, dℓ, dℓ2, . . . , dℓa, · · · }, where d is the order of q
modulo ℓ. A Eq,ℓ-torus is a F-stable torus of G such that its polynomial order is a product of cyclotomic
polynomials in {φe, e ∈ Eq,ℓ}. A Eq,ℓ-split Levi is then the centralizer of a Eq,ℓ-torus.

For a F-stable Levi subgroup of G, let us denote by Z◦(M) the connected center of M and by Z◦(M)Fℓ
the subgroup of Z◦(M)F of ℓ-elements.

Lemma 3.7.5. Assume that ℓ satisfies (∗). Let M be a Eq,ℓ-split Levi of G such that M = CG((Z◦(M)Fℓ )
◦.

Let E be a unipotent (d, 1)-series in M. Then RG
M(E) is included in a (d, 1)-series.
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Proof. We will prove the result by induction on the semisimple rank of G.
If M = G nothing has to be done. Now, if M is a proper Levi in G, then Z◦(M)Fℓ ̸⊆ Z(G). Thus

there exist some a ≥ 0 such that Z◦(M)φdℓa ̸⊆ Z(G), where Z◦(M)φdℓa is the maximal 8dℓa -subgroup
of Z◦(M). Let us denote by L := CG(Z◦(M)φdℓa ) which is then a proper dℓa-split Levi of G such that
M ⊆ L. By Lemma 3.7.3, we know that RG

L preserves the unipotent (d, 1)-series. By the induction
hypothesis, RL

M preserves the unipotent (d, 1)-series. Hence RG
M = RG

L ◦RL
M preserves the unipotent

(d, 1)-series. □

Remark 3.7.6. Let M be a Eq,ℓ-split Levi of G. If ℓ is good for G and (Z(G)/Z◦(G))F is of order prime
to ℓ, then M = CG((Z◦(M)Fℓ )

◦ by [6, Proposition 3.2].

Let E be a subset of Eℓ(G, 1). We denote by E the smallest (d, 1)-set containing E . Thus Lemma 3.7.1
and 3.7.5 can be restated by RG

M(E) is a (d, 1)-series if M is a 1-split Levi or a Eq,ℓ-split Levi (satisfying
the conditions of Lemma 3.7.5) and E is a unipotent (d, 1)-series of M.

Lemma 3.7.7. Let M,K,L,G be groups such that M is a 1-split Levi of K, L is a 1-split Levi of
G, M is a Eq,ℓ-split Levi of L and K is a Eq,ℓ-split Levi of G. We also assume that ℓ satisfies (∗)
and that the groups M and K satisfy the condition of Lemma 3.7.5. If E is a (d, 1)-series of M then
RG

K(RK
M(E)) = RG

L (RL
M(E)).

Proof. Be Lemma 3.7.5 and Lemma 3.7.1, we know that RG
K(RK

M(E)) is included in a (d, 1)-series and
RG

L (RL
M(E)) is included in a (d, 1)-series. Now, since RG

M =RG
K◦RK

M =RG
L ◦RL

M, these two (d, 1)-series
both contain RG

M(E), hence they are equal. □

Remark 3.7.8. Note that this lemma does not follow directly from the transitivity of the Deligne–Lusztig
induction. Indeed, for a set E , the set RG

L (RL
M(E)) might be larger that RG

M(E).

Lemma 3.7.9. Let ℓ be a good prime. Let L be a Eq,ℓ-split Levi of G such that L = CG((Z◦(L)Fℓ )
◦. Let

L∗ be a Levi in G∗ in duality with L. Then L∗ is a Eq,ℓ-split Levi of G∗ such that L∗
= CG∗((Z◦(L∗)Fℓ )

◦.

Proof. We adapt the proof of [5, Proposition 1.4]. Let L∗ be a Levi in G∗ in duality with L. Let
M∗

:= CG∗((Z◦(L∗)Fℓ )
◦. We have that L∗

⊆ M∗, and since ℓ is good, M∗ is a Levi subgroup by [5,
Proposition 2.1(ii)]. We have that Z◦(L∗)Fℓ = Z◦(M∗)Fℓ .

Let M be a dual Levi such that L ⊆ M ⊆ G. We have that Z◦(M)Fℓ ⊆ Z◦(L)Fℓ . But, by [8,
Proposition 4.4.5], |Z◦(M)F| = |Z◦(M∗)F| and |Z◦(L)F| = |Z◦(L∗)F|, thus Z◦(M)Fℓ = Z◦(L)Fℓ . So,
M ⊆ CG((Z◦(L)Fℓ )

◦
= L and M = L. □

Let ℓ be a good prime for G. Let t ∈ G∗ a semisimple element of order a power of ℓ. Then CG∗(t)◦ is
a Levi subgroup, and denote by G(t) a Levi in G dual to CG∗(t)◦.

Since t is a central element of (CG∗(t)◦)F, by [11, Proposition 13.30], there exist a linear character
t̂ ∈ Irr(G(t)) such that the tensor product with t̂ defines a bijection from E(G(t), 1) to E(G(t), t).
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Let π ∈ E(G, t). By the Jordan decomposition in the case of nonconnected center (defined in [23])
there exists πt ∈ E(G(t), 1) such that

εGεG(t)RG
G(t)(t̂πt) =

∑
π ′∈C ·π

π ′,

where π ′ runs over the orbit of π under the action of C := CG∗(t)F/(CG∗(t)◦)F, and εG and εG(t) are signs
defined in [23, Proposition 5.1].

Remark 3.7.10. Let M be a 1-split Levi of G and t ∈ M∗. Then there exists M(t) a Levi in M dual to
CM∗(t)◦ which is a 1-split Levi of G(t) (the intersection of a 1-split Levi subgroup with a maximal rank
subgroup is a 1-split Levi of the subgroup by [11, Proposition 2.2]).

Lemma 3.7.11. Let M be a 1-split Levi subgroup of G. Let t be a semisimple element of M∗, of order a
power of ℓ, σ ∈ E(M, t), and π ∈ E(G, t) such that ⟨π,RG

M(σ )⟩ ̸= 0.
Let σt ∈ E(M(t), 1) corresponding to σ by the Jordan decomposition. Then, there exists πt ∈ E(G(t), 1),

such that πt corresponds to π by the Jordan decomposition and ⟨πt ,RG(t)
M(t)(σt)⟩ ̸= 0.

Proof. Let us write RG(t)
M(t)(t̂σt) as a sum of irreducible characters RG(t)

M(t)(t̂σt) =
∑

i niπi , with ni ∈ N and
πi irreducible (note that since M(t) is a 1-split Levi subgroup of G(t), RG(t)

M(t) is the usual Harish-Chandra
induction, thus all the ni are positive). Then we have that RG

G(t)(R
G(t)
M(t)(t̂σt)) =

∑
i niRG

G(t)(πi ). By the
“Jordan decomposition”, each RG

G(t)(πi ) is, up to a sign independent of πi , a sum of irreducible characters
of an orbit in E(G, t) under the action of CG∗(t)F/(CG∗(t)◦)F. Hence, up to a sign, RG

G(t)(R
G(t)
M(t)(t̂σt)) is

a sum with positive coefficients of irreducible characters of G.
Now, we have that RG

G(t)(R
G(t)
M(t)(t̂σt)) = RG

M(t)(t̂σt) = RG
M(RM

M(t)(t̂σt)).
We have that εMεM(t)RM

M(t)(t̂σt) =
∑

σ ′∈C ·σ σ ′. Thus εMεM(t)RG
M(RM

M(t)(t̂σt)) =
∑

σ ′∈C ·σ RG
M(σ ′).

Like before, RG
M is the usual Harish-Chandra induction, so it is a positive sum of characters. By hypothesis,

⟨π,RG
M(σ )⟩ ̸= 0, thus ⟨π,RG

M(t)(t̂σt)⟩ ̸= 0.
Hence, there exists i0 such that ni0 ̸= 0 and ⟨π,RG

G(t)(πi0)⟩ ̸= 0. Take πt , such that t̂πt = πi0 . This πt

satisfies the conditions of the lemma. □

We remind the reader that for E a subset of Eℓ(G, 1), the set E denote the smallest (d, 1)-set containing E .

Proposition 3.7.12. We assume that ℓ satisfies (∗). Let M be a 1-split Levi of G and E ⊆ E(M, 1) a
(d, 1)-series. Then iGM(Eℓ) ⊆ iGM(E)ℓ.

Proof. Let π ∈ iGM(Eℓ). By definition, there exists σ ∈ Eℓ such that ⟨π, iGM(σ )⟩ ̸= 0. Let t ∈ M∗ be a
semisimple element of order a power of ℓ, such that σ ∈ E(M, t). We also have, that π ∈ E(G, t).

By Lemma 3.7.11, we can take σt ∈ E(M(t), 1) and πt ∈ E(G(t), 1), such that σt corresponds to σ by
the Jordan decomposition, πt corresponds to π by the Jordan decomposition and ⟨πt ,RG(t)

M(t)(σt)⟩ ̸= 0. Let
σ ′ and π ′ be two irreducible characters in E(M, 1) and E(G, 1) respectively, such that ⟨σ ′,RM

M(t)(σt)⟩ ̸= 0
and ⟨π ′,RG

G(t)(πt)⟩ ̸= 0.
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By Theorem 3.1.3, σ ′ and σ are in the same ℓ-block, and π ′ and π are also in the same ℓ-block. Since,
σ ′ and σ are in the same ℓ-block and σ ∈ Eℓ, we have that σ ′

∈ E . In the same way, since π ′ and π are in
the same ℓ-block, to prove that π ∈ iGM(E)ℓ it is enough to prove that π ′

∈ iGM(E).
Let Et be the (d, 1)-series of M(t) containing σt . The Levi G(t) is the dual of CG∗(t)◦, hence by

Lemma 3.7.9, it is a Eq,ℓ-split Levi of G such that G(t) = CG((Z◦(G(t))Fℓ )
◦. We have the same result for

the Levi M(t) of M. Now M(t) is a 1-split Levi of G(t) by Remark 3.7.10 and M is a 1-split Levi of G.
Let us summarize all the information about the Levis and the representations in a diagram:

G
π ′

∈ RG
G(t)(πt)

M
σ ′

∈ RM
M(t)(σt) ⊆ E

1-Levi
88

G(t)
πt ∈ RG(t)

M(t)(σt)

Eq,ℓ-Levi
ee

M(t)
σt ∈ Et

Eq,ℓ-Levi

ff

1-Levi

99

We can apply Lemma 3.7.7 which says that

RG
G(t)(R

G(t)
M(t)(Et)) = RG

M(RM
M(t)(Et)).

Now, because ⟨πt ,RG(t)
M(t)(σt)⟩ ̸= 0, we have πt ∈ RG(t)

M(t)(Et) and ⟨π ′,RG
G(t)(πt)⟩ ̸= 0, so π ′

∈

RG
G(t)(R

G(t)
M(t)(Et)). Therefore, π ′

∈ RG
M(RM

M(t)(Et)) (note that the use of Lemma 3.7.7 is crucial here, as
π ′ may not lie in RG

M(t)(Et)). Since, ⟨σ ′,RM
M(t)(σt)⟩ ̸= 0, σ ′

∈RM
M(t)(Et), and thus RM

M(t)(Et) = E . Hence,
π ′

∈ iGM(E), and we have the result. □

Proposition 3.7.13. Let M be a 1-split Levi of G and E ⊆ E(G, 1) a (d, 1)-set. Then if ℓ satisfies (∗), we
have rG

M(Eℓ) = rG
M(E)ℓ.

Proof. Let σ ∈ rG
M(Eℓ). There exists π ∈ Eℓ such that ⟨σ, rG

M(π)⟩ ̸= 0. Now, let E ′ be a (d, 1)-series such
that σ ∈ E ′

ℓ. By Frobenius reciprocity, π ∈ iGM(E ′

ℓ). By Proposition 3.7.12, iGM(E ′

ℓ) ⊆ iGM(E ′)ℓ. Now, by
Lemma 3.7.1, iGM(E ′) is a (d, 1)-series, so iGM(E ′) = E . Thus E ′

⊆ rG
M(E) and E ′

ℓ ⊆ rG
M(E)ℓ. We have that

rG
M(Eℓ) ⊆ rG

M(E)ℓ.
Let us prove now the other inclusion. Let σ ∈ rG

M(E)ℓ. There exists E ′ a (d, 1)-series such that
E ′

⊆ rG
M(E) and σ ∈ E ′

ℓ. Now, iGM(E ′) ⊆ E , so iGM(E ′) = E . By Proposition 3.7.12, iGM(E ′

ℓ) ⊆ iGM(E ′)ℓ = Eℓ.
Hence, E ′

ℓ ⊆ rG
M(Eℓ), and we have the result. □
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4. Blocks over Zℓ

Now that we have introduced and studied the (d, 1)-series for finite reductive groups, we can come back
to the study of G a reductive group over F . The purpose of this section is to explain how to find the
unipotent ℓ-blocks of G. To do that, we will combine the results of sections 2 and 3. We will sum the
0-consistent systems of idempotents of Section 2, following what we have learnt from the (d, 1)-theory,
so that the idempotents that we obtain have integer coefficients. This process will end up with ℓ-blocks in
the case of a semisimple and simply connected group.

4.1. Unipotent ℓ-blocks. In Section 2.2, we explain how to get Bernstein blocks from 0-consistent
systems constructed with unrefined depth zero types. In this section, we explain how to group those in
order to get unipotent ℓ-blocks.

Let T un(G) be the subset of T (G) of pairs (σ, π) with π unipotent and T un
ℓ (G) the subset of T (G) of

pairs (σ, π) with π ∈ Eℓ(Gσ , 1). We thus have that

Repun
Qℓ

(G) =

∏
[t]∈T un(G)/∼

Rep[t]

Qℓ
(G) and Repun

Zℓ
(G) ∩ Rep

Qℓ
(G) =

∏
[t]∈T un

ℓ (G)/∼

Rep[t]

Qℓ
(G).

Remark 4.1.1. Let G be a reductive group over a finite field and P be a parabolic subgroup of G with
Levi component L. Then if L admits a unipotent cuspidal representation, then the association class of P is
equal to its conjugation class; see for instance [22, (8.2.1)]. Hence, the equivalence relation ∼ is trivial
on T un(G). In particular, Repun

Qℓ
(G) =

∏
t∈T un(G) Rept

Qℓ
(G).

Let T be a subset of T un
ℓ (G) which is ∼-stable. We can associate to T a system of idempotents eT

by eT :=
∑

[t]∈T/∼ e[t]. We say that T is ℓ-integral if for all σ ∈ BT, eT,σ =
∑

[t]∈T/∼ e[t],σ is in Zℓ[Gσ ].
Thus, if T is ℓ-integral we can form a category RepT

Zℓ
(G).

If [t] ∈ T (G)/∼, we denote by e[t] the idempotent in the center of Rep
Qℓ

(G) associated to the category
Rep[t]

Qℓ
(G). We define also eT by eT

=
∑

[t]∈T/∼ e[t].

Lemma 4.1.2. The idempotent eT is ℓ-integral if and only if T is ℓ-integral.

Proof. It is clear that if T is ℓ-integral then eT is ℓ-integral. Let us assume that eT is ℓ-integral. Every
ℓ-integral element in the center acts on smooth functions on G valued in Zℓ with compact support. In
particular, for every x ∈ BT0, the function eT

∗ e+
x must be ℓ-integral. Let us prove that for [t] ∈ T (G)/∼

we have e[t]
∗ e+

x = e[t],x which will end the proof.
Consider V =C∞

c (G, Qℓ)e+
x . Since e+

x =
∑

[t′]∈T (G)/∼ e[t′],x by Lemma 2.2.1, we have a decomposition
V = ⊕[t′]∈T (G)/∼V[t′] where V[t′] = V e[t′],x . Now, V[t] is an object in Rep[t]

Qℓ
(G) so e[t] acts as the identity

on it, and if [t′] ̸= [t], V[t′] is an object in Rep[t′]

Qℓ
(G) so is canceled by e[t] which finish the proof. □

Proposition 4.1.3. If G is semisimple and simply connected the partition of T un
ℓ (G) into minimal ∼-stable

ℓ-integral subsets gives us the decomposition of Repun
Zℓ

(G) into ℓ-blocks.

Proof. Since G is semisimple and simply connected, Theorem 2.2.4 tells us that the idempotents e[t] are
primitive idempotents in the center on Qℓ. Thus, each ℓ-block of Repun

Zℓ
(G) is associated to a ∼-stable
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subset T ⊆ T un
ℓ (G) such that eT is ℓ-integral. Lemma 4.1.2 tells us that T is ℓ-integral. So the ℓ-block

decomposition of Repun
Zℓ

(G) gives us a partition of T un
ℓ (G) into ∼-stable ℓ-integral subsets. But if T is

∼-stable ℓ-integral, we can construct a category from T , so these subsets must be minimal. □

Definition 4.1.4. Let ℓ be a prime number not dividing q . We will say that ℓ satisfies the condition (∗∗)
if

For all σ ∈ BT, ℓ satisfies (∗) for Gσ . (∗∗)

In other words, ℓ satisfies (∗∗) if ℓ is an odd prime number not dividing q, such that ℓ ≥ 5 if a group
of exceptional type (3 D4, G2, F4, E6, 2 E6, E7) is involved in a reductive quotient and ℓ ≥ 7 if E8 is
involved in a reductive quotient.

Let ℓ be a prime number not dividing q , and d be the order of q mod ℓ. Let t and t′ be two unrefined
unipotent depth zero types.

Let ω ∈ BT. We define ∼ℓ,ω, an equivalence relation on T un(G) by t∼ℓ,ω t′ if and only if t= t′ or there
exist (σ, π) and (τ, π ′) such that t= [σ, π], t′ = [τ, π ′

], ω ≤ σ , ω ≤ τ , and Irr(Gσ ,π)(Gω)∪ Irr(Gτ ,π ′)(Gω)

is contained in a (d, 1)-series.

Remark 4.1.5. (1) If x ≤ ω and t1 ∼ℓ,ω t2, then t1 ∼ℓ,x t2 by Lemma 3.7.1.

(2) If ℓ does not divides |Gω|, then the (d, 1)-series in Gω are just the 1-series, so t ∼ℓ,ω t′ if and only if
t = t′.

(3) For t ∈ T un(G) and ω ∈ BT fixed, the study of the (d, 1)-series summarized in Theorem 3.6.1 tells
us exactly the set of t′ such that t ∼ℓ,ω t′.

Proposition 4.1.6. Assume that ℓ satisfies (∗∗). Let t, t′ ∈ T un(G) and ω ∈ BT such that t ∼ℓ,ω t′. Then t

and t′ are contained in the same minimal ∼-stable ℓ-integral subset of T un
ℓ (G).

Proof. Let T be the minimal ∼-stable ℓ-integral subset of T un
ℓ (G) containing t. We want to show that

t′ ∈ T . Since T is ℓ-integral, eT,ω ∈ Zℓ[Gω] and can be written as a sum of primitive central ℓ-integral
idempotents. Since ℓ satisfies (∗) for Gω, we have a description of them by Theorem 3.1.2. In particular, if
we denote by E the subset of Irr(Gω) cut out by eT,ω, we have that E∩E(Gω, 1) is a d-set. By construction
of eT,ω, E ∩ E(Gω, 1) is also a 1-set so it is a (d, 1)-set. Let (σ, π) and (τ, π ′) such that t = [σ, π],
t′ = [τ, π ′

] and satisfying the conditions of t ∼ℓ,ω t′. Since, t ∈ T , Irr(Gσ ,π)(Gω) ⊆ E ∩ E(Gω, 1). But
Irr(Gσ ,π)(Gω)∪Irr(Gτ ,π ′)(Gω) is contained in a (d, 1)-series so Irr(Gτ ,π ′)(Gω)⊆ E∩E(Gω, 1), and t′ ∈ T . □

For G a finite reductive group, we denote by E(G, ℓ′) the union of the Deligne–Lusztig series E(G, s)
with s of order prime to ℓ. Let T ℓ′

(G) be the subset of T (G) of pairs (π, σ ), such that σ ∈ E(Gσ , ℓ′).

Proposition 4.1.7. If T ⊆ T (G) is ∼-stable ℓ-integral then T ∩ T ℓ′

(G) ̸= ∅.

Proof. Let σ ∈ BT such that eT,σ ̸= 0. Since T is ℓ-integral, eT,σ ∈ Zℓ[Gσ ]. So eT,σ is a sum of primitive
central idempotents in Zℓ[Gσ ]. Let b be one of these primitive central idempotents. By [7, Theorem 9.12]
there exists π ∈ E(Gσ , ℓ′) such that bπ ̸= 0. In particular, eT,σπ ̸= 0. There exist a Levi M of Gσ and a
cuspidal representation π ′ such that π ∈ Irr(M,π ′)(Gσ ) and π ′

∈ E(M, ℓ′). Thus there exists t∈ T ℓ′

(G) such
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that e[t],σπ ̸= 0. Moreover, e[t],σ acts as the identity on π so eT,σ e[t],σ ̸= 0. Now eT,σ =
∑

[t′]∈T/∼ e[t′],σ ,
so eT,σ e[t],σ =

∑
[t′]∈T/∼ e[t′],σ e[t],σ . Lemma 2.2.1 told us that if [t] ̸= [t′] then e[t′],σ e[t],σ = 0, thus

t ∈ T . □

Since we are interested in the unipotent blocks, we get the following corollary.

Corollary 4.1.8. If T ⊆ T un
ℓ (G) is ∼-stable ℓ-integral then T ∩ T un(G) ̸= ∅.

Proof. This is an immediate consequence of Proposition 4.1.7, since T ℓ′

(G) ∩ T un
ℓ (G) = T un(G). □

Expressed in terms of ℓ-blocks of Repun
Zℓ

(G) this gives:

Corollary 4.1.9. Assume that G is semisimple and simply connected. Let R be an ℓ-block of Repun
Zℓ

(G).
Then R is characterized by the nonempty intersection R ∩ Repun

Qℓ
(G).

Proof. Since G is semisimple and simply connected, by Proposition 4.1.3 R is defined by T a minimal
∼-stable ℓ-integral subset of T un

ℓ (G). Now, the minimal ∼-stable ℓ-integral subsets form a partition of
T un

ℓ (G), so T is uniquely determined by any of its elements. Corollary 4.1.8 tells us that T ∩T un(G) ̸=∅,
so T is characterized by T ∩ T un(G). □

4.2. Decomposition of Repun
Zℓ

(G). In this section, using the (d, 1)-theory for the reductive quotient in
the Bruhat–Tits building, we will define an equivalence relation on T un(G). When G is semisimple and
simply connected, an equivalence class will exactly correspond to T ∩ T un(G), for T a minimal ∼-stable
ℓ-integral set, and thus will give us a unipotent ℓ-block of G.

Let ℓ be a prime number which satisfies (∗∗), and d be the order of q modulo ℓ.
We define ∼ℓ, an equivalence relation on T un(G) by t ∼ℓ t

′ if and only if there exist ω1, . . . , ωr ∈ BT
and t1, . . . , tr−1 ∈ T un(G) such that t∼ℓ,ω1 t1 ∼ℓ,ω2 t2 · · · ∼ℓ,ωr t

′. We write [t]ℓ for the equivalence class
of t.

Remark 4.2.1. By Remark 4.1.5 (1), we can take in the definition ωi ∈ BT0.

Let t ∈ T un(G) and ω ∈ BT. We define E[t]ℓ,ω to be the subset of E(Gω, 1) cut out by
∑

u∈[t]ℓ
eu,ω.

Lemma 4.2.2. The set E[t]ℓ,ω is a (d, 1)-set in Gω.

Proof. By definition E[t]ℓ,ω is a 1-set.
Let (σ, λ) ∈ T un(G) such that ω ≤ σ and Irr(Gσ ,λ)(Gω) ⊆ E[t]ℓ,ω. By construction of E[t]ℓ,ω, we have

that (σ, λ) ∈ [t]ℓ.
Let Eσ,λ be the (d, 1)-series containing Irr(Gσ ,λ)(Gω). Let us prove that Eσ,λ ⊆ E[t]ℓ,ω. Let (σ ′, λ′) ∈

T un(G) such that ω ≤ σ ′ and Irr(Gσ ′ ,λ′)(Gω) ⊆ Eσ,λ. Then by definition, (σ, λ) ∼ℓ,ω (σ ′, λ′). Thus,
(σ, λ) ∼ℓ (σ ′, λ′) and (σ ′, λ′) ∈ [t]ℓ. Therefore Irr(Gσ ′ ,λ′)(Gω) ⊆ E[t]ℓ,ω and Eσ,λ ⊆ E[t]ℓ,ω.

Since, this is true for every (σ, λ) ∈ T un(G) such that ω ≤ σ and Irr(Gσ ,λ)(Gω) ⊆ E[t]ℓ,ω, we get that
E[t]ℓ,ω is a (d, 1)-set. □

By Lemma 4.2.2, E[t]ℓ,ω is a (d, 1)-set, so we can form E[t]ℓ,ω,ℓ, the ℓ-extension of E[t]ℓ,ω as in Section 3.2.
Let e[t]ℓ,ω be the idempotent in Gω that cuts out E[t]ℓ,ω,ℓ. Since ℓ satisfies (∗) for Gω, Theorem 3.1.2 tells us
that e[t]ℓ,ω is ℓ-integral. Thus we just have defined e[t]ℓ = (e[t]ℓ,ω)ω∈BT an ℓ-integral system of idempotents.
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Proposition 4.2.3. The ℓ-integral system of idempotent e[t]ℓ is 0-consistent, thus defines Rep[t]ℓ
Zℓ

(G) a
subcategory of Repun

Zℓ
(G).

Proof. Since the t ∈ T un(G) are G-conjugacy classes, e[t]ℓ is G-equivariant.
Let τ, ω ∈ BT such that ω ≤ τ . It remains to prove that e+

τ e[t]ℓ,ω = e[t]ℓ,τ .
The idempotent e[t]ℓ,ω is the idempotent that cuts out E[t]ℓ,ω,ℓ and e+

τ e[t]ℓ,ω is the idempotents that cuts
out rGω

Gτ
(E[t]ℓ,ω,ℓ).

By Proposition 3.7.13, rGω

Gτ
(E[t]ℓ,ω,ℓ) = rGω

Gτ
(E[t]ℓ,ω)ℓ. But we know by definition of E[t]ℓ,ω that

rGω

Gτ
(E[t]ℓ,ω) = E[t]ℓ,τ . Hence, we have rGω

Gτ
(E[t]ℓ,ω,ℓ) = E[t]ℓ,τ,ℓ. □

Remark 4.2.4. By Propositions 3.7.12 and 3.7.13, E[t]ℓ,ω,ℓ is a union of Harish-Chandra series. Hence
there exists a ∼-stable subset T ⊆ T un

ℓ (G) such that e[t]ℓ = eT . Then Theorem 3.1.3 gives us a description
of T in the following way. Let (σ, χ) ∈ T un

ℓ (G). Let t be a semisimple conjugacy class in G∗
σ of order

a power of ℓ, such that χ ∈ E(Gσ , t). Let Gσ (t) a Levi in Gσ dual to CG∗
σ
(t)◦, with P as a parabolic

subgroup, and χt ∈ E(Gσ (t), 1) such that ⟨χ,RGσ

Gσ (t)⊆P
(t̂χt)⟩ ̸= 0. Let π be an irreducible component of

RGσ

Gσ (t)⊆P
(χt). Let (Gτ , λ) be the cuspidal support of π . Then (σ, χ) is in the subset T associated with

[(τ, λ)]ℓ.

Theorem 4.2.5. Let ℓ be a prime number which satisfies (∗∗). Then we have a decomposition

Repun
Zℓ

(G) =

∏
[t]ℓ∈T un(G)/∼ℓ

Rep[t]ℓ
Zℓ

(G).

Proof. Let eℓ
1 = (eℓ

1,σ )σ∈BT be the 0-consistent system of idempotent that cuts out Repun
Zℓ

(G) (we have
recalled the definition of eℓ

1 at the end of Section 2.1). Then the systems of idempotents e[t]ℓ , for
[t]ℓ ∈ T un(G)/∼ℓ satisfy the following properties:

• For all σ ∈ BT, eℓ
1,σ =

∑
[t]ℓ∈T un(G)/∼ℓ

e[t]ℓ,σ .

• If [t]ℓ and [t′]ℓ are two elements of T un(G)/∼ℓ such that [t]ℓ ̸= [t′]ℓ, and if σ ∈ BT, then
e[t]ℓ,σ e[t′]ℓ,σ = 0.

With these properties, the same proof as in [18, Proposition 2.3.5] shows the desired result. □

Remark 4.2.6. (1) From the construction of the system of idempotents e[t]ℓ , we see that

Rep[t]ℓ
Zℓ

(G) ∩ Repun
Qℓ

(G) =

∏
u∈[t]ℓ

Repu
Qℓ

(G).

(2) We also have a description of Rep[t]ℓ
Zℓ

(G) ∩ Rep
Qℓ

(G) by Remark 4.2.4.

Theorem 4.2.7. When G is semisimple and simply connected and ℓ satisfies (∗∗), the decomposition

Repun
Zℓ

(G) =

∏
[t]ℓ∈T un(G)/∼ℓ

Rep[t]ℓ
Zℓ

(G),

is the decomposition of Repun
Zℓ

(G) into ℓ-blocks.
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Proof. Let t ∈ T un(G), we want to prove that Rep[t]ℓ
Zℓ

(G) is an ℓ-block. Let T be the ∼-stable subset of
T un

ℓ (G) which defines Rep[t]ℓ
Zℓ

(G). We need to prove that T is a minimal ℓ-integral set by Proposition 4.1.3.
We know that T is ℓ-integral. By Corollary 4.1.8, it is enough to prove that T ∩ T un(G) is contained

into a minimal ℓ-integral set. By construction, we have that T ∩ T un(G) = {u ∈ T un(G), u ∈ [t]ℓ}.
Now, if u, u′ are two element of T un(G) such that u ∼ℓ,ω u′, then by Proposition 4.1.6, u and u′ are

contained in the same minimal ℓ-integral set. Thus, if u ∼ℓ t, u and t are contained in the same minimal
ℓ-integral set and we have the wanted result. □

4.3. Case ℓ = 2 and groups of types A, B, C, D. In this section, we examine a case of a bad prime
ℓ = 2, but when the group is good, that is all the reductive quotients only involve types among A, B, C
and D. We will prove that the unipotent category is a 2-block.

Theorem 4.3.1. Let G be a semisimple and simply connected group such that all the reductive quotients
only involve types among A, B, C and D, and p ̸= 2. Then Rep1

Z2
(G) is a 2-block.

Proof. By Proposition 4.1.3, we want to prove that T 1
2 (G) is a minimal ∼-stable 2-integral set. Let

T ⊆ T 1
2 (G) be a minimal ∼-stable 2-integral set. Let us prove that T 1

2 (G) ⊆ T .
Let σ ∈ BT such that eT,σ ̸= 0. Since T is 2-integral, eT,σ is a sum of 2-blocks. By [7, Theorem 21.14],

the only unipotent 2-block of Gσ is the idempotent cutting out E2(Gσ , 1). Hence, eT,σ is this idempotent.
Therefore, we get from the definition of eT,σ that for all t= (ω, τ) ∈ T 1

2 (G), such that ω ≤ σ , we have that
t ∈ T . In particular (C, 1) ∈ T , where C is a chamber. So, for all σ ∈ BT, eT,σ ̸= 0 and T 1

2 (G) ⊆ T . □

5. Some examples

Section 4 describes the ℓ-blocks for a semisimple and simply connected group thanks to the equivalence
relation ∼ℓ on T un(G). In this section, we examine some examples and make ∼ℓ explicit.

5.1. ℓ divides q − 1. When ℓ divides q − 1, hence d = 1, the (d, 1)-series are just the 1-series. In this
case, ∼ℓ is trivial on T un(G). Thus Theorem 4.2.7 gives us:

Proposition 5.1.1. When G is semisimple and simply connected, ℓ satisfies (∗∗) and ℓ divides q − 1, we
have a decomposition into ℓ-blocks

Repun
Zℓ

(G) =

∏
t∈T un(G)

Rept
Zℓ

(G),

such that Rept
Zℓ

(G) ∩ Rep
Qℓ

(G) = Rept
Qℓ

(G) is a single Bernstein block.

5.2. Blocks of SLn. Let us make the ℓ-blocks of SLn explicit.

Theorem 5.2.1. Let ℓ be prime not dividing q, then Repun
Zℓ

(SLn(F)) is an ℓ-block.

Proof. If ℓ ̸= 2, then we can apply Theorem 4.2.7. In this case, T un(G) is composed of only one element,
the conjugacy class of (C, 1) where C is a chamber. Hence Repun

Zℓ
(SLn(F)) is an ℓ-block.

If ℓ = 2, we can apply Theorem 4.3.1 and Rep1
Z2

(SLn(F)) is a 2-block. □
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5.3. Blocks of Sp2n. In this section, we have a look at G = Sp2n . We assume in all this section that ℓ

does not divide q .
If ℓ = 2, Theorem 4.3.1 gives us the result. So we can assume that ℓ ̸= 2. Theorem 4.2.7 tells us that

to know the ℓ-blocks of Sp2n we need to understand T un(G)/∼ℓ. Let us start by describing T un(G). The
group Sp2m(k) has a unipotent cuspidal representation if and only if m = s(s + 1) for some integer s, and
this representation is unique up to isomorphism. If σ ∈ BT, then Gσ ≃ H×Sp2i (k)×Sp2 j (k), where H is
a product of GLm(k), and i + j ≤ n. Hence, we have a bijection between T un(G) and the set Sun(G) :=

{(s, s ′) ∈ N2, s(s + 1) + s ′(s ′
+ 1) ≤ n}. For (s, s ′) ∈ Sun(G) we will write t(s, s ′) = (σ (s, s ′), π(s, s ′))

for the corresponding element of T un(G).
Let d be the order of q modulo ℓ. The first case is when d is odd. Then Proposition 3.4.2 tells us

that for σ ∈ BT, the unipotent (d, 1)-series in Gσ are the unipotent 1-series. Hence, ∼ℓ is just the trivial
equivalence relation on T un(G). Thus we get the decomposition of Repun

Zℓ
(Sp2n(F)) into ℓ-blocks

Repun
Zℓ

(Sp2n(F)) =

∏
t∈T un(G)

Rep[t]ℓ
Zℓ

(Sp2n(F)).

Now, we assume that d is even. We want to make the equivalence relation ∼ℓ on T un(G) explicit.
Let us start by finding the t ∈ T un(G) such that [t]ℓ = {t}. Let Sc be the subset of Sun(G) of couples

(s, s ′) such that [t(s, s ′)]ℓ = {t(s, s ′)}. There are n + 1 nonconjugate vertices in BT0 that we denote
x0, . . . , xn , such that Gxi ≃ Sp2i (k)×Sp2(n−i)(k). Let (s, s ′) ∈ Sun(G). We may assume that all the xi and
σ(s, s ′) are in a same chamber. Then xi ≤ σ(s, s ′) if and only if s(s +1) ≤ i and s ′(s ′

+1) ≤ n − i . Hence

{x ∈ BT0, x ≤ σ(s, s ′)} = {xi , s(s + 1) ≤ i ≤ n − s ′(s ′
+ 1)}.

We denote by 6s the symbol corresponding to the unipotent cuspidal representation of Sp2s(s+1). That is

6s =

(
0 1 · · · 2s

)
.

Lemma 5.3.1. We have

Sc =

{
(s, s ′) ∈ Sun(G),

{
s(s + 1) + s ′(s ′

− 1) > n − d/2
s ′(s ′

+ 1) + s(s − 1) > n − d/2

}}
.

Proof. By definition of ∼ℓ, we have that Sc is the subset of Sun(G) of couples (s, s ′) such that for all
xi ≤ σ(s, s ′), either{

ℓ∤|Sp2i (k)|,

ℓ∤|Sp2(n−i)(k)|,
or


ℓ ∤|Sp2i (k)|,

ℓ | |Sp2(n−i)(k)|,

defect(6s′) > k(Sp2(n−i)(k), d),

or


ℓ | |Sp2i (k)|,

defect(6s) > k(Sp2i (k), d),

ℓ ∤|Sp2(n−i)(k)|,

or


ℓ | |Sp2i (k)|,

defect(6s) > k(Sp2i (k), d),

ℓ | |Sp2(n−i)(k)|,

defect(6s′) > k(Sp2(n−i)(k), d).
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We know that |Sp2i (k)| = qn2 ∏i
j=1(q

2 j
− 1) and d is the order of q modulo ℓ (with d even), hence

ℓ | |Sp2i (k)| if and only if d ≤ 2i . In the same way, ℓ | |Sp2(n−i)(k)| if and only if d ≤ 2(n − i).
By definition, k(Sp2i (k), d) = max{k ≥ 0, k odd, (k2

− 4k + 3)/4 ≤ i − d/2}. So defect(6s) >

k(Sp2i (k), d), if and only if 2s+1> k(Sp2i (k), d) if and only if ((2s+1)2
−4(2s+1)+3)/4> i−d/2. But

((2s+1)2
−4(2s+1)+3)/4 = s(s−1). Hence defect(6s)> k(Sp2i (k), d) if and only if s(s−1)> i −d/2

and defect(6s′) > k(Sp2(n−i)(k), d) if and only if s ′(s ′
− 1) > n − i − d/2.

So, Sc is the set of (s, s ′) ∈ Sun(G) such that for all i ∈ {s(s + 1), . . . , n − s ′(s ′
+ 1)} either

{
d > 2i,
d > 2(n − i),

or


d > 2i,
d ≤ 2(n − i),
s ′(s ′

− 1) > n − i − d/2,

or


d ≤ 2i,
s(s − 1) > i − d/2,

d > 2(n − i),
or


d ≤ 2i,
s(s − 1) > i − d/2,

d ≤ 2(n − i),
s ′(s ′

− 1) > n − i − d/2.

To make things clearer, let us rewrite these conditions on conditions on i

{
i < d/2,

i > n − d/2,
or


i < d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1),

or


i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2,

or


i ≥ d/2,

i < s(s − 1) + d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1).

Now, since s ′(s ′
− 1) is positive,the conditions

{
i < d/2,

i > n − d/2,
or


i < d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1),

are equivalent to {
i < d/2,

i > n − d/2 − s ′(s ′
− 1).

We also have that the conditions


i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2,

or


i ≥ d/2,

i < s(s − 1) + d/2,

i ≤ n − d/2,

i > n − d/2 − s ′(s ′
− 1),
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are equivalent to 
i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2 − s ′(s ′
− 1).

But now, since s(s − 1) is positive, the conditions{
i < d/2,

i > n − d/2 − s ′(s ′
− 1),

or


i ≥ d/2,

i < s(s − 1) + d/2,

i > n − d/2 − s ′(s ′
− 1),

are equivalent to {
i < s(s − 1) + d/2,

i > n − d/2 − s ′(s ′
− 1).

Finally, we have that Sc is the set of (s, s ′) ∈ Sun(G) such that for all i ∈ {s(s +1), . . . , n − s ′(s ′
+1)},

i < s(s − 1) + d/2 and i > n − d/2 − s ′(s ′
− 1), that is, it is the set of (s, s ′) such that n − s ′(s ′

+ 1) <

s(s − 1) + d/2 and s(s + 1) > n − d/2 − s ′(s ′
− 1). □

We now want to prove that [t(0, 0)]ℓ = {t(s, s ′), (s, s ′) /∈ Sc}.

Proposition 5.3.2. Let (s, s ′) ∈ Sun(G) \Sc. Then t(s, s ′) ∼ℓ t(0, 0).

Proof. By definition, since (s, s ′) /∈ Sc, there exists i such that{
ℓ | |Sp2i (k)|,

defect(6s) ≤ k(Sp2i (k), d),
or

{
ℓ | |Sp2(n−i)(k)|,

defect(6s′) ≤ k(Sp2(n−i)(k), d).

Let us assume for example that {
ℓ | |Sp2(n−i)(k)|,

defect(6s′) ≤ k(Sp2(n−i)(k), d),

(the other case is similar). Since defect(6s′)≤ k(Sp2(n−i)(k), d) Proposition 3.4.6 tells us that t(s, s ′)∼ℓ,xi

t(s, 0).
Let us have a look at xn . First, since s(s + 1) ≤ i ≤ n then xn ≤ σ(s, 0). Now since ℓ | |Sp2(n−i)(k)|,

i ≤ n − d/2 (like in the proof of Lemma 5.3.1). Hence, d/2 ≤ n and s(s − 1) ≤ s(s + 1) ≤ i ≤ n − d/2.
This can be rewritten (like in the proof of Lemma 5.3.1) as ℓ | |Sp2n(k)| and defect(6s) ≤ k(Sp2n(k), d).
Again, by Proposition 3.4.6, t(s, 0) ∼ℓ,xn t(0, 0).

Finally, t(s, s ′) ∼ℓ,xi t(s, 0) ∼ℓ,xn t(0, 0), so t(s, s ′) ∼ℓ t(0, 0). □

Bringing together everything that has been done so far, we get by Theorems 4.2.7 and 4.3.1.

Theorem 5.3.3. Let ℓ be a prime not dividing q. Then we have the following decomposition of
Repun

Zℓ
(Sp2n(F)) into ℓ-blocks:

(1) If ℓ = 2: Rep1
Z2

(Sp2n(F)) is a 2-block.

(2) If ℓ ̸= 2. Let d the order of q modulo ℓ:
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(a) If d is odd,

Repun
Zℓ

(Sp2n(F)) =

∏
t∈T un(G)

Rep[t]ℓ
Zℓ

(Sp2n(F)).

(b) If d is even,

Repun
Zℓ

(Sp2n(F)) = Rep[t(0,0)]ℓ

Zℓ
(Sp2n(F)) ×

∏
(s,s′)∈Sc

Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)).

Remark. In the case d odd, or d even and (s, s ′) ∈ Sc, we see that the intersection of an ℓ-block with
Repun

Qℓ
(G) is a Bernstein block.

If ℓ > n, in the case d even and (s, s ′) ∈ Sc, we can say a bit more.

Lemma 5.3.4. If ℓ > n, d is even and (s, s ′) ∈ Sc, then Rep[t(s,s′)]ℓ

Zℓ
(Sp2n(F)) ∩ Rep

Qℓ
(G) is a Bernstein

block.

Proof. First of all we have that [t(s, s ′)]ℓ ={t(s, s ′)}. Let x ∈BT0 such that x ≤σ(s, s ′). From the definition
of Sc and Proposition 3.4.6 we get that Et(s,s′),x is composed uniquely of d-cuspidal representations. We
use Theorem 3.1.3 to describe Et(s,s′),x,ℓ. Let t be a semisimple conjugacy class in G∗

x of order a power of ℓ.
Let Gx(t) a Levi in Gx dual to CG∗

x
(t)◦. The Levi Gx(t) is then a Eq,ℓ-split Levi of Gx . But, if ℓ > n, then

ℓ is large for Gx in the sense of [4, Definition 5.1] and therefore Eq,ℓ = {d} by [4, Proposition 5.2]. Thus
Gx(t) is a d-split Levi. Hence, if an irreducible constituent of RG

G(t)⊆P(χt), for a unipotent character χt , is
in Et(s,s′),x , then Gx(t) = Gx . Moreover, Sp2i (k), doesn’t have any nontrivial character, so Theorem 3.1.3
tells us that Et(s,s′),x,ℓ = Et(s,s′),x . The system of idempotent et(s,s′) is therefore integral, and the proof is
done. □

6. Stable ℓ-blocks for classical groups

In this section, we want to find the stable depth zero ℓ-blocks for classical unramified groups.
When G is a classical unramified group, we have the local Langlands correspondence [1; 13; 15; 17;

25]. The block decomposition is not compatible with the local Langlands correspondence, two irreducible
representations may have the same Langlands parameter but not be in the same block. However, we
can look for the “stable” blocks, which are the smallest direct factors subcategories stable by the local
Langlands correspondence. These categories correspond to the primitive idempotents in the stable
Bernstein center, as defined in [12]. In [19], there is a decomposition of the depth zero category

Rep0
Qℓ

(G) =

∏
(φ,σ )∈8̃m(I

Qℓ
F ,L G)

Rep(φ,σ )

Qℓ
(G)

indexed by the set 8̃m(I Qℓ

F , L G) as defined in [19, Definition 4.4.2]. This decomposition satisfies the
following theorem.
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Theorem 6.0.1 [19, Theorem 4.7.5]. Let G be an unramified classical group, 3 = Qℓ and p ̸= 2. Then
the decomposition

Rep0
Qℓ

(G) =

∏
(φ,σ )∈8̃m(IF ,L G)

Rep(φ,σ )

Qℓ
(G)

is the decomposition of Rep0
Qℓ

(G) into stable blocks.

Over Zℓ, an analogous decomposition is defined in [19]:

Rep0
Zℓ

(G) =

∏
(φ,σ )∈8̃m(I

Zℓ
F ,L G)

Rep(φ,σ )

Qℓ
(G).

We would like to prove that for unramified classical groups, this is the decomposition of the depth zero
category into stable ℓ-blocks, that is that these categories correspond to primitive integral idempotents in
the stable Bernstein center.

Let (φ, σ )∈ 8̃m(I Qℓ

F , L G). The category Rep(φ,σ )

Qℓ
(G) is obtained by a consistent system of idempotents

eT(φ,σ )
associated to T(φ,σ ) ⊆ T (G). These subsets T(φ,σ ) form a partition of T (G). A subset T ⊆ T (G)

is said to be stable, if T is a union of T(φ,σ ) for (φ, σ ) ∈ 8̃m(I Qℓ

F , L G).

Lemma 6.0.2. If G is an unramified classical group and p ̸= 2, the stable ℓ-blocks correspond to the
minimal ℓ-integral stable subsets of T (G).

Proof. By Theorem 6.0.1, the primitive idempotents in the stable Bernstein center correspond to the
T(φ,σ ), hence every idempotent in the stable Bernstein center is associated with T a stable subset of T (G).
Lemma 4.1.2 tells us that if the idempotent is integral then so is T . □

Let (φ, σ ) ∈ 8̃m(I Qℓ

F , L G). Then [19, Proposition 4.4.6] defines a bijection

0 : 8̃m(I Qℓ

F , L G) ∼
−→ G∗

ss

where G∗ is the dual of G over k and G∗

ss is the set of semisimple rational conjugacy classes in G∗.

Lemma 6.0.3. Let (φ, σ ) ∈ 8̃m(I Qℓ

F , L G). Then either T(φ,σ ) ⊆ T ℓ′

(G) (if 0(φ, σ ) is of order prime to
ℓ) or T(φ,σ ) ∩ T ℓ′

(G) = ∅.

Proof. To (φ, σ ) ∈ 8̃m(I Qℓ

F , L G) is attached a system of conjugacy classes on the Bruhat–Tits building.
By [19, Section 4.3], if 0(φ, σ ) is of order prime to ℓ, all of these conjugacy classes are of order prime
to ℓ, and if 0(φ, σ ) is not of order prime to ℓ, then none of them are. Thus we get the result. □

Corollary 6.0.4. If T is an ℓ-integral stable set such that T ∩ T ℓ′

(G) is a minimal stable set then T is a
minimal stable ℓ-integral set.

Proof. If T is an ℓ-integral stable set, then by Proposition 4.1.7 T ∩ T ℓ′

(G) ̸= ∅ and by Lemma 6.0.3
T ∩ T ℓ′

(G) is a stable set. Hence T ∩ T ℓ′

(G) is an nonempty stable set, and we get the result. □
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Theorem 6.0.5. Let G be an unramified classical group and p ̸= 2. Then the decomposition

Rep0
Zℓ

(G) =

∏
(φ,σ )∈8̃m(I

Zℓ
F ,L G)

Rep(φ,σ )

Zℓ
(G).

is the decomposition of Rep0
Zℓ

(G) into stable ℓ-blocks.

Proof. Let (φ, σ ) ∈ 8̃m(I Zℓ

F , L G). By construction, the category Rep(φ,σ )

Zℓ
(G) is associated with an

ℓ-integral subset T of T (G). By [19, Proposition 4.5.1], T = ∪(φ′,σ ′)T(φ′,σ ′), where the union is taken
over the (φ′, σ ′) that are sent to (φ, σ ) by the natural map 8̃m(I Qℓ

F , L G) → 8̃m(I Zℓ

F , L G), described
in [19, Section 4.5] (obtained by restriction from I Qℓ

F to I Zℓ

F ). In particular, the set T is stable. So by
Lemma 6.0.2, it remains to prove that T is minimal among the stable ℓ-integral sets.

By [19, Section 4.5], the inverse image of (φ, σ ) by the map 8̃m(I Qℓ

F , L G) → 8̃m(I Zℓ

F , L G) is all the
(φ′, σ ′) such that the ℓ-regular part of 0(φ′, σ ′) is given by 0(φ, σ ).

Hence exactly one (φ′

0, σ
′

0) is such that 0(φ′

0, σ
′

0) is of order prime to ℓ. Hence by Lemma 6.0.3,
T ∩ T ℓ′

(G) = T(φ′

0,σ
′

0)
. Since T is an ℓ-integral stable set such that T ∩ T ℓ′

(G) is a minimal stable set,
Corollary 6.0.4 tells us that T is a minimal stable ℓ-integral set, and that completes the proof. □
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Isotriviality, integral points, and primitive primes in
orbits in characteristic p

Alexander Carney, Wade Hindes and Thomas J. Tucker

We prove a characteristic p version of a theorem of Silverman on integral points in orbits over number
fields and establish a primitive prime divisor theorem for polynomials in this setting. In characteristic p,
the Thue–Siegel–Dyson–Roth theorem is false, so the proof requires new techniques from those used
by Silverman. The problem is largely that isotriviality can arise in subtle ways, and we define and
compare three different definitions of isotriviality for maps, sets, and curves. Using results of Favre and
Rivera-Letelier on the structure of Julia sets, we prove that if ϕ is a nonisotrivial rational function and
β is not exceptional for ϕ, then ϕ−n(β) is a nonisotrivial set for all sufficiently large n; we then apply
diophantine results of Voloch and Wang that apply for all nonisotrivial sets. When ϕ is a polynomial, we
use the nonisotriviality of ϕ−n(β) for large n along with a partial converse to a result of Grothendieck in
descent theory to deduce the nonisotriviality of the curve yℓ

= ϕn(x) − β for large n and small primes
ℓ ̸= p whenever β is not postcritical; this enables us to prove stronger results on Zsigmondy sets. We
provide some applications of these results, including a finite index theorem for arboreal representations
coming from quadratic polynomials over function fields of odd characteristic.

1. Introduction and Statement of Results

In [36, Theorem A], Silverman proved the following theorem.

Theorem 1.1 [36, Theorem A]. Let ϕ ∈ Q(z) be rational function of degree at least 2, and let α ∈ P1(Q).
If ϕ2 /∈ Q[z], then the set {ϕn(α) | n ∈ Z+

} contains only finitely many points in Z.

We prove that the analogous theorem holds for nonisotrivial rational functions in Fp(t). Recall that
a rational function ϕ ∈ Fp(t)(z) is said to be isotrivial if there is a σ ∈ Fp(t)(z) of degree 1 such that
σ ◦ ϕ ◦ σ−1

∈ Fp(z). We prove the following.

Theorem 1.2. Let ϕ ∈ Fp(t)(z) be a nonisotrivial rational function of degree at least 2, and let α ∈

P1(Fp(t)). If ϕ2 /∈ Fp(t)[z], then {ϕn(α) | n ∈ Z+
} contains only finitely many points in Fp[t].

Silverman [36] also proves Theorem 1.1 over number fields; see [36, Theorem B]. Likewise, our most
general form of Theorem 1.2 is stated in terms of S-integrality and isotriviality for rational functions
defined over finite extensions of Fp(t). We will define S-integrality in the next section (see Definition 2.1).
We give our more general definition of isotriviality for rational functions here.
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Definition 1.3. Let K be a finite extension of Fp(t) and let ϕ be a rational function in K (z). We say that
ϕ is an isotrivial rational function if there exists σ ∈ K (z) of degree 1 such that σ ◦ ϕ ◦ σ−1

∈ Fp(z).

Also recall that for a rational function ϕ ∈ K (z), a point β ∈ P1(K ) is said to be exceptional for ϕ if
its total orbit (both forward and backward) is finite. However, for the maps that we consider, this amounts
to ϕ−2(β) = {β} by Riemann–Hurwitz. In particular, since totally inseparable maps are isotrivial (which
may be seen by moving fixed points to 0 and ∞), we avoid the more exotic cases of exceptional points
arising in positive characteristic; see, for instance, [38]. With this in place, we state our general form of
Theorem 1.2.

Theorem 1.4. Let K be a finite extension of Fp(t), let ϕ ∈ K (z) be a nonisotrivial rational function with
deg ϕ > 1, let S be a finite set of places of K , and let α, β ∈ K where β is not exceptional for ϕ. Then
{ϕn(α) | n ∈ Z+

} contains only finitely many points that are S-integral relative to β.

The main tools used in the proof of [36, Theorem A] are from diophantine approximation. Roughly,
one takes an inverse image ϕ−i (∞) that contains at least three points and applies Siegel’s theorem on
integral points for the projective line with at least three points deleted to conclude that there only finitely
many n such that ϕn(α) are integral relative to ϕ−i (∞) and thus only finitely many n + i such that
ϕn+i (α) is an integer. Over function fields in characteristic p, the problem is more complicated since
Roth’s theorem is false; in fact, no improvement on Liouville’s theorem is possible in general. There
is, however, a weaker version of Siegel’s theorem, due to Wang [45, Theorem in P1(K ), page 337] and
Voloch [44], which states that, for function fields in characteristic p, there are finitely many S-integral
points on the projective line with a nonisotrivial set of points deleted. (Note that this is strictly weaker
than Siegel’s theorem, since any set of three points is automatically isotrivial, and there are isotrivial sets
of every countable cardinality.) Basic functorial results on integral points thus imply that Theorem 1.4
will hold whenever ϕ−n(β) is a nonisotrivial set. In Theorem 3.1, we show that ϕ−n(β) is a nonisotrivial
set for large n whenever ϕ is a nonisotrivial rational function and β is not exceptional, using results of
Favre and Rivera-Letelier [14] on the structure of Julia sets at primes of genuinely bad reduction.

In the case where ϕ is a polynomial of separable degree greater than 1, we can prove a bit more than
Theorem 1.4. To describe our result we need a bit of terminology. For a sequence {bn}

∞

n=1 of elements of
a global field K , we say that a place p of K is a primitive divisor of bn if

vp(bn) > 0 and vp(bm) ≤ 0 for all m < n.

For a positive integer ℓ, we say that p is a primitive ℓ-divisor of bn if

p is a primitive divisor of bn and ℓ∤vp(bn).

Given a rational function ϕ ∈ K (x) and points α, β ∈ K , we obtain a sequence {ϕn(α)−β}
∞

n=1. We define
the Zsigmondy set Z(ϕ, α, β) (see [3; 47]) for ϕ, α, and β as

Z(ϕ, α, β) = {n | ϕn(α) − β has no primitive divisors}.
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Likewise, for a positive integer ℓ and α, β, and ϕ as above, we define the ℓ-Zsigmondy set Z(ϕ, α, β, ℓ)

for ϕ, α, β, and ℓ as

Z(ϕ, α, β, ℓ) = {n | ϕn(α) − β has no primitive ℓ-divisors}.

We will also need a precise definition of critical points to state our next theorem. Let ϕ be a rational
function in K (z). We let degs ϕ denote the degree of the maximal separable extension of K (ϕ(z)) in K (z)
and let degi ϕ = (deg ϕ)/(degs ϕ); note that degi ϕ is also the largest power pr of p such that ϕ can be
written as ϕ(z) = g(x pr

) for some rational function g ∈ K (z). For γ ∈ P1, there are degree one rational
functions σ, θ ∈ K (z) such that θ(0) = γ and σ ◦ϕ ◦ θ(0) = 0. We may then write σ ◦ϕ ◦ θ(z) = zeg(z)
for some rational function g such that g(z) ̸= 0. We call e the ramification degree of ϕ at γ denote it as
eϕ(γ /ϕ(γ )). We say that γ is a critical point of ϕ if eϕ(γ /ϕ(γ )) > degi ϕ.

We let O+
ϕ (α) denote the set {ϕn(α) | n ∈ Z+

}, called the forward orbit of α with respect to φ. Moreover,
we say that a point β is postcritical if there is a critical point γ of ϕ such that β ∈ O+(γ ).

With this terminology, we have the following two theorems for polynomials.

Theorem 1.5. Let K be a finite extension of Fp(t), let f ∈ K [z] be a nonisotrivial polynomial with
deg f > 1, and let α and β be elements of K such that α is not preperiodic, β is not postcritical, and
β /∈ O+

f (α). Then for any prime ℓ ̸= p, the Zsigmondy set Z( f, α, β, ℓ) is finite.

Theorem 1.6. Let K be a finite extension of Fp(t), let f ∈ K [z] be a nonisotrivial polynomial with
deg f > 1, and let α and β be elements of K such that α is not preperiodic, β is not exceptional for f ,
and β /∈ O+

f (α). Then the Zsigmondy set Z( f, α, β) is finite.

Theorem 1.4 is not true in general for isotrivial rational functions, and Theorems 1.5 and 1.6 are not true
not in general for isotrivial polynomials; see [30]. There are some results in the isotrivial case, however
(see [21]), and some of the techniques here do work for a wide class of isotrivial rational functions. We
may address these questions in a future paper.

Theorem 1.4 is proved by using two different notions of isotriviality. The first is our Definition 1.3 for
functions. We now define an isotrivial set. Here we use a simple, if inelegant, definition rather than a
slightly more technical one that generalizes to varieties other than P1. Below we regard an element of
K (z) as a map from K ∪ ∞ to itself.

Definition 1.7. Let K be a finite extension of Fp(t) and let S be a finite subset of K ∪ ∞. We say that S
is a isotrivial set if there exists σ ∈ K (z) of degree 1 such that σ(S) ⊆ Fp ∪ ∞.

We note that if ϕ is a nonisotrivial rational function the set ϕ−1(β) may still be an isotrivial set; for
example any set of three or fewer elements is an isotrivial set, but there are nonisotrivial rational functions
of degree 2 and 3.

Theorem 1.5 is proved using a third notion of isotriviality, this time for curves.

Definition 1.8. Let K be a finite extension of Fp(t) and let C be a curve defined over K . We say that
C is an isotrivial curve if there is a curve C ′ defined over a finite extension k ′ of K ∩ Fp and a finite
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extension K ′ of K such that

C ×K K ′ ∼= C ′
×k′ K ′.

An outline of the paper is as follows. Throughout this paper, K is a finite extension of Fp(t) as in
Definitions 1.3 ,1.7, and 1.8. In Section 2, we introduce some basic facts about heights, integral points,
and cross ratios that are used throughout the paper. Following that, we prove Theorem 3.1, which says
that if ϕ is a nonisotrivial rational function of degree greater than 1 and β is not exceptional for ϕ, then
ϕ−n(β) is a nonisotrivial set for all sufficiently large n. The proof uses work of Baker [1] and Favre and
Rivera-Letelier [14] to produce elements in ϕ−n(β) whose v-adic cross ratio is not 1 at a place v of bad
reduction. We then apply work of [45] (see also [44]) to give a quick proof of Theorem 1.4 in Section 4.
In Section 5, we begin by proving Corollary 5.3, which states that if the roots of a polynomial F are
distinct and form a nonisotrivial set, then the curve C given by yℓ

= F(x) is a nonisotrivial curve when
ℓ ̸= p is a prime that is small relative to the degree of F . The techniques we use to do this build upon work
in [19]; the idea is to use the adjunction formula to show that the projection map onto the x-coordinate is
the unique map θ : C → P1 of degree ℓ up to change of coordinates on P1 (see Lemma 5.1). We then use
Corollary 5.3 and Theorem 3.1 to show the nonisotriviality of curves associated to ϕ−n(β), where ϕ is a
nonisotrivial rational function of degree greater than 1 and β is not exceptional for ϕ, in Theorem 5.5. In
Section 6, we prove Proposition 6.1, which immediately implies Theorems 1.5 and 1.6; the proof uses
Theorem 3.1 along with height bounds on nonisotrivial curves in characteristic p due to Szpiro [41] and
Kim [25] (see Theorem 6.3). Finally, in Section 7, we present some applications of our results to other
dynamical questions.

We note that the proof of Theorem 3.1 works the same for function fields in characteristic 0 as for
function fields in characteristic p. Theorems 1.4, 1.5, and 1.6 all hold in stronger forms for function
fields in characteristic 0, as proved in [16]; the main difference here is that Yamanoi [46] has proved the
full Vojta conjecture for algebraic points on curves over function fields of characteristic 0 (see [43; 42]),
whereas Theorem 6.3 is weaker than the full Vojta conjecture for algebraic points on curves over function
fields of characteristic p. Analogs of Theorems 1.5 and 1.6 have not yet been proved over number fields,
except in some very special cases (see [3; 47; 33; 31; 32]), but both theorems are implied by the abc
conjecture (see [16]).

2. Preliminaries

In this section we will review some terminology and results on heights, integral points, and dynamics.
For background on heights; see [20; 26; 6]. We set some notation below.

Throughout this paper, K will denote a finite extension of Fp(t) and k will denote the intersection
K ∩ Fp. Equivalently, K is the function field of a smooth, projective curve B defined over k.

2A. Places, heights, and reduction. Let MK be the set of places of K , which corresponds to the set of
closed points of B.
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Since K is a function field, we choose a place p∞ of K , denote

oK = {z ∈ K | vp(z) ≥ 0 for all p ̸= p∞},

and let kp be the residue field oK /p. Also, define the local degree of p to be

Np = [kp : k].

Likewise, for each p ∈ MK we let |·|p be a normalized absolute value such that the product formula∏
p∈MK

|z|p = 1

holds for all z ∈ K ∗. Moreover, we define Kp to be the completion of K with respect to |·|p and define
Cp to be the completion of the algebraic closure of Kp.

For z ∈ K , let h(z) denote the logarithmic height of K . For ϕ ∈ K (z) with deg ϕ = d ≥ 2, let hϕ(z)
denote the Call–Silverman canonical height of z relative to ϕ [13], defined by

hϕ(z) = lim
n→∞

h(ϕn(z))
dn .

We will often write sums indexed by primes that satisfy some condition. These are taken to be primes
of oK . As an example of our indexing convention, observe that∑

vp(z)>0

vp(z)Np ≤ h(z).

We say that a rational function ϕ ∈ K (z) has good reduction at a place p of K if the map it induces
on P1 is nonconstant and well-defined modulo p. More precisely, we write ϕ(x) = f/g, where all the
coefficients of f and g are in (oK )p, and either f or g has at least one coefficient in (oK )∗p. We let fp and
gp denote the reductions of f and g at p. We say that ϕ has good reduction at p if fp and gp have no
common root in the algebraic closure of the residue field of p and deg( fp/gp) = deg ϕ. We say that ϕ

has bad reduction at p if it does not have good reduction at p. This notion is dependent on our choice
of coordinates. We say that ϕ has potentially good reduction at p if there is a finite extension K ′ of K ,
a prime q of K ′ lying over p, and a degree one rational function σ ∈ K ′(z) such that σ ◦ ϕ ◦ σ−1 has
good reduction at q. We say that ϕ has genuinely bad reduction at p if ϕ does not have potentially good
reduction at p.

2B. Integral points. Let S be a nonempty finite subset of MK . The ring of S-integers in K is defined to
be

oK ,S := {z ∈ K : |z|p ≤ 1 for all p /∈ S}.

Given a place p of K and two points α = [x1 : y1] and β = [x2, y2] in P1(Cp), define the p-adic chordal
metric δp by

δp(α, β) =
|x1 y2 − y1x2|p

max{|x1|p, |y1|p} · max{|x2|p, |y2|p}
.
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Note that we always have 0 ≤ δp(α, β) ≤ 1, and that δp(α, β) = 0 if and only if α = β. Then the ring oK ,S

is equivalent to the set which is maximally distant from ∞ outside of S, i.e., the set of z ∈ K such that

δp(z, ∞) = δp([z : 1], [1, 0]) = 1

for all p /∈ S.
We can now extend our definition of S-integrality to any divisor D on P1 that is defined over K .

Definition 2.1. Fix a nonempty finite set of places S ⊂ MK . Let D be an effective divisor on P1 that
is defined over K . Then α ∈ P1(K ) is S-integral relative to D provided that for all places p /∈ S, all
τ ∈ Gal(K/K ), and all β ∈ Supp D, we have

δp(α, τ (β)) = 1.

For affine coordinates [α : 1] ∈ P1(K ) and a divisor D defined over K that does not contain the point
at infinity in its support, the statement that [α : 1] is S-integral relative to D is equivalent to

|α − τ(β)|p ≥ 1 if |τ(β)|p ≤ 1, and

|α|p ≤ 1 if |τ(β)|p > 1

for all p /∈ S, all τ ∈ Gal(K/K ), and all [1 : β] ∈ Supp D.
Let θ be a linear fractional change of coordinate on P1(K ). Then α is S-integral relative to β if and

only if θ(α) is S-integral relative to θ(β) provided we allow an enlargement of S depending only on θ .
We prove a variant of this statement for any θ ∈ K [x] later in the paper. The following is a simple and
standard consequence of our definition of S-integrality (see [39, Corollary 2.4], for example). Recall that
for a point α ∈ P1(K ), the divisor ϕ∗(α) is defined as

∑
ϕ(β)=α eϕ(β/α)β.

Lemma 2.2. Let ϕ ∈ K (x) and S be a set of primes containing all the primes of bad reduction for ϕ.
Then, for any α, γ ∈ P1(K ), we have that ϕ(γ ) is S-integral relative to α if and only if γ is S-integral
relative to ϕ∗(α).

2C. The cross ratio. Let |·| be a non-Archimedean absolute value on a field L . For any distinct
x1, x2, y1, y2 ∈ L we define

(x1, x2; y1, y2) =
|x1 − y2||x2 − y1|

|x1 − y1||x2 − y2|
.

We may extend this to points in x1, x2, y1, y2 ∈ L ∪ ∞ by eliminating the terms involving ∞; for
example,

(∞, x2; y1, y2) =
|x2 − y1|

|x2 − y2|
.

Importantly, for σ ∈ PGL2(L), we have (z1, z2; z3, z4) = (σ z1, σ z2; σ z3, σ z4). This is easily seen by
noting that an element of PGL2(L) is a composition of translations, scaling maps, and the map sending
every element to its multiplicative inverse, and that (z1, z2; z3, z4) is invariant under all these types of
maps.
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We will use the following two lemmas for points x1, x2, y1, y2 ∈ L . The first lemma is immediate.

Lemma 2.3. Suppose that |x1| < |y1| < |x2| < |y2|. Then

(x1, x2; y1, y2) =
|y2||x2|

|y1||y2|
> 1.

Lemma 2.4. Suppose that there are points a1, a2 ∈ L such that |x1 − a1|, |y1 − a1| < |a1 − a2| and
|x2 − a2|, |y2 − a2| < |a1 − a2|. Then

(x1, x2; y1, y2) > 1.

Proof. After a translation, we may assume that a1 = 0. Then |x1|, |y1| < |a2| and |x2|, |y2| = |a2|. Thus,
we have

(x1, x2; y1, y2) =
|a2||a2|

|x1 − y1||x2 − y2|
> 1. □

Remark 2.5. The cross ratio of x1, x2, y1, y2 is often defined without taking absolute values, i.e., as

(x1 − y2)(x2 − y1)

(x1 − y1)(x2 − y2)
.

The advantage of the definition we use is that it extends to points in Berkovich space; see [14]. While we
do not use this extension, it can be used to give a quick proof of our Proposition 3.2. We give a slightly
longer proof that we think may be more accessible for some readers.

3. Nonisotriviality of inverse images

In this section, we will prove the following theorem.

Theorem 3.1. Let ϕ ∈ K (z) have deg ϕ > 1. Suppose that ϕ is not isotrivial and that β is not exceptional
for ϕ. Then for all sufficiently large n the set ϕ−n(β) is not an isotrivial set.

We will derive Theorem 3.1 from the following proposition.

Proposition 3.2. Suppose ϕ ∈ K (z) has genuinely bad reduction at the prime p. Let |·| be an extension
of |·|p to Cp. Then for any nonexceptional α ∈ K , and for all sufficiently large n, there are elements
z1, z2, z3, z4 ∈ ϕ−n(α) such that

(z1, z2; z3, z4) > 1.

Proof. We work over the non-Archimedean complete field Cp, and consider the dynamical system induced
by ϕ on the Berkovich projective line P1,an . We will use some basic facts about the topology of the
Berkovich projective line, including the classification of points as Type I, II, III, or IV; see [2] or [4] for a
detailed description of the topology of the Berkovich projective line.

By [14, Théorème E] (see also [4, Theorem 8.15]), bad reduction implies that the equilibrium measure
ρϕ is nonatomic. Thus, there are four or more points all of the same type (I, II, III, or IV) in the support
of ρϕ .
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Since ρϕ is nonatomic and the inverse images of a nonexceptional point equidistribute with respect to
ρϕ we have the following fact.

Fact 3.3. For any γ in the support of ρϕ , any open subset U containing γ , and any positive integer m,
there is an N such that U ∩ ϕ−n(β) contains m or more points for all n ≥ N .

We also have the following basic facts about the topology of P1,an .

Fact 3.4. Let ξ(a, r), where a ∈ K and r > 0, be a point of Type II or Type III corresponding to the disc
{x ∈ K | |x −a| ≤ r}. Then for any ϵ > 0, there is an open set U ⊂ P1,an with ξ(a, r) ∈ U such that every
point x of Type I in U satisfies r − ϵ < |x − a| < r + ϵ.

Fact 3.5. Let a1 and a2 be any two points of the same type in P1,an , which are not concentric Type II or
III points. Then there exist open sets U1 and U2 with a1 ∈ U1 and a2 ∈ U2 such that U1 ∩ P1(Cp) and
U2 ∩ P1(Cp) are disjoint open discs.

Proof. Since a1 and a2 are not concentric, a1 ∧ a2, the unique point such that [a1, ∞] ∩ [a2, ∞] =

[a1 ∧ a2, ∞], is not equal to a1 or a2; see [14]. Now let Di be the open disc corresponding to any
Type II point in the open interval (ai , a1 ∧ a2), for i = 1, 2. Then there are open sets Ui such that
Ui ∩ P1(Cp) = Di . □

Now suppose that the support of ρϕ contains two nonconcentric points z1, z2 of the same type. Then,
by Facts 3.3 and 3.5, for all sufficiently large n there must be open discs D(a1, r1) and D(a2, r2) with
|a1 − a2| > max{r1, r2} and points x1, x2, y1, y2 ∈ ϕ−n(β) with x1, y1 ∈ D(a1, r1) and x2, y2 ∈ D(a2, r2).
By Lemma 2.4, we have

(x1, x2; y1, y2) > 1,

proving the proposition.
Now suppose that ρϕ contains four concentric points of Type II or Type III, corresponding to closed

discs D(a, ri ), for i = 1, 2, 3, 4, for some fixed a. We suppose that r1 < r2 < r3 < r4, and after an affine
change of coordinates, we may suppose that a = 0. By Facts 3.3 and 3.4, for any ϵ > 0, there must
be an n such that ϕ−n(β) contains points z1, z2, z3, z4 with |zi | within ϵ of ri for each i . Choosing ϵ

appropriately, we will then have |z1| < |z2| < |z3| < |z4|. Then (z1, z3; z2, z4) > 1 by Lemma 2.3. □

Proof of Theorem 3.1. By [1, Theorem 1.9], since ϕ is nonisotrivial, it must have genuine bad reduction
over some prime p. Then we may apply Proposition 3.2 to obtain four points in ϕ−n(β) with cross ratio
greater than one for any sufficiently large n. Since the cross ratio of four points in Fp ∪ ∞ is always 1
and the cross ratio is invariant under change of coordinate, we see then that ϕ−n(β) is a nonisotrivial set
for all sufficiently large n. □

4. Proof of Theorem 1.4

We will use the following theorem due to Wang [45, Theorem in P1(K ), page 337] and Voloch [44].



Isotriviality, integral points, and primitive primes in orbits in characteristic p 1581

Theorem 4.1. Let D be an effective divisor on P1 that is defined over K . If the points in Supp D form a
nonisotrivial set, then the set of points in P1(K ) that are S-integral relative to D is finite.

The corollary below follows easily.

Corollary 4.2. Let ϕ ∈ K (z), let β ∈ K . Suppose that there is some i such that ϕ−i (β) is not an isotrivial
set. Then for any α ∈ K , the forward orbit O+

ϕ (α) contains only finitely many points that are S-integral
relative to β.

Proof. We may extend S to contain all the primes of bad reduction for ϕ. The set of iterates ϕn−i (α) that
are S-integral relative to (ϕi )∗(β) is finite by Theorem 4.1, so by Lemma 2.2, the set of points ϕn(α) that
are S-integral relative to β must be finite. □

The proof of Theorem 1.4 is now easy.

Proof of Theorem 1.4. By Theorem 3.1, there is some i such that ϕ−i (β) is not an isotrivial set. Applying
Corollary 4.2 then gives the desired conclusion. □

5. Nonisotriviality of certain curves

Let π : C → P1 be a separable nonconstant morphism defined over K . We define the ramification locus
of π to be the support of π(Rπ ), where Rπ is the ramification divisor of π . If the ramification locus of π

is an isotrivial set, then it follows from descent theory (see [34], for example) that C must be isotrivial.
On the other hand, given any finite subset U of P1, one can use interpolation to construct a nonconstant
separable morphism f : P1

→ P1 such that the ramification locus of f contains U ; thus, there are isotrivial
curves that admit nonconstant separable morphisms π : C → P1 such that the ramification locus of π is a
nonisotrivial set. We can show, however, that if the degree of π : C → P1 is a prime ℓ ̸= p that is small
relative to the genus of C and the ramification locus of π is a nonisotrivial set, then C must indeed be a
nonisotrivial curve. This enables us to prove Theorem 5.5, which gives rise to diophantine estimates used
in the proofs of Theorems 1.5 and 1.6. The technique here is similar to that of [19]. We begin with a
lemma about uniqueness of low prime degree maps on curves of high genus.

Lemma 5.1. Let C be a curve of genus g over K and let ℓ be a prime such that (ℓ − 1)2 < g and ℓ ̸= p.
Suppose there is morphism θ1 : C → P1 of degree ℓ. Then for any morphism θ2 : C → P1 of degree ℓ,
there is an automorphism λ : P1

→ P1 such that θ2 = λ ◦ θ1.

Proof. Suppose that g > (ℓ − 1)2 and that θ2 : C → P1 is another map of degree ℓ on C . Then we have a
map (θ1, θ2) : C → P1

×P1; let C̃ be the image of this map. If (θ1, θ2) is injective, then C̃ also has genus
g; see [17, Theorem II.8.19]. On the other hand, C̃ is a curve of bidegree (d1, d2) in P1

× P1 for some
di ≤ ℓ. Hence, the Adjunction Formula implies that g ≤ (d1 − 1)(d2 − 1) ≤ (ℓ− 1)2, a contradiction; see
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[17, Example V.1.5.2]. Therefore, (θ1, θ2) is not an injection. However, we have a commutative diagram

C

P1 C̃ P1

θ1
(θ1, θ2)

θ2

π1 π2

where the πi are the restrictions of the natural projections πi : P1
× P1

→ P1 to C̃ . Therefore,

deg(π1) · deg((θ1, θ2)) = deg(θ1) = ℓ = deg(θ2) = deg(π2) · deg((θ1, θ2)).

However, (θ1, θ2) is not injective, so that deg((θ1, θ2)) > 1. Therefore, deg((θ1, θ2)) = ℓ, since ℓ is
prime. Hence, deg(π1) = 1 = deg(π2), and both πi are isomorphisms [35, Corollary 2.4.1]. In particular,
π2 ◦ π−1

1 = λ is a linear fractional transformation, and θ2 = λ ◦ θ1 as claimed. □

Theorem 5.2. Let C be a curve of genus g over K and let ℓ be a prime such that (ℓ − 1)2 < g and ℓ ̸= p.
Suppose there is morphism θ : C → P1 of degree ℓ such that the ramification locus of θ is a nonisotrivial
set. Then C is a nonisotrivial curve.

Proof. Suppose that C is isotrivial; we will prove that this implies that the ramification locus of θ must be
isotrivial. Then for some finite extensions K ′ of K and k ′ of k there is a model C for C ×K K ′ over the
k ′-curve X corresponding to the function field K ′ such that for any place t ∈ X (k ′), the curve Ct ×k(t) L
is isomorphic to C ×K L , where k(t) is the field of definition of t and L = K ′

· k(t). Let P be a model
for P1 over X . Then, for all but finitely many places t ∈ X (k ′), the morphism θ specializes to a degree
ℓ morphism θt : Ct → P1

k(t) defined over k(t). Let θ2 = θt ×k(t) L . Since θ2 : C → P1 has degree ℓ, and
(ℓ−1)2 < g, there is a λ ∈ PGL2(K ) such that θ2 = λ◦θ , by Lemma 5.1. But λ must take the ramification
locus of θ to the ramification locus of θ2, which is defined over k ′. Hence, the ramification locus of θ

must be isotrivial. □

Corollary 5.3. Let F be a polynomial over K without repeated roots such that the roots of F form a
nonisotrivial set. Let ℓ be a prime number such that ℓ ̸= p and ℓ − 1 < deg F/2 − 1. Then the curve C
given by yℓ

= F(x) is not isotrivial.

Proof. Let θ : C → P1 be the map coming from projection onto the x-coordinate. Then deg θ = ℓ. Since
the genus of C is at least (ℓ − 1) deg F/2 − (ℓ − 1) by Riemann–Hurwitz and the ramification locus of
θ includes the roots of F (note: it will be larger than that if θ also ramifies over the point at infinity),
applying Theorem 5.2 shows that C is not isotrivial. □

As mentioned above, there are obvious examples of maps π : C → P1, where C is isotrivial but the
ramification locus of π is not, but we have not found examples of isotrivial curves of the specific form
ym

= F(x), for F a polynomial with distinct roots that form a nonisotrivial set and m is an integer greater
than 1 that is not a power of p.
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Question 5.4. Does there exist an isotrivial curve of the form ym
= F(x), where F is a polynomial with

distinct roots that form a nonisotrivial set and m is an integer greater than 1 that is not a power of p?

Corollary 5.3 and the techniques of [18] can be used to show that when p is odd and m is even, the
answer to Question 5.4 is “no”; we cannot however rule out examples where m is odd or p = 2.

We are now ready to prove a theorem guaranteeing the nonisotriviality of certain curves obtained by
taking inverse images of points under iterates of a nonisotrivial rational function.

Theorem 5.5. Let ϕ ∈ K (x) be a nonisotrivial rational function. Let β ∈ K be nonexceptional for ϕ.
Then for any prime ℓ ̸= p, there is an n such that the curve given by

yℓ
=

∏
γ∈K

ϕn(γ )=β

(x − γ )

(where the product
∏

γ∈K
ϕn(γ )=β

(x − γ ) is taken without multiplicities) is not an isotrivial curve.

Proof. If ∞ /∈ ϕ−n(β) for any n, then this is immediate from Corollary 5.3 and Theorem 3.1. Otherwise,
since degs ϕ > 1 (because purely inseparable rational functions are isotrivial) and β is not exceptional for
ϕ, there is some m such that ϕ−m(β) contains at least three points. Thus, there is some point β ′

∈ ϕ−m(β)

such that ∞ /∈ϕ−n(β ′) for any n. Then there is some m′ such that ϕ−m′

(β ′) is not isotrivial by Theorem 3.1,
and since the set of points other than ∞ in ϕ−(m+m′)(β) contains ϕ−m′

(β ′), this set is nonisotrivial as
well, so the curve given by

yℓ
=

∏
γ∈K

ϕm+m′
(γ )=β

(x − γ )

is not an isotrivial curve for all m large enough so that ϕ−(m+m′)(β) contains more than 2ℓ+ 1 points, by
Corollary 5.3. □

Hindes conjectured [18, Conjecture 3.1] that when ϕ is a nonisotrivial polynomial of degree prime to
p and β is not postcritical for ϕ, then for some n and some ℓ prime to p, the curve

yℓ
=

∏
γ∈K

ϕn(γ )=β

(x − γ )

is not isotrivial. Theorem 5.5 answers this with many of the hypotheses removed. Note that by taking
the product without multiplicities, we essentially remove the issue of β being postcritical. We note that
Ferraguti and Pagano have proved Theorem 5.5 in the special case where ϕ is a quadratic polynomial,
ℓ = 2, and p ̸= 2; see [15, Theorem 2.4].

6. Proof of Theorems 1.5 and 1.6

Theorems 1.5 and 1.6 will both follow from the following more general statement.
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Proposition 6.1. Let f ∈ K [x] be nonisotrivial with deg f > 1 and let ℓ ̸= p be a prime number. Let
α, β ∈ K where β /∈ O+

ϕ (α) and α is not preperiodic. Suppose that for some r , there is a γ ∈ f −r (β)

such that γ is neither postcritical nor periodic and such that e f r (γ /β) is prime to ℓ. Then Z( f, α, β, ℓ)

is finite.

We will prove Proposition 6.1 by combining effective forms of the Mordell Conjecture over func-
tion fields (see 6.3) with Theorem 5.5 and the following lemma from [10, Lemma 5.2]; see also [16,
Proposition 5.1]. Note that while this lemma is stated in characteristic 0 in [10], the proof is the same
word-for-word for finite extensions of Fp(t).

Lemma 6.2. Let f ∈ K [x] with d = deg( f ) ≥ 2. Let α ∈ K with h f (α) > 0. Let γ1, γ2 ∈ K such that
γ2 /∈ O f (γ1) and γ1 /∈ O f (α). For n > 0, let X (n) denote the set of primes p of oK such that

min(vp( f m(α) − γ1), vp( f n(α) − γ2)) > 0

for some 0 < m < n. Then for any ϵ > 0, we have∑
p∈X (n)

Np ≤ ϵdnh f (α) + Oϵ(1).

for all n.

The next result we use follows from (any of the) effective forms of the Mordell Conjecture over
function fields [25; 27; 41]. To make this precise, we need some terminology. Let C be a curve over K
and let P ∈ C be a point on C defined over some finite extension K (P)/K . Then we let hKC (P) denote
the logarithmic height of P with respect to the canonical divisor KC of C and let

dK (P) =
2g(K (P)) − 2
[K (P) : K ]

denote the logarithmic discriminant of P; here g(K (P)) is the genus of K (P). Then we have the
following height bounds for rational points on nonisotrivial curves due to Szpiro [41] and Kim [25].

Theorem 6.3. Let C be a nonisotrivial curve of genus at least two over a finite extension K of Fp(t).
Then there are constants B1 > 0 and B2 (depending only on C) such that

hKC (P) ≤ B1dK (P) + B2 (6.3.1)

holds for all P ∈ C.

Remark 6.4. The first of these bounds (with explicit B1 and B2 in the semistable case) are due to Szpiro
[41, Section 3], and the best possible bounds (i.e., with smallest possible B1) are due to Kim [25]. Strictly
speaking, the bound in [41, Section 3] is stated for semistable curves. However, one may always pass to a
finite extension L/K over which C is semistable [41, Section 1] and thus obtain bounds of the form in
(6.3.1). Likewise, the bound in [25] is stated for curves with nonzero Kodaira–Spencer class. However,
the general nonisotrivial case follows from this one as follows. Assuming that C/K is nonisotrivial and
char(K ) = p, there is an inseparability degree r = pe and a separable extension L/K such that C is
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defined over Lr and that the Kodaira–Spencer class of C over Lr is nonzero; see [41, pages 51–53]. Now
apply Kim’s theorem to C/Lr . In either case, Castelnuovo’s inequality [40, Theorem 3.11.3] applied to
the composite extensions L(P) = L K (P) or Lr (P) = Lr K (P) may be used to appropriately alter B1

and B2 to go from bounds with dL or dLr back to those with dK .

Before we apply the height bounds for points on curves from Theorem 6.3 to dynamics, we need the
following elementary observation about valuations and powers.

Lemma 6.5. Let K/Fp(t) be finite extension and let ℓ ̸= p be a prime. Then there is a finite extension L
of K such that if u is any element of K with the property that ℓ | vp(u) for all primes p of K , then u is an
ℓ-th power in L.

Proof. Suppose that u ∈ K is such that ℓ | vp(u) for all primes p of K . Then the divisor (u) = ℓDu for
some divisor Du ∈ Div0(K ) of degree 0. Hence, the linear equivalence class of Du is an ℓ-torsion class
in Cl0(K ), the group of divisor classes of degree 0. In particular, there are only finitely many possible
linear equivalence classes for Du by [40, Proposition 5.1.3]. Thus, there is a finite set S of u ∈ K , each
satisfying (u) = ℓDu for some Du ∈ Div0(K ), such that for any u′

∈ K with (u′) = ℓDu′ for a divisor
Du ∈ Div0(K ), the divisor Du′ is linearly equivalent to Du for some u ∈ S. Let L ′ be the finite extension
of K generated by the ℓ-th roots of the elements of S. Now if u and u′ are two such elements of K as
above such that Du and Du′ are linearly equivalent, then Du − Du′ = (wu,u′) for some wu,u′ ∈ K . Hence,
u/u′

= cu,u′wℓ
u,u′ for some cu,u′ in the field of constants of K . In particular, there are only finitely many

possible such cu,u′ since the field of constants of K is finite. Adjoining the ℓ-th roots of these cu,u′ to L ′

gives a finite extension L of K . □

Lemma 6.6. Let S be a finite set of primes of K , let F ∈ oK ,S[z] be a polynomial without repeated roots
and let ℓ ̸= p be a prime such that C : yℓ

= F(x) is a nonisotrivial curve of genus g(C) > 1. Then there
are constants r1 > 0 and r2 (depending on F , ℓ, K , and S) such that∑

vp(F(a))>0
ℓ∤vp(F(a))

Np ≥ r1h(a) + r2 (6.6.1)

holds for all a ∈ oK ,S .

Proof. Suppose that C : yℓ
= F(x) is a nonisotrivial curve of genus g(C) > 1. Then given a ∈ oK ,S , we

let ua := F(a) and choose a corresponding point Pa = (a, ℓ
√

ua) on C . From here, we proceed in cases.
Suppose first that ℓ | vp(ua) for all primes p of K . Then by Lemma 6.5 there exists a finite extension

L/K (independent of a) such that ua is an ℓ-th power in L . In particular, since we may assume that L
contains a primitive ℓ-th root of unity, K (Pa) ⊆ L . Therefore, (6.3.1) implies that hKC (Pa) is absolutely
bounded. However, the canonical divisor class is ample in genus at least 2, so that the set of possible
points Pa is finite in this case. Therefore, h(a) is bounded and (6.6.1) holds trivially (take r1 = 1 and
choose r2 to be sufficiently negative).
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Now suppose that there exists a prime p of K such that ℓ∤vp(ua). Then we may apply the genus
formula in [40, Corollary 3.7.4] to deduce that

dK (Pa) = 2g(K ) − 2 +
1
ℓ

∑
p

(ℓ − gcd(ℓ, vp(ua)))Np

= 2g(K ) − 2 +

(
ℓ − 1

ℓ

) ∑
vp(ua)>0
ℓ∤vp(ua)

Np +

(
ℓ − 1

ℓ

) ∑
vp(ua)<0
ℓ∤vp(ua)

Np

≤ 2g(K ) − 2 +

(
ℓ − 1

ℓ

) ∑
vp(ua)>0
ℓ ∤vp(ua)

Np +

(
ℓ − 1

ℓ

) ∑
p∈S

Np, (6.6.2)

since the only way that ua := F(a) can have negative valuation at p is if p ∈ S. However, this is a finite
set of primes. Therefore, (6.6.2) implies that

dK (Pa) ≤

(
ℓ − 1

ℓ

) ∑
vp(F(a))>0
ℓ∤vp(F(a))

Np + OK ,S(1). (6.6.3)

On the other hand, if π : C → P1 is the map given by projection onto the x-coordinate, then π pulls
back a degree one divisor on P1 (yielding the Weil height on P1) to a degree ℓ divisor on C . Hence, the
algebraic equivalence of divisors and [37, Theorem III.10.2] (see also [26, Section 4.3]) together imply
that

lim
hKC (P)→∞

h(π(P))

hKC (P)
=

ℓ

2g(C) − 2
.

In particular, we may deduce that

h(a) ≤
(1 + ϵ)ℓ

(2g(C) − 2)
hKC (Pa) + OK ,F,ℓ,ϵ(1) (6.6.4)

for all ϵ > 0 and all a ∈ K (not just a ∈ oK ,S). Finally, by choosing ϵ = 1 and combining (6.3.1), (6.6.3),
and (6.6.4), we see that there are constants r1 > 0 and r2 (depending on F , ℓ, K , and S) such that∑

vp(F(a))>0
ℓ∤vp(F(a))

Np ≥ r1h(a) + r2

holds for all a ∈ oK ,S . In particular, after replacing r1 and r2 with the minimum of the corresponding
constants from the first and second cases above, we prove Lemma 6.6. □

Lemma 6.7. Let f ∈ K [z] be a nonisotrivial polynomial with deg f = d > 1 and let α, γ ∈ K where γ is
not postcritical. Then for any prime ℓ ̸= p, there is a δ > 0 such that for all sufficiently large n, we have∑

vp( f n(α)−γ )>0
ℓ∤vp( f n(α)−γ )

Np ≥ δdnh f (α). (6.7.1)
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Proof. Let S be finite set of primes such that α, γ , and all the coefficients of f are in oK ,S . Then
f n(α) ∈ oK ,S for all m. By Theorem 5.5, there is an m such that the curve given by

yℓ
=

∏
β∈K

f m(β)=γ

(x − β)

is not an isotrivial curve. There is an ω ∈ K (the leading term of f m(z) − γ ) and an e (coming from the
degree of inseparability of f ℓ) such that

f m(z) − γ = ω
∏
β∈K

f m(β)=γ

(z − β)pe
.

Let
F(z) =

∏
β∈K

f m(β)=γ

(z − β).

Applying Lemma 6.6 with a = f n−m(α) we see that since ℓ ̸= p, we have constants r1, r2 such that∑
vp( f n(α)−γ )>0
ℓ∤vp( f n(α)−γ )

Np ≥

( ∑
vp(F(a))>0
ℓ∤vp(F(a))

Np

)
− h(ω) ≥ r1h( f n−m(α)) + r2 − h(ω).

Since |h f − h| ≤ O(1) and h f ( f n−m(α)) = dn−mh f (α), we see that there is a constant r3 such that∑
vp( f n(α)−γ )>0
ℓ∤vp( f n(α)−γ )

Np ≥ r1dn−mh f (α) + r3

for all n. Choosing a δ such that 0 < δ < r1/dm then gives∑
vp( f n(α)−γ )>0
ℓ∤vp( f n(α)−γ )

Np ≥ δdnh f (α)

for all sufficiently large n, as desired. □

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. We first note it suffices to prove this after passing to a finite extension of K
since ℓ ̸= p. To see this, let L be a finite extension of K , let Ls denote the separable closure of K in
L , and let q be a prime in L lying over a prime p of K . Then vq( f n(α) − β) = [L : Ls

]vp( f n(α) − β)

unless p is in the finite set of primes of K that ramify in Ls . We also note that h f (α) > 0 since α is not
preperiodic and f is not isotrivial, by [1, Corollary 1.8].

We change coordinates so that β = 0. Let r be the smallest positive integer such that f r (γ ) = 0. After
passing to a finite extension we may assume that all the roots of f r (z) are in K . Let e = e f r (γ /β) and
write

f r (z) = (z − γ )eg(z).
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Then for all but finitely many primes p of K we have

vp( f n+r (α)) = evp( f n(α) − γ ) (6.7.2)

for all n.
Since γ is not postcritical, by Lemma 6.7, there exists δ > 0 such that for all sufficiently large n, we

have ∑
vp( f n(α)−γ )>0
ℓ∤vp( f n(α)−γ )

Np ≥ δdnh f (α). (6.7.3)

Let W be the roots of f r (z) that are not roots of f r ′

(z) for any r ′ < r . Let S1 be the set of primes
of bad reduction for f and let S2 be the set of primes such that vp( f r ′

(w)) > 0 for some r ′ < r and
some w ∈ W ∪ {α}. Now, for each n, let Y(n) be the set of primes p such that vp( f n(α) − γ ) > 0
and vp( f n′

(α)) > 0 for some n′ < n + r . If p /∈ S1 ∪ S2 for p ∈ Y(n), then vp( f m(α)) − γ ′) > 0 for
some γ ′

∈ W and some m < n; this follows from the fact that if s ≥ r is the smallest integer such that
vp( f s(α)) > 0, then vp( f s−r (α) − γ ′) > 0 for some γ ′

∈ W . Thus, since γ is not in the forward orbit of
α (since β /∈ O+

ϕ (α) by assumption) or of any element of W (since it is not periodic) and the sets W , S1,
and S2 are all finite, we may apply Lemma 6.2 to each element of W . We obtain∑

p∈Y(n)

Np ≤
δ

2
dnh f (α) (6.7.4)

for all sufficiently large n. Combining (6.7.4) with (6.7.2) and (6.7.3), we see that for all sufficiently large
n, there is a prime p such that

• vp( f n(α) − γ ) > 0;

• ℓ ∤vp( f n(α) − γ );

• vp( f n′

(α)) = 0 for all 0 < n′ < n; and

• vp( f n+r (α)) = evp( f n(α) − γ ).

Since e is prime to ℓ, it follows that the Zsigmondy set Z( f, α, β, ℓ) is finite. □

7. Applications

The original Zsigmondy theorem [3; 47] had to do with orders of algebraic numbers modulo primes. We
can treat a related dynamical problem; here we will not assume nonisotriviality. We begin with some
notation and terminology. If α ∈ K is an integer at a prime p, we let αp ∈ kp be its reduction at p. If
f ∈ K [x], and all of the coefficients of f are integers at p, we let fp ∈ kp[x] be the reduction of f at p
obtained by reducing each coefficient of f at p. If g : U → U is any map from a set to itself and u ∈ U is
periodic under g, then the prime period of u for g is the smallest positive integer m such that gm(u) = u.
We say that a polynomial f ∈ K [x] is additive if f (α + β) = f (α) + f (β) for all α, β ∈ K .
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Theorem 7.1. Let f be a polynomial of degree greater than 1 and let α ∈ K be a point that is not
preperiodic for f . If f is not both isotrivial and additive, then for all but finitely many positive integers
n, there is a prime p such that the prime period of αp for fp is equal to n. If f is isotrivial and additive,
then for all but finitely many positive integers n that are not a power of p, there is a p such that the prime
period of αp for fp is equal to n.

Proof. If f is not isotrivial, this follows immediately from Theorem 1.6 by letting α = β. If f is isotrivial,
then after a change of coordinates, we may assume that f ∈ k[x] and α ∈ K \ k for some finite extension
k of Fp. If f is not additive then for all but finitely many positive integers n, there exists βn ∈ k̄ having
prime period n for f , by [30, Theorem]. For each such βn , there exists pn such that αpn = βn , so we see
that for all but all but finitely many positive integers n, there exists p such that the prime period of αp for
fp is equal to n. If f is additive, then for all but finitely many positive integers n that are not a power of
p, there exists βn ∈ k̄ having prime period n for f , by [30, Theorem]. Then, as in the nonadditive case,
we may choose pn such that αpn = βn . □

Theorem 1.4 allows one to prove characteristic p analogs of various results that rely on the results
of [36]. For example, the proofs of Theorems 4 and 5 of [5] extend easily to the case of nonisotrivial
rational functions over a function field in characteristic p, using Theorem 1.4. Similarly, one can use
Theorem 1.4 to prove Theorem 4 of [11] with the additional hypothesis that at least one of the wandering
critical points of ϕ has a ramification degree that is not a power of p.

We will now prove a few results about unicritical polynomials that rely on Theorem 1.5, which is not
available over number fields.

The following lemma is very similar to [9, Proposition 3.1]; we include the proof for a sake of
completeness.

Lemma 7.2. Let f (x) = xd
+ c where d is an integer greater than 1 that is not divisible by p, let β ∈ K ,

and let n be a positive integer. Let p be any prime of K such that

(i) |c|p ≤ 1;

(ii) |β|p ≤ 1; and

(iii) | f m(0) − β|p = 1 for all 0 ≤ m ≤ n.

Then p does not ramify in K ( f −n(β)).

Proof. We proceed by induction. The case where n = 1 follows immediately from taking the discriminant
of xd

+ (c − β). Now, let p be a prime satisfying (i)–(iii) for some n ≥ 2. Then it also satisfies them for
n − 1, so by the inductive hypothesis, the prime p does not ramify in K ( f −(n−1)(β)). Now, K ( f −n(β))

is obtained from K ( f −(n−1)(β)) by adjoining elements of the form d
√

γi − c for f n−1(γi ) = β. For any
prime q in K ( f −(n−1)(β)) lying over p, we see that |γi |q ≤ 1 by (i) and (ii). We also have |γi |q ≥ 1
since otherwise γ would be in the same residue class as 0, which contradicts (iii). Thus, each q in
K ( f −(n−1)(β)) lying over p does not ramify in any K ( f −(n−1)(β))( d

√
γi − c) = K ( f −n(β)). Since each



1590 Alexander Carney, Wade Hindes and Thomas J. Tucker

such q does not ramify over p by the inductive hypothesis, it follows that p does not ramify in K ( f −n(β)),
as desired. □

The next lemma follows a proof that is similar to that of [9, Proposition 3.2] and [11, Theorem 5].

Lemma 7.3. Let f (x) = xd
+ c where c ∈ K \ k where d is an integer greater than 1 that is not divisible

by p. Let β ∈ K , let ℓ ̸= p be a prime number, and let e be a positive integer such that ℓe divides d.
Suppose that p is a primitive ℓ-divisor of f n(0) − β such that |c|p = |β|p = 1. Then for any prime p′ in
K ( f −(n−1)(β)) that lies over p, there is a prime q in K ( f −n(β)) such that ℓe divides e(q/p′).

Proof. Let p′ be a prime in K ( f −(n−1)(β)) lying over p. By Lemma 7.2, the prime p does not ramify in
K ( f −(n−1)(β)), so vp′(z) = vp(z) for all z ∈ K . Since f n(0) − β =

∏
f n−1(γ )=β( f (0) − γ ), we see that

there is some γ ∈ f −(n−1)(β) such that ℓ ∤vp′(c − γ ). Thus, if q is a prime of K ( f −(n−1)(β))( d
√

c − γ )

lying over p′, we see that ℓe
| e(q/p′). □

Using the Lemmas above, we can prove a result for separable nonisotrivial polynomials of the form
xd

+ c that is a special case of a characteristic p analog of [9, Theorem 1.1]. Note that if f (x) = xd
+ c

and d is not divisible by p, then f is isotrivial if and only if c ∈ Fp. To see this, note that h f (0) =
h(c)

d > 0
when c /∈ Fp, as can be seen by simply considering the orbit of f at the places v where |c|v > 1. Therefore,
if c /∈ Fp, then f has a critical point that is not preperiodic, and hence f cannot be isotrivial. We note
also that a polynomial of the form xd

+ c is separable if and only if p ∤d .

Theorem 7.4. Let f (x) = xd
+ c be a separable nonisotrivial polynomial of degree d > 1. Let β ∈ K .

Then for all sufficiently large n, there is a prime p of K such that p ramifies in K ( f −n(β)) but not in
K ( f −(n−1)(β)).

Proof. Since 0 is not periodic and every point in K other than β = c has d > 1 distinct preimages under f ,
we see that for any β ̸= c, there is a γ ∈ f −1(β) meeting the conditions of Proposition 6.1. Furthermore,
we note that if β = c, then f −n(β) = f −(n−1)(0) for all n > 0, so it suffices to prove the result for β = 0;
thus, we need only treat the case where β ̸= c.

Let ℓ ̸= p be a prime dividing d. By Proposition 6.1, for all sufficiently large n, there is a prime p

such that vp( f n(0) − β) > 0 with ℓ ∤vp( f n(0) − β) and vp( f m(0) − β) = 0 for all 0 < m < n. Since
|c|p = |β|p = 1 for all but finitely many p we may also suppose that |c|p = |β|p = 1. Then, by Lemma 7.2,
the prime p does not ramify in K ( f −(n−1)(β)). By Lemma 7.3, it does ramify in K ( f −n(β)). □

The next result is a characteristic p analog of a theorem of Pagano [29, Theorem 1.3] for number fields
(see also [8] for a similar result); the growth condition here is stronger than what Pagano obtains over
number fields.

Theorem 7.5. Let f (x) = xd
+ c be a separable nonisotrivial polynomial of degree d > 1. Let β ∈ K .

Then there is a constant C(n, β) > 0 such that [K ( f −n(β)) : K ] > C(n, β)dn for all positive integers n.

Proof. It will suffice to show that d divides [K ( f −n(β)) : K ( f −(n−1)(β))] for all sufficiently large n. Let
ℓ be a prime such that ℓe

| d for some e > 0. Applying Proposition 6.1 as in Theorem 7.4, we see that for
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all sufficiently large n, there is a prime p with the property |c|p = |β|p = 1 such that vp( f n(0)−β) > 0
with ℓ∤vp( f n(0) − β) and vp( f m(0) − β) = 0 for all 0 < m < n. Then Lemma 7.3 implies that for
any prime p′ in K ( f −(n−1)(β)) that lies over p, there is a prime q in K ( f −n(β)) such that ℓe divides
e(q/p′). Hence ℓe

| [K ( f −n(β)) : K ( f −(n−1)(β))]. Since this holds for any prime ℓ ̸= p such that ℓe
| d

for some e > 0, it follows that d | [K ( f −n(β)) : K ( f −(n−1)(β))] for all sufficiently large n, and our proof
is complete. □

We can now prove a finite index result for iterated monodromy groups of quadratic polynomials. We
need a little terminology to state our result.

Let L be a field, let f be a quadratic polynomial, and let β ∈ L . For n ∈ N, let Ln( f, β) = L( f −n(β))

be the field obtained by adjoining the n-th preimages of β under f to L(β), and let L∞( f, β) =⋃
∞

n=1 Ln( f, β). We let G∞(β) = Gal(L∞( f, β)/L). The group G∞(β) embeds into Aut(T 2
∞

), the
automorphism group of an infinite 2-ary rooted tree T 2

∞
(note that all of the definitions here generalize to

rational functions of any degree — see [28] or [23], for example). Boston and Jones [7] asked if G∞(β)

had finite index in Aut(T 2
∞

) whenever f is not postcritically finite in the case where L is a number field.
It was later shown [24] that this is true if the pair ( f, β) is eventually stable (see below), assuming the
abc conjecture. This was also shown to be true unconditionally for nonisotrivial quadratic polynomials
over function fields of characteristic 0 in [12].

For β ∈ L and a polynomial f ∈ L[x], the pair ( f, β) is said to be eventually stable if the number
of irreducible factors of f n(x) − β over L(β) is bounded independently of n as n → ∞ (stability and
eventual stability can also be defined for rational functions as in [22]). We will prove a finite index
result for nonisotrivial quadratic polynomials over function fields of odd positive characteristic under an
eventual stability assumption.

The technique we use is the same as that used in [12]; see also [24; 10; 19]. We make use of [12,
Proposition 7.7], which is stated in characteristic 0 but is true with no changes in the proof in characteristic
p provided that K ( f −n(β)) is separable over K for all n, which is automatic here when p > 2; the
following result is a strengthening of [18, Corollary 1].

Theorem 7.6. Let f be a nonisotrivial quadratic polynomial defined over a field K that is a finite extension
of Fp(t). Suppose that p > 2 and that β is not postcritical or periodic for f . Suppose furthermore that
the pair ( f, β) is eventually stable. Then G∞(β) has finite index in Aut(T 2

∞
).

Proof. As in [12], it will suffice to show that for all sufficiently large N , we have

Gal(KN /KN−1) ∼= C2N

2 ,

where C2 is the cyclic group with two elements. After a change of variables, we may assume that
f (x) = x2

+ c for some c ∈ K \ k.
Since ( f, β) is eventually stable, there is an m such that f m(x)−β = (x −γ1) · · · (x −γ2m ) for γi with

the property that f n(x)−γi is irreducible over K (γi ) for all n for i = 1, . . . , 2m , by [10, Proposition 4.2].
Let L = K (γ1, . . . , γ2m ). It follows from [12, Proposition 7.7] and Lemma 7.3 (see Remark 7.7) that we
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must have Gal(Kn+m/Kn+m−1) ∼= [C2]
2m+n

whenever there are primes pi of L , for i = 1, . . . , 2m , such
that

(i) vpi (c) = vpi (γ j ) = 0 for j = 1, . . . , 2m ;

(ii) 2∤vpi ( f n(0) − γi );

(iii) vpi ( f n′

(0) − γi ) = 0 for all n′ < n;

(iv) vpi ( f n′

(0) − γ j ) = 0 for all n′
≤ n and j ̸= i ; and

(v) pi does not ramify over pi ∩ K .

Note that conditions (i) clearly holds for all but finitely many primes pi . Likewise, (v) holds for all but
finitely many primes due to the separability of L over K , which follows from the fact that f is quadratics
and p ̸= 2. Hence, we will be done if we can show that for all sufficiently large n, there are pi , for
i = 1, . . . , 2m , that satisfy conditions (ii), (iii), and (iv).

Now, fix a γi . By Lemma 6.7, there exists δ > 0 such that for all sufficiently large n, we have∑
vp( f n(0)−γi )>0
2∤vp( f n(0)−γi )

Np ≥ δdnh f (0). (7.6.1)

For any n, let X (n) be the set of primes p such that vp( f n(0)−γi ) > 0 and vp( f n′

(0)−γi ) > 0 for some
n′ < n. Since γi is neither periodic nor postcritical and h f (0) > 0, we may apply Lemma 6.2. We see
then that for all sufficiently large n, we have∑

p∈X (n)

Np ≤
δ

3
dnh f (0). (7.6.2)

For any n and j ̸= i , we let Y j (n) be the set of primes vp( f n(0) − γi ) > 0 and vp( f n′

(0) − γ j ) > 0 for
some n′

≤ n. Since f n′

(γ j ) ̸= γi for all n′ and i ̸= j , we may apply Lemma 6.2 again. Since in addition
we have vp(γi −γ j ) ̸= 0 for all but finitely many p when i ̸= j , we see that for all sufficiently large n, we
have ∑

j ̸=i

∑
p∈Y j (n)

Np ≤
δ

3
dnh f (0). (7.6.3)

Since δh f (0) > 0, Equations (7.6.1), (7.6.2), and (7.6.3) imply that for any sufficiently large n, there is a
prime pi satisfying conditions (ii), (iii), and (iv), and our proof is complete. □

Remark 7.7. We note that while conditions (i) and (ii) above are weaker as stated than Condition R from
[12, Definition 7.2], they do imply that the prime pi ramifies in K ( f −n(γi )) (by Lemma 7.3), which is
what [12, Proposition 7.7] requires.

It should also be possible to prove a finite index result along the lines of Theorem 7.6 more generally
for nonisotrivial polynomials of the form xd

+ c, where d > 2 and p ∤d by modifying techniques in [12]
and combining them with our argument for Theorem 7.5 above.
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Operations in connective K-theory
Alexander Merkurjev and Alexander Vishik

We classify additive operations in connective K-theory with various torsion-free coefficients. We discover
that the answer for the integral case requires understanding of the Ẑ case. Moreover, although integral
additive operations are topologically generated by Adams operations, these are not reduced to infinite
linear combinations of the latter ones. We describe a topological basis for stable operations and relate it to
a basis of stable operations in graded K-theory. We classify multiplicative operations in both theories
and show that homogeneous additive stable operations with Ẑ-coefficients are topologically generated by
stable multiplicative operations. This is not true for integral operations.

1. Introduction

Let k be a field of characteristic 0. An oriented cohomology theory A∗ over k is a functor from the
category Smop

k of smooth quasiprojective varieties over k to the category of Z-graded commutative
rings equipped with a push-forward structure and satisfying certain axioms. In this article, we study the,
so-called, small theories. For these, the appropriate choice is [Vishik 2019, Definition 2.1], which employs
a strong form of the localization axiom and is some breed of the axioms of Panin and Smirnov [Panin
2004, Definition 1.1.7] and that of Levine and Morel [2007, Definition 1.1.2]. In particular, every oriented
cohomology theory A∗ admits a theory of Chern classes cA

n of vector bundles. Among such theories there
is the universal one — the algebraic cobordism of Levine and Morel �∗ [2007]. We will work with the
free theories, i.e., theories obtained from �∗ by a change of coefficients. These are exactly the theories of
rational type for which the results of Vishik [2019] apply.

Examples of free oriented cohomology theories are:

• Chow theory CH∗ that assigns to a smooth variety X over k the Chow ring CH∗(X);

• Graded K-theory K ∗gr that takes X to the Laurent polynomial ring K0(X)[t, t−1
] (graded by the

powers of the Bott element t of degree −1) over the Grothendieck ring K0(X);

• Connective K-theory that takes a smooth variety X to the ring CK∗(X) of X (see [Cai 2008; Dai and
Levine 2014]).
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The connective K-theory is the “smallest” oriented cohomology theory “living” above Chow theory
and graded K-theory: there are natural graded morphisms

CK∗(X)

xx &&

CH∗(X) K ∗gr(X)

that yield graded isomorphisms

CK∗(X)/t CK∗+1(X)
∼
−→ CH∗(X) and CK∗(X)[t−1

]
∼
−→ K ∗gr(X).

Moreover, multiplication CKn+1(X)
t
−→CKn(X) by the Bott element t ∈ CK−1(k) is an isomorphism

if n < 0. The map CK0(X)→ K 0
gr(X)= K0(X) is also an isomorphism, so we can identify CKn(X) with

K0(X) for all n ⩽ 0.
For any n ⩾ 0, the image of CKn(X)

tn

−→CK0(X)= K0(X) is the subgroup K (n)
0 (X)⊂ K0(X) generated

by the classes of coherent OX -modules with codimension of support at least n. Note that the map tn may
not be injective in general if n > 1.

Let A∗ and B∗ be two oriented cohomology theories. An additive operation G : A∗→ B∗ is a morphism
between functors A∗ and B∗ considered as contravariant functors from Smk to the category of abelian
groups. Examples of additive operations are Adams operations in algebraic K-theory and Steenrod
operations in the Chow groups modulo a prime integer.

If A∗ is an oriented cohomology theory and R is a commutative ring, we write An
R(X) for An(X)⊗Z R

and OP n,m
R (A) for the R-module of R-linear operations An

R→ Am
R .

It is proved in [Vishik 2019, §6.3] that every free oriented cohomology theory A∗ admits the Adams
operations 9 A

m ∈OP n,n
R (A) for all n and m. The operation 9 A

m in OP 1,1
R (A) satisfies

9 A
m (c

A
1 (L))= cA

1 (L
⊗m)

for a line bundle L . Moreover, there is an R-linear map

Adn : R[[x]] →OP n,n
R (A)

taking the power series (1− x)m to the Adams operation 9 A
m for all m ∈ Z.

In general, the map Adn is neither injective nor surjective — see below. But it is shown in [Vishik
2019, §6.1] that Adn is an isomorphism if A∗ is the graded K-theory, thus,

OP n,n
R (Kgr)≃ R[[x]].

Since the power series (1 − x)m generate R[[x]] as a topological R-module in the x-adic topology,
we can say that the R-module OP n,n

R (Kgr) is topologically generated by the Adams operations in the
graded K-theory. Moreover, since multiplication by the Bott element is an isomorphism in K ∗gr, we have
OP n,m

R (Kgr)= R[[x]] · tn−m .
In the present paper, we study the groups OP n,m

R := OP n,m
R (CK) of operations in the connective

K-theory over R. We write, for simplicity, OP n,m for OPn,m
Z .
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The groups CKn(X) for n ⩽ 0 are identified with K0(X), hence translating the above result on the
operations in graded K-theory, we see that Adn : R[[x]] →OP n,n

R is an isomorphism for n ⩽ 0.
The Adams operation 90 is trivial on CKn

R for n ⩾ 1, i.e., Adn(1)= 0, so we consider the restriction
Ad′n : x R[[x]] → OP n,n

R of the map Adn . The R-module CK1
R(X) is a canonical direct summand via

multiplication by t of CK0
R(X)= K0(X)R with the complement R · 1. This leads to a ring isomorphism

OP 0,0
R ≃ R×OP 1,1

R . Moreover, the map Ad′1 : x R[[x]] →OP 1,1
R is an isomorphism.

The structure of the groups OP n,n
R , with n > 1, is much more delicate and depends on the base ring R.

The homomorphisms Ad′n : x R[[x]] →OP n,n
R for n ⩾ 2 are not surjective in general.

It came as a surprise to us that the structure of OP n,n
R is very simple over the ring of profinite integers

Ẑ= lim(Z/nZ):

Theorem. The map Ad′n : xẐ[[x]]→OP n,n
Ẑ

is an isomorphism if n ⩾ 1. In particular, the Ẑ-module OP n,n
Ẑ

is topologically generated by the Adams operations.

Over Z, the map Ad′n is not surjective if n ⩾ 2.

Theorem. The group OP n,n of integral operations is isomorphic, canonically, to a subgroup of OP n,n
Ẑ

.
Moreover, there is an exact sequence

0→ xZ[[x]]
Ad′n
−−→OP n,n

→ (Ẑ/Z)n−1
→ 0

if n ⩾ 1.

Thus, the group Ẑ also shows up in the computation of OP n,n over Z. For example, OP 2,2 as a
subgroup of OP 2,2

Ẑ
= xẐ[[x]] is generated by xZ[[x]] and the power series

∑
i>0((c−ci )/ i)x i for all c ∈ Ẑ

and integers ci such that c− ci is divisible by i for all i > 0, i.e., ci in Z represents congruence class of c
modulo i .

We prove that the rings OP n,n and OP n,n
Ẑ

are commutative. Moreover, the rings OP n,n are “almost”
integral domains: the only zero divisors are the multiples of 91±9−1.

An operation G : A∗ → B∗ is called multiplicative if G is a morphism of functors Smk → Rings.
Examples are twisted Adams operations 9c

b , defined as follows: Let b ∈ Ẑ and c ∈ Ẑ×. Then the
operation 9c

b is homogeneous and equal to c−n
·9bc on CKn

Ẑ
, where 9bc is the (generalized) Adams

operation with the power series (1− x)bc. We classify all multiplicative operations on CK∗
Ẑ

in Section 5.
The notion of “stability” in topology can be considered in an algebraic setting as follows (see [Vishik

2019, §3.1]): Let SmOp be a category whose objects are pairs (X,U ), where X ∈ Smk and U is an open
subvariety of X . Any theory A∗ extends from Smk to SmOp by the rule

A∗((X,U )) := Ker(A∗(X)→ A∗(U )),

and every additive operation A∗→ B∗ on Smk extends uniquely to an operation on SmOp. There is an
identification

σ A
T : A∗((X,U ))

∼=
−→ A∗+1(6T (X,U )),

where 6T (X,U ) := (X,U )∧ (P1,P1
\0)=

(
X ×P1, X × (P1

\0)∪U ×P1
)
.
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For any additive operation G : A∗ → B∗, we define its desuspension as the unique operation
6−1G : A∗→ B∗ such that

G ◦ σ A
T = σ

B
T ◦6

−1G.

A stable additive operation G : A∗→ B∗ is the collection {G(n)
| n ⩾ 0} of operations A∗→ B∗ such

that G(n)
=6−1G(n+1).

In Section 6, we classify stable operations in connective K-theory over Ẑ. We prove that under the
identification

OP n,n
Ẑ
=

{
Ẑ[[x]], if n ⩽ 0,
xẐ[[x]], if n ⩾ 1,

the desuspension map is given by the formula

6−1(G)=
{
8(G), if n ⩽ 1,
8(G)−8(G)(0), if n > 1,

where G ∈ OP n,n
Ẑ

and 8(G) = (x − 1)(dG/dx). Thus, the desuspension map 6−1 yields a tower of
injective maps

Ẑ[[x]] =OP 0,0
Ẑ
←↩OP1,1

Ẑ
←↩ · · · ←↩OP n,n

Ẑ
←↩ · · · .

The group of homogeneous degree 0 stable operations CK∗
Ẑ
→ CK∗

Ẑ
is canonically isomorphic to the

group
S :=

⋂
n

Im(8n)⊂ Ẑ[[x]].

We identify this group in Section 6. In particular, we prove that S is the closure in the x-adic topology
of Ẑ[[x]] of the set of all (finite) Ẑ-linear combinations of the Adams power series Ar , for r ∈ Ẑ×. The
Ẑ-module S and its integral version S0 appear to be of an uncountable rank. We describe a topological
basis for them.

We call a multiplicative operation G stable if the constant sequence (G,G,G, . . . ) is stable. We prove
that stable multiplicative operations CK∗

Ẑ
→ CK∗

Ẑ
are exactly operations 9c

1 , for c ∈ Ẑ×. Thus, we obtain:

Theorem. Homogeneous degree 0 stable additive operations on CK∗
Ẑ

are topologically generated by the
stable multiplicative operations on it.

Similarly, stable multiplicative operations on CK∗ are 9±1
1 . This time though, they don’t generate the

group of stable additive operations which is of uncountable rank.
Recall that additive operations in (graded) K-theory were determined in [Vishik 2019, §6.1]. In the

present paper, we determine stable and multiplicative operations in Kgr. We describe a basis of the group
of stable Kgr-operations and relate it to the basis of stable CK-operations. The ring of stable operations is
dual to the Hopf algebra of co-operations defined over Z, and therefore, has the structure of a (topological)
Hopf algebra. The Hopf algebra of co-operations coincides with K0(K ) in topology and has been studied
in [Adams and Clarke 1977; Adams et al. 1971; Clarke et al. 2001; Johnson 1984; Strong and Whitehouse
2010]. The case of CK was investigated, in particular, in [Kane 1981].
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The main tool used in our proofs is the general result of Vishik [2019, Theorem 6.2] that asserts, when
applied to the connective K-theory, that an operation G ∈ OP n,m

R for n ⩾ 1 is given by a sequence of
symmetric power series Gl ∈ R[[x1, . . . , xl]] for all l ⩾ n satisfying certain conditions. In particular, Gl

divisible by x1 · · · xl and−Gl+1= ∂(Gl), the partial derivative of Gl (see Definition 2.1) for all l ⩾ n, i.e.,
all power series Gl are determined by Gn . We show that if R is torsion free, then Gn can be integrated over
K = R⊗Q: there is a unique power series H ∈ x K [[x]] such that Gn = ∂

n−1(H). Thus, the operation G
is determined by a power series H in one variable over K such that ∂n−1(H) ∈ R[[x1, . . . , xn]].

The article is organized as follows: In Section 2, we prove general results which will permit us
to integrate the multivariate symmetric power series and reduce the classification of operations to the
description of power series in one variable with certain integrality properties. These properties are then
studied and the respective power series are classified in Section 3. In Section 4, we apply the obtained
results in combination with [Vishik 2019, Theorem 6.2] to produce a description of additive operations
in CK with integral and Ẑ-coefficients. We describe the ring structure on the set of homogeneous
operations. The description of operations in Kgr comes as an easy by-product. In the latter case, we
also describe the dual bialgebra of co-operations. Multiplicative operations in CK and Kgr are studied
in Section 5. Finally, Section 6 is devoted to the computation of stable operations.

2. Symmetric power series

2A. Partial derivatives. Let F(x, y) be a (commutative) formal group law over a commutative ring R.
We write x∗y := F(x, y).

Let G(x1, . . . , xn) ∈ R[[x1, . . . , xn]] be a power series in n ⩾ 1 variables.

Definition 2.1. The partial derivative of G (with respect to F) is the power series

(∂G)(x1, x2, . . . , xn+1)

= G(x1 ∗ x2, x3, . . . , xn+1)−G(x1, x3, . . . , xn+1)−G(x2, x3, . . . , xn+1)+G(0, x3, . . . , xn+1),

which lies in R[[x1, . . . , xn+1]].

Note that the partial derivative is always taken with respect to the first variable (in this case x1)
in the list of variables. Write ∂m for the iterated partial derivative. We also set (∂0G)(x1, . . . , xn) =

G(x1, . . . , xn)−G(0, x2, . . . , xn).
For a subset I ⊂ [1,m+1] := {1, . . . ,m+1}, write x I for the ∗-sum of all xi with i ∈ I . In particular,

x∅ = 0. Then

(∂mG)(x1, . . . , xm+n)=
∑

(−1)|I |G(x I , xm+2, . . . , xm+n) ∈ R[[x1, x2, . . . , xm+n]], (2.2)

where the sum is taken over all 2m+1 subsets I ⊂ [1,m+1]. In particular, ∂mG is symmetric with respect
to the first m+ 1 variables.

Observation 2.3. If G ∈ R[[x1, . . . , xn]] is such that ∂G is a symmetric power series, then ∂mG is
symmetric for all m ⩾ 1.
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Indeed, since ∂G is symmetric, ∂mG = ∂m−1(∂G) is symmetric with respect to the last n variables.
But ∂mG is symmetric with respect to the first m+ 1 variables, hence it is symmetric.

Notation 2.4. For any commutative Q-algebra K , write

lg1(x) := log(1− x)=−
∑
i⩾1

x i

i
∈ K [[x]]

and for any n ⩾ 0,
lgn(x) :=

1
n!

(
lg1(x)

)n
∈ K [[x]].

In particular, lg0(x)= 1.

For the rest of this section, ∗ denotes the multiplicative formal group law, i.e., x∗y = x + y− xy.
The power series lg1(x) belongs to the kernel of ∂ . Moreover, we have the following statement:

Proposition 2.5. For any commutative Q-algebra K and any n > 0, the kernel of ∂n−1
: K [[x]] →

K [[x1, . . . , xn]] is equal to ∑
0⩽r<n

K · lgr (x).

Proof. We make the following change of variables:

yi = lg1(xi )= log(1− xi ),

where x1 = x . The multiplicative group law ∗ translates to the additive one. In the new variables, the
partial derivative is homogeneous and lowers the degree in y1 by 1. Therefore, the kernel of ∂n is spanned
by 1, y1, . . . , yn−1

1 . □

The following formula is very useful:

Proposition 2.6. Let K be a Q-algebra, G ∈ K [[x]] and n a positive integer. Then

(∂nG)(x1, x2, . . . xn+1)=

∞∑
k=1

1
k!
∂n−1

(
(1− x)k dk G

dxk

)
(x1, x2, . . . , xn) · xk

n+1.

Proof. Note that both sides don’t contain monomials x̄α := xα1
1 xα2

2 · · · x
αn+1
n+1 if at least one αi is zero.

We prove that for every multiindex α with αi > 0 for all i , the x̄α- coefficients of both sides are equal.
Set k = αn+1.

By (2.2), the x̄α-coefficient of the left-hand side is the same as the x̄α-coefficient of G(x1∗x2∗· · ·∗xn+1).
To determine this coefficient, we differentiate (in the standard way) k times the series G(x1∗x2∗· · ·∗xn+1)

by xn+1, plug in xn+1 = 0 and divide by k!. Since our formal group law is multiplicative, we have
1− x ∗ y = (1− x)(1− y), and so,

d
dxn+1

(x1 ∗ x2 ∗ · · · ∗ xn+1)= (1− x1)(1− x2) · · · (1− xn).

It follows that the xα-coefficient in the left-hand side is equal to the xα1
1 xα2

2 · · · x
αn
n -coefficient of

1
k!
(1− x1)

k(1− x2)
k
· · · (1− xn)

k dk G
dxk (x1 ∗ x2 ∗ · · · ∗ xn).
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On the other hand, the xα-coefficient of the right-hand side is equal to the xα1
1 xα2

2 · · · x
αn
n -coefficient of

(1/k!)∂n−1
(
(1− x)k(dk G/dxk)

)
(x1, x2, . . . , xn). This is the same as the xα1

1 xα2
2 · · · x

αn
n -coefficient of

1
k!
(1− x1 ∗ x2 ∗ · · · ∗ xn)

k G(k)(x1 ∗ x2 ∗ · · · ∗ xn)

=
1
k!
(1− x1)

k(1− x2)
k
· · · (1− xn)

k dk G
dxk (x1 ∗ x2 ∗ · · · ∗ xn). □

For a nonzero power series H ∈ R[[x1, . . . , xn]], denote by v(H) the smallest degree of monomials
in H . Set also v(0)=∞.

Observation 2.7. Suppose that a commutative ring R is torsion free. A direct calculation shows that for
positive integers n and m, we have v(∂n−1(xm)) = m if m ⩾ n. It follows that v(∂n−1(G)) = v(G) for
every G ∈ R[[x]] such that v(G)⩾ n.

2B. Integration of symmetric power series.

Definition 2.8. A power series G ∈ R[[x1, . . . , xn]] is called double-symmetric if G itself and ∂G are
both symmetric.

In the following proposition, we prove that double-symmetric power series can be symmetrically
integrated over any commutative Q-algebra:

Proposition 2.9. Let K be a commutative Q-algebra and G ∈ K [[x1, . . . , xn]], with n ⩾ 2, be a symmetric
power series divisible by x1 · · · xn . The following are equivalent:

(1) G is double-symmetric.

(2) All derivatives ∂m(G), where m ⩾ 0, are symmetric power series.

(3) There is a power series L ∈ K [[x]] such that G = ∂n−1(L).

(4) There is H ∈ K [[x1, . . . , xn−1]] such that ∂(H)= G.

(5) There is a unique symmetric H ∈ K [[x1, . . . , xn−1]], divisible by x1 · · · xn−1, with zero coefficient at
x1 · · · xn−1 and such that ∂(H)= G.

Proof. Note that (1)⇐⇒ (2) by Observation 2.3. We will prove the equivalence of all statements by induc-
tion on n. The implication (3)=⇒ (2) is clear, and the implications (2)=⇒ (1) and (3)=⇒ (4) are trivial.

(5)=⇒ (3): Follows by induction applied to H .

(1) or (4)=⇒ (5): Over a commutative Q-algebra every formal group law is isomorphic to the additive
one. So we may assume that the group law is additive, i.e., the derivative is defined by

(∂G)(x, y, t̄ )= G(x + y, t̄ )−G(x, t̄ )−G(y, t̄ )+G(0, t̄ ).

We first prove uniqueness. Indeed if ∂H = 0, then H is linear in x1, and since H is symmetric and
divisible by x1 · · · xn−1, we must have H = 0.
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Case n = 2: The implication (4)=⇒ (5) is obvious. We prove (1)=⇒ (5). We may assume that G is
a homogeneous polynomial of degree d > 1. The symmetry of the derivative of G(x, y) results in the
following cocycle condition:

G(x + y, z)+G(x, y)= G(x + z, y)+G(x, z).

In particular, we have the following equalities:

G(x + y, x + y)+G(x, y)= G(2x + y, y)+G(x, x + y),

G(2x + y, y)+G(2x, y)= G(2x, 2y)+G(y, y),

G(x, x + y)+G(x, y)= G(2x, y)+G(x, x).
It follows that

∂(G(x, x))(x, y)= G(x + y, x + y)−G(x, x)−G(y, y)

= G(2x, 2y)− 2G(x, y)

= (2d
− 2)(G(x, y)),

hence G(x, y)= ∂(H), where H(x)= G(x, x)/(2d
− 2).

Case n = 3: Write G(x, y, z) =
∑

i⩾1 Gi (x, y)zi . By the very definition, if G satisfies (1), respec-
tively (4), then all Gi (x, y) also satisfy (1), respectively (4). By induction, they satisfy (5). Integrating
each Gi (x, y), we get a power series H =

∑
i, j⩾1 ai, j x i y j in two variables such that ∂H = G.

Note that we can change H by any series
∑

i ci xyi without changing ∂H . This way, we can make
H =

∑
i, j⩾1 ai, j x i y j with ai,1 = a1,i and a1,1 = 0. We claim that H is symmetric. Indeed, from the

symmetry of ∂H , we have ( i+k
i

)
ai+k, j =

( j+k
j

)
a j+k,i ,

for any i, j, k ⩾ 1. This implies that

1
i+l

( i+l
i

)
ai+l−1,1 = al,i ,

and so, ai,l = al,i , for any i, l ⩾ 2. This shows that H is symmetric. Observe that such symmetric
integration is unique provided a1,1 = 0.

Case n > 3: Write G =
∑

i⩾1 Gi · x i
n with Gi ∈ K [[x1, . . . , xn−1]]. Again, by the very definition, the

slices Gi of G are double-symmetric. By the inductive assumption, these can be uniquely integrated to
symmetric power series Hi ∈ K [[x1, . . . , xn−2]] as in (5). Putting these power series together, we obtain

H =
∑
i⩾1

Hi · x i
n−1 ∈ K [[x1, . . . , xn−1]]

such that ∂H = G. Write
H =

∑
i1,...,in−1

ai1,...,in−1 x i1
1 · · · x

in−1
n−1.

Modifying H by x1 · · · xn−1L(xn−1) for an appropriate power series L , we may assume ai,1,...,1 = a1,1,...,i

for all i .
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We claim that H is symmetric. The x i1
1 · · · x

in
n -coefficient of G = ∂H is equal to

(i1+i2
i1

)
ai1+i2,i3,...,in .

Therefore, since G is symmetric, H is symmetric with respect to x2, . . . , xn−1, if i1 > 1. Recall that H
is also symmetric in x1, . . . , xn−2. Therefore, it suffices to show that the coefficient a1,i2,...,in−1 does not
change if we interchange in−1 with ik for some k = 2, . . . , n− 2.

Suppose all indices i1, . . . , in−1 but one are equal to 1. Then the statement follows from the equality
a1,1,...,i = ai,1,...,1 = a1,i,...,1 for all i . Otherwise, at least two indices, say ik = u and il = v with k < l
are greater than 1.

If l < n− 1, set w = in−1. We have (here and below, we indicate only the indices which are permuted,
hidden indices remain unchanged):

a1,u,v,w = av,u,1,w = av,w,1,u = a1,w,v,u,

so we interchanged ik and in−1. If l = n− 1, we can write

a1,u,v = au,1,v = au,v,1 = av,u,1 = av,1,u = a1,v,u,

i.e., we again interchanged ik and in−1. □

3. The groups Qn
R

The formal group law is multiplicative in this section. Let R be a commutative ring and K = R⊗Z Q.
We assume that R is torsion free (as an abelian group), i.e., R can be identified with a subring of K .

Definition 3.1. For any integer n ⩾ 1, let us denote by Qn
R the R-module of the power series G in x K [[x]],

for which ∂n−1(G) ∈ R[[x1, . . . , xn]]. For example, Q1
R = x R[[x]]. We also set Qn

R = R[[x]] if n ⩽ 0.

Note that, in view of Proposition 2.5, x R[[x]] and
∑

0<r<n K · lgr (x) are contained in Qn
R . In

Theorem 4.12 below, we will see that the quotient of Qn
R by the second of these subspaces can be

identified with the space of additive operations on CKn
R .

Lemma 3.2. Suppose R has no nontrivial Z-divisible elements. Then

x R[[x]] ∩
( ∑

0<r<n

K · lgr (x)
)
= 0.

Proof. Consider the operator 8 on K [[x]] mapping R[[x]] to itself:

8(F(x)) := (x − 1) · d
dx
(F(x)).

Observe that 8(lgr (x)) = lgr−1(x). Suppose
∑

0<r<n qr · lgr (x) ∈ x R[[x]], where qr ∈ K , and let r be
the largest index such that qr ̸= 0. Applying 8r−1 to the sum, we see that qr−1+ qr lg1(x) ∈ R[[x]]. Let
n ∈ N be such that nqr−1 ∈ R and nqr ∈ R. It follows that nqr ∈ i R for every integer i > 0, i.e., nqr is a
nonzero Z-divisible element in R, a contradiction. □

Definition 3.3. Let n and m be integers. If n > 0, denote by Qn,m
R the submodule of Qn

R consisting of all
power series G such that v(∂n−1G)⩾ m. If n ⩽ 0, set Qn,m

R = xmax (0,m)
· R[[x]].
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Theorem 4.12 permits us to describe the R-module of operations OP n,m
R in terms of the modules Qn,m

R .
Since v(∂n−1G)⩾ n for every G ∈Qn

R with n > 0, we have Qn,m
R =Qn,n

R =Qn
R if n ⩾ m. Note also

that Q1,m
R = xmax (1,m)

· R[[x]].

3A. The groups Qn
Ẑ
. In this section, we determine the structure of the modules Qn

Ẑ
over the ring

Ẑ= lim(Z/nZ). We write Q̂ for Ẑ⊗Q. Note that Q̂= Ẑ+Q and Z= Ẑ∩Q in Q̂.

Lemma 3.4. Let b1, b2, . . . , bm ∈ Ẑ be such that bi ≡ bj (mod j) for every i divisible by j . Then there is
b ∈ Z such that b ≡ bi (mod i) for all i = 1, . . . ,m.

Proof. Let p1, p2, . . . , ps be all primes that are ≤m. For every k, let qk = prk
k be the largest power of pk

such that qk ⩽ m. By the Chinese remainder theorem, we can find b ∈ Z such that b ≡ bqk (mod qk) for
all k. We claim that b works. Take any i ⩽ m. We prove that b ≡ bi (mod i). Write i as the product
i =

∏
q ′k , where q ′k is a power of pk . Clearly, q ′k divides qk . We have

bq ′k ≡ bi (mod q ′k), by assumption,

bqk ≡ bq ′k (mod q ′k), by assumption,

b ≡ bqk (mod qk), by construction.

It follows that b ≡ bi (mod q ′k) for all k, hence b ≡ bi (mod i). □

Let G(x)=
∑
∞

i=1 ai x i , with ai ∈ Q̂.

Lemma 3.5. For positive integers j ⩽ s, the x j ys-coefficient of ∂G is equal to
j∑

i=0

(−1) j−i
(s+i

s

)( s
j−i

)
as+i .

Proof. We have
1
s!

ds G
dx s =

∞∑
i=0

(s+i
s

)
as+i x i .

The statement follows from Proposition 2.6. □

Set bi = iai for all i ⩾ 1.

Corollary 3.6. If ∂G ∈ Ẑ[[x, y]], then bi −b1 ∈ Ẑ for all i ⩾ 1. In particular, if a1 ∈ Ẑ, then all bi are in Ẑ.

Proof. The xy j -coefficient of ∂G is equal to b j+1− bj . □

Proposition 3.7. Let G ∈Q2
Ẑ

, and let n > 1 be an integer such that ai ∈ Ẑ for all i < n. Let pt < n be a
power of a prime integer p such that pt divides n. Then pt divides bn .

Proof. Take j = pt and s = n− pt ⩾ pt . By Lemma 3.5, the x j ys-coefficient of ∂G is equal to
j∑

i=0

(−1) j−i
(s+i

s

)( s
j−i

)
as+i ∈ Ẑ.

By assumption, all terms in the sum but the last one belong to Ẑ, hence so does the last one:
( n

pt

)
an ∈ Ẑ.

But
( n

pt

)
an =

( n−1
pt−1

)
bn/pt , hence

( n−1
pt−1

)
bn is divisible by pt . As

( n−1
pt−1

)
is prime to p, the coefficient bn
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is divisible by pt (recall that
(a+b

a

)
is relatively prime to p if and only if there is no shift of digits in the

long addition of a and b written in the p-base). □

Proposition 3.8. We have
Q2

Ẑ
= Q̂ · lg1(x)⊕ xẐ[[x]].

Proof. Let G(x)=
∑
∞

i=1ai x i
∈Q2

Ẑ
, and set bi = iai , as before. Adding a1 lg1(x) to G(x), we may assume

that a1 = 0. By Corollary 3.6, we have bi ∈ Ẑ for all i .
We claim that for every positive integer i < n such that i divides n, we have bn ≡ bi modulo i . We

prove this by induction on n. By Lemma 3.4 applied to m = n−1, there is b ∈Z such that b≡ bi modulo i
for all i < n. Subtracting b lg1(x) from G(x), we may assume that bi is divisible by i for all i < n, or
equivalently, ai ∈ Ẑ for all i < n. We prove that bn is divisible by i , for every i < n dividing n.

Case 1: Assume n = pk is a power of a prime p. Then i = pt is a smaller power of p. By Proposition 3.7,
we have that i divides bn .

Case 2: Assume n is not power of a prime. Write n as a product of powers of distinct primes: n=q1q2 · · · qs .
By Proposition 3.7, qk divides bn for every k, hence n divides bn . In particular, i divides bn . The claim
is proved.

Let b ∈ Ẑ be such that b ≡ bn (mod n) for all n. We have

G = b lg1(x)+
∑
n⩾1

bn − b
n

xn
∈ Ẑ · lg1(x)+ xẐ[[x]]. □

Corollary 3.9. Let G(x)= ax+· · · ∈Q2
Ẑ

be a power series with a ∈ Ẑ. Then G(x) ∈ Ẑ · lg1(x)+ xẐ[[x]].

In analogy with partial derivative with respect to the first variable, Definition 2.1, we may define
the partial derivative with respect to any other variable. In the next statement, we will use such partial
derivatives for H(x, y). In particular,

(∂y H)(x, y, z)= H(x, y ∗ z)− H(x, y)− H(x, z)+ H(x, 0).

Lemma 3.10. Let H(x, y)=
∑

i, j⩾1 ai, j x i y j
∈ Q̂[[x, y]] be a power series such that both ∂-partial deriva-

tives of H have coefficients in Ẑ and ai,1, as well as a1,i , are in Ẑ, for all i . Then H(x, y) ∈ Ẑ[[x, y]].

Proof. Consider some j -th row of H : y j
·
∑

i⩾1 ai, j x i. We know that
∑

i⩾1ai, j x i
∈Q2

Ẑ
. By Corollary 3.9,

we have that
∑

i⩾1 ai, j x i is equal to c j ·lg1(x)modulo xẐ[[x]] for some c j ∈ Ẑ. Hence, c j/ i≡ai, j (mod Ẑ)

for all i . Applying the same considerations to the i-th column x i
·
∑

j⩾1 ai, j y j , we obtain

c j

i
≡

di

j
(mod Ẑ),

for certain di ∈ Ẑ. Let us show that all ci (and d j ) are zeros. Indeed, we have

jc j ≡ idi (mod i j).

Hence, jc j is divisible by i , for any i and, hence c j = 0. This implies that ai, j ∈ Ẑ for any i, j . □
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Lemma 3.11. Suppose

H(x1, . . . , xn)=
∑

i1,...,in>0

ai1,...,in x i1
1 · · · x

in
n ∈ Q̂[[x1, . . . , xn]]

is such a power series that all ∂-partial derivatives of H with respect to all variables have coefficients
in Ẑ and ai1,...,in ∈ Ẑ as long as all i j but one are equal to 1. Then H has coefficients in Ẑ.

Proof. Induction on n. For n= 1, there is nothing to prove. For n= 2, this is Lemma 3.10. We can assume
that n ⩾ 3. Suppose we know the statement for r < n. Let L ⊂ [1, n] be some subset. Consider the sum
of monomials of H with i j = 1, for every j ∈ L . Plugging x j = 1 for all j ∈ L , we obtain the power
series in variables x j , j ̸∈ L which we will call the L-cell HL of H . Similarly, considering the sum of the
monomials of H with the given i1 and plugging x1 = 1 into it, we get the power series Hi1(x2, . . . , xn),
which we call the hyperslice of H . Note, that all the cells of H satisfy the conditions of the lemma. By
our assumption, these have all coefficients in Ẑ. That is, ai1,...,in ∈ Ẑ provided, at least, one of the i j is 1.
The hyperslice Hi1 satisfies the conditions of the lemma too (note that n ⩾ 3). Thus, Hi1 has coefficients
in Ẑ and so does H . □

The following theorem is a generalization of Proposition 3.8:

Theorem 3.12. For every n ⩾ 1,

Qn
Ẑ
=

∐
0<r<n

Q̂ · lgr (x)⊕ xẐ[[x]].

Proof. The statement is clear if n ⩽ 0. Now assume that n ⩾ 1. It follows from Lemma 3.2 that∐
0<r<n Q̂ · lgr (x)∩ Ẑ[[x]] = 0.
We prove the rest by induction on n. For n = 1, this follows by definition, and for n = 2, this is given

by Proposition 3.8.

(n⇒ n+ 1): Let G ∈Qn+1
Ẑ

. Consider the power series H(x1, . . . , xn)= ∂
n−1(G). Let

H(x1, . . . , xn)=
∑

i1,...,in⩾1

ai1,...,in x i1
1 · · · x

in
n .

Note that the degreewise smallest term of ∂n−1(lgn(x)) is (−1)nx1 · · · xn . By subtracting an appropriate
Q̂-multiple of lgn(x) from G, we may assume that a1,...,1 = 0.

As ∂(H) has coefficients in Ẑ, the “ray”
∑

i⩾1ai,1,...,1x i
1 is a power series with terms of degree ⩾ 2

whose ∂-derivative is integral. By Corollary 3.9, up to a power series in Ẑ[[x1]], it is equal to c · lg1(x1),
for some c ∈ Ẑ.

Since
∂n−1(lgn)(x1, . . . , xn)= lg1(x1) · · · lg1(xn),

subtracting from G(x) an appropriate multiple of lgn(x), we may assume that the coefficients ai,1,...,1 are
in Ẑ, for all i ⩾ 1. Since H is symmetric, by Lemma 3.11, all coefficients of the power series H are in Ẑ.
By the induction hypothesis, G(x) ∈Qn

=
∐

0<r<n Q̂ · lgr (x)+ xẐ[[x]]. □
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3B. The groups Qn. Write Qn for Qn
Z ⊂Qn

Ẑ
.

We define a homomorphism

ρn :Qn
→ Q̂n−1

for n ⩾ 1 as the composition (see Theorem 3.12)

Qn ↪→Qn
Ẑ
=

∐
0<r<n

Q̂ · lgr (x)⊕ xẐ[[x]]
proj
−−→

∐
0<r<n

Q̂ · lgr (x)≃ Q̂n−1.

We will show that the map ρn is surjective.
Consider the power series

l̃gr (x)= (−1)r
∑

0<i1<···<ir

x ir

i1 · · · ir
≡ (−1)r xr

r !
(mod xr+1).

For a sequence a = (ai )i⩾1 in Ẑ, let us denote by a · l̃gr (x) ∈ Q̂[[x]] the power series

(−1)r
∑

0<i1<···<ir

ai1 · x
ir

i1 · · · ir
≡ (−1)r

a1

r !
xr (mod xr+1).

If all ai ∈ Z, we have a · l̃gr (x) ∈Q[[x]].

Lemma 3.13. For every sequence a, we have

(x − 1) · d
dx
(a · l̃gr (x))= a · l̃gr−1(x).

Proof. Write (−1)r a · l̃gr (x) =
∑

bi x i and (−1)r−1a · l̃gr−1(x) =
∑

ci x i . We need to prove that
(m+ 1)bm+1−mbm = cm for every m. We have

(m+ 1)bm+1 =
∑

0<i1<···<ir−1<m+1

ai1

i1 · · · ir−1
.

The sum of the terms with ir−1 < m is equal to mbm . The sum of the terms with ir−1 = m coincides
with cm . □

In particular, 8(l̃gr (x)) = l̃gr−1(x). Note that we also have 8(lgr (x)) = lgr−1(x) and series l̃gr (x)
and lgr (x) have no constant terms for r ⩾ 1. Since the kernel of 8 consists of constants only and
l̃g1(x)= lg1(x), by definition, it follows by induction on r that l̃gr (x)= lgr (x), for all r . In particular,
we can define the product a · lgr (x) as above.

Lemma 3.14. For every c ∈ Ẑ and every integer r > 0, there is a sequence c̃ = (ci )i⩾1 of integers ci ∈ Z

such that ci ≡ c (mod i) for all i and

(c− c̃) · lgi (x) ∈ Ẑ[[x]]

for all i = 1, . . . , r , where c− c̃ is the sequence (c− ci )i⩾1.
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Proof. Take any collection c̃ = (ci )i⩾1 of integers. Note that for every i ⩾ 1 and k = 1, . . . , r , the
x i+k−1-coefficient of c̃ · lgk(x) is a linear combination of c1, . . . , ci with rational coefficients where the
ci -coefficient is equal to (−1)k/(i(i + 1) · · · (i + k− 1)).

We will modify c1, c2, . . . inductively to make all coefficients of the power series

Gk = (c− c̃) · lgk(x)

integral for all k = 1, . . . , r . Let c1 be an integer congruent to c modulo r !, so the xk-coefficient of Gk is
integer for every k = 1, . . . , r . Suppose we have modified c1, . . . cn so that the x j -coefficient of Gk is
integral for all k = 1, . . . , r and j ⩽ n+ k− 1.

By induction on k = 1, . . . , r , we will modify cn+1 to make integral the xn+k-coefficient of Gk . Note
that the integral x j -coefficients of Gk for j ⩽ n+ k− 1 will not change. If k = 1, we don’t modify cn+1:
the power series G1 is already integral.

k⇒ k+ 1: By Lemma 3.13,

(x − 1) ·
dGk+1

dx
= Gk .

Hence, if Gk =
∑

i⩾k bi x i and Gk+1 =
∑

i⩾k+1 ai x i , then

an+l+1 =
−1

n+l+1
(bk + . . .+ bn+l)

for all l.
By induction, bk, . . . , bn+k are integral. Recall that these are linear combinations of the c′i , where

c′i = c−ci and c′n+1 appear only in bn+k . We modify cn+1 by adding the integer t (n+1)(n+2) · · · (n+k)
to cn+1 with some t ∈ Z. Note that bk, . . . , bn+k−1 remain unchanged and bn+k changes to bn+k + t , so it
stays integral. Choose t to make an+k+1 integral.

Note that c′n+1 comes with coefficient (−1)l/((n+ 1) · · · (n+ l)) in the xn+l-coefficient of Gl . Since
(n + 1) · · · (n + l) divides (n + 1) · · · (n + k) when l ⩽ k, the xn+l-coefficient of Gl remains integral
for l ⩽ k. □

Now we prove that the map ρn : Qn
→ Q̂n−1 is surjective. Since q · lgr ∈ Qn for all q ∈ Q and

r = 1, . . . , n− 1, we have Qn−1
⊂ Im(ρn). It suffices to show that Ẑn−1

⊂ Im(ρn). Choose cr ∈ Ẑ for
r = 1, . . . , n− 1. By Lemma 3.14, there are sequences of integers c̃r such that (cr − c̃r ) · lgr (x) ∈ Ẑ[[x]].

As
c̃r · lgr (x)= cr · lgr (x)− (cr − c̃r ) · lgr (x),

we have ρn
(∑

0<r<n c̃r · lgr (x)
)
= (cr )r=1,...,n−1, proving that ρn is surjective.

Note that the kernel of ρn is equal to xẐ[[x]] ∩Q[[x]] = xZ[[x]]. Thus, we have an exact sequence

0→ xZ[[x]] →Qn ρn
−→ Q̂n−1

→ 0. (3.15)

We have proved that if n ⩾ 1, the group Qn is generated by xZ[[x]] and the power series (c− c̃) · lgr (x),
as in Lemma 3.14, where c ∈ Ẑ and r = 1, . . . , n− 1.
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The power series in Qn can be approximated by polynomials as follows:

Lemma 3.16. For every m > 0 and n, we have

Qn
⊂ Z[x]⩽m−1+

∑
0<r<n

Q · lgr (x)+ xmQ[[x]],

where Z[x]⩽m−1 is the group of integral polynomials of degree at most m− 1.

Proof. We may assume that n > 1. In view of (3.15), the group Qn modulo

xZ[[x]] +
∑

0<r<n

Q · lgr (x)

is generated by power series of the form c̃ · lgr (x), where r = 1, . . . , n − 1 and c̃ is the collection of
integers such that ci ≡ c (mod i) for all i for an element c ∈ Ẑ as in Lemma 3.14.

Let d be an integer congruent to c modulo the least common multiple of the denominators of the
x i -coefficients of lgr (x) for all i = 1, . . . ,m−1. Then the xm-truncation F of (c̃−d) · lgr (x) is contained
in Z[x]⩽m−1 and c̃ · lgr (x) is congruent to F modulo Z · lgr (x)+ xmQ[[x]]. □

4. Operations

Let k be a field of characteristic 0, and write Smk for the category of smooth quasiprojective varieties
over k. An oriented cohomology theory A∗ over k is a functor from Smop

k to the category of Z-graded
commutative rings equipped with a push-forward structure and satisfying certain axioms (see [Vishik
2019, Definition 2.1]). We write

A∗(X)=
∐
n∈Z

An(X)

for a variety X in Smk , and let A∗(k) denote the coefficient ring A∗(Spec k).
Let A∗ be an oriented cohomology theory. There is a (unique) associated formal group law

FA(x, y)=
∑

i, j⩾0

a A
i, j x

i y j
= x + y+ a1,1 · xy+ higher terms ∈ A∗(k)[[x, y]]

that computes the first Chern class of the tensor product of two line bundles L and L ′ (see, for example,
[Panin 2003, p. 3 and Section 3.9], [Panin 2004, Section 2.7], [Levine and Morel 2007, §1.1] or [Vishik
2019, §2.3]):

cA
1 (L ⊗ L ′)= FA

(
cA

1 (L), cA
1 (L

′)
)
.

Example 4.1. The Chow theory CH∗ takes a smooth variety X to the Chow ring CH∗(X) of X . We have
CH∗(k)= Z and FCH(x, y)= x + y is the additive group law.

Example 4.2 (see [Levine and Morel 2007, Example 1.15]). The graded K-theory K ∗gr takes X to the
Laurent polynomial ring K0(X)[t, t−1

], graded by the powers of the Bott element t of degree −1, over
the Grothendieck ring K0(X) of X . We have K ∗gr(k) = Z[t, t−1

] and FKgr(x, y) = x + y − t xy is the
multiplicative group law.
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Example 4.3 (see [Cai 2008; Dai and Levine 2014]). The connective K-theory takes X to the ring CK∗(X)
of X . We have CK∗(k)= Z[t] and FC K (x, y)= x + y− t xy.

All cohomology theories in these examples are of rational type (see [Vishik 2019, §4.1] and [Levine
and Morel 2007]).

If A∗ is an oriented cohomology theory and R a commutative ring, the functor A∗R defined by
A∗R(X) = A∗(X)⊗Z R is also an oriented cohomology theory with values in the category of graded
R-algebras.

Definition 4.4. Let A∗ and B∗ be two oriented cohomology theories. An R-linear operation G : A∗R→ B∗R
is a morphism between functors A∗R and B∗R considered as contravariant functors from Smk to the category
of R-modules (cf. [Vishik 2019, Definition 3.3]). Note that G may not respect the gradings on A∗R and B∗R .

Let n,m ∈ Z. A morphism G : An
R→ Bm

R between contravariant functors from Smk to the category of
R-modules can be viewed as an R-linear operation via the obvious composition A∗R→→ An

R→ Bm
R ↪→ B∗R .

All such operations form an R-module OP n,m
R (A∗, B∗). The composition of operations yields an R-linear

pairing
OP n,m

R (A∗, B∗)⊗R OPm,r
R (B∗,C∗)→OP n,r

R (A∗,C∗).

In particular, OP n,n
R (A∗) :=OP n,n

R (A∗, A∗) has a structure of an R-algebra.

Example 4.5 (see [Cai 2008; Dai and Levine 2014]). Multiplication by t yields an operation CKn+1
R →CKn

R

that is an isomorphism if n < 0. There are graded R-linear operations

CK∗R→ CH∗R and CK∗R→ (K ∗gr)R.

The sequence
CKn+1(X)

t
−→ CKn(X)→ CHn(X)→ 0

is exact for every n and X .
If n ⩾ 0, the image of the homomorphism

CKn(X)→ K n
gr(X)= K0(X)t−n

≃ K0(X)

is generated by the classes of coherent OX -modules with codimension of support at least n. If n ⩽ 0, this
map is an isomorphism.

The following fundamental theorem was proved in [Vishik 2019, Theorem 6.2]:

Theorem 4.6. Let A∗ be a cohomology theory of rational type and B∗ be any oriented cohomology theory
over k. Let R be a commutative ring. Then there is an R-isomorphism between the set OP n,m

R (A∗, B∗) of
R-linear operations G : An

R→ Bm
R and the set consisting of the following data {Gl, l ∈ Z⩾0}:

Gl ∈ HomR
(

An−l(k)⊗ R, B∗(k)[[x1, . . . , xl]](m)⊗ R
)

satisfying

(1) Gl(α) is a symmetric power series for all l and α ∈ An−l(k)⊗ R,

(2) Gl(α) is divisible by x1 · · · xl for all l and α,
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(3) Gl(α)(y+B z, x2, . . . , xl)=
∑

i, j Gi+ j+l−1(α · a A
i, j )(y

×i , z× j , x2, . . . , xl), for l > 0, where a A
i, j are

the coefficients of the formal group law of A∗ and the sum y+B z is taken with respect to the formal
group law of B∗ (here, t×i denotes i copies of t).

Here, B∗(k)[[x1, . . . , xn]](m) is the subgroup in B∗(k)[[x1, . . . , xn]] consisting of all homogeneous
degree m power series (all the xi have degree 1).

The functions Gl are determined by the operation G as follows (see [Vishik 2019, §5]): Write L i for
the pull-back of the canonical line bundle on P∞ with respect to the i-th projection (P∞)l→ P∞. Then

Gl(α)
(
cB

1 (L1), . . . , cB
1 (L l)

)
= G

(
α · cA

1 (L1) · . . . · cA
1 (L l)

)
, (4.7)

where c1 is the first Chern class.

Remark 4.8. Theorem 4.6 was proved in [Vishik 2019, Theorem 6.2] in the case R = Z. The general
case readily follows. Indeed, multiplication by an element r ∈ R yields operations r : An

R → An
R and

r : Bm
R → Bm

R . An additive operation G : An
R→ Bm

R is R-linear if and only if G ◦ r = r ◦G for all r ∈ R.
The latter is equivalent to the equality Gl ◦ r = r ◦Gl for all l, i.e., that all Gl are R-linear.

Example 4.9 (see [Vishik 2019, §6.3]). Let A∗ be a cohomology theory of rational type and m ∈ Z.
Consider the power series [m](x) := x +A · · · +A x ∈ A∗(k)[[x]] (m times). The Adams operation
9 A

m ∈OP∗,∗R is determined by (Gl)l⩾0, where Gl is multiplication by the power series [m](x1) · · · [m](xl)

(l factors), in particular, G0 is the identity. The Adams operations satisfy the relations

9 A
k ◦9

A
m =9

A
km =9

A
m ◦9

A
k

for all k and m.

4A. Operations in connective K-theory. We would like to determine the R-module OP n,m
R of all R-linear

operations G :CKn
R→CKm

R for any pair of integers n and m. By Theorem 4.6, G is given by a collection
of power series Gl(α) ∈ R[t][[x1, . . . , xn]](m), where α ∈ CKn−l

R (k) and l ⩾ 0, satisfying the conditions
of the theorem. The group CKn−l

R (k) is trivial if l < n and CKn−l
R (k)= R · t l−n otherwise. (Recall that t

has degree −1.) In the first case, Gl(α)= 0, and in the latter case, the power series Gl(α) are uniquely
determined by Gl(t l−n). We will simply write Gl for Gl(t l−n).

If l ⩾ max(1, n), Theorem 4.6 (3) reads as follows (here z̄ denotes z2, . . . , zl):

Gl(x + y− t xy, z̄)= Gl(x, z̄)+Gl(y, z̄)−Gl+1(x, y, z̄).

In other words,

Gl+1 =−∂t Gl, (4.10)

where the derivative ∂t is taken with respect to FCK(x, y)= x+y−t xy. Thus, Gl+1 is uniquely determined
by Gl .

If n > 0, then the operation G yields the double-symmetric power series Gn ∈ R[t][[x1, . . . , xn]](m)

that is divisible by x1 · · · xn . Conversely, if we have that H ∈ R[t][[x1, . . . , xn]](m) is a double-symmetric
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power series divisible by x1 · · · xn , then setting Gn+i := (−1)i∂ i
t (H) for all i ⩾ 0, we get a sequence of

power series that determines an R-linear operation G (see Observation 2.3).
If n ⩽ 0, then the operation G is determined by G0 ∈ R[t]m and the power series G1 ∈ R[t][[x]]m that

is uniquely determined by (G1)|t=1 ∈ xmax (1,m)R[[x]]. If m > 0, then G0 = 0, otherwise G0 ∈ R · t−m and
we can combine G0 and G1 together into the power series H = (G0−G1)|t=1 ∈ R[[x]].

If L ∈ R[t][[x1, . . . , xn]](m), then v(L|t=1)⩾m. Conversely, for every J ∈ R[[x1, . . . , xn]]with v(J )⩾m,
there is a unique homogeneous power series L ∈ R[t][[x1, . . . , xn]] of degree m such that L|t=1 = J . If L
is double-symmetric and divisible by x1 · · · xn , then so is L|t=1 (with respect to the derivative ∂ given by
the formal group law x + y− xy) and conversely.

We have proved the following statement:

Proposition 4.11. Let R be a commutative ring, and let n and m be two integers. An R-linear operation
G : CKn

R→ CKm
R is determined by:

(1) A power series H ∈ xmax (0,m)R[[x]], if n ⩽ 0. In this case, G0 = H(0) · t−m and G1 ∈ x R[t][[x]](m)
is a unique homogeneous power series such that H = (G0−G1)|t=1 and Gl = (−1)l−1∂ l−1

t (G1) for
l > 1,

(2) A double-symmetric power series J ∈ R[[x1, . . . , xn]] divisible by x1 · · · xn such that v(J ) ⩾ m, if
n>0. In this case Gl =0 for l=0, . . . , n−1 and Gn ∈ R[t][[x1, . . . , xn]](m) is a unique homogeneous
power series such that Gn|t=1 = J and Gl = (−1)l−n∂ l−n

t (Gn) for l > n.

Let R be a commutative ring that is torsion free as an abelian group. Define an R-module homomorphism

λn,m :Qn,m
R →OP n,m

R ,

see Definition 3.3, as follows: If n ⩽ 0, then λn,m(H) for H ∈Qn,m
= xmax (0,m)

· R[[x]] is the operation
given by Proposition 4.11 (1). If n > 0, then λn,m(H) for H ∈ Qn,m is the operation given by the
polynomial J = (−1)n∂n−1(H) as in Proposition 4.11 (2).

The following theorem determines the R-module of operations OP n,m
R in terms of the modules Qn,m

R

of power series in one variable:

Theorem 4.12. Let R be a commutative ring that is torsion free as an abelian group and K = R⊗Q.
The homomorphisms λn,m yield an R-linear isomorphism between OP n,m

R and the factor module of Qn,m
R

by the K -subspace spanned by lgi (x), where i = 1, . . . , n− 1. In particular, OP n,m
R ≃ xmax (0,m)

· R[[x]],
if n ⩽ 0, and OP1,m

R ≃ xmax (1,m)
· R[[x]].

Proof. The surjectivity of λn,m follows from Propositions 2.9 and 4.11. The kernel of λn,m is determined
in Proposition 2.5. □

Corollary 4.13. The map λn,m yields an isomorphism (see Definition 3.1)

Qn
R ∩ xmax (0,n,m)

· K [[x]]
∼
−→OP n,m

R .

Proof. The case m ⩽ n follows from the theorem. Otherwise, by Observation 2.7, v(∂n−1x i ) = i for
all i ⩾ n. □
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Let n,m ∈ Z and i, j be nonnegative integers. We define an R-linear homomorphism

Qn,m
R →Qn+i,m− j

R

as follows: If n ⩽ 0,m ⩽ 0 and n+ i > 0, the map

Qn,m
R = R[[x]] → x R[[x]] ↪→Qn+i,m− j

R

takes H to ∂0(H)= H − H(0). Otherwise, Qn,m
R ⊂Qn+i,m− j

R , and the map we define is the inclusion.
Multiplication by tk yields an operation CK∗+k

R → CK∗R and, therefore, yields the homomorphisms
OP n,m

R →OP n+i,m− j
R for all i, j ⩾ 0.

Proposition 4.14. The diagram

Qn,m
R

λn,m

��

// Qn+i,m− j
R

λn+i,m− j
��

OP n,m
R

// OP n+i,m− j
R ,

is commutative.

Proof. The case i = 0 follows directly from the definition. It remains to consider the case i = 1 and j = 0.
Suppose first that n > 0. Let H ∈ Qn,m

R ⊂ Qn+i,m− j
R and G = λn,m(H) ∈ OP n,m

R . In particular,
Gn|t=1 = (−1)n−1∂n−1(H). Denote by G ′ the image of G in OP n+1,m

R . Write L i for the pull-back of the
canonical line bundle on P∞ with respect to the i-th projection (P∞)n+1

→ P∞. The power series G ′n+1

is determined by, see (4.7), the equality

G ′n+1
(
c1(L1), . . . , c1(Ln+1)

)
= G ′

(
c1(L1) · · · c1(Ln+1)

)
= G

(
tc1(L1) · · · c1(Ln+1)

)
= Gn+1(t)

(
c1(L1), . . . , c1(Ln+1)

)
= Gn+1

(
c1(L1), . . . , c1(Ln+1)

)
,

hence G ′n+1 = Gn+1. It follows from (4.10) that

G ′n+1|t=1 = Gn+1|t=1 =−(∂t Gn)|t=1 =−∂(Gn|t=1)

=−∂((−1)n∂n−1(H))= (−1)n+1∂n(H),

and therefore, G ′ = λn+1,m(H).
If n < 0 or if n = 0 and m > 0, we have Qn,m

R ⊂ Qn+1,m
R and the statement follows immediately

from the definitions. It remains to consider the case n = 0 and m ⩽ 0. Let H ∈ Q0,m
R = R[[x]] and

G = λ0,m(H) ∈ OP0,m
R . In particular, H = (G0−G1)|t=1. Denote by G ′ the image of G in OP1,m

R . A
computation, as above, shows that G ′1 = G1. Hence,

G ′1|t=1 = G1|t=1 =−(H − H(0)).

Therefore, G ′ = λ1,m(H − H(0)) and H − H(0) is the image of H in Q1,m
R . □
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Corollary 4.13 and Proposition 4.14 yield:

Corollary 4.15. If m ⩽ n then the map OP n,n
R →OP n,m

R is an isomorphism.

In particular, there is a canonical ring homomorphism

OP n,n
R →OP n+1,n

R
∼
−→OP n+1,n+1

R .

Example 4.16. Note that the identification OP 0,0
R = R[[x]] is not a ring isomorphism. The corresponding

ring structure on R[[x]] will be described in Section 4E. The natural surjective homomorphism

R[[x]] =OP 0,0
R →OP 1,1

R = x R[[x]]

takes a power series G(x) to G(x)−G(0). Its kernel is generated by 1. The complementary operation
G(x) 7→ G(0) on CK0

= K0 is an idempotent that takes the class of a vector bundle E to rank(E) · 1,
where 1 is the identity in K0. In particular, we get a natural R-algebra isomorphism OP 0,0

R ≃ R×OP 1,1
R .

4B. Adams operations. Let R be a torsion free ring. We define the composition

Adn : R[[x]] →Qn
R
λn,n
−−→OP n,n

R ,

where the first map is the identity if n ⩽ 0 and it is the composition of the projection ∂0
: R[[x]]→ x R[[x]]

and the inclusion of x R[[x]] into Qn
R . The image of Adn is denoted OP n,n

R,cl and called the submodule of
classical operations.

If n ⩽ 0, we have OP n,n
R,cl =OP n,n

R = R[[x]]. If n ⩾ 1, it follows from Lemma 3.2 and Theorem 4.12
that in the case R has no nontrivial Z-divisible elements (for example, R = Z or Ẑ), the restriction of Adn

on x R[[x]] is injective and, therefore, OP n,n
R,cl ≃ x R[[x]].

Let m be an integer. In the notation of the Example 4.9, [m](x) = (1− (1− t x)m)/t . In view of
Proposition 4.11, the Adams operations 9m ∈OP n,n

R,cl are defined by

9m = Adn((1− x)m). (4.17)

Since the power series (1− x)m generate R[[x]] as topological R-module in the x-adic topology, the group
of classical operations OP n,n

R,cl is topologically generated by the Adams operations.
By Proposition 4.14, we have that the operations9k are compatible with the canonical homomorphisms

OP n,n
R →OP n+1,n+1

R .
For every k ⩾ 0, consider the additive operations ϒk =

∑k
i=0(−1)i

(k
i

)
9i . Then ϒk = λn,n(xk) if k ⩾ 0.

Recall that ϒ0 = 0 if n ⩾ 1. It follows that the R-module OP n,n
R,cl consists of all linear combinations∑

k⩾0 αk ·ϒk with αk ∈ R (cf. [Vishik 2019, Theorem 6.8]). If R has no nontrivial Z-divisible elements,
the coefficients αk , (where k ⩾ 0 if n ⩽ 0 and k ⩾ 1 if n ⩾ 1) are uniquely determined by the operation.

4C. Operations over Ẑ. In Section 3, we determined the modules Qn
R over the ring R= Ẑ. Theorems 3.12

and 4.12 yield:
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Theorem 4.18. There are canonical isomorphisms

OP n,n
Ẑ
=OPn,n

Ẑ,cl
≃

{
Ẑ[[x]], if n ⩽ 0,
xẐ[[x]], if n ⩾ 1.

In particular, the natural map OP n,n
Ẑ
→OPn+1,n+1

Ẑ
is an isomorphism for all n ⩾ 1. It follows from

Theorem 4.12 that for any two integers n and m,

OPn,m
Ẑ
≃

{
xmax (0,m)

· Ẑ[[x]], if n ⩽ 0,
{G ∈ xẐ[[x]] | v(∂n−1(G))⩾ m}, if n ⩾ 1.

4D. Operations over Z. Now we turn to the case R = Z and, for simplicity, write OP n,m for OP n,m
Z .

Corollary 4.13 implies that the natural homomorphism OP n,m
→OP n,m

Ẑ
is injective. In particular, we

can identify OP n,n with a subgroup of OP n,n
Ẑ
= xẐ[[x]] for all n ⩾ 1, so we have a sequence of subgroups

OP1,1
⊂OP 2,2

⊂ · · · ⊂OP n,n
⊂ · · · ⊂ xẐ[[x]].

Recall (Theorem 4.12) that OP n,m
≃ xmax (0,m)

· Z[[x]] if n ⩽ 0 and OP n,m
≃ OP n,n if m ⩽ n by

Corollary 4.15.
Let m ⩾ n ⩾ 1. By Theorem 4.12, we can identify OP n,m with the factor group of Qn,m by the

subgroup
∑n−1

r=1 Q · lgr (x). It follows that the map ρn in (3.15) yields a homomorphism

OP n,m
→ (Q̂/Q)n−1

= (Ẑ/Z)n−1.

By the proof of Lemma 3.16, this map is surjective. Its kernel is denoted OP n,m
cl and called the subgroup of

classical operations. In the case n =m, this group coincides with the group of classical operation defined
earlier. In view of Corollary 4.13, OP n,m

cl is identified with the group
(∐n−1

r=1 Q·lgr (x)+xZ[[x]]
)
∩xmQ[[x]].

We view the group xZ[x]⩽m−1 of integral polynomials of degree at most m − 1 as a lattice in the
Q-space xQ[[x]]/(xm). Denote by Ln,m the intersection of xZ[x]⩽m−1 with the image in xQ[[x]]/(xm) of
the space

∐n−1
r=1 Q · lgr (x). Then Ln,m is a subgroup of xZ[x]⩽m−1 of rank n− 1.

We get the following description of the group of classical operations:

OP n,m
cl = Ln,m

⊕ xmZ[[x]].

If m = n ⩾ 1, the map of Q-spaces is an isomorphism and Ln,n
= xZ[x]⩽n−1. It follows that

OP n,n
cl = xZ[[x]].

Recall that OP n,n
cl =OP n,n

= Z[[x]] if n ⩽ 0 and OP n,m
=OP n,n if m ⩽ n.

We summarize our results in the following statement:

Theorem 4.19. The natural homomorphism OP n,m
→OP n,m

Ẑ
is injective. For any integers m ⩾ n ⩾ 1,

there is an exact sequence

0→OP n,m
cl →OP n,m

→ (Ẑ/Z)n−1
→ 0,

where OP n,m
cl = Ln,m

⊕ xmZ[[x]]. Moreover, OP n,n
cl = xZ[[x]].
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Remark 4.20. Similar arguments yield the following formula for m ⩾ n ⩾ 1:

OP n,m
Ẑ
= Ln,m

Ẑ
⊕ xmẐ[[x]],

where Ln,m
Ẑ
= Ln,m

⊗ Ẑ.

4E. Composition. The R-module homomorphism Adn : R[[x]] →OP n,n
R is not a ring homomorphism.

In this section we introduce a new product on R[[x]] so that Adn becomes an R-algebra homomorphism.
Let H, H ′ ∈ R[[x]], write H ′ =

∑
i⩾0 ai x i and define the composition in H and H ′ by the formula

H ◦ H ′ = a0 · H(0)+
∑
i⩾1

(−1)i ai · (∂
i−1 H)(x×i ).

The composition ◦ is distributive in H and H ′ with respect to addition. (Note that the usual substitution
of power series is only one-sided distributive.) The polynomial 1− x is the identity for the composition
(1− x) ◦ H = H = H ◦ (1− x) for all H . We view R[[x]] as an R-algebra with product given by the
composition.

Lemma 4.21. The maps Adn : R[[x]] →OP n,n
R are R-algebra homomorphisms.

Proof. In view of Proposition 4.14, it suffices to consider the case n = 0. Let H, H ′ ∈ R[[x]] and write
H ′ =

∑
i⩾0 ai x i . If G0,G1, . . . ∈ R[t][[x]] is the sequence of power series corresponding to Ad0(H) (see

Proposition 4.11), then G0 = H(0) ∈ R, H = (G0−G1)|t=1 and Gi = (−1)i−1∂ i−1
t (G1) for i > 1. Note

that G1(t, x)=−H(t x)+ H(0).
Write L for the canonical line bundle on P∞. By (4.7) and (4.10),

Ad0(H)(c1(L)i )= Gi (c1(L)×i )= (−1)i−1(∂ i−1
t G1)(c1(L)×i )= (−1)i (∂ i−1 H)(tc1(L)×i ).

Therefore, we have(
Ad0(H) ◦Ad0(H ′)

)
(c1(L))=−Ad0(H)

(∑
i⩾1

ai c1(L)i
)
=−

∑
i⩾1

ai (Ad0(H))(c1(L)i )

=

∑
i⩾1

(−1)i−1ai · (∂
i−1 H)

(
tc1(L)×i).

On the other hand, write H ◦ H ′ = (G ′′0 −G ′′1)|t=1, where G ′′0 = a0 · H(0) and

G ′′1 =
∑
i⩾1

(−1)i−1ai · (∂
i−1 H)(t x×i ).

It follows that

Ad0(H ◦ H ′)(c1(L))= G ′′1(c1(L))=
∑
i⩾1

(−1)i−1ai · (∂
i−1 H)(tc1(L)×i )= (Ad0(H)◦Ad0(H ′))(c1(L)).

If r ∈ R = CK0
R(k), then

Ad0(H ◦ H ′)(r)= G ′′0 · r = a0 · H(0) · r = Ad0(H)(a0 · r)= (Ad0(H) ◦Ad0(H ′))(r).

Overall, Ad0(H ◦ H ′)= Ad0(H) ◦Ad0(H ′). □
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The polynomials Am := (1− x)m satisfy Adn(Am)=9m in OP n,n
R . It follows from Lemma 4.21 and

Example 4.9 that
Ak ◦ Am = Akm = Am ◦ Ak

for all k and m.

Proposition 4.22. Let R be a commutative ring and K a Q-algebra. Then

(1) The composition ◦ in R[[x]] is commutative.

(2) The power series lgr (x) ∈ K [[x]], r ⩾ 0, are orthogonal idempotents that partition the identity, that
is, lgn(x) ◦ lgm(x)= δn,m · lgn(x) and 1− x =

∑
r⩾0 lgr (x).

Proof. (1) It follows from the definition that the power series xn
◦G and G ◦ xn are contained in xn R[[x]]

for all n and G. Let H,G ∈ R[[x]]. Fix an integer n > 0 and write H = H1 + H2 and G = G1 +G2,
where H1 and G1 are linear combinations of the Adams polynomials Ai and H2,G2 ∈ xn R[[x]]. As H1

and G1 commute, the remark above yields H ◦G−G ◦ H ∈ xn R[[x]]. Since this holds for all n, we have
H ◦G = G ◦ H .

(2) The iterated derivative ∂ i (lgn(x)) is zero if i ⩾ n and

(∂n−1 lgn)(x1, . . . , xn)=

n∏
i=1

log(1− xi ).

It follows that lgn(x) ◦ xm
= 0 if m > n and

lgn(x) ◦ xn
= (−1)n(∂n−1 lgn)(x

×n)= (−1)n(log(1− x))n = (−1)nn! lgn(x).

This calculation together with the first part of the proposition and the fact that the lowest term of lgr (x) is
xr/r ! show that the power series lgr (x) are orthogonal idempotents.

Finally,
∑

n⩾1 lgn(x)= elg1(x) = (1− x). □

Since lgr (x) are orthogonal idempotents which form a topological basis of the power series ring, from
the continuity and distributivity of ◦ , we obtain that our composition is associative.

Theorems 4.18 and 4.19 together with Proposition 4.22 yield the following corollary:

Corollary 4.23. The rings OP n,n
Ẑ

and OP n,n are commutative.

Let K be a Q-algebra. We view K [[x]] as a ring with respect to addition and composition. Let
G ∈ K [[x]] and write G =

∑
i⩾0 ai lgi for (unique) ai ∈ K . Denote as K [n,∞) the ring of K -sequences,

parametrized by integers ⩾ n under pointwise operations. It follows from Proposition 4.22 that the map

b : K [[x]] → K [0,∞), (4.24)

taking G to the sequence (ai)i⩾0, is a ring isomorphism. It takes xnK[[x]] onto K [n,∞) for every n.

Example 4.25. The image of the polynomial Am(x)= (1− x)m is equal to (1,m,m2, . . . ). Indeed, by
substituting y = log(1− x) into the equality emy

=
∑

i⩾0mi yi/i !, we get Am(x)=
∑

i⩾0mi lgi (x).
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4F. Topology. In this section, we introduce three topologies on Ẑ[[x]].

Proposition 4.26. Let G ∈OP n,n
R and m ⩾ n. The following conditions are equivalent:

(1) G ∈ Im(OP n,m
R →OP n,n

R );

(2) G is zero on every smooth variety of dimension < m.

Proof. (1)=⇒ (2): Since CKm
R(X)= 0, for any variety X of dimension <m, the operation G is zero on X .

(2)=⇒ (1): Let n ⩾ 1. By Proposition 4.11 (2), the operation G is given by a double-symmetric power
series H(x1, . . . , xn) ∈ R[[x1, . . . , xn]](n) such that H = (Gn)|t=1. We need to prove that v(H)⩾ m. We
will show that any monomial x̄ r̄

= xr1
1 · · · x

rn
n of H with

∑
i ri < m is zero.

Consider X r̄ :=
∏

i Pri . This is a variety of dimension<m. Write xi for the first Chern class in CK1
R(X r̄ )

of the pull-back of the canonical line bundle on Pri with respect to the i-th projection X r̄→Pri . By (4.7),

0= G(x1 · · · xn)= Gn(x1, . . . , xn) ∈ CKn
R(X r̄ ).

By the projective bundle theorem,

CKn
R(X r̄ )= R[[x1, . . . , xn]]/(x

r1+1
1 , . . . , xrn+1

n ).

Therefore, the monomial x̄ r̄ of H is trivial.
The case n ⩽ 0 follows similarly (and easier) from Proposition 4.11 (1). □

Corollary 4.27. Let d ⩾ 0 be an integer and G ∈OP n,n . Then there is a Z-linear combination G ′ ∈OP n,n

of the Adams operations 9k with k = 0, . . . , d such that G and G ′ agree on CKn(X) for all smooth
varieties X of dimension ⩽ d.

Proof. By Lemma 3.16 applied to m = d + 1, there is a polynomial G ′ ∈ Z[x] of degree at most d
such that G −G ′ ∈

∑
0<r<n Q · lgr (x)+ xd+1Q[[x]]. Let X be a smooth variety of dimension ⩽ d. As

v(∂n−1(G−G ′))⩾ d+ 1, in view of Theorem 4.12, we have G−G ′ ∈ Im(OPn,m
→OPn,n). Therefore,

by Proposition 4.26, it follows that G − G ′ is trivial on X . Finally, G ′ is a linear combination of the
Adams polynomials Ak with k = 0, . . . , d. □

Definition 4.28. We introduce three topologies on Ẑ[[x]]:

• τs is generated by the neighborhoods of zero Um consisting of power series divisible by xm , for
some m ⩾ 0, i.e., τs is the x-adic topology.

• τw is generated by the neighborhoods of zero Um + VN , where VN consists of all power series
divisible by some N ∈ N.

• τo is generated by the neighborhoods of zero Wm consisting of power series, where the respective
operation acts trivially on varieties of dimension < m.

Recall, that a topology ϕ is coarser than the topology ψ , denoted ϕ ⩽ ψ , if any set open with respect
to ϕ is also open with respect to ψ .
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Proposition 4.29. τw ⩽ τo ⩽ τs .

Proof. The inequality v(G(x)) ⩾ m implies v(∂n−1G(x)) ⩾ m, and therefore, by Theorem 4.12,
G ∈ Im(OPn,m

Ẑ
→OPn,n

Ẑ
). Therefore, it follows from Proposition 4.26 that τo ⩽ τs .

Note that the topology τw is generated by the neighborhoods of zero UN ,m = (N , xm) ⊂ Ẑ[[x]], and
the topology τo is generated by the neighborhoods of zero Wk = {G ∈ Ẑ[[x]] | v(∂n−1(G)) ⩾ k} by
Proposition 4.26. We need to show that for every N and m there is k with Wk ⊂UN ,m .

We have similar compact (Hausdorff) topology τw on Ẑ[[x1, . . . , xn]] so that the map ∂n−1 is continuous
in τw. Note that the map ∂n−1

: Ẑ[[x]]→ Ẑ[[x1, . . . , xn]] is injective and the induced map from Ẑ[[x]] to the
image of ∂n−1 is a homeomorphism (since the image of every closed subset is closed as Ẑ[[x]] is compact
and the target is Hausdorff). In particular, if Gk ∈ Ẑ[[x]] is a sequence such that the sequence ∂n−1(Gk)

converges to 0, then the sequence Gk converges to 0 in Ẑ[[x]].
Now we prove that for every N and m there is k with Wk ⊂UN ,m . Assume on the contrary that for

every k we can find Gk ∈Wk , but Gk /∈UN ,m . Then ∂n−1(Gk) converges to 0, but Gk does not converge
to 0 in Ẑ[[x]], a contradiction. □

Observation 4.30. (1) For n = 1, we have τo = τs .

(2) For n > 1, we have τw ̸= τo ̸= τs .

Proof. (1) This follows from Proposition 4.26, since n = 1.

(2) For n > 1, Wm contains, in particular, all power series
∑

i ai x i
∈ Ẑ[[x]], where a1 = iai , for all

0< i < m, which is not contained in any Ul , for l > 1. Thus, τo ̸= τs .
For m > n ⩾ 1, Wm/Um is a free Ẑ-module of rank (n− 1), while (Um + VN )/Um is a free Ẑ-module

of rank (m− 1). Hence, τw ̸= τo. □

We view OP n,n and OP n,n
Ẑ

as the topological rings for the topologies τw, τo and τs , respectively,
via the inclusions OP n,n ↪→OP n,n

Ẑ
↪→ Ẑ[[x]].

Note that the x-adic topology τs can be defined on R[[x]] for every R.
Consider the restriction b : R[[x]] → K [0,∞) of the map (4.24). We view K [0,∞) as a topological ring

with the basis of neighborhoods of zero given by the ideals K [n,∞) for all n > 0, so that the map is
continuous.

Proposition 4.31. The image of the map b : R[[x]] → K [0,∞) is contained in R[0,∞).

Proof. By Example 4.25, the image of the Adams polynomial Am under the map (4.24) is contained
in R[0,∞). But the set of all linear combinations of Adams polynomials is dense in R[[x]] in the topology τs .
The statement follows since R[0,∞) is closed in K [0,∞). □

Proposition 4.31 identifies the ring OP n,n
Ẑ
⊂ Ẑ[[x]] with a subring of Ẑ[n,∞) and OP n,n with a subring

of Z[n,∞) if n ⩾ 0. Indeed, if n ⩾ 1, the kernel of the composition

Qn
Ẑ

λn,n
−↠ OP n,n

Ẑ

b
−→ Ẑ[0,∞)→ Ẑ[n,∞)
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is generated by lgr , with 0< r < n, and all these logarithms are contained in the kernel of λn,n .
The ring OP n,n is not a domain: we have (91+9−1)(91−9−1)= 0. Let

e± = 1
2(91±9−1) ∈OP n,n[ 1

2

]
,

so e+ and e− are orthogonal idempotents and e++ e− = 1. There is an embedding

OP n,n ↪→OP n,n[ 1
2

]
=OP n,n[ 1

2

]
e+×OP n,n[ 1

2

]
e−.

Proposition 4.32. If n ⩾ 1, the rings OP n,n[ 1
2

]
e± are domains.

Proof. Recall that there is an injective ring homomorphism

b :OP n,n ↪→ Z[1,∞)

such that b(9m)= (m,m2,m3, . . . ) for all m. In particular,

b(e+)= (0, 1, 0, 1, . . . ) and b(e−)= (1, 0, 1, 0, . . . ).

Lemma 4.33. Let (a1, a2, . . . ) ∈ Im(b). Then for any prime integer p, we have that ai ≡ a j modulo p
if i ≡ j modulo p− 1.

Proof. It suffices to prove the statement for b(9m). We have ai − a j = mi
−m j

= m j (mi− j
− 1). If m is

not divisible by p, then mi− j
− 1 is divisible by p. □

Let G ·H = 0 in OP n,n . Set (a1, a2, . . . )= b(G) and (b1, b2, . . . )= b(H). We have ai bi = 0 for all i .
To prove the statement, it suffices to show that if ai ̸= 0 for some i , then bj = 0 for all j ≡ i modulo 2.

Choose an odd prime p that does not divide ai . By Lemma 4.33, a j is not divisible by p for all j such
that i ≡ j modulo p− 1. In particular, a j ̸= 0, hence bj = 0. Thus, we have proved that bj = 0 for all
j ≡ i modulo p− 1.

Lemma 4.34. There are infinitely many primes q such that gcd(q − 1, p− 1)= 2.

Proof. Let c be the odd part of p− 1 (that is, (p− 1)/c is a 2-power). By Dirichlet, there are infinitely
many primes q such that q ≡ 3 modulo 4 and q ≡ 2 modulo c. Clearly, gcd(q − 1, p − 1) = 2 for
such q . □

Let j be such that j ≡ i modulo 2. We need to prove that bj = 0. Take any prime q as in Lemma 4.34.
There are positive integers k and m such that

t := i + (p− 1)k = j + (q − 1)m.

We have proved that bt = 0 since t ≡ i modulo p− 1. By Lemma 4.33, 0= bt ≡ bj modulo q , i.e., bj is
divisible by q . We have proved that bj is divisible by infinitely many primes q , hence bj = 0. □
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4G. Operations in graded K-theory. In this section, we will determine the R-module of all R-linear
operations G : K n

grR → K m
grR for any pair of integers n and m denoted by OP n,m

R (K ∗gr). Recall that
K n

grR = K 0
grR · t

−n
= CK0

R ·t
−n , hence by Theorem 4.12, we get:

Corollary 4.35. OPn,m
R (K ∗gr)=OP0,0

R (K ∗gr) · t
m−n
=OP0,0

R (CK∗) · tm−n
= R[[x]] · tm−n.

Recall that the product operation in the ring OP n,m
R (K ∗gr)= R[[x]] is the composition ◦ (see Section 4E).

Moreover, R[[x]] is a (topological) bialgebra over R with coproduct defined by the rule

(1− x)n→ (1− x)n ⊗ (1− x)n

for all n ⩾ 0 that reads 9 7→9⊗9 in the language of operations.
Let us describe the dual bialgebra A (over Z) of co-operations as follows: Let A be the subring of

the polynomial ring Q[s] consisting of all polynomials f such that f (a) ∈ Z for all a ∈ Z. In particular,
Z[s] ⊂ A. The polynomials

en :=
1
n!
(−s)(1− s) · · · (n− 1− s)= (−1)n

( s
n

)
∈ A

for all n ⩾ 0 form a basis of A as an abelian group. Consider a pairing

A⊗ R[[x]] → R, a⊗G 7→ ⟨a,G⟩ ∈ R,

such that ⟨en, xm
⟩ = δn,m . This pairing identifies R[[x]] with the dual coalgebra for A via the isomorphism

HomZ(A, R)
∼
−→ R[[x]],

taking a homomorphism α : A→ R to the power series
∑

n⩾0 α(en)xn .

Lemma 4.36. For every polynomial f ∈ A, we have ⟨ f, (1− x)m⟩ = f (m).

Proof. We may assume that f = en for some n. Then

⟨ f, (1− x)m⟩ = ⟨en, (1− x)m⟩ = (−1)n
(m

n

)
= en(m)= f (m). □

The lemma shows that a co-operation f evaluated at the Adams operation 9m is equal to f (m).
It follows from Lemma 4.36 that

⟨sn, (1− x)km
⟩ = (km)n = kn

·mn
= ⟨sn, (1− x)k⟩ · ⟨sn, (1− x)m⟩.

As the composition in R[[x]] satisfies (1− x)k ◦ (1− x)m = (1− x)km , the composition in R[[x]] is dual to
the coproduct of A taking sn to sn

⊗ sn in A⊗ A.
The equality

⟨si+ j , (1− x)m⟩ = mi+ j
= mi

·m j
= ⟨si , (1− x)m⟩ · ⟨s j , (1− x)m⟩

shows that the product in A is dual to the coproduct in R[[x]]. Thus, the bialgebra R[[x]] of operations is
dual to the bialgebra A of co-operations.
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Remark 4.37. The polynomial ring Z[s] is a bialgebra with respect to the coproduct s→ s⊗ s. The dual
bialgebra over R is R[0,∞). The dual of the embedding Z[s]→ A is the homomorphism b : R[[x]]→ R[0,∞)

defined in Proposition 4.31, since by Lemma 4.36,

⟨sn, (1− x)m⟩ = mn
=

〈
sn, b((1− x)m)

〉
as b((1− x)m)= (1,m, . . . ,mn, . . . ).

5. Multiplicative operations

Definition 5.1. A multiplicative operation G : A∗→ B∗ is a morphism of functors from Smk to the
category of rings. That is, the ring structure is respected. (We don’t assume that G is a graded ring
homomorphism.)

As was noticed in topology and then in the algebrogeometric context in [Panin 2004, §2.7.5] there is
a functor from the category of oriented cohomology theories and their multiplicative operations to the
category of formal group laws. Let us briefly describe this functor.

If A∗ and B∗ are oriented cohomology theories over k, to any multiplicative operation G : A∗→ B∗

one can assign the morphism

(ϕG, γG) : (A∗(k), FA)→ (B∗(k), FB)

of the respective formal group laws, where ϕG : A∗(k)→ B∗(k) is the restriction of G to Spec(k) and
γG(x) ∈ x B∗(k)[[x]] is defined by the condition

G
(
cA

1 (O(1))
)
= γG

(
cB

1 (O(1))
)
∈ B∗(P∞)= B∗(k)[[x]].

In the algebrogeometric context, the power series γG(x)/x was introduced in this generality in [Panin
2004, Definition 2.5.1] and [Smirnov 2006] in order to state and prove Riemann–Roch type theorems
[Panin 2004, Theorems 2.5.3 and 2.5.4] for a multiplicative operation G. This series is called the inverse
Todd genus of G.

The following theorem permits us to reduce the classification of multiplicative operations to algebra.

Theorem 5.2 [Vishik 2019, Theorem 6.9]. Let A∗ be a theory of rational type and B∗ be any oriented
cohomology theory. Then the assignment G 7→ (ϕG, γG) is a bijection between the set of multiplicative
operations G : A∗→ B∗ and the set of morphisms of formal group laws.

Example 5.3. Let R be either Z, Zp or Ẑ and b ∈ R. The Adams operation 9b : CK∗R → CK∗R is
homogeneous and multiplicative. The corresponding map ϕ is the identity and γ = (1− (1− t x)b)/t .
If c ∈ R×, write 9c

b for the homogeneous multiplicative twisted Adams operation with ϕ(t) = ct and
γ = (1− (1− t x)bc)/ct (in particular, 91

b =9b). It follows from the equality

9c
b(t x)=9c

b(t)9
c
b(x)= ct · γ (x)= 1− (1− t x)bc
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that on CKn
R the operation9c

b is equal to c−n
·9bc. For any c∈ R, let9c

0 be the homogeneous multiplicative
operation with ϕ(t)= ct and γ = 0. This operation is zero in positive degrees and is equal to cn

· rank on
CK−n

R = (K0)R for n ⩾ 0.
Write 2 for the multiplicative operation CK∗R→ CK∗R which is the identity on CK0

R , multiplication by
tn
:CKn

R→CK0
R if n ⩾ 0 and the canonical isomorphism CKn

R→CK0
R (inverse to multiplication by t−n)

if n⩽0. This operation is not homogeneous and its image is CK0
R . Set 9̃c

b :=2◦9
c
b . This is a multiplicative

operation with image in CK0
R . The corresponding function ϕ(t)= c and γ = (1− (1− t x)bc)/c.

The introduced operations satisfy the following relations (use Theorem 5.2): 90
0 = 9̃

0
0 and

9c
b ◦9

e
d =9

ce
bd , 9c

b ◦ 9̃
e
d = 9̃

e
cbd , 9̃c

b ◦9
e
d = 9̃

ce
bd , 9̃c

b ◦ 9̃
e
d = 9̃

e
cbd .

Over Q, every formal group law is isomorphic to the additive one. Hence, for every theory C∗, we
have isomorphisms of formal group laws.

(id, expC) : (C
∗
⊗Z Q, FC)

..

(C∗⊗Z Q, Fadd) : (id, logC)nn

Suppose that (in the context of Definition 5.1) the coefficient ring B∗(k) of the target theory has
no torsion. Then the composition (id, expB) ◦ (ϕG, γG) ◦ (id, logA) identifies the set of multiplicative
operations A∗→ B∗ with a subset of morphisms of formal group laws

(A∗⊗Z Q, Fadd)→ (B∗⊗Z Q, Fadd).

The latter morphism is defined by (ψ, γ ), where, in our case, ψ = ϕ⊗Z Q, for some ring homomorphism
ϕ = ϕG : A∗(k)→ B∗(k) and γ (x)= b · x , for some b ∈ B∗(k). In other words,

(ϕG, γG)= (id, logB) ◦ (ϕG, γ ) ◦ (id, expA).

Then

γG(x)= ϕG(expA)(b · logB(x)).

5A. Multiplicative operations in CK. For A∗= B∗=CK∗
Ẑ

, we have A= B= Ẑ[t], FA= FB= x+y−t xy
and

logCK(x)=
log(1− t x)

t
, expCK(z)=

1−ezt

t
.

Note that a ring homomorphism ϕ from Ẑ[t] to a ring T such that
⋂

n>0 nT = 0 is uniquely determined
by ϕ(t) in T (such a choice is realized by a homomorphism, if Ẑ can be mapped to T ). Indeed, suppose
that ϕ and ψ satisfy ϕ(t)= ψ(t). For any f ∈ Ẑ[t] and n > 0, write f = g+ nh for some g ∈ Z[t] and
h ∈ Ẑ[t]. Then ϕ(g) = ψ(g) and hence ϕ( f )−ψ( f ) ∈ nT . Since this holds for all n > 0, we have
ϕ( f )−ψ( f )= 0 for all f .

Thus, the map ϕG : Ẑ[t] → Ẑ[t] is determined by ϕG(t) = c(t) ∈ Ẑ[t]. Let b = b(t) ∈ Ẑ[t]. Note
that any choice of b(t) and c(t) gives a morphism of rational formal group laws and so, a multiplicative
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operation G : CK∗
Ẑ
⊗ZQ→ CK∗

Ẑ
⊗ZQ with

γG(t, x)=
1− (1− t x)b(t)c(t)/t

c(t)
=

∑
n⩾1

(−1)n−1(t x)n
(b(t)c(t)/t

n

)
c(t)

,

which lifts to an operation CK∗
Ẑ
→ CK∗

Ẑ
if and only if the coefficients of our power series belong to Ẑ.

The coefficient at xn is

an = (−1)n−1 b(t)
∏n−1

k=1
(
b(t)c(t)− kt

)
n!

. (5.4)

Denote by bp(t) and cp(t) the Zp-components of our polynomials. If we have deg(bp(t)cp(t)) > 1 for
some p, the leading term of our t-polynomial will be clearly nonintegral (for some n). Similarly, if for
some p, the constant term of bp(t)cp(t) is nonzero, then the smallest term of the p-component of our
t-polynomial will be nonintegral, for some n. Hence, the polynomial b(t)c(t) is linear. Then, for a given
prime p, either bp(t)= bp and cp(t)= cpt , or bp(t)= bpt and cp(t)= cp, for some bp, cp ∈ Zp. Then
the Zp- component of our coefficient is:

(an)p = (−1)n−1tmbp

(bpcp−1
n−1

)
n

, where m = n− 1 or m = n.

If bp ̸=0, then this will be integral for all n if and only if cp ∈Z×p , while if bp=0, then cp can be an arbitrary
element from Zp. Let us denote the (Zp-components of ) operations with m = n− 1 as 9cp

bp
, while the

ones with m = n as 9̃cp
bp

(see Example 5.3; we suppress p from notations). Here, 9cp
bp

respects the grading
on CK∗Zp

, while 9̃cp
bp

maps CK∗Zp
to CK0

Zp
. The pairs (bp, cp) run over the set (Zp\0)×Z×p ∪ {0}×Zp

and, in addition, we have that 90
0 = 9̃

0
0 .

Thus, any multiplicative operation G on CK∗
Ẑ

splits into the product ×pG(p) of operations on CK∗Zp
,

where each G(p) is one of the 9cp
bp

or 9̃cp
bp

. Let P be the set of prime numbers and J ⊂ P be the subset of
those primes, for which (bp, cp) ̸= (0, 0) and G(p) is 9̃. Then the data (J, b, c), where the p-components
of b, c ∈ Ẑ are bp and cp, determines our operation G. Let us call it J9c

b . Here, (J, b, c) runs over all
possible triples satisfying (1) bp ̸= 0=⇒ cp ∈ Z×p and (2) (bp, cp)= (0, 0)=⇒ p /∈ J .

The operations ∅91
b are (nontwisted) Adams operations with ϕG = id, which naturally form a ring

isomorphic to Ẑ. These operations commute with every other operation. The operations ∅9c
1 are invertible

and form a group isomorphic to Ẑ×. Below we will suppress J =∅ from the notation and will denote
the respective operations simply as 9c

b .
The formulas in Example 5.3 show that the monoid of multiplicative operations is noncommutative.

5B. Multiplicative operations in Kgr over Z. For A∗ = B∗ = K ∗gr, we have A = B = Z[t, t−1
] and

FA = FB = x + y − t xy. Similar calculations, as in the previous section, show that the coefficient an

in (5.4) will belong to Z[t, t−1
] for every n if and only if b(t)c(t) is linear in t . Thus, c(t) = ct l , for

c =±1 and l ∈ Z, and b(t)= bt1−l , for some b ∈ Z.
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Then the coefficient an is

(−1)n−1tn−l

(bc
n

)
c
.

Denote this operation as l9c
b . It scales the grading on K ∗gr by the coefficient l. So, only the operations 19c

b

are homogeneous.
The case c(t)= t and b(t)= b, that is, 191

b corresponds to the Adams operation 9b, see [Vishik 2019,
§6.3]. In this case, ϕG = id. The operation −191

1 is an automorphism of order 2 acting identically on K 0
gr

and mapping t to t−1.
We will omit l and c from the notation l9c

b when these will be equal to 1.

6. Stable operations

The purpose of this section is to describe stable operations in CK and Kgr with integral and Ẑ-coefficients.
The spaces of such operations appear to have countable topological bases, which we describe in Theorems
6.25 and 6.34. We also describe stable multiplicative operations and show that these generate additive
ones only in the case of Ẑ-coefficients.

To be able to discuss stability of operations, we need the notion of a suspension. Following Voevodsky,
Panin [2003] and Smirnov [2006] we can introduce the category of pairs SmOp whose objects are pairs
(X,U ), where X ∈ Smk and U is an open subvariety of X , see [Vishik 2019, Definition 3.1], with the
smash product

(X,U )∧ (Y, V ) := (X × Y, X × V ∪U × Y )

and the natural functor Smk→ SmOp given by X 7→ (X,∅). Then suspension can be defined as

6T (X,U ) := (X,U )∧ (P1,P1
\0).

Any theory A∗ extends from Smk to SmOp by the rule

A∗((X,U )) := Ker(A∗(X)→ A∗(U )).

Any additive operation A∗→ B∗ on Smk extends uniquely to an operation on SmOp.
An element εA

= cA
1 (O(1)) ∈ A∗((P1,P1

\0)) defines an identification

σ A
T : A∗((X,U ))

∼=
−→A∗+1(6T (X,U )),

given by x 7→ x ∧ εA.

Definition 6.1. For any additive operation G : A∗ → B∗, we define its desuspension as the unique
operation 6−1G : A∗→ B∗ such that

G ◦ σ A
T = σ

B
T ◦6

−1G.

Definition 6.2. A stable additive operation G : A∗→ B∗ is the collection {G(n)
| n ⩾ 0} of operations

A∗→ B∗ such that G(n)
=6−1G(n+1).
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Proposition 6.3. Suppose that G : A∗→ B∗ is a multiplicative operation with γG(x)≡ bx modulo x2 for
some b ∈ B∗(k). Then 6−1G = b ·G.

Proof. We have

G(σ A
T (u))= G(u ∧ εA)= G(u)∧G(εA)= G(u)∧ (b · εB)= σ B

T (b ·G(u)). □

We call a multiplicative operation G stable if the constant sequence (G,G,G, . . . ) is stable. By
Proposition 6.3, G is stable if and only if the linear coefficient of γG is equal to 1 (see [Vishik 2019,
Proposition 3.8]).

For a commutative ring R, define the operator

8=8R : R[[x]] → R[[x]], 8(G)= (x − 1)dG
dx
,

6A. Stable operations in CK over Ẑ. Recall that when A∗= B∗=CK∗
Ẑ

, the group of additive operations
OP n,n

Ẑ
, for n ⩽ 0 and n ⩾ 1, can be identified with Ẑ[[x]], respectively, xẐ[[x]].

Proposition 6.4. The desuspension operator 6−1
:OP n,n

Ẑ
→OPn−1,n−1

Ẑ
is given by the rule

6−1(G)=
{
8(G), if n ⩽ 1,
∂0(8(G))=8(G)−8(G)(0), if n > 1.

Proof. The Adams operation 9k is identified with the power series Ak(x)= (1− x)k if n ⩽ 0 and with
(1− x)k − 1 if n > 0. By Proposition 6.3, we have 6−19k = k9k , so the formula holds for G =9k .

The map 6−1 is continuous in τo, and the map 8 is continuous in τs . Hence, both maps are continuous
as the maps τs→ τo. Since τo is Hausdorff (as τw is), it follows that the set of power series, where 6−1

and 8 coincide, is closed in τs . But the set of linear combinations of Adams operations is everywhere
dense in τs . □

It follows from Proposition 6.4 that the desuspension map 6−1 is injective and yields a tower of
injective maps in the other direction:

Ẑ[[x]] =OP 0,0
Ẑ

6−1

←−−OP1,1
Ẑ

6−1

←−− · · ·
6−1

←−−OP n,n
Ẑ

6−1

←−− · · · . (6.5)

Moreover, the group OPst
Ẑ

of homogeneous degree 0 stable operations CK∗
Ẑ
→ CK∗

Ẑ
that is the limit of

the sequence (6.5) is naturally isomorphic to the group

S := ∩n Im(8n)= ∩n Im((6−1)n)⊂ Ẑ[[x]].

Indeed, if {G(n)
|n⩾0} is a stable operation, then G(0)

=8n(G(n)) for every n, hence G(0)
∈ S. Conversely,

given G ∈ S, write G =8n(H (n)) for every n. Since Ker(8n) consists of constant power series only, the
sequence G(n)

=8(H (n+1)) is a stable operation.

Lemma 6.6. Let G ∈ xẐ[[x]] and n ⩾ 1. Then

(1) ∂n(G) has coefficients in Z if and only if ∂n−1(8(G)) has coefficients in Z.

(2) v(∂n(G))⩾ m for some m if and only if v(∂n−1(8(G)))⩾ m− 1.
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Proof. (⇒): Follows from Proposition 2.6 for both (1) and (2).

(⇐): Simply write Hk for (x − 1)k(dk G/dxk). We claim that ∂n−1(Hk) has coefficients in Z in case (1)
and v(∂n−1(Hk)) ⩾ m − k in case (2) for every k ⩾ 1. We prove the statements by induction on k. To
show (k⇒ k+ 1): We have Hk+1 =8(Hk)− k Hk , hence

∂n−1(Hk+1)= ∂
n−1(8(Hk)

)
− k∂n−1(Hk).

Then k∂n−1(Hk) has coefficients in Z in case (1) and v(k∂n−1(Hk))⩾ m− k in case (2) by the induction
hypothesis. As the derivative ∂n(Hk) has coefficients in Z in case (1) and v(∂n(Hk))⩾ m− k in case (2),
it follows from Proposition 2.6, applied to the power series Hk , that ∂n−1(8(Hk)) also has coefficients
in Z in case (1) and v

(
∂n−1(8(Hk))

)
⩾ m−k−1 in case (2). It follows that ∂n−1(Hk+1) has coefficients

in Z in case (1) and v(∂n−1(Hk+1))⩾ m− k− 1 in case (2). The claim is proved.
Note that all coefficients of Hk are divisible by k! in Ẑ. It follows that the power series (1/k!)∂n−1(Hk)

have coefficients in Z in case (1). By Proposition 2.6, ∂n(G) has coefficients in Z in case (1) and
v(∂n(G))⩾ m in case (2). □

In particular, we can describe the integral operations OP n,m as follows:

Proposition 6.7. Let G ∈ xẐ[[x]] and m ⩾ n ⩾ 1. Then G ∈ OP n,m if and only if 8n(G) ∈ Z[[x]] and
v(8n(G))⩾ m− n.

Proof. Theorem 4.12 and iterated applications of Lemma 6.6 show that G ∈ OP n,m if and only if
∂0(8n−1(G)) ∈ Z[[x]] and v(∂0(8n−1(G))) ⩾ m − n+ 1. Thus, it suffices to prove the following for a
power series H ∈ Ẑ[[x]] and integer k ⩾ 0:

(1) ∂0(H) ∈ Z[[x]] ⇐⇒8(H) ∈ Z[[x]],

(2) v(∂0(H))⩾ k+ 1⇐⇒ v(8(H))⩾ k.

If ∂0(H) ∈ Z[[x]], then clearly 8(H) ∈ Z[[x]]. Conversely, if 8(H) ∈ Z[[x]], then

∂0(H) ∈Q[[x]] ∩ Ẑ[[x]] = Z[[x]].

The second statement follows from the obvious equality v(∂0(H))= v(8(H))+ 1. □

Let m a positive integer. It follows from Lemma 6.6 (2) that there is a tower of inclusions as in (6.5):

xmẐ[[x]] =OP0,m
Ẑ
←↩OP1,m+1

Ẑ
←↩ · · · ←↩OPn,n+m

Ẑ
←↩ · · · . (6.8)

Additionally, for every n, we have OP n,n+m
Ẑ

∩OP n+1,n+1
Ẑ

in OP n,n
Ẑ

coincides with OP n+1,n+m+1
Ẑ

. There-
fore, we obtain:

Proposition 6.9. The group of homogeneous degree m stable operations CK∗
Ẑ
→ CK∗+m

Ẑ
is naturally

isomorphic to the intersection xmax(0,m)Ẑ[[x]] ∩ S.
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The map 8 : Ẑ[[x]] → Ẑ[[x]] is continuous in τw, and the space Ẑ[[x]] is compact Hausdorff. Hence,
Im(8n) is closed in Ẑ[[x]] for any n. It follows that the set S is also closed in Ẑ[[x]] in the topology τw,
and hence in τo and τs .

It follow from Proposition 4.26 and Lemma 6.6 that the topology on OPst
Ẑ

induced by τo is generated
by the neighborhoods of zero Wm consisting of all collections {G(n)

| n ⩾ 0} such that G(n) acts trivially
on varieties of dimension < n+m. We still denote this topology by τo.

Let Ar (x)= (1− x)r ∈ Ẑ[[x]] for r ∈ Ẑ. Note that 8(Ar )= r · Ar . In particular, if r is invertible in Ẑ,
then Ar ∈ S.

We can describe the set S via divisibility conditions on the coefficients of the power series.

Theorem 6.10. The set S =∩r Im(8r )⊂ Ẑ[[x]] consists of all power series G =
∑

i⩾0 ai x i satisfying the
following property: for every prime p and every positive integers n and m such that m is divisible by pn ,
for every nonnegative j < m divisible by p, the sum

∑m−1
i= j

(i
j

)
ai is divisible by pn .

Proof. Let n be a positive integer, G ∈ S and write G =8n(H) for some H ∈ Ẑ[[x]]. Consider the ideal
I = (pn, xm)⊂ Ẑ[[x]], where m is divisible by pn . Note that 8(I )⊂ I since pn divides m.

Let G ′ be the xm-truncation of G and H ′ the xm-truncation of H . As G−G ′ ∈ I and H − H ′ ∈ I , we
have G ′−8n(H ′) ∈ I . Since G ′ and 8n(H ′) are polynomials of degree less than m, we conclude that
G ′ and 8n(H ′) are congruent modulo pn .

We write G ′ and H ′ as polynomials in y = x − 1. Since 8n(yi )= in yi , the yi -coefficients of 8n(H ′)
are divisible by pn for all i divisible by p. It follows that the same property holds for G ′. As

G ′ =
m−1∑
i=0

ai x i
=

m−1∑
i=0

ai (y+ 1)i =
m−1∑
i=0

ai

i∑
j=0

( i
j

)
y j
=

m−1∑
j=0

y j
m−1∑
i= j

( i
j

)
ai ,

the divisibility condition holds.
Conversely, as Ẑ =

∏
Zp, it suffices to prove the statement over Zp. Let G ∈ Zp[[x]] satisfy the

divisibility condition in the theorem. Choose n and m such that m is divisible by pn and set I =
(pn, xm)⊂ Zp[[x]] as above. Recall that 8(I )⊂ I . Let F be the xm-truncation of G. By assumption, we
can write F ≡

∑
bi yi modulo pn , where the sum is taken over i < m that are prime to p. In particular,

G ≡
∑

bi yi modulo I .
Choose r > 0 and set F ′ =

∑
(bi/ ir )yi . Then 8r (F ′) =

∑
bi yi
≡ G modulo I , i.e., G is in the

image of 8r modulo I . As Im(8r ) is closed in Zp[[x]] in the topology τw, we have G ∈ Im(8r ) for all r ,
i.e., G ∈ S. □

6B. Stable operations in CK over Z. Now we turn to the study of stable operations over Z.

Proposition 6.11. The preimage of OP n,n under 6−1
:OP n+1,n+1

Ẑ
→OP n,n

Ẑ
is equal to OP n+1,n+1 for

every n ⩾ 0.

Proof. As 6−1
= ∂0
◦8, for n ⩾ 1, and 6−1

=8, for n = 0, this follows from Proposition 6.7. □
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Thus, we have a tower

Z[[x]] =OP 0,0
←↩OP1,1

←↩ · · · ←↩OP n,n
←↩ · · · ,

given by the desuspension and the group OPst of stable homogeneous degree 0 integral operations is
identified with S0 := S ∩Z[[x]], where S is described by Theorem 6.10. Applying Proposition 6.7 again,
we get:

Proposition 6.12. The group of homogeneous degree m stable operations CK∗→ CK∗+m is naturally
isomorphic to the intersection xmax(0,m)Z[[x]] ∩ S0.

We would like to determine the structure of S0.

Lemma 6.13. For every n ⩾ 0, there is a positive integer d such that dxn
∈ S+ xn+1Ẑ[[x]].

Proof. Choose distinct elements r0, . . . , rn ∈ Ẑ× such that ri − r j ∈ Z for all i and j . The x i -coefficients
with i = 0, 1, . . . , n of the power series Ar j (x)= (1− x)r j ∈ S form an (n+1)× (n+1) Van der Monde
type matrix

[
(−1)i

(r j
i

)]
. Its determinant d is a nonzero integer since all ri − r j are integers. It follows

that there is a Ẑ-linear combination of the Ar j that is equal to dxn modulo xn+1. □

Note that any ideal in Ẑ that contains a nonzero integer is generated by a positive integer (the smallest
positive integer in the ideal). It follows from Lemma 6.13 that for every n ⩾ 0, there exists a unique
positive integer dn such that the ideal of all a ∈ Ẑ with the property axn

∈ S+ xn+1Ẑ[[x]] is generated
by dn . We will determine the integers dn below.

For every n ⩾ 0, choose a power series Gn ∈ S such that Gn ≡ dnxn modulo xn+1.

Lemma 6.14. Let G =
∑

i⩾0 ai x i
∈ S be such that a0, . . . , an−1 ∈ Z. Then there exist bi ∈ Ẑ for all i ⩾ n

such that G−
∑

i⩾nbi Gi ∈ S0.

Proof. Find an integer a′n such that an−a′n is divisible by dn , thus, an = a′n+dnbn for some bn ∈ Ẑ. Then
the x i -coefficients of G − bnGn are integer for i = 0, . . . , n. Continuing this procedure, we determine
all bi for i ⩾ n, so that all coefficients of G−

∑
i⩾n bi Gi are integers. □

Theorem 6.15. For all n ⩾ 0, there are power series Fn ∈ S0 such that Fn ≡ dnxn modulo xn+1. Moreover:

(1) The group S0 consists of all infinite linear combinations
∑

n⩾0 an Fn with an ∈ Z.

(2) The group of homogeneous degree m stable operations CK∗→ CK∗+m is naturally isomorphic to
the group of all infinite linear combinations

∑
n⩾max(0,m)an Fn with an ∈ Z.

Proof. Fix n ⩾ 0. The coefficient dn of Gn is an integer. Applying Lemma 6.14, we find bi ∈ Ẑ for
i ⩾ n+ 1 such that Fn := Gn −

∑
i⩾n+1 bi Gi ∈ S0. Statements (1) and (2) are clear. □

6C. The integers dn. Our next goal is to determine the integers dn . Let n > 0 be an integer. For an
integer r write Lr for the n-tuple of binomial coefficients((r

0

)
,
(r

1

)
, . . . ,

( r
n−1

))
= (1, r, . . . ) ∈ Zn.
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For an n-sequence ā = (a1, . . . , an) of positive integers, let d(ā) be the determinant of the n×n matrix
with columns La1, La2, . . . , Lan . We have

d(ā)=
(∏

s>t

(as − at)

)/ n−1∏
k=1

k! ∈ Z. (6.16)

Let p be a prime integer. An n-sequence ā is called p-prime if all its terms are prime to p. Let ā(n)min be
the “smallest” strictly increasing p-prime n-sequence

(1, 2, . . . , p− 1, p+ 1, . . . ).

Lemma 6.17. Let ā be a p-prime n-sequence that differs from ā(n)min at one term only. Then d(ā(n)min) divides
d(ā) in the ring of p-adic integers Zp.

Proof. Suppose ā is obtained from ā(n)min by replacing a term a by b. It follows from (6.16) that

d(ā)

d(ā(n)min)
=

∏
(b− a′)∏
(a− a′)

,

where the products are taken over all terms a′ of āmin, except a. Since a is prime to p, the product∏
(a−a′) generates the same ideal in Zp as a!(c−a)! , where c is the last term of āmin. Similarly, as b is

prime to p, the product
∏
(b− a′) generates the same ideal in Zp as

b(b− 1) · · · (b− a+ 1) · (b− a− 1) · · · (b− c+ 1)(b− c)= (−1)c−aa!(c− a)!
(b

a

)(c−b
c−a

)
. □

Corollary 6.18. The integer d(ā(n)min) divides d(ā(n+1)
min ) in Zp.

Proof. In the cofactor expansion (Laplace’s formula) of the determinant d(ā(n+1)
min ) along the last row, all

minors are divisible by d(ā(n)min) in view of Lemma 6.17. □

Let Mn be the Zp-submodule of (Zp)
n that is generated by the tuples La1, La2, . . . , Lan , where

(a1, a2, . . . , an)= ā(n)min.

Lemma 6.19. Let b be an integer prime to p. Then the n-tuple Lb is contained in Mn . In others words,
the Zp-submodule of (Zp)

n generated by Lb for all integers b > 0 prime to p coincides with Mn .

Proof. By Cramer’s rule, the solutions of the equation Lb = x1La1+· · ·+ xn Lan are given by the formula
xi = d(ā(i))/d(ā

(n)
min), where the sequence ā(i) is obtained from ā(n)min by replacing the i-th term with b. By

Lemma 6.17, we have xi ∈ Zp. □

The following statement is a generalization of Lemma 6.17:

Corollary 6.20. Let ā be any p-prime n-sequence. Then d(ā(n)min) divides d(ā) in Zp.

Set

dn = d(p)n :=
d(ā(n+1)

min )

d(ā(n)min)
.

By Corollary 6.18, we have dn ∈ Zp.
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Write n in the form n = (p− 1)k+ i , where i = 0, 1 . . . , p− 2 and k =
⌊

n/(p− 1)
⌋

. Then it follows
from (6.16) that

dnZp =
pk
· k!

n!
Zp, or, equivalently, vp(dn)= k+ vp(k!)− vp(n!), (6.21)

where vp is the p-adic discrete valuation.
Note that vp((n+k)!)= vp((pk+i)!)= vp((pk)!)= k+vp(k!), hence dnZp = (n+k)!/n!Zp. Observe

that the function n 7→ vp(dn) is not monotonic.

Proposition 6.22. An (n+1)-tuple (0, 0, . . . , 0, d) is contained in Mn+1 if and only if d is divisible by dn

in Zp.

Proof. As in the proof of Lemma 6.19, (0, 0, . . . , 0, d) ∈ Mn+1 if and only if d · d(ā(i)) is divisible by
d(ā(n+1)

min ) in Zp for all i , where the sequence ā(i) is obtained from ā(n)min by deleting the i-th term in ā(n+1)
min .

We have d(ā(i))= d(ā(n)min) if i = n+1, and by Corollary 6.20, all d(ā(i)) are divisible by d(ā(n)min), whence
the result. □

For an integer r , let as before Ar (x)= (1− x)r . Note that the n-tuple Lr is the tuple of coefficients
(after appropriate change of signs) of the xn-truncation of the polynomial Ar . Denote by N (p) the
Zp-submodule of Zp[x] generated by Ar for all integers r > 0 prime to p. We get an immediate corollary
from Lemma 6.19 and Proposition 6.22.

Proposition 6.23. Let d ∈ Zp and n ⩾ 0. Then dxn
∈ N (p)

+ xn+1Zp[x] if and only if d is divisible by dn .
Moreover, there is a Zp-linear combination Gn of the Adams polynomials Aa1, Aa2, . . . , Aan+1 , where
(a1, a2, . . . , an+1)= ā(n+1)

min , such that Gn ≡ dnxn (mod xn+1).

Proposition 6.24. The set SZp =
⋂

r Im(8r
Zp
) contains a power series ≡ dxn (mod xn+1) if and only if

d is divisible by dn in Zp.

Proof. Suppose that G ∈ SZp and G ≡ dxn modulo xn+1. Choose integers k > 0 such that pk is divisible
by d(ā(n+1)

min ) and m > n is divisible by pk , and consider the ideal I = (pk, xm) ⊂ Zp[[x]]. We have
G =8k(G ′) for some G ′ ∈ Zp[[x]] and write

G ′ =
m−1∑
i=0

bi Ai modulo xmZp[[x]]

for some bi ∈ Zp. Applying 8k and taking into account 8k(Ai )= ik Ai , we get G =8k(G ′) ∈ N (p)
+ I .

Taking the xn+1-truncations, we see that

dxn
∈ N (p)

+ xn+1Zp[x] + pkZp[x].

As pk is divisible by d(ā(n+1)
min ), we conclude that pkZp[x] ⊂ N (p)

+ xn+1Zp[x]. Therefore, we have
dxn
∈ N (p)

+ xn+1Zp[x]. By Proposition 6.23, d is divisible by dn . □
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Now we turn to the ring Ẑ. The integers dn defined before Lemma 6.14 are the products of primary
parts of dn = d(p)n determined as above for every prime p. In view of (6.21), we have

vp(dn)=
⌊ n

p−1

⌋
+ vp

(⌊ n
p− 1

⌋
!

)
− vp(n!)

for every prime p. For example, d0= 1, d1= 2, d2= 22
·3, d3= 23, d4= 24

·3 ·5, d5= 25
·3, d6= 26

·32
·7

and d7 = 27
· 32.

Propositions 6.23 and 6.24 yield:

Theorem 6.25. Let n ⩾ 0 be an integer. Then:

(1) There exists a Ẑ-linear combination Gn of the Adams polynomials Aa1, Aa2, . . . , Aan+1 for some
a1, a2, . . . , an+1 ∈ Ẑ× such that Gn ≡ dnxn modulo xn+1.

(2) The set S =
⋂

r Im(8r
Ẑ
) contains a power series ≡ dxn (mod xn+1) if and only if d is divisible by dn

in Ẑ. It consists of all (infinite) linear combinations of Gn .

Remark 6.26. It follows from Proposition 6.23 that a1, a2, . . . , an+1 ∈ Ẑ× can be chosen so that for
every prime p, we have ((a1)p, (a2)p, . . . , (an+1)p)= ā(n+1)

min with respect to p. In particular, a1 = 1.

Proposition 6.27. The set S =∩r Im(8r ) is the closure in the topology τs , and hence, in the topologies τo

and τw of the set of all ( finite) Ẑ-linear combinations of the power series Ar for r ∈ Ẑ×.

Proof. Denote as Ts, Tw, To the closures of the mentioned set of linear combinations in our three topologies.
As S is closed in τw, we have Ts ⊂ To ⊂ Tw ⊂ S.

Let G ∈ xkẐ[[x]]∩S. Then by Theorem 6.25, G≡dxk (mod xk+1), where d=dk ·c, for some c∈ Ẑ. We
know that there exists a Ẑ-linear combination Gk of the power series Aa1, Aa2, . . . , Aak (with invertible ai )
such that Gk ≡ dk xk (mod xk+1). Hence, G − c · Gk ∈ xk+1Ẑ[[x]] ∩ S. Applying this inductively, we
obtain that, for any G ∈ S and any positive integer m, there exists a finite Ẑ-linear combination H of
invertible Ar , such that G− H ∈ xmẐ[[x]] ∩ S. Therefore, Ts = S, and hence Ts = To = Tw = S. □

6D. Stable operations in Kgr. In Section 4G, we defined the bialgebra A of co-operations in Kgr

with a canonical element s ∈ A. Recall that for a commutative ring R, the bialgebra of operations
OP n,n

R (Kgr) = OP0,0
R (CK) = R[[x]] is dual to A. The same proof as in Proposition 6.4 shows that the

desuspension operator

6−1
: R[[x]] =OPn,n

R (Kgr)→OPn−1,n−1
R (Kgr)= R[[x]]

coincides with 8. It follows that

OPst
R(Kgr)= lim(R[[x]]

8
←− R[[x]]

8
←− R[[x]]

8
←− · · · ).

Lemma 6.28. The desuspension operator 8 is dual to the multiplication by s in A.

Proof. As 8((1− x)m)= m(1− x)m , in view of Lemma 4.36, we have〈
en,8((1− x)m)

〉
= ⟨en,m(1− x)m⟩ = m · en(m)= ⟨sen, (1− x)m⟩. □
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The localization A[1/s] can be identified with colim(A
s
−→A

s
−→· · · ). Therefore,

OPst
R(Kgr)≃ Hom

(
A
[1

s

]
, R

)
,

i.e., the bialgebra OPst
R(Kgr) of stable operations is dual to A[1/s].

The bialgebra A[1/s] coincides with the algebra of degree 0 stable operations K0(K ) in topology (see
[Johnson 1984, Proposition 3] and [Adams et al. 1971]). Moreover, A[1/s] is a free abelian group of
countable rank [Adams and Clarke 1977, Theorem 2.2] and can be described as the set of all Laurent
polynomials f ∈Q[s, s−1

] such that f (a/b) ∈ Z[1/(ab)] for all integers a and b ̸= 0.
It follows that the bialgebra A[1/s] admits an antipode s 7→ s−1 that makes A[1/s] a Hopf algebra. It

follows that OPst
R(Kgr) is a (topological) Hopf algebra.

Remark 6.29. We have a diagram of homomorphisms of bialgebras and its dual:

Z[s]

��

// A

��

R[0,∞) R[[x]]b
oo

Z[s, s−1
] // A

[1
s

]
RZ

OO

OPst
R(Kgr)

OO

oo

The bottom maps are homomorphisms of Hopf algebras. The antipode of RZ takes a sequence ri to r−i .

The group of degree 0 stable operations OPst
Ẑ
(Kgr) coincides with OPst

Ẑ
(CK)= S, whose structure was

described in Theorem 6.25. Our nearest goal is to determine the structure of OPst
Z(Kgr). We remark that

this group is different from OPst
Z(CK)= S ∩Z[[x]].

Let R be one of the following rings: Z, Zp or Ẑ. Recall that we have an injective homomorphism
bR : R[[x]] → R[0,∞) taking (1 − x)m to the sequence (1,m,m2, . . . ). The operation 8 on R[[x]]
corresponds to the shift operation 5 on R[0,∞) defined by 5(a)i = ai+1.

An n-interval of a sequence a in R[0,∞) or RZ is the n-tuple (ai , ai+1, . . . , ai+n−1) for some i . We
say that this interval starts at i .

For every n ⩾ 1, let Mn be the R-submodule of Rn generated by the n-tuples r̄ := (1, r, r2, . . . , rn−1)

for all integers r > 0. Note that Mn is of finite index in Rn .

Lemma 6.30. A sequence a ∈ R[0,∞) belongs to the image of bR if and only if for every n > 0, the
n-interval of a starting at 0 is contained in Mn .

Proof. (⇒): This is clear.
(⇐): Note that by assumption a is contained in the closure of Im(bR). On the other hand, if R = Zp or Ẑ,
the space R[[x]] is compact in τw and R[0,∞) is Hausdorff, hence Im(bR) is closed, i.e., a ∈ Im(bR). If
R = Z, it follows from the case R = Ẑ that a = b

Ẑ
(G) for some G ∈ Ẑ[[x]]. Since at the same time

G ∈Q[[x]], we have G ∈ Z[[x]]. □

Let TR ⊂ RZ be the R-submodule of all sequences a ∈ RZ such that every n-interval of a is contained
in Mn for all n ⩾ 1. If a ∈ TR , by Lemma 6.30, for every n ⩾ 0, there is Gn ∈ R[[x]] such that bR(Gn)=

(a−n, a−n+1, . . . ). Since8(Gn+1)=Gn , the sequence (Gn)n⩾0 determines an element in OPst
R(Kgr). This

construction establishes an isomorphism OPst
R(Kgr)≃ TR . Note that T

Ẑ
=OPst

Ẑ
(CK)= S =

⋂
r Im(8r ).
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For every n ⩾ 1, let Nn be the R-submodule of Rn generated by the n-tuples r̄ for all r ∈ R×. Then
Nn is of finite index in Rn if R = Zp or Ẑ.

Note that every n-tuple r̄ , with r ∈ R×, extends to the sequence a with ai = r i that is contained in TR .

Lemma 6.31. The module Nn ⊂ Mn for all n ⩾ 1.

Proof. It suffices to consider the case R=Zp. Choose an integer m> 0 such that pm
·Zn

p⊂Mn . Let r ∈Z×p .
Find an integer r ′ > 0 congruent to r modulo pm . Then the tuple r̄ = (1, r, r2, . . . , rn−1) is congruent
to r̄ ′ modulo pm . Hence, r̄ = r̄ ′+ (r̄ − r̄ ′) ∈ Mn + pmZn

p ⊂ Mn . □

It follows from Lemma 6.31 that every element in Nn is an n-interval of a sequence in TR .

Proposition 6.32. If R = Zp or Ẑ, the R-module TR consists of all sequences a ∈ RZ such that every
n-interval of a is contained in Nn for all n ⩾ 1.

Proof. We may assume that R = Zp. Let a ∈ TR . In view of Lemma 6.31, it suffices to show that every
n-interval v of a starting at i is contained in Nn for all n ⩾ 1. Take an integer m > 0 and consider the
(n+m)-interval w of 5−m(a) starting at i , so that v is the part of w on the right. Write w as a (finite)
linear combination

∑
tr r̄ over positive integers r , where tr ∈ Zp and r̄ = (1, r, r2, . . . , rn+m−1) ∈ Mn+m .

Applying 5m to 5−m(a), we see that v =
∑

trrm r̂ , where r̂ = (1, r, r2, . . . , rn−1) ∈ Mn . As rm is
divisible by pm if r is divisible by p, it follows from the definition of Nn that v ∈ Nn + pm Mn . Since Nn

is of finite index in Mn , we can choose m such that pm Mn ⊂ Nn , hence a ∈ Nn . □

Denote by θ : RZ
→ RZ the reflection operation taking a sequence a to the sequence θ(a)i = a−i .

Corollary 6.33. The module TR is invariant under θ .

Proof. In the case R = Zp or Ẑ, it suffice to notice that if r ∈ R×, the symmetric n-tuple

(rn−1, rn−2, . . . , r, 1)= rn−1(1, r−1, (r−1)2, . . . , (r−1)n−1)
is contained in Nn . If R = Z, the statement follows from the equality TZ = T

Ẑ
∩ZZ. □

Now let R = Ẑ and n ⩾ 0. The ideal of all t ∈ Ẑ such that (0, . . . , 0, t) ∈ Nn is generated by a (unique)
positive integer d̃n = n! · dn , where the integers dn were introduced in Section 6C. We know that

vp(d̃n)= vp((n+ kp)!)

for all primes p, where kp = ⌊n/(p− 1)⌋. By Theorem 6.15, there are power series Fn ∈ S0 = S ∩Z[[x]]
such that Fn ≡ dnxn modulo xn+1.

Let f (n) ∈ T
Ẑ

be the image of Fn under the map S = OPst
Ẑ
(Kgr)→ ẐZ. Thus, (0, . . . , 0, d̃n) is the

n-interval of f (n) starting at 0. For example, we can choose

f (0) = ( . . . , 1, 1, 1, 1, . . . ),

f (1) = ( . . . , 0, 2, 0, 2, . . . ).

As in the proof of Theorem 6.15, modifying f (n) by adding multiples of the shifts of f (m) for m > n and
their reflections, we can obtain f (n) ∈ ZZ for all n.



Operations in connective K-theory 1635

Theorem 6.34. Every sequence a ∈ TZ ≃OPst
Z(Kgr) can be written in the form

a =
∞∑

i=0

[
b2i5

−iθ( f (2i))+ b2i+15
i ( f (2i+1))

]
for unique b0, b1, . . . ∈ Z.

Proof. We determine the integers b0, b1, . . . inductively so that for every m ⩾ 0 the sum
∑m

i=0 of the
terms in the right-hand side and the sequence a have the same (2m+ 2)-intervals starting at −m. □

Remark 6.35. Observe that {5−iθ( f (2i)), 5i ( f (2i+1)) | i ∈Z⩾0} is also a topological basis of OPst
Ẑ
(Kgr).

Note that, at the same time, { f ( j)
| j ∈ Z⩾0} forms a topological basis for OPst

Z(CK) and OPst
Ẑ
(CK). This

shows the relation between operations in CK and those in Kgr. In particular, there are substantially more
operations in the former theory.

6E. Stable multiplicative operations. We first consider stable multiplicative operations on CK∗
Ẑ

. From
Proposition 6.3, we obtain:

Proposition 6.36. Stable multiplicative operations CK∗
Ẑ
→ CK∗

Ẑ
are exactly operations 9c

1 , for c ∈ Ẑ×.
These operations are invertible and form a group isomorphic to Ẑ×. Similarly, stable multiplicative
operations on CK∗ form a group isomorphic to Z×.

Restricted to CK0
Ẑ
, the operation 9c

1 is given by G0 = 1 (as it is multiplicative and so, maps 1 to 1),
while G(t x) = G(t)G(x) = ct · γG(x) = 1− (1− t x)c and so, our operation corresponds to the power
series Ac = (1− x)c. In other words, on CK0

Ẑ
, the operation 9c

1 coincides with the Adams operation 9c.
Then on CKn

Ẑ
, it is equal to c−n

·9c.
Proposition 6.27 gives:

Corollary 6.37. The set of homogeneous stable additive operations on CK∗
Ẑ

is the closure in the topology
τo of the set of (finite) Ẑ-linear combinations of stable multiplicative operations.

Remark 6.38. Note that the respective statement for Z-coefficients is not true, as there are only two stable
multiplicative operations on CK∗, namely, 91

1 and 9−1
1 , while the group of stable additive operations

there has infinite (uncountable) rank.

Now we consider stable multiplicative operations on K ∗gr over Z.

Proposition 6.39. Stable multiplicative operations K ∗gr→ K ∗gr are exactly operations 9c
1 , for c = ±1.

These are invertible and form a group isomorphic to Z× ∼= Z/2Z.

Proof. The linear coefficient of γG for the operation l9c
b is t1−lb, see Section 5B. This will be equal to 1

exactly when l = 1 and b = 1. □

As above, the operation 9c
1 corresponds to the power series Ac = (1 − x)c. On K n

gr it coincides
with c−n

·91
c .
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The structure of Frobenius kernels for
automorphism group schemes

Stefan Schröer and Nikolaos Tziolas

We establish structure results for Frobenius kernels of automorphism group schemes for surfaces of
general type in positive characteristic. It turns out that there are surprisingly few possibilities. This
relies on properties of the famous Witt algebra, which is a simple Lie algebra without finite-dimensional
counterpart over the complex numbers, together with its twisted forms. The result actually holds true for
arbitrary proper integral schemes under the assumption that the Frobenius kernel has large isotropy group
at the generic point. This property is measured by a new numerical invariant called the foliation rank.
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Introduction

Let k be an algebraically closed ground field of characteristic p ≥ 0 and X be a proper scheme. Then
the automorphism group scheme AutX/k is locally of finite type, and the connected component Aut0X/k

is of finite type. The corresponding Lie algebra h = H 0(X,2X/k) is the space of global vector fields.
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If X is smooth and of general type, then the group Aut(X) is actually finite, according to a general result
of Martin-Deschamps and Lewin-Ménégaux [1978].

Throughout this paper, we are mainly interested in characteristic p> 0. Then the group scheme AutX/k

comes with a relative Frobenius map, and the resulting Frobenius kernel H = AutX/k[F] is a height-one
group scheme. The group of rational points is trivial, but the coordinate ring may contain nilpotent
elements. The Lie algebra h = H 0(X,2X/k) remains the space of global vector fields or, equivalently,
the space of k-linear derivations D : OX → OX . The p-fold composition in the associative ring of k-linear
differential operators endows the Lie algebra with an additional structure, the so-called p-map D 7→ D[p],
which turns h into a restricted Lie algebra. By the Demazure–Gabriel correspondence, height-one group
schemes and restricted Lie algebras determine each other.

Our goal is to uncover the structural properties of the height-one group scheme H = AutX/k[F] or,
equivalently, the restricted Lie algebra h = H 0(X,2X/k), and our initial motivation was to understand
the case of surfaces of general type. Such surfaces with h ̸= 0 were first constructed by Russell [1984]
and Lang [1983]. These constructions rely on Tango curves [1972], and come with a purely inseparable
covering by a ruled surface. By a similar construction with abelian surfaces, Shepherd-Barron [1996,
Theorem 5.3] produced examples in characteristic p = 2 that are non-uniruled. Ekedahl [1987, pp. 145–
146] already had examples with rational double points for arbitrary p > 0; the vector fields, however,
do not extend to a resolution of singularities. Recently, Martin [2022a; 2022b] studied infinitesimal
automorphism group schemes of elliptic and quasielliptic surfaces.

However, almost nothing seems to be known about the general structure of the height-one group
schemes H = AutX/k[F], and one would expect little restrictions in this respect. The main result of this
paper asserts that under certain assumptions, quite the opposite is true:

Theorem 12.1. Let X be a proper integral scheme with foliation rank r ≤ 1. Then the Frobenius kernel
H = AutX/k[F] is isomorphic to the Frobenius kernel of one of the following three basic types of group
schemes:

SL2, G⊕n
a or G⊕n

a ⋊Gm,

for some integer n ≥ 0.

In the latter two cases, the respective Frobenius kernels are α⊕n
p and the semidirect product α⊕n

p ⋊µp.
The foliation rank is a new invariant that can be defined as follows: Forming the quotient Y = X/H by
the Frobenius kernel of the automorphism group scheme, the canonical map X → Y induces a height-one
extension E = k(Y )⊂ k(X)= F of function fields, and the foliation rank r ≥ 0 is given by [F : E] = pr .
Via the Jacobson correspondence, this can also be expressed in terms of the inertia subgroup scheme for
the induced action of the base-change HF on F ⊗E F . This geometric interpretation of the Jacobson
correspondence seems to be of independent interest (see Section 5).

If X is a proper normal surface with h0(ω∨

X )= 0, for example, a surface of general type or a properly
elliptic surface, the foliation rank is automatically r ≤ 1, and the above result applies (see Corollary 12.2).
Indeed, our initial motivation was to find restrictions on the Frobenius kernels for surfaces of general type.
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The key idea in the proof is to relate our geometric problem to algebraic properties of the famous Witt
algebra g0 = DerE(F0), formed with the truncated polynomial ring F0 = E[t]/(t p) over certain function
fields E . This algebra was indeed introduced by Ernst Witt, see the discussion in [Strade 1993]. It is
one of the simple algebras in odd characteristic p > 0 having no finite-dimensional counterpart over
the complex numbers. Note that it has nothing to do with the ring of Witt vectors, or Witt groups for
quadratic forms.

The foliation rank is r = 1 if and only if deg(X/Y )= p. This situation is paradoxical, because it may
hold even with large Frobenius kernels. We now compare H = AutX/k[F] with the generic fiber of the
relative group scheme G = AutX/Y . In other words, we relate the restricted Lie algebra h= H 0(X,2X/k)

over k with the restricted Lie algebra g = DerE(F) over the function field E = k(Y ). The latter is a
twisted form of the Witt algebra g0 = DerE(F0). The classification of its subalgebras due to Premet and
Stewart [2019] is one key ingredient for our proof. Among other surprising features, g0 contains Cartan
algebras of different dimensions. A crucial observations is that the bigger Cartan algebras disappear after
passing to twisted forms like g, leaving few possibilities for subalgebras. This is an algebraic incarnation
for the fact that the reduced part of a group scheme may not be a subgroup scheme, and if it is, it may not
be normal.

The semidirect products α⊕n
p ⋊µp, indeed, occur as Frobenius kernels of automorphism group schemes.

In Section 14, we construct examples of surfaces as coverings X → P2 of degree p or divisors X ⊂ P3 of
degree 2p + 1, such that h = kn ⋊ gl1(k), for certain integers n ≥ 0. So far, we do not know if h = sl2(k)
may also occur. In our examples, the minimal resolutions are surfaces S of general type, and X are their
canonical models.

Such X are also called canonically polarized surface. They come with two Chern numbers c2
1 =

c2
1(L

•

X/k) = K 2
X and c2 = c2(L

•

X/k). This was introduced by Ekedahl, Hyland and Shepherd-Barron
[Ekedahl et al. 2012] for general proper surfaces whose local rings are complete intersections, such that
the cotangent complex is perfect. Using Noether’s inequality and results from Ekedahl [1988], we show
with more classical methods:

Theorem 13.2. Let X be a canonically polarized surface, with Chern numbers c2
1 and c2. Then the Lie

algebra h = H 0(X,2X/k) for the Frobenius kernel H = AutX/k[F] has the property dim(h)≤8(c2
1, c2)

for the polynomial

8(x, y)=

{ 1
144(73x + y)2 − 1, if c2

1 ≥ 2,
1

144(121x + y)2 − 1, if c2
1 = 1.

With Noether’s inequality, this also gives the weaker bound dim(h)≤9(c2
1) with the polynomial

9(x)=

{169
4 x2

+ 39x + 8, if c2
1 ≥ 2,

441
4 x2

+ 63x + 8, if c2
1 = 1.

Note that Xiao [1995] proved | Aut(X)| ≤ 1764c2
1 over the complex numbers.
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The paper is organized as follows: Section 1 contains general facts on restricted Lie algebras and
their semidirect products. In Section 2, we examine multiplicative and additive vectors and the toral
rank. In Section 3, we collect general facts on automorphism group schemes for proper schemes and
the quotient by height-one group schemes, and we discuss twisted forms of some relevant restricted Lie
algebras. Section 5 contains a geometric interpretation of the Jacobson correspondence, in terms of inertia
group schemes at generic points. We introduce the foliation rank and establish its basic properties in
Section 6. In Section 7, we analyze the removal of subvector spaces under certain twists. Then we make a
detailed analysis of the automorphism group scheme for radical extensions of prime degree in Section 8,
followed by an examination of the corresponding Witt algebras in Section 9. In Section 10, we show
how structural properties of restricted Lie algebras over different fields are inherited. Our main result on
the structure of the Frobenius kernel for automorphism groups is contained in Section 11. Section 13
contains the bound for surfaces of general type. In the final Section 14, we construct examples.

1. Restricted Lie algebras

In this section, we review some standard results on restricted Lie algebras and height-one group schemes
that are relevant for the applications we have in mind. Let k be a ground field of characteristic p > 0.
For each ring R, not necessarily commutative or associative, the vector space Derk(R) of k-derivations
D : R → R is closed under forming commutators [D, D′

] and p-fold compositions D p in the associative
ring Endk(R). One now views Derk(R) as a Lie algebra, endowed with the map D 7→ D p as an additional
structure.

This leads to the following abstraction: A restricted Lie algebra is a Lie algebra g, together with a
map g → g, x 7→ x [p], called the p-map, subject to the following three axioms:

(R1) We have adx [p] = (adx)
p for all vectors x ∈ g.

(R2) Moreover (λ · x)[p]
= λp

· x [p] for all vectors x ∈ g and scalars λ ∈ k.

(R3) The formula (x + y)[p]
= x [p]

+ y[p]
+

∑p−1
r=1 sr (x, y) holds for all x, y ∈ g.

Here, the summands sr (x, y) are universal expressions defined by

sr (t0, t1)= −
1
r

∑
u

(
adtu(1) ◦ adtu(2) ◦ . . . ◦ adtu(p−1)

)
(t1),

where ada(x)= [a, x] denotes the adjoint representation and the index runs over all maps

u : {1, . . . , p − 1} → {0, 1}

taking the value zero exactly r times. For p = 2, the expression simplifies to s1 = [t0, t1], whereas p = 3
gives s1 = [t1, [t0, t1]] and s2 = [t0, [t0, t1]]. Restricted Lie algebras were introduced and studied by
Jacobson [1937], and also go under the name p-Lie algebras. We refer to the monographs of Demazure
and Gabriel [1970], in particular, Chapter II, §7, or Strade and Farnsteiner [1988] for more details.
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Throughout the paper, terms like homomorphisms, subalgebras, ideals, extensions etc. are understood
in the restricted sense, if not said otherwise. For example, an ideal a ⊂ g is a vector subspace such that
[x, y], x [p]

∈ a whenever x ∈ a and y ∈ g. Note that this holds for the center

C(g)= {a ∈ g | [a, x] = 0 for all x ∈ g},

because [a[p], x] = (ada)
p(x)= (ada)

p−1([a, x])= 0.
For abelian g, the p-map becomes semilinear, which means that it corresponds to a linear map g → g

when the scalar multiplication in the range is redefined via Frobenius. In turn, those g correspond to
modules over the associative polynomial ring k[F], in which the relation Fλ= λp F holds. Every right
ideal is principal; this also holds for left ideals, provided that k is perfect, and then the structure theory
developed by Jacobson [1943, Chapter 3] applies.

In contrast, for nonabelian g, the p-map fails to be additive, and it is challenging to understand its struc-
ture. However, by (R1) it is determined by the bracket up to central elements, because [a[p], x]= (ada)

p(x).
In particular, if the center is trivial, the p-map is unique, once it exists. This also explains the terminology
restricted.

Recall that for each group scheme G, the Lie algebra g= Lie(G) is defined by the short exact sequence

0 → Lie(G)→ G(k[ϵ])→ G(k)→ 0,

where k[ϵ] is the ring of dual numbers, and the map is the restriction with respect to the inclusion k ⊂ k[ϵ].
As explained in [Demazure and Gabriel 1970, Chapter II, §7], it carries the structure of a restricted
Lie algebra, in a functorial way. Also recall that the relative Frobenius morphism F : G → G(p) is a
homomorphism. The resulting Frobenius kernel G[F] is a group scheme whose underlying topological
space is a singleton.

Let us call G of height one if it is of finite type and annihilated by the relative Frobenius map. We then
also say that G is a height-one group scheme. According to [Demazure and Gabriel 1970, Chapter II, §7,
Theorem 3.5], the canonical map

Hom(G, H)→ Hom(Lie(G),Lie(H))

is bijective whenever G has height one. In particular, the functor G 7→ Lie(G) is an equivalence between
the category of height-one group schemes and the category of finite-dimensional restricted Lie algebras.
We call this the Demazure–Gabriel correspondence. The inverse functor sends g to the spectrum of
the dual for the Hopf algebra U [p](g), which is the universal enveloping algebra U (g) modulo the ideal
generated by the elements x p

− x [p], for x ∈ g. From this, one deduces

|G| = h0(OG)= pdim(g) and edim(OG,e)= dim(g).

As customary, we write gln(k) for the restricted Lie algebra of n × n-matrices, where bracket and p-map
are given by commutators and p-powers, and sln(k) for the ideal of trace zero matrices. Furthermore, kn

denotes the standard vector space, endowed with trivial bracket and p-map.
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Let a ⊂ g be an ideal, and consider the vector space Derk(a) of all k-linear derivations. Then
Derk(a) ⊂ gl(a) is a subalgebra. Derivations D : g → g satisfying the additional condition D(a[p]) =

(ada)
p−1(D(a)) for all a ∈ a are called restricted derivations. Write Der′k(a) for the vector space of all

restricted k-derivations. According to [Jacobson 1941, Theorem 4], the inclusion Der′k(a)⊂ Derk(a) is
a subalgebra. By the Jacobi identity and (R1), the adjoint map defines a homomorphism

g → Der′k(a), x 7→ (a 7→ [x, a]). (1)

Given restricted Lie algebras h and a, we are now interested in extensions

0 → a → g → h → 0,

such that a ⊂ g becomes an ideal with quotient g/a = h. The extension splits if the ideal a ⊂ g admits
a complementary subalgebra h′

⊂ g. Composing the inverse for the projection h′
→ h with (1), we obtain

a homomorphism ϕ : h → Der′k(a). Conversely, suppose we have such a homomorphism, written as
h 7−→ (a 7→ ϕh(a)). On the vector space sum a⊕ h, we now define bracket and p-map by

[a + h, a′
+ h′

] = [a, a′
] + [h, h′

] +ϕh(a′)−ϕh′(a),

(a + h)[p]
= a[p]

+ h[p]
+

p−1∑
r=1

sr (a, h).
(2)

Lemma 1.1. The above endows the vector space g = a⊕ h with the structure of a restricted Lie algebra,
such that a and h is an ideal and subalgebra, respectively.

Proof. As explained in [Bourbaki 1989, Chapter I, §1.8], the bracket turns g = a⊕ h into a Lie algebra,
having a as an ideal and h as a subalgebra. Now choose bases ai ∈ a and h j ∈ h, such that ai , h j form a
basis for g. We claim that

(adai )
p
= ad(ai )[p] and (adh j )

p
= ad(h j )[p] (3)

as k-linear endomorphisms of g. Indeed, since a and h are restricted, and by the definition of the bracket
in g, it is enough to verify that (adai )

p(h)=−ϕh((ai )
[p]) for every vector h ∈h and (adh j )

p(a)=ϕ(h j )[p](a)
for every a ∈ a. Since the derivations ϕh are restricted, we have

−ϕh((ai )
[p])= − adp−1

ai
(ϕh(ai ))= − adp−1

ai
([h, ai ])= (adai )

p(h).

The argument for (adh j )
p(a) is similar. Thus, (3) holds. According to [Strade and Farnsteiner 1988,

Theorem 2.3], there is a unique p-map satisfying (3) and the (R1)–(R3). By construction, this p-map
on g coincides with the given p-map on a and h. It thus coincides with (2), in light of (R3). □

In the above situation, the restricted Lie algebras g = a⋊ϕ h are called semidirect products. Obviously,
every split extension of h by a is of this form. Of particular importance for us is the case a = kn and
b = gl1(k), where the homomorphism ϕ : gl1(k)→ gl(kn)= Derk(kn) sends scalars to scalar matrices.
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The resulting restricted Lie algebra is written as kn ⋊ gl1(k). Here, bracket and p-map are given by the
formulas

[v+ λe, v′
+ λ′e] = λv′

− λ′v and (v+ λe)[p]
= λp−1(v+ λe), (4)

where e ∈ gl1(k) is the unit element, v,v′
∈ kn are vectors and λ,λ′

∈ k are scalars.

2. Toral rank and p-closed vectors

Let g be a finite-dimensional restricted Lie algebra over a ground field k of characteristic p > 0 and G be
the corresponding height-one group scheme such that Lie(G)= g. Recall that x ∈ g is called p-closed
if x [p]

∈ kx . Such vectors are called multiplicative if x [p]
̸= 0, and additive if x [p]

= 0. If the vector is
nonzero, h = kx is a one-dimensional subalgebra, hence corresponds to a subgroup scheme H ⊂ G of
order p. For multiplicative vectors, this is a twisted form of the diagonalizable group scheme µp = Gm[F].
In the additive case, it is isomorphic to the unipotent group scheme αp = Ga[F]. This basic fact has many
geometric applications: For results concerning K3 surfaces, Enriques surfaces and Kummer surfaces, see
[Schröer 2007; 2021; Kondō and Schröer 2021].

Proposition 2.1. Every vector in g = kn ⋊ gl1(k) is p-closed. The same holds for g = sl2(k) in character-
istic p ≥ 3.

Proof. The first assertion immediately follows from (4). Recall that sl2(k) is the restricted Lie algebra
comprising the traceless matrices A =

(
a b
c −a

)
∈ Mat2(k). The characteristic polynomial χA(T )= T 2

+ d
depends only on the determinant d = −a2

− bc, so the possible Jordan normal forms over kalg are(√
d 0

0 −
√

d

)
and

(
0 0
1 0

)
.

Computing p-powers via the above normal forms, we see that A[p]
= d(p−1)/2 A. □

The traceless matrices h =
(

1 0
0 −1

)
and x =

(
0 1
0 1

)
and y =

(
0 0
1 0

)
form a basis of sl2(k), and the structural

constants are given by

[h, x] = 2x, [h, y] = 2y, [x, y] = h[p]
= h, x [p]

= y[p]
= 0.

One also says that (h, x, y) is an sl2(k)-triple. For p ≥ 3, it follows that for each nonzero a ∈ sl2(k), the
adjoint map ada is bijective, hence sl2(k) is simple. In contrast, for p = 2 we have a central extension
0 → gl1(k)→ sl2(k)→ k2

→ 0, where the kernel corresponds to scalar matrices. The extension does not
split, because A[2]

̸= 0 for all matrices not contained in the kernel.
If k is algebraically closed, the toral rank for a restricted Lie algebra g is the maximal integer r ≥ 0 for

which there is an embedding gl1(k)⊕r
⊂ g. In terms of vectors, the condition means that there are linearly

independent x1, . . . , xr ∈ g, with [xi , x j ]= 0 and x [p]

i = xi . For general fields k, we define the toral rank as
the toral rank of the base-change g⊗k kalg. Following the notation in [Demazure and Grothendieck 1970,
Exposé XII, Section 2], we denote this integer by ρt(g)≥ 0. By Hilbert’s Nullstellensatz, the toral rank
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does not change under field extensions. According to [Block and Wilson 1988, Lemma 1.7.2], it satisfies
ρt(g) = ρt(n)+ ρt(g/n) for each ideal a ⊂ g. In other words, it is additive in extensions. Obviously,
0 ≤ ρt(g)≤ dim(g).

Proposition 2.2. The following are equivalent:

(i) The restricted Lie algebra g has maximal toral rank ρt(g)= dim(g).

(ii) The group scheme G is a twisted form of some µ⊕r
p .

(iii) The group scheme G is multiplicative.

Proof. It suffices to treat the case that k is algebraically closed. The implications (i) ⇐⇒ (ii) =⇒ (iii) are
obvious. Now suppose that (iii) holds. Since k = kalg, the group scheme G is diagonalizable, whence is
the spectrum of the Hopf algebra k[3] for some finitely generated abelian group 3. We have p3= 0,
because G has height one. Choosing an Fp-basis for 3 gives G = µ⊕r

p , thus (ii) holds. □

The other extreme is somewhat more involved:

Proposition 2.3. The following are equivalent:

(i) The restricted Lie algebra g has minimal toral rank ρt(g)= 0.

(ii) There is some exponent ν ≥ 0 with x [pν ]
= 0 for all vectors x ∈ g.

(iii) There are ideals 0 = a0 ⊂ · · · ⊂ ar = g inside g with quotients ai/ai−1 ≃ k.

(iv) There are normal subgroup schemes 0 = N0 ⊂ · · · ⊂ Nr = G inside G with quotients Ni/Ni−1 ≃ αp.

(v) The group scheme G is unipotent.

Proof. The implications (iv) =⇒ (v) and (iii) =⇒ (ii) and (ii) =⇒ (i) are trivial, whereas (iv) ⇐⇒ (iii) follows
from the Demazure–Gabriel correspondence.

We next verify (v) =⇒ (i). Without loss of generality, we may assume that k is algebraically closed.
Then there is a composition series G j inside G such that G j/G j−1 is isomorphic to a subgroup scheme of
the additive group Ga . This already lies in αp = Ga[F], because G has height one. For the corresponding
subalgebras bj inside g, this means bj/bj−1 ⊂ k. The additivity of toral rank implies ρt(g)= 0.

To see (i) =⇒ (ii), we may assume that k is algebraically closed, and then the implication follows from
[Premet 1989, Corollary 2]. For (ii) =⇒ (iii), we use (ada)

pν
= ada[pν ] = 0, and conclude with Engel’s

theorem [Bourbaki 1989, Chapter I, §4.2], that the underlying Lie algebra g is nilpotent. Now, recall
that the center C(g) is invariant under the p-map. In turn, the upper central series, which is recursively
defined by gi+1/gi = C(g/gi ), yields a sequence of ideals 0 = g0 ⊂ · · · ⊂ gs = g having abelian quotients.
This reduces our problem to the case that g itself is abelian. We proceed by induction on n = dim(g).
The case n = 0 is trivial. Suppose now that n > 0 and that (iii) holds for n − 1. Fix some x ̸= 0, and
consider the largest exponent d ≥ 1 such that x [pd

]
̸= 0. Replacing x with x [pd

], we may assume that
x [p]

= 0. Then a1 = kx is a one-dimensional ideal. The quotient g′
= g/a has dimension n′

= n − 1, and
furthermore ρt(g

′) = 0 by additivity of toral rank. Applying the induction hypothesis to g′
= g/a and

using the isomorphism theorem gives the desired ideals in g. □
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3. Automorphism group schemes

Let k be a ground field. Write (Aff/k) for the category of affine k-schemes, which we usually write as
T = Spec(R). Recall that an algebraic space is a contravariant functor X : (Aff/k)→ (Set) satisfying the
sheaf axiom with respect to the étale topology, such that the diagonal X → X ×X is relatively representable
by schemes, and that there is an étale surjection U → X from some scheme U . According to [Stacks
2005–, Lemma 076M], the sheaf axiom already holds with respect to the fppf topology. Throughout, we
use the fppf topology if not stated otherwise. Algebraic spaces are important generalizations of schemes,
because modifications, quotients, families, or moduli spaces of schemes are frequently algebraic spaces
rather than schemes. We refer to the monographs of Olsson [2016], Laumon and Moret-Bailly [2000],
Artin [1971], Knutson [1971], and to the stacks project [Stacks 2005–, Part 4].

Let X be a scheme, or more generally an algebraic space, that is separated and of finite type. Recall
that the R-valued points of the Hilbert functor HilbX/k are the closed subschemes Z ⊂ X ⊗ R such that
the projection Z → Spec(R) is proper and flat. Regarding automorphisms f : X ⊗ R → X ⊗ R as graphs,
we see that AutX/k is an open subfunctor. According to [Artin 1969, Theorem 6.1], the Hilbert functor is
representable by an algebraic space that is separated and locally of finite type. In turn, the same holds for
AutX/k , which additionally carries a group structure. Using descent and translations, one sees that it must
be schematic. The Lie algebra for the automorphism group scheme is given by

Lie(AutX/k)= H 0(X,2X/k),

where 2X/k = Hom(�1
X/k,OX ) is the coherent sheaf dual to the sheaf of Kähler differentials.

We now assume that X is proper, and that the ground field has characteristic p>0. Then g= H 0(X,2X )

is a restricted Lie algebra of finite dimension, which corresponds to the Frobenius kernel G[F] for the
automorphism group scheme G = AutX/k . Note that G[F] is a height-one group scheme, of order pn ,
where n = h0(2X/k).

Let H be a group scheme that is separated and locally of finite type, f : H → G be a homomorphism
and P be a H-torsor. The latter is an algebraic space, endowed with a free and transitive H -action. The
set of isomorphism classes comprise the nonabelian cohomology H 1(k, H), formed with respect to the
fppf topology. On the product P × X , we get a diagonal action. This action is free, because it is free on
the first factor. It follows that the quotient PX = H\(P × X) exists as an algebraic space (see, for example,
[Laurent and Schröer 2021, Lemma 1.1]). We have PX ≃ X provided that P is trivial, that is, contains
a rational point. In any case, there is an étale surjection U → P from some scheme U . According to
Hilbert’s Nullstellensatz, every closed point a ∈ U defines a finite field extension k ′

= κ(a), and we see
that PX ⊗ k ′

≃ X ⊗ k ′. We, therefore, say that PX is a twisted form of X . Indeed, every algebraic space Y
that becomes isomorphic to X after some field extension is of this form, with H = AutX/k .

Our f : H → G = AutX/k induces a homomorphism c : H → AutG/k , which sends h ∈ H(R) to the
inner automorphism g 7→ f (h)g f (h)−1. This gives a twisted form PG of G, and its Lie algebra Pg is a
twisted form of g. In fact, one may view g as a vector scheme as in Section 7, regard bracket and p-map
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as morphisms of schemes and obtain Pg by taking the rational points on the twisted form of the vector
scheme, formed via the derivative c′

: H → Autg/k .

Lemma 3.1. There is a canonical identification PAutX/k = AutPX/k , where on the left we take the twist
with respect to c : H → AutG/k . The restricted Lie algebra for this group scheme is Pg, where we twist
with respect to c′

: H → Autg/k .

Proof. This follows from very general considerations in [Giraud 1971, Chapter III], which can be made
explicit as follows: Consider the canonical morphism

P × AutX/k −→ AutPX , (p, ψ) 7−→
(
H · (p, x) 7→ H · (p, ψ(x))

)
,

where the description on the right is viewed as a natural transformation for R-valued points. This is well-
defined, because in the presence of p ∈ P(R) the projection {p}× X (R)→ (PX)(R) is bijective. For each
h ∈ H(R), the element (hp, hψh−1) sends the orbit H ·(p, x)= H ·(hp, hx) to the orbit H ·(hp, hψ(x))=
H · (p, ψ(x)). Thus, the above transformation descends to a morphism PAutX/k → AutPX , where H acts
via conjugacy on AutX/k . The same argument applies for the Frobenius kernel, and equivalently to the
restricted Lie algebra. □

We now change notation. Suppose that G = X is a height-one group scheme, and write g = Lie(G).
One easily checks that AutG/k is a closed subgroup scheme of the general linear group GLV/k , where
V = H 0(G,OG). By the Demazure–Gabriel correspondence, used in the relative form, we get an
identification AutG/k = Autg/k . The latter can be constructed directly: Choose a basis e1, . . . , en ∈ g.
Then Autg/k is the closed subgroup scheme inside GLk,n respecting the structural equations

[er , es] =

∑
λr,s,i ei and e[p]

r =

∑
µr, j e j .

For later use, we compute some automorphism group schemes Autg/k :

Proposition 3.2. The following table lists the automorphism group schemes and the resulting cohomology
groups or sets for the restricted Lie algebras k, gl1(k), k ⋊ gl1(k) and sl2(k), where the last column is
only valid for p ≥ 3:

g k gl1(k) k ⋊ gl1(k) sl2(k)

Autg/k Gm µp−1 Ga ⋊Gm PGL2

H 1(k,Autg/k) {1} k×/k×(p−1) singleton subset of Br(k)[2]

Here, Br(k)[2] is the kernel of multiplication by two on the Brauer group.

Proof. For the first case g = k, we immediately get Autg/k = GL1 = Gm , and Hilbert 90 gives
H 1(k,Gm) = {1}, at least for the étale topology. See the discussion at the beginning of Section 7
for the fppf topology.

In the second case, the restricted Lie algebra g = gl1(k) is generated by one element A1, which gives
an embedding Autg/k ⊂ Gm . The structure for g is given by A[p]

1 = A1. For each k-algebra R and each
invertible scalar λ ∈ R×, we have λp A[p]

1 = λA1, and thus λp−1
= 1. Conversely, each such λ gives an

automorphism, hence Autg/k = µp−1. The Kummer sequence yields H 1(k,Autg/k)= k×/k×(p−1).
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The restricted Lie algebra g = k ⋊ gl1(k) is generated inside gl2(k) by the matrices A1 =
(

0 1
0 0

)
and

A2 =
(

1 0
0 0

)
, which gives an embedding Autg/k ⊂ GL2. For each R-valued point ϕ =

(
a b
c d

)
from the

automorphism group scheme, the condition [ϕ(A1), ϕ(A2)] = ϕ(A1) implies c = 0 and a = ad . It follows
that a ∈ R× and d = 1, and we obtain Autg/k ⊂ Ga ⋊Gm . Conversely, one easily sees that each matrix
with c = 0 and d = 1 yields an automorphism of the restricted Lie algebra. Now, let T be a torsor over k
with respect to Ga ⋊Gm . The induced Gm-torsor has a rational point, by Hilbert 90. Its preimage T ′

⊂ T
is a torsor for Ga . Over any affine scheme, the higher cohomology of Ga vanishes, so T ′ also contains a
rational point, and the torsor T is trivial.

We come to the last case g = sl2(k), which is freely generated by the matrices A1 =
(

1 0
0 −1

)
and

A2 =
(

0 1
0 0

)
and A3 =

(
0 0
1 0

)
. This gives an inclusion Autg/k ⊂ GL3. Conjugacy, A 7→ S AS−1, yields

PGL2 ⊂ Autg/k . We already saw in the proof for Proposition 2.1 that A[p]
= det(A)(p−1)/2 A for all

A =
(

a b
c −a

)
. Moreover, det(A) = −a2

− bc defines, up to sign, the standard smooth quadratic form
on sl2(k) viewed as the affine space A3, which gives Autg/k ⊂ O(3). We have PGL2 ⊂ SO(3), because
the former is connected, and this inclusion is an equality because both are smooth and three-dimensional.
This shows SO(3) ⊂ Autg/k ⊂ O(3). From [−A2,−A3] = [A2, A3] = A1 ̸= −A1, we conclude that
A 7→ −A is not an automorphism of g, so PGL2 = SO(3)⊂ Autg/k must be an equality.

Finally, we have a central extension 0 → Gm → GL2 → PGL2 → 1, and get maps in nonabelian
cohomology

H 1(k,GL2)→ H 1(k,PGL2)→ H 2(k,Gm).

The term on the left is a singleton, by Hilbert 90, whereas the term on the right equals the Brauer
group Br(k). It follows that the coboundary map is injective [Giraud 1971, Chapter IV, Proposition 4.2.8],
and its image is contained in the 2-torsion part of the Brauer group [Grothendieck 1968a, Proposition 1.4].
Thus, H 1(k,Autg/k) is a certain subset inside the group Br(k)[2]. □

Note that according to the theorem of Merkurjev [1981], the group Br(k)[2] is generated by classes
from H 1(k,PGL2). This set of generators, however, is not a subgroup in general (see [Gille and Szamuely
2006, Example 1.5.7]).

4. Quotients by height-one group schemes

Let k be a ground field of characteristic p > 0, and G a height-one group scheme, with restricted
Lie algebra g. Suppose X is a scheme endowed with a G-action. Taking derivatives, we obtain a
homomorphism g→ H 0(X,2X/k) of restricted Lie algebras. According to [Demazure and Gabriel 1970,
Chapter II, §7, Proposition 3.10], any such homomorphism comes from a unique G-action. Note that this
does not require any finiteness assumption for the scheme X .

We now show that such actions admit a categorical quotient in the category (Sch/k) [Mumford et al.
1994, Definition 0.5]. To this end we temporarily change notation and write the schemes in question
as pairs, comprising a topological space and a structure sheaf. Our task is to construct the categorical
quotient (Y,OY ) for the action on (X,OX ). First, recall that the image O

p
X of the homomorphism OX →OX ,
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where f 7→ f p, is a quasicoherent OX -algebra, with algebra structure f · g p
= ( f g)p. In turn, the ringed

space (X,O p
X ) is a Fp-scheme. Choose a vector space basis D1, . . . , Dn ∈ g. The canonical inclusion

O
p
X ⊂ OX turns OX into a quasicoherent O

p
X -algebra, and yields the absolute Frobenius morphism

(X,OX )→ (X,O p
X ). The derivations Di : OX → OX are O

p
X -linear, and we write O

g
X =

⋂n
i=1 Ker(Di ) for

the intersection of kernels. This is another quasicoherent O
p
X -algebra. Setting Y = X and OY = O

g
X , we

obtain a scheme (Y,OY ) that is affine over (X,O p
X ). The identity id : X → Y and the canonical inclusion

ι : OY ⊂ OX define a morphism of Fp-schemes

(id, ι) : (X,OX )→ (Y,OY ).

The following should be well known:

Lemma 4.1. The above morphism of schemes is a categorical quotient in (Sch/k). Moreover, the
formation of the quotient is compatible with flat base-change in the scheme (Y,OY ).

Proof. First, note that the inclusion OY ⊂ OX is invariant with respect to multiplication of scalars λ ∈ k,
so the morphism belongs to the category (Sch/k). Furthermore, the formation of kernels and finite
intersections for maps between quasicoherent sheaves on schemes is compatible with flat base-change,
and, in particular, the formation of (Y,OY ) is compatible with flat base-change.

We now verify the universal property. Let (T,OT ) be scheme endowed with the trivial G-action, and
( f, ϕ) : (X,OX )→ (T,OT ) be an equivariant morphism. Obviously, there is a unique continuous map
g : Y → T with f = g ◦ id. The trivial G-action on (T,OT ) corresponds to the zero map g→ H 0(T,OT ),
and equivariance ensures that f −1(OT )→ OX factors over the injection OY ⊂ OX . This gives a unique
morphism (g, ψ) : (Y,OY ) → (T,OT ) of ringed spaces that factors ( f, ϕ). For each point a ∈ X , the
local map OT, f (a) → OX,a factors over OY,a , and it follows that ψ : OT,g(a) → OY,a is local. Thus, (g, ψ)
is a morphism in the category (Sch/k), which shows the universal property. □

We now revert back to the usual notation, and write Y = X/G for the quotient of the action
µ : G × X → X , with quotient map q : X → Y . Clearly, this map is surjective, Y carries the quotient
topology, and the set-theoretical image of µ×pr2 : G × X → X × X equals the fiber product X ×Y X . By
construction, for each open set U ⊂ Y and each local section f ∈ 0(U, q∗(OX )), we have f ∈ 0(U,OY )

if and only if f ◦µ= f ◦ pr2 as morphisms G × q−1(U )→ A1. Summing up, our categorical quotient
is also a uniform geometric quotient, in the sense of [Mumford et al. 1994, Definition 0.7]. The following
observation will be useful:

Proposition 4.2. Suppose that X is integral, with function field F = OX,η. Then OY,a = OX,a ∩ (Fg) for
each point a ∈ X. Moreover, the scheme Y is normal provided this holds for X.
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Proof. Set R = OX,a , such that Rg
= OY,a . Choose a basis D1, . . . , Dn ∈ g, and consider the resulting

commutative diagram with exact rows:

0 −−−→ Rg
−−−→ R −−−→ R⊕ny y y

0 −−−→ Fg
−−−→ F −−−→ F⊕n

where the horizontal maps on the right are given by s 7→ (D1(s), . . . , Dn(s)). The commutativity of the
left square gives Rg

⊂ R ∩ Fg, and the injectivity of the vertical map on the right ensures the reverse
inclusion, by a diagram chase. Now suppose that R is normal and f ∈ Fg satisfies an integral equation
over the subring Rg. This is also an integral equation over R, hence f ∈ R ∩ Fg

= Rg. □

5. Inertia and Jacobson correspondence

The goal of this section is provide a new, more geometric interpretation of the Jacobson correspon-
dence [1937; 1944]. We start by recalling this correspondence, which relates certain subfields and
restricted Lie algebras, in Bourbaki’s formulation [Bourbaki 1990, Chapter V, §13, No. 3, Theorem 3]:

Let F be a field of characteristic p > 0. It comes with a subfield F p and a restricted Lie algebra
g = Der(F) over F p that is also endowed with the structure of an F-vector space. Note that the bracket
is F p-linear, but, in general, not F-bilinear. Rather, we have the formula

[λD, λ′D′
] = λλ′

· [D, D′
] + λD(λ′) · D′

− λ′D′(λ) · D. (5)

Throughout, a subgroup h ⊂ g is called an F p-subalgebra with F-multiplication if it is stable under
bracket, p-map, and multiplication by scalars λ ∈ F . It is thus a restricted Lie algebra over F p, endowed
with the F-multiplication as an additional structure. Consider the ordered sets

8= {E | F p
⊂ E ⊂ F is an intermediate field},

9 = { h | h ⊂ g is an F p-subalgebra with F-multiplication}.

Similar to classical Galois theory for separable algebraic extensions, one has inclusion-reversing maps
8→9 and 9 →8 given by

E 7→ DerE(F) and h 7→ Fh,

respectively. Here, Fh denotes the intersection of the kernels for D : F → F , where D ∈ h runs over
all elements. Then the Jacobson correspondence asserts that the above maps induce a bijection between
the intermediate fields F p

⊂ E ⊂ F having [F : E]<∞ and the F p-subalgebras with F-multiplication
h ⊂ g having dimF (h) <∞. Moreover, under this bijection [F : E] = pdimF (h) holds.

In particular, if F has finite p-degree, which means that F p
⊂ F is finite, we get an unconditional

identification

{intermediate fields E} = {F p-subalgebras h with F-multiplication}.
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Forgetting the F-multiplication, the restricted Lie algebra h = DerE(F) corresponds to a height-one
group scheme H , with h = Lie(H). By construction, this coincides with the Frobenius kernel of the
affine group scheme AutF/E .

We now consider the following set-up geared towards geometric applications: Let k be a ground field
of characteristic p > 0 and F be some extension field; one should think of the function field of some
proper integral scheme. Let H be a height-one group scheme over k, with corresponding restricted Lie
algebra h = Lie(H). Suppose we have a faithful action of the group scheme H on the scheme Spec(F),
in other words, a homomorphism h → Derk(F) that is k-linear and injective. Throughout, we regard this
homomorphisms also as an inclusion.

Let E = Fh, such that h ⊂ DerE(F). Then the field E contains the composite k · F p, and its spectrum
is the categorical quotient Spec(F)/H , according to Lemma 4.1. Moreover, we obtain the subspace
h⊂ h · E ⊂ h · F inside DerE(F). These are subvector spaces over k and E and F , respectively. Obviously,

dimF (h · F)≤ dimE(h · E)≤ dimk(h).

Let us unravel how these various fields and vector spaces are related:

Proposition 5.1. In the above situation, the following holds:

(i) The subspace h ⊂ DerE(F) contains an F-basis, such that h · F = DerE(F).

(ii) The canonical inclusions E = Fh
⊂ Fh·E

⊂ Fh·F are equalities.

(iii) The subspace h · E ⊂ DerE(F) is stable with respect to bracket and p-map.

(iv) The extension E ⊂ F is finite, of degree [F : E] = pdimF (h·F).

Proof. To see (ii), choose a k-generating set D1, . . . , Dn ∈ h. Clearly, Fh coincides with the intersection
of the Ker(Di : F → F). Since D1, . . . , Dn ∈ h · F is an F-generating set as well, this intersection
coincides with Fh·F , and the equalities Fh

= Fh·E
= Fh·F follow.

We next verify that the F-vector subspace h · F ⊂ DerE(F) is stable under bracket and p-map. The
former follows from (5). The latter is then a consequence of the Hochschild formula [1955, Lemma 1]

(vu)p
= v pu p

+ adp−1
vu (v)u,

which holds for any u from an associative Fp-algebra U and v from an adu-stable commutative subalge-
bra V . In turn, h·F ⊂DerE(F) is an F p-subalgebra with F-multiplication, obviously of finite F-dimension.
Now the Jacobson correspondence applied to E = Fh·F shows (iv). Applying the correspondence once
more reveals h · F = DerE(F), and (i) follows. The above reasoning likewise shows that the E-vector
subspace h · E ⊂ DerE(F) is stable under bracket and p-map, which reveals (iii). □

We now seek a more geometric understanding of the above facts. Set hE = h⊗k E , and consider the
E-linearization hE → DerE(F) of our inclusion h ⊂ DerE(F). Write htriv

E ⊂ hE for the kernel. This is an
ideal, giving an inclusion hE/h

triv
E ⊂ DerE(F). Now recall that H denotes the height-one group scheme



The structure of Frobenius kernels for automorphism group schemes 1651

with Lie(H)=h. Write HE = H ⊗k E for its base-change, and H triv
E ⊂ HE for the normal subgroup scheme

corresponding to htriv
E . This acts trivially on Spec(F), whereas the quotient HE/H triv

E acts faithfully.

Proposition 5.2. The action of the group scheme HE on Spec(F) is transitive.

Proof. Recall that for any site C, the action of a group-valued sheaf G on a sheaf Z is called transitive if
the morphism µ× pr2 : G × Z → Z × Z is an epimorphism, where µ : G × Z → Z denotes the action.

In our situation the site is (Aff/E), endowed with the fppf topology. Set G = HE/H triv
E and Z =Spec(F).

We have to check that for any R-valued points a, b ∈ Z(R), there is an fppf extension R ⊂ R′ and some
σ ∈ G(R′) that sends the base-change a ⊗ R′ to b ⊗ R′. Replacing R by R ⊗E F , we may assume that R
is an F-algebra. Choose a p-basis for the extension E ⊂ F , such that

F = E[T1, . . . , Tr ]/(T
p

1 −µ1, . . . , T p
r −µr )

for some scalars µi ∈ E . Then

F ⊗E R = R[s1, . . . , sr ]/(s
p
1 , . . . , s p

r )

for the elements si = Ti ⊗1−1⊗ Ti . The R-valued points of Z thus correspond to si 7→ λi , where λi ∈ R
satisfy λp

i = 0. It suffices to treat the case that a, b ∈ Z(R) is given by si 7→ 0 and si 7→ λi , respectively.
The differentials dTi ∈�1

F/E form an F-basis. The dual basis inside DerE(F)= Hom(�1
F/E , F) are

the partial derivatives ∂/∂Ti . Clearly, we have[
∂

∂Ti
,
∂

∂T j

]
=

(
∂

∂Ti

)[p]

= 0.

Consequently, the linear combination D =
∑
λi∂/∂Ti satisfies D[p]

= 0, thus D is an additive element
inside DerR(F ⊗E R). Note that this would fail with coefficients from F ⊗E R rather than R. By the
Demazure–Gabriel correspondence, it yields a homomorphism of group schemes αp,R → AutF/E ⊗E R.

According to Proposition 5.1 we have DerE(F)=h·F, so there are elements D1, . . . , Dr ∈h·E =hE/h
triv
E

that form an F-basis of DerE(F). In particular, we may write
∑
λi∂/∂Ti =

∑
αi Di for some αi ∈ R. In

turn, we get an additive element D ∈ (hE/h
triv
E )⊗E R, so our homomorphism of group schemes has a

factorization αp,R → G R . For R′
= R[σ ]/(σ p), we get a canonical element σ ∈ αp,R′ , whose image is

likewise denoted by σ ∈ G(R′). By construction, we have

σ ∗(s j )= D(s j )=

∑
i

λi
∂T j

∂Ti
= λ j ,

for all 1 ≤ j ≤ n, and the desired property σ · a = b follows. □

Note that the E-scheme Z = Spec(F) does not contain a rational point, except for h= 0. The existence
of such a point would allow us to form the inertia subgroup scheme and view Z as a homogeneous space.
However, we can achieve this after further base-change:

Regard A = F ⊗E F as an F-algebra via λ 7→ 1 ⊗λ. Then the multiplication map λ⊗µ 7→ λµ yields
a canonical retraction. Indeed, A is a local Artin ring with residue field A/mA = F . In turn, Z F = Z ⊗ F
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has a unique rational point z0 ∈ Z F . Write H inert
F = I (z0) for the resulting inertia subgroup scheme

inside HF = H ⊗k F . By the Demazure–Gabriel correspondence, it is given by a Lie subalgebra hinert
F

inside hF = h⊗k F , which we call the inertia Lie algebra. We now interpret the base change Z F as a
homogeneous space:

Proposition 5.3. The orbit morphism HF ·{z0}→ Z F induces an identification HF/H inert
F =Spec(F⊗E F).

Moreover, the inertia Lie algebra hinert
F is the kernel for the canonical surjection

h⊗k F → h · F = DerE(F).

Finally, the degree of the field extension E ⊂ F can be expressed as [F : E] = pc, where c ≥ 0 is the
codimension of the inertia Lie algebra hinert

F ⊂ hF .

Proof. According to Proposition 5.2, the HF -action on Z F is transitive, and it follows that the or-
bit HF · {z0} → Z F is an epimorphism. By definition of the inertia subgroup scheme, the induced
HF/H inert

F → Z F is a monomorphism. Hence, the latter is an isomorphism. This is a finite scheme, and
the F-dimension for the ring of global sections for the homogeneous space is given by pc. It follows
that [F : E] = pc.

It remains to see that the inertia Lie algebra hinert
F coincides with the kernel K of the canonical surjection

hF → h · F . We saw in Proposition 5.1 and the preceding paragraph that

pdimF (h·F) = [F : E] = h0(OZ ⊗E F)= pdim(hF/h
inert
F ).

It thus suffices to verify that the canonical map hinert
F → DerE(F) is zero. Suppose this is not the case,

and fix some nonzero D ∈ hinert
F with nonzero image. Choose a p-basis for E ⊂ F and write

F = E[T1, . . . , Tr ]/(T
p

1 −µ1, . . . , T p
r −µr )

for some scalars µi ∈ E×. The partial derivatives ∂/∂Ti ∈ DerE(F) form another F-basis, and D =∑
λi∂/∂Ti . Without restriction, we may assume λ1 ̸= 0. Now make a base-change to R = F , such that

A = F ⊗E F = R[s1, . . . , sr ]/(s
p
1 , . . . , s p

r )

as in the proof for Proposition 5.2. Then D(s1)= λ1 ⊗ 1 ̸∈ mA. But this implies that H inert
F does not fix

the closed point z0 ∈ Z F = Spec(A), a contradiction. □

6. Foliation rank

Throughout this section, k is a ground field of characteristic p > 0 and X is a proper scheme. Note
that everything carries over verbatim to proper algebraic spaces. Let H = AutX/k[F] be the resulting
height-one group scheme, whose restricted Lie algebra is h = H 0(X,2X/k). To simplify exposition, we
also assume that X is integral. Let η ∈ X be the generic point and F = k(X) be the function field. The
quotient Y = X/H is integral as well, and we denote its function field by E = k(Y ). This field extension
E ⊂ F is finite and purely inseparable. This yields a numerical invariant:
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Definition 6.1. The foliation rank of the proper integral scheme X is the integer r ≥ 0 defined by the
formula deg(X/Y )= pr .

In other words, we have [F : E] = pr . Since the field extension E ⊂ F has height one, the foliation
rank r ≥ 0 is also given by r =dimF (�

1
F/E), which can also be seen as the rank of the coherent sheaf�1

X/Y .
Dualizing the surjection �1

X/k →�1
X/Y gives an inclusion F =2X/Y ⊂2X/k . The subsheaf F is closed

under Lie brackets and p-maps, hence constitutes a foliation, where the integer rank(F )= rank(�1
X/Y )

coincides with our foliation rank r ≥ 0.
To obtain an interpretation of the foliation rank in terms of group schemes, consider the restricted Lie

algebras
h = Lie(H)= H 0(X,2X/k) and g = DerE(F)=2X/Y,η.

The former is finite-dimensional over the ground field k. The latter is finite-dimensional over the function
field E , and can be seen as the Lie algebra for the automorphism group scheme for Spec(F) viewed as a
finite E-scheme. The localization map h = H 0(X,2X/k)→2X/k,η respects brackets and p-powers, and
factors over the subalgebra g=2X/Y,η. This gives a k-linear map h→ g, together with its E-linearization

h⊗k E −→ g, δ⊗ λ 7−→
(

f 7→ λδη( f )
)
.

The latter is a homomorphism of restricted Lie algebras over E . The map h → g is injective, because the
coherent sheaf 2X/k is torsion free, and we often view it as an inclusion h ⊂ g. Note, however, that its
E-linearization in general is neither injective nor surjective. This is perhaps the main difference to the
classical situation of group actions rather than group scheme actions.

We are now in the situation studied in Section 5. Let hinert
F be the inertia Lie algebra inside the

base-change hF = h⊗k F , corresponding to the inertia group scheme with respect to the F-rational point
in Spec(F ⊗E F). From Proposition 5.3, we obtain:

Proposition 6.2. The foliation rank r ≥ 0 of the scheme X coincides with the codimension of hinert
F ⊂ hF .

In some sense, this measures how free the Frobenius kernel of the automorphism group scheme acts
generically.

Proposition 6.3. The foliation rank of the scheme X satisfies 0 ≤ r ≤ h0(2X/k). We have r = 0 if and
only if the Frobenius kernel H = AutX/k[F] vanishes. The condition r = h0(2X/k) holds if and only if
H acts freely on some dense open set U ⊂ X.

Proof. The inequality r ≤ h0(2X/k) follows from Proposition 6.2. If the group scheme H is trivial
we have h0(2X/k) = 0, and hence r = 0. Conversely, if H is nontrivial there is a nonzero derivation
D : OX → OX . Since the structure sheaf is torsion-free, the derivation remains nonzero at the generic
point, which implies that E = Fh does not coincide with F , and thus r > 0.

If H acts freely on some dense open set, the projection ϵ : X → Y to the quotient Y = X/H is a principal
homogeneous H -space over the dense open set V ⊂ Y corresponding to U . In turn [F : E] = h0(OH ),
and thus r = dim(h)= h0(2X/k).
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Finally, suppose the foliation rank takes the maximal possible value r = h0(2X/k). Then the inertia
Lie algebra hinert

F ⊂ hF has codimension r = dim(hF ), thus is trivial. It follows that the group scheme
HE acts freely on Spec(F) viewed as an E-scheme. Thus, there is an open dense set V ⊂ Y over which
the projection ϵ : X → Y becomes a principal homogeneous H -space, and the H -action on U = ϵ−1(V )
is free. □

We next describe how the foliation rank behaves under birational maps.

Proposition 6.4. Let f : X → X ′ be a birational morphism to another proper integral scheme X ′, with
the property OX ′ = f∗(OX ). Then the respective foliation ranks satisfy r ≤ r ′.

Proof. According to Blanchard’s lemma, there is a unique homomorphism

f∗ : Aut0X/k → Aut0X ′/k

of group schemes making the morphism f : X → X ′ equivariant. Indeed, the original form of the lemma
for complex-analytic spaces [Blanchard 1956, Proposition I.1] was extended to schemes by Brion, Samuel
and Uma [Brion et al. 2013, Proposition 4.2.1].

The homomorphism of group schemes is a monomorphism, because f is birational, and the schemes
in question are integral. In particular, the induced homomorphism on Frobenius kernel gives a closed
embedding H ⊂ H ′, and an injection h ⊂ h′ of restricted Lie algebras. For the common function field
F = k(X)= k(X ′), we get Fh

⊃ Fh′

, and r ≤ r ′ follows. □

The following gives an upper bound on the foliation rank:

Proposition 6.5. Let i ≥ 0 be some integer, and suppose that the coherent sheaf F = Hom(�i
X/k,OX )

satisfies h0(F )= 0. Then X has foliation rank r < i .

Proof. We have to show that the vector space h · F = DerE(F) has dimension at most i − 1. Seeking
a contradiction, we suppose that there are k-derivations D1, . . . , Di : OX → OX that are F-linearly
independent. Then the same holds for the corresponding OX -linear maps s1, . . . , si : OX → 2X/k .
Consequently, their wedge product s1 ∧ · · · ∧ si : OX →3i (2X/k) is generically nonzero. The universal
property of exterior powers gives a canonical map3i (2X/k)→Hom(�i

X/k,OX )=F , which is generically
bijective. Thus s1 ∧ · · · ∧ si yield a nonzero global section of F , a contradiction. □

Recall that our proper integral X comes with a dualizing sheaf ωX and a trace map H n(X, ωX )→ k,
such that the ensuing pairing Hom(F , ωX )× H n(X,F )→ k is nondegenerate. Here, n = dim(X) and
F is coherent.

Corollary 6.6. Let X be a geometrically normal surface with h0(ω∨

X )= 0. Then the foliation rank is r ≤ 1.

Proof. Replacing the ground field k by the field H 0(X,OX ), it suffices to treat the case h0(OX )= 1. By
Serre’s criterion, the scheme X is regular in codimension one, so the locus of nonsmoothness Sing(X/k)
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is finite. Let f : S → X be a resolution of singularities. Suppose for the moment that the regular surface
S is smooth. Then ωS =�2

S/k . Consider the chain of canonical maps

�2
X/k → f∗ f ∗(�2

X/k)→ f∗(�2
S/k)→ f∗(ωS)→ ωX ,

where to the right is the trace map. All these maps are bijective on the complement U = X ∖Sing(X/k),
so the same holds for the dual map

ϕ : ω∨

X → Hom
(
�2

X/k,OX
)
= F .

According to [Hartshorne 1994, Corollary 1.8 and Theorem 1.9], these rank-one sheaves are reflexive and
satisfy the Serre condition (S2). Since ϕ|U is bijective, already ϕ is bijective, by loc. cit. Theorem 1.12.
The assertion thus follows from the theorem.

It remains to treat the case that the ground field k is imperfect. Choose a perfect closure k ′. The base-
change X ′

= X ⊗k k ′ is normal, and the above reasoning applies to any resolution of singularities S′
→ X ′.

It follows that ω∨

X and F become isomorphic after base-changing to k ′. If follows that Hom(ωX ,F ) is
one-dimensional. Choose a nonzero element ϕ : ωX → F . Then ϕ⊗ k ′ must be bijective, and by descent
the same holds for ϕ. □

This applies in particular to smooth surfaces S of Kodaira dimension kod(S) ≥ 1, which comprise
surfaces of general type, and the properly elliptic surfaces, including those with quasielliptic fibration. It
also applies to surfaces S with Kodaira dimension zero, provided that the dualizing sheaf of the minimal
model X is nontrivial.

Let S be a smooth surface of general type, and X be its canonical model. This is the homogeneous
spectrum P(S, ωS) of the graded ring R(S, ωS)= ⊕H 0(S, ω⊗t

S ). Then X is normal, the singularities are
at most rational double points and the dualizing sheaf ωX is ample. We also say that X is a canonically
polarized surfaces. Obviously h0(ω⊗−1

X )= 0, and X has foliation rank r ≤ 1. According to Proposition 6.4,
the same holds for S.

Proposition 6.7. Suppose that X has foliation rank r = 1, and let D ∈ H 0(X,2X/k) be any nonzero
global section. Then for each point x ∈ X , the local ring OY,ϵ(x) is the kernel for the additive map
D : OX,x → OX,x .

Proof. Set y = ϵ(x). The local ring is given by OY,y = O
h
X,x , which is contained in the kernel O D

X,x of
the derivation D. Let f ∈ O D

X,x , and D′
∈ h be another derivation. Then D′

= λD for some element λ
from the function field F = Frac(OX,x), and thus D′( f )= λD( f )= 0 inside F . Since the localization
map OX,x → F is injective, we already have D′( f )= 0 inside OX,x . This shows f ∈ OY,y . In turn, the
inclusion OY,y ⊂ O D

X,x is an equality. □

We will later see that for r = 1, each vector in g is p-closed. Thus the nonzero elements D ∈ h indeed
yield height-one group schemes N ⊂ H of order |N | = p, such that Y = X/N .
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7. Invariant subspaces

Let k be a ground field of characteristic p ≥ 0 and V be a finite-dimensional vector space of dimension
n ≥ 0. Let us write GLV/k for the group-valued functor on the category (Aff/k) of affine k-schemes
T = Spec(R) defined by

GLV/k(R)= AutR(V ⊗k R).

This satisfies the sheaf axiom with respect to the fppf topology. In fact, it is representable by an affine
group scheme, and the choice of a basis e1, . . . , en ∈ V yields GLV/k ≃ GLn,k .

Let us write V for the abelian functor whose group of R-valued points is V (R)= V ⊗k R. As explained
in [Grothendieck 1960, Chapter I, Section 9.6], this is represented by an affine scheme, namely the
spectrum of the symmetric algebra on the dual vector space V ∗. Moreover, the structure morphism
V → Spec(k) carries the structure of a vector bundle of rank n with V (k) = V , and the canonical
homomorphism GLV/k → AutV /k of group schemes is bijective. Combining [Grothendieck 1968b,
Theorem 11.7] with [Artin et al. 1972, Exposé VIII, Corollary 2.3], and [Bourbaki 1990, Chapter V,
§10, No. 5, Proposition 9], one sees that each GLV/k-torsor is trivial, that is, the nonabelian cohomology
set H 1(k,GLV/k) with respect to the fppf topology is a singleton. In other words, all vector bundles
E → Spec(k) of rank n are isomorphic to V .

Now, let H ⊂ GLV/k be a subgroup scheme and T → Spec(k) be a H-torsor. Then the quotient

TV = H\(T × V )= T ∧
H V

with respect to the diagonal action σ · (t, v) = (σ t, σv) is another vector bundle called the T -twist.
Note that under the identification of left and right action, the above action can also be viewed as
σ · (t, v) = (tσ−1, σv), which explains the notation T ∧

H V . We now consider the following general
problem: What subbundles exist in the T -twist whose pull-back to T are contained in the pullback of a
fixed subbundle V ′

⊂ V ? By fppf descent, these pullbacks correspond to subbundles inside the induced
bundle V × T → T whose total space is invariant with respect to the diagonal H -action.

The n-dimensional vector space TV = (TV )(k) of k-rational points is likewise called the T -twist of V .
If H is finite and T = Spec(L) is the spectrum of a field, we are thus looking for k-vector subspaces
U ⊂

TV such that U ⊗k L is contained in the base-change V ′
⊗k L , or equivalently to L-vector subspaces

in V ′
⊗k L that are invariant for the diagonal H -action.

Suppose that p>0, and that H =αp is the infinitesimal group scheme defined by H(R)={α∈ R |α p
=0},

where the group law is given by addition. Recall that the Lie algebra of GLV/k is the vector space
gl(V ) = Endk(V ), where the Lie bracket is given by commutators [ f, g] = f g − g f and the p-map
f [p]

= f p is the p-fold composition. The inclusion homomorphism H → GLV/k corresponds to a vector
f ∈ gl(V ) that is nilpotent, with all Jordan blocks of size ≤ p. On R-valued points, the map becomes

H(R)→ GLV/k(R), α 7→

p−1∑
i=0

(α f )i

i !
.
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Set eα f
=

∑p−1
i=0 (α f )i/ i ! to simplify notation. By naturality, the above maps are determined by the single

matrix et f with entries in the truncated polynomial ring R = k[t]/(t p). The following is well known:

Lemma 7.1. Each torsor T for the infinitesimal group scheme H = αp is isomorphic to the spectrum of
L = k[s]/(s p

−ω) for some ω ∈ k, where the group elements α ∈ H(R) act via s 7→ s +α. The torsor T
is nontrivial if and only if L is a field. Moreover, for each purely inseparable field extension k ⊂ L of
degree p, the spectrum Spec(L) admits the structure of a H-torsor.

Proof. Consider the relative Frobenius map F : Ga → Ga on the additive group, which comes from
the k-linear map k[t] → k[t] given by t 7→ t p. Then H = αp is the kernel. The short exact sequence
0 → H → Ga

F
−→Ga → 0 yields a long exact sequence

k → k → H 1(k, H)→ H 1(k,Ga)→ H 1(k,Ga).

The terms on the right vanish. It follows that each H-torsor T arises as the fiber for F : Ga → Ga over
some rational point ω ∈ Ga(k). Thus T is equivariantly isomorphic to the spectrum of k[s]/(s p

−ω),
where the group elements α ∈ H(R) act via s 7→ s +α. If T is nontrivial, the polynomial s p

−ω ∈ k[s]
has no root in k. We infer that it is irreducible, because the algebra L = k[s]/(s p

−ω) has prime degree p.
Thus L is a field, which is purely inseparable over k. Conversely, if L is a field, then T has no rational
point, and the torsor is nontrivial.

Finally, let k ⊂ L be a purely inseparable extension of degree p. For each element in L not contained
in k, we get an identification L = k[s]/(s p

−ω). Thus, Spec(L) arises as fiber of the relative Frobenius
map, and hence admits the structure of a H-torsor. □

For the applications we have in mind, we now consider the particular situation that V = k[t]/(t p)

is the underlying vector space of dimension n = p coming from the truncated polynomial ring, and
V ′

= tk[t]/(t p) is given by the maximal ideal. Each vector can be uniquely written as a polynomial
f (t)=

∑p−1
i=0 λi t i , with coefficients λi ∈ k. This vector space comes with a canonical action of the additive

group Ga , where the elements α ∈ Ga(R)= R act via f (t) 7→ f (t +α). With respect to the canonical
basis t0, . . . , t p−1

∈ V ⊗k R, this automorphism is given by α 7→ (αi j ), where the matrix entries are
αi j =

( j
j−i

)
α j−i . In turn, we get an induced action of the Frobenius kernel H = αp. Note that V ′

⊂ V is
not H -invariant, because some α0 j = α j are nonzero for α ̸= 0.

Now, let T = Spec(L) be a H-torsor. The resulting twist TV is another vector space of dimension
n = p. Note that both V and TV are isomorphic to k⊕p, but there is no canonical isomorphism. The
following observation will be crucial for later applications:

Proposition 7.2. In the above situation, there is no vector x ̸= 0 inside the twist TV such that the induced
element x ⊗ 1 inside TV ⊗k L = V ⊗k L is contained in the base change V ′

⊗k L.

Proof. Seeking a contradiction, we assume that such an element exists. Its image x ⊗ 1 inside TV ⊗k

L = V ⊗k L takes the form f (t) =
∑p−1

i=1 λi t i , with coefficients λi ∈ L . According to Lemma 7.1,
we have L = k[s]/(s p

− ω) for some ω ∈ k, and the group elements α ∈ H(R) act via s 7→ s + α.
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Write λi =
∑p−1

j=0λi j s j , with coefficients λi j ∈ k. The H -invariance of the vector f (t) ∈ V ⊗k L with
respect to the diagonal H -action means

p−1∑
i=1

p−1∑
j=0

λi j (s +α) j (t +α)i =

p−1∑
i=1

p−1∑
j=0

λi j s j t i (6)

for each α ∈ H(R). Our task is to infer λi j = 0. We now consider the universal situation, where α is the
class of the indeterminate in the truncated polynomial ring R = k[u]/(u p). Then (6) becomes an equation
in the residue class ring k[t, s, u]/(t p, s p

−ω, u p). Writing

(s +α) j (t +α)i = s j t i
+α( js j−1t i

+ is j t i−1)+α2( · · · )

as a polynomial in α and comparing coefficients in (6) at the linear terms, we get

p−1∑
i=1

p−1∑
j=0

λi j ( js j−1t i
+ is j t i−1)= 0. (7)

The following argument, more elegant than our original reasoning, was indicated by the referee: To see
that λi j vanishes, it suffices to check that the polynomial

F =

p−1∑
i=1

p−1∑
j=0

λi j s j t i

is divisible by th for 1 ≤ h ≤ p inside the factorial ring k[s, t]. This is obvious for h = 1. Suppose now
that 2 ≤ h ≤ p, and that F = th−1G for some polynomial G. Then

∂F
∂s

= th−1 ∂G
∂s

and ∂F
∂t

= th−1 ∂G
∂t

+ (h − 1)th−2G.

Equation (7) means that ∂F/∂s + ∂F/∂t = 0. Together with the above computation, this gives t | G, and
hence th

| F . □

8. Automorphisms for prime-degree radical extensions

Let k be a ground field of characteristic p > 0. For each scalar ω ∈ k, write

L = Lω = k[t]/(t p
−ω)

for the resulting finite algebra of rank p. Each element can be uniquely written as
∑p−1

i=0 λi t i , and we
call such expressions truncated polynomials. Write AutL/k for the group-valued functor on the category
(Aff/k) whose R-valued points are the R-linear automorphisms of L ⊗ R. This functor is representable
by an affine group scheme. In this section, we make a detailed study of the opposite group scheme

G = Gω = AutSpec(Lω)/k = (AutLω/k)
op,

which comprises the automorphisms of the affine scheme Spec(L). We shall see that G is nonsmooth, so
understanding the scheme structure is of paramount importance. Note that the Lie algebras g = Lie(G)



The structure of Frobenius kernels for automorphism group schemes 1659

were discovered by Witt, compare the discussions in [Chang 1941, Introduction] and also [Zassenhaus
1939, footnote on p. 3]. These so-called Witt algebras will be studied in the next section.

Any automorphism g : L ⊗k R → L ⊗k R is determined by the image of the generator t , which is some
truncated polynomial ϕg(t)=

∑p−1
i=0 αi t i . The multiplication gh ∈ G(R) of group elements corresponds

to the substitution ϕh(ϕg(t)) of truncated polynomials.
The inverse group element g−1 defines another truncated polynomial ϕg−1 =

∑p−1
i=0 βi t i , such that∑

αi
(∑

β j t j
)i

= t =
∑
βi

(∑
α j t j

)i . Note, however, that the truncated polynomials attached to group
elements are never units in the polynomial ring R[t], unless R = 0. To avoid this ambiguity in notation
we use the additional symbol ϕg(t) to denote the image of the indeterminate under g ∈ G(R).

The coefficients in the truncated polynomials ϕg(t) =
∑p−1

i=0 λi t i for the group elements g ∈ G(R)
define a monomorphism G → Ap.

Proposition 8.1. The monomorphism G → Ap is an embedding, and its image is the intersection of the
closed set defined by the Fermat equation

λ
p
0 + (λ1 − 1)pω+ λ

p
2ω

2
+ . . .+ λ

p
p−1ω

p−1
= 0, (8)

with the open set given by det(αi j ) ̸= 0. Here the matrix entries come from the truncated polynomials(∑
λi t i

) j
=

∑
αi j t i , with 0 ≤ i, j ≤ p − 1.

Proof. For each g ∈ G(R), with truncated polynomial ϕg(t)=
∑
λi t i , the images

(∑
λi t i

) j of the basis
vectors t j form a R-basis of L ⊗ R, thus G → Ap factors over the open set U ⊂ Ap given by det(αi j ) ̸= 0.
Since t p

=ω, we also have
(∑

λi t i
)p

=ω, so the monomorphism also factors over the closed set Z ⊂ Ap

defined by (8). Any tuple (λ0, . . . , λp−1) ∈ Ap(R) lying in U ∩ Z gives, via the truncated polynomial∑
λi t i , some group element g ∈ G(R). It follows that the monomorphism G → Ap is an embedding,

with image U ∩ Z . □

Note that throughout, we regard the coefficients λi either as scalars or as indeterminates, depending on
the context. This abuse of notation simplifies exposition and should not cause confusion.

Proposition 8.2. The neutral element e ∈ G has coordinates (0, 1, 0, . . . , 0) with respect to the embedding
G ⊂ Ap. If the scalar ω ∈ k is not a p-power, then the group of rational points is G(k)= {e}.

Proof. The truncated polynomial of the neutral element is ϕe(t) = t , which gives the coordinates of
e ∈ G. Now suppose that ω ̸∈ k p. By Proposition 8.1, it suffices to verify that the polynomial equation
ω0T p

0 +ω1T p
1 + . . .+ωp−1T p

p−1 = 0 has no nontrivial solution. The latter means that 1, ω, . . . , ωp−1
∈ k

are linearly independent over k p. This indeed holds, because k p
⊂ k is an extension of height ≤ 1, hence

the minimal polynomial of any λ ∈ k not contained in k p is of the form T p
− λp. □

We now consider the Frobenius pullback G(p) and its reduced part G(p)
red = (G(p))red. Note that over

imperfect fields, reduced parts of group schemes may fail to be subgroup schemes, see [Fanelli and
Schröer 2020, Proposition 1.6] for an example. The following shows that even if it is a subgroup scheme,
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it might be nonnormal. Note that this phenomenon seems to be the crucial ingredient for the main results
of this paper.

Proposition 8.3. The reduced part G(p)
red ⊂ G(p) is a nonnormal subgroup scheme. Moreover, G(p)

red ≃

U ⋊Gm , where U has a composition series of length p −2 whose quotients are isomorphic to the additive
group Ga . In particular, G is affine, irreducible, and of dimension p − 1.

Proof. Recall that G(p) is defined as the base-change of G with respect to the absolute Frobenius map
on Spec(k). Clearly, the Frobenius pullback of Lω = k[t]/(t p

−ω) is isomorphic to L0 = k[t]/(t p), and
for our automorphism group schemes this means G(p)

≃ G0. Thus, we may assume ω = 0, and work
with G = G(p).

The embedding G ⊂ Ap in Proposition 8.1 is now given by the conditions λp
0 = 0 and det(αi j ) ̸= 0.

View the entries of the matrix (αi j ) as elements from the ring A = k[λ0, . . . , λp−1]/(λ
p
0 ). Taken modulo

the radical Rad(A)= (λ0), the matrix takes lower triangular form, with diagonal entries 1, λ1, . . . , λ
p−1
1 .

In turn, the embedding G ⊂ Ap is given by λp
0 = 0 and λ1 ̸= 0. Consequently, the reduced part Gred is

defined by λ0 = 0 and λ1 ̸= 0, which is smooth. Moreover, we see that G is affine, irreducible and of
dimension p − 1.

Given two truncated polynomials ϕg =
∑
αi t i and ϕh =

∑
βi t i with constant terms α0 = β0 = 0, the

substitution ϕg(ϕh(t)) also has constant term zero, so the subsets Gred(R)⊂ G(R) are subgroups. Over
R = k[u, v, ϵ]/(uv− 1, ϵ2), the truncated polynomials ϕg = ϵ+ t and ϕh = ut yield

ϕg−1(t)= −ϵ+ t and ϕg−1(ϕh(ϕg(t)))= ϵ(u − 1)+ ut,

so the subgroup Gred(R)⊂ G(R) fails to be normal.
Summing up, Gred ⊂ G is a smooth nonnormal subgroup scheme. The map

∑p−1
i=1 λi t i

7→ λ1 defines a
short exact sequence

0 → U → Gred → Gm → 0.

The inclusion U ⊂ Ap is given by λ0 = 0 and λ1 = 1, hence the underlying scheme of U is a copy of
the affine space Ap−2. By Lazard’s theorem [Demazure and Gabriel 1970, Chapter IV, §4, 4.1], the
group scheme U admits a composition series whose quotients are isomorphic to the additive group Ga .
Moreover, the projection Gred → Gm has a section via λ1 7→ λ1t . This is a homomorphism, hence Gred is
a semidirect product. □

Clearly, the group elements g ∈ G(R) with linear truncated polynomial ϕg = λ0 + λ1t form a closed
subgroup scheme B ⊂ G. It sits in a short exact sequence

0 → αp → B → Gm → 0, (9)

where the map on the left is given by λ0 7→ λ0 + t and the map on the right comes from λ0 + λ1t → λ1.
In particular, B is a connected solvable group scheme. We see later that B is maximal with respect to this
property, so one may regard it as a Borel group. However, we want to stress that this lies in a nonsmooth
group scheme, and B itself is nonreduced. We, therefore, call B ⊂ G a nonreduced Borel group.
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An element λ1 ∈ Gm(R) lies in the image if and only if λ0 = (1 − λ1)ω
1/p exists in R. It follows

that the extension (9) splits if and only if ω ∈ k is a p-power. Moreover, we see that the canonical
map Gm → Autαp/k = Gm is the identity. Note that the group of all such extension of Gm by αp, with
nontrivial Gm-action, is identified with k/k p, according to [Demazure and Gabriel 1970, Chapter III,
§6, Corollary 6.4]. Note that for p = 2, the inclusion B ⊂ G is an equality. In any case, the pullback of
the extension (9) along the inclusion µp ⊂ Gm admits a splitting given by λ1 7→ λ1t , and one sees that
B ×Gm µp = αp ⋊µp.

Write G[F] for the kernel of the relative Frobenius map G → G(p), which is a normal subgroup
scheme of height one. We now consider the resulting G/G[F] ⊂ G(p).

Proposition 8.4. The group scheme G/G[F] is smooth and coincides with the reduced part G(p)
red inside

the Frobenius pullback G(p).

Proof. We may assume that k is algebraically closed. We first verify that G/G[F] is reduced. The
short exact sequence (9) yields an inclusion αp ⊂ G. This is not normal, but contained in the Frobenius
kernel G[F]. The resulting projection G/αp → G/G[F] is faithfully flat, and it suffices to check that
the homogeneous space G/αp is reduced. Since G acts transitively, it is enough to verify that the local
ring at the image in G/αp of the origin e ∈ G is regular. According to [Schröer 2007, Proposition 2.2],
it is enough to check that in the local ring OG,e, the ideal a corresponding to the subgroup scheme
αp ⊂ G has finite projective dimension. But this is clear, because it is given by the complete intersection
λ1 = · · · = λp−1 = 0.

Thus G/G[F] is reduced. The reduced closed subschemes G/G[F] and G(p)
red inside the Frobenius

pullback have the same underlying set, whence G/G[F] = G(p)
red . The latter is smooth by Proposition 8.3,

thus the same holds for the former. □

Now consider the conjugacy map c : G → AutG/k , sending g ∈ G(R) to the automorphism x 7→ gxg−1.
In terms of truncated polynomials, gxg−1 is given by the triple substitution ϕg−1(ϕx(ϕg(t))).

Proposition 8.5. The conjugacy map c : G → AutG/k is an isomorphism.

Proof. For ω = 0, this holds by [Sancho de Salas 2000, Theorem 4.13]. The general case follows by
base-changing to kalg and using descent. □

In other words, the center and the scheme of outer automorphisms are trivial. One also says the group
scheme G is complete. Now recall that G = Gω depends on a scalar ω ∈ k.

Proposition 8.6. For each pair of scalars ω,ω′
∈ k×, the following are equivalent:

(i) The k-algebras Lω and Lω′ are isomorphic.

(ii) The group schemes Gω and Gω′ are isomorphic.

(iii) We have k p(ω)= k p(ω′) as subfields inside k.
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Proof. According to [Giraud 1971, Chapter III, Corollary 2.5.2], the category of twisted forms for Lω and
the category of twisted forms of Gω are both equivalent to the category of Gω-torsors. This implies the
equivalence of (i) and (ii).

It remains to check (i)⇐⇒ (iii). Write Lω = k[t]/(t p
−ω) and Lω′ = k[t ′

]/(t ′p
−ω′). Suppose first

that these algebras are isomorphic. Choose an isomorphism and regard it as an identification Lω = Lω′ .
Then t ′

=
∑p−1

i=0 λi t i , and consequently ω′
=

∑
λ

p
i ω

i . Hence, k p(ω′)⊂ k p(ω). By symmetry, the reverse
implication holds as well.

Conversely, suppose that k p(ω)= k p(ω′). If this subfield coincides with k p, then both ω,ω′
∈ k are

p-powers, hence both algebras Lω, Lω′ are isomorphic to k[t]/(t p). Suppose now that the subfield is
different from k p. Taking p-th roots we get k(ω1/p)= k(ω′1/p) inside some perfect closure kperf. These
fields are isomorphic to Lω and Lω′ , because both scalars ω,ω′

∈ k are not p-powers. □

In particular, each L = Lω is a twisted form of L0, and each G = Gω is a twisted form of G0. Up to
isomorphism, these twisted forms correspond to classes in nonabelian cohomology set H 1(k,G0). We
will use this throughout to gain insight into G, by using facts on G0. For example, from Proposition 8.1,
we see that the locus of nonsmoothness Sing(G0/k), defined as in [Fanelli and Schröer 2020, Section 2],
equals the whole scheme G0. Hence the same holds for G, because it is a twisted form of G0.

We now write Sing(G) for the singular locus of G, which comprise all points a ∈ G where the local
ring OG,a is singular. Note that the formation of such loci commutes with base-changes along separable
extension, but usually not with inseparable extensions.

Proposition 8.7. The local ring at the origin is singular, with embedding dimension edim(OG,e) = p.
Moreover, the inclusion Sing(G)⊂ G is not an equality if and only if ω ∈ k is not a p-power. In this case,
the singular locus has codimension one in G.

Proof. Since e ∈ G is a rational point, the embedding dimension of OG,a does not change under ground
field extensions. If ω ∈ k p, we have G ≃ G0, and thus for every point a ∈ G the local ring OG,a is singular.
Now suppose that ω is not a p-power, and consider the p-Fermat hypersurface X ⊂ Pp−1 defined by the
homogeneous polynomial λ0T p

0 + · · · + λp−1T p
p−1, with coefficient λi = ωi . The field extension k p

⊂ E
generated by λi/λ0 = ωi is nothing but k p(ω). It has degree [E : k] = p, hence its p-degree is d = 1.
According to [Schröer 2010, Theorem 3.3], the singular locus Sing(X)⊂ X has codimension d = 1. It
follows that Sing(G)⊂ G is not an equality.

Seeking a contradiction, we now assume that Z = Sing(G) has codimension ≥ 2. Then the scheme G is
normal, by Serre’s criterion. Choose a normal compactification Y = G. The canonical map k → H 0(Y,OY )

is bijective, because we have the rational point e ∈ G. According to [Schröer 2010, Lemma 1.3], the
base-change Y ⊗k k(ω1/p) remains integral. On the other hand, we just saw that G⊗k(ω1/p) is nonreduced,
a contradiction. □
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9. Witt algebras

We keep the notation from the previous section. Our goal now is to understand the restricted Lie algebra
g = gω, or equivalently, the Frobenius kernel, attached to the automorphism group scheme G = Gω of
the spectrum of the ring L = Lω = k[t]/(t p

−ω).
From G = AutSpec(L)/k , we get an identification g = Derk(L). Any k-derivation δ : L → L can be

seen as an L-linear map �1
L/k → Lω. The module of Kähler differentials is a free L-module of rank

one, generated by dt . Let ∂ ∈ g be the dual basis vector. In turn, we get the canonical k-basis t i∂ , with
0 ≤ i ≤ p − 1, and the Lie bracket is given by

[t i∂, t j∂] = ( j − i)t i+ j−1∂.

Using this relation with i = 0, and also with j = 0, together with [t p−1∂, t∂] = (2 − p)t p−1, one easily
sees that g is simple, provided p ̸= 2.

The p-map ( f ∂)[p]
= ( f ∂)p is the p-fold composition in Endk(L). It can be made explicit as follows:

For each truncated polynomial f =
∑p−1

i=0 λi t i , we write f p−1
=

∑p−1
i=0 Ci t i , where the Ci ∈ k are certain

polynomial expressions in the coefficients λ0, . . . , λp−1 and ω, which also depend on the prime p > 0.
Set C = C p−1. For example, with p = 5, the polynomial C becomes

(λ3
0λ4 + 2λ2

0λ1λ3 + λ2
0λ

2
2 + 2λ0λ

2
1λ2 + λ4

1)+ω(2λ0λ1λ
2
4 + 4λ0λ2λ3λ4 + 4λ0λ

3
3

+ 2λ2
1λ3λ4 + 2λ1λ

2
2λ4 + 2λ1λ2λ

2
3 + 4λ3

2λ3)+ω
2(4λ2λ

3
4 + λ2

3λ
2
4).

Proposition 9.1. We have ( f ∂)[p]
= C · f ∂ for every element f ∂ ∈ g. Moreover, the factor C is

homogeneous of degree p − 1 in the coefficients of f =
∑
λi t i .

Proof. Clearly, we have ∂ p
= 0. According to Hochschild’s formula [1955, Lemma 1], the p-fold

composition of f ∂ is given by

( f ∂)p
= f p∂ p

+ g∂ = g∂,

where g = ( f ∂)p−1( f ). Consider the differential operator D = ∂ f ∂ · · · f ∂ , where the number of ∂-factors
is p − 1, such that g = f D( f ). According to [Evans and Fuchs 2002, Theorem 2], we have D( f ) =

−∂ p−1( f p−1). Note that this result is purely formal and holds in any Fp-algebra with a chosen element f
and some derivation ∂ . Clearly, ∂ p−1(t i ) = 0 for 0 ≤ i ≤ p − 2, whereas ∂ p−1(t p−1) = (p − 1)! = −1.
Summing up, we have D( f )= C , and hence g = f C = C f . Then the statement on the p-map follows.
From

(∑
λi t i

)p−1
=

∑
Ci t i one immediately sees that each Ci = Ci (λ0, . . . , λp−1) is homogeneous of

degree p − 1. □

This has a remarkable consequence:

Corollary 9.2. Every vector in the restricted Lie algebra g is p-closed.

So each nonzero vector f ∂ ∈ g defines a subgroup scheme H ⊂ G of order p. Note that the
additive vectors might be viewed as rational points on the hypersurface of degree p − 1 defined by the
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homogeneous equation C(λ0, . . . , λp−1)= 0. For the primes p = 2 and p = 3, we get C(λ0 + λ1)= λ1

and C(λ0, λ1, λ2)= λ2
1 − λ0λ2, respectively, which then reveals the structure of g.

Corollary 9.3. For p = 2, we have g ≃ k ⋊ gl1(k). For p = 3, we have g ≃ sl2(k).

Proof. In the first case, one easily checks that the linear bijection g→k⋊gl1(k) given by (a+bt)∂ 7→ (a, b)
respects bracket and p-map. In the second case, the linear bijection

g → sl2(k), (a + bt + ct2)∂ 7→

(
b a

−c −b

)
likewise respects bracket and p-map. □

Consider the adjoint representation Ad : G → Autg/k , which sends each g ∈ G(R) to the derivative of
the conjugacy map cg given by x 7→ gxg−1. From [Waterhouse 1971, Theorem in Section 5.2], we get:

Proposition 9.4. For p ≥ 5 the adjoint representation Ad : G → Autg/k is an isomorphism of group
schemes.

So for p ≥ 5 our G can be seen as the automorphism group scheme for the ring L , the group scheme G
and the restricted Lie algebra g. Consequently, the three conditions in Proposition 8.6 are also equivalent to
gω ≃ gω′ . For p = 2, 3, the adjoint representation G → Autg/k is not bijective, according to Proposition 3.2.

We now come to the crucial result of this paper.

Theorem 9.5. Suppose that the scalar ω ∈ k is not a p-power, that k×
= k×(p−1) and that the Brauer

group Br(k) contains no element of order two. Then each subalgebra g′
⊂ g of dimension 1 ≤ n ≤ p − 1

is isomorphic to either k or gl1(k) or k ⋊ gl1(k) or sl2(k).

Proof. In the special case p = 2, the dimension of g′ must be n = 1, and it follows that g′ is a twisted
form of k or gl1(k). According to Proposition 3.2, all such twisted forms are trivial, so our assertion
indeed holds.

From now on, we assume p ≥ 3. Recall that g = Lie(G) is a twisted form of g0 = Lie(G0), where
G0 is the automorphism group scheme for the spectrum of L0 = k[t]/(t p). Let g0,red be the subalgebra
corresponding to the reduced part G0,red. According to Proposition 10.3 below, there is no vector x ̸= 0 in
g such that x ⊗ 1 ∈ g⊗ k(ω1/p) is contained in g0,red ⊗ k(ω1/p). In particular, the latter does not contain
the base-change g′

⊗ k(ω1/p).
It follows that the further base-change g′

⊗ kalg is not contained in g0,red ⊗ kalg. Such subalgebras
were studied by Premet and Stewart [2019, Section 2.2]. They remark on page 971 that a subalgebra
in g0 ⊗ kalg is not contained in g0,red ⊗ kalg if and only if it does not preserve any proper nonzero ideal,
and they call such subalgebras transitive. We, thus, may apply loc. cit. Lemma 2.2 and infer that g′ is a
twisted form of k or gl1(k) or k ⋊ gl1(k) or sl2(k). By assumption, the groups k×/k×(p−1) and Br(k)[2]

vanish. According to Proposition 3.2, the four restricted Lie algebras in question have no twisted forms
over our field k, thus g′ is isomorphic to one of them. □

Consequently, for every g′
⊂ g as above over any ground field k, one finds a finite separable extension,

so that the base-change of g′ belongs to the given list.
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10. Twisting adjoint representations

We keep the assumption of the preceding section and establish the crucial ingredients for the proof of
Theorem 9.5. Recall that we are in characteristic p > 0 and that G = Gω is the automorphism group
scheme of the spectrum of L = Lω = k[t]/(t p

−ω), for some scalar ω ∈ k. The resulting restricted Lie
algebra g = Lie(G) is the p-dimensional vector space Derk(L), which comprises the derivations f (t)∂ ,
where f =

∑p−1
i=0 µi t i is a truncated polynomial. Moreover, the group elements g ∈ G(R) act from the

left on the spectrum of L ⊗k R, and from the right on the coordinate ring L ⊗k R via the substitution
t 7→ ϕg(t), for the corresponding truncated polynomial ϕg(t) =

∑p−1
i=0 λi t i . The coefficients define an

embedding G ⊂ Ap of the underlying scheme. For each g ∈ G(R), write cg for the induced inner
automorphism x 7→ gxg−1. The resulting conjugacy map c : G → AutG/k is given in terms of truncated
polynomials by the formula

ϕgxg−1(t)= ϕg−1
(
ϕx(ϕg(t))

)
.

By functoriality, the elements cg ∈ AutG/k(R) induce an automorphism Adg = Lie(cg) of g⊗k R, which
defines the adjoint representation Ad : G → Autg/k .

Proposition 10.1. Let g ∈ G(R), and write ϕ(t)= ϕg−1(t) for the truncated polynomial of the inverse g−1.
Then the formal derivative ϕ′(t) is a unit in the ring L ⊗k R, and for each f (t)∂ ∈ g⊗k R, we have

Adg( f (t)∂)=
f (ϕ(t))
ϕ′(t)

∂.

Proof. By definition, the element f (t)∂ ∈ g⊗k R ⊂ G(R[ϵ]) acts on the algebra L ⊗ R[ϵ] via

h(t) 7→ h(t)+ ϵ f (t)∂(h)= h(t)+ ϵ f (t)h′(t).

Thus, the adjoint Adg( f (t)∂)= g−1
◦ f (t)∂ ◦ g is given by the following composition:

t 7→ ϕg(t) 7→ ϕg(t)+ ϵ f (t)ϕ′

g(t) 7→ ϕg(ϕg−1(t))+ ϵ f (ϕg−1(t))ϕ′

g(ϕg−1(t)). (10)

For a moment, let us regard the truncated polynomials ϕg(t) and ϕg−1(t) as elements in the polynomial
ring R[t]. Then t = ϕg(ϕg−1(t))+ (t p

−ω)h(t) for some polynomial h(t). Taking formal derivatives and
applying the chain rule, we obtain

1 = ϕ′

g(ϕg−1(t)) ·ϕ′

g−1(t)+ (t p
−ω)h′(t).

This gives 1 = ϕ′
g(ϕg−1(t)) ·ϕ′

g−1(t) in the truncated polynomial ring L ⊗k R = R[t]/(t p). It follows that
ϕ(t)= ϕ′

g−1(t) is a unit, with inverse ϕ′
g(ϕg−1(t)). Substituting for the term on the right in (10) gives the

desired formula for Adg( f (t)∂). □

Now consider the additive vector ∂ ∈ g, which corresponds to an inclusion of the infinitesimal group
scheme H =αp into the group scheme G. The R-valued points h ∈ H(R)={λ∈ R |λp

= 0} correspond to
truncated polynomials ϕh(t)= t +λ. The inverse R-valued point has ϕh−1 = t −λ, with formal derivative
ϕ′

h−1(t)= 1. This immediately gives:



1666 Stefan Schröer and Nikolaos Tziolas

Corollary 10.2. With the above notation, we have Adh( f (t)∂)= f (t−λ)∂ for every element f (t)∂∈g⊗k R.

Recall that G = Gω depends on some scalar ω ∈ k, and is a twisted form of G0. The latter coincides
with its own Frobenius pullback. By Proposition 8.3, the reduced part G0,red is a nonnormal subgroup
scheme. Recall that the embedding G0 ⊂ Ap is given by λp

0 = 0 and λ1 ̸= 0, such that G0,red is defined
by λ0 = 0 and λ1 ̸= 0. Write g0,red ⊂ g0 for the resulting subalgebra, which comprises the derivations f ∂ ,
where the truncated polynomial f =

∑p−1
i=0 λi t i has λ0 = 0. Write H0 ⊂ G0 for the copy of αp given by

the additive vector ∂ ∈ g0.
Now suppose that our ground field k is imperfect, that our scalar ω ∈ k is not a p-power and consider

the resulting field extension k(ω1/p). In light of Lemma 7.1, we may endow its spectrum T with
the structure of an H0-torsor. Lemma 3.1 gives an identification Tg0 = gω, and thus an identification
g0 ⊗k k(ω1/p)= gω⊗k k(ω1/p). The following fact was a crucial ingredient for the proof of Theorem 9.5:

Proposition 10.3. The twisted form gω contains no vector x ̸= 0 such that the induced vector x ⊗ 1 inside
g0 ⊗k k(ω1/p)= gω ⊗k k(ω1/p) is contained in the base-change g0,red ⊗k k(ω1/p).

Proof. Setting V = g0 and V ′
= g0,red, we see that action of H0 = αp via the adjoint representation

G0 → Autg0/k is exactly as described in Proposition 7.2, and the assertion follows. □

11. Subalgebras

Throughout this section, k is a field of characteristic p > 0 and k ⊂ E is a field extension. Suppose we
have a group scheme H of finite type over k, a group scheme G of finite type over E and a homomorphism
f : H ⊗k E → G. We shall see that in certain circumstances, important structural properties of the
Frobenius kernel G[F] are inherited to H [F].

Consider the finite-dimensional restricted Lie algebra h = Lie(H) over k and g = Lie(G) over E . Our
homomorphism of group schemes induces an E-linear homomorphism

Lie( f ) : h⊗k E → g, x ⊗α 7→ αx,

of restricted Lie algebras which corresponds to a k-linear homomorphism h→ g of restricted Lie algebras.
We are mainly interested in the case that E is the function field of an integral k-scheme X of finite type,
such that g is an infinite-dimensional k-vector space. Set N = Ker( f ), with Lie algebra n = Ker(Lie( f )).

Proposition 11.1. The following are equivalent:

(i) The k-linear homomorphism h → g is injective.

(ii) For every nontrivial subgroup scheme H ′
⊂ H that is minimal with respect to inclusion, the base-

change H ′
⊗k E is not contained in the kernel N ⊂ H ⊗k E.

Proof. We prove the contrapositive: Suppose h→ g is not injective. Inside the kernel, choose a subalgebra
h′

̸= 0 that is minimal with respect to inclusion. Then the induced E-linear map h′
⊗k E → g is zero. By

the Demazure–Gabriel correspondence, the corresponding subgroup scheme H ′
⊂ H of height one is

minimal with respect to inclusion, and H ′
⊗k E ⊂ N . Conversely, suppose H ′

⊗k E ⊂ N for some H ′
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as in (ii). Choose some nonzero vector x from h′
= Lie(H ′). By construction, it lies in the kernel

for h → g. □

We now suppose that the above equivalent conditions hold, and regard the injective map as an inclusion
h⊂ g. To simplify exposition, we also assume that k is algebraically closed and that h contains an E-basis
for g. In other words, the induced linear map h⊗k E → g is surjective. Note that this E-linear map is
usually not injective. However, we shall see that important structural properties of g transfer to h. We
start with a series of three elementary but useful observations.

Lemma 11.2. If every vector in g is p-closed, the same holds for every vector in h.

Proof. Fix some nonzero x ∈ h. By assumption, we have x [p]
= αx for some α ∈ E , and our task is

to verify that this scalar already lies in k. Since the latter is algebraically closed, it is enough to verify
that α is algebraic over k. By induction on i ≥ 0, we get x [pi

]
= αni x for some strictly increasing

sequence 0 = n0 < n1 < · · · of integers. Since dimk(h) <∞, there is a nontrivial relation
∑r

i=0 λi x [pi
]

for some r ≥ 0 and some coefficients λi ∈ k. This gives
∑
λiα

ni x = 0. Since x ̸= 0, we must have∑
λiα

ni = 0, hence α ∈ E is algebraic over k. □

Lemma 11.3. The restricted Lie algebras g and h have the same toral rank, and the kernel n for
h⊗k E → g has toral rank ρt(n)= 0.

Proof. It follows from [Block and Wilson 1988, Lemma 1.7.2] that ρt(h)= ρt(g)+ρt(n), and in particular
ρt(g)≤ ρt(h). For the reverse inequality, suppose there are k-linearly independent vectors x1, . . . , xr ∈ h

with [xi , x j ] = 0 and x [p]

i = xi . We have to check that the vectors are E-linearly independent. Suppose
there is a nontrivial relation. Without loss of generality, we may assume that x1, . . . , xr−1 are E-linearly
independent and that xr =

∑r−1
i=1 λi xi for some coefficients λi ∈ E . From the axioms of the p-map, we get∑

λi xi = xr = x [p]

r =

(∑
λi xi

)[p]

=

∑
λ

p
i x [p]

i =

∑
λ

p
i xi .

Comparing coefficients gives λp
i = λi . Thus, λi lie in the prime field, in particular in k. In turn, the

vectors are k-linearly dependent, contradiction. □

Let us call the restricted Lie algebra h simple if it is nonzero and contains no ideal besides a = 0
and a = h.

Lemma 11.4. Suppose there is a restricted Lie algebra h′ over k such that g is a twisted form of the
base-change h′

⊗k E. If h′ is simple of dimension n′
≥ 2, we must have h ≃ h′ and g ≃ h′

⊗k E.

Proof. Let H and H ′ be the finite group schemes of height one corresponding to the restricted Lie
algebras h and h′, respectively. Consider the Hom scheme X ⊂ HilbH×H ′ of surjective homomorphisms
H → H ′. By assumption, this scheme contains a point with values in the algebraic closure Ealg. By
Hilbert’s Nullstellensatz, there must be a point with values in k, hence there is a surjective homomorphism
H → H ′. It corresponds to a short exact sequence of restricted Lie algebras

0 → a → h → h′
→ 0.
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We claim that the ideal a vanishes. Suppose this is not the case. Clearly, h′ and g have the same toral
rank. By Lemma 11.3, g and h also have the same toral rank. According to [Block and Wilson 1988,
Lemma 1.7.2], we have ρt(a)= 0, so the p-map on a is nilpotent. On the other hand, the p-map on h′ is
not nilpotent, because the Lie algebra is simple of dimension dim(h′)≥ 2. The same holds for g, and we
infer that the induced map a⊗k E → g is not surjective. Its image b⊊ g is nonzero, because h⊂ g. Since
g is simple, there are elements x ∈ b and y ∈ g with [x, y] ̸∈ b. Such vectors may be chosen with x ∈ a

and y ∈ h, because a ⊂ b and h ⊂ g contain E-bases. Consequently, a ⊂ h is not an ideal, contradiction.
This shows that h = h′. In particular, h and g have the same dimension as vector spaces, so our

surjection h⊗k E → g must be bijective. Our assertions follow. □

For each a ∈ h, the Lie bracket ada(x) = [a, x] defines a k-linear endomorphism of h, but also an
E-linear endomorphism of g. Write adh,a and adg,a for the respective maps, and µh,a(t) ∈ k[t] and
µg,a(t) ∈ E[t] for the resulting minimal polynomials.

Lemma 11.5. We have µh,a(t)= µg,a(t). In particular, the endomorphism adg,a is trigonalizable, and its
eigenvalues coincide with those of adh,a . Moreover, the former is diagonalizable if and only if this holds
for the latter.

Proof. The surjection h⊗k E → g already reveals that µg,a(t) divides µh,a(t). The latter decomposes
into linear factors over k, because this field is algebraically closed. We conclude that µg,a(t)=

∑
λi t i

actually lies in k[t], and decomposes into linear factors over k. Moreover, for each vector x from h ⊂ g,
we have

∑
λi adi

h,a(x)= 0, hence µh,a(t) divides µg,a(t). In turn, the two minimal polynomials coincide.
The remaining assertions follow immediately. □

We now consider some special cases for g, and deduce structure results for h. Recall that kn denotes the
n-dimensional restricted Lie algebra over k with trivial bracket and p-map. The following fact is obvious:

Proposition 11.6. If g is isomorphic to Em , then the restricted Lie algebra h is isomorphic to kn for some
integer n ≥ m.

Recall that kn ⋊ϕ gl1(k) denotes the semidirect product formed with respect to the homomorphism
ϕ : gl1(k)→ gl(kn)= Der′k(k

n) that sends scalars to scalar matrices.

Proposition 11.7. If g is isomorphic to Em⋊ gl1(E), then the restricted Lie algebra h is isomorphic to
kn ⋊ gl1(k) for some n ≥ m.

Proof. Without loss of generality, we may assume g = Em ⋊ gl1(E). First, recall that bracket and p-map
are given by the formulas

[v+ λe, v′
+ λ′e] = λv′

− λ′v and (v+ λe)[p]
= λp−1(v+ λe), (11)

where v ∈ En , and e ∈ gl1(E) denotes the unit. In particular, each vector is p-closed. Moreover, a = v+λe
is multiplicative if and only if λ ̸= 0, and a[p]

= a if and only if λ ∈ µp−1(E). For any such vector, we
see that the endomorphism ada(x)= [a, x] is diagonalizable, and En

⊂ g is the eigenspace with respect
to the eigenvalue α = λ, whereas the line Ea ⊂ g is the eigenspace for α = 0.



The structure of Frobenius kernels for automorphism group schemes 1669

From the extension 0 → Em
→ g → gl1(E)→ 0, one sees that g has toral rank one. According to

Lemma 11.3, the same holds for h. Choose some nonzero vector a ∈ h with a[p]
= a. Then a = v+ λe

for some λ ∈ µp−1(E)⊂ k×. Replacing a by λ−1a, we may assume λ= 1. By Lemma 11.5, the adjoint
representation adh,a is diagonalizable, with eigenvalues α = 0 and α = 1. Let h = U0 ⊕ U1 be the
corresponding eigenspace decomposition. Then U0 lies in the corresponding eigenspace for adg,a , which
is En

⊂ g. It follows that U0 has trivial Lie bracket and p-map. The choice of a k-basis gives U0 = kn for
some n ≥ 0. Likewise, U1 is contained in Ea. Thus the bracket vanishes on U1, and the p-map is injective.
Using Lemma 11.3, we infer that U1 = ka. The vector space decomposition h = U0 ⊕U1 thus becomes a
semidirect product h = kn ⋊ gl1(k). We must have m ≥ n, because the map h⊗k E → g is surjective. □

Recall that sl2(E) is simple for p ≥ 3. Using Lemma 11.4, we immediately obtain:

Proposition 11.8. Suppose p ≥ 3. If g is isomorphic to a twisted form of sl2(E), then the restricted Lie
algebra h is isomorphic to sl2(k).

12. Structure results for Frobenius kernels

We now come to our main result. Let k be an algebraically closed field of characteristic p > 0, and
let X be a proper integral scheme or more generally a proper integral algebraic space, H = AutX/k[F]

be the Frobenius kernel for the automorphism group scheme and h = H 0(X,2X/k) the corresponding
restricted Lie algebra over k. Let HF = H ⊗k F be the base-change to the function field F = k(X),
and H inert

F ⊂ HF the inertia subgroup scheme for the rational point in the spectrum of F ⊗E F , with
corresponding restricted Lie algebra hinert

F ⊂ hF . Recall that the foliation rank r ≥ 0 is given by

r = dim
(
hF/h

inert
F

)
= dim

(
�1

F/E
)

and
[
HF : H inert

F
]
= [F : E] = pr ,

where E = Fh is the kernel for all derivations D : F → F from the Lie algebra h. This is nothing but the
function field E = k(Y ) of the quotient Y = X/H .

Theorem 12.1. Suppose that the proper integral scheme X has foliation rank r ≤ 1. Then the Frobenius
kernel H = AutX/k[F] is isomorphic to the Frobenius kernel of one of the following three basic types of
group schemes:

SL2 and G⊕n
a and G⊕n

a ⋊Gm,

for some integer n ≥ 0.

Proof. The case r = 0 is trivial, so we assume r = 1 such that h ̸= 0. By assumption the subfield E = Fh

has [F : E] = p, and we thus have F = E[T ]/(T p
−ω) for some ω ∈ E . Thus, the restricted Lie algebra

g= DerE(F) is a twisted form of the Witt algebra g0 over E . By construction, we have an inclusion h⊂ g.
Suppose first that the induced homomorphism h⊗E → g is surjective, such that the results of Section 11

apply. Suppose first p ≤ 3. Then g is isomorphic to either E ⋊gl1(E) or sl2(E), by Corollary 9.3, and our
assertion follows from Propositions 11.7 and 11.8. The case p ≥ 5 actually does not occur: Then the Witt
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algebra h′
= Derk(k[t]/(t p)) is simple, as remarked at the beginning of Section 9, and g is a twisted form

of h′
⊗k E . It follows from Lemma 11.4 that g ≃ h′

⊗k E . Combining Propositions 9.4 and 8.6, we get

E[T ]/(T p
−ω)≃ E[T ]/(T p),

a contradiction.
It remains to treat the case that h⊗ E → g is not surjective. Then g′

= h · E is a restricted subalgebra
of dimension 1 ≤ n ≤ p − 1. We now replace the field E by some separable closure E sep, and likewise
F by F ⊗E E sep. According to Theorem 9.5, the restricted Lie algebra g′ is isomorphic to either sl2(E)
or E or gl1(E) or E ⋊ gl1(E). By the results in Section 11, this ensures that h is isomorphic to sl2(k)
or kn or kn ⋊ gl1(k) for some n ≥ 0. These are the Frobenius kernels for the group schemes in question,
and our assertion follows. □

In the former case, the Frobenius kernel is sl2(k). This indeed occurs for X = P1. In the latter two
cases, the respective Frobenius kernels are α⊕n

p and α⊕n
p ⋊µp. With Corollary 6.6, we immediately get

the following consequence:

Corollary 12.2. Suppose that X is a proper normal surface with h0(ω∨

X )= 0. Then H = AutX/k[F] is
isomorphic to the Frobenius kernel of one of the three basic types of group schemes in Theorem 12.1.

This applies, in particular, to smooth surfaces S of Kodaira dimension kod(S) ≥ 1, to surfaces of
general type and their minimal models or normal surfaces X with c1 = 0 and ωX ̸= OX having at most
rational double points.

13. Canonically polarized surfaces

Let k be a ground field of characteristic p > 0 and X be a proper normal surface with h0(OX )= 1 whose
complete local rings O∧

X,a are complete intersections. Then the cotangent complex L•

X/k is perfect, and
we obtain two Chern numbers

c2
1 = c2

1(L
•

X/k) and c2 = c2(L
•

X/k),

as explained by Ekedahl, Hyland and Shepherd–Barron [Ekedahl et al. 2012, Section 3]. In some sense,
these integers are the most fundamental numerical invariants of the surface X . Note that c2

1 is nothing but
the self-intersection number K 2

X = (ωX ·ωX ) of the dualizing sheaf. If the singularities are also rational,
hence rational double points, the Chern numbers of X coincide with the Chern numbers of the minimal
resolution of singularities S, according to loc. cit. Proposition 3.12 and Corollary 3.13. For more details
on rational double points, we refer to [Lipman 1969; Artin 1977].

Recall that a canonically polarized surface is the canonical model X of a smooth surface S of general
type. Then ωX is ample, all local rings OX,a are either regular or rational double points, and the above
applies. Let us record the following facts:

Lemma 13.1. Suppose that X is canonically polarized. Then

χ(OX )=
1

12(c
2
1 + c2) and h0(ωX )≤

1
2(c

2
1 + 4) and c2 ≤ 5c2

1 + 36.
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Proof. Let f : S → X be the minimal resolution of singularities. Then S is a smooth minimal surface of
general type, and the first formula holds for S instead of X by Hirzebruch–Riemann–Roch. We already
observed that the surfaces X and S have the same Chern numbers, and the structure sheaves have the
same cohomology. Thus the formula also holds for X . In particular, we have

h0(ωX )= h2(OX )= h2(OS)= h0(ωS),

and Noether’s inequality (for example, [Liedtke 2013a, Section 8.3]) for the minimal surface of general
type S gives the second formula. This ensures

χ(OX )= 1 − h1(ωX )+ h0(ωX )≤ 1 + h0(ωX )= 1 + h0(ωS)≤
c2

1 + 6
2

.

Combining with χ(OX )= (c2
1 + c2)/12 we get the third inequality. □

Theorem 13.2. Let X be canonically polarized surface, with Chern numbers c2
1, c2. Then the Lie algebra

h = H 0(X,2X/k) for the Frobenius kernel H = AutX/k[F] has the property dim(h)≤8(c2
1, c2) for the

polynomial

8(x, y)=

{ 1
144(73x + y)2 − 1, if c2

1 ≥ 2,
1

144(121x + y)2 − 1, if c2
1 = 1.

Moreover, we also have the weaker bound dim(h)≤9(c2
1) with the polynomial

9(x)=

{169
4 x2

+ 39x + 8, if c2
1 ≥ 2,

441
4 x2

+ 63x + 8, if c2
1 = 1.

Proof. Fix some m ≥ 3. Serre Duality gives hi (ω⊗m
X ) = h2−i (ω⊗1−m

X ). This vanishes for i = 2,
because ωX is ample, and also for i = 1 by [Ekedahl 1988, Chapter II, Theorem 1.7]. Thus, we have
h0(ω⊗m

X )= χ(ω⊗m
X ), and Riemann–Roch gives

h0(ω⊗m
X )= χ(OX )+

1
2(m

2
− m)c2

1. (12)

According to [Ekedahl 1988, Chapter III, Theorem 1.20], the invertible sheaf ω⊗m
X is very ample for

c2
1 ≥ 2 and m = 4, or c2

1 = 1 and m = 5. It then defines a closed embedding X ⊂ Pn with ωX = OX (1)
and n + 1 = h0(ω⊗m

X ).
The following argument, which gives a better estimate than our original reasoning, was kindly commu-

nicated by the referee: The canonical linearization of ωX and its power ω⊗m
X yields a homomorphism

AutX/k → AutPn/k = PGLn+1,k such that the inclusion X ⊂ Pn is equivariant with respect to the action of
G = AutX/k . In particular, the homomorphism of group schemes is a closed embedding, and the resulting
inclusion of tangent spaces H 0(X,2X/k)⊂ H 0(Pn,2Pn/k) gives the estimate h0(2X/k)≤ h0(ω⊗m

X )2 −1.
Substituting (12) and using χ(OX )= (c2

1 + c2)/12, we get

h0(2X )≤

(
c2

1 + c2

12
+
(m2

− m)
2

c2
1

)2

− 1 =
1

144
(
(6m2

− 6m + 1)c2
1 + c2

)2
− 1.
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By setting m = 4 and m = 5, we get the desired bound dim(h) ≤ 8(c2
1, c2). Finally, the inequality

c2 ≤ 5c2
1 + 36 from Lemma 13.1 yields the weaker bound dim(h)≤9(c2

1). □

14. Examples

Let k be a ground field of characteristic p > 0. In this section, we give examples of canonically polarized
surfaces X where the Frobenius kernel of the automorphism group scheme is isomorphic to α⊕n

p ⋊µp

and α⊕m
p . Note that we do not have examples where SL2[F] occurs.

To start with, view P2 as the homogeneous spectrum of k[T0, T1, T2]. Fix some d ≥ 1, set L = OP2(d)
and consider the section

s = T0T1T pd−2
2 + T1T2T pd−2

0 + T2T0T pd−2
1 ∈ 0(P2,L ⊗p). (13)

Regarded as L ⊗−p
→ OP2 , this endows the coherent sheaf A =

⊕p−1
i=0 L ⊗−i with the structure of a

Z/pZ-graded OP2-algebra, and we define X = Spec(A ) as the relative spectrum.

Proposition 14.1. In the above setting, suppose p ̸= 3 and d ≥ 4. Then

h = kn ⋊ gl1(k) and AutX/k[F] = α⊕n
p ⋊µp,

where n = (d + 1)(d + 2)/2. Moreover, X is a canonically polarized surface with Chern invariants
c2

1 = p(pd − d − 3)2 and c2 = 3p + dp(p − 1)(pd − 3).

Proof. Being locally a hypersurface in affine three-space, the scheme X is Gorenstein. According to
[Ekedahl 1988, Chapter I, Proposition 1.7], the dualizing sheaf is given by ωX = π∗(ωP2 ⊗L p−1), which
equals the pullback of OP2(pd − d − 3). The statement on c2

1 follows. Using d(p − 1)− 3 ≥ d − 3 ≥ 1,
we see that ωX is ample. Since π : X → P2 is finite, the Euler characteristic χ(OX ) equals

p−1∑
i=0

χ(OP2(−id))=

p−1∑
i=0

(2−id
2

)
=

12p − 9d(p − 1)p + d2(p − 1)p(2p − 1)
12

.

Now suppose for the moment that we already know that X is geometrically normal, with only rational
double points. Then X is a canonically polarized surface, and Lemma 13.1 yields the statement on c2.

We proceed by computing h = H 0(X,2X/k) as a vector space. The grading of the structure sheaf
A =

⊕p−1
i=0 L ⊗−i corresponds to an action of G = µp on the scheme X , with quotient P2. Let

D : OX →2X/k be the corresponding multiplicative vector field, and OX (1)⊂2X/k the saturation of
the image, for some effective Weil divisor 1⊂ X . Lemma 14.5 below gives an exact sequence

0 → OX (1)
D
−→2X/k → ω⊗−1

X (−1).

The term on the right has no nonzero global sections, because ωX is ample, and consequently, we get
H 0(X,OX (1))= H 0(X,2X/k). We have ωX = π∗(ωP2)⊗OX ((p −1)1) by [Rudakov and Shafarevich
1976, Proposition 2 combined with Proposition 3], which gives OX (1)= π∗(L ). Consequently,

H 0(X,OX (1))= H 0(P2,A ⊗ L )= H 0(P2,L )⊕ H 0(P2,OP2)= kn
× k,

with the integer n = (d + 1)(d + 2)/2, as desired.
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It is not difficult to compute bracket and p-map for h = H 0(X,2X/k). The coordinate rings for the
affine open sets Ui = D+(Ti ) of P2 are the homogeneous localizations Ri = k[T0, T1, T2](Ti ), and the
preimages π−1(Ui ) are the spectra of Ai = Ri [ti ]/(t

p
i − si ). Here, si denotes the dehomogenization

of (13) with respect to Ti . We have2Ai/Ri = Ai∂/∂ti , and our multiplicative vector field restricts becomes
D = ti∂/∂ti . For any bi , b′

i ∈ Ri , one immediately calculates[
bi
∂

∂ti
, ti

∂

∂ti

]
= bi

∂

∂ti
,

[
bi
∂

∂ti
, b′

i
∂

∂ti

]
= 0 and

(
bi
∂

∂ti

)[p]

= 0.

Choosing a basis for H 0(P2,L ), we infer that the vector space decomposition h=H 0(P2,L )⊕H 0(P2,OP2)

becomes a semidirect product structure h = kn ⋊ gl1(k) for the restricted Lie algebra.
It remains to check that Sing(X/k) is finite, and that all singularities are rational double points. For

this, we may assume that k is algebraically closed. In light of the symmetry in (13), it suffices to verify
this on the preimage V = π−1(U ) of the open set U = D+(T0). Setting x = T1/T0 and y = T2/T0, we
see that V has coordinate ring A = k[x, y, t]/( f ) with

f = t p
− xy − x pd−2 y − xy pd−2.

The singular locus comprises the common zeros of f and the partial derivatives

∂ f
∂x

= −y + 2x pd−3 y − y pd−2
= 0,

∂ f
∂y

= −x − x pd−2
+ 2xy pd−3

= 0.

Clearly there are only finitely many singularities with x = 0 or y = 0. For the remaining part of Sing(X),
it suffices to examine the system of polynomial equations

−1 + 2x pd−3
− y pd−3

= 0 and − 1 − x pd−3
+ 2y pd−3

= 0. (14)

This is a system of linear equations in the powers x pd−3 and y pd−3, and one solution is x pd−3
= y pd−3

= 1.
Using p ̸= 3 we see that there are no other solutions.

It remains to verify that all singularities are rational double points. It would be tedious and cumbersome
to do this explicitly. We resort to a trick of independent interest, where we actually show that there are
only rational double points of A-type: By Lemma 14.3 and Proposition 14.4, it suffices to verify that no
singular point is a zero for the polynomial(

∂2 f
∂x∂y

)2

−
∂2 f
∂x2 ·

∂2 f
∂y2 ,

which gives the additional equation

1 + 4x2pd−6
+ 4y2pd−6

− 4x pd−3
− 4y pd−3

− 28(xy)pd−3
= 0. (15)

Substituting x pd−3
= y pd−3

= 1, the left side becomes 1 + 4 + 4 − 4 − 4 − 28 = −27, which is indeed
nonzero because p ̸= 3. □
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Note that π : X → P2 is a universal homeomorphism, so the geometric fundamental group of X is
trivial, and b1 = 0 and b2 = 1. Let x1, . . . , xr be the geometric singularities on X . We saw above that they
are rational double points of certain Ani . One referee pointed out that they all have ni = p − 1, which
can be seen by considering the action of the Frobenius on the local class group, which is multiplication
by p on a cyclic of order ni + 1. Since the Frobenius factors over the projective plane, one infers that
ni + 1 | p, hence ni + 1 = p. As discussed in Section 13, the Chern number c2 is the alternating sum of
the Betti numbers on the minimal resolution of X , which yields the formula c2 − 3 = r(p − 1).

One referee also pointed out that the arguments in the proof for Proposition 14.1 hold true for general
polynomials s ∈ 0(P2,L ⊗p) of degree pd , provided that pd − d − 2> 0 and d ≥ 2, by using the result
of Liedtke [Liedtke 2013b, Theorem 3.4], which ensures that all occurring singularities must be rational
double points of type Ap−1.

Let us remark that the surface X ⊂ P3 defined by the homogeneous polynomial

s = T0T1T 2p−1
2 − T0T1T 2p−1

3 + T 2p
0 T2 + T 2p

1 T3 + T 2p+1
2 + T 2p+1

3

is a canonically polarized surface with

c2
1 = (2p − 3)2(2p + 1) and c2 = 8p3

− 4p2
+ 2p + 3,

such that h = H 0(X,2X/k) is isomorphic to gl1(k). We leave the details to the reader.
Next, we construct examples of smooth surfaces of general type X where the restricted Lie algebra

h= H 0(X,2X/k) is isomorphic to km . The possibility of the following construction was suggested by one
of the referees: Let C be a smooth curve with h0(OC)=1, together with an isomorphism ϕ :L ⊗pl

→�1
C/k

that is locally exact, for some invertible sheaf L of degree d ≥ 1, and some integer l ≥ 1 prime to the
characteristic p > 0. This datum is called a generalized Tango curve of index l.

We are mainly interested in the case l ≡ −1 modulo p, and then write l = pn − 1. Lang [1983] used
this situation to construct smooth surfaces X endowed with a fibration f : X → C with OC = f∗(OX ),
where all geometric fibers are singular rational curves with a unique cuspidal singularity. One also says
that (C,L , ϕ) is a generalized Tango curve of type (p, n, d), and X is the resulting generalized Raynaud
surface of type (p, n, d).

Proposition 14.2. In the above setting, suppose that p ≥ 3 and n ≥ 2. Then X is a minimal surface of
general type with

h = km and AutX/k[F] = α⊕m
p ,

with m =h0(L ). Further, the Chern invariants are given by c2
1 =d(p4n2

+4p+2np−n2 p2
−4np2

−2np3)

and c2 = 2pd(1 − np).

Proof. We may assume that k is algebraically closed. Since we assume that our Tango curve has index
l ≡ −1 modulo p, and the characteristic is p ≥ 3, we have m = h0(L ), according to [Takeda 1992,
Theorem 2.1]. Lang computed the Chern invariants, and observed that X is minimal and of general type
[Lang 1983, Theorem 2 and beginning of Section 2].
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Both restricted Lie algebras km ⋊ gl1(k) and sl2(k) contain nonzero multiplicative elements. In light
of Theorem 12.1, our task is to verify that nonzero multiplicative vector fields do not exist on X . Seeking
a contradiction, we suppose that δ ∈ H 0(X,2X/k) is such a vector field. The saturation OY (1) for
the injection δ : OY → 2Y/k defines an effective Cartier divisor 1 ⊂ X . It follows from [Rudakov
and Shafarevich 1976, Theorem 2], that every connected component is smooth. Hence, the irreducible
components are pairwise disjoint, and horizontal for the fibration f : X → C , because all closed fibers
are singular.

To reach a contradiction we examine various curves on X and their intersection numbers. Write F ⊂ X
for a closed fiber, D ⊂ X for reduced support of �1

X/C , and S ⊂ X for the canonical section constructed
in [Lang 1983, Section 2]. Note that D is also called the curve of cusps. According to loc. cit., one has

S2
= d, F2

= 0, (F · S)= 1 and D = −pd F + pS.

Consequently D2
= −p2d. For the curve G = d F + nD, we get G2

= dnp(2 − np) < 0. According to
loc. cit., Theorem 1, there is an exact sequence

0 → OX (G)→2X/k → ω⊗−1
X (−G)→ 0,

giving an identification H 0(X,OX (G)) = H 0(X,2X/k). Our global vector field δ factors over the
inclusion OX (G), which gives an equality OX (1) = OX (G) as subsheaves of 2X/k . In particular, the
curves 1 and G are linearly equivalent. Decompose the smooth curve 1=11 +· · ·+1r into irreducible
components. We already observed that each 1i is horizontal. From 1 · (d F + nD)= G2 < 0, we infer
that D ⊂1. Now consider 1′

=1− D, which contains neither D nor F , and is linearly equivalent to
G ′

= d F + (n − 1)D. Then

pd(n − 1)(2 − (n − 1)p)= (G ′)2 = (d F + (n − 1)D) ·1′
≥ 0.

By our assumptions, we have p ≥ 3 and n ≥ 2, hence the left side is strictly negative, a contradiction. □

There are indeed generalized Tango curves C of type (p, n, d) with nonzero m = h0(L ), for instance
the curve C with affine equation ylp

− y = x lp−1, where we set l = pn − 1, according to [Takeda 1992,
Example 1.2].

It remains to verify some technical results used throughout this section. The following results are well
known over the field of complex numbers (compare, for example, [Kollár and Mori 1998, Section 4.2]
and [Arnold et al. 1985, Part II]). The arguments apparently work in all characteristics except p = 2. For
the convenience of the reader, we give self-contained and characteristic-free proofs.

Let A be a complete local k-algebra that is regular of dimension three, with maximal ideal mA and
residue field k = A/mA. Note that for each choice of regular system of parameters x, y, z ∈ A, one
obtains an identification A = k[[x, y, z]].

Lemma 14.3. Let f ∈ A be an irreducible element such that f ≡ x0 y0 +λz2
0 modulo m3

A for some regular
system of parameters x0, y0, z0 and some λ ∈ k. Then there exists another regular system of parameters
x, y, z such that ( f )= (xy+zn), for some n ≥2. Hence, B = A/( f ) is a rational double point of type An−1.
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Proof. We construct, by induction on n ≥ 0, certain regular system of parameters xn, yn, zn ∈ A such that
xn ≡ xn−1 and yn ≡ yn−1 modulo mn

A, zn = z0 and

f = xn yn + xnφn + ynψn + hn (16)

for some φn, ψn ∈ mn+2
A and hn ∈ z2

nk[[zn]]. For n = 0, we take x0, y0, z0 as in our assumptions. If we
already have defined xn, yn, zn ∈ A, we set

xn+1 = xn +ψn, yn+1 = yn +φn and zn+1 = zn. (17)

Clearly xn+1 ≡ xn and yn+1 ≡ yn modulo mn+1
A , and zn+1 = z0. In particular the above is a regular system

of parameters. Since φnψn ∈ m2n+4
A , we may write

−φnψn = xn+1φn+1 + yn+1ψn+1 + σn,

with φn+1, ψn+1 ∈ m2n+3
A and σn ∈ z2n+4

n+1 k[[zn+1]]. Combining (16) and (17), we get

f = xn+1 yn+1 + xn+1φn+1 + yn+1ψn+1 + hn+1,

where hn+1 = hn + σn belongs to z2
n+1k[[zn+1]]. This completes our inductive definition. Note that

hn+1 ≡ hn modulo m2n+4
A .

By construction, the xn, yn, zn are convergent sequences in A with respect to the mA-adic topology.
The limits x, y, z ∈ A give the desired regular system of parameters: Since the φn, ψn converge to zero, we
have f = xy +h(z), where h is the limit of the hn ∈ k[[z]]. We must have h ̸= 0, because f is irreducible.
Hence, h = uzn with u ∈ k[[z]]× and n ≥ 2. Replacing x by u−1x , we finally get ( f ) = (xy − zn).
Summing up, B = A/( f ) is a rational double point of type An−1. □

The condition in the proposition can be checked with partial derivatives, at least if k is algebraically
closed. This makes the criterion applicable for computations:

Proposition 14.4. Let f ∈ m2
A. Suppose that k is algebraically closed and that(

∂2 f
∂u1∂u2

)2

−

(
∂2 f
∂u2

1

)
·

(
∂2 f
∂u2

2

)
̸∈ mA (18)

for some system of parameters u1, u2, u3 ∈ A. Then there exists another system of parameters x, y, z such
that f ≡ xy + λz2 modulo m3

A, for some λ ∈ k.

Proof. Write f = q +g, where q = q(u1, u2, u3) is a homogeneous polynomial of degree two and g ∈m3
A.

Write q = q1 + u3l, where l = l(u1, u2, u3) is homogeneous of degree one and q1 = q1(u1, u2). If q1 is a
square, a straightforward computation with partial derivatives produces a contradiction to (18). Since k is
algebraically closed, we have a factorization q1 = L1 · L2 where L1 = L1(u1, u2) and L2 = L2(u1, u2)

are independent homogeneous polynomials of degree one. Then w1 = L1, w2 = L2 and w3 form another
regular system of parameters of A, and we have

q = w1w2 +w3l = w1w2 + aw3w1 + bw3w2 + cw2
3,

with a, b, c ∈ k. We finally set x =w1 +bw3, y =w2 +aw3 and z =w3. This is a further regular system
of parameters, with q = xy +λz2, where λ= c−ab. Therefore, f ≡ xy +λz2 modulo m3

A, as claimed. □
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We also used a general fact on coherent sheaves: Let X be a noetherian scheme that is integral and
normal, E be a coherent sheaf of rank two, s : OX → E ∨ is a nonzero global section. The double
dual OX (−1) for the image of the dual map s∨

: E ∨∨
→ OX defines an effective Weil divisor 1 ⊂ X .

By [Hartshorne 1994, Corollary 1.8], the duals of coherent sheaves on X are reflexive. Dualizing
E ∨∨

→ OX (−1)⊂ OX , we see that the homomorphism s factors over an inclusion OX (1)⊂ E ∨. The
latter is called the saturation of the section s ∈ 0(X, E ∨).

Lemma 14.5. In the above setting there is a four-term exact sequence

0 → OX (1)→ E ∨
→ L (−1)→ N → 0,

where L = Hom(32(E ),OX ) and N is a coherent sheaf whose support has codimension at least two.

Proof. According to [Hartshorne 1994, Theorem 1.12], it suffices to construct a short exact sequence
0 → OX (1)→ E ∨

→ L (−1)→ 0 on the complement of some closed set Z ⊂ X of codimension at
least two. Let E0 be the quotient of E by its torsion subsheaf. The surjection E → E0 induces an equality
E ∨

0 = E ∨, so we may assume that E is torsion free. It is then locally free in codimension one, so it suffices
to treat the case that E is locally free. By construction, the cokernel F for OX (1)⊂ E ∨ is torsion-free of
rank one, so we may assume that it is invertible. Taking determinants shows F ≃ L (−1). □
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