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We investigate the problem of computing Tamagawa numbers of CM tori. This problem arises naturally
from the problem of counting polarized abelian varieties with commutative endomorphism algebras over
finite fields, and polarized CM abelian varieties and components of unitary Shimura varieties in the works
of Achter, Altug, Garcia and Gordon and of Guo, Sheu and Yu, respectively. We make a systematic study
on Galois cohomology groups in a more general setting and compute the Tamagawa numbers of CM tori
associated to various Galois CM fields. Furthermore, we show that every (positive or negative) power of 2
is the Tamagawa number of a CM tori, proving the analogous conjecture of Ono for CM tori.

1. Introduction

In his two fundamental papers Takashi Ono [1961; 1963b] investigated the arithmetic of algebraic tori.
He introduced and explored the class number and Tamagawa number of T , which will be denoted by
h(T ) and τ(T ) respectively (also see Section 2 for the definitions). One arithmetic significance of these
invariants is that the class number h(Gm,k) is equal to the class number hk of the number field k, and the
analytic class number formula for k can be reformulated by the simple statement τ(Gm,k) = 1. Thus, the
class numbers of algebraic tori can be viewed as generalizations of class numbers of number fields, while
Tamagawa numbers play a key role in the extension of analytic class number formulas.

Ono [1963b] showed that τ(T ) = |H 1(k, X (T ))|/|X1(k, T )|, where X (T ) is the group of characters
of T and X1(k, T ) is the Tate–Shafarevich group of T . Kottwitz [1984] generalized Ono’s formula
to reductive groups and proved [Kottwitz 1988] the celebrated conjecture of Weil for the Tamagawa
number of semisimple simply connected groups. Ono constructed a 15-dimensional algebraic torus with
Tamagawa number 1

4 , showing that τ(T ) can be nonintegral and conjectured in [Ono 1963a] that every
positive rational number is equal to τ(T ) for some torus T . Ono’s conjecture was proved by S. Katayama
[1985] for the number field case. For some later studies of class numbers and Tamagawa numbers of
algebraic tori we refer to the works of J.-M. Shyr [1977, Theorem 1], S. Katayama [1991], M. Morishita
[1991], C. González-Avilés [2008; 2010] and M.-H. Tran [2017].

In this article we are mainly concerned with the problem of computing the Tamagawa numbers of
complex multiplication (CM) algebraic tori. CM tori are closely related to the arithmetic of CM abelian
varieties and computing their Tamagawa numbers itself is a way of exploring the structure of CM fields.
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This problem directly contributes to recent works of Achter, Altug, Garcia and Gordon [Achter et al.
2023] and of J. Guo, N. Sheu and the fourth named author [Guo et al. 2022]. In the former one the authors
computed the size of an isogeny class of principally polarized abelian varieties over a finite field with
commutative endomorphism algebra, and express the number in terms of a discriminant, the Tamagawa
number, and the product of Frobenius local densities. In the latter one the authors computed formulas for
certain CM abelian varieties and certain polarized abelian varieties over finite fields with commutative
endomorphism algebras upon the results of [Xue and Yu 2021]. Using the class number formula for CM
tori, they also computed the numbers of connected components of complex unitary Shimura varieties.
In the appendix of [Achter et al. 2023], W.-W. Li and T. Rüd have obtained several initial results of the
values of τ(T ). Our goals are to prove more cases of CM tori and to determine the range of the values
of Tamagawa numbers of all CM tori. With a similar goal but using different methods, T. Rüd [2022]
obtains several results along this direction. He provides an algorithm, among others, for giving precise
lower bounds and determining possible Tamagawa numbers, and obtains the values τ(T ) for several other
CM tori of lower dimension.

We shall describe our results towards computing Tamagawa numbers for a more general class of
algebraic tori which include CM tori and then give more detailed results of CM tori. Let k be a global field
and K :=

∏r
i=1 Ki be the product of finite separable field extensions Ki of k. Let E :=

∏r
i=1 Ei , where

each Ei ⊂ Ki is a subextension of Ki . Denote by T K
=

∏
i T Ki and T E

=
∏

i T Ei the algebraic k-tori
associated to the multiplicative groups of K and E , respectively, and let NK/E =

∏
i NKi /Ei : T K

→ T E

be the norm map. Note that the norm map is surjective; one can check this easily by showing the
surjectivity on their k̄-rational points (or combining [Morishita 1991, Section 3] with [Conrad et al.
2010, Corollary A.5.4(1), page 507]). Let Gm,k → T E be the closed immersion induced by the diagonal
embedding k ↪→ E ; see [Conrad et al. 2010, Proposition A.5.7, page 510]. We regard Gm,k as a k-subtorus
of T E by identifying Gm,k with its image in T E . We write T K/E,1 for the kernel of NK/E and

T K/E,k
= N−1

K/E(Gm,k) := T K
×T E Gm,k

for the preimage of the k-subtorus Gm,k ⊂ T E . The tori T K/E,k , T K/E,1 and Gm,k fit into the following
short exact sequence:

1 → T K/E,1 ι
−→ T K/E,k NK/E

−−→ Gm,k → 1.

Let L be the smallest splitting field of T K/E,k and let G = Gal(L/k). We let 3 := X (T K/E,k) and
31

:= X (T K/E,1) be the character groups of T K/E,k and T K/E,1, respectively. Taking the characters, we
have the following exact sequence of G-lattices:

0 → Z → 3 → 31
→ 0. (1-1)

Write Hi := Gal(L/Ki ), Ñi := Gal(L/Ei ), and N ab
i := Ñi/D(Ñi )Hi , where D(Ñi ) denotes the com-

mutator group of Ñi (If Hi is normal in Ñi and one puts Ni := Ñi/Hi , then N ab
i coincides with the

abelianization of the group Ni ). When there is no confusion, for brevity we shall write Hq(A) for
Hq(G, A) for any G-module A.
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Let VerG,Ni : G → N ab
i denote the transfer from G into N ab

i ; see Definition 3.6. For any abelian group H ,
the Pontryagin dual of H is denoted by H∨. By Ono’s formula (2-3) and the Poitou–Tate duality, we
have τ(T ) = |H 1(G, X (T ))|/|X2(G, X (T ))|, where Xi (G, X (T )) is the i-th Tate–Shafarevich group
of X (T ).

Let D be the set of all decomposition groups of G. Denote by

r i
D,A : H i (G, A) → H i (D, A), where D ∈ D (1-2)

the restriction map for G-module A, and let

r i
D,A : H i (G, A) →

⊕
D∈D

H i (D, A) (1-3)

be the restriction map for each G-module A by sending ξ 7→ (r i
D,A(ξ))D∈D. Put

H 2(Z)′ := {x ∈ H 2(G, Z) : r2
D,Z(x) ∈ Im(δD)}, (1-4)

where δD :
⊕

D∈D H 1(D, 31) →
⊕

D∈D H 2(D, Z) is the connecting homomorphism induced from (1-1).
The group H 2(Z)′ plays a similar role of a Selmer group.

Theorem 1.1. Let the notation be as above:

(1) There is a canonical isomorphism H 1(G, 31) ≃
⊕

i N ab,∨
i .

(2) There is a canonical isomorphism

H 1(G, 3) ≃ Ker
(∑

Ver∨G,Ni
:

⊕
i

N ab,∨
i → Gab,∨

)
,

where VerG,Ni : G → N ab
i is the transfer map.

(3) Assume that Ki/Ei is cyclic with Galois group Ni for all i . Then X2(3) ≃ H 2(Z)′/ Im(δ) and

τ(T K/E,k) =

∏r
i=1|Ni |

|H 2(Z)′|
. (1-5)

(4) If we further assume that the subgroups Ñi and Hi are all normal in G, and let

VerG,N = (VerG,Ni )i : Gab
→

∏
i

Ni and VerD,D = (VerD,Di
)i : Dab

→

∏
i

Di

denote the corresponding transfer maps, where Di := D ∩ Ñi and Di := Di/(Di ∩ Hi ) ⊂ Ni ,
respectively, then

H 2(Z)′ = { f ∈ Gab,∨
: f |Dab ∈ Im(Ver∨D,D)∀D ∈ D},

and

X2(3) ≃

{ f ∈ Gab,∨
: f |Dab ∈ Im(Ver∨

D,D)∀D ∈ D}

Im(Ver∨G,N)
.
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A certain case of Theorem 1.1(1) was obtained by Rüd [2022, Proposition 2.5] and he also computed
the group H 1(G, 3) explicitly; see Section 3.2 of [loc. cit.].

Using Theorem 1.1(2), we give a different proof of a result of Li and Rüd [Achter et al. 2023,
Proposition A.11] which does not rely on Kottwitz’s formula; see Corollary 7.2. By (1-5), the ratio(∏r

i=1|Ni |
)
/τ(T K/E,k) is a positive integer; this gives a simple upper bound of τ(T K/E,k).

Observe that T K/E,k is a k-subtorus of
∏r

i=1 T Ki /Ei ,k and is not equal to
∏r

i=1 T Ki /Ei ,k when r > 1
by the dimension counting. The following theorem gives a sufficient condition for τ(T K/E,k) being equal
to

∏r
i=1 τ(T Ki /Ei ,k).

Theorem 1.2. Suppose the following conditions hold: (a) for each 1 ≤ i ≤ r , the extension Ki/k is Galois
with Galois group Gi , Ni = Gal(Ki/Ei ) is cyclic and every decomposition group of Gi is cyclic; and (b)
G ≃ G1 × · · · × Gr . Then we have τ(T K/E,k) =

∏r
i=1 τ(T Ki /Ei ,k).

Now let K =
∏r

i=1 Ki be a CM algebra over Q and E := K + the Q-subalgebra fixed by the canonical
involution ι, and let T = T K/E,Q be the associated CM torus over Q.

Theorem 1.3. For any integer n, there exists a CM torus T over Q such that τ(T ) = 2n .

Finally, we give a number of results of τ(T ) for Galois CM fields.

Theorem 1.4. Suppose that K is a Galois CM field with Galois group G = Gal(K/Q). Let g := [K +
: Q],

G+
= Gal(K +/Q) and T = T K/K +,Q be the associated CM torus:

(1) If K = Q(ζn) ̸= Q is the n-th cyclotomic field with either 4 | n or odd n, then:

(a) If n is either a power of an odd prime p or n = 4, then τ(T ) = 1.
(b) In other cases, we have τ(T ) = 2.

(2) If G is abelian, then τ(T ) ∈ {1, 2}. Moreover, the following statements hold:

(a) If g is odd, then τ(T ) = 1.
(b) If g is even and the exact sequence

1 → ⟨ι⟩ → G → G+
→ 1 (1-6)

splits, then τ(T ) = 2.

(3) Let G be possibly nonabelian and suppose that the short exact sequence (1-6) splits. Then τ(T ) ∈

{1, 2} and the following statements hold:

(a) When g is odd, τ(T ) = 1.
(b) Suppose g is even and let gab

:= |G+ab
|, the cardinality of the abelianization of G+:

(i) If gab is even, then τ(T ) = 2.
(ii) If gab is odd, then there is a unique nonzero element ξ in the 2-torsion subgroup H 2(3)[2]

of H 2(3). Moreover, τ(T ) = 1 if and only if its restriction rD(ξ) = 0 in H 2(D, 3) for all
D ∈ D where rD as defined in (1-2).



On Tamagawa numbers of CM tori 587

(4) Let P and Q be two odd nonsquare positive integers such that P − 1 = a2 and Q − 1 = Pb2 for
some integers a, b ∈ N. Let K := Q(

√
α) with α := −(P +

√
P)(Q +

√
Q). Then K is a Galois CM

field with Galois group Q8 and

τ(T ) =

{ 1
2 if

( P
q

)
= 1 for all prime q | Q;

2 otherwise.

(5) Suppose the Galois extension K/Q has Galois group Dn of order 2n. Then n is even and τ(T ) = 2.

We mention that some cases of Theorem 1.4 where G is abelian, dihedral or quaternionic were also
obtained by Rüd; he also obtained complete results when the degree of (possibly non-Galois) K is less
than or equal to 8; see [Rüd 2022, Theorem 1.3, Proposition 1.5 and Examples 5.7 and 5.19]. The
overlapping results are obtained by different approaches.

We explain the idea of the proof of Theorem 1.3. First of all, it is rather difficult to construct a CM
field such that the Tamagawa number τ(T ) of the associated algebraic torus T is small. Suppose that
K/Q is Galois with Galois group G. T. Rüd [2022] implements a SageMath algorithm for computing
τ(T ) and computed the groups X2

C(G, 3) for all 2-groups G of order ≤ 256,1 where X2
C(G, 3) :=

Ker(H 2(G, 3) →
∏

C H 2(C, 3)) and C runs through all cyclic subgroups of G. Based on Rüd’s result
there is at most one case such that τ(T ) =

1
4 ; see [loc. cit., Proposition 5.26]. To get around this, we

construct an infinite family of “totally” linearly disjoint Q8-CM fields {Ki } for i ≥ 1 with τ(Ti ) =
1
2 , that

is, the Galois group of the compositum of any finitely many of these Q8-CM fields Ki is the product of the
Galois groups Gal(Ki/Q). The CM algebra K :=

∏r
i=1 Ki then satisfies the conditions in Theorem 1.2

and it follows that the CM torus T associated to K satisfies τ(T ) =
1
2r .

We point out that the proof of Theorem 1.3 is actually quite tricky. First of all, it follows from [loc. cit.]
or Theorem 1.4 that Q8-CM fields are the simplest ones so that the associated CM tori T can have
τ(T ) =

1
2 . On the other hand, Theorem 1.2 requires a condition that every decomposition group of

each CM field extension Ki/Q is cyclic. Fortunately, for any Q8-CM field Ki with CM torus Ti , one
has τ(Ti ) =

1
2 if and only if this condition for Ki/Q holds (see Proposition 6.7), so that we can apply

Theorem 1.2 to the product of them. On the other hand, one may be wondering whether this condition is
superfluous. For this question, we construct linearly disjoint Galois CM fields K1 and K2 such that

τ(T1) = 2, τ (T2) = 1, τ (T ) = 1, (1-7)

where T1, T2 and T are CM tori associated to K1, K2 and K1 × K2, respectively. This example shows
that the cyclicity of decomposition groups of every Ki/Q is not superfluous.

Theorem 1.3 proves an analogous but more involved conjecture of Ono for CM tori. In the Appendix
Jianing Li and the fourth named author show that for any global field k and any positive rational number
α, there exists an algebraic torus T over k with τ(T ) = α; see Theorem A.8. This extends the result of
Katayama [1985] and proves Ono’s conjecture for global fields.

1See https://toadrush.github.io/tamagawa-cmtori/.

https://toadrush.github.io/tamagawa-cmtori/
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Though our original motivation of investigating Tamagawa numbers of CM tori comes from counting
certain abelian varieties and exploring the structure of CM fields, the main part of the problem itself
was to compute or investigate their Tate–Shafarevich groups. We explain in Remark 7.10 how the Tate–
Shafarevich group of a CM torus also comes into play in the theory of Shimura varieties of PEL-type.
Tate–Shafarevich groups measure the failure of the local-global principle for various objects, which is one
of main interests in number theory and has been actively studied. For the interested reader’s reference, we
mention some development on the Tate–Shafarevich group of multinorm one tori, which are different type
of tori from the CM tori studied in the present paper. Hürlimann [1984] proved that the multiple norm prin-
ciple holds for any commutative etale k-algebra of the form K1×K2 in which one component is cyclic and
the other one is Galois. Prasad and Rapinchuk [2010] settled the problem of the local-global principle for
embeddings of fields with involution into simple algebras with involution, where they also investigated the
multiple norm principle. The multiple norm principle has been investigated further by Pollio and Rapinchuk
[2013; 2014], Demarche and D. Wei [2014] and D. Wei and F. Xu [2012]. Bayer-Fluckiger, T.-Y. Lee and
Parimala [Bayer-Fluckiger et al. 2019] studied the Tate–Shafarevich group of general multinorm one tori
in which one of factors is a cyclic extension. They give a simple rule for determining the Tate–Shafarevich
group in the case of products of extensions of prime degree p. T.-Y. Lee [2022] computes explicitly the
Tate–Shafarevich group for the cases where every factor is a cyclic extension of degree p-power.

This article is organized as follows. Section 2 includes preliminaries and background on Tamagawa
numbers of algebraic tori, and some known results of those of CM tori due to Li–Rüd and Guo–Sheu–Yu.
Section 3 discusses transfer maps, their extensions and connection with class field theory. In Sections 4
and 5 we compute the Galois cohomology groups of character groups of a class of algebraic tori T K/E,k

and T K/E,1. Section 6 treats Galois CM tori and in Sections 7 ans 8 we determine the precise ranges of
Tamagawa numbers of CM tori. In Section 9 we show there are infinitely many pairs of linearly disjoint
Galois CM fields K1 and K2 satisfying (1-7). In the Appendix Jianing Li and the fourth author prove
Ono’s conjecture for global fields.

2. Preliminaries, background and some known results

2A. Class numbers and Tamagawa numbers of algebraic tori. The cardinality of a set S will be denoted
by |S|. For any field k, let k̄ be a fixed algebraic closure of k, let ksep be the separable closure of k in k̄ and
denote by 0k := Gal(ksep/k) the Galois group of k. Let Gm,k := Spec k[X, X−1

] denote the multiplicative
group associated to k with the usual multiplicative group law.

Definition 2.1. (1) A connected linear algebraic group T over a field k is said to be an algebraic torus
over k if there exists a finite field extension K/k such that there exists an isomorphism T ⊗k K ≃ Gd

m,K

of algebraic groups over K for some positive integer d. Then d is equal to the dimension of T . If T is
an algebraic k-torus and K is a field extension of k that satisfies the above property, then K is called
a splitting field of T . The smallest splitting field (which is unique and Galois, see below) is called the
minimal splitting field of T .
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(2) For any algebraic torus T over k, denote by X (T ) := Homksep(T ⊗k ksep, Gm,ksep) the group of
characters of T . It is a finite free Z-module of rank d together with a continuous action of the Galois
group 0k of k.

It is shown in [Ono 1961, Proposition 1.2.1] (also see [Yu 2019] for other proofs) that every algebraic
k-torus splits over a finite separable field extension K/k. The action of 0k on X (T ) gives a continuous
representation

rT : 0k → Aut(X (T ))

which factors through a faithful representation of a finite quotient Gal(L/k) of 0k . Here L is the fixed
field of the kernel of rT and is the smallest splitting field of T . In particular, L is a finite Galois extension
of k and X (T ) can be also regarded as a Gal(L/k)-module.

In the remainder of this article, k denotes a global field. We only discuss finite separable field extensions
in this paper. For each place v of k, denote by kv the completion of k at v, and Ov the ring of integers
of kv if v is finite. For each finite place v, the group T (kv) of kv-valued points of T contains a unique
maximal open compact subgroup, which is denoted by T (Ov). Let Ak be the adele ring of k, and let S be a
nonempty finite set S of places of k containing all non-Archimedean places if k is a number field. Denote
by UT,S =

∏
v∈S T (kv)×

∏
v /∈S T (Ov) the unit group with respect to S and let ClS(T ) := T (Ak)/T (k)UT,S

be the S-class group of T . By a finiteness theorem of Borel [1963], ClS(T ) is a finite group and its
cardinality is denoted by hS(T ), called the S-class number of T . If k is a number field and S = ∞

consists of all non-Archimedean places, we write UT := UT,∞, Cl(T ) := T (Ak)/T (k)UT the class group
of T and call h(T ) := |Cl(T )| the class number of T .

It follows immediately from the definition that if K/k is a finite extension and TK is an algebraic
K -torus, then h(RK/k TK ) = h(TK ), where RK/k denotes the Weil restriction of scalars from K to k. Note
that dim RK/k TK = dim TK · [K : k]. It is well known [Ono 1961; 1963b] that

X (RK/k TK ) ≃ Ind0k
0K

X (TK ) = IndGal(L/k)

Gal(L/K ) X (TK ),

as Gal(L/k)-modules, where L is any finite Galois extension of k over which the algebraic k-torus
RK/k TK splits.

We recall the definition of the Tamagawa number of an algebraic k-torus T . Fix a finite Galois splitting
field extension K/k of T with Galois group G. Let χT be the character of representation (X (T )⊗C, rT )

of G over C, that is, χT : G → C, χT (g) := tr(rT (g)) for all g ∈ G. Let

L(s, K/k, χT ) :=

∏
v ∤∞

Lv(s, K/k, χT )

be the Artin L-function of the character χT , where Lv(s, K/k, χT ) is the local Artin L-factor at v. It
follows from Brauer’s induction theorem (see [Serre 1977, Section 10.5]) that L(s, K/k, χT ) has a pole
of order a at s = 1, where a is the rank of the G-invariant sublattice X (T )G .
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Let ω be a nonzero invariant differential form on T of highest degree defined over k. To each place v,
one associates a Haar measure ωv on T (kv). Then the product of the Haar measures∏

v | ∞

ωv ·

∏
v ∤∞

(Lv(1, K/k, χT ) · ωv)

converges absolutely and defines a Haar measure on T (Ak).
Write (N) for the number field case and (F) for the function field case. For (N), let dk be the discriminant

of k. For (F), k = Fq(C) is the function field of a smooth projective geometrically connected curve over
Fq and let g(C) be the genus of C .

Definition 2.2. Let T be an algebraic torus over a global field k and ω be a nonzero invariant differential
form on T defined over k of highest degree. Then

ωA,can :=

∏
v | ∞

ωv ·
∏

v ∤∞(Lv(1, K/k, χT ) · ωv)

µ
(dim T )
k · ρT

,

defines a Haar measure on T (Ak), which is called the Tamagawa measure on T (Ak), where

µk :=

{
|dk |

1/2 for (N);
qg(C) for (F),

and ρT := lim
s→1

(s − 1)a L(s, K/k, χT ),

and a is the order of the pole of the Artin L-function L(s, K/k, χT ) at s = 1.

Let ξ1, . . . , ξa be a basis of X (T )G . Define

ξ : T (Ak) → Ra
+
, x 7→ (∥ξ1(x)∥, . . . , ∥ξa(x)∥),

where R+ := {x ∈ R×
: x > 0} ⊂ R× is the connected open subgroup. Let T (Ak)

1 denote the kernel of ξ ;
one has an isomorphism

T (Ak)/T (Ak)
1
≃ Im ξ.

For (N), Im ξ = Ra
+

and let d×t :=
∏a

i=1 dti/ti be the canonical measure on Ra
+

.
For (F), the image Im ξ ⊂ (qZ)a is a subgroup of finite index and let d×t be the counting measure on

Im ξ with measure (log q)a
[(qZ)a

: Im ξ ] on each point; see [Oesterlé 1984, Definition 5.9, page 24].

Remark 2.3. For (F), incorrectly stating in [Ono 1963b, page 56], the image Im ξ , as pointed out by Tate,
is actually not equal to (qZ)a in general (see [Oesterlé 1984, page 25]), so the modification by the index
[(qZ)a

: Im ξ ] is needed. We thank the referee for pointing out this to us.

Let ω1
A,can be the unique Haar measure on T (Ak)

1 such that

ωA,can = ω1
A,can · d×t, (2-1)

that is, for any measurable function F on T (Ak) one has∫
T (Ak)/T (Ak)1

∫
T (Ak)1

F(xt)ω1
A,can · d×t =

∫
T (Ak)

F(x)ωA,can.
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By a well-known theorem of Borel and Harish-Chandra [Platonov and Rapinchuk 1994, Theorem 5.6], the
quotient space T (Ak)

1/T (k) has finite volume with respect to every Haar measure. In fact T (Ak)
1/T (k)

is the unique maximal compact subgroup of T (Ak)/T (k), because the group Ra
+

has no nontrivial compact
subgroup.

Definition 2.4. Let T be an algebraic torus over a global field k. The Tamagawa number τk(T ) of T is
defined by

τk(T ) :=

∫
T (Ak)1/T (k)

ω1
A,can, (2-2)

the volume of T (Ak)
1/T (k) with respect to ω1

A,can, where ω1
A,can is the Haar measure on T (Ak)

1 defined
in (2-1).

One has the following properties ([Ono 1961, Theorem 3.5.1] also see [Ono 1963b, Section 3.2,
page 57]):

(i) For any two algebraic k-tori T and T ′, one has τk(T ×k T ′) = τk(T ) · τk(T ′).

(ii) For any finite extension k ′/k and any algebraic k ′-torus T ′, one has τk(Rk′/k T ′) = τk′(T ′).

(iii) One has τk(Gm,k) = 1.

Note that in the number field case, the last statement (iii) is equivalent to the analytic class number
formula [Lang 1994, VIII, Section 2, Theorem 5, page 161].

2B. Values of Tamagawa numbers.

Theorem 2.5 (Ono’s formula). Let K/k be a finite Galois extension with Galois group 0, and T be an
algebraic torus over k with splitting field K . Then

τk(T ) =
|H 1(0, X (T ))|

|X1(0, T )|
, (2-3)

where

Xi (0, T ) := Ker
(

H i (K/k, T ) →

∏
v

H i (Kw/kv, T )

)
is the Tate–Shafarevich group associated to H i (0, T ) for i ≥ 0 and w is a place of K over v.

Proof. See [Oesterlé 1984, Chapter IV, Corollary 3.3, page 56]. □

Remark 2.6. The cohomology groups H 1(0, X (T )) and X1(0, T ) are independent of the choice of the
splitting field K ; see [Ono 1963b, Sections 3.3 and 3.4].

According to Ono’s formula, the Tamagawa number of any algebraic k-torus is a positive rational
number. Ono constructed an infinite family of algebraic Q-tori T with τ(T ) = τQ(T ) = 1/4, which
particularly shows that τ(T ) needs not to be an integer. Ono [1963a] conjectured that every positive
rational number can be realized as τk(T ) for some algebraic k-torus T . Ono’s conjecture was proved by
S. Katayama [1985] for the number field case.
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For any finite abelian group G, the Pontryagin dual of G is defined to be

G∨
:= Hom(G, Q/Z).

The Poitou–Tate duality [Platonov and Rapinchuk 1994, Theorem 6.10; Neukirch et al. 2000, Theo-
rem 8.6.8] says that there is a natural isomorphism X1(0, T )∨ ≃ X2(0, X (T )). Thus,

τk(T ) =
|H 1(0, X (T ))|

|X2(0, X (T ))|
. (2-4)

To simplify the notation we shall often suppress the Galois group from Galois cohomology groups and
write H 1(X (T )) and X2(X (T )) for H 1(0, X (T )) and X2(0, X (T )) etc., if there is no risk of confusion.

2C. Some known results for CM tori. For the convenience of later generalization and investigation, we
define here a more general class of k-tori as mentioned in the Introduction.

For every commutative etale k-algebra K , denote by T K the algebraic k-torus whose group of R-valued
points of T K for any commutative k-algebra R, is

T K (R) = (K ⊗k R)×.

Explicitly, if K =
∏r

i=1 Ki is a product of finite separable field extensions Ki of k, then

T K
=

r∏
i=1

T Ki =

r∏
i=1

RKi /k(Gm,Ki ),

where RKi /k is the Weil restriction of scalars from Ki to k. Let E =
∏r

i=1 Ei be a product of finite subfield
extensions Ei ⊂ Ki over k. Let NKi /Ei : T Ki → T Ei be the norm map and put N =

∏r
i=1 NKi /Ei : T K

→ T E .
Define T K/E,1

:= Ker N , the kernel of the norm map N , and

T K/E,k
:= {x ∈ T K

: N (x) ∈ Gm,k},

the preimage of Gm,k in T K under N , where Gm,k ↪→ T E is viewed as a subtorus of T E via the diagonal
embedding. Then we have the following commutative diagram of algebraic k-tori in which each row is
an exact sequence:

1 T K/E,1 T K T E 1

1 T K/E,1 T K/E,k Gm,k 1

j N

j N

jT 1 (2-5)

For the rest of this subsection we let k = Q and K =
∏r

i=1 Ki be a CM algebra, where each Ki is a CM
field, with the canonical involution ι. The subalgebra K +

⊂ K fixed by ι is the product K +
=

∏r
i=1 K +

i

of the maximal totally real subfields K +

i of Ki . Let T K ,1
:= T K/K +,1

= Ker NK/K + be the associated
norm one CM torus and the associated CM torus

T K ,Q
:= T K/K +,Q. (2-6)
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As before, we have the following exact sequence of algebraic tori over Q

1 → T K ,1
→ T K NK/K+

−−−−→ T K +

→ 1,

and a commutative diagram similar to (2-5).

Proposition 2.7. Let K be a CM algebra and T = T K ,Q the associated CM torus over Q:

(1) We have

τ(T ) =
2r

nK
,

where r is the number of components of K and

nK := [A×
: N (T (A)) · Q×

]

is the global norm index associated to T .

(2) We have

nK |

∏
p∈SK/K+

eT,p,

where SK/K + is the finite set of rational primes p with some place v | p of K + ramified in K , and
eT,p := [Z×

p : N (T (Zp))]. Here T (Zp) denotes the unique maximal open compact subgroup of
T (Qp).

Proof. (1) This is [Guo et al. 2022, Theorem 1.1(1)]. (2) This is [loc. cit., Lemma 4.6(2)]. □

Lemma 2.8. Let K and T be as in Proposition 2.7:

(1) If K contains an imaginary quadratic field, then nK ∈ {1, 2} and τ(T ) ∈ {2r−1, 2r
}.

(2) If K contains two distinct imaginary quadratic fields, then nK = 1 and τ(T ) = 2r .

Proof. This is proved in [Guo et al. 2022, Lemma 4.7] (also see [loc. cit., Section 5.1]) in the case where
K is a CM field. The same proof using class field theory also proves the CM algebra case. □

Proposition 2.9. Let K be a CM field and T = T K ,Q the associated CM torus over Q. Put g = [K +
: Q]

and let K Gal be the Galois closure of K over Q with Galois group Gal(K Gal/Q) = G:

(1) If g is odd, then H 1(X (T )) = 0.

(2) If K/Q is Galois and g is odd, then τ(T ) = 1.

(3) If K/Q is cyclic, then τ(T ) = 1.

(4) If K/Q is Galois of degree 4, then τ(T ) ∈ {1, 2}. Moreover, τ(T ) = 2 if and only if G ≃ (Z/2Z)2.

Proof. See Propositions A.2 and A.12 of [Achter et al. 2023]. □

Note that Proposition 2.9(4) also follows from Proposition 2.9(3) and Lemma 2.8(2).
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3. Transfer maps, corestriction maps and extensions

3A. Transfer maps. Let G be a group and let H be a subgroup of G of finite index. Let X := G/H ,
and let ϕ : X → G be a section. If g ∈ G and x ∈ X , the elements ϕ(gx) and gϕ(x) belong to the
same class of mod H ; hence there exists a unique element hϕ

g,x ∈ H such that gϕ(x) = ϕ(gx)hϕ
g,x . Let

VerG,H (g) ∈ H ab be defined by

VerG,H (g) :=

∏
x∈X

hϕ
g,x mod D(H),

where D(H) = [H, H ] is the commutator group of H and the product is computed in H ab
= H/D(H).

By [Serre 2016, Theorem 7.1], the map VerG,H : G → H ab is a group homomorphism and it does not
depend on the choice of the section ϕ. This homomorphism is called the transfer of G into H ab (originally
from the term “Verlagerung” in German). One may also view it as a homomorphism VerG,H : Gab

→ H ab.
In the literature one also uses the right coset space X ′

:= H\G but this does not effect the result. One
can easily show that if Ver′G,H is the transfer map defined using X ′, then Ver′G,H = VerG,H . One has the
following functorial property; see [loc. cit., page 89].

Lemma 3.1. Let H ⊂ G and H ′
⊂ G ′ be subgroups of finite index. If σ be a group homomorphism

from the pair (G, H) to (G ′, H ′) which induces a bijection G/H ∼
−→ G ′/H ′, then the following diagram

commutes:
Gab σ

//

VerG,H
��

G
′ ab

VerG′ .H ′

��

H ab σ
// H

′ ab

Lemma 3.2. Let G1 and G2 be groups, and let Hi ⊂ Gi be a subgroup of finite index for i = 1, 2. Then

VerG1×G2,H1×H1(g1, g2) = VerG1,H1(g1)
[G2:H2] · VerG2,H2(g2)

[G1:H1].

Proof. Put G = G1×G2, H = H1×H2, X i := Gi/Hi and X = G/H = X1×X2. Fix a section ϕi : X i → Gi

for each i and let ϕ = (ϕ1, ϕ2) : X → G. For g = (g1, g2) and x = (x1, x2), we have hϕ
g,x = (hϕ1

g1,x1, hϕ2
g2,x2).

Then in H ab
= H ab

1 × H ab
2 we have

VerG,H (g) =

∏
x∈X

hϕ
g,x =

∏
x1∈X1

∏
x2∈X2

(hϕ1
g1,x1

, hϕ2
g2,x2

)

=

∏
x1∈X1

((hϕ1
g1,x1

)|X2|, VerG2,H2(g2)) = (VerG1,H1(g1)
|X2|, VerG2,H2(g2)

|X1|). □

If G is a finite group and p is a prime, G p denotes a p-Sylow subgroup of G.

Proposition 3.3. Let G be a finite group and N ◁ G be a cyclic central subgroup of prime order p. Then
the transfer VerG,N : Gab

→ N ab is surjective if and only if G p is cyclic.

Proof. See Proposition 3.8 of [Rüd 2022]. □
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3B. Connection of transfer maps with corestriction maps. Let H ⊂ G be a subgroup of finite index,
and let A be a G-module. Let

f : IndG
H A = Z[G] ⊗Z[H ] A → A, g ⊗ a 7→ ga

be the natural map of G-modules. Applying Galois cohomology H i (G, −) to the map f and by Shapiro’s
lemma, we obtain for each i ≥ 0 a morphism

Cor : H i (H, A) → H i (G, A),

called the corestriction form H to G.
Applying H i (G, −) to the short exact sequence 0 → Z → Q → Q/Z → 0, one obtains an isomorphism

H i (G, Z) ≃ H i−1(G, Q/Z) for all i ≥ 2. When i = 2, this gives the isomorphism

H 2(G, Z) ≃ Hom(Gab, Q/Z). (3-1)

Proposition 3.4. Let H ⊂ G be a subgroup of finite index. Through the isomorphism (3-1) we have the
following commutative diagram

H 2(H, Z)
∼
//

Cor
��

Hom(H ab, Q/Z)

Ver∨G,H
��

H 2(G, Z)
∼
// Hom(Gab, Q/Z),

where Ver∨G,H is dual of the transfer VerG,H : Gab
→ H ab. Moreover, if H is normal in G, the composition

H ab
→ Gab

→ H ab is the norm NG/H . Here H ab is viewed as a G-module by conjugation and also as a
G/H-module, since H acts trivially on H ab.

Proof. See [Neukirch et al. 2000, Proposition 1.5.9]. □

3C. Connection of transfer maps with class field theory. Let k ⊂ K ⊂ L be three global fields such that
the extension L/k is Galois. Put G = Gal(L/k) and H = Gal(L/K ) ⊂ G. Denote by Ck and CK the idele
class groups of k and K , respectively. The Artin map is a surjective homomorphism ArtL/k : Ck → Gab;
similarly we have ArtL/K : CK → H ab. By class field theory we have the following commutative diagrams:

Ck
ArtL/k

//

func
��

Gab

VerG,H
��

Ck
ArtL/k

// Gab

Ck
ArtL/k

// H ab Ck

NK/k

OO

ArtL/k
// H ab

func

OO

(3-2)

where func denotes the natural map induced from the inclusion A×

k ↪→ A×

K or H ↪→ G. When K/k is
Galois and L = K , the second diagram of (3-2) induces a homomorphism

ArtK/k : Ck/NK/k(CK ) → Gal(K/k)ab,

which is an isomorphism by class field theory.
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3D. Relative transfer maps. Let H ⊂ N ⊂ G be two subgroups of G of finite index. Let X̃ := G/H
and X := G/N with natural G-equivariant projections c̃ : G → X and c : X̃ → X . Let ϕ̃ : X → G be a
section, which induces a section ϕ : X → X̃ . For each g ∈ G and x ∈ X , let nϕ̃

g,x be the unique element
in N such that gϕ̃(x) = ϕ̃(gx)nϕ̃

g,x . Since H is a possibly nonnormal subgroup of N , let (N/H)ab
:=

Coker[D(N )H/D(N ) → N/D(N )] ≃ N/D(N )H . Note that (N/H)ab is an abelian group which agrees
with the abelianization of the group N/H when H is normal in N . Let VerG,N/H (g) ∈ (N/H)ab be the
element defined by

VerG,N/H (g) :=

∏
x∈X

nϕ̃
g,x mod D(N )H. (3-3)

Proposition 3.5. (1) The map VerG,N/H : G → (N/H)ab does not depend on the choice of the section ϕ̃

and it is a group homomorphism.

(2) One has VerG,N/H = πH ◦ Ver, where πH : N ab
→ (N/H)ab is the morphism mod H.

Proof. Clearly, the statement (1) follows from (2), because Ver does not depend on the choice of ϕ̃ and is a
group homomorphism. (2) By definition Ver(g) =

∏
x∈X nϕ̃

g,x mod D(N ), thus VerG,N/H = πH ◦Ver. □

Definition 3.6. Let H ⊂ N be two subgroups of G of finite index. The group homomorphism VerG,N/H :

G → (N/H)ab defined in (3-3) is called the transfer of G into (N/H)ab relative to H . By abuse of
notation, we denote the induced map by VerG,N/H : Gab

→ (N/H)ab.

One can check directly that the map VerG,N/H : Gab
→ (N/H)ab factors through πH : Gab

→ (G/H)ab,
the map modulo H . We denote the induced map by

VerG/H,N/H : (G/H)ab
→ (N/H)ab. (3-4)

Remark 3.7. If H ◁ G is a normal subgroup, then the induced map VerG/H,N/H is the transfer map from
G/H to N/H associated to the subgroup N/H ⊂ G/H of finite index.

Lemma 3.8. Let H ◁ Ñ be two subgroups of finite index in G with H normal in Ñ and cyclic quotient
N = Ñ/H = ⟨σ ⟩ of order n. Fix a lift σ̃ ∈ Ñ of σ .

(1) For each g ∈ G, let {x1, . . . xr } be a complete set of double coset representatives for ⟨g⟩\G/Ñ and
set di := di (g) = |⟨g⟩xi H/H |, where 1 ≤ i ≤ r . Then

VerG,N (g) = σ
∑r

i=1 m(g,xi ),

where 0 ≤ m(g, xi ) ≤ n − 1 is the unique integer such that gdi xi H = xi σ̃
m(g,xi )H.

(2) Let σ ∗
∈ N∨

:= Hom(N , Q/Z) be the element defined by σ ∗(σ ) = 1/n mod Z, Ver∨G,N : N∨
→

Hom(G, Q/Z) the induced map, and f := Ver∨G,N (σ ∗). Then f (g) =
(∑r

i=1 m(g, xi )
)
/n mod Z.
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Proof. (1) We choose the set of representatives S = {g j xi : i = 1, . . . , r, j = 0, . . . , fi −1} of X = G/Ñ ,
which defines a section ϕ̃ of the natural projection G → G/Ñ . Then the image of the element nϕ̃

g,x in H
is given by

nϕ̃
g,x mod H =

{
σ m(g,xi ) if x = gdi −1xi H for some 1 ≤ i ≤ r;

1 otherwise.

(2) By definition, f (g) = σ ∗(VerG,N (g)) = σ ∗(σ
∑

i m(g,xi )) =
(∑

i m(g, xi )
)
/n mod Z. □

One can show that the integer m(g, xi ) is independent of the choice of double coset representative in
⟨g⟩xi H .

The following lemma will be used in Lemma 5.1.

Lemma 3.9. Let G =
∏r

i=1 Gi be a product of groups Gi and let Ni ⊂ Gi , for each 1 ≤ i ≤ r , be a
subgroup of finite index. Put

Hi := G1 × · · · × Gi−1 × {1} × Gi+1 × · · · × Gr , Ñi := G1 × · · · × Gi−1 × Ni × Gi+1 × · · · × Gr .

Then the map

r∏
i=1

VerG,Ñi /Hi
: G → (Ñ1/H1)

ab
× · · · × (Ñr/Hr )

ab
= N ab

1 × · · · × N ab
r (3-5)

is given by the product of the maps

r∏
i=1

VerGi ,Ni :

r∏
i=1

Gi →

r∏
i=1

N ab
i .

Proof. Let pri : G → Gi be the i-th projection. Then

VerG,Ñi /Hi
= VerG/Hi ,Ñi /Hi

◦ pri = VerGi ,Ni ◦ pri ,

see Remark 3.7. Thus, the map (3-5) is equal to
∏

i VerGi ,Ni ◦(pri )i . Since the map (pri )i : G →
∏

i Gi

is the identity, we show that the map (3-5) is equal to
∏

i VerGi ,Ni . □

3E. Connection of relative transfer maps with class field theory. Let k ⊂ E ⊂ K be three global
fields. Let L/k be a finite Galois extension containing K with Galois group G = Gal(L/k). Let
H = Gal(L/K ) ⊂ N = Gal(L/E) be subgroups of G.

The Artin map produces the following isomorphisms (3-2)

Ck/NL/k(CL) ≃ Gab, Ck/NK/k(CK ) ≃ (G/H)ab,

CE/NL/E(CL) ≃ N ab, CE/NK/E(CK )≃ (N/H)ab.
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We obtain the following commutative diagrams:

Ck/NL/k(CL) //

��

Ck/NK/k(CK )

��

Gab πH
//

Ver
��

(G/H)ab

VerG/H,N/H

��

CE/NL/E(CL) // CE/NK/E(CK ) N ab πH
// (N/H)ab

(3-6)

From this we see that VerG/H,N/H : (G/H)ab
→ (N/H)ab does not depend on the choice of the Galois

extension L/k.

4. Cohomology groups of algebraic tori

4A. H1(31) and H1(3). Let K =
∏r

i=1 Ki be a commutative etale k-algebra and E =
∏r

i=1 Ei a
k-subalgebra. Let T K/E,k and T K/E,1 be the k-tori defined in Section 2C. Let L/k be a splitting Galois
field extension for T K , and let G = Gal(L/k). Put

3 := X (T K/E,k) and 31
:= X (T K/E,1),

which are G-modules. For 1 ≤ i ≤ r , put

Hi := Gal(L/Ki ), (4-1)

Ñi := Gal(L/Ei ), (4-2)

N ab
i = (Ñi/Hi )

ab
:= Ñi/Hi D(Ñi ). (4-3)

In the case that Ki is Galois over Ei , we let

Ni := Ñi/Hi = Gal(Ki/Ei ) (4-4)

and then N ab
i coincides with the abelianization of the group Ni , which justifies our notation.

From the diagram (2-5), we obtain the commutative diagram of G-modules:

0 X (T E) X (T K ) 31 0

0 Z 3 31 0

N̂

1̂ ĵT

ĵ

N̂ ĵ

(4-5)

We have

X (T K ) =

r⊕
i=1

IndG
Hi

Z and X (T E) =

r⊕
i=1

IndG
Ñi

Z (4-6)

and

T K/E,1
=

r∏
i=1

REi /k R(1)
Ki /Ei

Gm,Ki and 31
=

r⊕
i=1

IndG
Ñi

31
Ei

, (4-7)

where
31

Ei
:= X (R(1)

Ki /Ei
Gm,Ki ). (4-8)
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By Shapiro’s lemma, one has

Hq(G, 31) =

r⊕
i=1

Hq(G, IndG
Ñi

31
Ei

) =

r⊕
i=1

Hq(Ñi , 3
1
Ei

), ∀q ≥ 0. (4-9)

Note that if Ki/Ei is Galois, then H 1(Ñi , 3
1
Ei

) = H 1(Ni , 3
1
Ei

) (Remark 2.6).

Since the torus R(1)
Ki /Ei

Gm,Ki is anisotropic, one has H 0(G, 31) =
⊕r

i=1 H 0(Ñi , 3
1
Ei

) = 0.
Taking Galois cohomology to the lower exact sequence of (4-5), we have an exact sequence

0 → H 1(G, 3) → H 1(G, 31)
δ

−→ H 2(G, Z). (4-10)

Proposition 4.1. Let the notation be as above:

(1) There is a canonical isomorphism H 1(G, 31) ≃
⊕

i N ab,∨
i (see (4-3) for the definition of N ab

i ).

(2) Under the canonical isomorphisms H 1(G, 31) ≃
⊕

i N ab,∨
i and H 2(G, Z) ≃ Gab,∨ (3-1), the map

δ : H 1(G, 31) → H 2(G, Z) expresses as
r∑

i=1

Ver∨G,Ni
:

r⊕
i=1

N ab,∨
i → Gab,∨, (4-11)

where VerG,Ni : G → N ab
i is the transfer map. In particular, H 1(G, 3) ≃ Ker

(∑
Ver∨G,Ni

)
. Further-

more, the map in (4-11) factors as
r⊕

i=1

N ab,∨
i

(Ver∨G/Hi ,Ni
)i

−−−−−−→

r⊕
i=1

(G/Hi )
ab,∨

∑r
i=1 π∨

Hi−−−−−−→ Gab,∨, (4-12)

where πHi : Gab
→ (G/Hi )

ab is the map mod Hi .

Proof. (1) Taking Galois cohomology of the upper exact sequence of (4-5), we have a long exact sequence
of abelian groups

H 1(G, X (T K )) → H 1(G, 31)
δ

−→ H 2(G, X (T E))
N̂ 2
−→ H 2(G, X (T K )). (4-13)

By (4-6), the first term H 1(G, X (T K )) =
⊕

i H 1(Hi , Z) = 0. Using the relations (4-6) and by Shapiro’s
lemma, we have H 1(G, 31) =

⊕
i H 1(Ñi , 3

1
Ei

) and the exact sequence (4-13) becomes

0 →

r⊕
i=1

H 1(Ñi , 3
1
Ei

)
δ̃

−→

r⊕
i=1

H 2(Ñi , Z)
Res
−→

r⊕
i=1

H 2(Hi , Z). (4-14)

It is clear that the following sequence

0 → Hom(N ab
i , Q/Z)

Inf
−→ Hom(Ñi , Q/Z)

Res
−→ Hom(Hi , Q/Z) (4-15)

is exact. Using the canonical isomorphism H 2(H, Z) ≃ Hom(H, Q/Z) (3-1) for any group H , we rewrite
(4-15) as follows:

0 → H 2(N ab
i , Z)

Inf
−→ H 2(Ñi , Z)

Res
−→ H 2(Hi , Z). (4-16)
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Comparing (4-16) and (4-14), there is a unique isomorphism

H 1(G, 31) =

r⊕
i=1

H 1(Ñi , 3
1
Ei

) ≃

r⊕
i=1

H 2(N ab
i , Z) (4-17)

which fits into the following commutative diagram:

0
⊕r

i=1 H 2(N ab
i , Z)

⊕r
i=1 H 2(Ñi , Z)

⊕r
i=1 H 2(Hi , Z)

0
⊕r

i=1 H 1(Ñi , 3
1
Ei

)
⊕r

i=1 H 2(Ñi , Z)
⊕r

i=1 H 2(Hi , Z)

Inf Res

δ̃ Res

(4-18)

This shows the first statement.

(2) The map 1̂ in (4-5) is induced from the restriction of X (T E) to the subtorus Gm,k and therefore is
given by

1̂ =

r∑
i=1

1̂i :

r⊕
i=1

IndG
Ñi

Z → Z, 1̂i (g ⊗ n) = n, ∀g ∈ G, n ∈ Z.

Thus, by definition, the induced map 1̂2
i on H 2(G, −) is nothing but the corestriction Cor : H 2(Ñi , Z) →

H 2(G, Z); see Section 3B.
From the diagram (4-5), we obtain the following commutative diagram:

0
⊕r

i=1 H 1(Ñi ,3
1
Ei

)
⊕r

i=1 H 2(Ñi ,Z)
⊕r

i=1 H 2(Hi ,Z)

0 → H 1(G,3) H 1(G,31) H 2(G,Z) H 2(G,3)

δ̃ Res

1̂2
=Cor

δ

(4-19)

With the identification (4-17), we have δ = Cor ◦̃δ = Cor ◦ Inf and the lower long exact sequence of
(4-19) becomes

0 → H 1(G, 3) →

r⊕
i=1

H 2(N ab
i , Z)

Cor ◦ Inf
−−−−→ H 2(G, Z)

N̂ 2
−→ H 2(G, 3). (4-20)

By Propositions 3.5 and 3.4, under the isomorphism (3-1) the map Cor ◦ Inf : H 2(N ab
i , Z) → H 2(G, Z)

corresponds to Ver∨G,Ni
: N ab,∨

i → Gab,∨, where Ver∨G,Ni
is the dual of the transfer VerG,Ni : Gab

→ N ab
i

relative to Hi . This proves (4-11). Then it follows from (4-20) that H 1(3) ≃ Ker
(∑r

i=1 Ver∨G,Ni

)
. As the

map VerG,Ni : Gab
→ N ab

i factors as

G
πHi

−−→ (G/Hi )
ab VerG/Hi ,Ñi /Hi−−−−−−→ N ab

i ,

the last assertion (4-12) follows. □
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Remark 4.2. In terms of class field theory, we have CEi /NKi /Ei (CKi )≃ N ab
i , Ck/NKi /k(CKi )≃ (G/Hi )

ab

and Ck/NL/k(CL)≃ Gab. Let L0 be the compositum of all Galois closures of Ki over k; this is the minimal
splitting field of the algebraic torus T K/E,k . One has L0 ⊂ L and its Galois group G0 := Gal(L0/k) is a
quotient of G. Thus, we have the following commutative diagram:

Ck
NL/k(CL )

//

��

Ck
NL0/k(CL0 )

//

��

∏
i

Ck
NKi /k(CKi )

//

��

∏
i

CEi
NKi /Ei (CKi )

��

Gab // Gab
0

//
∏

i (G/Hi )
ab //

∏
i N ab

i

(4-21)

Taking the Pontryagin dual, the lower row gives∏
i

N ab,∨
i →

∏
i

(G/Hi )
ab,∨

→ Gab,∨
0 ⊂ Gab,∨.

From this, we see that the map
∑

Ver∨G,Ni
in (4-11) has image contained in Gab,∨

0 . It follows from (4-21)
that this map is independent of the choice of the splitting field L; also see Remark 2.6.

4B. X2(3). Let D be the set of all decomposition groups of G. For any G-module A, denote by

H i
D(A) :=

∏
D∈D

H i
D(A), H i

D(A) := H i (D, A)

and
r i
D,A = (r i

D,A)D∈D : H i (G, A) → H i
D(A)

the restriction map to subgroups D in D defined in (1-3). By definition, Xi (A) = Ker r i
D,A. We shall

write rD and rD for r i
D,A (1-2) and r i

D,A (1-3), respectively, if it is clear from the content.
For the remainder of this section, we assume that the extension Ki/Ei is cyclic with Galois group Ni

for all i . Consider the following commutative diagram

H 1(31)
δ
//

r1
D,31
��

H 2(Z)
N̂
//

r2
D,Z

��

H 2(3)
ĵ
//

r2
D,3

��

H 2(31)

r2
D,31
��

H 1
D(31)

δD
// H 2

D(Z)
N̂
// H 2

D(3)
ĵ
// H 2

D(31).

(4-22)

Define
H 2(Z)′ := {x ∈ H 2(Z) : N̂ (x) ∈ X2(3)} = {x ∈ H 2(Z) : r2

D,Z(x) ∈ Im(δD)}. (4-23)

Proposition 4.3. Assume that Ki/Ei is cyclic with Galois group Ni for all i . Then X2(31) = 0,
X2(3) ≃ H 2(Z)′/ Im(δ) and

τk(T K/E,k) =

∏r
i=1|Ni |

|H 2(Z)′|
,

where H 2(Z)′ is the group defined in (4-23) and δ is the labeled map in (4-22).
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Proof. It is obvious that ĵ(X2(3)) ⊂ X2(31) and then we have a long exact sequence

0 → H 1(3) → H 1(31)
δ

−→ H 2(Z)′
N̂

−→ X2(3)
ĵ

−→ X2(31).

One has

X2(31) =

⊕
i

X2(G, IndG
Ñi

31
Ei

) =

⊕
i

X2(Ñi , 3
1
Ei

) =

⊕
i

X2(Ni , 3
1
Ei

)

because X2(X (T )) does not depend on the choice of the splitting field. Since Ki/Ei is cyclic, by
Chebotarev’s density theorem, we have X2(Ni , 3

1
Ei

) = 0 for all i and X2(31) = 0. Therefore, one gets
the 4-term exact sequence

0 → H 1(3) → H 1(31)
δ

−→ H 2(Z)′
N̂

−→ X2(3) → 0. (4-24)

From this we obtain X2(3) ≃ H 2(Z)′/ Im(δ) and

τk(T K/E,k) =
|H 1(3)|

|X2(3)|
=

|H 1(31)|

|H 2(Z)′|
=

∏r
i=1|Ni |

|H 2(Z)′|
. □

Remark 4.4. Ono [1963b] showed that τ(R(1)
K/kGm,K ) = [K : k] for any cyclic extension K/k. Since

|H 1(K/k, X (R(1)
K/kGm,K ))| = [K : k], it follows that X2(K/k, X (R(1)

K/kGm,K )) = 0. This gives an
alternative proof of the first statement X2(31) = 0 of Proposition 4.3.

In order to compute the groups H 2(Z)′ and X2(3), we describe the maps δ and δD in the first
commutative square of diagram (4-22). Since 31

= ⊕i3
1
i , where 31

i = X (T Ki /Ei ,1) = IndG
Ñi

31
Ei

, it
suffices to describe the following commutative diagram:

H 1(31
i )

δ
//

rD

��

H 2(Z)

rD

��

H 1
D(31

i )
δD
// H 2

D(Z)

Using the commutative diagram (4-19), the preceding diagram decomposes into two squares:

H 1(IndG
Ñi

31
Ei

)
δ̃
//

rD

��

H 2(IndG
Ñi

Z)
1̂2

//

rD

��

H 2(Z)

rD

��

H 1
D(IndG

Ñi
31

Ei
)

δ̃D
// H 2

D(IndG
Ñi

Z)
1̂2

D
// H 2

D(Z)

(4-25)

Proposition 4.5. Assume that the extension Ki/Ei is cyclic and both the subgroups Ñi = Gal(L/Ei ) (4-2)
and Hi = Gal(L/Ki ) (4-1) are normal in G (that is, Ei/k and Ki/k are Galois) for all i . There are
natural isomorphisms

H 1(31) ≃

⊕
i

H 2(Ni , Z) and H 1
D(31) =

⊕
D

⊕
i

H 2(Di , Z)[G:DÑi ],
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where Di = D ∩ Ñi and Di is its image in Ni . Under these identifications the first commutative square of
diagram (4-22) decomposes as the following:

⊕r
i=1 H 2(Ni , Z)

Inf
//

rD
��

⊕r
i=1 H 2(Ñi , Z)

Cor
//

rD
��

H 2(Z)

rD
��⊕

D
⊕r

i=1 H 2(Di , Z)[G:DÑi ] Inf
//
⊕

D
⊕r

i=1 H 2(Di , Z)[G:DÑi ] Cor
//
⊕

D H 2
D(Z)

(4-26)

Proof. For any element g ∈ G and any Ñi -module X , let X g be the set X equipped with the gÑi g−1-module
structure defined by

h′
· x := (g−1h′g)x, for x ∈ X g

= X and h′
∈ gÑi g−1.

Recall that Mackey’s formula [Serre 1977, Section 7.3 Proposition 22, page 58] says that as D-modules
one has

IndG
Ñi

X =

⊕
g∈D\G/Ñi

IndD
Di

X g, (4-27)

where g runs through double coset representatives for D\G/Ñi . Putting X = 31
Ei

or X = Z, we have

IndG
Ñi

31
Ei

=

⊕
g∈G/DÑi

IndD
Di

(31
Ei

)g, IndG
Ñi

Z =

⊕
g∈G/DÑi

IndD
Di

Z

as Ñi is normal in G.
We first show (31

Ei
)g

≃ 31
Ei

as Ñi -modules. From the exact sequence of algebraic Ei -tori

1 → R(1)
Ki /Ei

(Gm,Ki )
j

−→ RKi /Ei (Gm,Ki )
NKi /Ei

−−−−→ Gm,Ei → 1, (4-28)

one has an exact sequence of Ñi -modules

0 → Z
N̂

−→ X (RKi /Ei (Gm,Ki ))
ĵ

−→ 31
Ei

→ 0. (4-29)

Since Ki/Ei is Galois, all Ei -tori in (4-28) split over Ki and hence (4-29) becomes an exact sequence of Ni -
modules and X (RKi /Ei (Gm,Ki )) ≃ IndNi

1 Z is an induced module. Thus, 31
Ei

= Coker(Z → IndÑi
Hi

Z) and
IndÑi

Hi
Z = IndNi

1 Z. So it suffices to show that (IndNi
1 Z)g

≃ IndNi
1 Z as Ni -modules. Let {ng

= g−1ng}n∈Ni

be a Z-basis of (IndNi
1 Z)g. The new action of Ni on (IndNi

1 Z)g is given by h · ng
:= hgng

= (hn)g for
h, n ∈ Ni . So the map n 7→ ng gives an isomorphism IndNi

1 Z ∼
−→ (IndNi

1 Z)g of Ni -modules, and hence
(31

Ei
)g

≃ 31
Ei

.
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By Mackay’s formula (4-27) and Shapiro’s lemma, we obtain the following commutative diagram
from (4-25):

H 1(Ñi , 3
1
Ei

)
δ̃

//

rD

��

H 2(Ñi , Z)
Cor

//

rD

��

H 2(Z)

rD

��⊕
g H 1(Di , (3

1
Ei

)g)
δ̃D
//
⊕

g H 2(D, Z)
Cor
// H 2

D(Z)

(4-30)

Since (31
Ei

)g
≃ 31

Ei
, the bottom row of (4-30) can be expressed as

H 1(Di , 3
1
Ei

)[G:DÑi ] δ̃D
−→ H 2(Di , Z)[G:DÑi ] Cor

−→ H 2
D(Z). (4-31)

Taking the Galois cohomology H∗(Di , −) to (4-29), we get an exact sequence

0 → H 1(Di , 3
1
Ei

)
δ̃Di
−→ H 2(Di , Z)

N̂
−→ H 2(Di , IndÑi

Hi
Z) ≃ H 2(Di ∩ Hi , Z)[Ñi :Di Hi ]

as one has

H 2(Di , IndÑi
Hi

Z) = H 2(Di ,
⊕

Ñi /Di Hi

IndDi
Di ∩Hi

Z) ≃ H 2(Di ∩ Hi , Z)[Ñi :Di Hi ].

Similar to (4-16) and (4-17), using the inflation-restriction exact sequence, we make the following
identification H 1(Di , 3

1
Ei

) = H 2(Di , Z) and (4-31) becomes

H 2(Di , Z)[G:DÑi ] Inf
−→ H 2(Di , Z)[G:DÑi ] Cor

−→ H 2
D(Z).

This proves the proposition. □

The following proposition gives a group-theoretic description of X2(3).

Proposition 4.6. Let the notation and assumptions be as in Proposition 4.5. Let

VerG,N = (VerG,Ni )i : Gab
→

∏
i

Ni and VerD,D = (VerD,Di
)i : Dab

→

∏
i

Di

denote the corresponding transfer maps, respectively. Then

H 2(G, Z)′ = { f ∈ Gab,∨
: f |Dab ∈ Im(Ver∨D,D)∀D ∈ D}, (4-32)

and

X2(3) ≃

{ f ∈ Gab,∨
: f |Dab ∈ Im(Ver∨

D,D)∀D ∈ D}

Im(Ver∨G,N)
. (4-33)
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Proof. We translate the commutative diagram (4-26) in terms of group theory. For each decomposition
group D ∈ D, we have the following corresponding commutative diagram:

∏r
i=1 Ni

∏r
i=1 Ñ ab

i

πH=(πHi )
oo Gab

VerG,N=(VerG,Ni )
oo

∏r
i=1 Di

func

OO

∏r
i=1 Dab

i

πD∩H =(πDi ∩Hi )
oo

func

OO

Dab.
VerD,D=(VerD,Di )
oo

func

OO

Here we ignore the multiplicity [G : DÑi ] because we are only concerned with the image of the map
Cor ◦ Inf in (4-26) and this does not affect the result. Then VerG,N : Gab

→
∏

i Ni and VerD,D : Dab
→∏

i Di are the respective compositions. By Proposition 4.5, the map δD corresponds to Ver∨
D,D. From the

second description of H 2(Z)′ in (4-23), we obtain (4-32).
By Propositions 4.5 and 4.1, the map δ : H 1(31) → H 2(Z)′ ⊂ H 2(Z) (4-24) corresponds to Ver∨G,N :∏
i N∨

i → Gab,∨. Thus, by Proposition 4.3, we obtain (4-33). This proves the proposition. □

5. Computations of some product cases

We keep the notation in the previous section. In this section we consider the case where the extensions
Ki/k are all Galois with Galois group Gi = Gal(Ki/k). Let L = K1K2 · · · Kr be the compositum of all
Ki over k with Galois group G = Gal(L/k). Assume that:

(i) The canonical map monomorphism G → G1 × · · · × Gr is an isomorphism.

(ii) Ki/Ei is cyclic with Galois group Ni := Gal(Ki/Ei ) for all i.
(5-1)

As before, we put T = T K/E,k , 3 := X (T ), T 1
= T K/E,1 and 31

:= X (T 1). For each 1 ≤ i ≤ r , let

Ti := T Ki /Ei ,k and 3i := X (Ti ) (5-2)

be the character group of Ti .

5A. H1(3) and H2(31).

Lemma 5.1. Let 3i := X (Ti ) as in (5-2). We have H 1(3) ≃ ⊕
r
i=1 H 1(3i ).

Proof. By Proposition 4.1, H 1(3) is isomorphic to the kernel of the dual of the map
∏

i VerG,Ni : G →∏
i N ab

i . By Lemma 3.9,
∏

i VerG,Ni =
∏

i VerGi ,Ni :
∏r

i=1 Gi →
∏

i N ab
i , and therefore the kernel of its

dual is equal to the product of abelian groups H 1(3i ) for i = 1, . . . , r , by Proposition 4.1. This proves
the lemma. □

We remark that condition (ii) in (5-1) is not needed in the proof of Lemma 5.1.

Proposition 5.2. Let H ⊂ G be a normal subgroup of a finite group G, let A be a G-module, and let
n ≥ 1 be a positive integer. If Hq(H, A) = 0 for all 0 < q < n, then we have a 5-term long exact sequence

0 → H n(G/H, AH ) → H n(G, A) → H n(H, A)G/H d
−→ H n+1(G/H, AH ) → H n+1(G, A).
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Proof. This follows from the Hochschild–Serre spectral sequence

E p,q
2 := H p(G/H, Hq(H, AH )) =⇒ H p+q(G, A);

see [Neukirch et al. 2000, Theorem 2.1.5, page 82 and Proposition 2.1.3, page 81]. □

Proposition 5.3. Let K =
∏r

i=1 Ki and E =
∏r

i=1 Ei be as before. Suppose that each Ki/k is Galois
with group Gi , and that conditions (i) and (ii) in (5-1) are satisfied. Then

H 2(G, 31) ≃ ⊕
r
i=1 H 2(Ñi , 3

1
Ei

),

where 31
Ei

is defined in (4-8), and there is a natural homomorphism vi : Ni → (H ab
i )|Ni |−1 such that

H 2(Ñi , 3
1
Ei

) ≃ Ker(v∨

i ). If r = 1, that is K/k is a Galois field extension, then H 2(31) = 0.

Proof. By (4-9), we have

Hq(G, 31) =

r⊕
i=1

Hq(Ñi , 3
1
Ei

), ∀q ≥ 0.

By (4-29), we get the long exact sequence

Hq(Ni , IndÑi
Hi

Z) → Hq(Ni , 3
1
Ei

) → Hq+1(Ni , Z) → Hq+1(Ni , IndÑi
Hi

Z). (5-3)

Since IndÑi
Hi

Z = IndNi
1 Z is an induced module, it follows from (5-3) that

H 2(Ni , 3
1
Ei

) ∼
−→ H 3(Ni , Z) = H 1(Ni , Z) = 0. (5-4)

Since the algebraic torus T Ki splits over Ki , the Hi -module 31
Ei

≃ Z|Ni |−1 is trivial and H 1(Hi , 3
1
Ei

) =

H 1(Hi , Z|Ni |−1) = 0. By Proposition 5.2 with (G, H) = (Ñi , Hi ), we have the exact sequence

0 → H 2(Ñi , 3
1
Ei

) → H 2(Hi , 3
1
Ei

)Ni di
−→ H 3(Ni , 3

1
Ei

).

Using the same argument as (5-4), we get H 3(Ni , 3
1
Ei

) ≃ Hom(Ni , Q/Z). On the other hand,

H 2(Hi , 3
1
Ei

) ≃ H 2(Hi , Z)|Ni |−1
≃ Hom(Hi , Q/Z)|Ni |−1.

We now observe that the conjugation action of the group Ni = Ñi/H on Hom(Hi , Q/Z)|Ni |−1 is trivial.
Consequently, we obtain an exact sequence

0 → H 2(Ñi , 3
1
Ei

) → Hom((H ab
i )|Ni |−1, Q/Z)

di
−→ Hom(Ni , Q/Z).

Let vi : Ni → (H ab
i )|Ni |−1 be the Pontryagin dual of di . Then H 2(Ñi , 3

1
Ei

) = Ker(v∨

i ). □

Corollary 5.4. Let the notation and assumptions be as in Proposition 5.3. Assume further that the orders
of groups Gi are pairwise coprime. Then

H 2(31) ≃

r⊕
i=1

Hom(Hi , Q/Z)[Ki :Ei ]−1.

(In our notation the group H1 = {1} if r = 1.)
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Proof. In this case, the maps di are all zero. □

Remark 5.5. It would be interesting to describe the map vi : Ni → (H ab
i )[Ki /Ei ]−1 explicitly.

5B. τ(T ). In this subsection we shall further assume that each subgroup Ni , besides being cyclic, is
also normal in Gi . This assumption simplifies the description of the group H 2(Z)′ through Mackey’s
formula. Let Di be the decomposition subgroups of Gi for each i .

Lemma 5.6. (1) The inclusion
∏r

i=1 H 2(Gi , Z)′ ⊂ H 2(Z)′ holds.

(2) Assume that for any 1 ≤ i ≤ r and D′

i ∈ Di , there exists a member D ∈ D such that pri (D) = D′

i and
a section si : D′

i → D of pri : D ↠ D′

i such that the composition prk ◦si : D′

i → D → Gk is trivial
for k ̸= i . Then

∏r
i=1 H 2(Gi , Z)′ = H 2(Z)′.

Proof. (1) For each f = ( f1, . . . , fr ) ∈ Hom(G, Q/Z) =
∏r

i=1 Hom(Gi , Q/Z), consider the following
two conditions:

(a) For each D ∈ D, the restriction f |D of f to D lies in the image of the map
∑r

i=1 Ver∨
D,Di

.

(b) For each 1 ≤ i ≤ r and D′

i ∈ Di , the restriction fi |D′

i
to D′

i lies in the image of the map Ver∨D′

i ,D′

i ∩Ni
.

By Proposition 4.6, we have

H 2(G, Z)′ = { f ∈ Gab,∨
: f |Dab ∈ Im(Ver∨D,D)∀D ∈ D}

and it is equivalent to show that the condition (b) implies (a).
Let D = DP ∈D be a decomposition group associated to a prime P of L . By definition Di = D∩ Ñi and

Di = Di/Di ∩ Hi . The projection map pri : G → Gi sends each element σ to its restriction σ |Ki to Ki . Let
Pi denote the prime of Ki below P and we have pri (DP) = DPi . We show that pri (DP∩ Ñi ) = DPi ∩ Ni .
The inclusion ⊆ is obvious because pri (DP∩ Ñi )⊂ pri (DPi )∩pri (Ñi )= DPi ∩Ni . For the other inclusion,
since pri : DP → DPi is surjective, for each y ∈ DPi ∩ Ni there exists an element x = (xi ) ∈ DP such
that xi = y. Since xi ∈ Ni , x also lies in Ñi . This proves the other inclusion. Therefore, Di = DPi ∩ Ni .

The map
∑r

i=1 Ver∨
D,Di

is dual to the map

r∏
i=1

VerD,DPi ∩Ni : D →

r∏
i=1

(DPi ∩ Ni ).

Since each VerD,DPi ∩Ni = VerDPi ,DPi ∩Ni ◦ pri (3-4), the above map factorizes into the following compo-
sition

D (pri )i
−−→

r∏
i=1

DPi

∏
i VerDPi

,DPi
∩Ni

−−−−−−−−−→

r∏
i=1

(DPi ∩ Ni ).

Consider the restriction f |
∏

i DPi
= ( fi |DPi

) of f to
∏

i DPi , and put D′

i := DPi . By condition (b), there
exists an element hi ∈ Hom(DPi ∩ Ni , Q/Z) such that fi |DPi

= Ver∨DPi ,DPi ∩Ni
(hi ). Then

f |
∏

i DPi
= (Ver∨DPi ,DPi ∩Ni

(hi )).
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Restricting this function to D, we obtain f |D =
∑r

i=1 Ver∨
D,Di

(hi ). This shows that f |D lies in the image
of

∑r
i=1 Ver∨

D,Di
.

(2) By (1), we have
∏r

i=1 H 2(Gi , Z)′ ⊂ H 2(Z)′. To prove the other inclusion, we must show that each fi

satisfies condition (b) provided f satisfies condition (a), which we assume from now on. For 1 ≤ i ≤ r ,
let D ∈D be a decomposition group of G over D′

i and si : D′

i → D be a section such that prk ◦si is trivial
for k ̸= i . Then (a) implies

f |D =

r∑
k=1

Ver∨D,Dk
(hk)

for some hk ∈ Hom(Dk, Q/Z). Pulling back to D′

i via si , we have

fi |D′

i
= s∗

i f |D =

r∑
k=1

s∗

i Ver∨D,Dk
(hk) =

r∑
k=1

s∗

i pr∗k Ver∨D′

k ,Dk
(hk),

where D′

k :=prk(D) if k ̸= i . Since s∗

i pr∗k =1 if k = i and s∗

i pr∗k =0 otherwise, we get fi |D′

i
=Ver∨

D′

i ,Di
(hi ).

□

Proposition 5.7. With the notation and assumptions be as above. Suppose further that for each 1 ≤ i ≤ r ,
every decomposition group of Gi is cyclic. Then we have τ(T ) =

∏r
i=1 τ(Ti ), where Ti = T Ki /Ei ,k

(see (5-2)).

Proof. We shall show that the assumption in Lemma 5.6(2) holds. Let D′

i ∈ Di be a decomposition
group of Gi ; by our assumption D′

i is cyclic and let ai be a generator. Let D be a cyclic subgroup of G
generated by ãi = (1, . . . , 1, ai , 1, . . . , 1) with ai at the i-th place. Clearly D is the decomposition group
of some prime and let si : D′

i → D be the section sending ai to ãi . Clearly for k ̸= i , prk ◦si : D′

i → D′

k is
trivial. By Lemma 5.6, we have H 2(G, Z)′ =

∏r
i=1 H 2(Gi , Z)′.

By Proposition 4.3, we have

τ(T ) =

∏r
i=1|Ni |

|H 2(Z)′|
and τ(Ti ) =

|Ni |

|H 2(Gi , Z)′|
.

Therefore, τ(T ) =
∏r

i=1 τ(Ti ). □

6. Galois CM fields

We return to the case of CM tori and keep the notation of Section 2C. In this section, we assume that
K is a Galois CM field. Let G = Gal(K/Q), G+

:= Gal(K +/Q) and g := [K +
: Q]. Then one has the

short exact sequence

1 → ⟨ι⟩ → G → G+
→ 1. (6-1)

Recall the Q-torus T K ,Q (2-6) is the CM torus over Q associated to the CM field K . We set T := T K ,Q.
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6A. Cyclotomic extensions.

Proposition 6.1. Let K = Q(ζn) ̸= Q be the n-th cyclotomic field with n odd or 4 | n, and T the associated
CM torus over Q:

(1) If n is either a power of an odd prime p or n = 4, then τ(T ) = 1.

(2) In other cases, τ(T ) = 2.

Proof. (1) In this case the Galois group G = Gal(K/Q) is cyclic and Proposition 2.9(3) shows that
τ(T ) = 1.

(2) Suppose first that n is not a power of a prime. By Proposition 2.7(2) the global norm index nK divides∏
p∈SK/K+

eT,p. By [Washington 1997, Proposition 2.15], the quadratic extension K/K + is unramified at
all finite places of K +. It follows that SK/K + = ∅, and hence that nK = 1. Proposition 2.7(1) then shows
τ(T ) = 2. Now suppose the other case that n = 2v with v ≥ 3. Then K contains Q(ζ8) = Q(

√
2,

√
−1),

which contains two distinct imaginary quadratic fields. Thus, by Lemma 2.8, we have nK = 1 and hence
τ(T ) = 2 by Proposition 2.7(1). This completes the proof. □

6B. Abelian extensions.

Proposition 6.2. Assume that G = Gal(K/Q) is abelian:

(1) We have τ(T ) ∈ {1, 2}.

(2) If g is odd, then τ(T ) = 1.

(3) If g is even and (6-1) splits, then τ(T ) = 2.

Proof. (1) Write G =
∏ℓ

i=1 Gi as a product of cyclic subgroups Gi . Then there exists i such that the image
of ι in the projection G → Gi is nontrivial, say i = 1. Let K1 be a subfield of K with Gal(K1/Q) = G1,
which is a cyclic CM field. Then we have τ(T K1,Q) = 1 by Proposition 2.9(3), that is, nK1 = 2. Since
K ⊃ K1, we have nK | nK1 and nK ∈ {1, 2}. Therefore, τ(T ) ∈ {1, 2}.

(2) This follows from Proposition 2.9.

(3) Since (6-1) splits, G ≃ ⟨ι⟩ × G+. As g is even, there is an epimorphism

⟨ι⟩ × G+ ↠ ⟨ι⟩ × Z/2Z. (6-2)

In particular, K contains two distinct imaginary quadratic fields; therefore, nK = 1 and τ(T ) = 2 by
Lemma 2.8. □

6C. Certain Galois extensions.

Proposition 6.3. Assume the short exact sequence (6-1) splits. Let gab
:= |G+ab

| and 3 := X (T ). Then
τ(T ) ∈ {1, 2}. Moreover, the following statements hold:
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(1) When g is odd, τ(T ) = 1.

(2) When g is even:

(i) If gab is even, then τ(T ) = 2.
(ii) If gab is odd, then there is a unique nonzero element ξ in the 2-torsion subgroup H 2(3)[2] of

H 2(3). Moreover, τ(T ) = 1 if and only if its restriction rD(ξ) = 0 in H 2(D, 3) for all D ∈ D.

Proof. Since (6-1) splits, G ≃ ⟨ι⟩ × G+. It follows that K contains an imaginary quadratic field E . Since
nE = 2, one has nK ∈ {1, 2} and τ(T ) ∈ {1, 2}. The statement (1) follows from Proposition 2.9(2).

(2) We have G ≃⟨ι⟩×G+ and Gab
≃⟨ι⟩×G+ab. (i) Suppose gab is even. As (6-2), K contains two distinct

imaginary quadratic fields. Thus, nK = 1 and τ(T ) = 2. (ii) Suppose gab is odd. Put 31
= X (T K ,1) and

we have the following exact sequence

0 → H 1(3) → H 1(31) → H 2(Z) → H 2(3) → H 2(31).

We have H 1(31) ≃ Z/2Z by Proposition 4.1(1), H 2(31) = 0 by Proposition 5.3, and H 1(3) ≃ Z/2Z by
[Achter et al. 2023, Proposition A.6]. This gives H 2(Z) ∼= H 2(3). The proof of [loc. cit., Lemma A.7]
shows that H 1(G, T ) is a 2-torsion group. It follows that X2(3) is also a 2-torsion group. Therefore,
X2(3) ⊂ H 2(3)[2]. Since gab is odd,

H 2(3)[2] ≃ H 2(Z)[2] = Hom(Gab, Q/Z)[2] = Hom(⟨ι⟩ × G+ab, Q/Z)[2] ∼= Z/2Z.

Let ξ ∈ H 2(3)[2] be the unique nonzero element. Then

τ(T ) = 1 ⇐⇒ X2(3) ≃ Z/2Z ⇐⇒ ξ ∈ X2(3) ⇐⇒ rD(ξ) = 0 for all D ∈ D.

This completes the proof of the proposition. □

Remark 6.4. When G is nonabelian and the short exact sequence (6-1) does not split, we do not know
the value of τ(T ) in general. However, if the involution ι is nontrivial on the maximal abelian extension
Kab over Q in K , then Kab is a CM abelian field and it follows from Proposition 6.2 that τ(T ) ∈ {1, 2}.

It remains to determine the Tamagawa number when G is nonabelian, (6-1) is nonsplit, and Kab is
totally real. This includes the cases of G = Q8 and the dihedral groups, for which we treat in the next
subsections.

6D. Q8-extensions. The quaternion group Q8 = {±1, ±i, ± j, ±k} is the group of 8 elements generated
by i, j with usual relations i2

= j2
= −1 and i j = − j i = k. We have the following well-known properties

of Q8.

Lemma 6.5. (1) The group Q8 contains 6 elements of order 4, one element of order 2, and the identity.
It does not have a subgroup isomorphic to Z/2Z × Z/2Z. Thus, every proper subgroup is cyclic.

(2) Every nontrivial subgroup contains {±1}, and only subgroup which maps onto Q8/{±1} is Q8.

(3) The center Z(Q8) = {±1} = D(Q8), where D(Q8) = [Q8, Q8].
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Proposition 6.6. Let P and Q be two odd positive integers such that

P − 1 = a2, Q − 1 = Pb2

for some integers a, b ∈ N. Assume that Q is not a square. Let K := Q(β) be the simple extension of
Q generated by β which satisfies β2

= α := −(P +
√

P)(Q +
√

Q). Then K is a Galois CM field with
Galois group Q8 with maximal totally real field K +

= Q(
√

P,
√

Q). The Galois group Gal(K/Q) is
generated by τ1 and τ2 given by

τ1(β) =
(
√

P − 1)

a
β, τ2(β) =

(
√

Q − 1)
√

Pa
β. (6-3)

Moreover, for each prime ℓ, the decomposition group Dℓ is cyclic except when ℓ | Q. For ℓ | Q, one has

Dℓ =

{
Z/4Z if

( P
ℓ

)
= 1;

Q8 if
( P

ℓ

)
= −1.

Proof. Note that gcd(P, Q) = 1 and P is not a square. Then Q(
√

P,
√

Q) is a totally real biquadratic
field and its Galois group is generated by σ1 and σ2, where

σ1 :

{√
P 7→ −

√
P,

√
Q 7→

√
Q,

σ2 :

{√
P 7→

√
P,

√
Q 7→ −

√
Q.

It is clear that α is a totally negative, and hence K is a CM field. The maximal totally real subfield K +
=

Q(α) ⊂ Q(
√

P,
√

Q). Since the minimal polynomial of α is of degree 4, one has K +
= Q(

√
P,

√
Q).

Let τi ∈ Gal(Q/Q), i = 1, 2, be elements such that τi |K + = σi . One computes

τ1(β)2

β2 =
τ1(α)

α
=

−σ1(P +
√

P)σ1(Q +
√

Q)

−(P +
√

P)(Q +
√

Q)
=

(P −
√

P)2

P2 − P
=

(
√

P − 1)2

P − 1
=

(
√

P − 1)2

a2 ,

and obtains

τ1(β) = ±
(
√

P − 1)

a
β and τ1(K ) ⊂ K .

Similarly, one computes τ2(β)2/β2
= (

√
Q − 1)2/Pb2 and obtains

τ2(β) = ±
(
√

Q − 1)
√

Pa
β and τ2(K ) ⊂ K .

It follows that K/Q is Galois. Let τ1, τ2 ∈ Gal(K/Q) be defined as in (6-3). One easily computes
τ 2

1 (β) = −β, τ 2
2 (β) = −β, τ1τ2(β) = ιτ2τ1(β) and obtains the relations

τ 4
1 = τ 4

2 = 1, τ 2
1 = τ 2

2 , τ1τ2τ
−1
1 = τ−1

2 ,

showing that K is a Q8-CM field.
Denote by D+

ℓ the decomposition group at ℓ in G+
= Gal(K +/Q). Then Dℓ = Q8 if and only if

D+

ℓ = G+. If ℓ ∤P Q, then ℓ is unramified in K + and D+

ℓ is cyclic. Thus, D+

ℓ cannot be G+, Dℓ ̸= Q8

and Dℓ is cyclic. If ℓ | P , then
( Q

ℓ

)
=

( 1
ℓ

)
= 1. So ℓ is ramified in Q(

√
P) and splits in Q(

√
Q). Thus,
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D+

ℓ ̸= G+ and hence Dℓ is cyclic. It remains to treat the case ℓ | Q. If ( P
ℓ
) = 1, then D+

ℓ ≃ Z/2Z and
hence Dℓ ≃ Z/4Z. Otherwise, ℓ is ramified in Q(

√
Q) and inert in Q(

√
P). One has D+

ℓ = G+ and
Dℓ = Q8. □

Proposition 6.7. Let K be a CM field which is Galois over Q with Galois group Q8. Then

τ(T K ,Q) =

{ 1
2 if every decomposition group of K/Q is cyclic;
2 otherwise.

(6-4)

Proof. Put G = Gal(K/Q) ≃ Q8 and N = ⟨ι⟩. We shall show that

H 1(3) = H 1(G, 3) = Z/2Z (6-5)

and

X2(3) =

{
Z/2Z ⊕ Z/2Z if every decomposition group of K/Q is cyclic;
0 otherwise.

(6-6)

Then (6-4) follows from (6-5) and (6-6).
By Proposition 4.1 and (4-20), we have an exact sequence

0 → H 1(3) → H 1(31) ≃ N ab,∨ Ver∨G,N
−−−−→ H 2(Z) = Gab,∨

→ H 2(3) → 0, (6-7)

noting that H 2(G, 31) = 0 when K/Q is a Galois CM field. Since the 2-Sylow subgroup of Q8 is not
cyclic, the transfer VerG,N is not surjective by Proposition 3.3. Therefore, Ver∨G,N is not injective and is
zero. This proves H 1(3) ≃ Z/2Z and H 2(Z)′ ≃ X2(3) from (4-24).

If there is a finite place of K whose decomposition group is not cyclic, then we have X2(3) = 0.
Therefore, τ(T K ,Q) = 2. On the other hand, suppose that every decomposition group of K/Q is cyclic.
One has Gab

= G/N ≃ Z/2Z × Z/2Z. Recall

H 2(Z)′ = { f ∈ Hom(G, Q/Z) : (∗) f |D ∈ Im Ver∨D,D∩N , ∀D ∈ D}.

Note that f |N = 0, so the restriction to D map f |D is contained in Hom(D/N , Q/Z) whenever N ⊂ D
(also noting that N ⊂ D if D is not trivial). So if D = 0 or D ≃ Z/2Z, then f |D = 0 and condition
(∗) above is satisfied automatically. Suppose D ≃ Z/4Z. Since the 2-Sylow subgroup of D is cyclic,
the map Ver∨D,N : N∨

→ D∨ is injective and Im Ver∨D,N the unique subgroup of D∨ of order 2. Then
f |D ∈ Hom(D/N , Q/Z) = Im Ver∨D,N and condition (∗) is also satisfied automatically. Therefore,
X2(3) ≃ H 2(Z)′ = H 2(Z) ≃ Z/2Z ⊕ Z/2Z. This proves the proposition. □

Corollary 6.8. Let P and Q be two odd positive integers, let α := −(P +
√

P)(Q +
√

Q) and let
K = Q(

√
α) be the Galois CM with group Q8 as in Proposition 6.6. Then

τ(T K ,Q) =

{1
2 if

( P
q

)
= 1 for all primes q | Q;

2 otherwise.

Proof. By Proposition 6.6, the cyclicity of all decomposition groups of K/Q is equivalent to the condition( P
q

)
= 1 for all primes q | Q. Hence the assertion follows from Proposition 6.7. □
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6E. The dihedral case. Let Dn denote the dihedral group of order 2n.

Lemma 6.9. Suppose the CM-field K is Galois over Q with Galois group G, and let

S := {σ ∈ G : ι ̸∈ ⟨σ ⟩}.

If |S| ≥ |G|/2, then nK ≤ 2. If the inequality is strict, then nK = 1.

Proof. This is due to Jiangwei Xue. Let L/Q be the class field corresponding to the open subgroup
Q×N (T (A)) ⊂ A× by class field theory. Then nK = [A×

: Q×NL/Q(A×

L )] = [L : Q]. Suppose p is
a rational prime unramified in K/Q such that the Artin symbol (p, K/Q) lies in S. Since p splits
completely in the fixed field E = K Dp of the decomposition group Dp = ⟨(p, K/Q)⟩ of G at p and
⟨ι⟩ ∩ Dp = {1} (by the definition of S), one has K = K +E and that every prime v of K + lying above
p splits in K , and therefore Q×

p ⊂ N (T (A)) ⊂ Q×NL/Q(A×

L ). It follows from class field theory that p
splits completely in L . Thus, the density of S is less than or equal to that of primes splitting completely
in L . By the Chebotarev density theorem, we obtain |S|/|G| ≤ 1/[L : Q]. Therefore, nK ≤ |G|/|S| and
the assertions then follow immediately. □

Proposition 6.10. Let K be a Galois CM field with group G = Dn and T the associated CM torus over Q.
Then n is even and τ(T ) = 2.

Proof. Write Dn =⟨t, s : tn
= s2

= 1, sts = t−1
⟩. One easily sees that the center Z(Dn)={x ∈ ⟨t⟩ : x2

= 1}

contains an element of order 2 if and only if n = 2m is even. Since ι is central of order 2 in Dn , n is even.
In this case |S| = 2m + 1 and nK = 1 by Lemma 6.9. Therefore, τ(T ) = 2. □

Remark 6.11. The criterion in Lemma 6.9 does not help to compute τ(T ) for the case G = Q8 or
G = Z/2nZ. However, these cases have been treated in Propositions 6.7 and 2.9, respectively.

7. Some nonsimple CM cases

Keep the notation in Section 2C. Write Ni := Gal(Ki/K +

i ) = ⟨ιi ⟩ with involution ιi on Ki/K +

i and
ι∗i ∈ N∨

i = Hom(Ni , Q/Z) for the unique nontrivial element, that is ι∗i (ι)=
1
2 mod Z. Fix a Galois splitting

field L of T = T K ,Q and put G = Gal(L/Q). For a number field F , denote by 6F := HomQ(F, C) =

HomQ(F, Q) the set of embeddings of F into C. The Galois group GQ := Gal(Q/Q) acts on 6F by
σ · φ = σ ◦ φ for σ ∈ GQ and φ ∈ 6F . Let 8i be a CM type of Ki/K +

i , that is, 8i ∩ (8i ◦ ιi ) = ∅ and
8i ∪ (8i ◦ ιi ) = 6Ki , and for each g ∈ G, set 8i (g) := {φ ∈ 8i : gφ ̸∈ 8i }.

Lemma 7.1. Let K be a CM algebra and T = T K ,Q the associated CM torus over Q. Then the map

r⊕
i=1

Ver∨G,Ni
:

r⊕
i=1

N∨

i → Gab,∨
= Hom(G, Q/Z)

sends each element
∑r

i=1 ai ι
∗

i , for ai ∈ Z, to the element f =
∑r

i=1 ai fi , where fi ∈ Hom(G, Q/Z) is the
function on G given by fi (g) = |8i (g)|/2 mod Z.
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Proof. We first describe the transfer map VerG,Ni : G → Ni . We may regard the CM fields Ki as subfields
of Q, and put X̃ i := G/Hi = 6Ki and X i := G/Ñi = 6K +

i
. Fix a section ϕ̃ : X i → G such that the

induced section ϕ : X i → X̃ i has image 8i . Since Ni = Ñi/Hi is abelian, modulo D(Ñi )Hi is the same
as modulo Hi . Following the definition of VerG,Ni , for each g ∈ G,

VerG,Ni (g) =

∏
x∈X i

nϕ̃
g,x mod Hi = ι

ni (g)

i ∈ Ni ,

where the element nϕ̃
g,x ∈ Ñi is defined in Section 3D and ni (g) := |{x ∈ X i : nϕ̃

g,x ̸∈ Hi }|. Let fi :=

Ver∨G,Ni
(ι∗i ). Then (Lemma 3.8)

fi (g) = ι∗i (VerG,Ni (g)) = ι∗i (ι
ni (g)

i ) = ni (g)/2 ∈ Q/Z.

Thus, it remains to show ni (g)=|8i (g)|. Let 8̃i := ϕ̃(6K +

i
). Then we have bijections 8̃i

∼
−→8i

∼
−→6K +

i
.

Let x ∈ 6K +

i
, and let φ̃ ∈ 8̃i and φ ∈ 8i be the corresponding elements. Put φ̃′

:= ϕ̃(gx) and φ′
= ϕ(gx),

the image of φ̃′. Then gφ̃ and φ̃′ are elements lying over gx and we have gφ̃ = φ̃′nϕ̃
g,x . So gφ = φ′ if

and only if nϕ̃
g,x ∈ Hi . On the other hand, since φ′

∈ 8i and two elements gφ and φ′ are lying over the
same element gx , we have

gφ ̸∈ 8i ⇐⇒ gφ ̸= φ′
⇐⇒ nϕ̃

g,x ̸∈ Hi .

Therefore, the bijection 8i
∼

−→ 6K +

i
gives the bijection of subsets

{φ ∈ 8i : gφ ̸∈ 8i }
∼

−→ {x ∈ 6K +

i
: nϕ̃

g,x ̸∈ Hi }.

This shows the desired equality |8i (g)| = ni (g). □

By Proposition 4.1 and Lemma 7.1, we give an independent proof of the following result of Li and
Rüd [Achter et al. 2023, Proposition A.11].

Corollary 7.2. Let K and T be as in Lemma 7.1 and 3 = X (T ) be the character group of T . Then

H 1(3) ≃

{
(ai ) ∈ {±1}

r
:

∑
1≤i≤r,ai =−1

|8i (g)| ∈ 2Z, ∀g ∈ G
}
. (7-1)

Proof. Indeed, after making the identity ⊕
r
i=1 N∨

i ≃ (Z/2Z)r with {±1}
r , by Lemma 7.1 the map

⊕
r
i=1 Ver∨G,Ni

: ⊕
r
i=1 N∨

i = {±1}
r
→ Hom(G, Q/Z)

sends (ai ) to the function f with

f (g) =

∑
1≤i≤r,ai =−1

|8i (g)|/2 mod Z.

Thus, f = 0 precisely when ∑
1≤i≤r,ai =−1

|8i (g)| ∈ 2Z, ∀g ∈ G,

and (7-1) follows from Proposition 4.1. □
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Proposition 7.3. Let K be a CM algebra and T the associated CM torus over Q. Then there is an
isomorphism A×/Q×N (T (A)) ≃ H 2(Z)′∨.

Proof. By [Rosengarten 2018, Theorem 1.2.9], we have the following commutative diagram with row
exact sequence:

0 // T (Q)pro //

N
��

T (A)pro //

N
��

H 2(Q, T̂ )∨ //

N̂∨

��

X1(T ) //

��

0

0 // (Q×)pro // (A×)pro // H 2(Q, Z)∨ // 0

where Apro denotes the profinite completion of an abelian group A. It follows from the Poitou–Tate
duality and class field theory that:

(T (A)/T (Q))pro (H 2(Q, T̂ )/X2(Q, T̂ ))∨

(A×/Q×)pro H 2(Q, Z)∨

N N̂∨

∼

By definition H 2(Q, Z)′ = Ker(N̂ : H 2(Q, Z) → H 2(Q, T̂ )/X2(Q, T̂ )), so we have

Coker N = (T (A)/T (Q)N (T (A)))pro
∼

−→ Coker N̂∨
= H 2(Q, Z)′∨.

Since T (A)/T (Q)N (T (A)) is finite, it is equal to its profinite completion. This proves the proposition. □

Remark 7.4. Proposition 7.3 gives a cohomological interpretation of the group A×/Q×N (T (A)). This
is reminiscent of the main theorem A×

k /NK/k(A
×

K )k×
≃ H 2(G, Z)∨ of class field theory, where K/k is

Galois with Galois group G.

Lemma 7.5. Let K1 be a CM field and K := K r
1 be the r-copies of K1. Then τ(T K ,Q) = 2r−1

· τ(T K1,Q).

Proof. This is first proved in [Rüd 2022, Example 8.4, page 2897]; here we give an independent proof.
Observe that N (T K ,Q(A)) = N (A×

K ) ∩ A×, where N = NK/K + . To see this, the inclusion ⊆ is clear. If
x ∈ N (A×

K ) ∩ A×, then x = N (y) for some y ∈ A×

K . By definition y ∈ T (A), and hence x ∈ N (T (A)).
This verifies the other inclusion. It follows that if K =

∏r
i=1 Ki is a product of CM fields Ki , then

N (T K ,Q(A)) = A×

r⋂
i=1

NKi /K +

i
(A×

Ki
)

in the sense that the right hand side consists of all elements x ∈A× which are contained in NKi /K +

i
(A×

Ki
) via

the embeddings A× ↪→ A×

K +

i
for all i . Thus, if Ki = K1 for all i , then N (T K ,Q(A))= A×

∩NK1/K +

1
(A×

K1
)=

N (T K1,Q(A)) and hence nK = nK1 . By Proposition 2.7, τ(T K ,Q)= 2r/nK = 2r−1
·2/nK1 = 2r−1

·τ(T K1).
□
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Corollary 7.6. For any integer n ≥ 0, there exists a CM torus T over Q such that τ(T ) = 2n .

Proof. Take K = Er with r = n + 1 ≥ 1, where E is an imaginary quadratic field. Then τ(T K ,Q) =

2r−1
· τ(T E,Q) = 2n . □

Proposition 7.7. Suppose that CM fields K1, . . . , Kr satisfy the following:

(a) Ki is Galois over Q with group Gi ≃ Q8 for any i .

(b) The Galois group G = Gal(L/Q) of the compositum L = K1 · · · Kr over Q is isomorphic to
G1 × · · · × Gr .

(c) Every decomposition group of Gi is cyclic for all 1 ≤ i ≤ r .

Then τ(T K ,Q) =
( 1

2

)r .

Proof. By condition (c) and Proposition 6.7, one has

τ(T Ki ,Q) =
1
2 (7-2)

for all 1 ≤ i ≤ r . Moreover, the equality [Ki : K +

i ] = 2 and the conditions (a), (b) and (c) imply that the
CM fields K1, . . . , Kr satisfies the assumptions in Proposition 5.7. See also the conditions (i) and (ii) in
Section 5 and the beginning of Section 5B. Hence the assertion follows from Proposition 5.7 and (7-2). □

Theorem 7.8. For any positive integer r , there exist Q8-CM fields Ki for 1 ≤ i ≤ r that satisfy the
conditions (a), (b) and (c) in Proposition 7.7.

We will give the proof in the next section. From Proposition 7.7 and Theorem 7.8, we immediately
obtain

Corollary 7.9. For any integer n, there exists a CM torus T over Q such that τ(T ) = 2n .

Remark 7.10. Kottwitz [1992] computed the Hasse–Weil zeta function of the moduli spaces SK p of
PEL-type. Using the notation there, it is shown in Section 8 that the algebraic variety SK p over the reflex
field E is a finite disjoint union of the canonical model of Shimura varieties associated to the Shimura
datum (G, h−1, K p) indexed by ker1(Q, G) := ker(H 1(Q, G) →

∏
v≤∞

H 1(Qv, G)). In Case C and
Case A with n even, the set ker1(Q, G) is trivial and there is no difference between the moduli space SK p

and the canonical model of the Shimura variety in question. In Case A with n odd, the set ker1(Q, G)

is canonically isomorphic to ker1(Q, Z), where Z is the kernel of the map F×
× Q×

→ F×

0 sending
(x, t) to NF/F0(x)t−1 and F is the center of the central simple Q-algebra B in the input PEL-datum. The
Q-torus Z is exactly the CM torus associated to the CM field F and ker1(Q, Z) is its Tate–Shafarevich
group.

Question 7.11. Is Proposition 2.9(2) still true if one drops the condition that K/Q is Galois?
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8. Construction of an effective family of Q8-CM fields

8A. Existence of Q8-extensions of fields. Let k be a field of characteristic different from 2, and denote
by Br(k) the Brauer group of k. Then we define a pairing

( · , · )k : k×
× k×

→ Br(k)

by sending (a, b) ∈ k×
× k× to the Brauer class of the quaternion algebra(

a, b
k

)
:= k ⊕ kα ⊕ kβ ⊕ kαβ,

where α2
= a, β2

= b and βα = −αβ. By definition, the pairing ( · , · )k is symmetric, and the image of
( · , · )k is contained in the 2-torsion group of Br(k).

For a ∈ k×, put

ka := k[T ]/(T 2
− a).

We denote by Nka/k : ka → k the norm map of ka/k.

Proposition 8.1 [Gille and Szamuely 2017, Proposition 1.1.7]. Let a, b ∈ k×. Then the following are
equivalent:

(1) (a, b)k = 1.

(2) a ∈ Nkb/k(k×

b ).

(3) b ∈ Nka/k(k×
a ).

The following is one of the most important key to prove Theorem 7.8.

Theorem 8.2 [Kiming 1990, Theorem 4]. Let E = k(
√

a,
√

b) be a biquadratic extension of k, where
a, b ∈ k×. Then the following are equivalent:

(1) There is a quadratic extension of K/E such that K/k is a Q8-extension.

(2) (a, a)k(b, b)k(a, b)k = 1.

8B. Proof of Theorem 7.8. First, we recall the properties on the pairings ( · , · )0 := ( · , · )Q and ( · , · )v :=

( · , · )Qv
for all places v of Q.

Proposition 8.3. Let v be a place of Q, a, b ∈ Q×
v and let Qv,a := Qv[T ]/(T 2

− a):

(1) If v is infinite, then we have (a, b)v = 1 if and only if either a or b is positive.

(2) Assume that v = ℓ is a nondyadic finite place. If a, b ∈ Z×

ℓ , then (a, b)ℓ = 1.

(3) Under the assumption on v in (2), if a = ℓ and b ∈ Z×

ℓ , then we have (a, b)ℓ =
( b

ℓ

)
.

(4) If v = 2 and a, b ∈ 1 + 4Z2, then one has (a, b)2 = 1.
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Proof. (1) This follows from Proposition 8.1 and the equality NC/R(C×) = R>0.

(2) Since ℓ ̸= 2 and a ∈ Z×

ℓ , we have

Qℓ,a ∼=

{
Qℓ × Qℓ if a ∈ (Z×

ℓ )2,

Qℓ2 if a /∈ (Z×

ℓ )2,

where Qℓ2 denotes the unramified quadratic extension of Qℓ. Hence NQℓ,a/Qℓ
(Q×

ℓ,a) contains Z×

ℓ . Hence
the assertion follows from Proposition 8.1 and the assumption b ∈ Z×

ℓ .

(3) Since ℓ is not equal to 2, we have

NQℓ(
√

ℓ)/Q(Qℓ(
√

ℓ)×) = ⟨−ℓ⟩ × (Z×

ℓ )2.

Therefore the assertion follows from Proposition 8.1.

(4) Since 1 + 8Z2 = (Z×

2 )2, there is an isomorphism

Q2,a ∼=

{
Q2 × Q2 if a ∈ (Z×

2 )2,

Q4 if a /∈ (Z×

2 )2.

In particular, NQ2,a/Qℓ
(Q×

2,a) contains Z×

2 . Hence the assertion follows from b∈1+4Z2 and Proposition 8.1.
□

The following two lemmas will be used later.

Lemma 8.4. Let E be a totally real field which is Galois over Q:

(1) Let K/E be a quadratic extension such that K/Q is Galois. Then K is either totally real or CM.

(2) If there is a quadratic extension K/E such that K/Q is Galois, then there is a totally imaginary
quadratic extension K ′/E such that K ′/Q is Galois and

Gal(K ′/Q) ∼= Gal(K/Q).

Proof. (1) If K is not totally real, then it is totally complex since K/Q is Galois. Fix an embedding
ε : K ↪→ C, and let ι be the element of Gal(K/Q) induced by the complex conjugation and ε. Then ι is
the unique nontrivial element of Gal(K/E) ⊂ Gal(K/Q) since E is totally real. On the other hand, the
assumption that E is Galois implies that Gal(K/E) is central in Gal(K/Q). Hence ι is contained in the
center of Gal(K/Q), which implies that K is a CM field.

(2) By (1), we may assume that K is totally real. Write K = E(
√

α), where α ∈ E×, and put K ′
:=

E(
√

−α). Note that K ′ corresponds to ⟨(ε, ι)⟩ under the isomorphism

Gal(K (
√

−1)/Q) ∼= Gal(K/Q) × Gal(Q(
√

−1)/Q).

Here ε is the unique nontrivial element of Gal(K/E), and ι is the complex conjugation on Q(
√

−1).
Note that ε is central in Gal(K/Q). Then K ′ is not totally real K ′ is Galois over Q, and hence it is CM



On Tamagawa numbers of CM tori 619

by (1). Moreover, the composite

Gal(K/Q)
g 7→(g,idQ(

√
−1))

−−−−−−−−−→ Gal(K/Q) × Gal(Q(
√

−1)/Q) ∼= Gal(K (
√

−1)/Q) → Gal(K ′/Q)

is an isomorphism by the definition of K ′. □

For a number field E which is finite Galois over Q, we write for Ram(E) the set of prime numbers
which ramify in E .

Lemma 8.5. Let r be a positive integer, and K1, . . . , Kr be number fields which are Galois over Q. For
each i , we denote by Ei the maximal abelian subfield of Ki . Assume the following:

(i) [Ki : Ei ] is a prime number for any i ≥ 1.

(ii) Ram(Ei ) ∩ Ram(E j ) = ∅ if i ̸= j .

Let L be the compositum of K1, . . . , Kr . Then there is an isomorphism

Gal(L/Q) ∼=

r∏
i=1

Gal(Ki/Q).

Proof. We give a proof by induction on r . It is trivial if r = 1. Next, assume that the assertion holds for
r − 1, that is, there is an isomorphism

Gal(L ′/Q) ∼=

r−1∏
i=1

Gal(Ki/Q), (8-1)

where L ′
:= K1 · · · Kr−1. We first prove the equality

Er ∩ L ′
= Q. (8-2)

Since Er is abelian over Q, it is contained in the maximal abelian subfield E ′ of L ′. On the other hand,
the induction hypothesis (8-1) implies the equality E ′

= E1 · · · Er−1. Hence Er ∩ L ′ is contained in
Er ∩ (E1 · · · Er−1). However, we have Er ∩ (E1 · · · Er−1) = Q by the assumption (ii) and the global class
field theory, and hence (8-2) holds.

Now we prove the equality Kr ∩ L ′
= Q, which gives the desired assertion. If Kr ∩ L ′

̸= Q, then we
have Er ∩(Kr ∩ L ′) = Q and Er ⊊ Er ·(Kr ∩ L ′) ⊂ Kr by (8-2). Therefore Kr is equal to the compositum
of Er and Kr ∩ L ′ by the assumption (i). Consequently, there is an isomorphism

Gal(Kr/Q) ∼= Gal(Er/Q) × Gal(Kr ∩ L ′/Q).

In particular, [Kr ∩ L ′
: Q] = [Kr : Er ] is a prime number, and hence Kr/Q is abelian. This contradicts

the assumption (i), which implies the desired equality Kr ∩ L ′
= Q. □

Let L be the set of unordered pairs of prime numbers {ℓ, ℓ′
} satisfying the following:

ℓ ≡ ℓ′
≡ 1 mod 4,

(
ℓ′

ℓ

)
= 1.
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Proposition 8.6. For any positive integer r , there are r-pairs {ℓ1, ℓ
′

1}, . . . , {ℓr , ℓ
′
r } in L such that

|{ℓ1, . . . , ℓr , ℓ
′

1, . . . , ℓ
′

r }| = 2r.

Proof. By the Dirichlet prime number theorem, there are r distinct prime numbers ℓ1, . . . , ℓr which are
congruent to 1 modulo 4. Moreover, the Dirichlet prime number theorem implies the existence of prime
numbers ℓ′

1, . . . , ℓ
′
r satisfying the following:{

ℓ′

i ≡ 1 mod 4,
( ℓ′

i
ℓi

)
= 1 if i = 1,

ℓ′

i ≡ 1 mod 4,
( ℓ′

i
ℓi

)
= 1, ℓ′

i /∈ {ℓ′

1, . . . , ℓ
′

i−1} if i ≥ 2.

Therefore the assertion holds. □

For λ := {ℓ, ℓ′
} ∈ L, put K +

λ := Q(
√

ℓ,
√

ℓ′).

Lemma 8.7. For any λ ∈ L, the decomposition groups of K+

λ /Q at all finite places are cyclic.

Proof. Write λ = {ℓ, ℓ′
}. Let v be a finite place of K +

λ which lies above a prime number ℓ0. If ℓ0 /∈ {ℓ, ℓ′
},

then K +

λ /Q is unramified at v, and hence the assertion holds for v. The assertion for ℓ0 = ℓ follows
from the assumption

(
ℓ′

ℓ

)
= 1. Finally, in the case ℓ0 = ℓ′, the statement is a consequence of the equality(

ℓ
ℓ′

)
=

(
ℓ′

ℓ

)
= 1. □

Proposition 8.8. For any λ ∈ L, there is a CM field K containing K +

λ such that K/Q is a Q8-extension.

Proof. By Lemma 8.4(2), it suffices to prove the existence of Q8-extension K of Q containing K +

λ . Write
λ = {ℓ, ℓ′

}. It is equivalent to the equality

(ℓ, ℓ)0(ℓ
′, ℓ′)0(ℓ, ℓ

′)0 = 1,

which is a consequence of Theorem 8.2. Since the image of the class (ℓ, ℓ)0(ℓ
′, ℓ′)0(ℓ, ℓ

′)0 in Br(Qv) is
equal to (ℓ, ℓ)v(ℓ

′, ℓ′)v(ℓ, ℓ
′)v, by the Albert–Brauer–Hasse–Noether theorem [Lang 1994, Chapter IX,

Section 6, page 195] it is equivalent to prove the following for any place v of Q:

(ℓ, ℓ)v(ℓ
′, ℓ′)v(ℓ, ℓ

′)v = 1. (8-3)

Case 1. v is infinite. In this case, (8-3) follows from Proposition 8.3(1) since ℓ and ℓ′ are positive.

Case 2. v = ℓ0 /∈ {2, ℓ, ℓ′
}. The condition ℓ0 /∈ {ℓ, ℓ′

} implies that ℓ and ℓ′ are units in Zℓ0 . Hence, since
ℓ0 ̸= 2, one has

(ℓ, ℓ)ℓ0 = (ℓ′, ℓ′)ℓ0 = (ℓ, ℓ′)ℓ0 = 1

by Proposition 8.3(2). This implies the equality (8-3).

Case 3. v = 2. Since ℓ ≡ ℓ′
≡ 1 mod 4, Proposition 8.3(4) implies

(ℓ, ℓ)2 = (ℓ′, ℓ′)2 = (ℓ, ℓ′)2 = 1.

Hence (8-3) holds.
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Case 4. v = ℓ. The assumption ℓ ≡ 1 mod 4 is equivalent to the equality
(

−1
ℓ

)
= 1. Hence

(ℓ, ℓ)ℓ = (ℓ, −1)ℓ = 1.

On the other hand, the assumption
(

ℓ′

ℓ

)
= 1 implies

(ℓ, ℓ′)ℓ = (ℓ′, ℓ′)ℓ = 1,

which is a consequence of Proposition 8.3(2) and (3). Therefore we obtain the desired equality (8-3).

Case 5. v = ℓ′. Since ℓ′
≡ 1 mod 4 and (

ℓ

ℓ′

)
=

(
ℓ′

ℓ

)
= 1,

the assertion (8-3) follows from the same argument as Case 4. □

In the following, we give a proof of Theorem 7.8. By Corollary 7.6, we may assume n = −r < 0. Take
λ1 = {ℓ1, ℓ

′

1}, . . . , λr = {ℓr , ℓ
′
r } ∈ L satisfying

|{ℓ1, . . . , ℓr , ℓ
′

1, . . . , ℓ
′

r }| = 2r, (8-4)

which is possible by Proposition 8.6. Then, Proposition 8.8 implies that there is a Q8-CM field containing
K +

λi
for any 1 ≤ i ≤ r .

The following immediately implies the desired assertion.

Theorem 8.9. Under the above notations, let Kλi be a Q8-CM field containing K +

λi
for each 1 ≤ i ≤ r .

Then the CM fields Kλ1, . . . , Kλr satisfy the conditions (a), (b) and (c) in Proposition 7.7.

Proof. From the definition of Kλi for 1 ≤ i ≤ r , condition (a) in Proposition 7.7 holds.
We shall show that the assumptions (i) and (ii) in Lemma 8.5 hold. By Lemma 6.5(3), for any 1 ≤ i ≤ r ,

K +

λi
is the maximal abelian subfield of Kλi and [Kλi : K +

λi
] = 2. In particular, assumption (i) holds.

On the other hand, since Ram(K +

λi
) = λi for any 1 ≤ i ≤ r , the condition (8-4) implies the equality

Ram(K +

λi
) ∩ Ram(K +

λ j
) = ∅ for i ̸= j . Hence we obtain the assumption (ii), which verifies condition (b)

in Proposition 7.7.
Take a finite places w of Kλi and v of K +

λi
satisfying w | v. Then Lemma 8.7 implies the cyclicity of

the decomposition group of Gal(K +

λi
/Q) at v. Since Kλi /Q is a Q8-extension, the decomposition group

at w is cyclic by Lemma 6.5(2). Therefore condition (c) in Proposition 7.7 holds. □

9. Products of two linearly disjoint Galois CM fields

In this section we show the following result.

Theorem 9.1. There are infinitely many CM algebras K = K1 × K2 with linearly disjoint Galois CM
fields K1 and K2 such that

τ(T K ,Q) =
1
2

2∏
i=1

τ(T Ki ,Q). (9-1)
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This theorem shows that the conclusion of Proposition 5.7 is no longer true if one drops the cyclicity of
decomposition groups of Gi for all i . We shall use the notations in Section 5B. In particular, L = K1K2,
G := Gal(L/Q), Gi := Gal(Ki/Q), Hi := Gal(L/Ki ), Ñi := Gal(L/K +

i ) and Ni = Gal(Ki/K +

i ) for
i = 1, 2.

First, we give a sufficient condition on K = K1 × K2 for which Theorem 9.1 holds. Let C and Ci be
the sets of cyclic subgroups of G and Gi respectively. Then put

H 2(Z)′′ := { f ∈ G∨
: f |D ∈ Im(Ver∨D,D) for all D ∈ C},

H 2(Gi , Z)′′ := { f ∈ G∨

i : f |D′ ∈ Im(Ver∨D′,D′∩Ni
) for all D′

∈ Ci }.

Lemma 9.2. If G ∼= G1 × G2, then H 2(Z)′′ = H 2(G1, Z)′′ × H 2(G2, Z)′′.

Proof. The proof is the same as Lemma 5.6. □

We define a subgroup D0 of (Z/4Z × Z/2Z) × Z/2Z as follows:

D0 := ⟨(1̄, 0̄, 1̄), (0̄, 1̄, 0̄)⟩.

Here we denote by (ā, b̄, c̄) the element (a mod 4, b mod 2, c mod 2) in Z/4Z × Z/2 × Z/2Z for
a, b, c ∈ Z.

Proposition 9.3. Assume that Galois CM fields K1 and K2 satisfy the following:

(i) G1 ∼= Z/4Z × Z/2Z, N1 ∼= ⟨(2̄, 0̄)⟩ ⊂ G1 and G2 ∼= Z/2Z.

(ii) G ∼= G1 × G2, that is, K1 and K2 are linearly disjoint.

(iii) D = C∪ {D0}.

Put K := K1 × K2. Then we have the following:

τ(T K1,Q) = 2, τ (T K2,Q) = 1, τ (T K ,Q) = 1.

In particular, the equality (9-1) holds.

Proof. By definition, we obtain the following:

Ñ1 = (2Z/4Z × {0̄}) × Z/2Z, H1 = {(0̄, 0̄)} × Z/2Z, Ñ2 = G, H2 = (Z/4Z × Z/2Z) × {0̄}.

Moreover, Proposition 4.3 implies

τ(T Ki ,Q) =
2

|H 2(Gi , Z)′|
, τ (T K1×K2,Q) =

4
|H 2(Z)′|

.

Since G1 is D0 modulo G2, by (iii) G1 itself is a decomposition group of G1. By this and that G1 is not
cyclic, one computes that H 2(G1, Z)′ = 0, which implies τ(T K1,Q) = 2/1 = 2. Moreover, the equality
τ(T K2,Q) = 1 follows from Proposition 2.9(2) as [K2 : Q] = 2. In particular, we obtain |H 2(G2, Z)′| = 2,
that is,

H 2(G2, Z)′ = H 2(G2, Z)′′ = G∨

2 . (9-2)
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On the other hand, for the equality τ(T K ,Q) = 1, it suffices to prove

H 2(Z)′ = { f ∈ G∨
: f ((2Z/4Z × Z/2Z) × {0̄}) = 0}.

By direct computation, we have

H 2(G1, Z)′′ = { f1 ∈ G∨

1 : f (2Z/4Z × Z/2Z) = 0}.

Combining this equality, (9-2) and Lemma 9.2, one has

H 2(Z)′ ⊂ H 2(Z)′′ = H 2(G1, Z)′′ × H 2(G2, Z)′′ = { f ∈ G∨
: f ((2Z/4Z × Z/2Z) × {0̄}) = 0}.

For the reverse inclusion, it suffices to prove

Im(Ver∨D0,D0
) = { f ∈ D∨

0 : f ((2Z/4Z × Z/2Z) × {0̄}) = 0}. (9-3)

Recall that VerD0,D0
= (VerD0,D0,i

)1≤i≤2 and

VerD0,D0,i
= VerD0/D0∩Hi ,D0,i

◦πi ,

where πi : D0 → D0/D0 ∩ Hi is the canonical surjection. Since one has

D0,1 = D0 ∩ Ñ1 = 2Z/4Z × {0̄} × Z/2Z, D0 ∩ H1 = {0},

we obtain that D0/D0 ∩ H1 is not cyclic and D0,1 := D0,1/D0 ∩ H1 ∼= Z/2. Hence Proposition 3.3 implies
VerD0,D0,1

= 0. On the other hand, we have VerD0,D0,2
= π2 by D0,2 := D0 ∩ Ñ2 = D0. Consequently, the

homomorphism VerD0,D0
can be written as the composite

D0
π2

−→ D0/D0 ∩ H2 = D0,2
g2 7→(0,g2)

−−−−−−→ D0,1 × D0,2.

Therefore, (9-3) follows from the equality D0 ∩ H2 = (2Z/4Z × Z/2Z) × {0̄}. □

Now we construct pairs of CM fields K1, K2 satisfying Proposition 9.3.

Lemma 9.4. Let ℓ be a prime number which is congruent to 1 modulo 4, and denote by K(ℓ) the unique
quartic subfield of Q(ζℓ):

(1) The field K(ℓ) is CM if and only if ℓ ≡ 5 mod 8.

(2) We have Ram(K(ℓ)/Q) = {ℓ}, and ℓ is totally ramified in K(ℓ).

Proof. (1) Recall that Q(ζℓ) is a CM field which is cyclic of degree ℓ−1 over Q. Since K(ℓ) corresponds
to the unique subgroup of Gal(Q(ζℓ)/Q) of order (ℓ − 1)/4, it is CM if and only if (ℓ − 1)/4 is an odd
number. Finally, the condition (ℓ − 1)/4 /∈ 2Z is equivalent to the desired congruence ℓ ≡ 5 mod 8.

(2) This follows from the equality Ram(Q(ζℓ)/Q) = {ℓ} and that ℓ is totally ramified in Q(ζℓ). □
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Lemma 9.5. There are infinitely many ordered triples of prime numbers (ℓ1, ℓ2, ℓ3) for which the following
are satisfied:

(a) ℓ1 ≡ 5 mod 8.

(b) ℓ2 ≡ 1 mod 4 and
(

ℓ2
ℓ1

)
= −1.

(c) ℓ3 ≡ 3 mod 4,
(

ℓ3
ℓ2

)
= 1 and ℓ3 splits completely in K(ℓ1).

Proof. This follows from Dirichlet’s prime number theorem. □

For a finite abelian extension E/Q and a prime number ℓ, we write Dℓ(E/Q) and Iℓ(E/Q) for
the decomposition group and the inertia group of Gal(E/Q) at ℓ respectively. Observe that if E ′

is a subextension of E/Q and let πE ′ : Gal(E/Q) → Gal(E ′/Q) denote the natural projection, then
πE ′(Dℓ(E/Q)) = Dℓ(E ′/Q) and πE ′(Iℓ(E/Q)) = Iℓ(E ′/Q).

Theorem 9.1 is a consequence of Proposition 9.6 and Lemma 9.7.

Proposition 9.6. Let (ℓ1, ℓ2, ℓ3) be an ordered triple of prime numbers as in Lemma 9.5, and set

K1 := K(ℓ1)(
√

ℓ2), K2 := Q(
√

−ℓ1ℓ3).

Then the fields K1, K2 are CM and they satisfy the conditions (i)–(iii) in Proposition 9.3.

Proof. By definition, K2 is an imaginary quadratic field, and hence CM. Moreover, condition (a) in
Lemma 9.5 and Lemma 9.4(1) imply that K1 is also CM.

In the following, we shall prove that the statements (i), (ii) and (iii) in Proposition 9.3 hold. State-
ment (i) in Proposition 9.3 follows directly from the definitions of K1 and K2. To prove statement (ii)
in Proposition 9.3, it suffices to prove the equality K1 ∩ K2 = Q. However, this follows from the fact
that ℓ3 is unramified in K1 and is totally ramified in K2. We now show (iii) in Proposition 9.3. It is
clear that L := K1K2 is unramified outside 2, ℓ1, ℓ2 and ℓ3. Hence it suffices to compute Dℓ(L/Q)

for ℓ ∈ {2, ℓ1, ℓ2, ℓ3}. First, suppose ℓ = 2. Then Lemma 9.4(2) implies that 2 is unramified in K(ℓ1).
Moreover, by (b) and (c) in Lemma 9.5, we have ℓ1 ≡ ℓ2 ≡ −ℓ1ℓ3 ≡ 1 mod 4. Hence L/Q is unramified
at 2, which implies that D2(L/Q) is cyclic. Second, assume ℓ = ℓ1. By assumptions (b) and (c) in
Lemma 9.5, we have the following:

Dℓ1(K1/Q) = G1, Iℓ1(K1/Q) ∼= Z/4Z × {0̄}, Dℓ1(K2/Q) = Iℓ1(K2/Q) = G2.

Since ℓ1 ̸= 2, by local class field theory Iℓ1(L/Q) is a finite quotient of Z×

ℓ2
and is cyclic. Since

Iℓ1(K2/Q) = G2, we have

Iℓ1(L/Q) ∼= ⟨(1̄, 0̄, 1̄)⟩.

The fixed subfield of Iℓ1(L/Q) in L is L ′
:= Q(

√
ℓ2,

√
−ℓ3). Indeed, one has

L⟨(2̄,0̄,0̄)⟩
= Q(

√
ℓ1,

√
ℓ2,

√
−ℓ1ℓ3) and Q(

√
ℓ1,

√
ℓ2,

√
−ℓ1ℓ3)

⟨(1̄,0̄,1̄)⟩
= Q(

√
ℓ2,

√
−ℓ3).
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By (c) in Lemma 9.5, we have Dℓ1(L ′/Q) = Gal(L ′/Q(
√

−ℓ3)) ≃ Gal(Q(
√

ℓ2)/Q), and hence
Dℓ1(L/Q)/Iℓ(L/Q) is generated by the image of (0̄, 1̄, 0̄) in G/Iℓ(L/Q). Therefore we obtain
Dℓ1(L/Q) = D0. Third, if ℓ = ℓ2, then by (b) in Lemma 9.5 we have

Dℓ2(K1/Q) = G1, Iℓ2(K1/Q) ∼= {0} × Z/2Z.

One computes
(

−ℓ1ℓ3
ℓ2

)
= −1 and then

Dℓ2(K2/Q) = G2, Iℓ2(K2/Q) = {0}.

Since Iℓ2(K2/Q) = {0}, one has Iℓ2(K2/Q) = ⟨(0̄, 1̄, 0̄)⟩. By Dℓ2(K1/Q) = G1, one sees Dℓ2(L/Q) =

⟨(0̄, 1̄, 0̄),(1̄, 0̄, c̄)⟩ for some c̄∈Z/2Z. Because Dℓ2(K2/Q)=G2, we see c̄= 1̄ and hence Dℓ2(L/Q)= D0.
Finally, suppose i = 3. Since ℓ3 splits completely in K1, then

Dℓ3(L/Q) = Dℓ3(K2/Q) = G2,

and hence it is cyclic. This completes the proof of condition (iii) in Proposition 9.3. □

Lemma 9.7. Let (ℓ1, ℓ2, ℓ3) and (ℓ′

1, ℓ
′

2, ℓ
′

3) be ordered triples of prime numbers satisfying (a), (b) and (c)
in Lemma 9.5. Put

K := K(ℓ1)

(√
ℓ2

)
× Q

(√
−ℓ1ℓ3

)
, K ′

:= K(ℓ′

1)

(√
ℓ′

2

)
× Q

(√
−ℓ′

1ℓ
′

3

)
.

Then we have K ≃ K ′ if and only if ℓi = ℓ′

i for every 1 ≤ i ≤ 3.

Proof. It suffices to prove that K ≃ K ′ implies ℓi = ℓ′

i for any 1 ≤ i ≤ 3. Assume K ≃ K ′, which is
equivalent to K(ℓ1)(

√
ℓ2) ≃ K(ℓ′

1)
(
√

ℓ′

2) and Q(
√

−ℓ1ℓ3) ≃ Q(
√

−ℓ′

1ℓ
′

3). Then, by Lemma 9.4(2), one
has

{ℓ1, ℓ2} = Ram(K(ℓ1)(
√

ℓ2)) = Ram(K(ℓ′

1)
(

√
ℓ′

2)) = {ℓ′

1, ℓ
′

2}.

Moreover, the following holds:

|Iℓ1(K(ℓ1)(
√

ℓ2)/Q)| = |Iℓ′

1
(K(ℓ′

1)
(

√
ℓ′

2)/Q)| = 4,

|Iℓ2(K(ℓ1)(
√

ℓ2)/Q)| = |Iℓ′

2
(K(ℓ′

1)
(
√

ℓ2)/Q)| = 2.

Hence we must have ℓ1 = ℓ′

1 and ℓ2 = ℓ′

2. On the other hand, Q(
√

−ℓ1ℓ3) ≃ Q(
√

−ℓ′

1ℓ
′

3) implies
ℓ1ℓ3 = ℓ′

1ℓ
′

3 since they are square-free integers. Combining this equality with ℓ1 = ℓ′

1, we obtain ℓ3 = ℓ′

3.
This completes the proof. □

Appendix: Ono’s conjecture on Tamagawa numbers of algebraic tori
by Jianing Li and Chia-Fu Yu

Theorem A.8. For any global field k and any positive rational number r , there exists a k-torus T such
that τ(T ) = r .
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Proof. It suffices to construct for each prime ℓ: (a) a k-torus T1 with τ(T1) = ℓ and (b) a k-torus T2

with τ(T2) = ℓ−2. Indeed, the torus T3 = T1 ×k T2 has Tamagawa number τ(T3) = ℓ−1. Then for an
appropriate product T of tori as T1 or T3 for different primes ℓ, the Tamagawa number τ(T ) can be equal
to any given positive rational number r .

Take a cyclic extension K/k of degree ℓ with Galois group G and let T1 = R(1)
K/kGm,K . Then

H 1(G, X (T1)) ≃ H 2(G, Z) ≃ Z/ℓZ and X2(K/k, X (T1)) = 0 by Chebotarev’s density theorem. Thus,
τ(T1) = ℓ and (a) is done.

For (b), we follow the idea of Ono; see [Ono 1963b, Section 6.2]. We take an abelian extension K/k
with Galois group G ≃ (Z/ℓZ)4 such that every decomposition group is cyclic. In the number field case,
such an extension was constructed by Katayama [1985]. In the function field case, we construct such an
extension in Theorem A.9 below. Granting the existence of this extensions K/k in both the number field
and function field cases, we consider the k-torus T2 := R(1)

K/kGm,K . Since every decomposition group
of G is cyclic, X2(G, X (T2)) = H 2(G, X (T2)) ≃ H 3(G, Z). By Lyndon’s formula [1948, Theorem 6],
H 3(G, Z) ≃ (Z/ℓZ)6. On the other hand, H 1(G, X (T )) ≃ H 2(G, Z) ≃ (Z/ℓZ)4. Thus, τ(T2) = ℓ−2 and
(b) is done. □

Theorem A.9. Let k be a global function field of char p > 0. For any prime ℓ and any positive integer n,
there exists an abelian extension of k with Galois group G ≃ (Z/ℓZ)n in which every decomposition group
is cyclic.

We shall use the cyclotomic function field and we recall the basic facts following from class field theory.
For an explicit construction of these fields by Drinfeld modules, we refer to [Rosen 2002, Chapter 12].
Let k = Fp(t) be the function field of the projective line over Fp and let A = Fp[t]. In what follows P, Pi

always denote monic irreducible polynomials of A. Let ∞ denote the place of the infinite point and set
V∞ = ⟨t, 1+ t−1Fp[[t−1

]]⟩ ⊂ k×
∞

= Fp((t−1))×. For a monic polynomial M =
∏r

i=1 Pni
i ∈ A, let K (M) be

the finite abelian extension of k corresponding to the following open subgroup (with finite index) of A×

k

U (M) = k×

( r∏
i=1

(1 + Pni
i OPi ) × V∞ ×

∏
v ∤M∞

O×

v

)
.

(The field K (M) is called the cyclotomic function field for M .) Thus, we have A×

k /U (M)≃Gal(K (M)/k)

via the Artin map. Clearly, P is unramified in K (M) if P ∤M . The decomposition group of ∞ in K (M)

is isomorphic to F×
p , which is cyclic. There is an isomorphism (A/M)× ∼= A×

k /U (M) induced by
P mod M 7→ (1, . . . , P, . . . , 1) mod U (M) (P sitting on the place P) for P ∤M , and a mod M 7→

(1, . . . , 1, . . . , a) mod U (M) for a ∈ F×
p ⊂ (A/M)× (a sitting on the place ∞). So we have the following

isomorphism which maps P mod M (P ∤M) to its Frobenius element in Gal(K (M)/k)

(A/M)× ≃ Gal(K (M)/k).

We will primarily be concerned with the fields K (P) and K (P2), in which P is totally ramified. If ℓ

divides |(A/P)×|, let F(P) denote the subfield of K (P) fixed by ((A/P)×)ℓ so that Gal(F(P)/k)≃Z/ℓZ.
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If a ∈ A/P , then 1 + a P mod P2
∈ (A/P2)× is well defined and it generates the subgroup H(a) =

{1 + ai P mod P2
: i = 0, 1, . . . , p − 1} of order p when a ̸= 0. We let F(P, a) denote the subfield of

K (P2) fixed by {x ∈ (A/P2)× : xq−1
∈ H(a)} where q = pdeg P

= |A/P|. This group is isomorphic to
H(a) × (A/P)×; since (A/P2)× ≃ A/P × (A/P)×, we have Gal(F(P, a)/k) ≃ (Z/pZ)deg P−1 when
a ̸= 0.

Proof. We first prove the theorem when k = Fp(t) and ℓ ̸= p. The argument of this case is entirely similar
to the case of number fields given in [Katayama 1985]. Choose P1 such that it splits in k(µℓ) where µℓ is
the group of ℓ-th roots of unity. We inductively choose Pr (1 ≤ r ≤ n) such that Pr splits completely in the
composite field k(µℓ,

ℓ
√

P1, . . . ,
ℓ
√

Pr−1)F(P1) · · · F(Pr−1). Clearly, each Pi has infinitely many ways to
choose by density theorems. Now let K be the composite field F(P1) · · · F(Pn). The decomposition group
of ∞ in K/k is cyclic, since K is a subfield of the cyclotomic function field K (P1 · · · Pr ). Moreover, if P
is not one of the Pi , P is unramified and hence its decomposition group is cyclic. Therefore, to show that
K/k is the desired extension, it suffices to show that Pi splits in F(Pj ) whenever i ̸= j . Assume i < j .
Then Pj splits in F(Pi ) by the construction. Conversely, since Pj splits in k( ℓ

√
Pi ), Pi is an ℓ-power

in the completion kPj which implies that Pi ∈ ((A/Pj )
×)ℓ; hence Pi splits in F(Pj ). This proves the

theorem when k = Fp(t) and ℓ ̸= p.
Assume next k = Fp(t) and ℓ = p. Take an arbitrary P1 ∈ A with a1 = 0 ∈ A/P1. Let k1 be a subfield

of F(P1, a1) with [k1 : k] = p. We inductively choose (Pr , ar , kr ) (1 ≤ r ≤ n) with ar ∈ A/Pr such that
deg Pr ≥ r and

Pqi −1
r ≡ 1 + ai Pi mod P2

i for i = 1, . . . , r − 1, where qi = |A/Pi |.

Let ari ∈ A/Pr (i = 1, . . . , r − 1) such that

Pqr −1
i ≡ 1 + ari Pr mod P2

r for i = 1, . . . , r − 1.

Let ar := ar1, and let kr be a subfield of
⋂r−1

i=1 F(Pr , ari ) with [kr : k] = p. Put K := k1 · · · kr and let us
show that K/k is the desired extension. We have Gal(K/k) ≃ (Z/pZ)n by considering the ramification.
Assume i < j . Then Pj splits completely in F(Pi , ai ) by the first congruences and hence splits in ki ;
conversely, Pi splits completely in F(Pj , a j i ) by the second congruences and hence also splits in its
subfield k j . It follows that the decomposition subgroup of Pi (i = 1, . . . , n) in K/k is cyclic. This
property also holds for the place ∞, since K ⊂ K (P2

1 · · · P2
n ). This proves the theorem when k = Fp(t)

and ℓ = p.
Now assume that k is any finite extension of Fp(t) and ℓ is any prime. Choose P1, . . . , Pn as above

but we additionally require that Pi is unramified in k/Fp(t), and we define K/Fp(t) as above. Then
Gal(K k/k) ≃ (Z/ℓZ)n . Since each decomposition subgroup for K k/k is a subgroup of that of K/Fp(t),
the field K k is the desired extension. This completes the proof of Theorem A.9. □
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