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Infinitesimal dilogarithm on curves over truncated
polynomial rings

Sinan Ünver

We construct infinitesimal invariants of thickened one dimensional cycles in three dimensional space,
which are the simplest cycles that are not in the Milnor range. This generalizes Park’s work on the
regulators of additive cycles. The construction also allows us to prove the infinitesimal version of the
strong reciprocity conjecture for thickenings of all orders. Classical analogs of our invariants are based
on the dilogarithm function and our invariant could be seen as their infinitesimal version. Despite this
analogy, the infinitesimal version cannot be obtained from their classical counterparts through a limiting
process.

1. Introduction

1.1. Statement of the main technical result. For a scheme X , one expects an abelian category MX of
mixed motivic Q-sheaves on X , such that the extensions groups Hi

M(X,Q(n)) := ExtiMX
(Q(0),Q(n))

of the Tate sheaves are computed in terms of the K -groups as K2n−i (X)
(n)
Q

. We emphasize that we do
not assume that X is smooth over a field or even reduced. At present, such a category has not been
constructed. When X is a smooth and projective curve over a base scheme S, which in our context will
be the spectrum of an artin ring, the conjectural Leray–Serre spectral sequence would give a map

K3(X)
(3)
Q

= H3
M(X,Q(3))→ H1

M(S,Q(2))= K3(S)
(2)
Q
.

In certain cases, there are regulator maps from K3(S)
(2)
Q

to an abelian group A. The composition
with the above map would induce a map from K3(X)

(3)
Q

to A. In case S = Spec k[t]/(tm), such a map
K3(S)

(2)
Q

→
⊕

m<r<2m k was constructed in [Hesselholt 2005]. One of our aims in this paper is to give
an analog of the induced map

H3
M(X,Q(3))= K3(X)

(3)
Q

→

⊕
m<r<2m

k,

which does not depend on the conjectural category of motives. This map is an infinitesimal analog of a
real analytic regulator as we will describe in Section 2.2. This makes this paper a continuation of our
project started in [Ünver 2021] and followed up in [Ünver 2020], which aim to give infinitesimal analogs
of real analytic regulators.
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First, let us state the main technical result on which all the applications are based. Let k be a field of
characteristic 0, km := k[t]/(tm), for m ≥ 2, and C/km be a smooth and projective curve. We denote the
underlying reduced scheme of C by C . We will need a variant of the Bloch complex; see [Goncharov
1995, Sections 1.8 and 1.9] and Section 2.1. If X/k is a smooth and projective curve, then the part of the
classical Bloch complex relevant for us is

B2(k(X))⊗ k(X)× →

⊕
x∈|X |

B2(k(x))⊕33k(X)× →

⊕
x∈|X |

32k(x)×. (1.1.1)

Here the summations are over the set closed points |X | of X and B2 denotes the Bloch group (Section 2.1.A).
In order to define a variant of the above complex for C , we first need to make a choice of smooth

liftings. By a smooth lifting c of a closed point c ∈ |C |, we mean a closed subscheme c of C , which
is supported on c and is smooth over km (see Section 7). For each point c ∈ |C |, fix once and for all a
smooth lifting c and let P denote the set of all of these liftings. Let η be the generic point of C , for
a function f ∈ O×

C,η and c ∈ P, we define a notion of f being good with respect to c or equivalently
of being c-good in Section 7. We then define the sheaf (OC ,P)× in Section 8.1, by requiring that its
sections on an open set U to be those f ∈ O×

C,η which are c-good for all c ∈ P with c := |c| ∈ U . We
similarly define a sheaf B2(OC ,P) in Section 8.1, which is a generalization of the Bloch group but which
also encodes the notion of goodness with respect to elements of P . This gives us a complex C (C,P) of
sheaves on C which are concentrated in degrees 2 and 3:

B2(OC ,P)⊗ (OC ,P)× →

⊕
c∈P

ic∗(B2(k(c)))⊕33(OC ,P)×. (1.1.2)

Here k(c) denotes the artin ring which is the ring of regular functions on the affine scheme c, and ic
denotes the imbedding from c to C . Since we fixed a single lifting c ∈ P for each point c in |C |, the sum
above can also be thought of as a sum over |C |. The main technical result is the following construction of
infinitesimal Chow dilogarithms:

Theorem 8.1.1. Let k be a field of characteristic 0, C be a smooth and projective curve over km :=

k[t]/(tm), with m ≥ 2 and P be a choice of a smooth lifting for each closed point of C. For each
m < r < 2m, there is an infinitesimal regulator

ρm,r : H3(C (C,P))→ k. (1.1.3)

Specializing to the case when C is the projective line P1
km

, with coordinate function z, we fix an a ∈ k×
m

such that 1 − a ∈ k×
m . If we choose P such that z, 1 − z and z − a are all good with respect to P, then

(1 − z)∧ z ∧ (z − a) ∈ 0(33(OP1,P)×) and

ρm,r ((1 − z)∧ z ∧ (z − a))= ℓim,r ([a]),

where ℓim,r : B2(km)→ k is the additive dilogarithm defined in [Ünver 2009] (see Section 3).

The notation of the theorem in the main body of the paper is slightly different but equivalent.
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This generalizes the construction in [Ünver 2021] in two different ways: we sheafify the previous
construction and we construct the regulator for any m< r < 2m, rather than only for m = 2. More precisely,
if we let k(C,P)× denote the set of global sections 0(C, (OC ,P)×) of (OC ,P)×, the construction of
[loc. cit.] only gives a map from 33k(C,P)× and only in the case when m = 2 and r = 3. We will sketch
the main idea of the construction in the section below, but let us mention here that the construction of a
map ρm,m+1 from 33k(C,P)× to k can be done by the methods of [loc. cit.]. On the other hand, the
construction of ρm,r for m + 1< r < 2m requires the new methods that we introduce in this paper.

1.2. Applications. As we described above, specializing to triples of functions gives us the infinitesimal
Chow dilogarithm

ρm,r :33k(C,P)× → k. (1.2.1)

which we will denote by the same symbol.

1.2.A. Infinitesimal strong reciprocity conjecture. The first application of this construction will be to an
infinitesimal analog of the strong reciprocity conjecture of Goncharov [2005]. If X/k is a smooth and
projective curve over an algebraically closed field k, the Suslin reciprocity theorem states that the sum of
the residue maps ∑

x∈|X |

resx : K M
3 (k(X))→ K M

2 (k) (1.2.2)

at all the closed points of X is equal to 0. Goncharov [2005] conjectured that the map of complexes

B2(k(X))⊗ k(X)× //

��

33k(X)×

��

B2(k) // 32k×

obtained from (1.1.1) by taking sums of the maps B2(k(x))→ B2(k) and 32k(x)× →32k× is homotopic
to 0. More precisely, he conjectures that there is a canonical map h :33k(X)× → B2(k) which makes
the diagram

B2(k(X))⊗ k(X)× //

��

33k(X)×

��

h

vv

B2(k) // 32k×

commute and has the property that h(λ∧ f ∧ g) = 0, if λ ∈ k× and f, g ∈ k(X)×. Note that this is a
stronger version of the Suslin reciprocity theorem since the cokernel of the horizontal maps in the diagram
above are K M

3 (k(X)) and K M
2 (k). This original version of the conjecture is proved by Rudenko [2021],

by using homotopy invariance.
We prove an infinitesimal version of this conjecture using the infinitesimal Chow dilogarithm above and

the determination of the structure of the Bloch group over km which was done in [Ünver 2009]. Our method
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is entirely different from Rudenko’s, since homotopy invariance is no longer true in the infinitesimal
world. Let B2(k(C,P)) denote the set of global sections of B2(OC ,P), then the infinitesimal version of
the strong reciprocity conjecture states:

Theorem 9.1.1. There is a map h :33k(C,P)× → B2(km), which makes the diagram

B2(k(C,P))⊗ k(C,P)× //

��

33k(C,P)×

��

h

uu

B2(km) // 32k×
m

commute and has the property that h(k×
m ∧32k(C,P)×)= 0.

1.2.B. Application to algebraic cycles. As another application of the infinitesimal Chow dilogarithm,
we construct invariants of higher algebraic cycles up to rational equivalence. In principle the group of
algebraic cycles that we are interested in should be denoted by CH2(km, 3). However, since km is far from
being smooth over k, such a group of cycles which can be expressed in terms of K -theory is not defined.

One way to overcome this problem is to use the additive Chow groups of Bloch and Esnault [2003].
Additive Chow groups were defined in order to give a cycle theoretic interpretation of the motivic
cohomology groups of km . One can think of additive Chow cycles as those cycles which are very close to
the 0 cycle, the closeness to 0 being defined via the modulus (tm). A regulator on this group was defined
by Park [2009] for r = m + 1. We think that additive Chow groups tell only part of the story when we try
to understand higher cycles on km . For this reason we define a somewhat bigger class of higher cycles
over km . We do this by defining a group z2

f (k∞, 3) of codimension 2 cycles on A3
k∞

, where k∞ := k[[t]].
The main theorem is then a reciprocity theorem.

Theorem 9.4.2. For m < r < 2m, we define a regulator ρm,r : z2
f (k∞, 3)→ k. If Za , with a, 1 − a ∈ k×

∞

is the dilogarithmic cycle given by the parametric equation (1 − z, z, z − a) then

ρm,r (Za)= ℓim,r ([a]).

If Zi ∈ z2
f (k∞, 3), for i = 1, 2, satisfy the condition (Mm), then they have the same infinitesimal regulator

value

ρm,r (Z1)= ρm,r (Z2).

This essentially states that if two cycles are the same modulo (tm) then they have the same value under
the regulator. Note the similarity of this to the definition of de Rham cohomology on singular schemes by
first imbedding them in a smooth scheme. The precise definition of z2

f (k∞, 3) and the condition (Mm)

can be found in Section 9.4. After the category of motives over nonreduced rings is constructed, we
expect these invariants to induce the regulators in this category.
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1.3. Main ideas behind the construction. In this section, we will try to illustrate the ideas behind the
construction in Theorem 8.1.1. For each 2 ≤ m < r < 2m, we will construct a regulator whose source is
the degree 3 cohomology of the complex of sheaves

B2(OC ,P)⊗ (OC ,P)× →

⊕
c∈P

ic∗(B2(k(c)))⊕33(OC ,P)×

concentrated in the degrees [2, 3]. Suppose that we are given a Zariski open cover {Ui }i∈I of C and a
corresponding cocyle γ , given by the following data: γi ∈33(OC ,P)×(Ui ), εi,c ∈ B2(k(c)) for every
c ∈ Ui and βi j ∈ (B2(OC ,P)⊗ (OC ,P)×)(Ui j ). We will define ρm,r (γ ) ∈ k, by first making many
choices and then showing that the construction is independent of all the choices:

(i) Let Ãη be a lifting of OC,η to a smooth k∞-algebra and for every c ∈ |C |, let Ãc be a lifting of the
completion ÔC,c of the local ring of C at c, to a smooth k∞-algebra, together with a smooth lifting c̃

of c.

(ii) Let an i ∈ I be arbitrary and for each c choose a jc ∈ I such that c ∈ U jc .

(iii) Choose an arbitrary lifting γ̃iη ∈33Ã×

η of the germ γiη ∈33O×

C,η.

(iv) Choose a good lifting γ̃ jc ∈33(Ãc, c̃)
× of the image γ̂ jc,c of γ jc in 33(ÔC,c, c)

×, for every c ∈ |C |.

(v) Choose an arbitrary lifting β̃ jci,η ∈ B2(Ãη)⊗ Ãη of the image β jci,η ∈ B2(OC,η)⊗O×

C,η of β jci , for
every c ∈ |C |.

We then define the value of the regulator ρm,r on the above element by the expression

ρm,r (γ ) :=

∑
c∈|C |

Trk
(
ℓm,r (resc̃ γ̃ jc)− ℓim,r (ε jc,c)+ resc ωm,r (γ̃iη − δ(β̃ jci,η), γ̃ jc)

)
. (1.3.1)

We continue with the description of this expression.
The starting point for the above definition is our construction of the additive dilogarithm in [Ünver 2009].

For a regular local Q-algebra R, letting Rm := R[t]/(tm), for every 2 ≤ m < r < 2m, we have an additive
dilogarithm map ℓim,r : B2(Rm) → R that satisfies all the analogous properties of the Bloch–Wigner
dilogarithm function. Most importantly, the direct sums of these maps over all the possible r give an
isomorphism between the infinitesimal part of the K -group K3(Rm)

(2)
Q

and
⊕

m<r<2m R. We explain this
in detail in Section 3 and give explicit formulas for these functions ℓim,r . The function ℓim,r can also
be described in terms of the differential δ in the Bloch complex of B2(R∞), with R∞ := R[[t]], by the
following commutative diagram:

B2(R∞)
δ
//

��

32 R×
∞

ℓm,r

��

B2(Rm)
ℓim,r

// R

Where ℓm,r is given explicitly in Definition 3.0.2 below.
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We can then describe the first two terms in (1.3.1) as follows. For a connected, étale km-algebra (resp.
k∞-algebra) A, there is a canonical isomorphism A ≃ k ′

m (resp. A ≃ k ′
∞

). Using this isomorphism for k(c),
we get a canonical identification B2(k(c))= B2(k(c)m). Therefore, ℓim,r (ε j,c) ∈ k(c) is unambiguously
defined using the map ℓim,r : B2(k(c)m)→ k(c). Since the element γ̃ jc ∈33(Ãc, c̃)

× is assumed to be
c̃-good, the residue resc̃ γ̃ jc is defined as an element of 32k(c̃)× in the beginning of Section 7. Using
the identification 32k(c̃)× = 32k(c)×

∞
and the map ℓm,r : 32k(c)×

∞
→ k(c), we define the element

ℓm,r (resc̃ γ̃ jc) ∈ k(c). Defining the last term resc ωm,r and proving its properties will constitute a large
proportion of the paper. If R is smooth of relative dimension 1 over k, we construct a map ωm,r :

33(Rr , (tm))× → �1
R/k . Here (Rr , (tm))× denotes {(a, b) | a, b ∈ R×

r , ab−1
∈ 1 + (tm)}. Since we do

not fix a lifting of our curve in the construction of ρm,r , defining ωm,r on this group is not enough. More
precisely, we need to extend ωm,r to the following context. Suppose that R and R′ are smooth of relative
dimension 1 over kr together with a fixed isomorphism

χ : R/(tm)→ R′/(tm),

of km-algebras between their reductions modulo (tm). Let

(R,R′, χ)× := {(a, b) | a ∈ R×, b ∈ R′×, χ(a + (tm))= b + (tm) in R′/(tm)}.

Ideally, we would like to extend the definition of ωm,r to a map from 33(R,R′, χ)× to �1
R/k . This can

be done when r = m + 1 but it is not true if m + 1< r .
However, it turns out that for us purposes, we do not need these 1-forms themselves but only their

residues and we can construct these residues independently of all the choices. Suppose that S is a smooth
km-algebra of relative dimension 1, with x a closed point and η the generic point of its spectrum. Suppose
that R,R′ are liftings of Sη to kr , with χ the corresponding isomorphism from R/(tm) to R′/(tm). We
construct a map

resx ωm,r :33(R,R′, χ)× → k ′,

where k ′ is the residue field of x , which is functorial and independent of all the choices. Let χ̃ : R → R′

be an isomorphism of kr -algebras which is a lifting of χ . Choosing also an isomorphism Rr ≃ R of
kr -algebras, provides us with an identification

(R,R′, χ)×
χ̃∗

−→ (Rr , (tm))×.

Let ψ denote the isomorphism R→ Sη induced by the one from R/(tm) to Sη. Then we define resx ωm,r

by the composition

33(R,R′, χ)×
33χ̃∗

−−→33(Rr , (tm))×
ωm,r

−−→�1
R/k

dψ
−−→�1

Sη/k
resx

−−→ k ′.

We prove that this composition is independent of all the choices. Applying this construction in the above
context, we see that γ̃iη − δ(β̃ jci ) and γ̃ jc are two liftings of the same object γ jc to two different generic
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liftings of ÔC,c. Therefore, the expression

resc ωm,r (γ̃iη − δ(β̃ jci,η), γ̃ jc) ∈ k(c)

is defined.
Applying traces and taking the sum over all the closed points, we obtain the expression in (1.3.1).

Next we show that the sum is in fact a finite sum. The above construction involves many choices and
would be completely useless if it depended on anything other than the initial data. This is the content of
Theorem 8.1.1, our main theorem. Because of its basic properties that we prove below, ρm,r deserves to
be called a regulator.

Finally, let us mention that in [Ünver 2021], where the case m = 2 was handled, the only possible r is 3
and hence satisfies r = m +1. In this case, the map ω2,3 can be defined as a map from 33(R,R′, χ)× →

�1
R/k . This is not true in general and this is why we have to pursue a different approach in this paper

which is based on defining only the residue of the differential rather than the differential itself.

1.4. Outline. We give an outline of the paper. In Section 2, we describe the complex analytic version of
our construction for motivation. In Section 3, we give a review of the construction in [Ünver 2009] of
the additive dilogarithm on the Bloch group of a truncated polynomial ring. In Section 4, we describe
the infinitesimal part of the Milnor K -theory of a local Q-algebra endowed with a nilpotent ideal, which
is split, in terms of Kähler differentials. Without any doubt the results in this section are known to the
experts and we do not claim originality. The reason for our inclusion of this section is first that we could
not find an easily quotable statement in the full generality which we will need in our later work, and
second that we found a short argument which is in line with the general set-up of this paper. In Section 5,
for a regular local Q-algebra R, we define regulators B2(Rm)⊗ R×

m to �1
R for every m < r < 2m, which

vanishes on boundaries. This construction depends on the splitting of Rm in an essential way. In Section 6,
we introduce the main object of this paper: for a smooth algebra R of relative dimension 1 over k, we
define regulators ωm,r : 33(Rr , (tm))× → �1

R/k , for each m < r < 2m. In Section 7, we compute the
residues of the value of ωm,r on good liftings. In Section 8, we use the results of the previous sections to
construct the regulator from H3

B(C,Q(3)) and specializing to triples of rational functions we obtain the
infinitesimal Chow dilogarithm of higher modulus. In Section 9, we give examples of the infinitesimal
Chow dilogarithm in the cases of the projective curve and elliptic curves and also give the applications to
the strong reciprocity conjecture and the invariants of cycles.

Conventions and notation. We are interested in everything modulo torsion. Therefore, we tensor all
abelian groups under consideration with Q without explicitly signifying this in the notation. For example,
K M

n (A) denotes Milnor K -theory of A tensored with Q etc.
For a ring R, we let R∞ := R[[t]] (resp. R((t))) be the formal power series (resp. the formal Laurent

series) ring over R. For m ≥ 1, we let Rm := R[t]/(tm), be the truncated polynomial ring over R of
modulus m. If R is a Q-algebra then we write exp(α) :=

∑
0≤n(α

n/n!) for α ∈ (t) ⊆ R∞. The same
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formula is used for α ∈ (t)⊆ Rm . For an appropriate functor F , we let F(R∞)
◦
:= ker(F(R∞)→ F(R))

(resp. F(Rm)
◦
:= ker(F(Rm)→ F(R))), denote the infinitesimal part of F(R∞) (resp. F(Rm)).

For any set X , let Q[X ] denote the vector space over Q with basis {[x] | x ∈ X}. We denote both the
differential B2(A)→32 A× in the Bloch complex of weight 2 (see Section 2.1.A) and the differential
B2(A)⊗ A×

→33 A× in the Bloch complex of weight 3 (see Section 2.1.B) by δ. Since the sources of
the maps are different, this will not cause any confusion. When we use these maps in the case when
A = Rr and we want to emphasize dependence on r in the notation, we denote both of these differentials
by δr .

2. The analogy with the complex case

In this section we will describe the analogy with the complex case after recalling some of the standard
definitions. Our aim is to give a flavor of the concepts before going into the technical details.

2.1. Basic definitions. Here we collect some of the basic definitions that are standard in the literature.
We will use these definitions in this section and generalize them in the later sections.

2.1.A. The Bloch group B2 and the Bloch complex of weight 2. For any ring A, we let A♭ := {a ∈ A |

a(1−a)∈ A×
}. For a local Q-algebra R, the Bloch group B2(R) is the quotient of Q[R♭] by the subspace

generated by
[x] − [y] + [y/x] − [(1 − x−1)/(1 − y−1)] + [(1 − x)/(1 − y)],

for all x, y ∈ R♭ such that x − y ∈ R×. There is a map δ : B2(R) → 32 R×, which is defined on the
generators by letting δ([x]) := (1 − x)∧ x . The corresponding complex obtained by putting B2(R) in
degree 1 and 32 R× is degree 2 is called the Bloch complex of weight 2. This complex computes the
weight 2 motivic cohomology of R, when R is a field. We refer to [Ünver 2009] for details about the Bloch
group and the Bloch complex of weight 2. We denote the cohomology of this complex with Hi (R,Q(2)).

2.1.B. The pre-Bloch complex of weight 3. Continuing with the notation above, we have a complex

Q[R♭] → B2(R)⊗ R×
→33 R×, (2.1.1)

concentrated in degrees [1, 3], where the first map sends a basis element [x] to [x] ⊗ x and the second
one sends [x]⊗ y to δ(x)∧ y. Abusing the notation, we denote all the differentials in this complex by δ.
This complex and its variants are defined and studied in detail in [Goncharov 1995]. We will call this
complex the pre-Bloch complex of weight 3.

The first group Q[R♭] when divided by the appropriate relations is denoted by B3(R). At this stage of
this theory, the exact type of these relations are not clear. There are several different candidates and it is
not known that they give the same answer [Goncharov 1995]. The corresponding sequence obtained is
a candidate for the weight 3 motivic cohomology complex [loc. cit.]. Since we will only deal with the
cohomology groups in degrees 2 and 3, we will only work with the pre-Bloch complex (2.1.1) above and
the precise relations in order to define B3(R) will not be important for us. The reason that we do not
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call this complex the Bloch complex is that we do not use a version of the group B3(R) and instead use
Q[R♭]. For R equal to the dual numbers of a field, this complex and its higher weight analogs were used
in [Ünver 2010] to construct the additive polylogarithms.

For the degrees i = 2 and 3, we will denote the cohomology of the pre-Bloch complex in (2.1.1) by
Hi (R,Q(3)).

2.1.C. Residue map between the Bloch complexes. Suppose that R is a discrete valuation ring with residue
field k and with field of fractions K . There is a canonical residue homomorphism K M

n (K )→ K M
n−1(k)

constructed by Milnor [1970] between the Milnor K -groups. Goncharov [1995, Section 1.14] generalized
to a map between the Bloch complexes.

For us, the only parts of this construction that will be relevant are

res :3n K ×
→3n−1k× and res : B2(K )⊗ K ×

→ B2(k).

To describe these maps, let us fix a uniformizer π of R. The map will turn out to be independent of the
choice of the uniformizer.

The first map is determined by the following formula

res(u0π
m

∧ u1 ∧ u2 ∧ · · · ∧ un−1)= m · u1 ∧ u2 ∧ · · · ∧ un−1,

where m ∈ Z, ui , for 1 ≤ i < n are units in R and ui for 1 ≤ i < n are the images of ui in k. The second
map is determined by the formulas that

res([a] ⊗ b)= 0,

if a ∈ K ♭
\ R♭ or b ∈ R×, and

res([u] ⊗π)= [u],

if u ∈ R♭ and u is the image of u in k♭. These maps give a commutative diagram

B2(K )⊗ K × //

res
��

33K ×

res
��

B2(k) // 32k×

and hence a sequence
B2(K )⊗ K ×

→ B2(k)⊕33K ×
→32k×.

If we start with a smooth curve X/k, then taking residues at all the closed points and summing them
will give a sequence

B2(k(X))⊗ k(X)× →

⊕
x∈|X |

B2(k(x))⊕33k(X)× →

⊕
x∈|X |

32k(x)×.

This is part of the motivic complex of weight 3 of the curve X [Goncharov 1995], whose middle
cohomology receives a map from the motivic cohomology H3

M(X,Q(3)) of X .
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2.2. Complex analog of the main construction. Here we briefly explain the complex analog of our
construction, which is one of our main motivations for the infinitesimal case. If X/C is a smooth projective
curve, then as above one expects a map

K3(X)
(3)
Q

= H3
M(X,Q(3))→ H1

M(C,Q(2))= K3(C)
(2)
Q
.

Composing with the Borel regulator K3(C)
(2)
Q

→ C/(2π i)2Q and taking the imaginary part would give
a map K3(X)

(3)
Q

→ R. Up to normalization, this map can be constructed as follows [Goncharov 2005,
Section 6]. For f1, f2, and f3 ∈ C(X)×, let

r2( f1, f2, f3) := Alt3
( 1

6 log| f1| · d log| f2| ∧ d log| f3| −
1
2 log| f1| · d arg f2 ∧ d arg f3

)
,

(such that dr2( f1, f2, f3) = Re(d log( f1) ∧ d log( f2) ∧ d log( f3))). The Chow dilogarithm map ρ :

33C(X)× → R is given in terms of this by

ρ( f1 ∧ f2 ∧ f3) :=

∫
X (C)

r2( f1, f2, f3). (2.2.1)

In the special case when X = P1, we have

ρ((1 − z)∧ z ∧ (z − a))= D2(a), (2.2.2)

where D2(z) := Im(ℓi2(z)) + arg(1 − z) · log(|z|) is the Bloch–Wigner dilogarithm, with ℓi2(z) the
(multivalued) analytic continuation of

∑
1≤n zn/n2. The middle cohomology of

→ B2(C(X))⊗ C(X)×
Q

→

(⊕
x∈X

B2(C)

)
⊕33C(X)×

Q
→

⊕
x∈X

32C×

Q
→ (2.2.3)

receives a map from H3
M(X,Q(3))≃ K3(X)

(3)
Q

. Combining D2 and ρ, if we let

ρX := −

(⊕
x∈X

D2

)
⊕ ρ :

(⊕
x∈X

B2(C)

)
⊕33C(X)×

Q
→ R,

then ρX vanishes on the image of B2(C(X))⊗C(X)×
Q

and induces the map K3(X)
(3)
Q

→R, we were looking
for above. If one assumes a theory of motivic sheaves then this is the composition of H3

M(X,Q(3))→

Ext1MC
(Q(0),H2(X/C)(3))=H1

M(C,Q(2))→ B2(C) and the Bloch–Wigner dilogarithm D2 : B2(C)→R.
Here MC denotes the category of motives over C and H2(X/C)= Q(−1) denotes the relative motivic
cohomology of X/C. In the special case of X = P1 the map ρ can be made even more explicit [Goncharov
2005, Section 6.3]. Suppose that f1, f2, and f3 are arbitrary rational functions on P1. By the linearity of
ρ and the fact that ρ vanishes on elements of the form λ∧ f ∧ g, if λ ∈ C×, we notice that in order to
determine ρ( f1 ∧ f2 ∧ f3), it is enough to determine its value for fi = z − αi , for pairwise distinct αi .
Using functoriality with respect to automorphisms of P1 fixing ∞, and the formula (2.2.2), we determine
that

ρ((z −α1)∧ (z −α2)∧ (z −α3))= D2

(
α3 −α2

α1 −α2

)
. (2.2.4)
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3. Additive dilogarithm of higher modulus

In this section, we review and rephrase the theory of the additive dilogarithm over truncated polynomial
rings in a manner which we will need in the remainder of the paper. Further results for this function can
be found in [Ünver 2009].

For a Q-algebra R, let R∞ := R[[t]], denote the formal power series over R and Rm := R∞/(tm)

the truncated polynomial ring of modulus m over R. Since R is a Q-algebra we have the logarithm
log : (1+t R∞)

×
→ R∞ given by log(1+z) :=

∑
1≤n(−1)n+1zn/n, for z ∈ t R∞. Let log◦

: R×
∞

→ R∞, be
the branch of the logarithm associated to the splitting of R∞ ↠ R corresponding to the inclusion R ↪→ R∞,
defined as log◦(α) := log(α/α(0)). If q =

∑
0≤i qi t i

∈ R∞ and 1 ≤ a then let q|a :=
∑

0≤i<a qi t i
∈ R∞,

denote the truncation of q to the sum of the first a-terms, and ta(q) := qa , the coefficient of ta in q. If
u ∈ t R∞ and s(1 − s) ∈ R×, we let

ℓim,r (s exp(u)) := tr−1
(
log◦(1 − s exp(u|m)) ·

∂u
∂t |r−m

)
, (3.0.1)

for m < r < 2m. Here, and everywhere in the paper, exp(z) denotes the formal power series
∑

0≤n zn/n!.
Also note that (∂u/∂t)|r−m denotes the truncation of the derivative of u with respect to t , to the sum of
its first (r − m)-terms. Fixing m ≥ 2, these ℓim,r , for m < r < 2m together constitute a regulator from
ker(K3(Rm)

(2)
→ K3(R)(2)) to R⊕(m−1). This is exactly analogous to the Bloch–Wigner dilogarithm in

the complex case [Bloch 2000; Suslin 1991; Ünver 2009].
Since every element of R♭∞ can be written in the form s exp(u) as the above, we can linearly extend

ℓim,r to obtain a map from the vector space Q[R♭∞] with basis R♭∞. We denote this map by the same
symbol.

When we would like to specify the δ defined on B2(R∞) (resp. B2(Rm)), as given in Section 2.1.A,
we denote it by δ∞ (resp. δm).

Let V be a free R module with basis {ei }i∈I and {e∨

i }i∈I the dual basis of V ∨. Given v and α=
∑

i∈I ai ei

in V , we let

(v|α) :=

∑
i∈I

ai e∨

i (v) ∈ R.

If there is an ordering on I , we let {ei ∧ e j }i> j be the corresponding basis of 32V . Then, with the
above notation, the expression (w|β), for w, β ∈32V , is defined. We consider t R∞, as a free R-module
with basis {t i

}1≤i . Let us denote the composition of B2(R∞)
δ

−→32 R×
∞

with the canonical projection
Q[R♭∞] → B2(R∞) also by δ. Also denote the map

32 R×

∞
→32t R∞ ↠32

Rt R∞

induced by 32 log◦
:32 R×

∞
→32t R∞, by the same symbol.

Proposition 3.0.1. With the notation above, for α ∈ Q[R♭∞] and 2 ≤ m < r < 2m, we have

ℓim,r (α)=

(
32 log◦(δ(α))

∣∣∣ ∑
1≤i≤r−m

i tr−i
∧ t i

)
, (3.0.2)
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and this function descends through the canonical projections

Q[R♭
∞

] → B2(R∞)→ B2(Rm),

to define a map from B2(Rm) to R, denoted by the same notation.

Proof. We proved in [Ünver 2009, Proposition 2.2.1] that the function defined by the right-hand side
of (3.0.2), temporarily denote it by ℓi∗

m,r , descends to give a map from Q[R♭m] and in [loc. cit., Proposi-
tion 2.2.2] that it descends to give a map from B2(Rm). Therefore it only remains to prove the equality
(3.0.2).

With the notation ℓi (α) := ti (log◦(α)), ℓi∗
m,r can be rewritten as

ℓi∗

m,r =

( ∑
1≤i≤r−m

i · ℓr−i ∧ ℓi

)
◦ δ.

Then we have ℓi∗
m,r (s exp(u)) = ℓi∗

m,r (s exp(u|m)), since we know that ℓi∗
m,r descends to Q[R♭m]. We

have ℓi (s exp(u|m)) = ui , for 1 ≤ i < m and ℓi (s exp(u|m)) = 0, for m ≤ i . Using this we obtain that
ℓi∗

m,r (s exp(u|m))=
∑

1≤i≤r−m i · ℓr−i (1 − s exp(u|m)) · ui = ℓim,r (s exp(u)). □

Let us give a name to the essential map which constitute ℓim,r .

Definition 3.0.2. We denote the map from 32 R×
∞

to R which sends α∧β to(
32 log◦(α∧β)

∣∣∣ ∑
1≤i≤r−m

i tr−i
∧ t i

)
by ℓm,r . It is clear that ℓm,r :32 R×

∞
→ R factors through the projection 32 R×

∞
→32 R×

r . The additive
dilogarithm above is given in terms of this function as

ℓim,r = ℓm,r ◦ δ∞ = ℓm,r ◦ δr .

We will use the main result from [Ünver 2009], there it was stated in the case when R is a field of
characteristic 0, but the same proof works when R is a regular, local Q-algebra. Let B2(Rm)

◦ denote the
kernel of the natural map from B2(Rm) to B2(R), consistent with the notation in the introduction.

Theorem 3.0.3. The complex B2(Rm)
◦ δ◦
−→ (32 R×

m )
◦ computes the infinitesimal part of the weight two

motivic cohomology of Rm , and the map
⊕

m<r<2m ℓim,r induces an isomorphism

HC◦

2(Rm)
(1)

≃ K ◦

3 (Rm)
(2)

≃ ker(δ◦) ∼
−→ R⊕(m−1)

from the relative cyclic homology group HC◦

2(Rm)
(1) to R⊕(m−1).

4. Infinitesimal Milnor K -theory of local rings

Suppose that R is a local Q-algebra and A is an R-algebra, together with a nilpotent ideal I such that
the natural map R → A/I is an isomorphism. Then the Milnor K -theory K M

n (A) of A, naturally splits
into a direct sum K M

n (A)= K M
n (R)⊕ K M

n (A)
◦. In this section, we will describe this infinitesimal part
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K M
n (A)

◦ in terms of Kähler differentials. It is easy to find such an isomorphism using Goodwillie’s
theorem [1986], and standard computations in cyclic homology. However, in the next section, we need an
explicit description of this isomorphism in order to determine which symbols vanish in the corresponding
Milnor K -group. Fortunately, determining what this isomorphism turns out to be quite easy. By the
functoriality and the multiplicativity of the isomorphism, we reduce the computation to the case of K M

2

of the dual numbers over R where the computation is easy.
There is no doubt that the results in this section are well-known and we do not claim any originality.

We simply have not been able to find a description of the map ϕ below which is easily quotable in the
literature. Since our discussion is quite short we did not refrain from including it in the present paper. We
will only need the result below for A = Rm . On the other hand, in a future work we will need this result
in full generality which justifies our somewhat more general discussion.

Proposition 4.0.1. There exists a unique map ϕ : K M
n (A)

◦
→�n−1

A /(d�n−2
A +�n−1

R ) such that

ϕ({α, β1, . . . , βn−1})= log(α)
dβ1

β1
∧ · · · ∧

dβn−1

βn−1
, (4.0.1)

for α ∈ 1 + I and β1, . . . , βn−1 ∈ A×, and this map is an isomorphism.

Proof. The uniqueness follows from the fact that the infinitesimal part of Milnor K -theory is generated
by terms {α, β1, . . . , βn−1} as in the statement. In order to see this, let ι : R → A denote the structure
map. Since R → A → A/I is an isomorphism, every element in A× can be uniquely written as
ι(r)α with r ∈ R× and α ∈ 1 + I . This implies that K M

n (A) is generated by elements of the form
{α1, . . . , αi , ι(r1), . . . , ι(rn−i)}, with 0 ≤ i ≤ n and r j ∈ R, α j ∈ 1 + I . The terms with 1 ≤ i are in
K M

n (A)
◦
= ker(K M

n (A)→ K M
n (A/I )). They are also of the form {α, β1, . . . , βn−1}. In order to prove

the statement, we only need to show that if a linear combination of terms of the form {ι(r1), . . . , ι(rn)}

are in ker(K M
n (A)→ K M

n (A/I )) then it is in fact 0. This again follows from the fact that the natural map
from R to A/I is an isomorphism.

We define a functorial map ϕ by the following composition:

K M
n (A)

◦
→ K (n)

n (A)◦ ∼
−→ HC(n−1)

n−1 (A)◦ = (�n−1
A /d�n−2

A )◦ =�n−1
A /(d�n−2

A +�n−1
R ). (4.0.2)

The first map is the multiplicative map induced by the isomorphism when n = 1, the second one is the
Goodwillie isomorphism [1986], and the last one is given by [Loday 1992, Theorem 4.6.8].

By Nesterenko and Suslin’s theorem [1989], Milnor K -theory is the first obstruction to the stability of
the homology of general linear groups

K M
n (A)≃ Hn(GLn(A),Q)/Hn(GLn−1(A),Q).

Moreover, the composition

K M
n (A)

◦
→ K (n)

n (A)◦ → Prim(Hn(GL(A),Q))→ Hn(GL(A),Q)≃ Hn(GLn(A),Q)↠ K M
n (A)
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is multiplication by (n − 1)! by [Nesterenko and Suslin 1989]. This implies the injectivity of ϕ. It only
remains to prove the property (4.0.1), since then the surjectivity of ϕ also follows.

The multiplicativity of ϕ takes the following form: for a, b ∈ K M
m (A)

◦, ϕ(a · b)= ϕ(a)∧ d(ϕ(b)). We
do induction on n. The statement is clear for n = 1. We show that we may assume that βi ∈ R×.

Lemma 4.0.2. Suppose that we have the formula (4.0.1) for α ∈ 1 + I and βi ∈ R×, for 1 ≤ i ≤ n − 1,
then we have the same formula for α ∈ 1 + I and βi ∈ A×, for 1 ≤ i ≤ n − 1.

Proof. We do induction on the number of βi which are not in R×. If all of them are in R×, the hypothesis
of the lemma gives the expression. If there is at least one βi which is not in R×, without loss of generality
assume that βn−1 /∈ R×. Let us write βn−1 := λ ·β, with λ ∈ R× and β ∈ 1 + I . Then

ϕ({α, β1, . . . , βn−1})= ϕ({α, β1, . . . , βn−2, λ})+ϕ({α, β1, . . . , βn−2, β}).

By the multiplicativity of ϕ, the formula for n = 1, and the induction hypothesis on n, we have

ϕ({α, β1, . . . , βn−2, β})= ϕ({α, β1, . . . , βn−2})∧ d(log(β))= log(α)
dβ1

β1
∧ · · · ∧

dβn−2

βn−2
∧

dβ
β
.

By the induction hypothesis on the number of βi not in R×, we have

ϕ({α, β1, . . . , βm−1, λ})= log(α)
dβ1

β1
∧ · · · ∧

dβm−1

βm−1
∧

dλ
λ
.

Adding these two expressions, we obtain the expression we were looking for. □

The above lemma shows that we may without loss of generality assume that the βi ∈ R×. The next
lemma shows that we may also assume that A = Rr and α = 1 + t .

Lemma 4.0.3. Suppose that we have the formula (4.0.1) for α = 1 + t and βi ∈ R× for 1 ≤ i ≤ n − 1, for
the ring Rr := R[t]/(tr ). Then we have the same formula for any A as above.

Proof. Given α ∈ 1 + I ⊆ A× and βi ∈ R×. Since α− 1 is nilpotent, we have an R-algebra morphism
ψ : Rr → A, for some r , such that ψ(t)= α− 1. The result then follows by the functoriality of ϕ since
the map induced by ψ maps {1 + t, β1, . . . , βn−1} to {α, β1, . . . , βn−1}. □

Next we will show that we can also assume that r = 2. Note that for each λ ∈ Q×, we obtain an
R-automorphism ψλ of Rr which sends t to λ · t . If F is any functor from the category rings to the
category of Q-vector spaces, this gives us an action of Q× on F(Rr ), which we call the ⋆-action of Q×

and denote F(ψλ)(v) by λ ⋆ v. For m ∈ Z, we let F(Rr )
[m] denote the subspace of elements v ∈ F(Rr )

such that λ⋆v= λm
·v, for every λ∈ Q×. An element v ∈ F(Rr )

[m] is said to be an element of ⋆-weight m.

Lemma 4.0.4. Suppose that we have the formula (4.0.1) for α = 1 + t and βi ∈ R× for 1 ≤ i ≤ n − 1, for
the ring R2. Then we have the same formula for any A as above.

Proof. We need to prove the result for 1 + t ∈ Rr , and βi ∈ R×. Since 1 + t = exp(log(1 + t)), it is a
product of elements of the form exp(atm), for 1 ≤ m < r , and a ∈ Q. Therefore it is enough to prove
the formula for elements as above with α = exp(atm). Since {exp(atm), β1, . . . , βn−1} is of ⋆-weight m,
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its image under ϕ is in (�n−1
Rr
/d�n−2

Rr
)[m], the ⋆-weight m part of �n−1

Rr
/d�n−2

Rr
. On the other hand the

natural surjection Rr → Rm+1 induces an isomorphism

(�n−1
Rr
/d�n−2

Rr
)[m]

≃ (�n−1
Rm+1

/d�n−2
Rm+1

)[m].

Therefore, without loss of generality, we will assume that r = m + 1. Then we use the map from R2

to Rm+1 that sends t to atm . This map sends 1 + t to exp(atm) and hence maps {1 + t, β1, . . . , βn−1}

to {exp(atm), β1, . . . , βn−1}. Therefore, again by the functoriality of ϕ, the result follows from the
assumption on R2. □

To finish the proof, we will need a special identity in K M
2 (R3).

Lemma 4.0.5. We have the following relation in K M
2 (R3):

2
{
1 +

t2

2 , λ
}

=
{
1 +

t
λ
, 1 + λt

}
,

for any λ ∈ R×.

Proof. It is possible to give a direct computational proof of this statement. We choose to give a proof
which is based on the ideas in this section.

First suppose that R is a field. We know that both sides are in K M
2 (R3)

◦. We know from [Graham
1973] that the map K M

2 (R3)
◦
→ (�1

R3
/d R3)

◦ which sends {α, β} to log(α)dβ/β, where α− 1 ∈ (t), is
an isomorphism.

The left-hand side goes to t2dλ/λ, whereas the right-hand side goes to

t
λ

d(λt)= t2 dλ
λ

+ tdt = t2 dλ
λ

+
1
2 dt2

= t2 dλ
λ

in (�1
R3
/d R3)

◦. This proves the statement when R is a field.
In general, the statement for Q[x, x−1

] implies the one for a general R by sending x to λ. Finally,
if we can show that K M

2 (Q[x, x−1
]3)

◦
→ K M

2 (Q(x)3)
◦ is an injection, the known statement for Q(x)

implies the one for Q[x, x−1
]. This injectivity follows from the commutative diagram:

K M
2 (Q[x, x−1

]3)
◦

��

� � ϕ
// (�1

Q[x,x−1]3
/d(Q[x, x−1

]3))
◦

��

t�1
Q[x,x−1]

⊕ t2�1
Q[x,x−1]∼

oo

� _

��

K M
2 (Q(x)3)

◦ �
� ϕ

// (�1
Q(x)3/d(Q(x)3))

◦ t�1
Q(x) ⊕ t2�1

Q(x)∼
oo

Where the injectivity of ϕ was proven above. This finishes the proof of the lemma. □

Finally, we prove the result for R2.

Proposition 4.0.6. Let α = 1 + t ∈ R×

2 and βi ∈ R×, for 1 ≤ i ≤ n − 1, then ϕ({α, β1, . . . , βn−1) is given
by (4.0.1).
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Proof. Note the map ψ from R2 to R3 that sends t to t2/2. This map induces an isomorphism

(�n−1
R2
/d�n−2

R2
)[1]

≃ (�n−1
R3
/d�n−2

R3
)[2].

Therefore we only need to compute the image of{
1 +

t2

2 , β1, . . . , βn−1
}

(4.0.3)

in (�n−1
R3
/d�n−2

R3
)[2]. By the previous lemma, we know that{

1 +
t2

2 , β1
}

=
1
2

{
1 +

t
β1
, 1 +β1t

}
,

which implies that (4.0.3) is equal to

1
2

{
1 +

t
β1
, 1 +β1t, β2, . . . , βn−1

}
. (4.0.4)

This last expression is the 1
2 times the product of {1 + t/β1} ∈ K M

1 (R3)
◦ and

{1 +β1t, β2, . . . , βn−1} ∈ K M
n−1(R3)

◦.

By the induction hypothesis on n,

ϕ({1 +β1t, β2, . . . , βn−1})= log(1 +β1t)
dβ2

β2
∧ · · · ∧

dβn−1

βn−1
.

Since ϕ is multiplicative, this implies that (4.0.4) is sent by ϕ to

1
2 log

(
1 +

t
β1

)
d log(1 +β1t)

dβ2

β2
∧ · · · ∧

dβn−1

βn−1
= log

(
1 +

t2

2

)
dβ1

β1
∧ · · · ∧

dβn−1

βn−1
. □

This finishes the proof of Proposition 4.0.1. □

In the case of truncated polynomial rings, we can also describe this isomorphism as follows:

Corollary 4.0.7. The map λi :3n R×
∞

→�n−1
R given by

λi (a1 ∧ · · · ∧ an)= rest=0
1
t i

d log(a1)∧ · · · ∧ d log(an) ∈�n−1
R ,

for 1 ≤ i < r , descends to give a map K M
n (Rr )

◦
→�n−1

R . Their sums induce an isomorphism

K M
n (Rr )

◦
→

⊕
1≤i<r

�n−1
R .

Proof. For 1 ≤ i < r , we let µi : (�n−1
Rr
/d(�n−2

Rr
))◦ → �n−1

R be given by µi (w) := rest=0
1
t i dω. The

induced map

(�n−1
Rr
/d(�n−2

Rr
))◦ →

⊕
1≤i<r

�n−1
R

is an isomorphism.
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The surjectivity can be seen as follows. Given ω ∈�n−1
R , and 1 ≤ i, j < r ,

µ j (t iω)= rest=0
1
t j

d(t iω)= δi j · i ·ω.

To prove injectivity, using the notation in the proof of Lemma 4.0.3, we note that (�n−1
Rr
/d(�n−2

Rr
))◦

is the direct sum of its subspaces ((�n−1
Rr
/d(�n−2

Rr
))◦)[i] of ⋆-weight i , for 1 ≤ i < r . The subspace

((�n−1
Rr
/d(�n−2

Rr
))◦)[i] consists of elements of the form t iα+βt i−1dt , with α ∈�n−1

R and β ∈�n−2
R . For

1 ≤ j < r , we have

µ j (t iα+βt i−1dt)= δi j (i ·α+ (−1)n−1dβ).

Therefore, if µi (t iα+βt i−1dt)= 0, then α = ((−1)n/ i)dβ and hence

t iα+βt i−1dt = d
(
(−1)nβ

i
t i

)
.

This proves the injectivity of the map

(�n−1
Rr
/d(�n−2

Rr
))◦ =

⊕
1≤i<r

((�n−1
Rr
/d(�n−2

Rr
))◦)[i] →

⊕
1≤i<r

�n−1
R .

The corollary then follows from Proposition 4.0.1. □

5. Construction of maps from B2(Rm) ⊗ R×
m to �1

R

In this section, we assume that R is a regular, local Q-algebra.

5.1. Preliminaries on the construction. In this section, we fix m and r such that 2 ≤ m < r < 2m. We
let f (s, u) := log◦(1 − s exp(u)) = log((1 − s exp(u))/(1 − s)). As in the proof of Proposition 3.0.1,
we define ℓi : R×

∞
→ R, by the formula ℓi (a) := ti (log◦(a)). Note that ti is defined in the beginning of

Section 3. Let us consider the expression

α j :=

∑
1≤i≤ j−1

idℓ j−i ∧ ℓi =

∑
a+b= j
1≤a,b

bdℓa ∧ ℓb, (5.1.1)

for m ≤ j < r , which defines a map from 32 R×
∞

to �1
R . We will use this expression to define a map from

B2(Rm)⊗ R×
m .

Lemma 5.1.1. For s ∈ R♭, and u :=
∑

0<i ui t i
∈ t R∞, letting fs :=

∂ f
∂s and ut :=

∂u
∂t =

∑
0<i iui t i−1, we

have

α j (δ(s exp(u)))= t j−1( fsut)ds = t j−1

(
∂ log◦(1 − s exp(u))

∂s
·
∂u
∂t

)
ds.

Proof. Let us write f (s, u) =: f =
∑

0<i fi t i . The expression idℓ j−i ∧ ℓi evaluated on δ(s exp(u)) is
equal to

id( f j−i )ui − i fi du j−i = id( f j−i )ui + ( j − i) fi du j−i − j fi du j−i .
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Summing these, we find that

α j (δ(s exp(u)))=

∑
1≤i≤ j−1

(id( f j−i )ui + ( j − i) fi du j−i )− j
∑

1≤i≤ j−1

fi du j−i .

Let Du :=
∑

1≤i dui t i and ut :=
∂u
∂t . Then the last expression can be rewritten as

t j−1(D( f ut))− j t j ( f Du)= t j−1(D( f ut)− ( f Du)t)= t j−1(D f ut − ft Du). (5.1.2)

We would like to see that the coefficient of dui in (5.1.2) is equal to 0. The coefficient of dui in
D f = D log((1 − s exp(u))/(1 − s)) is equal to (−s exp(u))/(1 − s exp(u))t i . Therefore, the coefficient
of dui in (5.1.2) is

t j−1−i

(
−s exp(u)

1 − s exp(u)
ut − ft

)
.

Since ft =
∂
∂t (log(1 − s exp(u)))= (−s exp(u))/(1 − s exp(u))ut , the last expression is 0.

Therefore α j (δ(s exp(u))) does not depend on the dui , and we can rewrite (5.1.2) as

α j (δ(s exp(u)))= t j−1(D f ut − ft Du)= t j−1( fsut)ds,

where fs =
∂ f
∂s . □

Lemma 5.1.2. If u = u|m and m ≤ j < r , we have

j t j ( f )= st j−1( fsut).

Proof. The expression j t j ( f )− st j−1( fsut) is equal to

t j−1( ft − s( fsut))= t j−1

(
∂

∂t
log(1 − s exp(u))− s

∂

∂s
log

(
1 − s exp(u)

1 − s

)
· ut

)
.

Since
∂

∂t
log(1 − s exp(u))=

−s exp(u)
1 − s exp(u)

· ut = s
∂

∂s
log(1 − s exp(u)) · ut ,

the above expression is equal to t j−1((s/(s − 1))ut), which is 0, under the assumption that u = u1t +

· · · + um−1tm−1 and m ≤ j . □

Let dℓ0 : R×
∞

→�1
R be defined as dℓ0(α) := d log(α(0)). Note that ℓ0 itself is not defined, even though

ℓi are defined for i > 0.

Proposition 5.1.3. The map Mm,r defined as

Mm,r := ℓim,r ⊗ dℓ0 −

∑
m≤ j<r

r − j
j
(α j ◦ δ)⊗ ℓr− j

gives a map from B2(R∞)⊗ R×
∞

to �1
R , of ⋆-weight r , which vanishes on the image under δ of those

[seu
] ∈ Q[R♭∞], with u = u|m . The map Mm,m+1 descends to a map from B2(Rm)⊗ R×

m .
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Proof. That Mm,r is of ⋆-weight r follows immediately from the expression for α j (δ(s exp(u))) in
Lemma 5.1.1, which shows that α j (δ(s exp(u))) is of ⋆-weight j . Let us now show that Mm,r evaluated
on [s exp(u)] ⊗ s exp(u), with u = u|m , is equal to 0. By Lemma 5.1.1, α j (δ(s exp(u))) is equal to
t j−1( fsut)ds. This implies that

∑
m≤ j<r (r − j/j)(α j ◦ δ)⊗ ℓr− j evaluated on [s exp(u)] ⊗ s exp(u) is

equal to ∑
m≤ j<r

r − j
j

t j−1( fsut)ur− j ds =
1
s

∑
m≤ j<r

(r − j)t j ( f )ur− j ds,

by Lemma 5.1.2, since u = u|m . The final expression can be rewritten as

tr−1( f · ut |r−m)
ds
s

= ℓim,r (s exp(u))ds
s

= (ℓim,r ⊗ dℓ0)([s exp(u)] ⊗ s exp(u))

since u = u|m . This proves the first part of the proposition.
When r = m + 1, Mm,r takes the form

ℓim,m+1 ⊗ dℓ0 −
1
m ((dℓm−1 ∧ ℓ1 + 2dℓm−2 ∧ ℓ2 + · · · + (m − 1)dℓ1 ∧ ℓm−1) ◦ δ)⊗ ℓ1.

Since all the functions in this expression depend on the classes of the elements in Rm , the statement easily
follows. □

5.2. The regulator maps from H2(Rm, Q(3)) to �1
R. We would like to define maps

Lm,r : H2(Rm,Q(3))→�1
R

based on the maps Mm,r in Proposition 5.1.3. The problem with Mm,r is that it does not descend to a map
on B2(Rm)⊗ R×

m , if r ̸= m + 1. We will modify Mm,r slightly to correct this defect but keep the other
properties to obtain Lm,r . In order to simplify the notation from now on we are going to let ℓim,m := 0.
Note that ℓim,r was previously defined only when m +1 ≤ r ≤ 2m −1 so this will not cause any confusion.
We define βm( j), for m ≤ j < 2m − 1, by

βm( j) := dℓim, j +

∑
a+b= j

1≤a,b<m

b(dℓa ∧ ℓb) ◦ δ =

∑
a+b= j

m≤a,1≤b

bd(ℓa ∧ ℓb) ◦ δ+

∑
a+b= j

1≤a,b<m

b(dℓa ∧ ℓb) ◦ δ

= dℓim, j +α j ◦ δ−

∑
1≤a≤ j−m

(( j − a)dℓa ∧ ℓ j−a + adℓ j−a ∧ ℓa) ◦ δ

and

Lm,r := ℓim,r ⊗ dℓ0 −

∑
m≤ j<r

( r− j
j βm( j)⊗ ℓr− j − ℓim, j ⊗ dℓr− j

)
. (5.2.1)

We would like to emphasize that, because of our conventions, the summand that corresponds to j = m is
equal to ((r − m)/m)αm ⊗ ℓr−m exactly as in the case of Mm,r , the terms corresponding to m < j are
modified however.

Lemma 5.2.1. With the above definition, Lm,r defines a map from B2(Rm)⊗ R×
m to �1

R of ⋆-weight r .
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Proof. Since all the terms in the definition of Lm,r depend on the variables modulo tm , we obtain a map
from B2(Rm)⊗ R×

m to �1
R .

Since we know that Mm,r is of ⋆-weight r , in order to prove that Lm,r is of ⋆-weight r , it suffices to
prove the same for Lm,r − Mm,r . This difference is equal to the sum of

−

∑
m≤ j<r

( r− j
j dℓim, j ⊗ ℓr− j − ℓim, j ⊗ dℓr− j

)
(5.2.2)

and ∑
m≤ j<r

r− j
j

( ∑
1≤a≤ j−m

(( j − a)dℓa ∧ ℓ j−a + adℓ j−a ∧ ℓa)

)
◦ δ⊗ ℓr− j . (5.2.3)

Let us first look at the term ( j − a)dℓa ∧ ℓ j−a + adℓ j−a ∧ ℓa . For any u ∧ v ∈32t R∞ and λ ∈ R×,

(( j − a)dℓa ∧ ℓ j−a + adℓ j−a ∧ ℓa)(λ ⋆ (u ∧ v))

= (( j − a)d(λaℓa)∧ λ
j−aℓ j−a + ad(λ j−aℓ j−a)∧ λ

aℓa)((u ∧ v))

=
(
λ j (( j − a)dℓa ∧ ℓ j−a + adℓ j−a ∧ ℓa)+ ( j − a)a(ℓa ∧ ℓ j−a + ℓ j−a ∧ ℓa)λ

j−1dλ
)
(u ∧ v)

= λ j (( j − a)dℓa ∧ ℓ j−a + adℓ j−a ∧ ℓa)(u ∧ v).

Therefore the term (5.2.3) is of ⋆-weight r .
Similarly, (r − j)dℓim, j ⊗ ℓr− j − jℓim, j ⊗ dℓr− j evaluated on λ ⋆ (u ⊗ v) is equal to

(r − j)d(λ jℓim, j )⊗ λr− jℓr− j − jλ jℓim, j ⊗ d(λr− jℓr− j )

= λr ((r − j)dℓim, j ⊗ ℓr− j − jℓim, j ⊗ dℓr− j )+ (r − j) j (ℓim, j ⊗ ℓr− j − ℓim, j ⊗ ℓr− j )λ
r−1dλ

= λr ((r − j)dℓim, j ⊗ ℓr− j − jℓim, j ⊗ dℓr− j ).

evaluated on u ⊗ v. This implies that the term (5.2.2) is of ⋆-weight r and finishes the proof of the
lemma. □

Proposition 5.2.2. The map Lm,r : B2(Rm)⊗ R×
m →�1

R vanishes on the boundaries of the elements in
Q[R♭m] and hence induces a map

(B2(Rm)⊗ R×

m )/ im(δ)→�1
R,

which by restriction gives the regulator map H2(Rm,Q(3))→�1
R of ⋆-weight r we were looking for. We

continue to denote these two induced maps by the same notation Lm,r .

Proof. We know that Mm,r vanishes on the boundary δ(s exp(u)) of elements s exp(u) ∈ Q[R∞], with
u = u|m , by Proposition 5.1.3. We also know by the previous lemma that Lm,r descends to a map on
B2(Rm)⊗ R×

m . Therefore, in order to prove the statement, we only need to prove that

Lm,r (δ(s exp(u)))= Mm,r (δ(s exp(u))),
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for u = u|m . We first rewrite Lm,r as the composition of δ⊗ id with∑
a+b=r

m≤a,1≤b

b · ℓa ∧ ℓb ⊗ dℓ0 −

∑
a+b+c=r
m≤a+b,

1≤a,b,c<m

c
a + b

b · dℓa ∧ ℓb ⊗ ℓc

−

∑
a+b+c=r

m≤a,1≤b,c

c
a + b

b · d(ℓa ∧ ℓb)⊗ ℓc +

∑
a+b+c=r

m≤a,1≤b,c

b · ℓa ∧ ℓb ⊗ dℓc.

On the other hand, recall that Mm,r is the composition of δ⊗ id with∑
a+b=r

m≤a,1≤b

b · ℓa ∧ ℓb ⊗ dℓ0 −

∑
a+b+c=r
m≤a+b,
1≤a,b,c

c
a + b

b · dℓa ∧ ℓb ⊗ ℓc.

If we compare the two expressions we see that all of the terms match above except possibly the ones that
correspond to the triples (a, b, c) with 1 ≤ a, b, c, a + b + c = r , and m ≤ a or m ≤ b. By antisymmetry,
we may assume without loss of generality that m ≤ a. We need to compare the coefficients of the terms
dℓa ∧ ℓb ⊗ ℓc, ℓa ∧ dℓb ⊗ ℓc, and ℓa ∧ ℓb ⊗ dℓc, subject to the above constraints, in Lm,r and Mm,r .
The coefficient of dℓa ∧ ℓb ⊗ ℓc in Lm,r and Mm,r are both equal to −cb/(a + b). The coefficient of
ℓa ∧dℓb ⊗ℓc in Lm,r is −cb/(a +b) and in Mm,r , it is ca/(a +b). Finally, the coefficient of ℓa ∧ℓb ⊗dℓc

in Lm,r is b, whereas in Mm,r it is 0.
We finally note that the values of ℓa ∧ dℓb ⊗ ℓc and ℓa ∧ ℓc ⊗ dℓb on δ(s exp(u))⊗ s exp(u) are the

same when u = u|m . Then the equality −cb/(a + b)+ c = ca/(a + b) finishes the proof. □

We can restate Lemma 5.2.1 as follows. First, let

γm( j) := dℓm, j +

∑
a+b= j

1≤a,b<m

b(dℓa ∧ ℓb).

Note that since ℓim, j = ℓm, j ◦ δ by Definition 3.0.2, we have βm( j)= γm( j) ◦ δ. Finally, if we let

Nm,r := ℓm,r ⊗ dℓ0 −

∑
m≤ j<r

( r− j
j γm( j)⊗ ℓr− j − ℓm, j ⊗ dℓr− j

)
,

then by (5.2.1), we have the following.

Corollary 5.2.3. For 2 ≤ m < r < 2m, we have a commutative diagram:

B2(Rr )⊗ R×
r

δ⊗id
//

����

32 R×
r ⊗ R×

r

Nm,r
��

B2(Rm)⊗ R×
m

Lm,r
// �1

R

We expect that the above maps combine to give an isomorphism between the infinitesimal part of
the cohomology of Rm and the direct sum of the module of Kähler differentials, justifying the name of
the regulator; see [Goncharov 1995, Conjecture 1.15]. However, at this point, we can only prove the
surjectivity.
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Proposition 5.2.4. Suppose that R is a regular local Q-algebra and 2 ≤ m as the above. The direct sum
of the Lm,r induces a surjection⊕

m<r<2m

Lm,r : H2(Rm,Q(3))◦ ↠
⊕

m<r<2m

�1
R.

Proof. Suppose that α∈ B2(Rm)
◦ is in the part of kernel of the δ◦ which is of ⋆-weight r . By Theorem 3.0.3,

this part is isomorphic to R via the restriction of the map ℓim,r . Computing the value of Lm,r on α⊗ b,
for b ∈ R×, we see that Lm,r (α⊗ b)= ℓim,r (α)db/b. Since α⊗ b is in the kernel of δ, we see that the
image of Lm,r above is the additive group generated by the set Rd log(R×). Since R is local this is equal
to �1

R . This implies the surjectivity. □

Conjecture 5.2.5. We conjecture that the map
⊕

m<r<2m Lm,r in Proposition 5.2.4 is injective and hence
is an isomorphism.

6. Construction of the maps from 33(R2m−1, (tm))× to �1
R/k

For a ring A and ideal I , let (A, I )× := {(a, b) | a, b ∈ A×, a − b ∈ I }, and let πi : (A, I )× → A×,
for i = 1, 2 denote the two projections. If R is a k-algebra, in this section we will define a map
ωm,r :33(Rr , (tm))× →�1

R/k .

6.1. Definition of �m,r . Assume that R is Q-algebra and 2 ≤ m < r < 2m. Let us put Im,r := im((1 +

(tm))⊗32 R×
r )⊆ (33 R×

r )
◦.

Definition 6.1.1. We define the map �m,r : Im,r →�R by the following formulae:

(i) If x ≥ m, x + y + z = r , y, z ≥ 1 and a, b, c ∈ R then

�m,r (exp(at x)∧ exp(bt y)∧ exp(ct z)) := a(yb · dc − zc · db).

(ii) If x ≥ m, x + y = r , y ≥ 1, a, b ∈ R and γ ∈ R× then

�m,r (exp(at x)∧ exp(bt y)∧ γ ) := a
(

yb ·
dγ
γ

)
.

(iii) If x ≥ m, x + z = r , z ≥ 1, a, c ∈ R and β ∈ R× then

�m,r (exp(at x)∧β ∧ exp(ct z)) := a
(

−zc ·
dβ
β

)
.

(iv) If x = r and β, γ ∈ R× then

�m,r (exp(at x)∧β ∧ γ ) := 0.

Remark 6.1.2. Notice that in case (ii) of the above definition, using the notation exp(ct z) with z = 0
instead of γ would not make sense. This is because in order for exp(ct z) to be well-defined, we need
ct z

∈ (t) ⊆ Rr . However, if we continue to use this notation exp(c), without specifying what c is
and without the notation making actual sense, we note that the formula (ii) becomes a special case of
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formula (i) in the following sense. If we formally put γ = exp(c) then again formally log(γ ) = c and
dγ
γ

= d log(γ )= dc. This makes formula (ii) exactly the same as formula (i) if we also note that since we
put z = 0 the term involving zc.db disappears in (i). We will be using these notations and conventions in
order to shorten the expressions in the remaining of the paper. However, we would like to emphasize that
when proving the statements under consideration we are always using the Definition 6.1.1 since these
notations are only formal and do not make actual sense. Similar comments apply to (iii) when y = 0 and
to (iv) when y = z = 0. To sum up we will write that, if x ≥ m, x + y + z = r and y, z ≥ 0 then

�m,r (exp(at x)∧ exp(bt y)∧ exp(ct z))= a(yb · dc − zc · db). (6.1.1)

In the proof of the next proposition, we will use the following notation. Recall that Qr = Q[t]/(tr ).
Since we assume that R contains Q, Rr is a Qr -algebra. Let d : Rr → �1

Rr/Qr
denote the canonical

differential. Note that d has the property that d(t)= 0. There is a natural isomorphism⊕
0≤i<r

t i�1
R →�1

Rr/Qr
.

Proposition 6.1.3. Suppose that f̂ , f̃ ∈ R♭r and ĝ, g̃ ∈ R×
r have the same reductions modulo (tm), with

2 ≤ m < r < 2m. Then we have

�m,r (δ([ f̂ ])∧ ĝ − δ([ f̂ ])∧ g̃)= 0 and �m,r (δ([ f̂ ])∧ ĝ − δ([ f̃ ])∧ ĝ)= 0.

Proof. By the assumptions ĝ/g̃ is a product of terms of the form exp(at x) with a ∈ R and m ≤ x < r .
Hence, in order to prove the first equality we need to prove that �m,r vanishes on δ([ f̂ ])∧ exp(at x). By
the definition of �m,r above, we have

�m,r (δ([ f̂ ])∧ exp(at x))= −a · rest=0
1

tr−x (d log ∧d log)((1 − f̂ )∧ f̂ )= 0,

since (d log ∧d log)((1 − f̂ )∧ f̂ )= 0. In order to prove the second equality, note that ĝ is a product of
terms of type exp(ct z) with 0 ≤ z, where for z = 0, we use the notation in Remark 6.1.2. Then using the
first equality, we only need to prove that

�m,r (δ([ f̂ ])∧ exp(ct z)− δ([ f̃ ])∧ exp(ct z))= 0, (6.1.2)

for 0 ≤ z < m. On the other hand, since f̂ and f̃ are equal modulo (tm), we see that (6.1.2) holds when
r − z <m. Therefore from now on we assume that m ≤ r − z. If we knew (6.1.2) in the special case when
f̂ = f̃ + at x with m ≤ x , then by successively using this information we obtain (6.1.2) for any f̂ and
f̃ which have the same reduction modulo (tm). Therefore, from now on we assume that f̂ = f̃ + at x ,
and f̃ = s + b1t + b2t2

+ · · · . The left-hand side of (6.1.2)) is a sum of two terms: one containing the
term dc and the other one containing the term c. Let us first consider the term containing dc. The term
containing dc is 0 when r − z = m since m ≤ x . Therefore we assume that m < r − z. In this case, we
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compute that this term containing dc is equal to(( ∑
1≤i≤r−z−m

i · ℓr−z−i ∧ ℓi

)
◦ δ

)
([ f̂ ] − [ f̃ ]) · dc. (6.1.3)

We have
((∑

1≤i≤r−z−m i · ℓr−z−i ∧ ℓi
)
◦ δ

)
([h]) = ℓim,r−z([h|tm ]), by the definition of ℓim,r−z , for any

h ∈ R♭r . This implies that (6.1.3) is equal to (ℓim,r−z([ f̂ |tm ])− ℓim,r−z([ f̃ |tm ])) · dc = 0. Finally, we
consider summand of (6.1.2) which contain the term c. Letting β := b1t + b2t2

+ · · · , this term is equal
to −z · c · a times the coefficient of tr−z−x in∑
0<i, j

(−1)i−1 β i−1

(s − 1)i
· d

(
(−1) j−1

j
β j

s j

)
−

(
(−1)i−1β

i−1

si · d
(
(−1) j−1

j
β j

(s − 1) j

))

+

∑
0<i

(−1)i−1 β i−1

(s − 1)i
·

ds
s

−

(
(−1)i−1β

i−1

si ·
ds

s − 1

)
.

Let us rewrite the last expression as∑
0<i, j

(−1)i+ jβ i+ j−2d(β)
(

1
(s−1)i s j −

1
si (s−1) j

)

+

∑
0<i, j

(−1)i+ j−1β i+ j−1ds
(

1
(s−1)i s j+1 −

1
si (s−1) j+1

)

+

∑
0<i

(−1)i−1β i−1ds
(

1
(s−1)i s

−
1

si (s−1)

)
.

In this expression, the first sum is equal to 0. In the second sum only the terms with i = 1 survive, to
make the sum equal to ∑

0< j

(−1) jβ j ds
(

1
(s − 1)s j+1 −

1
s(s − 1) j+1

)
.

This is precisely the negative of the third sum above. This finishes the proof. □

Let s :33(Rr , (tm))× →33 R×
r , be given by s :=33π1 −33π2. The group33(Rr , (tm))× is generated

by elements of the form (a, a′)∧(b, b′)∧(c, c′) with a−a′, b−b′, c−c′
∈ (tm) and a, a′, b, b′, c, c′

∈ R×
r .

If we let a = αa′, b = βb′, and c = γ c′, then α, β, γ ∈ 1 + (tm). We have

s((a, a′)∧ (b, b′)∧ (c, c′))= αa′
∧βb′

∧ γ c′
− a′

∧ b′
∧ c′

∈ Im,r ,

since the last expression is a sum of elements of the form δ∧ d ∧ e with δ ∈ 1 + (tm) and d , e ∈ R×
r . This

implies that s factors through Im,r ⊆ (33 R×
r )

◦.

Definition 6.1.4. Suppose that R is a k-algebra. We let �m,r denote the composition of �m,r with the
canonical projection �1

R →�1
R/k . We define ωm,r :33(Rr , (tm))× →�1

R/k as the composition �m,r ◦ s
of s :33(Rr , (tm))× → Im,r , and �m,r : Im,r →�1

R/k .
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6.2. Relation of �m,r to Lm,r . In this section, we assume that R is a smooth local k-algebra of relative
dimension 1. We will relate the construction �m,r to Lm,r , assuming Conjecture 5.2.5. Even though the
results in this section will not be used in the rest of the paper, we include this section since it gives a more
conceptual description of �m,r and it will be referred to in future work. Let us denote the composition of
Lm,r with the canonical projection �1

R →�1
R/k by Lm,r . Given α ∈ Im,r , we will show that there exists

ε ∈ im((1 + (tm))⊗ k×
⊗ R×

r )⊆ (33 R×

r )
◦,

such that α−ε= δr (γ ) for some γ ∈ (B2(Rr )⊗ R×
r )

◦. Assuming Conjecture 5.2.5, we will then show that

�m,r (α)= Lm,r (γ |tm ) ∈�1
R/k .

Lemma 6.2.1. For any α ∈ (33 R×
r )

◦, there exists ε ∈ im(32 R×
r ⊗ k×)⊆ (33 R×

r )
◦ such that α− ε lies in

the image of (B2(Rr )⊗ R×
r )

◦ in (33 R×
r )

◦. Moreover, if

α ∈ im((1 + tm Rr )
×

⊗32 R×

r )⊆ (33 R×

r )
◦

then we can choose
ε ∈ im((1 + tm Rr )

×
⊗ R×

r ⊗ k×)⊆ (33 R×

r )
◦

such that α− ε lies in the image of (B2(Rr )⊗ R×
r )

◦ in (33 R×
r )

◦.

Proof. The infinitesimal part of the cokernel of the map

B2(Rr )⊗ R×

r →33 R×

r

is K M
3 (Rr )

◦ which is isomorphic to
⊕

1≤i<r t i�2
R via the map from 33 R×

r , whose i-th coordinate is
given by

rest=0
1
t i

d log(y1)∧ d log(y2)∧ d log(y3), (6.2.1)

by Corollary 4.0.7. Further, by the assumption on smoothness of dimension 1, we conclude that the
natural map

�1
R ⊗k �

1
k →�2

R

is surjective. Since we assume that R is local, the map

R ⊗Z R×
→�1

R,

which sends a ⊗ b to a · d log b, is surjective.
Note that the image of exp(t i u)∧v∧λ, with u ∈ R, v ∈ R× and λ ∈ k× under the i-th map in (6.2.1) is

i · u · d log(v)∧ d log(λ) and under the coordinate j maps in (6.2.1) with j ̸= i , the image is 0. Together
with the above, this shows that the map

(32 R×

r ⊗ k×)◦ → (33 R×

r )
◦
→

⊕
1≤i<r

t i�2
R

is surjective and hence proves the first statement.
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For the second statement, note that if α ∈ im((1 + tm Rr )
×

⊗32 R×
r ) ⊆ (33 R×

r )
◦ then its image in⊕

1≤i<r t i�2
R lands in the summand

⊕
m≤i<r t i�2

R . Since by the above discussion, we also see that the
composition

(1 + tm Rr )
×

⊗ R×

r ⊗ k×
→ (33 R×

r )
◦
→

⊕
m≤i<r

t i�2
R

is surjective, the second statement similarly follows. □

The next lemma is crucial in relating �m,r to Lm,r .

Lemma 6.2.2. Let A(r) denote the kernel of the differential B2(Rr )⊗R×
r →33 R×

r . Then Conjecture 5.2.5
implies that the composition

A(r)⊆ B2(Rr )⊗ R×

r
|tm
−→ B2(Rm)⊗ R×

m
Lm,r

−−→�1
R

is 0.

Proof. By Proposition 5.2.2, we know that Lm,r induces a map from H2(Rm,Q(3)) to �1
R of weight r .

The composition of the maps in the statement of the lemma can be rewritten as the composition

A(r)→ H2(Rr ,Q(3)) |tm
−→ H2(Rm,Q(3)) Lm,r

−−→�1
R.

By Conjecture 5.2.5 the ⋆-weights of H2(Rr ,Q(3)) are between r + 1 and 2r − 1. This implies that the
map from H2(Rr ,Q(3))→�1

R , which is of weight r , is in fact the zero map and finishes the proof. □

Remark 6.2.3. We emphasize that, in the above lemma, we prove that Lm,r (γ |tm )= 0 for γ ∈ A(r). If γ
is only assumed to be in the kernel of the map B2(Rm)⊗ R×

m →33 R×
m then Lm,r (γ ) need not be equal

to 0.

Lemma 6.2.4. Assuming Conjecture 5.2.5, suppose that γ ∈ B2(Rr )⊗ R×
r such that

δr (γ ) ∈ im
(( ⊕

0≤s<r

(1 + t s Rr )
×

⊗ (1 + tr−s Rr )
×

)
⊗ k×

)
⊆33 R×

r

then Lm,r (γ |tm )= 0.

Proof. First let α := exp(ut i )∧ exp(vt j )∧ λ ∈33 R×
r with u, v ∈ R and λ ∈ k× and r ≤ i + j . We have

exp(ut i )∧ exp(vt j ) ∈ (32 R×
r )

◦ and

rest
1
ta

d log(exp(ut i ))∧ d log(exp(vt j ))= rest
1
ta

d(ut i )∧ d(vt j )= 0 ∈�1
R,

for all 1 ≤ a < r , since r ≤ i + j . This implies that there is α0 ∈ B2(Rr ) such that δr (α0)= exp(ut i )∧

exp(vt j ), and hence δr (α0 ⊗λ)= α. Let us compute Lm,r ((α0 ⊗λ)|tm ). Since ℓi (λ)= 0, for 0< i by the
formula for Lm,r we see that

Lm,r ((α0 ⊗ λ)|tm )= ℓim,r (α0|tm ) · d log(λ) ∈�1
R.
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This expression vanishes in �1
R/k and therefore Lm,r ((α0 ⊗ λ)|tm )= 0. Taking the sum of expressions

such as above, we deduce that if

α ∈ im
(( ⊕

0≤s<r

(1 + t s Rr )
×

⊗ (1 + tr−s Rr )
×

)
⊗ k×

)
⊆33 R×

r

then there is a α̃ ∈ B2(Rr )⊗ R×
r such that δr (α̃)= α and Lm,r (α̃|tm )= 0.

Applying this to α := δr (γ ) we deduce that there exists α̃ ∈ B2(Rr )⊗ R×
r such that δr (α̃)= δr (γ ) and

Lm,r (α̃|tm )= 0. Then we have

Lm,r (γ |tm )= Lm,r (α̃|tm )+ Lm,r ((γ − α̃)|tm )= Lm,r ((γ − α̃)|tm ).

Since δr (γ − α̃)= 0, the last expression is 0 by Lemma 6.2.2. □

Lemma 6.2.5. Assuming Conjecture 5.2.5, if γ ∈ B2(Rr )⊗ R×
r such that

δr (γ ) ∈ im((32 R×

r )
◦
⊗ k×)⊆33 R×

r

then Lm,r (γ |tm )= 0.

Proof. Suppose that γ is as in the statement of the lemma. Fix some a ∈ Z>1. We inductively define γ [i]

as follows. Let γ [−1]
= γ , and

γ [i]
:= a ⋆ γ [i−1]

− aiγ [i−1],

for 0 ≤ i < r . Since Lm,r is of weight r , Lm,r (γ
[i]

|tm )= (ar
−ai )Lm,r (γ

[i−1]
|tm ). Therefore proving that

Lm,r (γ |tm )= 0 is equivalent to proving that Lm,r (γ
[r−1]

|tm )= 0. On the other hand,

δ(γ [r−1])⊆ im
(( ⊕

0≤s<r

(1 + t s Rr )
×

⊗ (1 + tr−s Rr )
×

)
⊗ k×

)
,

and therefore the previous lemma implies that Lm,r (γ
[r−1]

|tm )= 0. □

Assuming Conjecture 5.2.5, we construct a map �̃m,r : Im,r →�R/k , using Lm,r as follows. Starting
with α ∈ Im,r , we know, by Lemma 6.2.1, that there exists

ε ∈ im((1 + (tm))⊗ k×
⊗ R×

r )⊆ (33 R×

r )
◦,

such that α− ε = δr (γ ) for some γ ∈ (B2(Rr )⊗ R×
r )

◦. We then define

�̃m,r (α) := Lm,r (γ |tm ) ∈�1
R/k . (6.2.2)

In order to see that �̃m,r (α) := Lm,r (γ |tm ) ∈�1
R/k is well-defined, suppose that

ε′
∈ im((1 + (tm))⊗ k×

⊗ R×

r )⊆ (33 R×

r )
◦

and γ ′
∈ (B2(Rr )⊗ R×

r )
◦ are other such choices. Then

δr (γ
′
− γ )= ε− ε′

∈ im((32 R×

r )
◦
⊗ k×)⊆33 R×

r
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and hence Lm,r ((γ
′
− γ )|tm )= 0 by Lemma 6.2.5. The following proposition is the statement which we

were looking for, that relates �m,r to �̃m,r and hence to Lm,r .

Proposition 6.2.6. Assuming Conjecture 5.2.5, we have �m,r = �̃m,r .

Proof. Suppose that x ≥ m and x + y + z = r , with y, z ≥ 0. We need to check that

�̃m,r (exp(at x)∧ exp(bt y)∧ exp(ct z))= a(yb · dc − zc · db).

(i) Case when y = z = 0. In this case, we need to compute the image of exp(atr )∧β∧γ under �̃m,r , where
β, γ ∈ R×. The image of exp(atr )∧β in

⊕
1≤i≤r−1 t i�1

R is equal to 0. Therefore, there is α ∈ B◦

2 (Rr )

such that δr (α)= exp(atr )∧β. Then, by definition,

�̃m,r (exp(atr )∧β ∧ γ )= Lm,r ((α⊗ γ )|tm ). (6.2.3)

On the other hand, by (5.2.1), Lm,r (α|tm ⊗ γ )= ℓim,r (α|tm )
dγ
γ

. By the expression (3.0.2) for ℓim,r , we
have

ℓim,r (α|tm )=

(
32 log◦(δr (α))

∣∣∣ ∑
1≤i≤r−m

i tr−i
∧ t i

)
= 0,

since 32 log◦(δr (α)) = 32 log◦(exp(atr ) ∧ β) = 0. By the above formula (6.2.3), this implies that
�̃m,r (exp(atr )∧β ∧ γ )= 0 as we wanted to show.

(ii) Case when y ̸= 0 and z = 0. In this case we try to compute the image of exp(at x)∧ exp(bt y)∧ γ

under �̃m,r . Here we assume that γ ∈ R× and x + y = r , with x ≥ m. By exactly the same argument as
above, we deduce that there exists α ∈ B◦

2 (Rr ) such that δr (α)= exp(at x)∧ exp(bt y) and we have

�̃m,r (exp(at x)∧ exp(bt y)∧ γ )= Lm,r ((α⊗ γ )|tm )= ℓim,r (α|tm )
dγ
γ
.

Since δr (α)= exp(at x)∧ exp(bt y)

ℓim,r (α|tm )=

(
32 log◦(δr (α))

∣∣∣ ∑
1≤i≤r−m

i tr−i
∧ t i

)
= yab.

This exactly coincides with the expression in the statement of the proposition.

(iii) Case when y ̸= 0 and z ̸= 0. Note that, by localizing, we may assume that R is local. Moreover,
since both sides of the expression are linear in a, b and c, we may assume without loss of generality that
a, b, c ∈ R×. Since any element in a local ring can be written as a sum of units.

If θ := exp(at x)∧ exp(bt y) then its image in
⊕

1≤i≤r−1 t i�1
R is equal to⊕

1≤i≤r−1

rest
1
t i
(32d log(exp(at x)∧ exp(bt y))),

which only has a nonzero component in degree x + y equal to yb ·da − xa ·db. If we compute the image
of ϕ := (x/(x + y)) exp(abt x+y)∧b−(y/(x + y)) exp(abt x+y)∧a in the same group, we obtain the same
element. Therefore θ −ϕ lies in the image of B2(Rr ). Suppose that γ0 ∈ B2(Rr ) such that δ(γ0)= θ −ϕ.
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Since exp(abt x+y)∧exp(ct z) has weight r , there is ε0 ∈ B2(Rr ) such that δ(ε0)= exp(abt x+y)∧exp(ct z).
We now write

exp(at x)∧ exp(bt y)∧ exp(ct z)= (θ −ϕ)∧ exp(ct z)+ϕ ∧ exp(ct z)

= δ(γ0 ⊗ exp(ct z))−
x

x + y
δ(ε0 ⊗ b)+

y
x + y

δ(ε0 ⊗ a).

By the definition of �̃m,r , we have

�̃m,r (exp(at x)∧ exp(bt y)∧ exp(ct z))

= Lm,r (γ0|tm ⊗ exp(ct z))−
x

x + y
Lm,r (ε0|tm ⊗ b)+

y
x + y

Lm,r (ε0|tm ⊗ a).

By definition,

Lm,r (ε0|tm ⊗ b)= ℓim,r (ε0|tm )d log(b)

=

(
32 log◦ δ(ε0)

∣∣∣ ∑
m≤i<r

(r − i)t i
∧ tr−i

)
d log(b)

= zabc · d log(b)

= azc · db.

By the same argument, Lm,r (ε0|tm ⊗ a)= bzc · da.
In order to compute Lm,r (γ0|tm ⊗ exp(ct z)), first note that, by the definition of Lm,r , we have

Lm,r (γ0|tm ⊗ exp(ct z))= −
z

x + y
dℓim,x+y(γ0|tm ) · c + ℓim,x+y(γ0|tm ) · dc.

Since ℓim,x+y(γ0|tm )=
(
32 log◦ δ(γ0) |

∑
m≤i<x+y(x + y − i)t i

∧ t x+y−i
)
= yab, we have

Lm,r (γ0|tm ⊗ exp(ct z))= −
zy

x + y
c · d(ab)+ yab · dc.

Combining all of these gives,

�̃m,r (exp(at x)∧ exp(bt y)∧ exp(ct z))= −
zy

x + y
c · d(ab)+ yab · dc −

xzac
x + y

· db +
yzbc
x + y

da

= a(yb · dc − zc · db).

This finishes the proof of the proposition. □

6.3. Behavior of ωm,r with respect to automorphisms of R2m−1 which are identity modulo (tm). In
this section, we continue to assume that R is smooth of relative dimension 1 over k. We will show the
invariance of �m,r with respect to reparametrizations of Rr that are identity on the reduction to Rm . In
order to do this, we will need to make an explicit computation on k ′((s))∞, where k ′ is a finite extension
on k. In order to make the formulas concise and intuitive, we will use several notational conventions as
follows. If a ∈ k ′((s)), we let a′

= a(1) ∈ k ′((s)) denote its derivative with respect to s and a(n+1)
= (a(n))′.

Similarly, we let exp(a) denote an arbitrary nonzero element in k ′((s)) and a′
= a(1) := (exp(a))′/exp(a)



714 Sinan Ünver

and a(n+1)
= (a(n))′. This notation is intuitive in the sense that, if one thinks of a as log(exp(a)) then a′

is the logarithmic derivative of exp(a). With these conventions, we will state the following basic lemma.

Lemma 6.3.1. Let σ be the automorphism of the k∞ algebra k ′((s))∞, which is the identity automorphism
modulo (t) and has the property that σ(s) = s + αtw, with w ≥ 1 and α ∈ k((s)), then σ(exp(at x)) =

exp
(∑

0≤i
αi a(i)

i ! t x+iw
)
.

Proof. Assume that σ is such an automorphism of k ′((s))∞. Let i : k ′
→ k ′((s))∞ be the standard inclusion,

which sends an element of k ′ to a constant series in s and t . In other words, i is the k ′-algebra structure
map. Let

π : k ′((s))∞ → k ′((s))∞/(t)= k ′((s))

denote the canonical projection. By the assumptions, the restriction of σ ◦ i to k, is the standard inclusion
k → k ′((s))∞. Similarly, by the assumptions, π ◦σ ◦ i is the standard inclusion of k ′ into k ′((s)). Since k ′

is étale over k, these two statements above imply that σ ◦ i is the same as the inclusion i . Together with
the assumption that σ(t)= t , this implies that σ is an automorphism of k ′

∞
-algebras.

The rest proof is then separated into two cases, when x = 0 and when x ̸= 0. In both cases, the
statement follows from the Taylor expansion formula. □

Lemma 6.3.2. Let σ be the automorphism of the k∞ algebra k ′((s))∞, which is the identity automorphism
modulo (t) and has the property that σ(s)= s +αtw, with m ≤ w. Then we have,

�m,r

(
σ(exp(at i )∧ exp(bt j )∧ exp(ctk))

exp(at i )∧ exp(bt j )∧ exp(ctk)

)
= 0,

for 0< i + j + k.

Proof. Since m ≤ w, 0< i + j + k and m < r < 2m, the weight r terms of

σ(exp(at i )∧ exp(bt j )∧ exp(ctk))

exp(at i )∧ exp(bt j )∧ exp(ctk)

are possibly nonzero only when i + j + k +w = r and in this case they are given by

exp(αa′t i+w)∧ exp(bt j )∧ exp(ctk)+ exp(at i )∧ exp(αb′t j+w)∧ exp(ctk)

+ exp(at i )∧ exp(bt j )∧ exp(αc′tk+w).

By the definition of �m,r , the above sum is sent to

α(a′( jbc′
− kcb′)− b′(iac′

− kca′)+ c′(iab′
− jba′))ds = 0. □

Corollary 6.3.3. Let σ be any automorphism of Rr as a kr -algebra, which reduces to identity on Rm , then
ωm,r ◦33σ = ωm,r .

Proof. This follows by the corresponding statement for �m,r . This in turn reduces to Lemma 6.3.2 after
localizing and completing. □



Infinitesimal dilogarithm on curves over truncated polynomial rings 715

Definition 6.3.4. If R/kr is a smooth kr -algebra of relative dimension 1. We defined the map

ωm,r :33(Rr , (tm))× →�1
R/k,

as the composition�m,r ◦s, where R is the reduction of R modulo (t) and Rr :=R×k kr . Let τ :Rr →R
be a splitting, that is an isomorphism of kr -algebras which is the identity map modulo (t). By transport
of structure, this gives a map

ωm,r,τ :33(R, (tm))× →�1
R/k .

Suppose that τ ′ is another such splitting which agrees with τ modulo (tm). Applying Corollary 6.3.3 to
τ ′−1

◦ τ , we deduce that ωm,r,τ = ωm,r,τ ′ . Therefore, if σ : Rm → R/(tm) is a splitting of the reduction
R/(tm) of R then ωm,r,σ is unambiguously defined as ωm,r,τ , where τ is any splitting of R that reduces
to σ modulo (tm).

Recall the relative version of the Bloch group from [Ünver 2021, Section 2.4.8]. If A is a ring with
ideal I , let (A, I )♭ := {(ã, â)∈ (A, I )× | (1−ã, 1−â)∈ (A, I )×}. Then the relative Bloch group B2(A, I )
is defined as the abelian group generated by the symbols [(ã, â)] for every (ã, â) ∈ (A, I )♭, modulo the
relations generated by the analog of the five term relation for the dilogarithm:

[(x̃, x̂)] − [(ỹ, ŷ)] + [(ỹ/x̃, ŷ/x̂)] −

[(
1 − x̃−1

1 − ỹ−1 ,
1 − x̂−1

1 − ŷ−1

)]
+

[(
1 − x̃
1 − ỹ

,
1 − x̂
1 − ŷ

)]
for every (x̃, x̂), (ỹ, ŷ) ∈ (A, I )♭ such that (x̃ − ỹ, x̂ − ŷ) ∈ (A, I )×. As in the classical case, we obtain
a complex δ : B2(A, I )→32(A, I )×, which sends (ã, â) to (1 − ã, 1 − â)∧ (ã, â). As usual, abusing
the notation, we will denote the induced map δ⊗ id : B2(A, I )⊗ (A, I )× →33(A, I )×, also by δ. With
these definitions, we have the following expected property of the map ωm,r,τ .

Proposition 6.3.5. For a splitting σ of R/(tm), the above map ωm,r,σ vanishes on the image of
B2(R, (tm))⊗ (R, (tm))× in 33(R, (tm))× under δ.

Proof. By the definition of ωm,r,σ , we easily reduce to the split case where R = Rr . It suffices to prove
that �m,r vanishes on the following two types of elements:

δr ([ f̂ ] ⊗ ĝ)− δr ([ f̃ ] ⊗ ĝ) and δr ([ f̂ ] ⊗ ĝ)− δr ([ f̂ ] ⊗ g̃),

where f̂ , f̃ ∈R♭ have the same reduction modulo (tm) and ĝ, g̃ ∈R× have the same reduction modulo (tm).
This precisely the statement of Proposition 6.1.3. □

6.4. Behavior of res(ωm,r,σ ) with respect to automorphisms of Rm. In order to proceed with our
construction, we need an object such as the 1-form in [Ünver 2021] which controls the effect of changing
splittings. This object in ⋆-weight r will be constructed below by using ωm,r . On the other hand, this
objects does depend on the choice of splittings if these splittings are different modulo (tm), when r >m+1.
In the modulus m = 2 case the only possible r is 3 so this situation does not occur in [loc. cit.]. In the
current case of higher modulus, we will see that the residues of the 1-form ωm,r is invariant under the
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automorphisms of Rm which are identity modulo (t), which will imply that the residue can be defined
independent of various choices. We will see that this will be enough for constructing the Chow dilogarithm
of higher modulus. We will again start with an explicit computation on k ′((s))∞.

Proposition 6.4.1. Suppose that σ is the automorphism of k ′((s))∞ as a k∞-algebra such that σ(s) =

s +αtw, with w ≥ 1 and α ∈ k ′((s)), and which is identity modulo (t). Consider the element exp(at x)∧

exp(bt y)∧exp(ct z), with m ≤ x. If r − (x + y + z) > 0, and is divisible by w, let q = (r − (x + y + z))/w.
Then �m,r ((σ (exp(at x)∧ exp(bt y)∧ exp(ct z)))/(exp(at x)∧ exp(bt y)∧ exp(ct z))) is equal to

d
(
αq

q!

∑
0≤k≤q−1

a(k)
(q−1

k

) ∑
i+ j=q−k

((q−k−1
i

)
yb(i)c( j)

−

(q−k−1
j

)
zb(i)c( j)

))
. (6.4.1)

Otherwise, �m,r ((σ (exp(at x)∧ exp(bt y)∧ exp(ct z)))/(exp(at x)∧ exp(bt y)∧ exp(ct z)))= 0.

Proof. First note that by Lemma 6.3.1

Q :=
σ(exp(at x)∧ exp(bt y)∧ exp(ct z))

exp(at x)∧ exp(bt y)∧ exp(ct z)

=
exp

(∑
0≤i

αi a(i)
i ! t x+iw

)
∧ exp

(∑
0≤i

αi b(i)
i ! t y+iw

)
∧ exp

(∑
0≤i

αi c(i)
i ! t z+iw

)
exp(at x)∧ exp(bt y)∧ exp(ct z)

and hence if r − (x + y + z)≤ 0 or w ∤r − (x + y + z) then Q does not have a component of weight r and
�m,r (Q)= 0.

Suppose then that r − (x + y + z) > 0, w | (r − (x + y + z)) and let q := (r − (x + y + z))/w as in the
statement of the proposition. In this case the weight r term of Q is given as∑

i+ j+k=q

exp
(
αka(k)

k!
t x+kw

)
∧ exp

(
αi b(i)

i !
t y+iw

)
∧ exp

(
α j c( j)

j !
t z+ jw

)
.

This implies that �m,r (Q) is equal to∑
i+ j+k=q

αka(k)

k!

(
(y + iw)

αi b(i)

i !

(
α j c( j)

j !

)′

− (z + jw)
(
αi b(i)

i !

)′
α j c( j)

j !

)
ds.

We first claim that the expression above does not depend on w. The coefficient of w · (a(k)/k!)αq−1dα
in this expression is

∑
i+ j=q−k(i(b

(i)/ i !)( jc( j)/j !)− j (ib(i)/ i !)(c( j)/j !)) = 0. The coefficient of w ·

(a(k)/k!)αqds in the same expression is∑
i+ j=q−k

(
i
b(i)

i !
c( j+1)

j !
− j

b(i+1)

i !
c( j)

j !

)
=

∑
i+ j=q−k+1

1≤i, j

b(i)

(i − 1)!
c( j)

( j − 1)!
−

∑
i+ j=q−k+1

1≤i, j

b(i)

(i − 1)!
c( j)

( j − 1)!
= 0.

Therefore �m,r (Q) can be rewritten as∑
i+ j+k=q

αka(k)

k!

(
y
αi b(i)

i !

(
α j c( j)

j !

)′

− z
(
αi b(i)

i !

)′
α j c( j)

j !

)
ds. (6.4.2)
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The coefficient of α′αq−1ds in the above expression is equal to∑
0≤k≤q−1

a(k)

k!

∑
i+ j=q−k

(
y

b(i)

i !
jc( j)

j !
− z

ib(i)

i !
c( j)

j !

)
which agrees with the coefficient of α′αq−1ds in (6.4.1).

Fix i0, j0, and k0 such that i0 + j0 + k0 = q. Then the coefficient of yαqa(k0)b(i0)c( j0+1) in (6.4.1) is
equal to

1
q

(
1

(k0 − 1)!
1

i0!

1
j0!

+
1

k0!

1
i0!

1
( j0 − 1)!

+
1

k0!

1
(i0 − 1)!

1
j0!

)
=

1
k0!

1
i0!

1
j0!
,

which is exactly the same as the coefficient of the same term in (6.4.2). By symmetry, we deduce the
same statement for the coefficients of zαqa(k0)b(i0+1)c( j0). This finishes the proof of the proposition. □

Corollary 6.4.2. Suppose that σ and exp(at x)∧ exp(bt y)∧ exp(ct z) are as above. If r = m + 1, then

�m,r ((σ (exp(at x)∧ exp(bt y)∧ exp(ct z)))/(exp(at x)∧ exp(bt y)∧ exp(ct z)))= 0.

Proof. In this case in order to have m ≤ x and (m + 1)− (x + y + z)= r − (x + y + z) > 0, we have to
have x = m and y = z = 0. In this case, (6.4.1) is equal to 0. □

Corollary 6.4.3. If R is a smooth km+1-algebra of relative dimension 1 as above, then for r = m + 1, we
have a well-defined map

ωm,m+1 :33(R, (tm))× →�1
R/k

as in Definition 6.3.4, which does not depend on the choice of a splitting of R/(tm).

Proof. This follows immediately from Corollary 6.4.2, by reducing to the case R = k ′((s))m+1, after
localizing and completing. □

For a general r between m and 2m, the following corollary will be essential.

Corollary 6.4.4. Fix m < r < 2m, and let R be a smooth kr -algebra of relative dimension 1 as above.
Let x be a closed point of the spectrum of R, k ′ its residue field, and let η be the generic point of R. Then
for any two splittings σ and σ ′ of Rη/(tm), the reduction modulo (tm) of the local ring of R at η, and for
any α ∈33(Rη, (tm))×, the residues of ωm,r,σ (α) and ωm,r,σ ′(α) ∈�1

Rη/k at x are the same:

resx ωm,r,σ ′(α)= resx ωm,r,σ (α) ∈ k ′.

Proof. Again by localizing and completing we reduce to the case of k ′((s))r . By Proposition 6.4.1, we see
that the difference ωm,r,σ ′(α)−ωm,r,σ (α) is the differential of an element in k ′((s)) and hence has zero
residue. □

Remark 6.4.5. Let R/kr be as above. Suppose that τ and σ are two splittings Rm → R/(tm). In this
case, there should be a map

hωm,r (τ, σ ) :33(R, (tm))× → R
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such that

d(hωm,r (τ, σ ))= ωm,r,τ −ωm,r,σ .

Moreover, hωm,r (τ, σ ) should vanish on the image of B2(R, (tm))⊗ (R, (tm))×. In case r = m + 1,
hωm,m+1 = 0 does satisfy the properties above. Let us look at the first nontrivial case when m = 3 and
r = 5. Note that the reduction modulo (t2) of the automorphism τ−1

◦ σ : R3 → R3, which lifts the
identity map on R, is determined by a k-derivation θ : R → R. Define h�3,5(θ) : I3,5 ⊆ (33R×

5 )
◦
→ R,

as

h�3,5(θ)(exp(at3)∧ exp(bt)∧ c)= abθ
(

dc
c

)
,

where a, b,∈ R and c ∈ R×. Let h�3,5(θ) be defined as 0 on all the other type of elements in I3.5. Then
hω3,5(τ, σ ) :33(R, (t3))× → R defined by

hω3,5(τ, σ )(α) := −h�3,5(θ)(s(σ−1(α)))

satisfies the desired properties above. An analog of this construction is one of the main tools in defining
an infinitesimal version of the Bloch regulator in [Ünver 2020].

Definition 6.4.6. Let R be a smooth kr -algebra of relative dimension 1 as above. Let η be the generic
point and x be a closed point of the spectrum of R. Then we have a canonical map

resx ωm,r :33(Rη, (tm))× → k ′,

where k ′ is the residue field of x . The map is defined by choosing any splitting σ of Rη/(tm) and letting
resx ωm,r := resx ωm,r,σ . This is independent of the choice of the splitting σ , by Corollary 6.4.4.

6.5. Variant of the residue map for different liftings. For the construction of the infinitesimal Chow
dilogarithm, we need a variant of Definition 6.4.6. Fortunately, we do not need to do extra work,
Corollary 6.3.3 and Proposition 6.4.1 will still be sufficient to give us what we are looking for.

Suppose that A is a ring with an ideal I and B and B ′ are two A-algebras together with an isomorphism
χ : B/I B ≃ B ′/I B ′ of A-algebras. We let

(B, B ′, χ)× := {(p, p′) | p ∈ B× and p′
∈ B ′× such that χ(p|I )= p′

|I },

where p|I denotes the image of p in (B/I B)×. Similarly, we define (B, B ′, χ)♭ and B2(B, B ′, χ) and
obtain maps, B2(B, B ′, χ) → 32(B, B ′, χ)× and B2(B, B ′, χ)⊗ (B, B ′, χ)× → 33(B, B ′, χ)×. We
will use these definitions below with A = k∞ and I = (tm). In fact the following variant will be essential
in what follows.

Suppose that S/km is a smooth algebra of relative dimension 1, with x a closed point and η the generic
point of its spectrum. Suppose that R,R′/kr are liftings of Sη to kr . In other words, we have fixed
isomorphisms

ψ : R/(tm)→ Sη and ψ ′
: R′/(tm)→ Sη.
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Letting χ := ψ ′−1
◦ψ , we would like to construct a map

resx ωm,r :33(R,R′, χ)× → k ′,

where k ′ is the residue field of x . Note that (R,R′, χ)× consists of pairs of (p, p′) with p ∈ R× and
p′

∈ R′× such that ψ(p|tm )= ψ ′(p′
|tm ). In other words, it consists of different liftings of elements of

S×
η . We sometimes use the notation (R,R′, ψ,ψ ′)× to denote the same set.

In order to construct this map, let

χ̃ : R → R′

be an isomorphism of kr -algebras which is a lifting of χ . This provides us with a map

(R,R′, χ)×
χ̃∗

−−→ (R, (tm))×.

Choosing a splitting σ : Rm → R/(tm), by Definition 6.3.4 we obtain the map ωm,r,σ , composing this
with the map induced by the reduction ψ of ψ , we obtain

33(R,R′, χ)×
33χ̃∗

−−→33(R, (tm))×
ωm,r,σ
−−→�1

R/k
dψ

−−→�1
Sη/k

resx
−−→ k ′. (6.5.1)

Proposition 6.5.1. The map (6.5.1) above is independent of the choices of the lifting χ̃ of χ and the choice
of the splitting σ of R/(tm).

Proof. That the composition is independent of the choice of χ̃ follows from Corollary 6.3.3 and
Definition 6.3.4. That it is independent of the choice of the splitting σ follows from Proposition 6.4.1. □

Definition 6.5.2. We denote the composition (6.5.1) above by

resx ωm,r (ψ,ψ
′) :33(R,R′, ψ,ψ ′)× → k ′.

If ψ and ψ ′ are clear from the context, we denote this map by resx ωm,r , and (R,R′, ψ,ψ ′)× by
(R,R′, (tm))×. Depending on the context, we also use the notation resx ωm,r (χ) : 33(R,R′, χ)→ k ′

for the same map, with χ = ψ ′−1
◦ψ .

With these definitions, we have the following corollary.

Corollary 6.5.3. Suppose that R and R′ are smooth kr -algebras of dimension 1 as above which are liftings
of the generic local ring Sη of a smooth km-algebra S. Let χ : R/(tm)→ R′/(tm) be the corresponding
isomorphism of km-algebras. Let x be a closed point of S. Then the map

resx ωm,r (χ) :33(R,R′, χ)× → k ′

vanishes on the image of B2(R,R′, χ)⊗ (R,R′, χ)×.

Proof. Follows from Proposition 6.3.5. □
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7. The residue of ωm,r on good liftings

Suppose that R/kr is as above. Moreover, we assume that the reduction R of R modulo (t) is a discrete
valuation ring with x being the closed point. We let x̃/kr be a lifting of x to R. By this what we mean is
as follows. Let s be a uniformizer at x , and let s̃ be any lifting of s to R, we call s̃ also a uniformizer at x
on R. The associated scheme x̃ , which is smooth over kr , is what we call a lifting of x . In other words
a lifting of x is a 0-dimensional closed subscheme x̃ of R such that its ideal is generated by a single
element which reduces to a uniformizer on R. Note that if we are given x̃ , then s̃ is determined up to a
unit in R. Sometimes we will abuse the notation and write (s̃) instead of x̃ . Let η denote the generic
point of R. We let

(R, x̃)× := {α ∈ R×

η | α = us̃n, for some u ∈ R× and n ∈ Z}.

We say that an element α ∈R×
η is good with respect to x̃ , if α ∈ (R, x̃)×. Note that this property depends

only on x̃ , and not on s̃. The importance of this notion for us is that for wedge products of good liftings,
we can define their residue along (s) as in [Ünver 2021, Section 2.4.5]. Namely, there is a map

resx̃ :3n(R, x̃)× →3n−1(R/(s))×,

with the properties that it vanishes on 3nR× and s ∧ α1 ∧ · · · ∧ αn−1 is mapped to α1 ∧ · · · ∧ αn−1, if
αi ∈R× and αi denotes the image of αi in (R/(s))×, for 1 ≤ i ≤ n−1. Suppose that R′/kr is another such
ring, and x̃ ′ a lifting of the closed point of R′. Suppose that there is an isomorphism χ :R/(tm)→R′/(tm)

which identifies the reduction of x̃ modulo (tm) with the reduction of x̃ ′ modulo (tm). Then we let

(R,R′, x̃, x̃ ′, χ)× := {(p, p′) | p ∈ (R, x̃)× and p′
∈ (R′, x̃ ′)× such that χ(p|tm )= p′

|tm }.

Note that clearly (R,R′, x̃, x̃ ′, χ)× ⊆ (R,R′, χ)×. In case R′
= R with χ the identity map, we denote

the corresponding group by (R, x̃, (tm))×. Denote the natural maps (R,R′, x̃, x̃ ′, χ)× → (R, x̃)× and
(R,R′, x̃, x̃ ′, χ)× → (R′, x̃ ′)× by π1 and π2. In this section, we would like to compute resx ωm,r (χ)(α)

for α ∈ 33(R,R′, x̃, x̃ ′, χ)× in terms of the value of ℓm,r on the residue of α. The main result of this
section is Proposition 7.0.3. We will first start with certain explicit computations on the formal power
series rings and then finally reduce our general statement to these special cases. Let us immediately
remark that in order to compute the residues, we immediately reduce to the case when R and R′ are
complete with respect to the ideal which correspond to their closed points.

We will first consider the case of R = k ′
[[s]] and that of the same uniformizer on both of the liftings as

follows.
Note that

res(s)(s ∧α∧β)= α∧β ∈32k ′

r
×
,

where α and β are the images of α and β under the natural projection R×
→ (R/(s))× = k ′

r
×. Similarly

for p′.
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Lemma 7.0.1. Suppose that R = k ′
[[s]], and R := Rr = k ′

[[s, t]]/(tr ). Suppose that α, α′, and β ∈R× such
that α′

|tm = α|tm ∈ R/(tm). Let p′
:= s ∧α′

∧β, p := s ∧α∧β and (p, p′) := (s, s)∧ (α, α′)∧ (β, β) ∈

33(R, (s), (tm))× ⊆33(Rη, (tm))×. Then the residue of ωm,r (p, p′) at the closed point of R = k ′
[[s]] is

given by
ress=0 ωm,r (p, p′)= ℓm,r (res(s)(p))− ℓm,r (res(s)(p′)).

Proof. By Definition 6.1.4, we see that ωm,r (p, p′) = �m,r (p − p′) = �m,r (s ∧ (α/α′) ∧ β). Let us
compute the residue at s = 0 of an expression of the type �m,r (s ∧exp(at i )∧exp(bt j )), with a, b ∈ k[[s]]
and i ≥ m, such that if j = 0. We use the notation in Remark 6.1.2. Since

�m,r (s ∧ exp(at i )∧ exp(bt j ))= jab
ds
s
,

when i + j = r and is 0 otherwise, we conclude that its residue is equal to ja(0)b(0) if i + j = r , and is
0 otherwise. Since, for i ≥ m,

ℓm,r (res(s)(s ∧ exp(at i )∧ exp(bt j )))= ℓm,r (exp(a(0)t i )∧ exp(b(0)t j ))

is equal to ja(0)b(0) if i + j = r , and is 0 otherwise, we conclude that

ress=0(�m,r (s ∧ exp(at i )∧ exp(bt j )))= ℓm,r (res(s)(s ∧ exp(at i )∧ exp(bt j ))). (7.0.1)

On the other hand, since α′
|tm = α|tm , s ∧ (α/α′)∧β is a sum of terms of the above type, and the linearity

of both sides of (7.0.1) imply that (7.0.1) is also valid for s ∧ (α/α′)∧β. By linearity of ℓm,r and res(s),
we have

ℓm,r

(
res(s)

(
s ∧

α

α′
∧β

))
= ℓm,r (res(s)(s ∧α∧β))− ℓm,r (res(s)(s ∧α′

∧β)),

which together with the above proves the lemma. □

Let us now try to prove the same formula when the choice of the uniformizer is not the same. In other
words, with notation as above let s ′

∈ R such that s ′
|tm = s|tm . For simplicity, let us temporarily use

the notation (R, (s), (s ′), (tm))× := (R,R, (s), (s ′), idR/(tm))
×. Let p′

:= s ′
∧α∧β, p := s ∧α∧β and

(p, p′) := (s, s ′)∧ (α, α)∧ (β, β) ∈33(R, (s), (s ′), (tm))×.

Lemma 7.0.2. With notation as above, the residue of ωm,r (p, p′) at the closed point of k ′
[[s]] is given by

the following formula:

ress=0 ωm,r (p, p′)= ℓm,r (res(s)(p))− ℓm,r (res(s′)(p′)).

Proof. If s ′′ is another lift of the uniformizer s, in other words s ′′
∈ R with s ′′

|tm = s|tm then

ress=0 ωm,r (p, p′′)= ress=0 ωm,r (p, p′)+ ress=0 ωm,r (p′, p′′)

and

ℓm,r (res(s)(p))− ℓm,r (res(s′′)(p′′))

= (ℓm,r (res(s)(p))− ℓm,r (res(s′)(p′)))+ (ℓm,r (res(s′)(p′))− ℓm,r (res(s′′)(p′′))).
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Therefore in order to prove the lemma we may assume without loss of generality that s ′
= s + at i , with

a ∈ k ′
[[s]] and m ≤ i . Note that in R, we have s+at i

= s exp((a/s)t i ), since r < 2m. Letting α= exp(bt j )

and β = exp(ctk), we can rewrite ωm,r (p, p′) as

�m,r (p − p′)=�m,r

(
exp

(
−

a
s

t i
)

∧ exp(bt j )∧ exp(ctk)
)

= −
a
s
( jb · dc − kc · db),

if i + j + k = r and 0 otherwise. Its residue is

−a(0)( jb(0)c′(0)− kc(0)b′(0)) (7.0.2)

if i + j + k = r and 0 otherwise, with the usual conventions if j or k is 0.
On the other hand, res(s)(p)= exp(b(0)t j )∧ exp(c(0)tk) and

res(s′)(p′)= exp(b(0)t j
− a(0)b′(0)t i+ j )∧ exp(c(0)tk

− a(0)c′(0)t i+k) ∈32k ′

r
×
.

By the linearity of ℓm,r , the right-hand side of the expression in the statement of the lemma is then equal
to

−ℓm,r (exp(b(0)t j )∧ exp(−a(0)c′(0)t i+k))− ℓm,r (exp(−a(0)b′(0)t i+ j )∧ exp(c(0)tk))

− ℓm,r (exp(−a(0)b′(0)t i+ j )∧ exp(−a(0)c′(0)t i+k)).

The last summand is equal to 0 since ℓm,r is of weight r and i + j + i + k ≥ 2i ≥ 2m > r . For the same
reason, the first two summands are 0 if i + j + k ̸= r and if i + j + k = r , then the total expression is
equal to −a(0)c′(0) jb(0)+a(0)b′(0)kc(0), which agrees with the formula (7.0.2) for the residue of �m,r .
Since α and β are sums of the terms of the above type, this proves the lemma. □

Proposition 7.0.3. Suppose that R,R′ are local algebras which are smooth of relative dimension 1 over
kr , together with liftings x̃, x̃ ′ of their closed points and a km-isomorphism χ : R/(tm)→ R′/(tm) which
maps the reductions of x̃ and x̃ ′ to each other. Then for q ∈33(R,R′, x̃, x̃ ′, χ)×, we have the following
formula for the closed point x ,

resx ωm,r (q)= ℓm,r (resx̃(3
3π1)(q))− ℓm,r (resx̃ ′(33π2)(q)).

Proof. In order to prove the statement, we can replace R and R′ with their completions at their closed
points. Let k ′ be the residue field at the closed point x . Without loss of generality, we will assume that
R = R′

= k ′
[[s]]r , x̃ is given by s = 0 and x̃ ′ is given by s ′

= 0 for some s ′
∈ k ′

[[s]]r with s ′
|tm = s|tm ,

and χ is the map which is identity on k ′
[[s]]m .

In order to make the computations we need to choose a lifting χ̃ of χ from R to R′. We choose this
lifting to be the one that sends s to s ′ and is identity on k ′. Note that χ̃ being a map of kr algebras has to
satisfy χ̃(t)= t . The statement above then reduces to the following: suppose that α, β, γ ∈ (k ′

[[s]]r , (s))×

and α′, β ′, γ ′
∈ (k ′

[[s]]r , (s ′))× such that α|tm = α′
|tm , β|tm = β ′

|tm , and γ |tm = γ ′
|tm , and p = α∧β ∧γ ,

p′
= α′

∧β ′
∧ γ ′, and (p, p′)= (α, α′)∧ (β, β ′)∧ (γ, γ ′), then

ress=0�m,r (p − p′)= ℓm,r (res(s)(p))− ℓm,r (res(s′)(p′)).
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By assumption α is of the form usn for some u ∈ k ′
[[s]]×r and n ∈ Z. Similarly, α′ is of the form u′s ′n′

,
with u′

∈ k ′
[[s]]×r . The condition that α|tm = α′

|tm implies that n = n′. The same is true for β, β ′, and γ, γ ′.
By multilinearity and antisymmetry, we reduce to checking the above identity in the following two cases:
in the first case where α, β, γ ∈ k ′

[[s]]× and in the second case where α = s, α′
= s ′ and β, γ ∈ k ′

[[s]]×.
If α, β, γ ∈ k ′

[[s]]×, then α′, β ′, γ ′
∈ k ′

[[s]]×. This implies on the one hand that res(s)(p) = 0 and
res(s′)(p′)= 0, and on the other that p− p′

∈ Im,r = (1+(tm)⊗32k ′
[[s]]×r )⊆ (3

3k ′
[[s]]×r )

◦, which implies
that �m,r (p − p′) ∈�1

k′[[s]]/k . Therefore ress=0�m,r (p − p′)= 0 = ℓm,r (res(s)(p))− ℓm,r (res(s′)(p′)) in
this case.

Let us now consider the more interesting case of α = s, α′
= s ′ and β, γ, β ′, γ ′

∈ k ′
[[s]]×, with

β|tm = β ′
|tm and γ |tm = γ ′

|tm . Applying Lemma 7.0.1 first with p = (s, α, β) and p′
= (s, α′, β)

then with p = (s, α′, β) and p′
= (s, α′, β ′) and then applying Lemma 7.0.2 with p = (s, α′, β ′) and

p′
= (s ′, α′, β ′) and adding all the equalities finishes the proof of the proposition. □

8. Construction of ρ and a regulator on curves

8.1. Regulators on curves. Let R/km be smooth of relative dimension 1, as in the previous section but
without the assumption that R is a discrete valuation ring. Choose and fix a lifting c of c to R for every
closed point c of R as in the previous section. We denote the set of these liftings by P. We let k(c)
denote the residue field of c and k(c) denote the artin ring which is the ring of regular functions on the
affine scheme c. Let |R| = |R| denote the set of closed points of R, or equivalently of R. Note that the
reductions of the localizations Rc of R are discrete valuation rings. We let

(R,P)× :=

⋂
c∈|R|

(Rc, c)
×

and (R,P)♭ := { f ∈ (R,P)× | 1 − f ∈ (R,P)×}. We define B2(R,P) to be the vector space
over Q generated by the symbols [ f ] with f ∈ (R,P)♭ modulo the five term relations associated to
pairs f and g in (R,P)♭ which have the property that f − g ∈ (R,P)×. As usual we have maps
B2(R,P) → 32(R,P)× and B2(R,P) ⊗ (R,P)× → 33(R,P)×. We also have a residue map
resc : B2(R,P)⊗ (R,P)× → B2(k(c)) that is defined exactly as in [Ünver 2021, Section 3.3.1] and
which gives a commutative diagram:

B2(R,P)⊗ (R,P)×

resc
��

δ
// 33(R,P)×

resc
��

B2(k(c))
δ

// 32k(c)×

Suppose that C/km is a smooth and projective curve. For every closed point c of C , choose and fix a
smooth lifting of c of c to C . We denote P to be the set of these liftings. We let (OC ,P)× denote the
sheaf on C which associates to an open set U of C , the group (OC(U ),P|U )

×. Similarly, B2(OC ,P) is
the sheaf associated to the presheaf, which associates to U the group B2(OC(U ),P|U ). For each c ∈ |C |,
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let ic denote the imbedding of c in C . The commutative diagram above gives us a complex 0′

B(C,P, 3)
of sheaves

B2(OC ,P)⊗ (OC ,P)× →

⊕
c∈|C |

ic∗(B2(k(c)))⊕33(OC ,P)× →

⊕
c∈|C |

ic∗(3
2k(c)×),

concentrated in degrees [2, 4]. We use the following sign conventions in the above complex: the first map
is (δ, res) and the second one is −δ+ res. We will be interested in the infinitesimal part of the degree
3 cohomology H3

B(C,Q(3)) := H3(C, 0′

B(C,P, 3)) of the complex 0′

B(C,P, 3). More precisely, we
will be interested in defining regulator maps from H3

B(C,Q(3)) to k for every m < r < 2m. The above
cohomology group is a candidate for the motivic cohomology group H3

M(C,Q(3)). To be more precise,
we would expect a sheaf B3(OC ,P) of Bloch groups of weight 3 as in [Goncharov 1995], which would
fit into a complex 0B(C,P, 3) of sheaves on C

B3(OC ,P)→ B2(OC ,P)⊗ (OC ,P)× → ⊕ic∗(B2(k(c)))⊕33(OC ,P)× → ⊕ic∗(3
2k(c)×),

and which would compute motivic cohomology of weight 3. Since we are only interested in
H3(C, 0B(C,P, 3)) and since on a curve, by Grothendieck’s vanishing theorem, the cohomology
of any sheaf vanishes in degree greater than 1, we have an isomorphism

H3(C, 0′

B(C,P, 3))≃ H3(C, 0B(C,P, 3)).

For a sheaf of complexes F•, let Ȟ•(C,F•) denote the colimit of all the Čech cohomology groups over
all Zariski covers of C . For a sheaf F , the natural map Ȟi (C,F )→ Hi (C,F ) is an isomorphism for
i = 0, 1. By the same argument, it follows that the same is true for a complex of sheaves F• which is
concentrated in degrees 0 and 1. This applied to the complex above implies that the natural map

Ȟ3(C, 0′

B(C,P, 3))≃ H3(C, 0′

B(C,P, 3))

is an isomorphism. Therefore, it is enough to construct the map Ȟ3(C, 0′

B(C,P, 3))→ k. We will in
fact construct the map as the composition

Ȟ3(C, 0′

B(C,P, 3)) ↪→ Ȟ3(C, 0′′

B(C,P, 3))→ k,

where 0′′

B(C,P, 3) is the quotient complex

B2(OC ,P)⊗ (OC ,P)× →

⊕
c∈|C |

ic∗(B2(k(c)))⊕33(OC ,P)×

of 0′

B(C,P, 3).
Suppose that we are given a Zariski open cover U• of C , we will define a map from the corresponding

cocycle group Ž3(U•, 0
′′

B(C,P, 3)) to k, which will vanish on the coboundaries and hence induce the
map in the cohomology group that we are looking for. Suppose that we start with a cocyle as above,
given by the data:
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(i) γi ∈33(OC ,P)×(Ui ), for all i ∈ I .

(ii) εi,c ∈ B2(k(c)) for every c ∈ Ui all but finitely many of which are 0, for all i ∈ I .

(iii) βi j ∈ (B2(OC ,P)⊗ (OC ,P)×)(Ui j ), for all i, j ∈ I .

These data are supposed to satisfy the following properties:

(i) δ(βi j )= γ j |Ui j − γi |Ui j .

(ii) resc(βi j )= ε j,c − εi,c, for c ∈ Ui j .

(iii) β jk |Ui jk −βik |Ui jk +βi j |Ui jk = 0.

We will construct the image of the above element by making several choices and then proving that the
construction is independent of all the choices:

(i) Let Ãη/k∞ be a smooth lifting of OC,η and for every c ∈ |C |, let Ãc/k∞ be a smooth lifting of the
completion ÔC,c of the local ring of C at c, together with a smooth lifting c̃ of c as in the previous
section.

Moreover, choose:

(ii) an arbitrary i ∈ I and for each c choose a jc ∈ I such that c ∈ U jc .

(iii) An arbitrary lifting γ̃iη ∈33Ã×

η of the germ γiη ∈33O×

C,η of γi at the generic point η.

(iv) A good lifting γ̃ jc ∈33(Ãc, c̃)
× of the image γ̂ jc,c of γ jc in 33(ÔC,c, c)

×, for every c ∈ |C |.

(v) An arbitrary lifting β̃ jci,η ∈ B2(Ãη)⊗ Ãη of the image β jci,η ∈ B2(OC,η)⊗O×

C,η of β jci , for every
c ∈ |C |.

Note that it does not make sense to require that γ̃iη be a good lifting since in this context there is no a
fixed specialization of the generic point. Similarly, we cannot require that β̃ jci,η be a good lifting, since
we know that δ(β̃ jci,η) is a lifting of δ(β jci,η)= γi − γ jc and even this last expression need not be good
at c as γi need not be good at c. We define the value of the regulator ρm,r on the above element by the
expression ∑

c∈|C |

Trk
(
ℓm,r (resc̃ γ̃ jc)− ℓim,r (ε jc,c)+ resc ωm,r (γ̃iη − δ(β̃ jci,η), γ̃ jc)

)
. (8.1.1)

Let us first explain what we mean by the above expression. Since γ̃ jc is c̃-good, the residue resc̃ γ̃ jc along
c̃ is defined as an element of 32k(c̃)×. The étaleness of c̃ over k∞, implies that we have a canonical
isomorphism k(c̃)≃ k(c)∞ of k∞-algebras. Using this isomorphism and the map ℓm,r :32k(c)×

∞
→ k(c)

in Definition 3.0.2, we obtain ℓm,r (resc̃ γ̃ jc) ∈ k(c). For the second term, note that, as above, there
is a canonical isomorphism k(c) ≃ k(c)m of km algebras using which we can view ε jc,c ∈ B2(k(c)m).
Applying ℓim,r : B2(k(c)m)→ k(c) to this element gives ℓim,r (ε jc,c) ∈ k(c). For the last term, note that
γ̃iη − δ(β̃ jci,η) is a lifting of γiη − δ(β jci,η)= γ jc to 33Ã×

η and so is γ̃ jc a lifting of γ jc to 33Ã×

c . Using
the theory of Section 6.5, we see that the last term resc ωm,r (γ̃iη − δ(β̃ jci,η), γ̃ jc) ∈ k(c) is unambiguously
defined. Letting Trk denote the normalized trace to k, the summands above are defined.
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In order to show that the sum makes sense, we also need to show that the sum is finite. Below we will
show that the sum is independent of all the choices, therefore it will be enough to show that the sum is
finite for a particular choice. First by shrinking Ui if necessary, and choosing a refinement of the cover, we
will assume that γi ∈33O×

C (Ui ). Similarly, by shrinking Ui even further, we will assume that the lifting
γ̃i is good on Ui . Therefore, for c ∈ Ui , we can choose jc = i and γ̃ jc = γ̃i . Since for these c, β jci = 0
we can choose β̃ jci = 0. In order to show that the sum in (8.1.1) is finite, we can concentrate on c ∈ Ui ,
as |C | \ |Ui | is finite. For c ∈ Ui , resc γ̃ jc = resc γ̃i = 0, since γi is invertible on Ui by assumption. Also
for the residues we have resc ωm,r (γ̃iη − δ(β̃ jci,η), γ̃ jc)= resc ωm,r (γ̃i , γ̃i )= 0 since i = jc, γ̃ jc = γ̃i and
β̃ jci = 0. Therefore the summand, for c ∈ Ui , is equal to Trk(−ℓim,r (ε jc,c)) = Trk(−ℓim,r (εi,c)). Since
εi,c = 0, for all but a finite number of c ∈ Ui , we are done.

We now show that the expression makes sense and is independent of all the choices. Note that there
are many of them.

Theorem 8.1.1. For every m < r < 2m, the above formula (8.1.1) gives a well-defined regulator map
ρm,r : Ž3(U•, 0

′′

B(C,P, 3))→ k, independent of all the choices. This map vanishes on the coboundaries
and hence induces the regulator map

ρm,r : H3
B(C,Q(3))→ k

of ⋆-weight r .
Specializing to the case when C is the projective line P1

km
, with coordinate function z, we fix an a ∈ k♭m .

If we choose P such that z, 1 − z and z − a are all good with respect to P, then (1 − z)∧ z ∧ (z − a) ∈

0(33(OP1,P)×) and
ρm,r ((1 − z)∧ z ∧ (z − a))= ℓim,r ([a]).

Proof. We first show the independence of the definition from the various choices. For readability, we
separate these into parts.

Independence of the choice of jc and the liftings β̃ jci and γ̃ jc . Suppose that we choose a different j ′
c with

c ∈ U j ′
c
, a different lifting Ã′

c of ÔC,c, together with c̃′ as above, a c̃′-good lifting γ̃ ′

j ′
c

of γ j ′
c

to Ã′

c and
a lifting β̃ ′

j ′
ci of β j ′

ci to Ãη. Since Ãc ≃ k(c)[[s̃]]∞, where s̃ is a choice of a uniformizer associated to c̃

and similarly for Ã′

c, we choose and fix a k∞-algebra isomorphism between Ãc and Ã′

c which is identity
modulo (tm) and which sends s̃ to s̃′. This last condition is possible to impose since both s̃ and s̃′ lift s
by assumption. Below we identify these two algebras using this isomorphism.

We need to compare the two expressions

ℓm,r (resc̃ γ̃ jc)− ℓim,r (ε jc,c)+ resc ωm,r (γ̃iη − δ(β̃ jci ), γ̃ jc) (8.1.2)

and
ℓm,r (resc̃′ γ̃ ′

j ′
c
)− ℓim,r (ε j ′

c,c)+ resc ωm,r (γ̃iη − δ(β̃ ′
j ′
ci ), γ̃

′

j ′
c
). (8.1.3)

By linearity we have

resc ωm,r (γ̃iη − δ(β̃ ′
j ′
ci ), γ̃

′

j ′
c
)− resc ωm,r (γ̃iη − δ(β̃ jci ), γ̃ jc)= resc ωm,r (γ̃ jc − γ̃ ′

j ′
c
, δ(β̃ ′

j ′
ci − β̃ jci )).
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Let β̃ j ′
c jc be a c̃-good lifting of β j ′

c jc to Ãc. Since β j ′
c jc itself is c-good such a lifting exists. We have the

identity β j ′
c jc = β j ′

ci −β jci on Ui jc j ′
c
, which might not contain c, but does of course contain the generic

point η. We deduce that β̃ j ′
c jc,η and β̃ ′

j ′
ci,η− β̃ jci,η have the same reduction β j ′

c jc,η. Now by Corollary 6.5.3,
we conclude that

resc ωm,r (δ(β̃ j ′
c jc,η), δ(β̃

′
j ′
ci,η − β̃ jci,η))= 0.

This implies that, using transitivity and linearity, we have:

resc ωm,r (γ̃ jc − γ̃ ′

j ′
c
, δ(β̃ ′

j ′
ci − β̃ jci ))= resc ωm,r (γ̃ jc − γ̃ ′

j ′
c
, δ(β̃ j ′

c jc,η))= resc ωm,r (γ̃ jc − δ(β̃ j ′
c jc,η), γ̃

′

j ′
c
).

In this expression, γ̃ jc − δ(β̃ j ′
c jc) is a c̃-good lifting to Ãc and γ̃ ′

j ′
c

is a c̃′-good lifting to Ã′

c. Then
Proposition 7.0.3 implies that

resc ωm,r (γ̃ jc − δ(β̃ j ′
c jc), γ̃

′

j ′
c
)= ℓm,r (resc̃(γ̃ jc − δ(β̃ j ′

c jc)))− ℓm,r (resc̃′(γ̃ ′

j ′
c
)). (8.1.4)

On the other hand,

ℓm,r (resc̃(δ(β̃ j ′
c jc)))= ℓm,r (δ(resc̃(β̃ j ′

c jc)))= ℓim,r (resc(β j ′
c jc)),

by the definition of ℓim,r . Since by assumption resc(β j ′
c jc)= ε jc,c − ε j ′

c,c, we can rewrite the right-hand
side of (8.1.4) as

ℓm,r (resc̃(γ̃ jc))− ℓm,r (resc̃′(γ̃ ′

j ′
c
))− ℓim,r (ε jc,c)+ ℓim,r (ε j ′

c,c).

Combining all of the above, we see that the last expression is equal to the difference

resc ωm,r (γ̃iη − δ(β̃ ′
j ′
ci ), γ̃

′

j ′
c
)− resc ωm,r (γ̃iη − δ(β̃ jci ), γ̃ jc),

which implies the equality of the two expressions (8.1.2) and (8.1.3) and thus proves the independence
we were looking for.

Independence of the choice of i and the liftings γ̃iη and β̃ jci . Let us choose an i ′, a lifting Ã′

η of OC,η and
liftings γ̃ ′

i ′η and β̃ ′

jci ′ to Ã′

η, for each c ∈ |C |. We need to compare∑
c∈|C |

Trk(ℓm,r (resc̃ γ̃ jc)− ℓim,r (ε jc,c)+ resc ωm,r (γ̃iη − δ(β̃ jci ), γ̃ jc)) (8.1.5)

and ∑
c∈|C |

Trk(ℓm,r (resc̃ γ̃ jc)− ℓim,r (ε jc,c)+ resc ωm,r (γ̃
′

i ′η − δ(β̃ ′

jci ′), γ̃ jc)). (8.1.6)

The difference between the above expressions is∑
c∈|C |

Trk resc ωm,r (γ̃
′

i ′η − δ(β̃ ′

jci ′), γ̃iη − δ(β̃ jci )).
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Choosing an isomorphism Ãη ≃ Ã′

η of k∞-algebras which lifts the given one modulo (tm), we identify
Ãη and Ã′

η. The above sum can then be rewritten as∑
c∈|C |

Trk resc ωm,r (γ̃
′

i ′η − γ̃iη, δ(β̃
′

jci ′ − β̃ jci )).

As in the above argument since β̃i i ′ has the same reduction modulo (tm) as β̃ ′

jci ′ − β̃ jci for any jc, we
have resc ωm,r (δ(β̃

′

jci ′ − β̃ jci ), δ(β̃i i ′))= 0 by Corollary 6.5.3. So we can rewrite the above sum as∑
c∈|C |

Trk resc ωm,r (γ̃
′

i ′η − γ̃iη, δ(β̃i i ′)).

Choosing a splitting of Ãη, we identify this algebra with (Ãη)∞ = (OC,η)∞. Using this identification,
the last expression is the sum of residues of the meromorphic 1-form �m,r (γ̃

′

i ′η − γ̃iη − δ(β̃i i ′)) on C and
therefore is equal to 0.

Vanishing on coboundaries. Suppose that we start with sections

αi ∈ (B2(OC ,P)⊗ (OC ,P)×)(Ui ),

for all i ∈ I . Then we need to show that the value of the regulator on the data

({γi }i∈I , {εi,c | i ∈ I, c ∈ Ui }, {βi j }i, j∈I )

is 0. Here γi := δ(αi ), εi,c := resc(αi ) and βi j := α j |Ui j −αi |Ui j .
We fix an i ∈ I and jc ∈ I , with c ∈ U jc , for every c ∈ |C |, and local and generic liftings Ãc, and Ãη of

the curve, as above, together with liftings c̃ of c to Ãc. We need to choose liftings of the data in order to
compute the value of the regulator on the above element.

We choose a lifting α̃iη of αiη to Ãη and let γ̃iη := δ(α̃iη). For each c ∈ |C |, we choose a c̃-good lifting
α̃ jc of α jc and let γ̃ jc := δ(α̃ jc). Finally, we choose an arbitrary lifting α̃ jcη of α jcη to Ãη, for every c ∈ |C |,
and let β̃ jci,η := α̃iη − α̃ jcη. Then the value of the regulator (8.1.1) is the sum of traces of the terms

ℓm,r (resc̃ γ̃ jc)− ℓim,r (ε jc,c)+ resc ωm,r (γ̃iη − δ(β̃ jci,η), γ̃ jc)

= ℓm,r (resc̃ δ(α̃ jc))− ℓim,r (ε jc,c)+ resc ωm,r (δ(α̃ jcη), δ(α̃ jc))

= ℓm,r (resc̃ δ(α̃ jc))− ℓim,r (ε jc,c)

by Corollary 6.5.3. Since resc̃ δ(α̃ jc)= δ(resc̃ α̃ jc), we have ℓm,r (resc̃ δ(α̃ jc))= ℓm,r (δ(resc̃ α̃ jc)). By the
definition of ℓim,r , we have ℓm,r (δ(resc̃ α̃ jc)) = ℓim,r (resc α jc) = ℓim,r (ε jc,c). This implies that all the
summands in the formula for the regulator (8.1.1) are 0 finishing the proof of the first part of the theorem.

For the proof of the second part of the theorem, we note that a more general version of the computation
for P1

km
will be done in Section 9.2. □

8.2. Infinitesimal Chow dilogarithm. Specializing the above construction to global sections of33(OC,P)×

gives us the generalization of the infinitesimal Chow dilogarithm in [Ünver 2021] to higher moduli.
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Let us denote the global sections 0(C, (OC ,P)×) of (OC ,P)× by k(C,P)×. Suppose that we start
with γ ∈33k(C,P)×. Specializing the construction in the previous section, we have ρm,r (γ ) ∈ k, which
can be computed as follows.

Choose a lifting Ãη/k∞ of OC,η and local liftings Ãc of ÔC,c, for every c ∈ |C |, together with liftings
c̃ of c. Choose an arbitrary lifting γ̃η of γη to Ãη and c̃-good liftings γ̃c of the germ of γ at c to Ãc, for
every c ∈ |C |. By the definition in the previous section, we have

ρm,r (γ ) :=

∑
c∈|C |

Trk(ℓm,r (resc̃(γ̃c))+ resc ωm,r (γ̃η, γ̃c)), (8.2.1)

for every m < r < 2m.

Corollary 8.2.1. The definition in (8.2.1) of the infinitesimal Chow dilogarithm of modulus m and ⋆-weight
r gives a map

ρm,r :33k(C,P)× → k,

independent of all the choices and generalizing the construction in [Ünver 2021] to arbitrary m and r
with 2 ≤ m < r < 2m.

9. Applications and examples

9.1. Strong reciprocity conjecture. The infinitesimal Chow dilogarithm can be used to give a proof of
an infinitesimal version of Goncharov’s strong reciprocity conjecture for the curve C/km , exactly as in
[Ünver 2021, Theorem 3.4.4]. In this section, in addition to our previous hypotheses, we assume that k is
algebraically closed.

Taking the infinitesimal part of the sum of the residues at all closed points of C , we have a map:

resC :33k(C,P)× → (32k×

m )
◦.

Similarly, letting B2(k(C,P)) denote the set of global sections of B2(OC ,P), we have a map

resC : B2(k(C,P))⊗ k(C,P)× → B2(km)
◦.

The explicit version of the strong reciprocity conjecture expresses both of these maps in terms of a single
map h.

Theorem 9.1.1. There is a map h :33k(C,P)× → B2(km)
◦, which makes the diagram

B2(k(C,P))⊗ k(C,P)×
δ
//

resC

��

33k(C,P)×

resC

��

h

uu

B2(km)
◦ δ◦

// (32k×
m )

◦

commute and has the property that h(k×
m ∧32k(C,P)×)= 0.
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Proof. The proof, using the maps ρm,r constructed above, is exactly the same as that of [Ünver 2021,
Theorem 3.4.4] and is omitted. □

The theorem above, in essence, states that the residue map from the Bloch complex of weight 3 on C
to the Bloch complex of weight 2 on km is homotopic to 0; see [Ünver 2021, Section 3.4].

9.2. The special case of the projective line. As a first example, let us look at the infinitesimal Chow
dilogarithm in the case of the projective line P1 over km with k algebraically closed.

For each point c ∈ P1
k let us choose a smooth lifting c ∈ P1(km). Considering a lifting as a map

Spec(km)→ P1
km

, if the projection Spec(km)→ P1
k factors through the structure map Spec(km)→ Spec(k),

we call that lifting a constant lifting. In the following, we will always choose the constant liftings of the
points 0, 1 and ∞, for the other points in P1

k the choices will be arbitrary. We denote the set of these
liftings by P as usual.

Letting a ∈ P be the chosen lifting of an element in k♭, the element (1 − z)∧ z ∧ (z − a) satisfies our
goodness hypothesis. We will compute the value of ρm,r on this element.

We will use the formula (1.3.1) directly. In order to do this first let us choose a set P̃ of liftings to P1
k∞

of elements in P . Again for the elements 0, 1, and ∞, we choose the constant liftings. Let us denote the
lifting of a ∈ P by ã ∈ P̃. Then the functions z, 1 − z, and z − ã are liftings of z, 1 − z, and z − a to
functions on P1

k∞
, which are good with respect to P̃. Using the definition of ρm,r , we obtain

ρm,r ((1 − z)∧ z ∧ (z − a))=

∑
c̃∈P̃

ℓm,r (resc̃((1 − z)∧ z ∧ (z − ã))).

The only contribution to the sum above comes from the residue at ã. Therefore the last expression is equal
to ℓm,r ((1− ã)∧ ã). Using the definition of ℓim,r we can rewrite this as ℓm,r ((1− ã)∧ ã)= ℓm,r (δ[ã])=

ℓim,r ([a]). Let f, g and h be arbitrary functions on P1
km

which are good with respect to P . Then we can
write

f = λ
∏

1≤i≤l

(z −αi )
δi , g = µ

∏
1≤ j≤m

(z −β j )
ε j , and h = ν

∏
1≤k≤n

(z − γk)
ηk ,

for some αi , β j , γk ∈ P , λ, µ, ν ∈ k×
m and δi , ε j , ηk ∈ Z. Using exactly the same argument at the end of

Section 2.2, we find that ρm,r ( f ∧ g ∧ h) is equal to∑
i, j,k

δiε jηk · ℓim,r

([
γk −β j

αi −β j

])
(9.2.1)

where the summation is on 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n. In this notation, we use the convention
that ℓim,r ([(γk −β j )/(αi −β j )])= 0, if at least two of αi , β j and γk are the same. Note that because of
the goodness with respect to P hypothesis, if αi , β j and γk are pairwise distinct then their reductions to
k have to be distinct as well. This, then, implies that (γk −β j )/(αi −β j ) ∈ k♭m and the expression (9.2.1)
is well-defined.
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9.3. The special case of elliptic curves. As a second example, we will consider the infinitesimal Chow
dilogarithm in the case of an elliptic curve. Again, for simplicity, we assume that k is algebraically
closed. Suppose that E/km is an elliptic curve. Suppose that E ⊆ P2

km
is given by a Weierstrass equation

y2
= x3

+ Ax + B, with A, B ∈ km , in the affine coordinates with x = X/Z and y = Y/Z , where X, Y ,
and Z are the homogeneous coordinates on P2. Suppose further that we have a lifting Ẽ ⊆ P2

k∞
which is

also given by a Weierstrass equation y2
= x3

+ Ãx + B̃, with Ã, B̃ ∈ k∞. Note that these hypotheses are
satisfied when E is constant curve, in other words E = E ×k km , for some elliptic curve E/k. In this
case, we can of course choose the lifting as E ×k k∞. In the following, we will not assume that our curve
is a constant curve. Suppose we fix a choice of smooth liftings P as above for each point in E(k) such
that the lifting of the origin in E(k) is the origin in E(km).

Let l0 be the line which intersects the curve at the origin O with multiplicity 3. It is the line given by
the equation Z = 0. For each 1 ≤ i ≤ 3 let li be the line given by ai X +bi Y +ci Z = 0, with ai , bi , ci ∈ km .
Denote the intersection points of the line li with the elliptic curve by αi1, αi2 and αi3. Note that the group
law on E gives that αi1 +αi2 +αi3 = 0. Suppose that the intersection points αi1, αi2, αi3 lie in the chosen
set of liftings P. Let fi denote the function on E given by li/ l0. For a generic choice of the lines, let
us compute ρm,r ( f1 ∧ f2 ∧ f3). Let l̃0 be the line in P2

k∞
given by Z = 0 and l̃i be the line given by

ãi X + b̃i Y + c̃i Z = 0 for some liftings ãi , b̃i , c̃i ∈ k∞ of ai , bi , ci ∈ km . Then the functions f̃i := l̃i/l̃0 are
liftings of fi . If α̃i1, α̃i2, α̃i3 are the intersections of l̃i with Ẽ , then we can compute the above regulator
as follows. Choose a smooth lifting to Ẽ of each element in P, such that:

(i) The origin in Ẽ(k∞) is the lifting of the origin in E(km).

(ii) The elements α̃i1, α̃i2, α̃i3 are the liftings of αi1, αi2, αi3 for 1 ≤ i ≤ 3.

Denote the set of these liftings by P̃. By our formula, we have

ρm,r ( f1 ∧ f2 ∧ f3)=

∑
c̃∈P̃

ℓm,r (resc̃( f̃1 ∧ f̃2 ∧ f̃3)).

Since we assume that the lines are generic, there are no common zeros of the functions f̃i . On the other
hand,

resO( f̃1 ∧ f̃2 ∧ f̃3)= −3(b̃2 ∧ b̃3 − b̃1 ∧ b̃3 + b̃1 ∧ b̃2).

Combining these, we obtain that the value ρm,r ( f1 ∧ f2 ∧ f3) is equal to

ℓm,r

( ∑
σ∈C3

(−1)|σ |

(
−3b̃σ(2) ∧ b̃σ(3) +

∑
1≤ j≤3

f̃σ(2)(α̃σ(1) j )∧ f̃σ(3)(α̃σ(1) j )

))
, (9.3.1)

where C3 is the subgroup of S3 generated by the 3-cycle (123).
In fact, the above expression gives an explicit computation for ρm,r ( f1 ∧ f2 ∧ f3) for any generic

choice of functions f1, f2, f3 which are good with respect to P . The group law on the elliptic curve has
the property that a divisor of degree 0 is the divisor of a rational function if and only if the divisor adds to
0 under the group law. This implies that the functions fi can be written as products of functions of the
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form l/ l0, where l is a line, and an element in k×
m . Since ρm,r vanishes on elements of the form λ∧ f ∧ g,

with λ ∈ k×
m , using the additivity of ρm,r we obtain the expression for ρm,r ( f1 ∧ f2 ∧ f3) using the one

for ρm,r ((l1/ l0)∧ (l2/ l0)∧ (l3/ l0)). Our main theorem implies that the expression (9.3.1) is independent
of the choices of the liftings of both E and the fi ’s. When such global liftings of either the elliptic curve
or the functions do not exist, we need to choose local liftings and add the defect for choosing different
liftings on the intersections as in the formula (1.3.1).

9.4. Invariants of cycles on km. As in [Ünver 2021], this construction gives us an invariant of cycles.
For a cycle of modulus m we expect the combination of ρm,r for all m < r < 2m to be a complete set
of invariants for the rational equivalence class of a cycle. For the appropriate, yet to be defined, Chow
group CH2(km, 3), we expect that our regulators ρm,r to give complete invariants for the infinitesimal
part CH2(km, 3)◦. This section also generalizes Park’s [2009] construction of regulators where the case
of r = m + 1 is dealt with. Since this section is more or less a generalization of [Ünver 2021, Section 4],
we do not go into the details and explain certain constructions in a slightly alternate way.

First, let us recall the definition of cubical higher Chow groups over a smooth k-scheme X/k [Bloch
1986]. Let □k := P1

k \{1} and □n
k the n-fold product of □k with itself over k, with the coordinate functions

y1, . . . , yn . For a smooth k-scheme X , we let □n
X := X ×k □n

k . A codimension 1 face of □n
X is a divisor

Fa
i of the form yi = a, for 1 ≤ i ≤ n, and a ∈ {0,∞}. A face of □n

X is either the whole scheme □n
X or

an arbitrary intersection of codimension 1 faces. Let zq(X, n) be the free abelian group on the set of
codimension q, integral, closed subschemes Z ⊆ □n

X which are admissible, i.e., which intersect each
face properly on □n

X . For each codimension one face Fa
i , and irreducible Z ∈ zq(X, n), we let ∂a

i (Z)
be the cycle associated to the scheme Z ∩ Fa

i . We let ∂ :=
∑n

i=1(−1)n(∂∞

i − ∂0
i ) on zq(X, n), which

gives a complex (zq(X, · ), ∂). Dividing this complex by the subcomplex of degenerate cycles, we obtain
Bloch’s higher Chow group complex whose homology CHq(X, n) := Hn(zq(X, · )) is the higher Chow
group of X .

In order to work with a candidate for Chow groups of cycles on km , we need to work with cycles over
k∞ which have a certain finite reduction property. The following definitions are essentially from [Ünver
2021, Section 4.2]. Let □k := P1

k , □n
k , the n-fold product of □k with itself over k, and □n

k∞
:= □n

k ×k k∞.
We define a subcomplex zq

f (k∞, · )⊆ zq(k∞, · ), as the subgroup generated by integral, closed subschemes
Z ⊆ □n

k∞
which are admissible in the above sense and have finite reduction, i.e., Z intersects each s × F

properly on □n
k∞

, for every face F of □n
k∞

. Here s denotes the closed point of the spectrum of k∞ and
for a subscheme Y ⊆ □n

k∞
, Y denotes its closure in □n

k∞
. Modding out by degenerate cycles, we have

a complex zq
f (k∞, · ). Fix 2 ≤ m < r < 2m. Let η denote the generic point of the spectrum of k∞. An

irreducible cycle p in z2
f (k∞, 2) is given by a closed point pη of □2

η whose closure p̄ in □2
k∞

does not
meet ({0,∞}×□k∞

)∪(□k∞
×{0,∞}). Let p̃ denote the normalization of p̄ and T denote the underlying

set of the closed fiber p̃ ×k∞
s of p̃. For every s ′

∈ T , and 1 ≤ i , define ℓ p̃,s′,i : Ô×

p̃,s′ → k(s ′) by the
formula

ℓ p̃,s′,i (y) :=
1
i

res p̃,s′
1
t i

d log(y).
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Let
lm,r (p) :=

∑
s′∈T

Trk

∑
1≤i≤r−m

i · (ℓ p̃,s′,r−i ∧ ℓ p̃,s′,i )(y1 ∧ y2). (9.4.1)

Note the similarity with Definition 3.0.2.

Definition 9.4.1. We define the regulator ρm,r : z2
f (k∞, 3)→ k as the composition lm,r ◦ ∂ .

Exactly as in [Ünver 2021], one proves that the regulator above vanishes on boundaries and products,
is alternating and has the same value on cycles which are congruent modulo (tm). We state only this last
property, which is the most important one, in detail.

Suppose that Zi for i = 1, 2 are two irreducible cycles in z2
f (k∞, 3). We say that Z1 and Z2 are

equivalent modulo tm if the following conditions (Mm) hold:

(i) Z i/k∞ are smooth with (Z i )s ∪
(⋃

j,a|∂
a
j Zi |

)
a strict normal crossings divisor on Z i .

(ii) Z1|tm = Z2|tm .

Then we have:

Theorem 9.4.2. For m < r < 2m, we define a regulator ρm,r : z2
f (k∞, 3)→ k. If Za , for a ∈ k♭∞, is the

dilogarithmic cycle given by the parametric equation (1 − z, z, z − a) then

ρm,r (Za)= ℓim,r ([a]).

If Zi ∈ z2
f (k∞, 3), for i = 1, 2, satisfy the condition (Mm), then they have the same infinitesimal regulator

value
ρm,r (Z1)= ρm,r (Z2).

Proof. The second part of the proof is exactly as in [Ünver 2021] and is based on Corollary 8.2.1.
In order to compute ρm,r (Za), we note that ∂(Za)= (1 − a, a) and

ρm,r (Za)= (lm,r ◦∂)(Za)= lm,r (1−a, a)=
∑

1≤i≤r−m

i(ℓr−i ∧ℓi )(1−a, a)= (ℓm,r ◦δ)(a)= ℓim,r ([a]). □

As we remarked above, we expect the invariants ρm,r for m < r < 2m to give a full set of invariants in
the infinitesimal part of a yet to be defined Chow group CH2(km, 3).
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