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In a recent breakthrough, Dvir showed that every Kakeya set in Fn must have cardinality at least cn|F|
n ,

where cn ≈ 1/n!. We improve this lower bound to βn
|F|n for a constant β > 0. This pins down the

correct growth of the constant cn as a function of n (up to the determination of β).

Let F be a finite field with q elements. A set K ⊆ Fn is said to be a Kakeya set in Fn if, for every
b ∈ Fn , there exists a point a ∈ Fn such that, for every t ∈ F, the point a+ t b lies in K . In other words,
K contains an affine line in every direction.

The question of establishing lower bounds on the size of Kakeya sets was posed in [Wolff 1999]. Till
recently, the best known lower bound on the size of Kakeya sets was of the form qαn for some α < 1. In
a recent breakthrough Dvir [2008] showed that every Kakeya set must have cardinality at least cnqn for
cn = (n!)−1. (Dvir originally achieved a weaker lower bound of cn qn−1, but the paper cited includes the
stronger bound of cn qn , the improvements being attributed to Alon and Tao.) We show:

Theorem 1. There exist constants c0, c1 > 0 such that for all n, if K is a Kakeya set in Fn then |K | ≥
c0 (c1q)n .

Remark. Our proofs give some tradeoffs on the constants c0, c1 that are achievable. We comment on
the constants at the end of the paper.

Our improvement shows that cn remains bounded from below by βn for some fixed β > 0. While
this improvement in the lower bound on the size of Kakeya sets is quantitatively small (say, compared
to the improvement of Alon and Tao over Dvir’s original bound), it is qualitatively significant in that it
does determine the growth of the leading constant cn , up to the determination of the right constant β. In
particular, it compares well with known upper bounds. Previously, it was known there exists a constant
β < 1 such that there are Kakeya sets of cardinality at most βnqn , for every odd q . A bound of β ≤ 1/

√
2

follows from [Mockenhaupt and Tao 2004] and the fact that products of Kakeya sets are Kakeya sets (in
higher dimension). The best known constant has β → 1

2 due to Dvir (personal communication, 2008).
We include his proof here (see Section 3), complementing it with a similar construction and bound for
the case of even q as well (so now the upper bounds work for all large fields).

Our proof follows the one in [Dvir 2008]. Given a Kakeya set K in Fn , we show that there exists an
n-variate polynomial, whose degree is bounded from above by some function of |K |, that vanishes at all
of K . Looking at restrictions of this polynomial to lines yields that this polynomial has too many zeroes,
which in turn yields a lower bound on the size of K . Our main difference is that we look for polynomials
that vanish with high multiplicity at each point in K . The requirement of high multiplicity forces the
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degree of the n-variate polynomial to go up slightly, but yields more zeroes when this polynomial is
restricted to lines. The resulting tradeoff turns out to yield an improved bound. (We note that this is
similar to the techniques used for the improved method of list decoding of Reed-Solomon codes created
by Guruswami and Sudan [1999].)

In the next section we give the preliminaries that will be needed for the proof of Theorem 1. The
actual proof of the theorem appears in Section 2. In Section 3, we give Dvir’s proof for the upper bound
for the size of Kakeya sets.

1. Preliminaries

For x = 〈x1, . . . , xn〉, let F[x] denote the ring of polynomials in x1, . . . , xn with coefficients in F. We
recall the following basic fact on polynomials.

Fact 2. Let P ∈ F[x] be a polynomial of degree at most q−1 in each variable. If P(a)= 0 for all a ∈ Fn ,
then P ≡ 0.

For integer m ≥ 0, let Nq(n, m) denote the number of monomials in n variables of total degree less
than m q and of individual degree at most q − 1 in each variable.

We say that a polynomial g ∈ F[x] has a zero of multiplicity m at a point a ∈ Fn if the polynomial
ga(x)= g(x+ a) has no support on monomials of degree strictly less than m. Note that the coefficients
of ga are (homogeneous) linear forms in the coefficients of g and thus the constraint g has a zero of
multiplicity m at a yields

(m+n−1
n

)
homogeneous linear constraints on the coefficients of g. As a result

we conclude:

Proposition 3. Given a set S ⊆ Fn satisfying
(m+n−1

n

)
|S|< Nq(n, m), there exists a nonzero polynomial

g ∈ F[x] of total degree less than mq and degree at most q− 1 in each variable such that g has a zero of
multiplicity m at every point a ∈ S.

Proof. The number of possible coefficients for g is Nq(n, m) and the number of (homogeneous) linear
constraints is

(m+n−1
n

)
|S|< Nq(n, m). Since the number of constraints is strictly smaller than the number

of unknowns, there is a nontrivial solution. �

For g ∈ F[x] we let ga,b(t)= g(a+ t b) denote its restriction to the line {a+ t b | t ∈ F}. We note the
following facts on the restrictions of polynomials to lines.

Proposition 4. If g ∈ F[x] has a root of multiplicity m at some point a + t0b then ga,b has a root of
multiplicity m at t0.

Proof. By definition, the fact that g has a zero of multiplicity m at a+ t0b implies that the polynomial
g(x + (a + t0b)) has no support on monomials of degree less than m. Thus, under the homogeneous
substitution x ← t b, we get no monomials of degree less than m either, and thus we have tm divides
g(t b + (a + t0b)) = g(a + (t + t0)b) = ga,b(t + t0). The final form implies that ga,b has a zero of
multiplicity m at t0. �

Proposition 5 [Dvir 2008]. Let g ∈ F[x] be a nonzero polynomial of total degree d and let g0 be the
(unique, nonzero) homogeneous polynomial of degree d such that g = g0+ g1 for some polynomial g1 of
degree strictly less than d. Then ga,b(t)= g0(b)td

+ h(t) where h is a polynomial of degree strictly less
than d.
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2. Proof of Theorem 1

Lemma 6. If K is a Kakeya set in Fn , then for every integer m ≥ 0, |K | ≥
(m+n−1

n

)
−1 Nq(n, m).

Proof. Assume for a contradiction that |K |<
(m+n−1

n

)
−1 Nq(n, m). Let g ∈ F[x] be a nonzero polynomial

of total degree less than mq and degree at most q − 1 in each variable that has a zero of multiplicity m
for each x ∈ K . (Such a polynomial exists by Proposition 3.) Let d < mq denote the total degree of g
and let g = g0+ g1 where g0 is homogeneous of degree d and g1 has degree less than d . Note that g0 is
also nonzero and has degree at most q − 1 in every variable.

Now fix a direction b ∈ Fn . Since K is a Kakeya set, there exists a ∈ Fn such that a + t b ∈ K for
every t ∈ F. Now consider the restriction ga,b of g to the line through a in direction b; it is a univariate
polynomial of degree at most d < mq. At every point t0 ∈ F we have that ga,b has a zero of multiplicity
m (Proposition 4). Thus counting up the zeroes of ga,b we find it has mq zeroes (m at every t0 ∈ F) which
is more than its degree. Thus ga,b must be identically zero. In particular its leading coefficient must be
zero. By Proposition 5 this leading coefficient is g0(b) and so we conclude g0(b)= 0.

We conclude that g0 is zero on all of Fn which contradicts the fact (Fact 2) that it is a nonzero
polynomial of degree at most q − 1 in each of its variables. �

Proof of Theorem 1. The theorem now follows by choosing m appropriately. Using for instance m = n,
we obtain |K | ≥

(2n−1
n

)
−1 Nq(n, n). It easily follows by the definition of Nq(n, m) that Nq(n, n) = qn ,

since there are q choices for the individual degree of every variable in an n variate monomial, and this
already forces total degree to be at most nq. Hence |K | ≥

(2n−1
n

)
−1qn
≥ (q/4)n , establishing the theorem

for c0 = 1 and c1 =
1
4 .

A better choice is with m = dn/2e ≤ (n + 1)/2. In this case Nq(n, m) ≥ 1
2qn (since at least half

the monomials of individual degree at most q − 1 have degree at most nq/2). This leads to a bound of
|K | ≥ 1

2

(3n/2
n

)
−1qn

≥
1
2(q/2.6)n , yielding the theorem for c0 = 1/2 and c1 = 1/2.6. �

To improve the constant c1 further, one could study the asymptotics of Nq(n, m) closer. Let τα denote
the quantity lim infn→∞{lim infq→∞(1/q)Nq(n, αn)1/n

}. That is, for sufficiently large n and sufficiently
larger q , Nq(n, αn)→ τ n

α qn . Lemma 6 can be reinterpreted in these terms as saying that for every α ∈

[0, 1], every Kakeya set has size at least c0(cαq)n
−o(qn) for some c0 >0, where cα→ τα/2(1+α)H(1/(1+α)

(where H(x)=−x log2 x − (1− x) log2(1− x) is the binary entropy function). The best estimate on τα

we were able to obtain does not have a simple closed form expression. As q→∞, τ n
α equals the volume

of the following region in Rn: {(x1, x2, . . . xn) ∈ [0, 1]n|
∑n

i=1 xi ≤ αn}. This volume can be expressed
in terms of Eulerian numbers (See [Marichal and Mossinghoff 2008], §4.3). [Giladi and Keller 1994,
§6] gives some asymptotics for Eulerian numbers and using their estimates α = 0.398, it seems one can
reduce cα to something like 1

2.46 . This still remains bounded away from the best known upper bound
which has c1→ 1/2.

Remark. While the main theorem only gives the limiting behavior of Kakeya sets for large n and q ,
Lemma 6 can still be applied to specific choices and get improvements over [Dvir 2008]. For example,
for n = 3, using m = 2 we get a lower bound of 5

24q3 as opposed to the bound of 1
6q3 obtainable from

[Dvir 2008].
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3. An upper bound on Kakeya sets

We include here Dvir’s proof (personal communication, 2008) giving a nontrivial upper bound on the size
of Kakeya sets in fields of odd characteristic. The proof is based on the construction of Mockenhaupt
and Tao [2004]. For the case of even characteristic we complement their results by using a variation
(obtained with Swastik Kopparty) of their construction.

Theorem 7 (Dvir). For every n ≥ 2, and field F, there exists a Kakeya set in Fn of cardinality at most
2−(n−1) qn

+ O(qn−1).

Proof. We consider two cases depending on whether F is of odd or even characteristic.
Odd characteristic: Let

Dn = {〈α1, . . . , αn−1, β〉|αi , β ∈ F, αi +β2is a square}.

Now let Kn = Dn ∪ (Fn−1
× {0}) where Fn−1

× {0} denotes the set {〈a, 0〉|a ∈ Fn−1
}. We claim that Kn

is a Kakeya set of the appropriate size.
Consider a direction b= 〈b1, . . . , bn〉. If bn = 0, for a= 〈0, . . . , 0〉 we have that a+ t b∈ Fn−1

×{0} ⊆
Kn . The more interesting case is when bn 6= 0. In this case let

a = 〈(b1/(2bn))
2, . . . , (bn−1/(2bn))

2, 0〉.

The point a+ t b has coordinates 〈α1, . . . , αn−1, β〉 where αi = (bi/(2bn))
2
+ tbi and β = tbn . We have

αi +β2
= (bi/(2bn)+ tbn)

2

which is a square for every i and so a+ t b ∈ Dn ⊆ Kn. This proves that Kn is indeed a Kakeya set.
Finally we verify that the size of Kn is as claimed. First note that the size of Dn is exactly

|Dn| = q ((q + 1)/2)n−1
= 2−(n−1)qn

+ O(qn−1)

(q choices for β and (q + 1)/2 choices for each αi +β2).
Hence, as claimed, the size of Kn is at most

|Kn| = |Dn| + qn−1
= 2−(n−1)qn

+ O(qn−1).

Even characteristic: This case is handled similarly with minor variations in the definition of Kn . Specif-
ically, we let

Kn = En = {〈α1, . . . , αn−1, β〉|αi , β ∈ F, ∃γi ∈ F such that αi = γ 2
i + γiβ}.

(As we see below En contains Fn−1
×{0} and so there is no need to set Kn = En ∪ Fn−1

×{0}.)
Now consider direction b= 〈b1, . . . , bn〉. If bn = 0, then let a = 0. We note that

a+ t b= 〈tb1, . . . , tbn−1, 0〉 = 〈γ 2
1 +βγ1, . . . γ

2
n−1+βγn−1, β〉

for β = 0 and γi =
√

tbi = (tbi )
q/2. We conclude that a+ t b ∈ En for every t ∈ F in this case.

Now consider the case where bn 6= 0. Let

a = 〈(b1/bn)
2, . . . , (bn−1/bn)

2, 0〉.
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The point a+ t b has coordinates 〈α1, . . . , αn−1, β〉 where αi = (bi/bn)
2
+ tbi and β = tbn .

For γi = (bi/bn),
γ 2

i + γiβ = (b1/bn)
2
+ tbi = αi .

Hence a+ t b ∈ En = Kn .
It remains to compute the size of En . The number of points of the form 〈α1, . . . , αn−1, 0} ∈ En is

exactly qn−1. We now determine the size of 〈α1, . . . , αn−1, β} ∈ En for fixed β 6= 0. We first claim that
the set {γ 2

+βγ |γ ∈ F} has size exactly q/2. This is so since for every γ ∈ F, we have γ 2
+βγ = τ 2

+βτ

for τ = γ + β 6= γ , and so the map γ 7→ γ 2
+ βγ is a 2-to-1 map on its image. Thus, for β 6= 0, the

number of points of the form 〈α1, . . . , αn−1, β} in En is exactly (q/2)n−1. We conclude that En has
cardinality

|En| = (q − 1)(q/2)n−1
+ qn−1

= 2−(n−1)qn
+ O(qn−1). �

We remark that for the case of odd characteristic, one can also use a recursive construction, replacing
the set Fn−1

×{0} by Kn−1×{0}. This would reduce the constant in the O(qn−1) term, but not alter the
leading term. Also we note that the construction used in the even case essentially also works in the odd
characteristic case. Specifically the set En ∪ Fn−1

× {0} is a Kakeya set also for odd characteristic. Its
size can also be argued to be 2−(n−1)qn

+ O(qn−1).
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