
ANALYSIS & PDE

mathematical sciences publishers

Volume 2 No. 1 2009

ENNO LENZMANN

UNIQUENESS OF GROUND STATES
FOR PSEUDORELATIVISTIC HARTREE EQUATIONS



ANALYSIS AND PDE
Vol. 2, No. 1, 2009

UNIQUENESS OF GROUND STATES
FOR PSEUDORELATIVISTIC HARTREE EQUATIONS

ENNO LENZMANN

We prove uniqueness of ground states Q ∈ H 1/2(R3) for the pseudorelativistic Hartree equation,√
−1+m2 Q−

(
|x |−1

∗ |Q|2
)
Q =−µQ,

in the regime of Q with sufficiently small L2-mass. This result shows that a uniqueness conjecture by
Lieb and Yau [1987] holds true at least for N =

∫
|Q|2� 1 except for at most countably many N .

Our proof combines variational arguments with a nonrelativistic limit, leading to a certain Hartree-
type equation (also known as the Choquard–Pekard or Schrödinger–Newton equation). Uniqueness of
ground states for this limiting Hartree equation is well-known. Here, as a key ingredient, we prove the so-
called nondegeneracy of its linearization. This nondegeneracy result is also of independent interest, for
it proves a key spectral assumption in a series of papers on effective solitary wave motion and classical
limits for nonrelativistic Hartree equations.

1. Introduction

The pseudorelativistic Hartree energy functional, given (in appropriate units) by

E(ψ)=

∫
R3
ψ
√
−1+m2 ψ −

1
2

∫
R3

(
|x |−1

∗ |ψ |2
)
|ψ |2, (1-1)

arises in the mean-field limit of a quantum system describing many self-gravitating, relativistic bosons
with rest mass m > 0. Such a physical system is often referred to as a boson star, and various models for
these — at least theoretical — objects have attracted a great deal of attention in theoretical and numerical
astrophysics over the past years.

In order to gain some rigorous insight into the theory of boson stars, it is of particular interest to study
ground states (that is, minimizers) for the variational problem

E(N )= inf
{

E(ψ) : ψ ∈ H 1/2(R3) and
∫

R3
|ψ |2 = N

}
, (1-2)

where the parameter N > 0 plays the role of the stellar mass. Provided that problem (1-2) has indeed a
ground state Q ∈ H 1/2(R3), one readily finds that it satisfies the pseudorelativistic Hartree equation,√

−1+m2 Q−
(
|x |−1

∗ |Q|2
)
Q =−µQ, (1-3)

with µ= µ(Q) ∈ R being some Lagrange multiplier.
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In fact, the existence of symmetric-decreasing ground states Q = Q∗(|x |) ≥ 0 minimizing (1-2) was
first proven by Lieb and Yau [1987], where the authors also conjectured that uniqueness holds true in the
following sense. For each N > 0, the variational problem (1-2) has at most one symmetric-decreasing
ground state. If true, this result further implies, by strict rearrangement inequalities, that we have indeed
uniqueness of all the ground states of (1-2) for each N > 0, up to phase and translation.

However, the nonlocality of
√
−1+m2 as well as the convolution-type nonlinearity both complicate

the analysis of the pseudorelativistic Hartree equation (1-3) in a substantial way. In particular, the set of
its radial solutions is not amenable to ODE techniques (for example, shooting arguments and comparison
principles) which are key arguments for proving uniqueness of ground states for nonlinear Schrödinger
equations (NLS) with local nonlinearities; see [Peletier and Serrin 1983; McLeod and Serrin 1987;
Kwong 1989; McLeod 1993].

A further complication in the analysis of (1-3) stems from the fact that there are no simple scaling
arguments that relate ground states with different N , due to the presence of m > 0. Indeed, this lack of a
simple scaling mechanism is essential for the existence of a critical stellar mass N∗ > 0; see Theorem 1.

As a first step towards proving uniqueness of ground states for (1-2), we present Theorem 2 below,
which shows that ground states for problem are indeed unique (modulo translation and phase) for all
sufficiently small N > 0 except for at most countably many. Our proof uses variational arguments
combined with a nonrelativistic limit, leading to the nonlinear Hartree equation (also called Choquard–
Pekar or Schrödinger–Newton equation) given by

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞. (1-4)

It is known this equation has a unique radial, positive solution Q∞ ∈ H 1(R3) for λ > 0 given; see [Lieb
1977] and Appendix A.

In the present paper, we prove (as a key ingredient) that Q∞ ∈ H 1(R3) has a nondegenerate lineariza-
tion. By this we mean that the linearization of (1-4) around Q∞ has a nullspace that is entirely due to the
equation’s invariance under phase and translation transformation; see Theorem 4 below and its remarks
for a precise statement. In particular, we show that the linear operator L+ given by

L+ξ =−
1

2m
1ξ + λξ −

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)

(1-5)

satisfies

ker L+ = span {∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞}. (1-6)

Furthermore, by a perturbation argument, we conclude an analogous nondegeneracy result for ground
states of the pseudorelativistic Hartree equation (1-3) with sufficiently small L2-mass; see Theorem 3
below.

In addition to being a mere technical key fact proven in this paper, the nondegeneracy result for (1-4)
is also of independent interest. For example, it proves a key spectral assumption in a series of papers on
effective solitary wave motion and classical limits for Hartree equations; see [Fröhlich et al. 2002; 2004;
Jonsson et al. 2006; Abou Salem 2007] and also the remark following Theorem 4. Another very recent
application of the nondegeneracy result (1-6) is presented in [Krieger et al. 2008], where two soliton
solutions to the time-dependent version of (1-4) are constructed.
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In the context of ground states for NLS with local nonlinearities, the nondegeneracy of linearizations
is a well-known fact (see [Weinstein 1985; Chang et al. 2007]) and it plays a central role in the stability
analysis of solitary waves for NLS. However, the arguments for NLS with local nonlinearities make use
of Sturm–Liouville theory, which, by contrast, is not applicable to L+ given by (1-5) due to its nonlocal
character. For more details, we refer to Section 7 below.

Apart from their minimizing property, the ground states for (1-2) also play an important role for the
time-dependent pseudorelativistic Hartree equation,

i∂tψ =
√
−1+m2 ψ −

(
|x |−1

∗ |ψ |2
)
ψ, (1-7)

with the wave field ψ : [0, T )×R3
→ C. Clearly, Equation (1-7) has solitary wave solutions

ψ(t, x)= ei tµQ(x), (1-8)

whenever Q ∈ H 1/2(R3) is a nontrivial solution to (1-3). Let us also mention that the dispersive nonlinear
PDE (1-7) exhibits a rich variety of phenomena, such as stable and unstable traveling solitary waves, as
well as finite-time blowup solutions indicating the “gravitational collapse” of a boson star; see [Fröhlich
et al. 2007a; 2007b; Fröhlich and Lenzmann 2007]. For well-posedness results concerning (1-7) and its
rigorous derivation from many-body quantum mechanics, we refer to [Cho and Ozawa 2006; Lenzmann
2007] and [Elgart and Schlein 2007], respectively.

For the reader’s convenience, we conclude our introduction by summarizing the existence result about
ground states for problem (1-2) along with a list of their basic properties.

Theorem 1 (Existence and properties of ground states). Suppose that m > 0 holds in (1-1). Then there
exists a universal constant N∗ > 4/π (independent of m) such that the following holds.

(i) (Existence) There exists a ground state Q ∈ H 1/2(R3) for problem (1-2) if and only if

0< N < N∗.

Moreover, the function Q satisfies the pseudorelativistic Hartree equation (1-3) in the sense of
distributions with some Lagrange multiplier µ ∈ R.

(ii) (Smoothness and exponential decay) Any ground state Q belongs to H s(Rd) for all s ≥ 0 and
e+δ|x |Q ∈ L∞(R3) for some δ = δ(Q) > 0.

(iii) (Radiality and strict positivity) Any ground state Q is equal to its spherical-symmetric rearrange-
ment Q∗(|x |) up to phase and translation. Moreover, we have Q∗(|x |) > 0 for all x ∈ R3.

Remark. For the proofs of (i) and (ii)–(iii), we refer to [Lieb and Yau 1987] and [Lenzmann 2006;
Fröhlich et al. 2007a], respectively. In physical terms, the constant N∗ > 0 can be regarded as the
“Chandrasekhar limit mass” of a pseudorelativistic boson star.

2. Main results

We now state our first main result concerning the uniqueness of ground states for the pseudorelativistic
Hartree equation (1-3).
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Theorem 2 (Uniqueness of ground states for N � 1). Assume that m > 0 holds in (1-1). Then, for
0< N � 1, we have uniqueness of ground states for problem (1-2) up to phase and translation whenever
E ′(N ) exists. In particular, the symmetric-decreasing ground state Q= Q∗ ∈ H 1/2(R3)minimizing (1-2)
is unique for such N > 0.

Remarks. (1) Since it is known from [Lieb and Yau 1987] that the ground state energy E(N ) is strictly
concave, the derivative E ′(N ) exists for all N ∈ (0, N∗), except on a subset6 which is at most countable.
In particular, it is easy to see that the Lagrange multiplier µ is unique for such N ∈ (0, N∗) \6, in the
sense that µ only depends on Q through N =

∫
|Q|2. Our argument to prove Theorem 2 has to avoid

the “exceptional” set 6. A natural conjecture would be that 6 =∅ holds.

(2) It would be desirable to extend this uniqueness result (whose proof partly relies on perturbative
arguments) to the whole range 0 < N < N∗ of existence; or, more interestingly, to disprove uniqueness
for some N > 0 sufficiently large.

(3) By definition, ground states for the pseudorelativistic Hartree equation (1-2) are always minimizers
for the variational problem (1-2). In principle, we cannot exclude the possibility that (1-3) has a positive
solution without being a minimizer for (1-2).

(4) To the author’s knowledge, this is the first uniqueness result for ground states that solve a nonlinear
pseudo-differential equation in space dimension n > 1. In fact, apart from a very special case arising in
n=1 dimensions for solitary waves solving Benjamin–Ono-type equations (see [Amick and Toland 1991;
Albert 1995]), nothing seems to be known, for instance, about uniqueness of ground states ϕ ∈ H s(Rn)

for nonlinear equations involving the fractional Laplacian (−1)s/2ϕ+ f (ϕ)=−µϕ,where f (ϕ) denotes
some nonlinearity and µ ∈ R is given. The author plans to pursue this question in future work.

(5) If m=0 vanishes, we have existence of ground states for problem (1-2) if and only if N =N∗. In what
follows, we shall exclusively deal with the physically relevant case where m > 0 holds. Nevertheless,
it remains an interesting open question whether uniqueness of ground states also holds for m = 0, since
the methods developed here are clearly not applicable to this limiting case.

Our next result proves a so-called nondegeneracy condition, which was introduced in [Fröhlich et al.
2007b] as a spectral assumption supported by numerical evidence. There, the effective motion of solitary
waves for (1-7) with an slowly varying external potential was studied. Furthermore, the following nonde-
generacy result allows us to give an unconditional proof for the cylindrical symmetry of traveling solitary
waves for the time-dependent pseudorelativistic Hartree equation (1-7); see [Fröhlich et al. 2007b] for
more details. The precise nondegeneracy statement reads as follows.

Theorem 3 (Nondegeneracy of ground states for N � 1). Let m > 0 in (1-1) and suppose that Q = Q∗

is a symmetric-decreasing ground state for problem (1-2) with Lagrange multiplier µ ∈R. Furthermore,
we consider the linear operator L+ given by

L+ξ =
(√
−1+m2+µ

)
ξ −

(
|x |−1

∗ |Q|2
)
ξ − 2Q

(
|x |−1

∗ (Qξ)
)
,

acting on L2(R3) with domain H 1(R3). Then, for 0< N � 1, the operator L+ is nondegenerate, that is,
its kernel satisfies

ker L+ = span
{
∂x1 Q, ∂x2 Q, ∂x3 Q

}
.
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Remarks. (1) This completely characterizes the kernel of the linearization of the pseudorelativistic
Hartree equation (1-3) around ground state Q = Q∗ with

∫
|Q|2 � 1. Note that, due to the pres-

ence of |Q|2 in the nonlinearity, the linearized operator is not C-linear. See also the remark following
Theorem 4 below for more details on the analogous statement for the nonrelativistic equation (1-4).

(2) The nondegeneracy of L+ holds for all N =
∫
|Q|2 � 1. The extra condition that E ′(N ) exists,

which is present in Theorem 2, is not needed here.

In order to prove Theorem 3, we first have to show the nondegeneracy for the linearization around
the ground state Q∞ ∈ H 1(R3) solving the nonrelativistic Hartree equation (1-4). As mentioned before,
this spectral result is of independent interest, since it proves a key assumption in [Fröhlich et al. 2002;
Fröhlich et al. 2004; Jonsson et al. 2006; Abou Salem 2007]. See also [Krieger et al. 2008], where the
following nondegeneracy result is needed. Hence we record this fact about (1-4) as one of our main
results.

Theorem 4 (Nondegeneracy for Q∞). Let m > 0 and λ > 0 be given. Furthermore, suppose that
Q∞ ∈ H 1(R3) is the unique radial, positive solution to the nonrelativistic Hartree equation (1-4). Then
the linear operator L+ given by

L+ξ =−
1

2m
1ξ + λξ −

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)

(2-1)

acting on L2(R3) with domain H 2(R3), satisfies

ker L+ = span
{
∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞

}
. (2-2)

Remarks. (1) The linearized operator L for (1-4) at Q∞ is found to be

Lh =− 1
2m
1h+ λh−

(
|x |−1

∗ |Q∞|2
)
h− Q∞

(
|x |−1

∗ (Q∞(h+ h))
)
.

It is convenient to view the operator L (which is not C-linear) as acting on(
Re h
Im h

)
,

so that it can be written as

L =
(

L+ 0
0 L−

)
.

Here L+ is as in Theorem 4 above, and L− is the (local) operator

L− =−
1

2m
1+ λ−

(
|x |−1

∗ |Q∞|2).

It is easy to see that ker L− = span {Q∞} holds. Hence, by Theorem 4, we obtain

ker L = span
{(

∂x1 Q∞
0

)
,

(
∂x2 Q∞

0

)
,

(
∂x2 Q∞

0

)
,

(
0

Q∞

)}
.

(2) The precise knowledge of ker L implies, by well-known arguments along the lines for NLS with
local nonlinearities (given in [Weinstein 1985]), the following coercivity estimate: There is a constant
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δ > 0 such that
〈 f, L+ f 〉+ 〈g, L−g〉 ≥ δ(‖ f ‖2H1 +‖g‖2H1),

when f ⊥ span {Q∞, xi Q∞}3i=1 and g ⊥ span {2Q∞+ r∂r Q∞, ∂xi Q∞}3i=1, which means that ( f, g) is
symplectically orthogonal to the “soliton manifold” generated by Q∞; see, for example, [Fröhlich et al.
2004]. This coercivity estimate plays a central role in the stability analysis of solitary waves for NLS-
type equations and their effective motion in an external potential; see, for example, [Weinstein 1985;
Bronski and Jerrard 2000; Fröhlich et al. 2004; 2007b; Jonsson et al. 2006; Abou Salem 2007; Holmer
and Zworski 2008].

Organization of the paper. This paper is structured as follows. In Section 3, we study the nonrelativistic
limit of ground states for a dimensionalized version of the variational problem (1-2). In Section 4, we
prove a nondegeneracy result for the nonrelativistic ground state Q∞ ∈ H 1(R3) in the radial setting.
Then, in Section 5, we establish a local uniqueness result around Q∞ ∈ H 1(R3) by means of an implicit-
function-type argument.

We prove Theorem 2 in Section 6, and Theorems 3 and 4 in Section 7. Appendices A and B collect
some auxiliary results and we also give a uniqueness proof for the ground state Q∞ ∈ H 1(R3), which
differs from [Lieb 1977] in certain ways.

Notation and conventions. As usual H s(Rn) stands for the inhomogeneous Sobolev space of order s∈R,
equipped with norm ‖ f ‖H s =‖〈∇〉

s f ‖L2 , where 〈∇〉 is defined via its multiplier 〈ξ〉 = (1+ξ 2)1/2 in the
Fourier domain. Also, we shall make use of the space of radial and real-valued functions that belong to
H 1(R3), which we denote by

H 1
r (R

3)= { f : f ∈ H 1(R3), f is radial and real-valued}.

With the usual abuse of notation we shall write both f (x) and f (r), with r =|x |, for radial functions f on
Rn . For any measurable function f :Rn

→C that vanishes at infinity, we denote its symmetric-decreasing
rearrangement by f ∗ = f ∗(r)≥ 0.

Throughout this paper, we assume that the mass parameter m > 0 in (1-1) is strictly positive, which
is the physically relevant case.

For the reader’s orientation, we mention that our definition of E(ψ) in (1-1) differs from the conven-
tions in [Lieb and Yau 1987; Fröhlich et al. 2007a] by an inessential factor of 2 and by the fact that we
use
√
−1+m2 instead of

√
−1+m2−m. Obviously, these slight alterations in our definition of E(ψ)

do not affect any results on (1-2) that are derived or quoted in the present paper.
Finally, we point out that the function Q∞ ∈ H 1

r (R
3), which denotes the unique ground state for

(1-4), appears throughout the paper. However, for the sake of simple notation, we shall also denote all
its rescaled copies aQ∞(b· ), with a > 0 and b > 0, simply by Q∞, whenever there is no source of
confusion.

3. Nonrelativistic limit

As a preliminary step towards the proof of Theorems 2 and 3, we study the nonrelativistic limit of ground
states for the pseudorelativistic Hartree energy functional. More precisely, we reinstall the speed of light
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c > 0 into E(ψ) defined in (1-1), which yields the c-depending Hartree energy functional

Ec(ψ)=

∫
R3
ψ
√
−c21+m2c4 ψ −

1
2

∫
R3

(
|x |−1

∗ |ψ |2
)
|ψ |2. (3-1)

An elementary calculation shows that, for any ψ ∈ H 1/2(R3),

E(ψ)= c−3Ec(ψ̃), with ψ(x)= c−2ψ̃(c−1x). (3-2)

Thus we immediately find the following equivalence.

Lemma 1. Let c> 0 and N > 0. Then Q̃ ∈ H 1/2(R3) minimizes Ec(ψ) subject to
∫
|ψ |2= N if and only

if Q = c−2 Q̃(c−1
· ) minimizes E(ψ) subject to

∫
|ψ |2 = c−1 N.

In particular, we have existence of ground states for Ec(ψ) subject to
∫
|ψ |2 = N if and only if

0< N < cN∗ holds, where N∗ > 4/π denotes the same universal constant as in Theorem 1.

We now study the behavior of ground states Qc for Ec(ψ) as c → ∞ with
∫

R3 |Qc|
2
= N being

fixed. By Lemma 1, this is equivalent (after a suitable rescaling) to studying ground states for E(ψ) with∫
|ψ |2 = N as N → 0. However, the following analysis turns out to be more transparent when working

with c> 0 as a parameter and sending c to infinity. Concerning the nonrelativistic limit c→∞ of ground
states for Ec(ψ), we have the following result.

Proposition 1. Let m > 0 and N > 0 be given, and suppose that cn→∞ as n→∞. Furthermore, we
assume that {Qcn }

∞

n=1 is a sequence of symmetric-decreasing ground states such that
∫

R3 |Qcn |
2
= N for

all n ≥ 1, and each Qcn ∈ H 1/2(R3) minimizes Ecn (ψ) subject to
∫

R3 |ψ |
2
= N. Finally, let {µcn }

∞

n=1
denote the sequence of Lagrange multipliers corresponding to {Qcn }

∞

n=1.
Then the following holds:

Qcn → Q∞ in H 1(R3) as n→∞,

−µcn −mc2
n→−λ as n→∞,

where Q∞ ∈ H 1(R3) is the unique radial, positive solution to

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞, (3-3)

such that
∫

R3 |Q∞|2 = N. Here λ > 0 is determined through Q∞ = Q∗
∞
∈ H 1(R3), which is the unique

symmetric-decreasing minimizer of the variational problem

Enr(N )= inf
{

Enr(ψ) : ψ ∈ H 1(R3) and
∫

R3
|ψ |2 = N

}
, (3-4)

where

Enr(ψ)=
1

2m

∫
R3
|∇ψ |2−

1
2

∫
R3

(
|x |−1

∗ |ψ |2
)
|ψ |2. (3-5)

Remarks. (1) A similar result for the nonrelativistic limit of ground states (and excited states) solving
the Dirac–Fock equations can be found in [Esteban and Séré 2001]. However, unlike the Dirac–Fock
and Hartree–Fock energy functionals in atomic physics treated in [Esteban and Séré 2001], the energy
functional in (3-1) is not weakly lower semicontinuous due to its attractive potential term. Therefore,
an a priori bound on the sequence of Lagrange multipliers µcn (away from the essential spectrum of the
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limiting equation) is not sufficient to conclude strong convergence. To deal with this, we also have to
use the radial symmetry of the Qcn in order to prove strong convergence.

(2) The uniqueness of the symmetric-decreasing ground state for problem (3-4) was proven by Lieb
[1977]. For the reader’s convenience, we provide a (partly different) proof of this fact in Appendix A.

3.1. Proof of Proposition 1. We begin with some auxiliary results.

Lemma 2. Let {µcn }
∞

n=1 be as in Proposition 1. Then there exist constants δ1 > 0 and δ2 > 0 such that

mc2
n − δ1 ≤−µcn ≤ mc2

n − δ2, for all n ≥ n0,

where n0� 1 is some number.

Proof. The existence of δ2 > 0 can be deduced as follows. The Euler–Lagrange equation for Qcn reads√
−c2

n1+m2c4
n Qcn −

(
|x |−1

∗ |Qcn |
2)Qcn =−µcn Qcn , (3-6)

which upon multiplication with Qcn and integration gives us

Ecn (Qcn )−
1
2

∫
R3

(
|x |−1

∗ |Qcn |
2)
|Qcn |

2
=−µcn N . (3-7)

Next, we recall the operator inequality√
−c21+m2c4 ≤−

1
2m
1+mc2,

which directly follows in the Fourier domain and the fact that
√

1+ t ≤ t/2+1 holds for all t ≥ 0. Hence
we have that Ecn (Qcn ) ≤ Enr(Qcn )+ Nmc2

n . Furthermore, since Qcn is a ground state for Ecn (ψ), we
deduce

Ecn (Qcn )≤ Enr(N )+ Nmc2
n,

with Enr(N ) defined in (3-4), so that (3-7) gives us

−µcn N ≤ Enr(N )+ Nmc2
n.

From [Lieb 1977] we know that Enr(N ) < 0 and thus δ2 =−Enr(N )/N > 0 is a legitimate choice.
To prove the existence of δ1 > 0, we observe that each Qcn ≥ 0 is the ground state of the “relativistic”

Schrödinger operator

Hcn =

√
−c2

n1+m2c4
n −

(
|x |−1

∗ |Qcn |
2).

Since all Qcn are radial functions with ‖Qcn‖
2
L2 = N for all n ≥ 1, we can invoke Newton’s theorem to

find ∫
R3

|Qcn (y)|
2

|x − y|
dy ≤

N
|x |
.

By the min-max principle, we infer the lower bound

−µcn ≥ inf σ(H cn )

where
H cn =

√
−c2

n1+m2c4
n −

N
|x |
.
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From [Herbst 1977] and reinstalling the speed of light c > 0 there, we recall that we have inf σ(H cn ) >

−∞ if and only if N < (2/π)cn . Thus H cn is bounded below for n � 1 and, moreover, we have an
explicit lower bound (see [Herbst 1977] again) given by

inf σ(H cn )≥ mc2
n

√
1−

(
πN
2cn

)2

.

Since
√

1− x2 ≥ 1− x2 for |x | ≤ 1, we conclude

−µcn ≥ mc2
n

(
1−

(
πN
2cn

)2)
= mc2

n −
1
4

mπ2 N 2, for all n ≥ n0,

provided that n0� 1. By choosing δ1 =
1
4 mπ2 N 2 > 0, we complete the proof of Lemma 2. �

Next, we derive an a priori bound on the sequence of ground states.

Lemma 3. Let {Qcn }
∞

n=1 be as in Proposition 1. Then there exists a constant M > 0 such that

‖Qcn‖H1 ≤ M, for all n ≥ 1.

Proof. Since ‖Qcn‖
2
L2 = N for all n ≥ 1, we only have to derive a uniform bound for ‖∇Qcn‖L2 which

can be done as follows. From (3-6) we obtain

c2
n‖∇Qcn‖

2
L2 +m2c4

n‖Qcn‖
2
L2

=
〈√
−c2

n1+m2c4
n Qcn ,

√
−c2

n1+m2c4
n Qcn

〉
≤ µ2

cn
〈Qcn , Qcn 〉 + 2|µcn |

〈
Qcn , (|x |

−1
∗|Qcn |

2)Qcn

〉
+
〈
Qcn (|x |

−1
∗|Qcn |

2), (|x |−1
∗|Qcn |

2)Qcn

〉
.

To bound the terms on the right, we notice that Kato’s inequality |x |−1 . |∇| implies

‖|x |−1
∗ |Qcn |

2
‖L∞ . 〈Qcn , |∇|Qcn 〉. ‖Qcn‖L2‖∇Qcn‖L2 .

Using this bound, Hölder’s inequality, and the bound |µcn | ≤ mc2
n for n� 1 from Lemma 2, we obtain

c2
n‖∇Qcn‖

2
L2 . mc2

n N 3/2
‖∇Qcn‖L2 + N 2

‖∇Qcn‖
2
L2,

for n� 1. Since cn→∞ and N is fixed, we conclude that there exists M > 0 such that

‖∇Qcn‖L2 ≤ M

for n� 1. By choosing M > 0 possibly larger, we extend this bound to all n ≥ 1. �

We now come the proof of Proposition 1 itself. By the a priori bound in Lemma 3, we have (after
possibly passing to a subsequence) that

Qcn ⇀ Q∞ in H 1(R3) and Qcn (x)→ Q∞(x) for a. e. x ∈ R3 as n→∞,

for some Q∞ ∈ H 1(R3). By radiality and strict positivity of all the Qcn , it follows that Q∞(|x |) ≥ 0 is
a radial and nonnegative function. Furthermore, since {Qcn }

∞

n=1 forms a sequence of radial functions on
R3 with a uniform H 1-bound, a classical result (see [Strauss 1977]) yields that

Qcn → Q∞ in L p(R3) as n→∞ for any 2< p < 6. (3-8)
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By Lemma 2, we have that {−µcn −mc2
n}
∞

n=1 is a bounded sequence, which is also uniformly bounded
away from 0. Hence extracting a suitable subsequence yields

lim
n→∞

(−µcn −mc2
n)=−λ < 0, (3-9)

for some λ > 0.
Using that Qcn ⇀ Q∞ in H 1 and the strong convergence (3-8), we can pass to the limit in (3-6) and

find that the radial, nonnegative function Q∞ ∈ H 1(R3) satisfies

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞ in H−1(R3). (3-10)

When taking this limit, we use the fact that

lim
n→∞

〈
f,
(√
−c2

n1+m2c4
n −mc2

n +
1

2m
1
)

Qcn

〉
= 0 for all f ∈ H 1(R3),

which is easy to verify for test functions f ∈ C∞0 (R
3) by taking the Fourier transform and using that√

c2
nξ

2+m2c4
n −mc2

n −
ξ 2

2m
→ 0 for every ξ ∈ R3 as cn→∞.

The claim above extends to all f ∈ H 1(R3) by a simple density argument.
Next we prove that in fact

∫
|Q∞|2 = N holds, which a-posteriori would show that Qcn → Q∞

strongly in L2(R3). To prove this claim, we note that Equation (3-6) and its limit (3-10) give us

(−µcn −mc2
n)N =

1
2m

∫
R3
|∇Qcn |

2
−

∫
R3

(
|x |−1

∗ |Qcn |
2)
|Qcn |

2
+ rn, (3-11)

with rn→ 0 as n→∞. Note that the right-hand side is not weakly lower semicontinuous (with respect to
weak H 1-convergence), unlike the case of atomic Hartree and Hartree–Fock energy functionals. To deal
with the non weakly lower semicontinuous part given by the potential energy term, we use (3-8) again
and the Hardy–Littlewood–Sobolev inequality. Then, by the weak lower semicontinuity of the kinetic
energy term in (3-11), we deduce from (3-11) and (3-10) that

−λN ≥ 1
2m

∫
R3
|∇Q∞|2−

∫
R3

(
|x |−1

∗ |Q∞|2
)
|Q∞|2 =−λ

∫
R3
|Q∞|2.

Because of λ> 0, we see that
∫
|Q∞|2 ≥ N must hold. On the other hand, we have N ≥

∫
|Q∞|2 by the

weak L2-convergence. Thus we have
∫
|Q∞|2 = N and, consequently,

Qcn → Q∞ in L2(R3) as n→∞. (3-12)

By Lemma 9 and a simple scaling argument, we see that Q∞ is the unique radial, nonnegative solution
to (3-10) with

∫
|Q∞|2 = N . Here λ > 0 is determined through Q∞, and Q∞ is in fact strictly positive.

It remains to show that
Qcn → Q∞ in H 1(R3) as n→∞. (3-13)

To see this, we verify that {Qcn }
∞

n=1 with
∫
|Qcn |

2
= N furnishes a minimizing sequence for the nonrel-

ativistic Hartree energy Enr(ψ) subject to
∫
|ψ |2 = N , that is, for problem (3-4). Indeed, using (3-11)
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and (3-9) as well as the strong convergence (3-8) to pass to the limit in the potential energy, we deduce
that

Enr(Qcn )→−λN + 1
2

∫
R3

(
|x |−1

∗ |Q∞|2
)
|Q∞|2 as n→∞.

However, this limit for Enr(Qcn ) is equal to Enr(Q∞), as can be seen by multiplying (3-10) with Q∞ and
integrating. Hence {Qcn }

∞

n=1 is a minimizing sequence for problem (3-4). Next, we notice that standard
concentration-compactness methods yield relative compactness in H 1(R3) for any radial minimizing
sequence for problem (3-4), which has a unique radial, nonnegative minimizer Q∞. Therefore (after
possibly passing to another subsequence) we deduce that (3-13) holds.

To conclude the proof of Proposition 1, we note that we have convergence along every subsequence
because of the uniqueness of the limit point Q∞ ∈ H 1(R3). �

4. Radial nondegeneracy of nonrelativistic ground states

We consider the linear operator

L+ξ =−
1

2m
1ξ + λξ −

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)
, (4-1)

where Q∞ ∈ H 1(R3) is the radial, positive solution taken from Proposition 1. By standard arguments,
it follows that L+ is a self-adjoint operator acting on L2(R3) with domain H 2(R3). In this section, we
study the restriction of L+ acting on L2

rad(R
3) (that is, the radial L2-functions on R3).

As a main result, we prove the so-called nondegeneracy of L+ on L2
rad(R

3); that is, the triviality of its
kernel.

Proposition 2. For the linear operator L+ be given by (4-1), we have

ker L+ = {0} when L+ is restricted to L2
rad(R

3).

Remark. (1) As shown in Section 7 below, we will see that the triviality of the kernel of L+ on L2
rad(R

3)

implies

ker L+ = span
{
∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞

}
. (4-2)

For linearized operators arising from ground states for NLS with local nonlinearities, this fact is well-
known; see [Chang et al. 2007; Weinstein 1985]. However, the proof given there cannot be adapted to
L+ given by (4-1) due to its nonlocal component. We refer to Section 7 for further details.

(2) Numerical evidence indicating that 0 is not an eigenvalue of L+ when restricted to radial functions
can be found in [Harrison et al. 2003].

4.1. Proof of Proposition 2. Suppose that Q∞ ∈ H 1(R3) is the unique radial, positive solution to (3-3)
with

∫
|Q∞|2 = N for some N > 0 given. In what follows, it will be convenient and without loss of

generality to assume that Q∞ satisfies

−1Q∞−
(
|x |−1

∗ |Q∞|2
)
Q∞ =−Q∞, (4-3)
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which amounts to rescaling Q∞(x) 7→ aQ∞(bx) with suitable a > 0 and b > 0. Likewise, the linear
operator L+ then reads

L+ξ =−1ξ + ξ −
(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)
. (4-4)

Recall that we restrict ourselves to radial ξ ∈ L2
rad(R

3). Therefore, we can rewrite the nonlocal term
in L+ by invoking Newton’s theorem in R3 (see [Lieb and Loss 2001, Theorem 9.7]): For any radial
function ρ = ρ(|x |) such that ρ ∈ L1(R3, (1+ |x |)−1dx), we have

−(|x |−1
∗ ρ)(r)=

∫ r

0
K (r, s)ρ(s) ds−

∫
R3

ρ(|x |)
|x |

, (4-5)

for r = |x | ≥ 0, where K (r, s) is given by

K (r, s)= 4πs
(
1− s

r
)
≥ 0, for r ≥ s. (4-6)

Since the ground state Q∞ is exponentially decaying, we can apply Newton’s theorem to ρ = Q∞ξ for
any ξ ∈ L2

rad(R
3) and obtain the following result.

Lemma 4. For any ξ ∈ L2
rad(R

3), we have

L+ξ = L+ξ − 2Q∞

(∫
R3

Q∞ξ
|x |

)
, (4-7)

where L+ is given by
L+ξ =−1ξ + ξ −

(
|x |−1

∗ |Q∞|2
)
ξ +W ξ, (4-8)

with

(W ξ)(r)= 2Q∞(r)
∫ r

0
K (r, s)Q∞(s)ξ(s) ds. (4-9)

The following auxiliary result shows exponential growth of solutions v to the linear equation L+v= 0.

Lemma 5. Suppose the radial function v = v(r) solves L+v = 0 with v(0) 6= 0 and v′(0) = 0. Then
the function v(r) has no sign change and v(r) grows exponentially as r →∞. More precisely, for any
0< δ < 1, there exist constants C > 0 and R > 0 such that

|v(r)| ≥ Ce+δr , for all r ≥ R.

In particular, we have that v 6∈ L2
rad(R

3).

Proof. Since L+v = 0 is a linear equation, we can assume without loss of generality that v(0) > 0; and
moreover it is convenient to assume that v(0) > Q∞(0) holds. Next, we write L+v = 0 as

v′′(r)+ 2
r
v′(r)= V (r)v(r)+W (r), (4-10)

with

V (r)= 1− (|x |−1
∗ |Q∞|2)(r), (4-11)

W (r)= 2Q∞(r)
∫ r

0
K (r, s)Q∞(s)v(s) ds. (4-12)
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Note that Q∞(r) satisfies (4-10) with W (r) being removed, that is,

Q′′
∞
(r)+ 2

r
Q′
∞
(r)= V (r)Q∞(r). (4-13)

We now compare v(r) and Q∞(r) as follows. An elementary calculation, using equations (4-10) and
(4-13), leads to the “Wronskian-type” identity(

r2(Q∞v′− Q′
∞
v)
)′
= r2 Q∞W, (4-14)

which, by integration, gives us

r2(Q∞v′− Q′
∞
v)(r)=

∫ r

0
s2 Q∞(s)W (s) ds. (4-15)

Hence, while keeping in mind that Q∞(r) > 0, we find

r2
(
v(r)

Q∞(r)

)′
=

1
Q∞(r)2

∫ r

0
s2 Q∞(s)W (s) ds. (4-16)

From this identity we now claim that

v(r) > Q∞(r), for all r ≥ 0. (4-17)

To see this, recall that v(0) > Q∞(0) and, by continuity, we have that v(r) > Q(r) for r > 0 sufficiently
small. Suppose now, on the contrary to (4-17), that there is a first intersection at some positive r = r∗,
say, so that v(r∗)= Q∞(r∗). It is easy to see that the left-hand side of (4-16) (or equivalently (4-15)) has
to be ≤ 0 at r = r∗. On the other hand, since v(r) > Q∞(r) > 0 on [0, r∗), we conclude that the integral
on right-hand side of (4-16) at r = r∗ must be strictly positive. This contradiction shows that (4-17) must
hold. In particular, the function v(r) never changes its sign.

Next, we insert the estimate (4-17) back into (4-16), which yields

r2
(
v(r)
Q(r)

)′
(r)≥

2
Q∞(r)2

∫ r

0
s2 Q∞(s)2

∫ s

0
K (s, t)Q∞(t)2 dt ds. (4-18)

We notice that Q∞(r) > 0 is the unique ground state for the Schrödinger operator

H =−1+ Ṽ , with Ṽ =−|x |−1
∗ |Q∞|2. (4-19)

Since H Q∞=−Q∞ and Ṽ is a continuous function with Ṽ → 0 as |x |→∞, standard arguments show
that, for any ε > 0, there exists a constant Aε > 0 such that

Q∞(r)≤ Aεe−(1−ε)r , for all r ≥ 0. (4-20)

Furthermore, since Q∞(r) > 0 is the ground state of H , we can obtain the following lower bound: For
any ε > 0, there exists a constant Bε > 0 such that

Q∞(r)≥ Bεe−(1+ε)r , for all r ≥ 0. (4-21)

For this classical result on ground states for Schrödinger operators. See, for example, [Carmona and
Simon 1981, Theorem 3.2] where a probabilistic proof is given.
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Now let 0< ε < 1 be given. Inserting the bounds (4-20) and (4-21) into Equation (4-18), we obtain

r2
(
v(r)
Q(r)

)′
(r)≥ Ce(2−2ε)r

∫ r

0
s2e−(2+2ε)s

∫ s

0
K (s, t)e−(2+2ε)t dt ds, (4-22)

with some constant C = Cε > 0 (we drop its dependence on ε henceforth). Since the double integral on
the right-hand side converges as r→∞ to some finite positive value, there exists some a > 0 such that

r2
(
v(r)
Q(r)

)′
(r)≥ Ce(2−2ε)r , for all r ≥ a, (4-23)

with some constant C > 0. Integrating this lower bound and using (4-21) again, we find that

v(r)≥ C
e(1−3ε)r

r2 , for all r ≥ R, (4-24)

with some constants C > 0 and R� 1. Thus, for any 0< δ < 1, we arrive at the claim of Lemma 5 by
taking 0< ε < 1

3(1− δ) and choosing C > 0 appropriately. �

With the help of Lemma 5 we are now able to prove the triviality of the kernel of L+ in the radial
sector.

Lemma 6. For L+ be given by (4-1), we have that L+ξ = 0 with ξ ∈ L2
rad(R

3) implies that ξ ≡ 0.

Proof. Suppose there exists ξ ∈ L2
rad(R

3)with ξ 6≡0 such that L+ξ =0. Then, by Lemma 4, the function ξ
solves the inhomogeneous problem

L+ξ = 2 σQ∞, with σ =
∫

R3

Q∞ξ
|x |

. (4-25)

Therefore,
ξ = v+w, (4-26)

where w is any particular solution to (4-25) and v is some function such that L+v= 0. As shown below,
it suffices to restrict ourselves to smooth v and w.

We shall now construct a smooth w ∈ L2
rad(R

3) as follows. We define the smooth radial function

R = 2Q∞+ r∂r Q∞ ∈ L2
rad(R

3), (4-27)

where a calculation shows that
L+R =−2Q∞. (4-28)

Furthermore, by applying Lemma 4 to R, we find

L+R = 2(τ − 1)Q∞, with τ =
∫

R3

Q∞R
|x |

. (4-29)

Note that τ 6= 1 must hold, for otherwise Lemma 5 with v = R (and v(0) = R(0) = Q(0) > 0 and
v′(0) = R′(0) = 0) would yield that R 6∈ L2

rad(R
3), which is a contradiction. Thus we have found a

smooth particular solution to (4-25) given by

w =
σ

τ − 1
R ∈ L2

rad(R
3). (4-30)



UNIQUENESS OF GROUND STATES FOR PSEUDORELATIVISTIC HARTREE EQUATIONS 15

Further, we notice that ξ ∈ L2
rad(R

3)with L+ξ =0 is smooth by bootstrapping this equation. Therefore, by
(4-26), we conclude that v has to be smooth as well. Suppose that v≡ 0. Then we have ξ =w and σ 6= 0
(since otherwisew=0 6= ξ ). This, however, contradicts that L+ξ =0 and L+w=−2(σ/(τ−1))Q∞ 6=0.

Thus we see that v 6≡ 0 in (4-26), where v′(0) = 0 by smoothness of v. Suppose now that v(0) 6= 0.
Then Lemma 5 yields that v 6∈ L2

rad(R
3), which contradicts (4-26) together with the fact that ξ and w

both belong to L2
rad(R

3). Finally, suppose that v(0) = 0 holds. Then v solves the equation L+v = 0
with initial data v(0) = 0 and v′(0) = 0. However, by a standard fixed point argument, we see that the
linear integro-differential equation L+v = 0 with given initial data v(0) ∈ R and v′(0)= 0 has a unique
solution. So v(0)= 0 and v′(0)= 0 implies that v ≡ 0. Again, we arrive at a contradiction as above. �

Clearly, Lemma 6 completes the proof of Proposition 2. �

5. Local uniqueness around Q∞

Recall that H 1
r (R

3) denotes space of radial and real-valued functions that belong to H 1(R3). By using
Proposition 2, we can now prove the following local uniqueness result for a small neighborhood around
Q∞ in H 1

r (R
3).

Proposition 3. Let m > 0 and N > 0 be given. Furthermore, suppose that Q∞ ∈ H 1
r (R

3) is the unique
radial, positive solution to

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞, (5-1)

with
∫
|Q∞|2 = N , where λ > 0 is determined through Q∞. Then there exist constants c0 � 1, ε > 0,

and δ > 0 such that the following holds. For any (c, µ) with

c ≥ c0, −λ− ε ≤−µ−mc2
≤−λ+ ε,

the equation √
−c21+m2c4 Q−

(
|x |−1

∗ |Q|2
)
Q =−µQ (5-2)

has a unique solution Q ∈ H 1
r (R

3), provided that ‖Q− Q∞‖H1 ≤ δ.

5.1. Proof of Proposition 3. For β ≥ 0 and z > 0, we define the map

G(u, β, z)= u+R(β, z)g(u), (5-3)
where we set

g(u)=−
(
|x |−1

∗ |u|2)u, (5-4)

and, for β ≥ 0 and z > 0, we define the family of resolvents

R(β, z)=

{ (
− (1/2m)1+ z

)−1 if β = 0,(√
−β−21+m2β−4−mβ−2

+ z
)−1 if β > 0.

(5-5)

By an elementary calculation, we verify the following equivalences:

Q ∈ H 1
r (R

3) solves (5-1) if and only if G(Q, 0, λ)= 0; (5-6)

Q ∈ H 1
r (R

3) solves (5-2) if and only if G(Q, c−1, µ+mc2)= 0. (5-7)
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To prove Proposition 3, we now construct an implicit function-type argument for the map

G : H 1
r (R

3)×[0, β0]× [λ− ε, λ+ ε] → H 1
r (R

3), (5-8)

where β0 > 0 and ε > 0 are small constants. To see that indeed G(u, β, z) ∈ H 1
r (R

3) for u ∈ H 1
r (R

3),
we notice that R(β, z) : H 1

r (R
3)→ H 1

r (R
3), as can be seen by using the Fourier transform. That g(u)

maps H 1
r (R

3) into itself follows readily from the Hardy–Littlewood–Sobolev inequality and Sobolev
embeddings. Hence (5-8) is indeed well-defined.

Next, we show that the derivative

∂uG(u, β, z)= 1+R(β, z)∂ug(u) : H 1
r (R

3)→ H 1
r (R

3) (5-9)

depends continuously on (u, β, z). Here ∂ug(u) acting on ξ ∈ H 1
r (R

3) is found to be

∂ug(u)ξ =−
(
|x |−1

∗ |u|2
)
ξ − 2u

(
|x |−1

∗ (uξ)
)
. (5-10)

By using the Hardy–Littlewood–Sobolev inequality and Sobolev embeddings, we obtain that

‖(∂ug(u1)− ∂ug(u2))ξ‖H1 . (‖u1‖H1 +‖u2‖H1)‖u1− u2‖H1‖ξ‖H1; (5-11)

see, for example, [Lenzmann 2007] for similar estimates proving Lipschitz continuity of g(u). Using
this estimate, we find for u1, u2, ξ ∈ H 1

r (R
3), β1, β2 ∈ [0, β0], and z1, z2 > 0,

‖(∂uG(u1, β1, z1)− ∂uG(u2, β2, z2))ξ‖H1

≤ ‖(R(β1, z1)−R(β2, z2))∂ug(u1)ξ‖H1 +‖R(β2, z2)(∂ug(u1)− ∂ug(u2))ξ‖H1

. ‖R(β1, z1)−R(β2, z2)‖L2→L2‖u1‖
2
H1‖ξ‖H1

+‖R(β2, z2)‖L2→L2(‖u1‖H1 +‖u2‖H1)‖u1− u2‖H1‖ξ‖H1, (5-12)

where we also use the fact that ‖R(β, z)‖H s→H s = ‖R(β, z)‖L2→L2 for any s ∈ R, since R(β, z) com-
mutes with 〈∇〉. Moreover, by using the Fourier transform, one verifies

‖R(β1, z1)−R(β2, z2)‖L2→L2 → 0 as (β1, z1)→ (β2, z2), (5-13)

for any β1, β2 ≥ 0 and z1, z2 > 0. (For later use, we record that (5-13) also holds for complex z1, z2 ∈

C \ [0,∞).) Going back to (5-12), we thus find

‖∂uG(u1, β1, z1)− ∂uG(u2, β2, z2)‖H1→H1 → 0

as ‖u1− u2‖H1 → 0 and (β1, z1)→ (β2, z2). Hence ∂uG(u, β, z) depends continuously on (u, β, z).
By Proposition 2 and its following remark, we have that the radial restriction of the linearized operator

L+ around Q∞ has trivial kernel. This implies that the compact operator (−(1/(2m))1+λ)−1∂ug(Q∞)
does not have −1 in its spectrum. Hence the inverse operator(

∂uG(Q∞, 0, λ)
)−1
: H 1

r (R
3)→ H 1

r (R
3) (5-14)

exists. By the continuity of ∂uG(u, β, z) shown above, an appropriate version of an implicit function
theorem (see, for example, [Chang 2005]) implies that, for β0 > 0 and ε > 0 sufficiently small, there
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exists a unique solution Q = Q(β, z) ∈ H 1
r (R

3) such that

G(Q(β, z), β, z)= 0 for β ∈ [0, β0] and z ∈ [λ− ε, λ+ ε] (5-15)
with

‖Q(β, z)− Q∞‖H1 ≤ δ for some δ > 0. (5-16)

Moreover, the map (β, z) 7→ Q(β, z) ∈ H 1
r (R

3) is continuous.
By setting c0 = β

−1
0 and recalling the equivalence (5-7), we complete the proof of Proposition 3. �

6. Proof of Theorem 2

First, we notice that it is sufficient to prove uniqueness of symmetric-decreasing ground states for the
variational problem (1-2), thanks to Theorem 1(iii). Next, we make use of the rescaling correspondence
formulated in Lemma 1, which relates ground states for the dimensionalized and de-dimensionalized
Hartree energy functionals Ec(ψ) and E(ψ) defined in (3-1) and (1-1), respectively.

In what follows, we fix
∫
|Qc|

2
= 1 and we suppose that Qc = Q∗c ∈ H 1/2(R3) is a symmetric-

decreasing ground state for Ec(ψ) subject to
∫
|ψ |2= 1. Recall from Lemma 1 that Qc indeed exists for

c ≥ c0 with c0 being a sufficiently large constant. Let µ(Qc) denote the Lagrange multiplier associated
to Qc for c≥ c0. We now claim that µ only depends on c except for some countable set, that is, we have

µ(Qc)= µ(c), for c ∈ (c0,∞) \4, (6-1)

where 4 is some countable set. To prove (6-1), we argue as follows. By Lemma 1, we see that Q =
c−2 Qc(c−1

· ) is a symmetric-decreasing ground state for E(ψ) subject to
∫
|ψ |2=N =c−1; and moreover

the Lagrange multiplier µ(Q) for Q is found to be

µ(Q)= c−2µ(Qc). (6-2)

Next, we consider the ground state energy E(N ) given by (1-2) for 0 < N < c−1
0 . From [Lieb and

Yau 1987; Fröhlich et al. 2007b] we know that E(N ) is strictly concave. Hence E ′(N ) exists for all
N ∈ (0, c−1

0 ) \6, where is 6 is some countable set, and we readily find that

E ′(N )=−µ(Q), for N ∈ (0, c−1
0 ) \6. (6-3)

Therefore the left-hand side of (6-2) only depends on N = c−1 except when N ∈6, which proves (6-1)
with the countable set 4= {c : c > c0 and c−1

∈6}.
Suppose {cn}

∞

n=1 is a sequence with such that cn→∞ and values in cn ∈ (c0,∞)\4. Correspondingly,
let {Qcn }

∞

n=1 be a sequence of symmetric-decreasing ground states for Ec(ψ) with
∫
|Qcn |

2
= 1 for all

n ≥ 1. By Proposition 1, for any such sequence {Qcn }, we have that Qcn and its corresponding Lagrange
multipliers µcn satisfy the assumption of Proposition 3, provided that n � 1. By the local uniqueness
result stated in Proposition 3 and the fact µcn only depends on cn , we conclude that the symmetric-
decreasing ground state Qc for Ec(ψ) subject to

∫
|ψ |2 = 1 is unique, provided that c ∈ (c0,∞) \4

holds, where c0� 1 is sufficiently large and 4 is some countable set.
Finally, by Lemma 1, we deduce uniqueness of symmetric-decreasing ground states Q for E(ψ)

subject to
∫
|ψ |2 = N , provided that N ∈ (0, N0) \6 holds, where N0 = c−1

0 � 1 is sufficiently small
and 6 denotes some countable set. �
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7. Proof of Theorems 3 and 4

We first prove Theorem 4. By rescaling Q∞(r) 7→ aQ∞(br) with suitable a > 0 and b > 0, we can
assume without loss of generality that Q∞ ∈ H 1

r (R
3) satisfies the normalized equation

−1Q∞−
(
|x |−1

∗ |Q∞|2
)
Q∞ =−Q∞. (7-1)

To complete the proof of Theorem 4, it suffices to prove the following result.

Proposition 4. Let Q∞ ∈ H 1
r (R

3) be the unique radial and positive solution to Equation (7-1). Then the
linearized operator L+ given by

L+ξ =−1ξ + ξ −
(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)
,

acting on L2(R3) with domain H 1(R3), has the kernel

ker L+ = span
{
∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞

}
.

Remark. For linearized operators L+ arising from ground states Q for NLS with local nonlinearities,
it is a well-known fact that ker L+ = {0} when L+ is restricted to radial functions implies that ker L+ is
spanned by {∂xi Q}3i=1.

The proof, however, involves some Sturm–Liouville theory which is not applicable to L+ given above,
due to the presence of the nonlocal term. (Also, recall that Newton’s theorem is not at our disposal,
since we do not restrict ourselves to radial functions anymore.) To overcome this difficulty, we have
to develop Perron–Frobenius-type arguments for the action of L+ with respect to decomposition into
spherical harmonics.

7.1. Proof of Proposition 4. Since Q∞(r) and |x |−1 are radial functions, the operator L+ commutes
with rotations in R3; that is, we have that (L+ξ(R· ))(x)= (L+ξ)(Rx) for all R ∈ O(3). Therefore, we
decompose any ξ ∈ L2(R3) using spherical harmonics according to

ξ(x)=
∞∑
`=0

∑̀
m=−`

f`m(r)Y`m(�), (7-2)

where x = r� with r = |x | and � ∈ S2. This gives us the direct decomposition

L2(R3)=

∞⊕
`=0

H(`) , (7-3)

so that L+ acts invariantly on each

H(`) = L2(R+, r2dr)⊗Y(`). (7-4)

Here Y(`)= span {Y`m}+`m=−` denotes the (2`+1)-dimensional eigenspace corresponding to the eigenvalue
κ` =−`(`+ 1) of the spherical Laplacian 1S2 acting on L2(S2).

Let us now find an explicit formula for the action of L+ on each H(`). To this end, we recall the
well-known the fact that

−1=−∂2
r −

2
r
∂r +

`(`+ 1)
r2 on H(`), (7-5)
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as well as the multipole expansion

1
|x − x ′|

= 4π
∞∑
`=0

+∑̀
m=−`

1
2`+ 1

r`<
r`+1
>

Y`m(�)Y ∗`m(�
′), (7-6)

where r< = min(|x |, |x ′|) and r> = max(|x |, |x ′|). An elementary calculation leads to the following
equivalence: We have that L+ξ = 0 if and only if

L+,(`) f`m = 0, for `= 0, 1, 2, . . . and m =−`, . . . ,+`, (7-7)

with ξ given by (7-2). Here the operator L+,(`) acting on L2(R+, r2dr) is (formally) given by

(L+,(`) f )(r)=− f ′′(r)−
2
r

f ′(r)+
`(`+ 1)

r2 f (r)+ V (r) f (r)+ (W(`) f )(r), (7-8)

with the local potential
V (r)=−

(
|x |−1

∗ |Q∞|2)(r), (7-9)

and the nonlocal linear operator

(W(`) f )(r)=−
8π

2`+ 1
Q∞(r)

∫
∞

0

r`<
r`+1
>

Q∞(s) f (s) s2 ds, (7-10)

where r< =min(r, s) and r> =max(r, s).
To prove Proposition 4, it suffices to assume henceforth that ` ≥ 1 holds, since L+,(0) f = 0 implies

that f ≡ 0 holds, by Proposition 2 above. Hence any nontrivial elements in the kernel of L+ can only
belong to H(`) with ` ≥ 1. Before we proceed, we show that each L+,(`) enjoys a Perron–Frobenius
property as follows.

Lemma 7. For each ` ≥ 1, the operator L+,(`) is essentially self-adjoint on C∞0 (R+) ⊂ L2(R+, r2dr)
and bounded below. Moreover, each L+,(`) has the Perron–Frobenius property. That is, if e0,(`) denotes
the lowest eigenvalue of L+,(`), then e0,(`) is simple and the corresponding eigenfunction φ0,(`)(r) > 0 is
strictly positive.

Remarks. (1) We have indeed the lower bound L+,(`) ≥ 0 for all `≥ 1. This follows from H(`) ⊥ Q∞
for ` ≥ 1 and the fact that L+|Q⊥∞ ≥ 0, which can be proven in the same way as for ground states for
local NLS; see, for example, [Chang et al. 2007; Weinstein 1985].

(2) It is easy to see that L+,(`) has in fact infinitely many eigenvalues between 0 and 1. Indeed, the lower
bound Q∞(r)≥ Bεe−(1+ε)r (see the proof of Lemma 5) leads, by using Newton’s theorem, to the upper
bound V (r) ≤ −αr−1 with some α > 0. Furthermore, one finds that 〈 f,W (`) f 〉 < 0 for f 6≡ 0. Hence,
we conclude

L+,(`) ≤−∂2
r −

2
r
∂r + 1+

`(`+ 1)
r2 −

α

r
on L2(R+, r2dr). From the well-known spectral properties of the hydrogen atom Hamiltonian, we infer
that the operator on the right has infinitely many eigenvalues below 1, and so does L+,(`) by the min-max
principle.
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Proof of Lemma 7. Since Q∞(r) is exponentially decaying, it is straightforward to verify that W(`) is a
bounded operator. Also, we have that V ∈ L∞ holds. Thus L+,(`) is bounded below (see also the remark
following Lemma 7). Furthermore, it is well-known that

−1(`) =−∂
2
r −

2
r
∂r +

`(`+ 1)
r2 (7-11)

is essentially self-adjoint on C∞0 (R+) provided that ` ≥ 1. In fact, this follows from [Reed and Simon
1980, Theorem X.10 and Example 4] which shows that −∂2

r − (2/r)∂r + `(`+ 1)/r2 is essentially self-
adjoint on C∞0 (R+) if `(` + 1)/r2

≥ 3/4r2. Furthermore, by the Kato–Rellich theorem and the fact
that V and W(`) are bounded and self-adjoint, we deduce that L+,(`) = −1(`)+ V +W(`) is essentially
self-adjoint on C∞0 (R+) as well.

The Perron–Frobenius property of L+,(`) can be shown as follows. First, we consider the kinetic
energy part in L+,(`), where we find that

et1(`) is positivity improving on L2(R+, r2dr) for all t > 0. (7-12)

(Recall that, by definition, this means that et1(`) f > 0 when f ≥ 0 with f 6≡ 0.) Indeed, an argument
given in Appendix B shows that the integral kernel of et1(`) is strictly positive:

et1(`)(r, s)= 1
2t

√
1
rs

e−
r2
+s2
4t I`+1/2

(
rs
2t

)
> 0, for r, s > 0. (7-13)

Here Ik(z) denotes the modified Bessel function of the first kind of order k. For later use, we record that
(7-12) and the formula (by functional calculus)

(−1(`)+µ)
−1
=

∫
∞

0
e−tµet1(`) dt, for µ > 0, (7-14)

immediately show that

(−1(`)+µ)
−1 is positivity improving on L2(R+, r2dr) for all µ > 0. (7-15)

Next, let A(`) denote the bounded self-adjoint operator

A(`) = V +W(`), (7-16)

where V and W(`) are defined in (7-9) and (7-10), respectively. Note that A(`) is nonlocal. Using that
Q∞(r) is strictly positive, we readily find that

−A(`) is positivity improving on L2(R+, r2dr). (7-17)

This leads to the following auxiliary result.

Lemma 8. For µ� 1, the resolvent(
L+,(`)+µ

)−1
=
(
−1(`)+ A(`)+µ

)−1

is positivity improving on L2(R+, r2dr).
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Proof. For µ� 1, we have

1
L+,(`)+µ

=
1

−1(`)+µ

1
1+ A(`)(−1(`)+µ)−1 .

Since A(`) is bounded, we conclude that ‖A(`)(−1(`)+µ)−1
‖L2→L2 < 1 for µ� 1. Thus a Neumann

expansion yields
1

L+,(`)+µ
=

1
−1(`)+µ

∞∑
ν=0

(
−A(`)(−1(`)+µ)−1)ν, (7-18)

provided that µ� 1. Next, we recall from (7-15) that (−1(`) +µ)−1 is positivity improving. By this
fact and (7-17), we deduce from (7-18) that (L+,(`)+µ)−1 must be positivity improving for µ� 1. This
completes the proof of Lemma 8. �

We now return to the proof of Lemma 7, which we complete as follows. Let `≥1 be fixed and suppose
e0,(`) = inf σ(L+,(`)) is the lowest eigenvalue. Furthermore, we choose µ� 1 such that, by Lemma 8,

B =
(
L+,(`)+µ

)−1 (7-19)

is positivity improving on L2(R+, r2dr). Clearly, the operator B is bounded and self-adjoint, and its
largest eigenvalue λ0 = sup σ(B) is given by λ0 = (e(`),0+µ)−1. Also, the corresponding eigenspaces
of L+,(`) and B coincide. Since B is positivity improving (and hence ergodic), we can invoke [Reed and
Simon 1978, Theorem XIII.43] to conclude that λ0 is simple and that the corresponding eigenfunction
φ(`),0(r) is strictly positive on R+. This proof of Lemma 7 is therefore complete. �

Let us now come back to the proof of Proposition 4, stating that ker L+ is spanned by {∂xi Q∞}3i=1.
By differentiating the nonlinear equation satisfied by Q∞, we readily obtain that L+∂xi Q∞ = 0 for
i = 1, 2, 3. Since ∂xi Q∞(r)= Q′

∞
(r)(xi/r) ∈H(1), this show that

L+,(1)Q′∞ = 0. (7-20)

Furthermore, by monotonicity of Q∞(r), we have that Q′
∞
(r)≤ 0. Since L+,(1) is self-adjoint and Q′

∞

is an eigenfunction that does not change its sign, Lemma 7 shows that in fact Q′
∞
(r)=−φ0,(1)(r) holds,

where φ0,(1) > 0 is the strictly positive ground state of L+,(1), with e0,(1) = 0 being its corresponding
eigenvalue. Therefore any ξ ∈H(1) such that L+ξ = 0 must be some linear combination of {∂xi Q∞}3i=1.

To complete the proof of Proposition 4, we now claim that

L+,(`) > 0, for `≥ 2, (7-21)

which in particular shows that L+ξ = 0 with ξ ∈H(`) for some `≥ 2 implies that ξ ≡ 0. To prove (7-21),
let `≥ 2 be fixed and set

e0,(`) = inf σ(L+,(`)). (7-22)

Indeed, by the remark following Lemma 7, we know that e0,(`)< 1 is attained. (If e0,(`) was not attained,
then e0,(`) = inf σess(L+,(`))= 1 and (7-21) follows immediately.) By Lemma 7, the eigenvalue e0,(`) is
simple and its corresponding eigenfunction φ0,(`)(r) > 0 is strictly positive. Next, we notice that

e0 = 〈φ0,(`), L+,(`)φ0,(`)〉 = 〈φ0,(`), L+,(1)φ0,(`)〉+ K(`), (7-23)
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where

K(`) =

∫
∞

0

(`(`+ 1)− 2)
r2 φ0,(`)(r)2 r2 dr

+ 8π
∫
∞

0

∫
∞

0
Q∞(r)φ0,(`)(r)

(1
3

r<
r2
>

−
1

2`+ 1
r`<

r`+1
>

)
Q∞(s)φ0,(`)(s) r2s2 dr ds,

with r< = min(r, s) and r> = max(r, s). Using the strict positivity of Q∞(r) and φ0,(`)(r), we see that
K(`) > 0 holds because of ` ≥ 2 and (r</r>) ≤ 1. Moreover, we recall from the preceding discussion
that L+,(1) ≥ e0,(1) = 0. Therefore, by (7-23),

e0,(`) ≥ K(`) > 0, for all `≥ 2, (7-24)

which proves (7-21), completing the proof of Proposition 4, whence the proof of Theorem 4 follows. �

7.2. Proof of Theorem 3. As in the proof of Theorem 2 above, it is convenient to fix N > 0 and to
consider symmetric-decreasing ground state Qc ∈ H 1

r (R
3) minimizing Ec(ψ) with

∫
|Qc|

2
= N , where

we take c> 0 sufficiently large. In what follows, let µc denote the Lagrange multiplier associated to Qc.
(It is possible that µc depends on Qc and not just on c.)

Recall from Proposition 1 that

‖Qc− Q∞‖H1 ≤ δ1 and | −µc−mc2
+ λ| ≤ δ2, (7-25)

where δ1→ 0 and δ2→ 0 as c→∞. Here Q∞ ∈ H 1
r (R

3) is the unique radial positive solution to (3-3)
with

∫
|Q∞|2= N , where λ> 0 is determined through Q∞. By Theorem 4, the linear operator L+ given

by

L+ξ =−
1

2m
1+ λ−

(
|x |−1

∗ |Q∞|2
)
ξ − 2Q∞

(
|x |−1

∗ (Q∞ξ)
)

(7-26)

has the kernel
ker L+ = span {∂x1 Q∞, ∂x2 Q∞, ∂x3 Q∞}. (7-27)

Next, let L+,c denote the linear operators defined as

L+,cξ =
√
−c21+m2c4 ξ +µcξ −

(
|x |−1

∗ |Qc|
2)ξ − 2Qc

(
|x |−1

∗ (Qcξ)
)
. (7-28)

Again, upon differentiating the Euler–Lagrange equation satisfied by Qc, we see that L+,c∂xi Qc = 0 for
i = 1, 2, 3. Hence

span {∂x1 Qc, ∂x2 Qc, ∂x3 Qc
}
⊆ ker L+,c. (7-29)

By the following perturbation argument, we show that in fact equality holds for c � 1. By standard
arguments, we see that 0∈σ(L+) is an isolated eigenvalue. Thus we can construct the Riesz projection P0

onto ker L+ by

P0 =
1

2π i

∮
0r

(L+− z)−1 dz, (7-30)

where the curve 0r parametrizes the circle {z ∈C : |z| = r}. Here r > 0 is chosen sufficiently small such
that 0 is the only eigenvalue of L+ inside |z| ≤ r . Next, we claim that the projection

P0,c =
1

2π i

∮
0r

(L+,c− z)−1 dz (7-31)
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exists for c� 1 and satisfies

‖P0,c− P0‖L2→L2 → 0 as c→∞. (7-32)

Indeed, by using (7-25) and similar arguments as in the proof of Proposition 3 (see, for example, the
resolvent estimate (5-13)), we conclude that

‖(L+,c− z)−1
‖L2→L2 ≤ C‖(L+− z)−1

‖L2→L2, (7-33)

for all c� 1 and z ∈ 0r , where C > 0 is some constant. Furthermore, we have

‖(L+,c− z)−1
− (L+− z)−1

‖L2→L2 → 0 as c→∞, (7-34)

for all z ∈0r . This shows that P0,c exists for c� 1 and that (7-32) holds. Since rank P0= 3 and the rank
of P0,c remains constant for c� 1, by (7-32), we infer that P0,c has at most 3 eigenvalues (counted with
their multiplicity) inside |z| ≤ r , provided that c� 1. In particular, we conclude that dim ker L+,c ≤ 3
for c� 1. Therefore equality must hold in (7-29) whenever c� 1.

Thus we have found that L+,c has the desired kernel property if c � 1. By a rescaling argument
formulated in Lemma 1, we conclude the analogous statement for the linear operator L+ arising from
the unique symmetric-decreasing ground state Q minimizing E(ψ) subject to

∫
|ψ |2 = N with N � 1.

The proof of Theorem 3 is now complete. �

Appendix A. Uniqueness of Q∞

Suppose that Q∞ ∈ H 1(R3) solves

−
1

2m
1Q∞−

(
|x |−1

∗ |Q∞|2
)
Q∞ =−λQ∞, (A-1)

with m > 0 and λ > 0 given. By rescaling Q∞(r) 7→ aQ∞(br) with suitable a > 0 and b > 0, we can
consider without loss of generality solutions Q∞ ∈ H 1(R3) to the “normalized” equation

−1Q∞−
(
|x |−1

∗ |Q∞|2
)
Q∞ =−Q∞. (A-2)

The following result is due to [Lieb 1977]; see also [Tod and Moroz 1999]. Here we provide a partly
different proof, which is directly based on a comparison argument.

Lemma 9. Equation (A-2) has a unique radial, nonnegative solution Q∈H 1
r (R

3)with Q 6≡0. Moreover,
we have that Q(r) is in fact strictly positive.

Proof. Existence of a nonnegative, nontrivial solution Q∞ ∈ H 1
r (R

3) of (A-2) follows from variational
arguments; see [Lieb 1977].

To prove that any nonnegative Q ∈ H 1(R3), with Q 6≡ 0, solving (A-2) is strictly positive, we can
simply argue as follows. We rewrite (A-2) as

Q(x)=
(
(−1+ 1)−1(V Q)

)
(x)=

1
4π

∫
R3

e−|x−y|

|x − y|
V (y)Q(y) dy (A-3)

with V = |x |−1
∗ |Q|2. Since V ≥ 0 and Q ≥ 0 (with V 6≡ 0 and Q 6≡ 0), Equation (A-3) shows that Q

is strictly positive.
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Let us now prove the claimed uniqueness. Suppose Q ∈ H 1
r (R

3), with Q 6≡ 0, is a solution to (A-2).
Using Newton’s theorem, we find that Q(r) solves (after a suitable rescaling Q(r) 7→ a2 Q(ar) for some
a > 0; see [Lieb 1977]) the initial-value problem

−v′′(r)− 2
r
v′(r)− v(r)+

(∫ r

0
K (r, s)v(s)2 ds

)
v(r)= 0, v(0)= v0, v′(0)= 0, (A-4)

with v0= Q(0)∈R. (Recall that K (r, s)≥ 0 is given by (4-6) above.) By standard fixed point arguments,
we deduce that (A-4) has a unique local C2-solution for given initial data v(0) ∈ R and v′(0) = 0, and
v(r) exists up to some maximal radius R ∈ (0,∞].

Suppose now that Q ∈ H 1
r (R

3) and Q̃ ∈ H 1
r (R

3) are two radial, nonnegative (and nontrivial) solutions
to (A-2) with Q 6≡ Q̃. From the preceding discussion we know that Q and Q̃ are in fact strictly positive,
and (after appropriate rescaling) both satisfy (A-4) with v0 = Q(0) > 0 and v0 = Q̃(0) > 0, respectively.
By uniqueness for (A-4), we conclude that Q(0) 6= Q̃(0) holds, since otherwise Q ≡ Q̃. Therefore, we
can henceforth assume that

Q̃(0) > Q(0). (A-5)

Next, we notice that a calculation (similar to the one in the proof of Lemma 5) yields the integrated
“Wronskian-type” identity

r2(Q(r)Q̃′(r)− Q′(r)Q̃(r))=
∫ r

0
s2 Q(s)Q̃(s)(Ṽ (s)− V (s)) ds. (A-6)

Here,

V (r)=
∫ r

0
K (r, s)Q(s)2 ds and Ṽ (r)=

∫ r

0
K (r, s)Q̃(s)2 ds. (A-7)

By continuity and (A-5), we have Q̃(r) > Q(r) at least initially for r ≥ 0. Next, we conclude, by (A-6),
that in fact

Q̃(r) > Q(r), for all r ≥ 0. (A-8)

To see this, suppose on the contrary that Q̃(r)> 0 intersects Q(r)> 0 for the first time at r = r∗> 0, say.
Then the left-hand side of (A-6) is found to be nonnegative at r = r∗, whereas the right-hand side must
be strictly positive at r = r∗ since Ṽ (r) > V (r) on (0, r∗). This contradiction shows that (A-8) holds.

Finally, we show that (A-8) leads to a contradiction (along the lines of [Lieb 1977]) as follows. To
this end, we consider the Schrödinger operators

H =−1+ V and H̃ =−1+ Ṽ , (A-9)

so that H Q= Q and H̃ Q̃= Q̃. By standard theory of Schrödinger operators, we conclude that Q and Q̃
are (up to a normalization factor) the unique positive ground states (with eigenvalue e= 1) for H and H̃ ,
respectively. Therefore,

〈φ, Hφ〉 ≥ ‖φ‖2L2 and 〈φ, H̃φ〉 ≥ ‖φ‖2L2, for φ ∈ H 1(R3), (A-10)

where equality holds if and only if φ = λQ or φ = λQ̃ for some λ ∈ C, respectively.
Going back to (A-8), we find that Ṽ (r) > V (r) for all r > 0, which leads to

‖Q̃‖2L2 ≤ 〈Q̃, H Q̃〉 = 〈Q̃, H̃ Q̃〉− 〈Q̃, (Ṽ − V )Q̃〉 = ‖Q̃‖2L2 − δ,
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for some δ > 0, which is a contradiction.
Hence (A-2) does not admit two different radial and nonnegative (and nontrivial) solutions Q∈H 1

r (R
3)

and Q̃ ∈ H 1
r (R

3). �

Appendix B. Decomposition of et1 using spherical harmonics

Recall the explicit formula for the heat kernel of the Laplacian 1 on R3:

et1(x, y)=
1

(4π t)3/2
e−|x−y|2/(4t)

=
1

(4π t)3/2
e−(x

2
+y2)/(4t)e(x ·y)/(2t). (B-1)

Moreover, we have the well-known identity

eax ·y
= 4π

∞∑
`=0

+∑̀
m=−`

i`(a |x ||y|)Y`m(�)Y ∗`m(�
′) (B-2)

for a > 0, x = |x |� and y = |y|�′ where �,�′ ∈ S2. Here

i`(z)=
√
π
2z

I`+1/2(z) (B-3)

is the modified spherical Bessel function of the first kind of order `; whereas Ik(z) denotes the modified
Bessel function of the first kind of order k.

Let 1(`) denote the restriction of 1 acting on H(`) (that is, the space of L2(R3) functions whose
“angular momentum” is `≥ 0). From (B-1) and (B-2) we deduce that the integral kernel of et1(`) acting
on L2(R+, r2dr) is given by

et1(`)(r, s)= 1
2t

√
1
rs

e−(r
2
+s2)/(4t) I`+1/2

(rs
2t

)
. (B-4)

An explicit integral representation for Ik(z) shows that I`+1/2(z) > 0 for all z > 0 and `≥ 0.
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