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RESONANCES FOR NONANALYTIC POTENTIALS

ANDRÉ MARTINEZ, THIERRY RAMOND AND JOHANNES SJÖSTRAND

We consider semiclassical Schrödinger operators on Rn , with C∞ potentials decaying polynomially at
infinity. The usual theories of resonances do not apply in such a nonanalytic framework. Here, under
some additional conditions, we show that resonances are invariantly defined up to any power of their
imaginary part. The theory is based on resolvent estimates for families of approximating distorted
operators with potentials that are holomorphic in narrow complex sectors around Rn .

1. Introduction

The notion of quantum resonance was born around the same time as quantum mechanics itself. Its
introduction was motivated by the behavior of various quantities related to scattering experiments, such
as the scattering cross-section. At certain energies, these quantities present peaks (nowadays called
Breit–Wigner peaks), which were modeled by a Lorentzian-shaped function

wa,b : λ 7→
1
π

b/2
(λ− a)2+ (b/2)2

.

The real numbers a and 2/(πb) > 0 stand for the location of the maximum of the peak and its height.
The number b is the width of the peak (more precisely its width at half its height). Of course for
ρ = a− ib/2 ∈ C, one has

wa,b(λ)=
1
π

Im ρ

|λ− ρ|2
,

and the complex number ρ was called a resonance. Such complex values for energies had also appeared
for example in [Gamow 1928], to explain α-radioactivity.

There is a standard discussion in physics textbooks that may help understand the normalization chosen
for wa,b(λ). Suppose ψ0 is a resonant state (not in L2) corresponding to the resonance ρ = a− ib/2. Its
time evolution should be written

ψ(t)= e−i ta−tb/2ψ0,

so that the probability of survival beyond time t is

p(t)=
|ψ(t)|2

|ψ0|2
= e−bt ,
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and b is the decay rate of that probability. Moreover, the resonant state ψ(t) has an associated energy
space representation

ψ̂(λ)=
1
√

2π

∫
+∞

0
ei t Eψ(t) dt =

1

i
√

2π

ψ0

(a− λ)− ib/2
,

which is interpreted saying that the probability density dσ(λ) of the resonant state is proportional to
|ψ̂(λ)|2 and leads to the following formula if one requires that the total probability is 1:

dσ(λ)=
1

2π
b

(a− λ)2+ (b/2)2
dλ= wa,b(λ) dλ.

However, these complex numbers ρ = a− ib/2 are not defined in a completely exact way, in the sense
that the peaks in the scattering cross section or the above probability distribution do not perceivably
change if these numbers are modified by a quantity much smaller than their imaginary part. Indeed, a
straightforward computation shows that the relative difference between such two peaks wa,b and wa′,b′

satisfies

sup
λ∈R

∣∣∣∣wa,b(λ)−wa′,b′(λ)

wa′,b′(λ)

∣∣∣∣≤ 3
|ρ− ρ ′|

|Im ρ|
+
|ρ− ρ ′|2

|Im ρ|2

where we have also set ρ ′ = a′− ib′/2 and chosen |Im ρ| ≤ |Im ρ ′| to make the formula simpler. As a
consequence, the two peaks become indistinguishable if |ρ − ρ ′| � |Im ρ|, that is, there is no physical
relevance to associate the resonance ρ=a−ib towa,b rather than any other ρ ′ satisfying |ρ−ρ ′|�|Im ρ|.
Notice also that the more the resonance is far from the real line, the more irrelevant this precision
becomes.

On the mathematical side, the more recent theory of resonances for Schrödinger operators has made
it possible to create a rigorous framework and obtain very precise results, in particular on the location
of resonances in relation with the geometry of the underlying classical flow. However, it is based on the
notion of complex scaling, in more and more sophisticated versions that all require analyticity assump-
tions on the potential or its Fourier transform; see, for example, [Aguilar and Combes 1971; Balslev
and Combes 1971; Simon 1979; Sigal 1984; Cycon 1985; Helffer and Sjöstrand 1986; Hunziker 1986;
Nakamura 1989; 1990; Sjöstrand and Zworski 1991]. It is important to notice that these different defini-
tions coincide when their domain of validity overlap [Helffer and Martinez 1987]. In this mathematical
framework, the Breit–Wigner formula for the scattering phase has now been studied by many authors in
different situations, as shape resonances, clouds of resonances, or barrier-top resonances; see for example
[Gérard et al. 1989; Petkov and Zworski 1999; Bruneau and Petkov 2003; Fujiié and Ramond 2003].

There are a small number of works about the definition of resonances for nonanalytic potentials, for
example, [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Cancelier et al. 2005; Jensen
and Nenciu 2006]. In [Orth 1990; Gérard and Sigal 1992; Soffer and Weinstein 1998; Jensen and Nenciu
2006], the point of view is quite different from ours, while in [Cancelier et al. 2005], the definition is
based on the use of an almost-analytic extension of the potential and seems to strongly depend both on
the choice of this extension and on the complex distortion.

Here our purpose is to give a definition that fulfills both the mathematical requirement of being in-
variant with respect to the choices one has to make and the physical requirement of being more accurate
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as the resonance become closer to the real (or, equivalently, as the Breit–Wigner peak becomes nar-
rower). Dropping the physically irrelevant precision for the definition of resonances, we can also drop
the spurious assumption on the analyticity of the potential.

More precisely, we associate to a Schrödinger operator P a discrete set3⊂C with certain properties,
such that for any other set3′ with the same properties, there exists a bijection B :3′→3with B(ρ)−ρ=
O(|Im ρ|∞) uniformly. The set of resonances of P is the corresponding equivalence class of3. Of course,
when the potential is dilation analytic at infinity, we recover the usual set of resonances up to the same
error O(|Im ρ|∞).

The properties characterizing 3 basically involve the resonances of a (essentially arbitrary) family of
dilation-analytic operators (Pµ)(0<µ≤µ0), such that

Pµ is dilation-analytic in a complex sector of angle µ around Rn,

‖Pµ− P‖ = O(µ∞) uniformly as µ→ 0+,

and the constructive proof of the existence of the set 3 mainly consists in studying such a family and in
particular, in obtaining resolvent estimates uniform in µ.

In this paper, we address the case of an isolated cluster of resonances whose cardinality is bounded
(with respect to h). We hope to treat the general case elsewhere, as well as to give a detailed description
of the quantum evolution ei t P/h

= ei t Pµ/h
+O(|t |h−1µ∞) in terms of the resonances in 3.

The paper is organized as follows. We give our assumptions and state our main results in Section 2.
Then in Section 3, we give two paradigmatic situations where our constructions apply: the nontrapping
case and the shape resonances case. In Section 4 we present a suitable notion of analytic approximation
of a C∞ function through which we define the operator Pµ. In Section 5 we show that a properly defined
analytic distorted operator Pµθ of the latter satisfies a nice resolvent estimate in the upper half complex
plane even very near to the real axis. Sections 6, 7 and 8 are devoted to the proof of Theorem 2.1,
Theorem 2.2 and Theorem 2.5 respectively. We construct the set of resonances 3 and prove Theorem
2.6 in Section 9. In the last Section 10, we prove our statements concerning the shape resonances. Finally,
we have placed in the Appendix the proofs of two technical lemmas.

2. Notations and main results

We consider the semiclassical Schrödinger operator

P =−h21+ V,

where V = V (x) is a real smooth function of x ∈ Rn , such that

∂αV (x)= O(〈x〉−ν−|α|), (2-1)

for some ν > 0 and for all α ∈ Zn
+

. We also fix ν̃ ∈ (0, ν) once for all, and for any µ > 0 small enough,
we denote by V µ a |x |-analytic (µ, ν̃)-approximation of V in the sense of Section 4. In particular, V µ

is analytic with respect to r = |x | in {r ≥ 1}, it can be extended into a holomorphic function of r in the
sector 6 := {Re r ≥ 1 , |Im r | ≤ 2µRe r}, and it satisfies

V µ(x)− V (x)= O(µ∞〈x〉−ν̃), (2-2)
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uniformly on Rn . (See Section 4 for more properties of V µ.)
Then for any θ ∈ (0, µ], the operator

Pµ := −h21+ V µ, (2-3)

can be distorted analytically into
Pµθ :=Uθ PµU−1

θ , (2-4)

where Uθ is any transformation of the type

Uθϕ(x) := ϕ(x + iθ A(x)), (2-5)

with A(x) := a(|x |)x , a ∈C∞(R+), a= 0 near 0, 0≤ a ≤ 1 everywhere, a(|x |)= 1 for |x | large enough.
The essential spectrum of Pµθ is e−2iθR, and its discrete spectrum σdisc(P

µ
θ ) is included in the lower

half-plane and does not depend on the choice of the function a. Moreover, it does not depend on θ , in
the sense that for any θ0 ∈ (0, µ], and any θ ∈ [θ0, µ], one has

σdisc(P
µ
θ )∩6θ0 = σdisc(P

µ
θ0
)∩6θ0,

where 6θ0 := {z ∈ C ; −2θ0 < arg z ≤ 0} (observe that one also has σdisc(P
µ
θ ) = σdisc(Ũθ PµŨ−1

θ ),
where Ũθϕ(x) :=

√
det(Id+iθ t d A(x))ϕ(x + iθ A(x)) is an analytic distortion more widely used in the

literature).
We denote by

0(Pµ) := σdisc(Pµµ )∩6µ,

the set of resonances of Pµ counted with their multiplicity. In what follows, we also use the following
notation: If E and E ′ are two h-dependent subsets of C, and α= α(h) is a h-dependent positive quantity
that tends to 0 as h tends to 0+, we write

E ′ = E +O(α),

when there exists a constant C > 0 (uniform with respect to all other parameters) and a bijection

b : E ′→ E,
such that

|b(λ)− λ| ≤ Cα

for all h > 0 small enough.
Now, we fix some energy level λ0>0, and a constant δ >0. For any h-dependent numbers µ̃(h), µ(h),

and any h-dependent bounded intervals I (h), J (h), satisfying

0< µ̃(h)≤ µ(h)≤ hδ, (2-6)

I (h)⊂ J (h), diam(J ∪ {λ0})≤ hδ, (2-7)

we consider the following property (see Figure 1):

P(µ̃, µ; I, J ) :


Re(0(Pµ)∩ (J − i[0, λ0µ̃]))⊂ I,

# (0(Pµ)∩ (J − i[0, λ0µ̃]))≤ δ
−1,

dist(I,R \ J )≥ h−δωh(µ̃),
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h−δωh(µ̃)

λ0

I

J

Re z
h−δωh(µ̃)

Im z =−λ0µ̃

Im z =−2λ0µ

Figure 1. The property P(µ̃, µ; I, J ).

where, for θ > 0, we have set

ωh(θ) := θ

(
ln 1
θ
+ h−n

(
ln 1

h

)n+1
)1/2

.

Notice that by (2-7), the property P(µ̃, µ; I, J ) implies ωh(µ̃)≤ h2δ.
In the applications, it will be necessary to check that P(µ̃, µ; I, J ) holds for values of µ̃ that are

essentially of order hν for some ν > n. In that case, of course, the order of the quantity ωh(µ̃) can be
simplified into hν−n/2(ln(1/h))(n+1)/2. However, in the proof of our results, P(µ̃, µ; I, J ) will be also
used as an inductive condition that will permit us to consider arbitrarily small values of µ̃ (including
exponentially small values), and this is why we have to keep the somewhat intriguing above expression
for ωh(θ).

Theorem 2.1. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying (2-6)–(2-7). Then for all
θ ∈ ]0, µ̃], there exists an interval

J ′ = J +O(ωh(θ)),

such that

‖(Pµθ − z)−1
‖ ≤ Cθ−C

∏
ρ∈0(µ̃,µ,J )

|z− ρ|−1,

for all z ∈ J ′+ i[−Cθhn1,Cθhn1]. Here we have set n1 := n+ δ and

0(µ̃, µ, J ) := 0(Pµ)∩ (J − i[0, λ0µ̃]),

and C > 0 is a constant independent of µ̃, µ, θ , I and J .



34 ANDRÉ MARTINEZ, THIERRY RAMOND AND JOHANNES SJÖSTRAND

Thanks to this result, one can compare the resonances of the operators Pµ for different values of µ:

Theorem 2.2. Let N0 ≥ 1 be a constant. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying
(2-6)–(2-7), and that µ̃ > µN0 . Then for any θ ∈ [µN0, µ̃], there exist an interval

J ′ = J +O(ωh(θ))

and τ ∈ [hn1θ, 2hn1θ ], such that for any constant N1 ≥ 1 and any µ′ ∈ [µN1, µ1/N1] with θ ≤µ′, one has

0(Pµ
′

)∩ (J ′− i[0, τ ])= 0(Pµ)∩ (J ′− i[0, τ ])+O(µ∞).

Remark 2.3. The only properties of V µ used in the proof of this result are that V µ is a holomorphic
function of r in the sector 6 := {Re r ≥ 1 , |Im r | ≤ 2µRe r}, and it satisfies (2-2) and (4-2) for some
ν̃ > 0. In particular, the proof also shows that, up to O(µ∞), the set 0(Pµ) does not depend on any
particular choice of V µ.

Remark 2.4. As we will see in the proof, the condition τ ∈ [hn1θ, 2hn1θ ] can actually be replaced by
τ ∈ [hn1θ, hn1θ + (hn1θ)M

], for any fixed M ≥ 1.

We also show that the validity of P(µ̃, µ; I, J ) persists when decreasing µ̃ and µ suitably, up to a
small change of I and J .

Theorem 2.5. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying (2-6)–(2-7). Assume
furthermore that there is a constant N0 ≥ 1 with µ̃≥ µN0 . Then there exist two intervals

I ′ = I +O(µ∞),

J ′ = J +O(ωh(µ̃)),

such that P(hn1µ′, µ′; I ′, J ′) holds, for any µ′ ∈ (0, µ̃].

Finally, the next result gives a definition of resonances for P , up to any power of their imaginary part.

Theorem 2.6. Suppose P(µ̃, µ; I, J ) holds for some µ̃, µ, I and J satisfying (2-6)–(2-7). Assume
furthermore that there is a constant N0 ≥ 1 with µ̃≥ µN0 . Then there exist

an interval I ′ = I +O(µ∞),

an interval J ′ = J +O(ωh(µ̃)),

a discrete set 3⊂ I ′− i[0, 2h2n1µ̃],

such that
for any µ′ ∈ (0, µ̃], there exists τ ∈ [h2n1µ′, 2h2n1µ′] with

0(Pµ
′

)∩ (J ′− i[0, τ ])=3∩ (J ′− i[0, τ ])+O((µ′)∞).

}
(?)

Moreover, any other set 3̃ ⊂ I ′− i[0, 2h2n1µ̃] satisfying (?), possibly with some other choice of V µ, is
such that there exist τ ′ ∈ [ 12 h2n1µ̃, h2n1µ̃] and a bijection

B :3∩ (J ′− i[0, τ ′])→ 3̃∩ (J ′− i[0, τ ′]), with B(λ)− λ= O(|Im λ|∞).

The set 3 will be called the set of resonances of P in J ′ − i[0, 1
2 h2n1µ̃]. Here we adopt the convention

that real elements of3 are counted with a positive integer multiplicity in the natural way (see Section 9).
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Remark 2.7. The main shortcoming of our condition P(µ̃, µ; I, J ) is that the number of resonances in
the corresponding box has to be bounded. It might be that this restriction could be eliminated by a finer
analysis, based for example on results by P. Stefanov [2003]. We plan to come back to this point in a
forthcoming work.

3. Two examples

Here, we describe two explicit situations where the previous results apply.

3.1. The nontrapping case. We suppose first that the energy λ0 is nontrapping, that is, for any (x, ξ) ∈
p−1(λ0) we have

|exp t Hp(x, ξ)| →∞ as |t | →∞,

where p(x, ξ) := ξ 2
+V (x) is the principal symbol of P , and Hp = ∂ξ p∂x−∂x p∂ξ is the Hamilton field

of p.
Then the result of [Martinez 2002b] can be applied to Pµ with µ = Ch ln(h−1) for any arbitrary

constant C > 0, and tells us that Pµ has no resonances in [λ0 − 2ε, λ0 + 2ε] − i[0, λ0µ] with some
ε > 0 constant. In that case, for any δ > 0, P(hn1µ,µ; I, J ) is satisfied with I = [λ0− hδ, λ0+ hδ] and
J = [λ0− 2hδ, λ0+ 2hδ], and the previous results tell us that P has no resonances in I − i[0, 1

2 h3n1µ]

in the sense of Theorem 2.6.

3.2. The shape resonances. Now we assume instead that, in addition to (2-1), the potential V presents
the geometric configuration of the so-called “point-well in an island”, as described in [Helffer and
Sjöstrand 1986]. More precisely, we suppose

There exist a connected bounded open set Ö⊂ Rn and x0 ∈ Ö, such that

• λ0 := V (x0) > 0 ; V > λ0 on Ö\{x0} ; ∇
2V (x0) > 0 ; V = λ0 on ∂Ö;

• any point of {(x, ξ) ∈ R2n
; x ∈ Rn

\Ö , ξ 2
+ V (x)= λ0} is nontrapping.

 (H)

We denote by (ek)k≥1 the increasing sequence of (possibly multiple) eigenvalues of the harmonic oscil-
lator H0 =−1+

1
2〈V

′′(x0)x, x〉. We have:

Theorem 3.1. Assume (2-1) and (H). Then for any k0 ≥ 1 and any δ > 0, P(µ̃, µ; I, J ) holds with

µ= hδ, µ̃= hmax(n/2,1)+1+δ, I = [λ0+(e1−ε)h, λ0+(ek0+ε)h], J = [λ0, λ0+(ek0+1−ε)h],

where ε > 0 is any fixed number in (0,min(e1/2, (ek0+1− ek0)/3)].

Actually, we prove in Section 10 that any resonance ρ of Pµ in J − i[0, µ̃] is such that there exists
k ≤ k0 with

Re ρ− (λ0+ ekh)= O(h3/2),

Im ρ = O(e−2S1/h),

where S1 > 0 is any number less than the Agmon distance between x0 and ∂Ö. Recall that the Agmon
distance is the pseudo-distance associated to the degenerate metric (V (x)− λ0)+dx2.
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More generally, if µ′ ∈ [e−η/h, µ] with η > 0 small enough, we prove that any resonance ρ of Pµ
′

in
J − i[0, λ0 min(µ′, h2+δ)], satisfies

Re ρ− (λ0+ ekh)= O(h3/2),

for some k ≤ k0, and
Im ρ = O(e−2(S0−η)/h).

Applying Theorem 2.6 with µ′ = e−η/h (0< η < S0), we deduce that the resonances of P in

[λ0, λ0+Ch] − i[0, 1
2 h2n+max(n/2,1)+1+3δ

]

satisfy the same estimates.

4. Preliminaries

In this section, following an idea of [Fujiié et al. 2008], we define and study the notion of analytic
(µ, ν̃)-approximations.

Definition 4.1. For any µ > 0 and ν̃ ∈ (0, ν), we say that a real smooth function V µ on Rn is a |x |-
analytic (µ, ν̃)-approximation of V , if V µ is analytic with respect to r = |x | in {r ≥ 1}, V µ can be
extended into a holomorphic function of r in the sector 6(2µ) := {Re r ≥ 1 , |Im r |< 2µRe r}, and for
any multi-index α, it satisfies

∂α(V µ(x)− V (x))= O(µ∞〈x〉−ν̃−|α|), (4-1)

uniformly with respect to x ∈ Rn and µ > 0 small enough, and

∂αV µ(x)= O(〈Re x〉−ν̃−|α|), (4-2)

uniformly with respect to x ∈6(2µ) and µ > 0 small enough.

Proposition 4.2. Let V = V (x) be a real smooth function of x ∈ Rn satisfying (2-1).

(i) For any µ > 0 and ν̃ ∈ (0, ν), there exists a |x |-analytic (µ, ν̃)-approximation of V .

(ii) If V µ and Wµ are two |x |-analytic (µ, ν̃)-approximations of V , then for all α ∈ Nn , one has

∂α(V µ(x)−Wµ(x))= O(µ∞〈Re x〉−ν̃−|α|),

uniformly with respect to x ∈6(µ) and µ > 0 small enough.

Proof. We denote by Ṽ a smooth function on Cn satisfying the following:

• Ṽ = V on Rn .

• ∂ Ṽ = O
(
(|Im x |/〈Re x〉)∞〈Re x〉−ν

)
, uniformly on {|Im x | ≤ C〈Re x〉}, for any C > 0.

• ∂α Ṽ = O
(
〈Re x〉−ν−|α|

)
, uniformly on {|Im x | ≤ C〈Re x〉}, for any C > 0 and α ∈ Nn .

Note that such a function Ṽ (called an “almost-analytic” extension of V : See, for example, [Melin and
Sjöstrand 1975]) can easily be obtained by taking a resummation of the formal series

Ṽ (x)∼
∑
α∈Nn

i |α|(Im x)α

α!
∂αV (Re x). (4-3)
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Indeed, since we have ∂αV (Re x)= O(〈Re x〉−ν−|α|), the resummation is well defined up to

O
(
(|Im x |/〈Re x〉)∞〈Re x〉−ν

)
,

and the standard procedure of resummation (see, for example, [Dimassi and Sjöstrand 1999; Martinez
2002a]) also gives the required estimates on the derivatives of Ṽ . Conversely, by a Taylor expansion, we
see that any Ṽ satisfying the required conditions is necessarily a resummation of the series (4-3).

Now, if V µ is a |x |-analytic (µ, ν̃)-approximation of V , then for any x = rω ∈6(µ) (ω ∈ Sn−1) and
N ≥ 0, we have

V µ(x)−Ṽ (x)=
N∑

k=0

ik(Im r)k

k!
∂k

r V µ(Re r ·ω)+
(i Im r)N+1

(N + 1)!

∫ 1

0
∂N+1

r
(
V µ((Re r+i t Im r)·ω)

)
dt−Ṽ (x)

=

N∑
k=0

ik(Im r)k

k!
∂k

r
(
V µ(Re x)− V (Re x)

)
+O(µN+1

〈Re x〉−ν̃)

= O(µ∞〈Re x〉−ν̃)+O(µN+1
〈Re x〉−ν̃),

and similarly, for any α ∈ Nn ,

∂α(V µ(x)− Ṽ (x))= O(µ∞〈Re x〉−ν̃−|α|).

In particular, we have proved (ii).
Now, we proceed with the construction of such a V µ.
For x ∈ Rn

\0, we set ω = x/|x |, r = |x |, and s = ln r . In particular, for any t real small enough, the
dilation x 7→ et x becomes (s, ω) 7→ (s+ t, ω) in the new coordinates (s, ω).

For ω ∈ Sn−1 and s ∈ C with |Im s| small enough, we set Ṽ1(s, ω) := Ṽ (esω), where Ṽ is an almost-
analytic extension of V as before. Then for |Im s|< 2µ and Re s ≥−µ, we define

V µ
1 (s, ω) :=

e−ν̃s

2iπ

∫
γ

eν̃s′ Ṽ1(s ′, ω)
s− s ′

ds ′, (4-4)

where γ is the oriented complex contour

γ := ((+∞,−2µ] + 2iµ)∪ (−2µ+ 2i[µ,−µ])∪ ([−2µ,+∞)− 2iµ). (4-5)

By construction, Ṽ1(s ′, ω) = O(e−ν Re s′), so that the previous integral is indeed absolutely convergent.
Therefore, the (s, ω)-smoothness and s-holomorphy of V µ

1 are obvious consequences of Lebesgue’s
dominated convergence theorem. Since γ is symmetric with respect to R, we also have that V µ

1 (s, ω) is
real for s real. Moreover, since |s− s ′| ≥ µ on γ , we see that

V µ
1 (s, ω)=

e−ν̃s

2iπ

∫
γ (s)

eν̃s′ Ṽ1(s ′, ω)
s− s ′

ds ′+O(e−(ν−ν̃)/(2µ)−ν̃ Re s),

where

γ (s) :=
(
γ ∩

{
Re s ′ ≤ Re s+ 1

µ

})
∪

(
Re s+ 1

µ
+ 2i[−µ,µ]

)
.
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In particular, γ (s) is a simple oriented loop around s, and therefore, one obtains

V µ
1 (s, ω)− Ṽ1(s, ω)=

e−ν̃s

2iπ

∫
γ (s)

eν̃s′ Ṽ1(s ′, ω)− eν̃s Ṽ1(s, ω)
s− s ′

ds ′+O(e−(ν−ν̃)/(2µ)−ν̃ Re s). (4-6)

Then writing

eν̃s′ Ṽ1(s ′, ω)− eν̃s Ṽ1(s, ω)= (s− s ′) f (s, s ′, ω)+ (s− s ′)g(s, s ′, ω), (4-7)

with |∂s′ f | + |g| = O(µ∞), by Stokes’ formula, we see that, for Re s ≤ 2/µ and |Im s| ≤ µ, we have

V µ
1 (s, ω)− Ṽ1(s, ω)= O(µ∞e−ν̃ Re s).

When Re s > 2/µ and |Im s| ≤ µ, setting

γ1(s) :=
(
γ ∩

{
Re s ′ ≤ 1

µ

})
∪

(
1
µ
+ 2i[−µ,µ]

)
,

Stokes’ formula directly gives ∫
γ1(s)

eν̃s′ Ṽ1(s ′, ω)
s− s ′

ds ′ = O(µ∞),

and thus, using again that Ṽ1(s ′, ω)= O(e−ν Re s′), in that case we obtain

|V µ
1 (s, ω)| + |Ṽ1(s, ω)| = O(µ∞e−ν̃ Re s).

In particular, in both cases we obtain

V µ
1 (s, ω)− Ṽ1(s, ω)= O(µ∞e−ν̃ Re s), (4-8)

uniformly for Re s ≥−µ, |Im s| ≤ µ and µ > 0 small enough.
Then for α ∈ Nn arbitrary, by differentiating (4-4) and observing that

eν̃s′ Ṽ1(s ′, ω)−
N∑

k=0

1
k!
(s ′− s)k∂k

s
(
eν̃s Ṽ1(s, ω)

)
= (s ′− s)N+1 fN (s, s ′, ω)+ gN (s, s ′, ω),

with |∂s′ fN | + |gN | = O(µ∞), the same procedure gives

∂α(V µ
1 (s, ω)− Ṽ1(s, ω))= O(µ∞e−ν̃ Re s), (4-9)

uniformly for Re s ≥ −µ, |Im s| ≤ µ and µ > 0 small enough. In particular, using the properties of Ṽ1,
on the same set we also obtain

∂αV µ
1 (s, ω)= O(e−ν̃ Re s), (4-10)

uniformly.
Now, let χ1 ∈ C∞(R; [0, 1]) be such that χ1 = 1 on (−∞,−1], and χ1 = 0 on R+. We set

V µ
2 (s, ω) := χ1(s/µ)Ṽ1(s, ω)+ (1−χ1(s/µ))V

µ
1 (s, ω). (4-11)
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In particular, V µ
2 is well defined and smooth on R− ∪ (R++ i[−µ,µ]), and one has

V µ
2 = Ṽ1 for s ∈ (−∞,−µ],

V µ
2 = V µ

1 for s ∈ R++ i[−µ,µ],

∂α(V µ
2 − Ṽ1)= O(µ∞) for s ∈ [−µ,µ].

Finally, setting

V µ(x) := V µ
2

(
ln |x |,

x
|x |

)
, (4-12)

for x 6= 0, and V µ(0) = Ṽ (0), we easily deduce from the previous discussion (in particular (4-8), (4-9)
and (4-10), and the fact that ∂r = r−1∂s), that V µ is a |x |-analytic (µ, ν̃)-approximation of V . �

5. The analytic distortion

In this section, for any θ > 0 small enough, we construct a suitable distortion x 7→ x+ iθ A(x) satisfying
A(x) = x for |x | large enough, and such that for µ ≥ θ , the resolvent (Pµθ − z)−1 of the corresponding
distorted Hamiltonian Pµθ , admits sufficiently good estimates when Im z ≥ hn1θ .

We fix R0 ≥ 1 arbitrarily. In the Appendix we will justify the following lemma by constructing the
function announced in it:

Lemma 5.1. For any λ > 1 large enough, there exists fλ ∈ C∞(R+) such that

(i) supp fλ ⊂ [R0,+∞);

(ii) fλ(r)= λr for r ≥ 2 ln λ;

(iii) 0≤ fλ(r)≤ r f ′λ(r)≤ 2λr everywhere;

(iv) f ′λ+ | f
′′

λ | = O(1+ fλ) uniformly;

(v) for any k ≥ 1, f (k)λ = O(λ) uniformly.

Now, we take λ := h−n1 , and we set

b(r) := 1
λ

fλ(r). (5-1)

By the lemma, b satisfies

• supp b ⊂ [R0,+∞);

• b(r)= r for r ≥ 2n1 ln(1/h);

• 0≤ b(r)≤ rb′(r)≤ 2r everywhere;

• b′+ |b′′| = O(hn1 + b) uniformly;

• For any k ≥ 1, b(k) = O(1) uniformly.

We set
A(x) := b(|x |)

x
|x |
= a(|x |)x,



40 ANDRÉ MARTINEZ, THIERRY RAMOND AND JOHANNES SJÖSTRAND

where a(r) :=r−1b(r)∈C∞(R+). Forµ≥θ (both small enough), we can define the distorted operator Pµθ
as in (2-4) obtained from Pµ by using the distortion

8θ : R
n
3 x 7→ x + iθ A(x) ∈ Cn. (5-2)

Here we use the fact that |A(x)| ≤ 2|x |, and we also observe that, for any α ∈ Nn with |α| ≥ 1, one has
∂α8θ (x)= O(θ〈x〉1−|α|) uniformly.

Proposition 5.2. If R0 is fixed sufficiently large, then for 0 < θ ≤ µ both small enough, h > 0 small
enough, u ∈ H 2(Rn), and z ∈ C such that Re z ∈ [λ0/2, 2λ0] and Im z ≥ hn1θ , one has

|〈(Pµθ − z)u, u〉L2 | ≥
Im z

2
‖u‖2L2 .

Proof. Setting F := t d A(x)= d A(x), and V µ
θ (x) := V µ(x + iθ A(x)), we have

〈Pµθ u, u〉 =
〈(
(I + iθF(x))−1h Dx

)2u, u
〉
+〈V µ

θ u, u〉

= 〈(1+ iθF(x))−2h Dx u, h Dx u〉

+ ih
〈(
(t∇x)(I + iθF(x))−1)(I + iθF(x))−1h∇x u, u

〉
+〈V µ

θ u, u〉.

Therefore, using Lemma A.1 and the equality

|Im V µ(x)| = O(|Im x |〈Re x〉−ν−1),

valid for x complex, we find

Im〈Pµθ u, u〉 ≤ −θ‖
√

a(|x |)h Dx u‖2+Chθ
∫ (
|b′′| +

b′

|x |
+

b
|x |2

)
|h Dx u| · |u| dx +C0θ

∥∥∥∥
√

b
|x |(ν+1)/2 u

∥∥∥∥2

for some constants C,C0 > 0; moreover C0 is independent of the choice of R0.
Thus, using the properties of b listed after (5-1), we obtain (with some other constant C > 0)

Im〈Pµθ u, u〉 ≤ −θ‖
√

a(|x |)h Dx u‖2+Chθ
∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx

+C0 R−ν0 θ
∥∥√au

∥∥2
. (5-3)

On the other hand for z ∈ C, a similar computation gives

Re〈
√

a(Pµθ − z)u,
√

au〉

= −(Re z)‖
√

au‖2+Re
〈√

a
(
(I + iθF(x))−1h Dx

)2u,
√

au
〉
+Re〈

√
aV µ

θ u,
√

au〉

≤ −(Re z)‖
√

au‖2+ (1− 2θ)−2
‖
√

ah Dx u‖2

+Ch
∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx +C0 R−ν0

∥∥√au
∥∥2
,
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still with C , C0 positive constants, and C0 independent of the choice of R0. Therefore, if Re z≥λ0/2> 0
and R0 is chosen sufficiently large, then for θ small enough, we obtain

‖
√

au‖2 ≤ 4λ−1
0 ‖
√

ah Dx u‖2+ 4Cλ−1
0 h

∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx

+ 4λ−1
0 |〈
√

a(Pµθ − z)u,
√

au〉|. (5-4)

The insertion of this estimate into (5-3) gives

Im〈Pµθ u, u〉 ≤ −(1− 4C0λ
−1
0 R−ν0 )θ‖

√
ah Dx u‖2+C ′hθ

∫ (
|b′′| +

b
|x |
+ hn1

)
|h Dx u| · |u| dx

+C ′θ |〈
√

a(Pµθ − z)u,
√

au〉|, (5-5)

with C ′ > 0 a constant.
Now, for r ≥ 2n1 ln(1/h), by construction we have b′′(r)= 0, while, for r ≤ 2n1 ln(1/h), we have

|b′′(r)| = O(hn1 + b)= O(hn1 + (ln(1/h))a). (5-6)

Then we deduce from (5-5)

Im〈Pµθ u, u〉 ≤ −(1− 4C0λ
−1
0 R−ν0 )θ‖

√
ah Dx u‖2+C ′hθ ln(1/h)‖

√
ah Dx u‖ · ‖

√
au‖

+C ′hn1+1θ‖h Dx u‖ · ‖u‖+C ′θ |〈
√

a(Pµθ − z)u,
√

au〉|, (5-7)

with some other constant C ′ > 0. Using again (5-6), we also deduce from (5-4) that

‖
√

au‖2 = O
(
‖
√

ah Dx u‖2+ |〈
√

a(Pµθ − z)u,
√

au〉| + hn1+1
‖h Dx u‖ · ‖u‖

)
,

uniformly for h > 0 small enough, and thus, by (5-7),

Im〈Pµθ u, u〉 ≤ −
(
1− 4C0λ

−1
0 R−ν0 −Ch ln(1/h)

)
θ‖
√

ah Dx u‖2

+Chn1+1θ‖h Dx u‖ · ‖u‖+Cθ |〈
√

a(Pµθ − z)u,
√

au〉|. (5-8)

Finally, for Re z ≤ 2λ0, we use the (standard) ellipticity of the second-order partial differential operator
Re Pµθ , and the properties of V µ, to obtain

Re〈(Pµθ − z)u, u〉 ≥ 1
C ‖h Dx u‖2−C‖u‖2,

where C is again a new positive constant, independent of µ and θ . Combining with (5-8), and possibly
increasing the value of R0, this leads to

Im〈(Pµθ − z)u, u〉 ≤ (Chn1+1θ − Im z)‖u‖2

+Chn1+1θ |〈(Pµθ − z)u, u〉|1/2‖u‖+Cθ |〈(Pµθ − z)u, u〉|, (5-9)

and thus, for Im z ≥ hn1θ , and for h, θ > 0 small enough, we can deduce

|〈(Pµθ − z)u, u〉| ≥ 3 Im z
4
‖u‖2−Chn1+1θ |〈(Pµθ − z)u, u〉|1/2‖u‖. (5-10)
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Then the result easily follows by solving this second-order inequality where the unknown variable is
|〈(Pµθ − z)u, u〉|1/2, and by using again that Im z� hn1+1θ . �

6. Proof of Theorem 2.1

6.1. The invertible reference operator. The purpose of this section is to introduce an operator without
eigenvalues near λ0, obtained as a finite-rank perturbation of Pµθ , 0 < θ ≤ µ, and for which we have a
nice estimate for the resolvent in the lower half plane. This operator will be used in the next section to
construct a convenient Grushin problem.

Let χ0 ∈ C∞0 (R+; [0, 1]) be equal to 1 on [0, 1+ 2λ0+ sup |V |], and let C0 > sup |∇V |. We set

R = R(h) := 2n1 ln(1/h);

P̃µθ := Pµθ − iC0θχ0(h2 D2
x + R−2x2).

Observe that h2 D2
x+ R−2x2 is unitarily equivalent to h R−1(D2

x+ x2), so the rank of χ0(h2 D2
x + R−2x2)

is O(Rnh−n).
For m ∈R, we denote by S(〈ξ〉m) the set of functions a ∈C∞(R2n) such that for all α ∈N2n , one has

∂αx,ξa(x, ξ)= O(〈ξ〉m) uniformly.

We also denote

OpW
h (a)u(x)=

1
(2πh)n

∫∫
ei(x−y)ξ/ha

( x+y
2
, ξ
)

u(y) dy dξ, (6-1)

the semiclassical Weyl quantization of such a symbol a.
Denoting by p̃µθ ∈ S(〈ξ〉2) the Weyl symbol of P̃µθ , we see that

p̃µθ (x, ξ)=
(
( t d8θ (x))−1ξ

)2
+ V µ(8θ (x))− iC0θχ0(ξ

2
+ R−2x2)+O(hθ〈ξ〉), (6-2)

uniformly with respect to (x, ξ), µ, θ , and h, and where the estimate on the remainder is in the sense of
symbols (that is, one has the same estimate for all the derivatives). In particular, we have

Re p̃µθ (x, ξ)= ξ
2
+ V (x)+O(θ〈ξ〉2). (6-3)

Moreover,

• if |x | ≥ R and |ξ |2 ≥ λ0/2, then

Im p̃µθ (x, ξ)≤−
θ
C
〈ξ〉2+O(θR−ν)≤− θ

2C
〈ξ〉2; (6-4)

• if |x | ≤ R and |ξ |2 ≤ 2λ0+ sup |V |, then

Im p̃µθ ≤−C0θ + θ sup |∇V | +O(hθ)≤− θ
2C
, (6-5)

where C>0 is a constant, and the estimates are valid for h small enough. (For (6-5) we used the inequality
Im
(
( t d8θ (x))−1ξ

)2
≤ 0, due to the particular form of 8θ (x). See Lemma A.1 in the Appendix.)
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Proposition 6.1. There exists a constant C̃ ≥ 1 such that for all µ > 0, for all θ ∈ (0, µ], for all z
satisfying |Re z− λ0| + θ

−1
|Im z| ≤ 4/C̃ , and for all h ∈ (0, 1/C̃], one has

‖(z− P̃µθ )
−1
‖ ≤ C̃θ−1.

Proof. We take two functions ϕ1, ϕ2 ∈ C∞b (R
2n
; [0, 1]) (the space of smooth functions bounded with all

their derivatives), such that

• ϕ2
1 +ϕ

2
2 = 1 on R2n;

• suppϕ1 is included in a small enough neighborhood of {ξ 2
+ V (x)= λ0};

• ϕ1 = 1 near {ξ 2
+ V (x)= λ0}.

In particular, ϕ1 can be chosen in such a way that, on suppϕ1, one has either |x | ≥ R together with
|ξ |2 ≥ λ0/2, or |x | ≤ R together with |ξ |2 ≤ 2λ0+ sup |V |. Therefore, we deduce from (6-4)–(6-5)

1
θ

Im p̃µθ ≤−
1

2C
on suppϕ1,

and thus,

ϕ2
1

1
θ

Im p̃µθ +
1

2C
ϕ2

1 ≤ 0 on R2n. (6-6)

Moreover, it is easy to check that the function (x, ξ) 7→ θ−1 Im p̃µθ is a nice symbol in S(〈ξ〉2), uniformly
with respect to µ and θ , that is, for all α ∈ N2n , one has

∂αx,ξ (θ
−1 Im p̃µθ )(x, ξ)= O(〈ξ〉2) uniformly,

and we see from (6-2) that
θ−1 Im p̃µθ ≤ C R−ν +Ch〈ξ〉,

with some new uniform constant C > 0.
Then setting φ j :=OpW

h (ϕ j ), writing I = φ2
1u+φ2

2u+ hQ where Q is a uniformly bounded pseudo-
differential operator, and using the sharp Gårding inequality, we obtain

〈θ−1 Im P̃µθ u, u〉 = 〈φ1θ
−1 Im P̃µθ φ1u, u〉+ 〈θ−1 Im P̃µθ φ2u, φ2u〉+O(h‖u‖2H1)

≤ −
1

2C
‖φ1u‖2+C R−ν‖φ2u‖2+Ch‖〈h Dx 〉u‖2,

for all u ∈ H 2(Rn), and still for some new uniform constant C > 0. Hence,

|Im〈P̃µθ u, u〉| ≥ θ
2C
‖φ1u‖2−CθR−ν‖φ2u‖2−Chθ‖〈h Dx 〉u‖2. (6-7)

On the other hand since Re p̃µθ − λ0 ∈ S(〈ξ〉2) is uniformly elliptic on suppϕ2, the symbolic calculus
permits us to construct a ∈ S(〈ξ〉−2) (still depending on µ and θ , but with uniform estimates), such that

a ] ( p̃k,θ − λ0)= ϕ2 ] ϕ2+O(h∞) in S(1),

where ] stands for the Weyl composition of symbols. As a consequence, denoting by A the Weyl quan-
tization of a, we obtain

‖〈h Dx 〉φ2u‖2 =
〈
〈h Dx 〉

2 A(P̃µθ − λ0)u, u
〉
+O(h)‖u‖2,



44 ANDRÉ MARTINEZ, THIERRY RAMOND AND JOHANNES SJÖSTRAND

and thus

‖(P̃µθ − λ0)u‖ · ‖u‖ ≥
1
C
‖〈h Dx 〉φ2u‖2−Ch‖u‖2. (6-8)

Now, if z ∈C is such that |Re z−λ0| ≤ ε and |Im z| ≤ εθ (ε > 0 fixed), we deduce from (6-7)–(6-8) that

‖(P̃µθ − z)u‖ · ‖u‖ ≥ |Im〈(P̃µθ − z)u, u〉| ≥ θ
2C
‖φ1u‖2−CθR−ν‖φ2u‖2−Chθ‖〈h Dx 〉u‖2− εθ‖u‖2,

θ‖(P̃µθ − z)u‖ · ‖u‖ ≥ θ
C
‖〈h Dx 〉φ2u‖2−Chθ‖u‖2− 2εθ‖u‖2,

which yields

(1+ θ)‖(P̃µθ − z)u‖ · ‖u‖ ≥ θ
2C

(
‖φ1u‖2+‖〈h Dx 〉φ2u‖2

)
− θ(2Ch+C R−ν + 3ε)‖〈h Dx 〉u‖2. (6-9)

Moreover, since ξ remains bounded on suppϕ1, the norms ‖〈h Dx 〉u‖ and ‖φ1u‖ + ‖〈h Dx 〉φ2u‖ are
uniformly equivalent, and thus, for ε and h small enough, we deduce from (6-9) that

‖(P̃µθ − z)u‖ · ‖u‖ ≥ θ
4C
‖〈h Dx 〉u‖2,

and the result follows. �

6.2. The Grushin problem. In this section, we reduce the estimate on (Pµθ − z)−1 in Theorem 2.1, to
that of a finite matrix, by means of some convenient Grushin problem (see for example [Sjöstrand 1997]).

Denote by (e1, . . . , eM) an orthonormal basis of the range of the operator

K := C0χ0(h2 D2
x + R−2x2).

In particular, M = M(h) satisfies

M = O(Rnh−n). (6-10)

Let z ∈ C, and consider the two operators

R+ : L2(Rn) → CM

u 7→ (〈u, e j 〉)1≤ j≤M ,

R−(z) : CM
→ L2(Rn)

u− 7→
∑M

j=1 u−j (P̃
µ
θ − z)e j .

Then the Grushin operator

G(z) :=
(

Pµθ − z R−(z)
R+ 0

)
is well defined from H 2(Rn)×CM to L2(Rn)×CM , and for z as in Proposition 6.1, it is easy to show
that G(z) is invertible, and its inverse is given by

G(z)−1
:=

(
E(z) E+(z)

E−(z) E−+(z)

)
,



RESONANCES FOR NONANALYTIC POTENTIALS 45

where

E(z)= (1− TM)(P̃
µ
θ − z)−1, with TMv :=

M∑
j=1

〈v, e j 〉e j (v ∈ L2),

E+(z)v+ =
M∑

j=1

v+j
(
e j + iθ(1− TM)(P̃

µ
θ − z)−1K e j

)
, (v+ = (v

+

j )1≤ j≤M ∈ CM),

E−(z)v =
(
〈(P̃µθ − z)−1v, e j 〉

)
1≤ j≤M ,

E−+(z)v+ =−v++ iθ
( M∑
`=1

v+` 〈(P̃
µ
θ − z)−1K e`, e j 〉

)
1≤ j≤M

.

Proposition 6.1 gives

‖E(z)‖+‖E−(z)‖ = O(θ−1), (6-11)

‖E+(z)‖+‖E−+(z)‖ = O(1), (6-12)

uniformly for µ > 0, θ ∈ (0, µ], h > 0 small enough, and |Re z− λ0| + θ
−1
|Im z| small enough.

Hence, using the algebraic identity

(Pµθ − z)−1
= E(z)− E+(z)E−+(z)−1 E−(z), (6-13)

we finally obtain:

Proposition 6.2. If z ∈ C is such that |Re z− λ0| ≤ C̃−1 and |Im z| ≤ 2C̃−1θ , and E−+(z) is invertible,
then so is Pµθ − z, and one has

‖(Pµθ − z)−1
‖ = O

(
θ−1(1+‖E−+(z)−1

‖)
)
,

uniformly with respect to µ > 0, θ ∈ (0, µ], h > 0 small enough, and z such that |Re z− λ0| ≤ C̃−1 and
|Im z| ≤ C̃−1θ .

Therefore, we have reduced the study of (Pµθ − z)−1 to that of the M ×M matrix E−+(z)−1.

6.3. Using the Maximum Principle. For z ∈ J + i[−θ/C̃, 2θ/C̃], we define

D(z) := det E−+(z).

Then z 7→ D(z) is holomorphic in J + i[−θ/C̃, 2θ/C̃]. Setting N := # (σ (Pµθ )∩ (J + i[−θ/C̃, 2θ/C̃])
and using (6-13), we see that D(z) can be written as

D(z)= G(z)
N∏
`=1

(z− ρ`),

with G holomorphic in J + i[−θ/C̃, 2θ/C̃], G(z) 6= 0 for all z ∈ J − i[0, C̃−1θ ].
Moreover, using (6-12) and (6-10), we obtain that for some uniform constant C1 > 0,

|D(z)| =
∏

λ∈σ(E−+(z))

|λ| ≤ ‖E−+(z)‖M
≤ C1eC1 Rnh−n

. (6-14)
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Lemma 6.3. For every θ ∈ [0, µ], there exists rθ ∈ [θ/(2C̃), θ/C̃], such that for all z ∈ J − irθ , and for
all `= 1, . . . , N , one has

|z− ρ`| ≥
θ

8C̃ N
.

Proof. By contradiction, if it was not the case, then for all t in [−θ/2C̃,−θ/C̃], there should exist `
such that

|t − Im ρ`|<
θ

8C̃ N
.

Therefore, the interval [−θ/2C̃,−θ/C̃]would be included in
⋃N
`=1[Im ρ`−θ/(8C̃ N ), Im ρ`+θ/(8C̃ N )],

which is impossible because of their respective sizes. �

From now on, we assume P(µ̃, µ; I, J ) and setting

Wθ (J ) := J + i[−rθ , 2θ/C̃],

we deduce from Lemma 6.3 that, for θ ∈ (0, µ̃], z on the boundary of Wθ (J ), and for all `= 1, . . . , N ,

|z− ρ`| ≥
1

C2
θ,

for some constant C2 > 0. As a consequence, using (6-14), on this set we obtain

|G(z)| ≤ θ−C3eC3 Rnh−n
,

with some other uniform constant C3> 0. Then the maximum principle tells us that this estimate remains
valid in the interior of Wθ (J ):

Proposition 6.4. There exists a constant C3 > 0 such that for all µ̃, µ, I and J satisfying (2-6)–(2-7)
such that P(µ̃, µ; I, J ) holds, one has

|G(z)| ≤ θ−C3eC3 Rnh−n
,

for all θ ∈ (0, µ̃], z ∈Wθ (J ), and h ∈ (0, 1/C3].

6.4. Using the Harnack Inequality. Since G(z) 6= 0 on Wθ (J ), we can consider the function

H(z) := C3 Rnh−n
−C3 ln θ − ln |G(z)|.

Then H is harmonic in Wθ (J ), and by Proposition 6.4, it is also nonnegative. Using the algebraic formula

E−+(z)−1
=−R+(P

µ
θ − z)−1 R−(z)

and the fact that (Pµθ − z)−1 R−(z)u− =
∑M

j=1 u j (I − iθ(Pµθ − z)−1K )e j , we deduce from Proposition
5.2 that, for z ∈ [λ0/2, 2λ0] + i[θhn1, 1], one has

‖E−+(z)−1
‖ ≤ 1+ 2C0h−n1 .

As a consequence, for such values of z, we obtain

1
D(z)

= det E−+(z)−1
≤ (1+ 2C0h−n1)M ,
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and thus

|G(z)| = |D(z)|
N∏
`=1

|z− ρ`|−1
≥

1
C4

hn1 M ,

with some uniform constant C4 > 0. In particular, for any λ ∈R such that λ+ iθhn1 ∈Wθ (J ), this gives

H(λ+ iθhn1)≤ C3 Rnh−n
−C3 ln θ + ln C4− n1 M ln h. (6-15)

Now, the Harnack inequality tells us that, for any λ, r , such that

dist(λ,R \ J )≥ C̃−1θ, r ∈ [0, C̃−1θ)

and for any α ∈ R, one has

H(λ+ ihn1θ + reiα)≤
C̃−2θ2

(C̃−1θ − r)2
H(λ+ ihn1θ).

In particular, setting

W̃θ (J ) :=
{
z ∈ C ; dist(Re z,R \ J )≥ C̃−1θ , |Im z| ≤ (2C̃)−1θ

}
and using (6-15), we find

H(z)≤ 5C3 Rnh−n
− 5C3 ln θ + 5 ln C4− 5n1 M ln h,

for all z ∈ W̃θ (J ), that is,

ln |G(z)| ≥ −4C3 Rnh−n
+ 4C3 ln θ − 5 ln C4+ 5n1 M ln h,

or, equivalently,
|G(z)| ≥ C−5

4 θ4C3h5n1 M e−4C3 Rnh−n
. (6-16)

Finally, writing E−+(z)−1
= D(z)−1 Ẽ−+(z), where Ẽ−+(z) stands for the transposed of the comatrix

of E−+(z), we see that

‖E−+(z)−1
‖ ≤ eC M

|G(z)|−1
N∏
`=1

|z− ρ`|−1,

and therefore we deduce from (6-16) and (6-10) that

‖E−+(z)−1
‖ ≤ θ−C h−C Rnh−n

N∏
`=1

|z− ρ`|−1,

with some new uniform constant C ≥ 1. Thus, using Proposition 6.2, and the fact that R = O(|ln h|), we
have proved:

Proposition 6.5. There exists a constant Č > 0 such that for all µ̃, µ, I and J satisfying (2-6)–(2-7)
such that P(µ̃, µ; I, J ) holds, one has

‖(Pµθ − z)−1
‖ ≤ θ−Č h−Č |ln h|nh−n

N∏
`=1

|z− ρ`|−1,

for all θ ∈ (0, µ̃], z ∈ W̃θ (J ), and h ∈ (0, 1/Č].
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6.5. Using the 3-lines theorem. Now, following an idea of [Tang and Zworski 1998], we define

9(z) :=
∫ b

a
e−(z−λ)

2/θ2
dλ,

where
[a, b] :=

{
λ ∈ R ; dist(λ,R \ J )≥ C̃−1θ + Č1/2ωh(θ)

}
.

We have the following:

• If Im z = 2θhn1 , then
|9(z)| ≤ (b− a)e4h2n1

= O(hδ)≤ 1.

• If Im z =−θ/(2C̃), then

|9(z)| ≤ (b− a)e1/4C̃2
= O(hδ)≤ 1.

• If Re z ∈
{
a− Č1/2ωh(θ), b+ Č1/2ωh(θ)

}
and Im z ∈ [−θ/(2C̃), 2θhn1], then

|9(z)| ≤ (b− a)e1/4C̃2
e−Čωh(θ)

2/θ2
= O(hδ)θ Č hČ |ln h|nh−n

≤ θ Č hČ |ln h|nh−n
.

Then for z ∈ W̃θ (J ), we consider the operator-valued function

Q(z) :=9(z)
N∏
`=1

(z− ρ`)(P
µ
θ − z)−1

that is holomorphic on W̃θ (J ) (this can be seen, for example, from (6-13)). Using, Proposition 5.2,
Proposition 6.5, and the previous properties of 9(z), we see that Q(z) satisfies:

• If Im z = 2θhn1 , then
‖Q(z)‖ ≤ θ−1h−n1 .

• If Im z =−θ/(2C̃), then

‖Q(z)‖ ≤ θ−Č h−Č |ln h|nh−n
.

• If Re z ∈ {a− Č1/2ωh(θ), b+ Č1/2ωh(θ)} and Im z ∈ [−θ/(2C̃), 2θhn1], then

‖Q(z)‖ ≤ 1.

Therefore, setting

W̌θ (J ) := [a− Č1/2ωh(θ), b+ Č1/2ωh(θ)] + i[−θ/(2C̃), 2θhn1],

(that is included in W̃θ (J )), we see that the subharmonic function z 7→ ln ‖Q(z)‖ satisfies

ln ‖Q(z)‖ ≤ ψ(z) on ∂W̌θ (J ),

where ψ is the harmonic function defined by

ψ(z) :=
2θhn1 − Im z

2θhn1 + θ/(2C̃)
Č
(
|ln h|n+1h−n

+ |ln θ |
)
+

Im z+ θ/(2C̃)
2θhn1 + θ/(2C̃)

|ln(θhn1)|.
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As a consequence, by the properties of subharmonic functions, we deduce that ln ‖Q(z)‖ ≤ψ(z) every-
where in W̌θ (J ), and in particular, for |Im z| ≤ 2θhn1 , we obtain

ln ‖Q(z)‖ ≤ 8C̃Čhn1
(
|ln h|n+1h−n

+ |ln θ |
)
+ |ln(θhn1)|

Hence, since n1 > n, we have proved the existence of some uniform constant C ≥ 1, such that

ln ‖Q(z)‖ ≤ ln C +C |ln(θhn1)| for z ∈ W̌θ (J ) and h ∈ (0, 1/C].

Coming back to Pµθ , this means that, for z ∈ W̌θ (J ) different from ρ1, . . . , ρN , we have

|9(z)| ‖(Pµθ − z)−1
‖ ≤ C(θhn1)−C

N∏
`=1

|z− ρ`|−1.

On the other hand if dist(Re z,R\ J )≥ 2Č1/2ωh(θ), and |Im z| ≤ 2θhn1 , then writing z= s+ i t , we have

9(z)= θet2/θ2
∫ (b−s)/θ

(a−s)/θ
e−u2

+2i(t/θ)u du.

Now, |t/θ | ≤ 2hn1 → 0 uniformly, and we see that

(a− s)/θ ≤ C̃−1
− Č1/2ωh(θ)/θ ≤ C̃−1

− (h−n
|ln h|)1/2→−∞ uniformly.

In the same way, we have (b− s)/θ→+∞ uniformly as h→ 0+. Therefore, we easily conclude that

|9(z)| ≥ θ
C
,

when h ∈ (0, 1/C], with some new uniform constant C > 0.
As a consequence, using also that θ ≤ hδ, we finally obtain:

Proposition 6.6. There exists a constant C0 ≥ 1, such that for all µ̃, µ, I and J satisfying (2-6)–(2-7),
the property P(µ̃, mu; I, J ) implies

‖(Pµθ − z)−1
‖ ≤ C0θ

−C0

N∏
`=1

|z− ρ`|−1, (6-17)

for all z ∈ J ′+ i[−2θhn1, 2θhn1], and for all h ∈ (0, 1/C0], where

J ′ =
{
λ ∈ R ; dist(λ,R \ J )≥ C0ωh(θ)

}
.

Since J ′ = J +O(ωh(θ)), Theorem 2.1 is proved.

7. Proof of Theorem 2.2

Suppose P(µ̃, µ; I, J ) holds, and µ̃ ≥ µN0 for some constant N0 ≥ 1. Then for any θ ∈ [µN0, µ̃], any
constant N1 ≥ 1, and any µ′ ∈ [max(θ, µN1), µ1/N1], we can write

z− Pµ
′

θ = (z− Pµθ )(1+ (z− Pµθ )
−1W ), (7-1)
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with

W := Pµθ − Pµ
′

θ = V µ(x + i Aθ (x))− V µ′(x + i Aθ (x))= O(µ∞〈x〉−ν), (7-2)

uniformly (see Section 4). Moreover, taking J ′ as in Proposition 6.6, we have:

Lemma 7.1. Let N ≥ 1 be a constant, such that N ≥ #0(µ̃, µ, J ) for all h small enough. Then for any
θ ∈ [µN0, µ̃], there exists τ ∈ [θhn1, 2θhn1], such that

dist
(
∂(J ′+ i[−τ, τ ]), 0(µ̃, µ, J )

)
≥
θhn1

4N
. (7-3)

Here, ∂(J ′+ i[−τ, τ ]) stands for the boundary of J ′+ i[−τ, τ ].

Proof. If it were not the case, using P(µ̃, µ; I, J ), we see that, for all t ∈ [−2θhn1,−θhn1], there should
exist ρ ∈ 0(µ̃, µ, J ), such that

|t − Im ρ| ≤
θhn1

4N
.

That is, we would have

[−2θhn1,−θhn1] ⊂

⋃
ρ∈0(µ̃,µ,J )

[
ρ−

θhn1

4N
, ρ+

θhn1

4N

]
,

which, again, is not possible because of the respective size of these two sets. �

Remark 7.2. With a similar proof, we see that the result of Lemma 7.1 remains valid if one replaces the
interval [θhn1, 2θhn1] by [θhn1, θhn1 + (θhn1)M

], and one substitutes (θhn1)M to θhn1 in (7-3), where
M ≥ 1 is any arbitrary fixed number.

Using Lemma 7.1 and Theorem 2.1, we see that, for any z ∈ ∂(J ′+ i[−τ, τ ]), we have

‖(Pµθ − z)−1
‖ ≤ C1θ

−C1 ≤ C1µ
−C1 N0,

with some new uniform constant C1, and thus, by (7-1) and (7-2), z − Pµ
′

θ is invertible, too, for z ∈
∂(J ′+ i[−τ, τ ]), and the two spectral projectors

5 :=
1

2iπ

∮
∂(J ′+i[−τ,τ ])

(z− Pµθ )
−1 dz, 5′ :=

1
2iπ

∮
∂(J ′+i[−τ,τ ])

(z− Pµ
′

θ )
−1 dz, (7-4)

are well-defined and satisfy

‖5−5′‖ = O(µ∞). (7-5)

In particular, 5 and 5′ have the same rank (≤ N ), and one has

‖Pµθ 5− Pµ
′

θ 5
′
‖ = O(µ∞). (7-6)

Therefore, the two sets σ(Pµ
′

θ ) ∩ (J
′
+ i[−τ, τ ]) and σ(Pµθ ) ∩ (J

′
+ i[−τ, τ ]) coincide up to O(µ∞)

uniformly by standard finite dimensional arguments, and Theorem 2.2 follows.



RESONANCES FOR NONANALYTIC POTENTIALS 51

8. Proof of Theorem 2.5

Now, for any integer k ≥ 0, we set

µk := hkn1µ̃.

Since P(µ̃, µ; I, J ) holds, we can apply Theorem 2.2 with µ′ ∈ [µ1, µ0], and deduce the existence
of J1 ⊂ J , with J1 = J + O(ωh(µ0)) and I1 ⊃ I with I1 = I + O(µ∞0 ), independent of µ′, such that
P(hn1µ′, µ′; I1, J1) holds. In particular, P(µ1, µ0; I1, J1) holds, and we can apply Theorem 2.2 again,
this time with µ′ ∈ [µ2, µ1]. Iterating the procedure, we see that, for any k ≥ 0, there exists

Ik+1 = Ik +O(µ∞k ), Jk+1 = Jk +O(ωh(µk)),

hence,

Ik+1 = I +O(µ∞0 + · · ·+µ
∞

k ), Jk+1 = J +O(ωh(µ0)+ · · ·+ωh(µk)),

where the O’s are also uniform with respect to k, such that P(hn1µ′, µ′; Ik+1, Jk+1) holds for all µ′ ∈
[µk+1, µk].

Since the two series
∑

k ωh(µk)= O(ωh(µ̃)) and
∑

k µ
M
k = O(µM) (M ≥ 1 arbitrary) are convergent,

one can find I ′ = I +O(µ∞) and J ′ = J +O(ωh(µ̃)), such that

I ′ ⊃
⋃
k≥0

Ik, J ′ ⊂
⋂
k≥0

Jk .

Then by construction, P(hn1µ′, µ′; I ′, J ′) holds for all µ′ ∈ (0, µ̃], and Theorem 2.5 is proved.

9. Proof of Theorem 2.6: the set of resonances

From the proof of Theorem 2.5 (and with the same notation) we learn that, for all k ≥ 0, property
P(µk+1, µk; Ik+1, Jk+1) holds. Therefore, applying Theorem 2.2 with θ = µ′ = µk+1, we see that there
exist τk+2 ∈ [µk+2, 2µk+2], J ′k+1 = Jk+1+O(ωh(µk+1)), and a bijection

bk : 0(Pµk )∩ (J ′k+1− i[0, τk+2])→ 0(Pµk+1)∩ (J ′k+1− i[0, τk+2])

such that

bk(λ)− λ= O(µ∞k ) uniformly. (9-1)

In addition, we deduce from Lemma 7.1 that the τk can be chosen in such a way that

dist
(
∂(J ′k+1+ i[−τk+2, τk+2]

)
, 0(Pµk ))≥

µC
k

C
, (9-2)

for some constant C > 0. We set

3k := 0(Pµk )∩ (J ′k+1− i[0, τk+2]),

where the elements are repeated according to their multiplicity (see Figure 2).
Starting from an arbitrary element λ j of 30 (1≤ j ≤ N := #30 = O(1)), we distinguish two cases.

Case A. For all k ≥ 0, bk ◦ bk−1 ◦ · · · ◦ b0(λ j ) ∈3k+1.
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...

Re z

3k \
⋃
j≥1

3k+ j

3k+1 \
⋃
j≥1

3k+1+ j

3k+2 \
⋃
j≥1

3k+2+ j

Figure 2. Construction of the set of resonances.

In that case, we can consider the sequence defined by

λ j,k := bk ◦ bk−1 ◦ · · · ◦ b0(λ j ), k ≥ 0.

Using (9-1), we see that, for any k > `≥ 0, we have

|λ j,k − λ j,`| ≤

k−1∑
m=`

|λ j,m+1− λ j,m | ≤ C1

k−1∑
m=`

µm+1 ≤ C1µ0
hn1`

1− hn1
,

so that (λ j,k)k≥1 is a Cauchy sequence, and we set

ρ j := lim
k→+∞

λ j,k .

Notice that according to this definition, we have a natural notion of multiplicity of a resonance ρ, namely
the number of sequences ρ j converging to ρ.

Case B. There exists k j ≥0 such that bk−1◦· · ·◦b0(λ j )∈3k for all k≤k j , while bk j ◦· · ·◦b0(λ j ) /∈3k j+1.

(Here, and in the sequel, we use the convention of notation: b−1 ◦ b0 := Id.) We set

ρ j := bk j ◦ · · · ◦ b0(λ j ).

In particular, since, by construction, Re ρ j ∈ Ik j+2 ⊂ Jk j+1, and ρ j /∈ 3k j+1, we see that, necessarily,
Im ρ j ∈ [−τk j+2,−τk j+3).

Moreover, if in Case A, we set k j := +∞, then for any j = 1, . . . , #30 and k ≥ 0, in both cases we
have the equivalence

|Im ρ j | ≤ τk+2 ⇐⇒ k ≤ k j . (9-3)

Now, if µ′ ∈ (0, µ̃], then µ′ ∈ (µk+1, µk] for some k ≥ 0, and Theorem 2.2 tells us that the intersection
0(Pµ

′

)∩ (J ′k+1− i[0, τk+2]) coincides with 3k up to O(µ∞k ) (= O((µ′)∞)). Therefore, setting

3 := {ρ1, . . . , ρN },
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the first part of Theorem 2.6 will be proved if we can show the existence, for any k ≥ 0, of a bijection

b̃k :3∩ (J ′k+1− i[0, τk+2])→3k,

such that b̃k(ρ)−ρ = O(µ∞k ) uniformly. (Actually, we do not necessarily have τk+2 ∈ [h2n1µ′, 2h2n1µ′],
but rather, τk+2 ∈ [h2n1µ′, 2hn1µ′). However, if τk+2 ≥ 2h2n1µ′, an argument similar to that of Lemma
6.3 or Lemma 7.1 gives the result stated in Theorem 2.6.)

By construction, we have

3k = {bk−1 ◦ · · · ◦ b0(λ j ) ; j = 1, . . . , N such that k j ≥ k}.

while, by (9-3),

3∩ (J ′k+1− i[0, τk+2])= {ρ j ; j = 1, . . . , N such that k j ≥ k}.

Then for all j satisfying k j ≥ k, we set

b̃k(ρ j ) := bk−1 ◦ · · · ◦ b0(λ j ),

so that b̃k defines a bijection between 3 ∩ (J ′k+1 − i[0, τk+2]) and 3k . Moreover, in Case A, for any
M ≥ 1, we have

|b̃k(ρ j )− ρ j | = lim
`→+∞

|b` ◦ · · · ◦ bk(b̃k(λ j ))− b̃k(λ j )| ≤

+∞∑
m=k

CMµ
M
m =

CMµ
M
k

1− hn1
,

while, in Case B, we obtain

|b̃k(ρ j )− ρ j | = |bk j ◦ · · · ◦ bk(b̃k(λ j ))− b̃k(λ j )| ≤
∑

k≤m≤k j

CMµ
M
m ≤

CMµ
M
k

1− hn1
,

(with the usual convention
∑

m∈∅ := 0). Therefore, in both cases, for h > 0 small enough, we find

|b̃k(ρ j )− ρ j | ≤ 2CMµ
M
k ,

and this gives the first part of Theorem 2.6.
For the second part of Theorem 2.6, let 3̃ be another set satisfying (?). In particular, for any k≥0, there

exist τk+2, τ̃k+2 ∈ [µk+2, 2µk+2], such that 3̃∩ (J ′k+1− i[0, τ̃k+2]) (respectively 3∩ (J ′k+1− i[0, τk+2]))
coincides with 3̃k := 0(Pµk )∩ (J ′k+1− i[0, τ̃k+2]), (respectively 3k), up to O(µ∞k ).

Therefore, taking k = 0 and using again an argument similar to that of Lemma 6.3 or Lemma 7.1 that
gives the existence of τ ′ ∈ [ 12µ2, µ2] and C > 0 constant such that

dist
(
∂(J ′1+ i[−τ ′, τ ′]), 0(Pµ0)

)
≥
µC

0
C
, (9-4)

we obtain that the two sets 3∩ (J ′1 − i[0, τ ′]) and 3̃∩ (J ′1 − i[0, τ ′]) coincide up to O(µ∞0 ), and thus
have same cardinality. For k ≥ 0, we denote by

Bk :3k → 3∩ (J ′k+1− i[0, τk+2]),

B̃k : 3̃k → 3̃∩ (J ′k+1− i[0, τ̃k+2])
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the corresponding bijections. Then, thanks to (9-4), we can consider the bijection

ϕ0 = B̃0 ◦ B−1
0 |3∩(J ′1−i[0,τ ′]) :3∩ (J

′

1− i[0, τ ′])→ 3̃∩ (J ′1− i[0, τ ′]).

Using (9-2) and the fact that B̃k differ from the identity by O(µ∞k ), we see that, for k ≥ 1,

dist
(
∂(J ′k+1+ i[−τk+2, τk+2]), 3̃

)
≥
µC

k

C
, (9-5)

for some other constant C > 0.
Then setting

E0 :=3∩ {−τ
′
≤ Im z <−τ3},

and for k ≥ 1,
Ek :=3∩ {−τk+2 ≤ Im z <−τk+3},

we see that, for all k ≥ 1, the map

B̃k ◦ B−1
k |Ek : Ek→ 3̃∩ {−τk+2 ≤ Im z <−τk+3} (9-6)

is a bijection.
Finally, for ρ ∈3∩ (J ′1− i[0, τ ′]), we define

• B(ρ)= B̃k ◦ B−1
k (ρ), if ρ ∈ Ek for some k ≥ 0;

• B(ρ)= ρ, if ρ ∈ R.

We first show:

Lemma 9.1. 3∩R= 3̃∩R.

Proof. We only show that any ρ in 3∩R is also in 3̃, the proof of the other inclusion being similar. For
such a ρ, B−1

k (ρ) ∈3k is well defined for all k ≥ 1, and since B−1
k differs from the identity by O(µ∞k ),

we obtain
αk := B−1

k (ρ)→ ρ as k→+∞.

On the other hand since 3k+1 ⊂ 3̃k = B̃−1
k (3̃), there exists some ρ̃k ∈ 3̃ such that αk+1 = B̃−1

k (ρ̃k). By
taking a subsequence, we can assume that ρ̃k admits a limit ρ̃ ∈ 3̃ as k→+∞. Then using that B̃−1

k
differs from the identity by O(µ∞k ), we also obtain

αk+1→ ρ̃ as k→+∞.

Therefore, we deduce that ρ = ρ̃ ∈ 3̃ and the lemma is proved. �

Using Lemma 9.1, we see that the map B is well defined from3∩(J ′1−i[0, τ ′]) to 3̃∩(J ′1−i[0, τ ′]).
Moreover, if ρ ∈ Ek for some k ≥ 0, we have

|B(ρ)− ρ| = |B̃k ◦ B−1
k (ρ)− ρ| = O(µ∞k ),

and since τk+3 ≤ |Im ρ| ≤ τk+2 = O(h2n1), we also have

µk ≤ h−3n1τk+3 ≤ h−3n1 |Im ρ| ≤ C |Im ρ|1/C ,
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where C > 0 is a large enough constant. Thus, we always have

|B(ρ)− ρ| = O(|Im ρ|∞).

Therefore, it just remains to see that B is a bijection, but this is an obvious consequence of (9-6), Lemma
9.1, and the definition of B. Thus Theorem 2.6 is proved.

10. Shape resonances

Here we prove Theorem 3.1. Under the assumptions of Section 3, one can construct, as in [Gérard and
Martinez 1988], a function G1 ∈C∞(R2n), supported near p−1([λ0−2ε, λ0+2ε])\{x0} for some ε > 0,
such that

G1(x, ξ)= x · ξ for x large enough and |p(x, ξ)− λ0| ≤ ε, (10-1)

HpG1(x, ξ)≥ ε for x ∈ Rn
\Ö and |p(x, ξ)− λ0| ≤ ε. (10-2)

We also set
P̃ := P +W,

where W =W (x)∈C∞(Rn) is a nonnegative function, supported in a small enough neighborhood of x0,
and such that W (x0) > 0. In particular, denoting by p̃(x, ξ) = ξ 2

+ V (x)+W (x) the principal symbol
of P̃ , we have p̃−1(λ0)⊂ (R

n
\Ö)×Rn , and thus λ0 is a nontrapping energy for P̃ .

Now, we take µ and µ̃ such that

µ≤ hδ, µ̃≤min(µ, h2+δ)

with δ > 0 arbitrary (so that µ, µ̃ satisfy (2-6)), and we denote by V µ a |x |-analytic (µ, ν̃)-approximation
of V as before. We also set

Pµ =−h21+ V µ, P̃µ = Pµ+W,

and if in (2-5) we take A supported away from supp W , we see that the distorted operators Pµθ and P̃µθ
are well defined for 0< θ ≤ µ̃. Then we set

G(x, ξ) := G1(x, ξ)− A(x) · ξ,

that, by (10-1), is in C∞0 (R
n
;R), and we consider its semiclassical Weyl-quantization GW

= OpW
h (G)

(see (6-1)).
Since θ/h2

≤ µ̃/h2
≤ hδ, a straightforward computation shows that the operator

Rµθ :=
1
θ

Im
(
eθGW /h P̃µθ e−θGW /h)

is a semiclassical pseudodifferential operator, with symbol rµθ satisfying

∂αrµθ = O(〈ξ〉2) for all α ∈ N2n,

rµθ (x, ξ)=−H p̃µ̃(A(x) · ξ +G)+O(hδ)=−HpG1(x, ξ)+O(hδ),

uniformly with respect to θ ∈ (0, µ̃] and h > 0 small enough. As a consequence, using (10-2), we see
that Rµθ is elliptic in a neighborhood of {p(x, ξ)+W (x)= λ0} (uniformly with respect to θ and µ). Then
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by arguments similar to those of Section 6.1, we deduce that the operator

Qµ
θ := eθGW /h P̃µθ e−θGW /h

satisfies
‖(Qµ

θ − z)−1
‖ = O(θ−1),

uniformly for |Re z − λ0| + θ
−1
|Im z| small enough, θ ∈ (0, µ̃], and h > 0 small enough. Since

‖θGW/h‖→ 0 uniformly as h→ 0, this also gives

‖(P̃µθ − z)−1
‖ = O(θ−1),

and from this point, one can follow all the procedure used in [Helffer and Sjöstrand 1986, Sections 9
and 10]. In particular, using the same notation as in that paper, by Agmon-type inequalities we see that
the distribution kernel K(P̃µθ −z)−1 of (P̃µθ − z)−1 satisfies

K(P̃µθ −z)−1(x, y)= Õ(θ−1e−d(x,y)/h)

where d(x, y) is the Agmon distance between x and y (see [Helffer and Sjöstrand 1986, Lemma 9.4]).
Then, assuming θ = µ̃≥ e−η/h for some η > 0 constant small enough and performing a suitable Grushin
problem as in [Helffer and Sjöstrand 1986], we deduce that the resonances of Pµ in [λ0, λ0 + Ch] −
i[0, λ0 min(µ, h2+δ)] (C > 0 an arbitrary constant) are close to the eigenvalues of the Dirichlet realiza-
tion of P on {d(x,Rn

\Ö) ≥ η/3)}, up to O(e−2(S0−η)/h). Since these eigenvalues are real and admit
semiclassical asymptotic expansions of the form

λk ∼ λ0+ ekh+
∑
`≥1

λk,`h1+`/2

(where the ek’s are as in Theorem 3.1), we obtain for the corresponding resonances ρk of Pµ

Re ρk ∼ λ0+ ekh+
∑
`≥1

λk,`h1+`/2, Im ρk = O(e−2(S0−η)/h), (10-3)

uniformly. In particular, taking µ and µ̃ as in Theorem 3.1, the result easily follows. Moreover, since
the previous discussion can be applied to any µ′ ∈ [e−η/h, hδ], application of Theorem 2.6 tells us that
the resonances of P in

[λ0, λ0+Ch] − i[0, 1
2 h2n+max(n/2,1)+1+3δ

]

satisfy the same estimates (10-3).

Appendix

Proof of Lemma 5.1. We denote by χ0 a real smooth function on R satisfying

• χ0(s)= 0 for s ≤ 0;

• χ0(s)= 1 for s ≥ ln 2;

• χ0 is nondecreasing.
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Then for r ≥ 0, we set

G(r) := χ0(r − R0)
(
1−χ0(r − ln λ)

)
er
+ 2λχ0(r − ln λ), g(r) :=

∫ r

0
G(s) ds.

In particular, g satisfies Condition (i) of Lemma 5.1, and we have

• G(r)= χ0(r − R0)er for r ∈ [R0, ln λ];

• G(r)= (1−χ0(r − ln λ))er
+ 2λχ0(r − ln λ) for r ∈ [ln λ, ln 2λ];

• G(r)= 2λ for r ∈ [ln 2λ,+∞).

Thus, g′ = G ≤ 2λ and g′′(r)= G ′(r)≥ 0 on R+ (this is immediate on [R0, ln λ] ∪ [ln 2λ,+∞), while,
on [ln λ, ln 2λ], we compute, G ′(r)= (1−χ0(r − ln λ))er

+χ ′0(r − ln λ)(2λ− er )≥ 0).
Therefore, g is convex on R+, so that Condition (iii) of Lemma 5.1 is satisfied by g, too, while

Condition (v) is obvious.
As for condition (iv), we observe the following:

• On [0, R0+ ln 2], one has g′+ |g′′| = O(1).

• On [R0+ln 2, ln λ], one has g(r)≥
∫ r

R0+ln 2 esds= er
−2eR0 , while g′(r)= g′′(r)= er

≤ g(r)+2eR0 .

• On [ln λ,+∞), one has g(r)≥ g(ln λ)= λ, and thus g′+ |g′′| = O(g).

So, g satisfies Conditions (ii)–(v) of Lemma 5.1.
For r ∈ [ln 2λ,+∞), we have

g(r)= g(ln 2λ)+ 2λ(r − ln 2λ)= 2λr −αλ, (A-1)

where αλ := 2λ ln 2λ− g(ln 2λ), and since

g(ln 2λ)≤
∫ ln λ

0
er dr +

∫ ln 2λ

ln λ
2λ dr = (1+ 2 ln 2)λ,

g(ln 2λ)≥
∫ ln 2λ

R0+ln 2
er dr ≥ 2λ− 2eR0 .

we see that
2λ ln 2λ− (1+ 2 ln 2)λ≤ αλ ≤ 2λ ln 2λ− 2λ+ 2eR0 .

Therefore, for λ large enough, the unique point rλ, solution of g(rλ)= λrλ, is given by

rλ =
αλ
λ
∈ [2 ln λ− 1, 2 ln λ− 2+ 2 ln 2+ 2λ−1eR0] ⊂ [2 ln λ− 1, 2 ln λ− ε0], (A-2)

where ε0 := 1− ln 2> 0.
Now, we fix some real-valued function ϕ0 ∈ C∞(R), such that

• ϕ0(s)= 2s for s ≤−ε0;

• ϕ0(s)= s for s ≥ ε0;

• 1≤ ϕ′0 ≤ 2 everywhere.
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Then using (A-1)–(A-2), we see that the function fλ defined by

• fλ(r) := g(r) for r ∈ [0, ln 2λ];

• fλ(r) := λϕ0(r − rλ)+αλ for r ≥ ln 2λ,

is smooth on R+, and satisfies all the conditions required in Lemma 5.1. �

The distorted Laplacian.

Lemma A.1. If θ > 0 is small enough, the function 8θ defined in (5-2) satisfies

Im
(
( t d8θ (x))−1ξ

)2
≤−θa(|x |)|ξ |2.

for all (x, ξ) ∈ R2n .

Proof. Let F := t d A = d A = (Fi, j )1≤i, j≤n . We compute

Fi, j (x)= a(x)δi, j + a′(|x |)
xi x j

|x |
,

that is, denoting by πx := |x |−2x · t x the orthogonal projection onto Rx , and recalling the notation
b(r)= ra(r),

F(x)= a(|x |)I + a′(|x |)|x |πx = b′(|x |)πx + a(|x |)(I −πx).

In particular, using Lemma 5.1, we obtain

0≤ a(|x |)≤ F(x)≤ 2,

in the sense of self-adjoint matrices. On the other hand we have

(t d8θ (x))2 = (I + iθF(x))2 = Sθ + iTθ ,

with Sθ = I − θ2 F(x)2 and Tθ = 2θF(x). Hence, Tθ ≥ 0, and since Sθ , Tθ and F commute, an easy
computation gives

Im
(
( t d8θ (x))−1ξ

)2
=−Tθ (S2

θ + T 2
θ )
−1ξ · ξ =−2θF(1+ θ2 F2)−2ξ · ξ.

As a consequence, for θ small enough, we find

Im
[
(t d8θ (x))−1ξ

]2
≤−θF(x)ξ · ξ ≤−θa(|x |)|ξ |2. �
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aizenman@math.princeton.edu nicolas.burq@math.u-psud.fr

Luis A. Caffarelli University of Texas, USA Sun-Yung Alice Chang Princeton University, USA
caffarel@math.utexas.edu chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA Charles Fefferman Princeton University, USA
mchrist@math.berkeley.edu cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany Nigel Higson Pennsylvania State Univesity, USA
ursula@math.uni-bonn.de higson@math.psu.edu

Vaughan Jones University of California, Berkeley, USA Herbert Koch Universität Bonn, Germany
vfr@math.berkeley.edu koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada Gilles Lebeau Université de Nice Sophia Antipolis, France
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