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GLOBAL EXISTENCE AND UNIQUENESS RESULTS FOR WEAK SOLUTIONS
OF THE FOCUSING MASS-CRITICAL NONLINEAR SCHRODINGER EQUATION

TERENCE TAO

We consider the focusing mass-critical NLS iu; + Au = —|u|*?u in high dimensions d > 4, with initial
data u(0) = ug having finite mass M (ug) = fRd lug(x)|? dx < oo. It is well known that this problem

admits unique (but not global) strong solutions in the Strichartz class C°, L2 N L? L3

t,Jocbx f.loclex , and also

admits global (but not unique) weak solutions in L™ L?. In this paper we introduce an intermediate class
of solution, which we call a semi-Strichartz class solution, for which one does have global existence
and uniqueness in dimensions d > 4. In dimensions d > 5 and assuming spherical symmetry, we also
show the equivalence of the Strichartz class and the strong solution class (and also of the semi-Strichartz
class and the semi-strong solution class), thus establishing unconditional uniqueness results in the strong
and semi-strong classes. With these assumptions we also characterise these solutions in terms of the
continuity properties of the mass function ¢ — M (u(t)).

1. Introduction

1.1. The focusing mass-critical NLS. This paper deals with low regularity solutions u : I x R¢ — C to
the initial value problem to the focusing mass-critical nonlinear Schrodinger equation (NLS)

iu, + Au=F(u),

u(to) = uo,

ey

in high dimensions d > 4, where I C R is a time interval containing a time #p € R, F : C — C is
the nonlinearity F(z) := —|z|*/?z, and we assume u to merely lie in the class Li (R?) of functions of
finite mass M (ug) := fRZ lug(x)|> dx. The exponent 1 + 4/d in the nonlinearity makes the equation
mass-critical, so that the mass M (u) is invariant under the scaling u(t, x) — (1/2%?)u(t/2%, x /1) of
the equation. The mass is also formally conserved by the flow, thus we formally have M (u(t)) = M (ug)
for all ¢, though it will be important in this paper to bear in mind that this formal mass conservation can
break down if the solution is too weak in nature.

Remark 1.2. The condition d > 4 is assumed in order to ensure that the nonlinearity F () is locally
integrable in space for u € L2(R?), so that (1) makes sense distributionally' for u € L>_L2(I x R%). Tt

t,Joc™—x
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ue L?ﬁ’ocLi (I x R¥) if and only if u € L;’OL% (J x R9) for all compact J C I, with the function space LZ‘I’OCL)% (I x RY) then

being given the induced Frechet space topology.
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will be clear from our arguments that our results would also apply if F were replaced by any other non-
linearity of growth 14-4/d, whose derivative grew like |z|*/¢ and which enjoyed the Galilean invariance
F(e'?7) = €' F(z) (in order to formally conserve mass), though in this more general setting, the mass
M(Q) of the ground state would need to be replaced by some unspecified constant ¢ 4 > 0 depending
on the nonlinearity F and the dimension d.

The notion of a distributional solution, by itself, is too weak for applications; for instance, one has
difficulty interpreting what the initial data condition u(0) = uy means for a distributional solution in
LX L)ZC. In practice, one strengthens the notion of solution at this regularity by working with the integral

t,loc
formulation? .
u(t) = ei(t_IO)Auo +i / ei(t_’/)AF(u(t/)) dr’ )
fo
of the equation, where ¢’? is defined via the Fourier transform (&) := fRd e ™ Cu(x) dx as

eirthu(@) == e a(),
which is well-defined in the class of tempered distributions.

Remark 1.3. If ug € L(RY) and u € LS L2(I x RY), then F(u) € LS L} |, (I x RY), and the right
side of Equation (2) makes sense as a tempered distribution in x for each time ¢. Furthermore, it is easy
to verify (by the standard duality argument) that the right side of (2) is continuous in ¢ in the topology

P(RY)* of tempered distributions.

1.4. Weak, strong, and Strichartz class solutions. With these preparations, we can now introduce the
three standard solution classes for this problem in L2 (R?).

Definition 1.5 (Weak, strong, Strichartz solutions). Fix a dimension d > 4, an initial data ug € LJZC (RY)
and a time interval I C R containing a time 7y € R.

o A weak solution (or mild solution) to Equation (1) is a function u € L;’j’OCL)Zc (I x R?) which obeys

(2) in the sense of tempered distributions for almost every> time .
o A strong solution to (1) is a weak solution u such that ¢t — u(¢) is continuous in the L)ZC topology,
thus u lies in C°, L2(I x R?).

t,Joc™x
e A Strichartz-class solution to (1) is a strong solution which also lies in L?| 0(;L)z(d/ @=2) (1 x R?); thus
uliesin CO L2(I x ROHNL2, L3I (1 x RY).

t,Jloc™x t,loc™*

Remark 1.6 (Shifting initial data). Because the right side of Equation (2) is continuous in the distribu-
tional topology for any of the above three notions of solutions, we observe that if u is a solution to (1) in
any of the above classes on an interval I, and t; € I, then u is also a solution to (1) in the same class with
initial time #; and initial data u(#;) (as defined using the right side of (2)). Thus one may legitimately
discuss solutions to NLS in one of the above three classes without reference to an initial time or initial
data.

2We adopt the usual convention Jy=- jab whena < b.

3By definition of L°, weak solutions are only defined for almost every time ¢, though from Remark 1.3, one can canonically
define u(r) forallz € 1.
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Remark 1.7. For future reference, we make the trivial remark that if one restricts a solution in any of
the above classes to a subinterval J C I, then one still obtains a solution in the same class. Conversely,
if one has a family of solutions in the same class on different time intervals I,,, such that (), I, # @ and
any two solutions agree on their common domain of definition, then one can glue them together to form
a solution in the same class on the union |J,, I,.

Remark 1.8. From Remark 1.3 we make the important observation that if u € L®L2 (I x R?) is a weak
solution to Equation (1), then the map ¢ +> u(¢) is continuous in the weak topology of L2(R). In
particular we have the convergence property

tl/i_)l'l'lf(l/l(t/), u(t)>L%(Rd) =M(M(l)), (3)
for all ¢ € I, which by the cosine rule implies the asymptotic mass decoupling identity

Lim M(u(t)) = Mu(t') —u(t)) — M(u(t)) = 0. “

Thus any L? discontinuity of u at ¢ can be detected and quantified by the mass function # — M (u(t)); in
particular, the solution 7 — u(t) is continuous in L at precisely those points for which the mass function
t — M(u(t)) is continuous.

In the Strichartz class, one has a satisfactory local existence and uniqueness theory:

Proposition 1.9 (Local existence and uniqueness in the Strichartz class). Let d > 4, ug € L? (RY), and
o € R.

(1) (Local existence) There exists an open interval I containing ty and a Strichartz class solution u €
CO L2(I xRN L2, LD (1 x r),

t,loc t,loc

(i1) (Uniqueness) If I is an interval containing 0, and u, u’ € C?,IOCLJZC (I xR*>)N Ltz’locLid/(dfz)(I x R%)
are Strichartz class solutions to (1) on I, then u = u’'.

(iii) (Mass conservation) If u € CIOIOCLJZC (I xR*)N LtzlocLid/(dfz)(l x RY) is a Strichartz solution, then

the function t — M (u(t)) is constant.

Proof. This is a standard consequence of the endpoint Strichartz estimate®
”M ”LtZLid/(d*z)(lde) + ”u”C?L)ZC(IXRd) Sd ||l/t([0) ”L)%(IR‘[) + ”lut + Au ||L3Lid/(d+2)(1XRd)a (5)

from [Keel and Tao 1998]; see [Cazenave and Weissler 1989; Cazenave 2003]. Mass conservation is
obtained in these references by first regularising the data and nonlinearity so that the solution is smooth
(and the formal conservation of mass can be rigorously justified), and then taking limits using (5). U

Because of this proposition (and Remark 1.7), every initial data ug € Lﬁ (RY) and initial time 7y € R
admits a unique maximal Strichartz-class Cauchy development

0 2 2 2 2d/(d-2 d
€ CPloLiUI x RN LY 0 L3V (1 x RY),
4Here and in the sequel we use the usual notation X < Y or X = O(Y) to denote the estimate |X| < CY for some absolute

constant C > 0; if the implied constant C depends on a parameter (such as d), we will indicate this by subscripts, for example,
X<SgYorX=0407).
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where [ is an open interval containing fy, and u is a Strichartz-class solution to (1) which cannot be
extended to any larger time interval.

Unfortunately, the lifespan [ of this maximal Strichartz-class Cauchy development need not be global
if the mass M (ug) is large. For instance, if Q is a nontrivial Schwartz-class solution to the ground state
equation

AQ+101"0 =0, (6)

then as is well known, the function

1 it il
. —i/t i|x|"/4t
u(t,x) = |t|d/ze e QOx/1) 7
is a Strichartz-class solution on (0, +00) x R? or (—o0, 0) x R? but cannot be extended in this class
across the time + = 0. One can also use Glassey’s virial identity [Glassey 1977] to infer indirectly the
nonglobal nature of maximal Strichartz-class Cauchy developments for suitably smooth and decaying
data with negative energy.

Remark 1.10. In the defocusing case F'(z) = +z|*4z, it is conjectured that all maximal Strichartz-class
Cauchy developments are global. This has recently been established in the spherically symmetric case
[Tao et al. 2006], and is also known for data with additional regularity (for example, energy class) or
decay (for example, xug € L)% (R4 )), or with small mass; see [Tao et al. 2006] and the references therein
for further discussion. In the focusing case, the results of [Killip et al. 2007] give global existence for
spherically symmetric data when the mass M (u¢) is strictly less than the mass M (Q) of the ground state;
see [Killip et al. 2008a] for a treatment of the endpoint case M (ug) = M(Q). Again, it is conjectured
that the same results hold without the spherical symmetry assumption, but this remains open.

On the other hand, it is possible to continue solutions in a weak sense beyond the time for which
Strichartz-class solutions blow up. In particular, we have the following standard result:

Proposition 1.11 (Global existence in the weak class). Let d > 4, ug € LJZC (Rd), and to € R. Then there
exists a global weak solution u € L®L2 (R x RY) to (1). Furthermore we have M (u(t)) < M (uo) for all
telR

Proof. We will prove a stronger result than this shortly, so we only give a sketch of proof here. By
Remark 1.7 and time reversal symmetry, it suffices to build a solution on [#, +00). For each ¢ > 0, one
can easily use parabolic theory to construct a global (strong) solution to the damped NLS iu,(g) +Au'® =
ie Au'® + F,(u®) on [y, +00), whose mass is bounded above by M (i), where F; is a suitably damped
version of F (for example, F,(z) := —max(|z|, 1/&)*9z); extracting a weakly convergent subsequence
and taking weak limits we obtain the claim. O

Unfortunately, while these weak solutions are global, they are nonunique, as the following standard
example shows.

Example 1.12. Consider the function given by Equation (7) for ¢ € (0, +00) and by zero for # € (—o0, 0].
This is a global weak solution in the sense of the above proposition (taking 7o to be any positive time,
and setting ug = u(fp)), but is not unique; if, for instance, one takes u to equal (7) for ¢t € (—oo, 0) rather
than equal to zero, then the new solution is still a global weak solution with the same initial data. Note
that a modification of this example shows that uniqueness of weak solutions can break down even if the
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Strichartz ~——  strong

l !

semi-Strichartz —— semi-strong —— weak

Figure 1. Inclusions between solution classes. In dimensions d > 5 and assuming spher-
ical symmetry, we will show that two horizontal inclusions on the left are in fact equiv-
alences.

initial data is zero, and so one cannot hope to recover uniqueness purely by strengthening the hypotheses
on the initial data.

Remark 1.13. Example 1.12 also shows that mass is not necessarily conserved for weak solutions. On
the other hand, from Equation (4) we see that the function r — M (u(¢)) is lower semi-continuous, at
least.

1.14. Semi-Strichartz solutions. To summarise the discussion so far, the Strichartz class of solutions
has uniqueness but no global existence, while the class of weak solutions has global existence but no
uniqueness. It is thus natural to ask whether there is an intermediate class of solutions for which one has
both global existence and uniqueness. To answer this we define some further solution classes.

Definition 1.15 (Semi-strong and semi-Strichartz solutions). Fix a dimension d > 4, an initial data
ug € L2 (R?) and a time interval I C R containing a time #o € R. A semi-strong solution (resp. semi-
Strichartz class solution) to Equation (1) is a weak solution u such that for every ¢ € I N [#g, +00) there
exists ¢ > 0 such that u is a strong solution (resp. Strichartz class solution) when restricted to / N[z, t +¢),
and for every t € I N (—00, fp] there exists ¢ > 0 such that u is a strong solution (resp. Strichartz class
solution) when restricted to I N (¢t — ¢, ¢].

We summarise the obvious inclusions between the five classes of solution in Figure 1. Note that unlike
the weak, strong, and Strichartz classes, the semi-strong and semi-Strichartz classes of solution depend
on the choice of initial time 7.

Example 1.16. Consider the weak solution u € L®L2 (R x R?) which is given by Equation (7) for t > 0
and is zero for ¢ <0, let #p > 0, and set ug := u(ty). Then u is a semi-Strichartz class solution (and thus
semi-strong solution) to (1), but is not strong or Strichartz-class. If one redefines u for + < 0 by (7), then
u remains a weak solution, but is no longer semi-strong or semi-Strichartz.

Remark 1.17. The constructions in [Bourgain and Wang 1997], in our notation, yield semi-Strichartz
class solutions which blow up in the Strichartz class at a specified finite set of points in time, and are
equal to a prescribed state in L?C (R?) at the final blowup time, in dimensions d = 1, 2.

Our first main result is that the semi-Strichartz solution class enjoys global existence and uniqueness:

Theorem 1.18 (Global existence and uniqueness in the semi-Strichartz solution class). Suppose d > 4,
uo € L2(R?), and ty € R. Then there exists a global semi-Strichartz class solution u € L® L2 (R x RY)
to (1). Furthermore, this solution is unique in the sense that any other semi-Strichartz solution to (1) on
a time interval 1 containing ty is the restriction of u to 1. Finally, M (u(t)) is monotone nonincreasing
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for t > to and monotone nondecreasing for t < ty (in particular, the only possible discontinuities are
Jjump discontinuities), and has a jump discontinuity exactly at those times t for which u is not locally a
Strichartz class solution.

Remark 1.19. Informally, the unique semi-Strichartz class solution is formed by solving the equation
in the Strichartz class whenever possible, and deleting any mass that escapes to spatial or frequency
infinity when the solution leaves the Strichartz class. The relationship between this class of solution and
Strichartz class solutions is analogous to the relationship between Ricci flow with surgery and Ricci flow
in the work of Perelman [2007; 2003], though of course the situation here is massively simpler than with
Ricci flow on account of the semilinear and flat nature of our equation. On the other hand, the entropy-
type solutions constructed in Proposition 1.11 do not necessarily converge to the solution in Theorem
1.18. For instance, the arguments in [Merle 1992] can be adapted to show that if one starts with the initial
data of Equation (7) at time t = —1, say, and evolves a parabolically regularised version of Equation (1)
using some viscosity parameter ¢, then the solution at # = 4-1 can converge to an arbitrary phase rotation
of the solution (7) along a subsequence of &, and in particular these solutions do not converge to the
semi-Strichartz solution (which vanishes after the singularity time). However, it is conceivable that the
entropy solutions do converge to the semi-Strichartz solutions for generic data, although the author does
not know how one would prove this.

Remark 1.20. One can push the global existence result further, to obtain scattering at t = £00, and can
in fact even push the solution “beyond” t = 400 and ¢t = —oo by using the pseudoconformal transform
or lens transform, in the spirit of [Tao 2006]. We omit the details.

Remark 1.21. While the semi-Strichartz class enjoys global existence and uniqueness, it does not enjoy
continuous dependence on the data and is thus not a well-posed class of solutions. Indeed, if one considers
the solution in Example 1.16 for the spherically symmetric ground state O, and then perturbs the initial
data ug = u(tp) to have slightly smaller mass (while staying spherically symmetric), then from the results
in [Killip et al. 2007] we know that the perturbed solution exists globally in the Strichartz class, and in
particular has mass close to M (Q) for all negative times, in contrast to the original solution in Example
1.16 which has zero mass for all negative times, thus contradicting continuous dependence on the data
in any reasonable topology. Indeed this argument strongly suggests that there is no solution class for
this equation which is globally well-posed in the sense that one simultaneously has global existence,
uniqueness, and continuous dependence of the data, and which is compatible with the Strichartz class of
solutions.

Remark 1.22. In [Merle and Raphaél 2005; Fibich et al. 2006], solutions to Equation (1) are constructed
which are initially in H!(R?), but at the first blowup time develop a single point of concentration, plus
a residual component u* which is not in L{(R?) for any p > 2, and in particular has left H!(R?).
The semi-Strichartz solution would continue the evolution from u* at this time. Thus, we do not have
persistence of regularity for the semi-Strichartz class: a semi-Strichartz solution can exit the space in
finite time. (A similar phenomenon for the supercritical focusing NLS was also obtained in [Merle and
Raphaél 2008]. In contrast, the solution in Example 1.16 has H' norm going to infinity as t — 07, but
never actually leaves H!(R?); similarly for the solutions in [Bourgain and Wang 1997]).

Theorem 1.18 is in fact an easy consequence of Proposition 1.9 and is proven in Section 2. One can
be somewhat more precise about the jump discontinuities:
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Theorem 1.23 (Quantisation of mass loss). Letd >4, ug € L2(R?), and ty € R. Letu € L®L2(R x RY)
be the unique global semi-Strichartz class solution to Equation (1) given by Theorem 1.18. Then there
exists an absolute constant g4 > 0 (depending only on d) such that every jump discontinuity of the function
t— Mu(t)) has jump at least eq. If ug is spherically symmetric, one can take 4 to be the mass M(Q)
of the ground state.

Remark 1.24. A closely related result in the spherically symmetric case was established in [Killip et
al. 2008b, Corollary 1.12], in which it was shown that any blowup of a spherically symmetric Strichartz
class solution in two dimensions must concentrate an amount of mass at least equal to the ground state
M (Q); the same result in higher dimensions follows by the same argument together with the results in
[Killip et al. 2007]. Indeed, we will use the results in [Killip et al. 2007] to establish the spherically
symmetric case of this theorem. From Example 1.12 we see that M (Q) cannot be replaced by any larger
quantity in the above theorem.

Theorem 1.23 is of course consistent with the existence of a lower bound ¢, for mass concentration at
a point [Bourgain 1999; Merle and Vega 1998; Keraani 2006], although neither result seems to directly
imply the other. (The proof of Theorem 1.23 uses global-in-space Strichartz estimates, whereas the mass
concentration result requires more localised tools.)

Theorem 1.23, combined with Theorem 1.18 and Proposition 1.9(iii), has an immediate corollary:

Corollary 1.25. Ifu is a global semi-Strichartz class solution to Equation (1), the function t = M (u(t))
is piecewise constant with at most finitely many jump discontinuities, with u being a Strichartz class
solution on each of the piecewise constant intervals.

We prove Theorem 1.23 in Section 3.

1.26. The spherically symmetric case. Now we turn to the question of whether strong (resp. semi-
strong) solutions are necessarily in the Strichartz class (resp. semi-Strichartz class), which would im-
ply (by Proposition 1.9 and Theorem 1.18) that they are unique. These type of results are known as
unconditional uniqueness (or unconditional well-posedness) results in the literature. For solutions in
higher regularities, such as the energy class, one can obtain unconditional uniqueness by exploiting
Sobolev embedding to obtain additional integrability of the strong solution u [Kato 1995; 1996; Furioli
and Terraneo 2003a; 2003b; Cazenave 2003; Tsutsumi 2007]. Unfortunately at the L)zc ([F\Rd) level of
regularity, for which Sobolev embedding is not available®, it appears to be rather difficult to establish
such an unconditional uniqueness result, although the author tentatively conjectures it to be true. On
the other hand, we were able to establish this uniqueness under the additional simplifying assumption of
spherical symmetry (and assuming very high dimension d > 5), thus replacing the data space L)ZC (RY) by
the subspace erad (RY) of spherically symmetric functions:

Theorem 1.27 (Unconditional uniqueness for spherically symmetric solutions). Letd > 5, ug € Lfad (RY),
I be an interval, and to € R. Letu € LY° Lﬁ (I xRY) be a spherically symmetric weak solution to Equation

(1). Then the following are equivalent:

(i) u is a Strichartz class solution.

SRelated to this difficulty is the Galilean invariance of the NLS equation at L% (R4 ), which strongly suggests that direct
application of Sobolev or Littlewood—Paley theory is unlikely to be helpful.
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(i1) u is a strong solution.
(iii) The function t — M (u(t)) is constant.
(iv) The function t — M (u(t)) is continuous.

(V) One has M (u(t)) > limsup,_,, M(u(t')) — eq for all t € I, where ¢4 > 0 is a suitably small ab-
solute constant depending only on d. (Note from lower semi-continuity that we automatically have
M(u(t)) < limsup,._,, M(u(i')).)

Example 1.28. If u is given by Equation (7) for ¢ # 0 and a spherically symmetric Q and vanishes for
t = 0, then u is a spherically symmetric weak solution but fails to conserve mass at t = 0, and is thus
not in the Strichartz class in a neighbourhood of ¢t = 0.

Remark 1.29. From Theorem 1.27 and Proposition 1.9(ii), we see that spherically symmetric strong
solutions to (1) are unique. Another quick corollary of Theorem 1.27 is that any spherically symmetric
weak solution whose mass is always strictly smaller than ¢, is necessarily a Strichartz class solution (and
hence strong solution also), and thus also unique. In view of Theorem 1.23, it is natural to conjecture
that one can take &, to be the mass M (Q) of the ground state, which is the limit of weak uniqueness
thanks to Example 1.12, but our methods do not give this.

Remark 1.30. The above theorem shows that if a weak solution fails to be in the Strichartz class, then
at some time ¢ it must lose at least a fixed amount ¢, of mass, though it is possible that this mass is then
instantly recovered (consider for instance the solution given by (7) for ¢t # 0 and zero for ¢+ = 0). On
the other hand, it is conceivable that there exist weak solutions in which the mass function ¢ — M (u(t))
exhibits oscillating singularities rather than jump discontinuities, in which the mass oscillates infinitely
often as one approaches a given time; the above theorem implies that the net oscillation is at least ¢, but
does not otherwise control the behaviour of this function. If for instance there existed a nontrivial weak
solution on a compact interval / which vanished at both endpoints of the interval [Scheffer 1993], then
one could achieve such an oscillating behaviour by gluing together rescaled, time-translated versions of
this solution. However, we do not know if such weak solutions exist; solutions such as (7) constructed
using the pseudo-conformal transformation only exhibit vanishing at a single time ¢.

Remark 1.31. Note that we need to assume the solution is spherically symmetric, and not just the initial
data. In the category of weak solutions, at least, it is not necessarily the case that spherically symmetric
data leads to spherically symmetric solutions: consider for instance the weak solution which is equal to
a time-translated version of (7) for ¢ # 0 and vanishes for # = 0; this solution is spherically symmetric at
time zero but not at other times.

We prove Theorem 1.27 in Section 6.1, after establishing an important preliminary smoothing estimate
for weak solutions in Section 4. Our main tool here is the in/out decomposition of waves used in [Tao
2004; Killip et al. 2008b], which is particularly powerful for understanding the dispersion of spherically
symmetric waves, and upon which we will rely heavily in order to establish a substantial gain of regularity
for weak solutions. Our arguments only barely fail at d =4 and it is quite likely that a refinement of the
methods here can be extended to that case, but we do not pursue this matter here.

There is an analogue of Theorem 1.27 for semi-strong and semi-Strichartz class solutions:
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Theorem 1.32 (Characterisation of spherically symmetric semi-Strichartz solution). Suppose d > 5,
ug € erad([RRd), I be an interval, i and ty € R. Let u € LfoLi (I x RY) be a spherically symmetric weak

solution to Equation (1). Then the following are equivalent:

(1) u is the unique semi-Strichartz solution given by Theorem 1.18 (restricted to 1, of course).
(i1) u is a semi-strong solution.

(iii) The function t — M u(t)) is right-continuous for t > ty and left-continuous for t < to, and is
piecewise constant with only finitely many jump discontinuities, with each jump being at least M(Q)
in size.

v e function t — u is right-continuous for t > ty and left-continuous for t < 1.

(iv) Th tion t — M (u(t ght-cont t > to and left-cont t<t

(V) M(u(t)) > limsup,_,,+ M(u(t')) —eq forall t > ty and M (u(t)) > limsup,._,,- M(u(t')) — eq for
all t <tg, where ¢4 > 0 is a suitably small absolute constant depending only on d.

We prove Theorem 1.32 in Section 6.2, using a minor modification of the argument used to prove
Theorem 1.27.

2. Proof of Theorem 1.18

We first establish uniqueness. Suppose we have two semi-Strichartz class solutions u, u’ € L?OLZ(I x R?)
to (1). Let J be the connected component of {¢t € I : u(¢) = u(t')} that contains fy. Since u, u’ are weak
solutions, we see from Remark 1.8 that J is closed. From the uniqueness component of Proposition 1.9,
and Definition 1.15, we also see that J is right-open in I N [ty, +00) (that is, for each t € J N [#y, +00)
there exists ¢ > 0 such that 7 N [t,7 4+ ¢) C J) and left-open in I N (—o0, tp]; by connectedness we
conclude that J = I, establishing uniqueness.

Now we establish global existence. It suffices to establish a semi-Strichartz class solution on [#y, 4+00),
as by time reversal symmetry we may then obtain a semi-Strichartz class solution and (—o0, #g], and glue
them together to obtain the desired global solution on R.

Let J denote the set of all times T € [#y, +00) for which there exists a semi-Strichartz class solution
u on [ty, T] with M (u(¢)) monotone nonincreasing on [#y, T]; thus J is a connected subset of [zy, +00)
containing fy. By the existence and mass conservation component of Proposition 1.9, we see that J is
right-open. Now we establish that J is closed. If 7, is a sequence of times in J increasing to a limit ¢,,
then by gluing together all the associated semi-Strichartz class solutions (using uniqueness) we obtain
a semi-Strichartz solution u on [y, t,) with M (u«(¢)) monotone nonincreasing on [fy, ,); in particular u
lies in L}’OLi ([to, 1) x RY), and F (u) lies in L?OL)ZCd/(dH)([to, ty) X R?). From this we see that the right
side of Equation (2) is continuous all the way up to ¢, in the space of tempered distributions, and so we
can extend u as a weak solution to [fg, #,]. This is still a semi-Strichartz solution, and by Fatou’s lemma
we see that M (u(t)) is still nondecreasing on [#, t,], and so t, € J, thus establishing that J is closed. By
connectedness we conclude that J = [y, +00), and so we can obtain semi-Strichartz class solutions on
[to, T] for any #yp < T < oo. Gluing these solutions together we obtain the desired solution on [#, +00),
establishing global existence.

The above argument has also established monotonicity of mass. Whenever u is a Strichartz class
solution in a neighbourhood of a time #1, it follows from Proposition 1.9 that mass is constant near #;, so
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the only remaining task is to show that whenever mass is continuous at a time ¢, then u is a Strichartz
class solution in a neighbourhood of ¢.

The claim is obvious for #; = #p, so without loss of generality we may take #; > #y. By hypothesis,
M (u(t)) converges to M (u(t;)) as t — t1. By Equation (4), we conclude that u(r) converges strongly to
u(ty) in L2(RY).

Let &€ > 0 be a small number. By the endpoint Strichartz estimate (5), we have

e Ay ()| < 00,

L2L2YD (R Rd)

so by the monotone convergence theorem we have
i(t—t1)A
e DR UE) 22002 ) oy < s

when [ is a sufficiently small neighbourhood of #;.

Fix I. Let t, converge to t;, then by the previous discussion u(f,) converges strongly to u(#1) in Li (RY).
By the continuity (and unitarity) of the Schrédinger propagator, this implies that !~y (1,) converges
to u(t;). Applying the endpoint Strichartz estimate (5), we conclude that ¢/C=2)24(z,) converges in
LtzLﬁd/(d_z)(l x RY) to €'~ Ay (1)). In particular, we have

i(t—t)A

||€ u(IZ)”LtZLid/(d*z)(lde) <g,

for all 1, sufficiently close to #;. On the other hand, we have M (u(#;)) < M (up). Thus if ¢ is chosen to be
sufficiently small depending on M (u(), we may apply the standard Picard iteration argument based on
the endpoint Strichartz estimate (5) and construct a Strichartz-class solution to NLS on / which equals
u(ty) at tp. Applying this with #, slightly smaller than #; and using the uniqueness of semi-Strichartz
class solutions, we see that u is equal to this Strichartz-class solution on 7, and the claim follows.

3. Proof of Theorem 1.23

It is convenient here to use the original nonendpoint Strichartz estimate [Strichartz 1977]:
loell 2as2ra g gy Nl o221 xme Sa lu(o)ll 2@y + liwe + Aull 2 2wensan g gy - )]

Let ¢4 > 0 be chosen later, and let u be a semi-Strichartz class solution. Suppose for contradiction
that we had a jump discontinuity at some time #; of jump less than ¢4. As before we may assume without
loss of generality that #; > fg.

Let ¢ approach #; from below, then M (u(¢)) — M (u(t;)) converges to a limit less than ¢;. By Equation
(4), we conclude that [|u(#) — u(f1)ll 2 (rey converges to a limit less than ¢,.

By (8) and monotone convergence as before, we can find a small neighbourhood 7 of #; such that

1/2

[(t—11) A
l(l tl) u(t1)||L’2§{+2)/d(1XRd) <8d

lle

If we let #, approach #; from below, then for #, sufficiently close to #; we thus have

1/2

i(t—1)A
i(t—t) M(II)HL,Z‘(;HZ)M(IXW) <egy

lle
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On the other hand, from Equation (8) we have (for #, sufficiently close to #;) that
i(t—1) A 1/2
lle A (u(e)) — u(@) 2 g oy Sa lu(t2) —u@) 2@y S &)’

and thus by the triangle inequality

i(t—t)A 1/2

lle u(tz) 22 ey Sd &g

If &4 is sufficiently small depending on d, we can then perform a Picard iteration, using (8) to control
the nonlinear portion u(r) — e!*~2)2 4 (1,) of the solution, to construct a solution in the class

COL2N L1 x RY)

t,x

that equals u(#;) on ;. Applying Strichartz estimates once more, we see that this solution is a Strichartz
solution on /. By uniqueness of semi-Strichartz solutions, we conclude that « is a Strichartz solution on
I and thus has no jump discontinuity at ¢1, a contradiction.

Now we handle the spherically symmetric case. We will need the following result from [Killip et al.
2007]:

Theorem 3.1 (Scattering below the ground state). Let d > 3. Then for every 0 <m < M (Q) there exists
a quantity A(m) < oo such that whenever ty € R and ug € Lﬁ (RY) with M (ug) < m, then there exists a
global Strichartz-class solution u to (1) with ||u ||L2L2_d/(d—2)(RXRd) < A(m).

Proof. See [Killip et al. 2007, Theorem 1.5]. (|

Now suppose for contradiction that we have a global semi-Strichartz class solution from spherically
symmetric initial data uy which has a mass jump discontinuity of less than M (Q) at some time #;; we
can assume f; > fg as before.

Since u is spherically symmetric, we see from rotation invariance and uniqueness that « is spherically
symmetric. By arguing as before, we see that as #, approaches ¢ from below, M (u(t;) —u(t1)) converges
to a limit less than M (Q). In particular this limit is less than m for some 0 <m < M(Q).

Let & > 0 be a small number depending on m and M (ug) to be chosen later. By endpoint Strichartz
(5) and monotone convergence as before, we can find a small neighbourhood 7 of #; such that

i(t—t1)A

||€ u(tl)”LtZLid/(d*Z)(lde) <g,

and thus for 1, sufficiently close to #

e’ DRy (zy)| <e. )

L2L27D (1R

On the other hand, we also have
M(u(t2) —u(ty)) <m,

for 1, sufficiently close to (and below) #;. By Theorem 3.1, we may thus find a Strichartz-class solution
v on I of mass at most m with v(¢;) = u(t;) — u(t;) and

[0l 2 20002 oy < AGm).
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From this and Equation (9) and standard perturbation theory [Tao et al. 2008, Lemma 3.1], we may thus
find a Strichartz-class solution on I which equals u(z;) at #,. Arguing as before we conclude that u has
no jump discontinuity at #;, a contradiction.

Remark 3.2. It is conjectured that the spherical symmetry assumption can be removed from Theorem
3.1. If this conjecture is true, then it is clear that one can take £; = M (Q) in the nonspherically-symmetric
case of Theorem 1.23 as well.

4. A smoothing effect for spherically symmetric weak solutions

In this section, we establish a preliminary smoothing effect for spherically symmetric weak solutions
that will be needed to prove Theorems 1.27 and 1.32. More precisely, we show

Theorem 4.1 (Smoothing effect). Let d > 4, let I be a compact interval, and let u € L;’OL)ZC (I x R?) be
a spherically symmetric weak solution to NLS with M (u(t)) < m forall t € 1. Then for every R > 0 one

has the bound
||M ||L,2L§d/(l[72)(lX(Rd\B(O,R))) ,Sl,m,d R_l + 1: (10)
where B(0, R) is the ball of radius R centred at the origin.

Remark 4.2. Theorem 4.1 asserts that a spherically symmetric weak solution behaves like a Strichartz-
class solution away from the spatial origin. The R~! term on the right side is sharp, as can be seen
by considering a rescaled stationary solution u(f, x) = R™4/2¢!"/ RzQ(x /R), where Q is a nontrivial
spherically symmetric solution to Equation (6).

We shall prove this theorem using the method of in/out projections, as used in [Tao 2004; Killip et al.
2008b; 2007]. We first recall some Littlewood—Paley notation.

Let (&) be a radial bump function supported in the ball {¢ € R? : || < 11/10} and equal to 1 on the
ball {¢ € R? : |¢] < 1}. For each number N > 0, we define the Fourier multipliers

Pon (&) = 0E/N)F(©),
Pon(©) =1 —pE&/N)F©),
PyFE) = w(E/N) €)= (p(E/N) —p2E/N)) F(©).

We similarly define P.y and P py. All sums over N will be over integer powers of two unless otherwise
stated.

We now subdivide the Littlewood—Paley projections Py on the spherically symmetric space L?(R).q
into two components, an outgoing projection P, Py and incoming projection P_ Py, as described in the
following lemma:

Proposition 4.3 (In/out decomposition). Let d > 1. Then there exist bounded linear operators Py, P_ :
L2(R?) — L*(R?) with the following properties:

(i) P, P_ extend to bounded linear operators on L (R?) to LP(R?) for every 1 < p < oc.

(ii) Py 4+ P_ is the orthogonal linear projection from L*>(R?) to L*(R?)a.
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(ili) Forany N > 0, |x| > N~', t > N72, and choice of sign %, the integral kernel® [ P+ Pye™'2](x, y)
obeys the estimate

[P Pye™ M(x, y)| Sa (x]ly))~@D21e 712,
when |y| — |x| ~ N|t|, and

Nd
(N|x€@=D/2(N|y[)d=D/2

I[P Pne™ 21, )| Saum (N*t+ Nlx| = Nly})™,

for any m > 0 otherwise.
(ili) Forany N > 0, |x| > N~', |t| < N2, and choice of sign £, we have

Nd
(N|x[)d=D/Z(N|y|)@d=D/2

I[P PyeT 21(x, )| Saum (N|x| = Nlyh™,

for any m > 0.

Proof. See [Killip et al. 2008b, Proposition 6.2] (for the d = 2 case) or [Killip et al. 2007, Lemma 4.1,
Lemma 4.2] (for the higher d case). U

Remark 4.4. Heuristically, P_ Pye!’® and P, Pye "2 for t > 0 both propagate away from the origin at
speeds ~ N. The decay (|x||y|)_(d_1)/2|t|_1/2 is superior to the standard decay |t|~4/2, which reflects
the additional averaging away from the origin caused by the spherical symmetry. (In the proof of [Killip
et al. 2008b, Proposition 6.2], this additional averaging is captured using the standard asymptotics of
Bessel and Hankel functions.)

Now we prove Theorem 4.1. Fix d, I, u, m, R; we allow implied constants to depend on d, I, m. We

may take R to be a power of 2. By the triangle inequality, we have

lll 2200 1 o o,y S NP/ RUN 2120000 gty + D DN PPNl 22000 o g0,y
N>1/R +

For the first term, we use Bernstein’s inequality to estimate
~1 ~1
1 P<1/ru ()l 2012 gay S R @l 2y S R,

which is acceptable, so we turn to the latter terms. For ease of notation we shall just deal with the
incoming terms + = —, as the outgoing terms + = — terms are handled similarly (but using Duhamel
backwards in time instead of forwards).

Write I = [#g, t1], then by Duhamel’s formula we have

t
P_Pyu(r) = P_Pye' "%y (19) — i / P_Pye' "M E(u(t)) dr.

fo

5The integral kernel 7 (x, y) of a linear operator T is the function for which Tf(x) = fRd K(x,y)f(y) dy for all test
functions f.
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The contribution of the linear term P_ PNei(’_’O)Au(to) is bounded by

z P_ PNei(’_ZO)Au(to) Z PNei(I_IO)Au(Zo)

N>1/R N>1/R

A
S e u )l 2, 2

~Y
L2L2@D ([ Ry L2272 (1 Rd)

2/=2) (1
S lluo)ll 22 e
<1,

~

thanks to Proposition 4.3(i), the boundedness of the Littlewood—Paley projection P- /g, and the endpoint
Strichartz estimate (5). Thus this contribution is acceptable, and it remains to show that

2

N>1/R

<RL (11)
L2371 x (RI\B(0,R)))

t
/ P_Pye!COAF(u(t))) di’

As we are allowed to let implied constants depend on /, it suffices to show that

t
/ ” P_ PNel(t_t )AF(u(t/)) ” L2442 (Ra\ B(0, R) dt’' < (NR)_CR_] ,
1o ! ’

for some absolute constant ¢ > 0 and all r € [ and N > 1/R. By dyadic decomposition it suffices to
show that

t
i(t—1")A —C p—
/t H P_ PNel(t ) Fu(t) dt/” L2460 (B0 a1 R)\ B(0.27 R)) dt' <SQ2"NR)™“R 1,
0

for all m > 0. Replacing R by 2™ R, we thus see that it suffices to show that

t
/ | P—Pye OB Ft')) di' | i 5o amypso.my 4 S (NRY R,
fo

whenever R > 0, N > 1/R,and t € I.
From Proposition 4.3 we see that

1P-Pye™ £l (8020080, R) S (R(R + NItD) D211 72| fll 1 ey
for t > N2, and
I1P-Pye™ fllemo2rnso.r) S RTCTVEN| FllL gays
for 0 <t < N~2; we unify these two estimates as
I P_Pye™ flliB02r)0B0,R) S (R(R+ NJt)"“D2N(N?1)~ 1/2||f||Li([R<d),

for r > 0. On the other hand, as P_, Py, ¢!'® are bounded on L? we have

| P- PNeitAf”Lz(B(O 200\BO,R) < N2 meys
and hence by interpolation

1P Pye'™ £l 2 [(R(R+ N1t))" V2NN D21 1 i gy

/) (5(0,2RN\B(O, R)) ~
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Since
14+4/d
| F @D i gy S 1oty S 1

for all ' € I, we thus have
”P_PNei(tft’)A F(“(t/))||Lid/(d*“)(B(O’zR)\B(O’R)) 5 [(R(R + N|t . t/|))*(d71)/2N(N2(t _ t/)>71/2]4/d,
and hence by Holder’s inequality

< RI(R(R+ NIt — 1)) @D N(N?(r — "))~ 1/244.

1P=Pye' D8 F @) 20602 (500 2r0 B0.RY S

We can thus bound the left side of Equation (11) by
t
| RURGR+ NIt =)D PN N = )7 21 ar
—00

The dominant contribution of this integral occurs in the region when |t —¢'| ~ R/N, and so we obtain a
total contribution of

S RR/N)RD(R/N)TI2HE = RTHRN) D,
which is acceptable. This proves Theorem 4.1. 0

Remark 4.5. One can improve the 1 term on the right side of (10) to R™¢ for some ¢ > 0, by using
the improved Strichartz estimates in [Shao > 2009] that are available in the spherically symmetric case.
However, we will not need this improvement here.

5. Nearly continuous solutions are Strichartz class

Theorem 4.1 gives Strichartz norm control of a solution away from the spatial origin. When the solution
is sufficiently close in L>°L2 to a Strichartz class solution, we can bootstrap Theorem 4.1 to in fact obtain
Strichartz control all the way up to the origin. More precisely, we now show:

Theorem 5.1 (Strichartz class criterion). Letd > 5, let I be a compact interval, and let u € L;X’Lz (I xR4 )
be a spherically symmetric weak solution to NLS. Suppose also that there exists a Strichartz-class solution
veClLin L?Lid/(d_2)(l x R?) such that ||u — v 212 mey < &. If € is sufficiently small depending on
d, then u € L?Lid/(d_z)(l x R?). )

Remark 5.2. The theorem fails if ¢ is large, as one can see from the weak solution defined by Equation
(7) for t # 0 and vanishing for + = 0. The arguments in fact give an effective upper bound for the
LtzLﬁd/ @=2) norm of u in terms of the corresponding norm of v. Heuristically, the point is that when u
(or u — v) has small mass, then there are not enough nonlinear effects in play to support persistent mass

concentration (as in the example in Remark 4.2) that would cause the L2124/ @=2) norm to become large.

We now prove Theorem 5.1. We fix d, I, u, v, ¢ and allow all implied constants to depend on d. By
shrinking the interval / and using compactness we may assume that

ol 2y 20002, gy < &- (12)

We write w := u — v, thus
lwll g2 xrey S € (13)
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and w solves the difference equation
iw,+Aw=F(+w)— F() (14)

in the integral sense. From the fundamental theorem of calculus (or mean-value theorem) we have the
elementary inequality

F(+w)— F©) = 0(lw|(jo] + [w)*). (15)

For each integer k, let ¢; denote the quantity

Cg = ”w”L%de/(diz)(lX(Rd\B(O,Zk)))' (16)
From Theorem 4.1 and the triangle inequality we have
1275+ 1, (17)

for all k. To prove the theorem, it suffices by the monotone convergence theorem to show that sup;, ¢ is
finite. For this we use the following inequality:

Proposition 5.3 (Key inequality). Let d > 4. For every k we have

cr Se4etd Z 2‘%("‘-’)(@ n c}*“/d),
<k

Proof. Fix k. By the triangle inequality, we have

Ck S ||P§2’kw(t)”LtZL)z(d/(d_z)(IXRd) + Z ”PiP>27kw(t)”L?Lid/(d_z)(lX(Rd\B(O,Zk)))' (18)
+

Consider the first term on the right side. By (13)—(15) and (5) we have
1P<a-cw (Ol 220002 gty S &+ | P<a+ O (] (0] + [0 DI 2 20052 gy
so to show that the contribution of this case is acceptable, it suffices to show that

_d=2p_ 4/d
[Pz Ol (ol + 10D D 2005 g ey S 644 D275 40 e+,
<k

By the triangle inequality, we can bound the left side by

| Peot 0wl 1ga\ g0 (0] + 10D D | 12 20052 g

2

j<k

(19)

Py O(Jw|1 3o 2-r+1y p0.2-1) ([0] + [w)*9)

L2122 (1 Rd)
For the first term of (19), we discard the P_,« projection and use Holder’s inequality to bound this by

1-4/d 4/d 4/d
S’ “ w “ L%Lid/(‘”z)(lx(Rd\B(O,z—"))) || v ” LtZLJZC‘l/(dJrz)(]X[Rd) || w || LPL2(IxRY)

4/d
+ || w ”LfLid/("*z)(Ix(Rd\B(o,z—k))) ||w ||L/,°°L§(I><Rd)’
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which by (13), (12), and (16) is bounded by

1-4/d
< 84/de / ¥,

which is acceptable.
For the second term of (19), we observe from the Holder and Bernstein inequalities that

| Paov (f 1g0.2-r+1y\0.2-1) || 200052 guay S 27T £ g0 10 80,2- 0 1)

< 7= 452 (k- I)||f||L2d/(d+2)(B(o 2-/t1)\B(0,27/))

for any f. Using this inequality and arguing as before, we see that the second term of (19) is bounded
by
< Z 752 (k=) (84/010;_ T ey,
Jj<k
which is acceptable.
Since we have dealt with the first term of (18), it now suffices by the triangle inequality to show that

1-4/d
|| Py Ps - kw(l‘)||L2 20/=2) (1 R\ B(0,27))) O <g4 et ZZ G k- ])(C +c; / ),
i<k
for either choice of sign £. We shall just do this for the incoming case + = —: the outgoing case + = +

is similar but requires one to apply Duhamel’s formula backwards in time.
Write I = [#g, t;]. By Duhamel’s formula and (14), we have

t
P_P_rsw(t) = P_ Py 7020 (19) —i / P_P_y i (F (o +w) — F) () dr.
]

The contribution of the first term is O (e) by Proposition 4.3(i), Equations (5) and (13), so it suffices to
show that

We split

t
/ P_P_yie' AN (F (v +w) — F))(1) dt’
fo

L2132 (1 (RI\ B(0,2%)))

d—2 . —
<Y Z2‘T(k_f)(cj —I—c} o,
i<k

F(+w)— F@)=(F(@+w)— F©))lgapo,x1)+ Z (F(v+w) — F(©)10,27+1)\B(0,2/)-
j<k—1

The contribution of the first term can be estimated using Proposition 4.3(i), Equations (5) and (15) to be

S Mwl (o + w2 20052 @i 0,261y

By a slight modification of the calculation used to bound the first term of (19), we can control this

expression by
< g4 . 1 4/d 4/d

+é& Ck—1»
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and so by the triangle inequality it suffices to show that

2

N>2-k

t
/ P_Pye'"A(F (0 4 w) — F) () 241y 50.21)] 4’

fo

L2 (1 RO\ B(0.24)))
<M T ED (e + C}—4/d)’ (20)
for each j <k —1.
Fix j. By Proposition 4.3(ii), (iii), the integral kernel (P_ Pye'“=")2)(x, y) for x € R%\B(0, 2¥),
t" <t,N>27% and y € B(0,2/11)\ B(0, 2/) obeys the bounds
i(t—t")A N4 2 100d
1(r—t < 4 —
|[P7PN6 ](x>)7)|N (le|)(d—1)/2<2]N>(d—1)/2<N (t t)+N|X|>
SNUN )N @ — 1)),

say. From this we obtain the pointwise bound
|P_Pne "R (f 10 21y 80.207) )] S NN |x )N (1 — N7 L1 B0,2+ )0\ BO.27))

for x € RY\ B(0, 2¥) and any f, which by Holder’s inequality implies the bounds

| P—Pye' 8 (f 1210\ B0.2) | 200602 o 50,20
d=2 d-2 .
S2TRTINYRIN) TN = 1) TN F 1| s g0 200 50,2y
By Young’s inequality we conclude that the left side of (20) is bounded by

C S PRIy o FO)
N>2-k

2D (1 B(0,2/+1)\ B(0,2/))"

Modifying the computation used to bound the first term of (19), this expression can be controlled by

< Z Z%kz%jNd—z(sz)—SOd(g4/dc}—4/d + 34/dcj),
N>2-k
and on performing the summation in N one obtains the claim (20), and Proposition 5.3 follows. U

-2

From Proposition 5.3 (and using the hypothesis d > 5 to make the decay 2~5*&=) faster than the
blowup of 27/), we see that if we have any bound of the form

c < A+ B27X,

for all k and some A, B > 0, then (if ¢ is sufficiently small, and A is sufficiently large depending on ¢),
one can conclude a bound of the form

ck < A+1B27H,
for all k. Iterating this and taking limits, we conclude that

ck <A,
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for all k. Applying this argument starting from Equation (17) we conclude that ¢; < 1 for all &, as desired,
and Theorem 5.1 follows.

6. Proofs of theorems
With Theorem 5.1 in hand, it is now an easy matter to establish Theorems 1.27 and 1.32.

6.1. Proof of Theorem 1.27. 1t is clear that (i) implies (ii), and that (iii) implies (iv) implies (v). From
Proposition 1.9 we also see that (ii) implies (iii). So the only remaining task is to show that (v) implies
(1). It suffices to do this locally, that is, to show that for any time ¢ for which (v) holds, that u is a
Strichartz class solution in some neighbourhood of # in 7.

By the hypothesis (v), one can find a connected neighbourhood J of ¢ in I such that

M(u(t) < M(u(t)) +&q,
for all #' € J. By Equation (4) (and shrinking J if necessary) we conclude that
(") = ()72 gy < 264,

say, for all t' € J.
By shrinking J some more, we may apply Proposition 1.9 to find a Strichartz class solution

0 e COLZNLAL2V @D (] x RY)

on J with v(¢) = u(¢). Since v is a strong solution, by shrinking J some more we may assume that
o) —v ()l 2@y < ecl/ 2 forallt e J. By the triangle inequality we thus see that
1/2
= oll oz ey S &4
Applying Theorem 5.1 and taking &, sufficiently small, we conclude that u is a Strichartz class solution
on J as required, and Theorem 1.27 follows.

6.2. Proof of Theorem 1.32. It is clear that (i) implies (ii) and that (iii) implies (iv) implies (v). From
Corollary 1.25 we know that (i) implies (iii), while from Proposition 1.9(iii) and Definition 1.15 we see
that (ii) implies (iv). Thus, as before, the only remaining task is to show that (v) implies (i). Again, it
suffices to establish the local claim that if > 7 is such that (v) holds, then « is in the Strichartz class for
some [t, 1+ ¢) N1, and similarly for r <y and (¢ — ¢, t] N 1. But this follows by a routine modification
of the arguments in Section 6.1. U
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