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ON THE GLOBAL WELL-POSEDNESS OF THE ONE-DIMENSIONAL
SCHRÖDINGER MAP FLOW

IGOR RODNIANSKI, YANIR A. RUBINSTEIN AND GIGLIOLA STAFFILANI

We establish the global well-posedness of the initial value problem for the Schrödinger map flow for
maps from the real line into Kähler manifolds and for maps from the circle into Riemann surfaces. This
partially resolves a conjecture of W.-Y. Ding.

1. Introduction

In this article we study the Schrödinger map flow from a one-dimensional domain into a complete Kähler
manifold. First, we show that when the domain is the real line the flow exists for all time. Second, we
show that when the domain is the circle and the target is a Riemann surface the flow also exists for all
time. The main contribution of this article is to bring Bourgain’s work on the periodic cubic nonlinear
Schrödinger equation (NLS) to bear on the geometric situation at hand.

Let (M, g) be a complete Riemannian manifold of dimension m, and let (N , ω, J, h) be a complete
symplectic manifold of dimension 2n with a compatible almost complex structure J , that is, such that
ω(J · , J · )=ω( · , · ) and such that h( · , · )=ω( · , J · ) defines a complete Riemannian metric on N . As-
sociated to this data is the space of all smooth maps from M to N , the Fréchet manifold X :=C∞(M, N ),
endowed with a symplectic structure,

�(V,W )
∣∣
u =

∫
M

u?ω(V,W ) dVM,g for all V,W ∈ Tu X = 0(M, u?TN ),

where the tangent space to X at a map u : M→ N is the space of smooth sections of u?TN → M and
where dVM,g denotes the volume form on M induced by g. The form � is nondegenerate, i.e., it endows
X with an injective map TX→ T ?X .

Define the energy function on X by

E(u)= 1
2

∫
M
|du|2g]⊗u?h dVM,g,

where we denote by g] the metric induced by g on T ?M and where we view du as a section of
T ?M ⊗ u?TN → M and equip this bundle with the metric g]⊗ u?h.

The almost-complex structure on N induces one on X and a corresponding compatible Riemannian
metric defined by

G(V,W )
∣∣
u =

∫
M

u?h(V,W ) dVM,g for all V,W ∈ Tu X = 0(M, u?TN ).
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In the infinite-dimensional setting not every function will necessarily have a gradient. However, if we
let {ut }t∈[−1,1] be a smooth family of maps with u0 = u and denote by W = (∂ut/∂t)|0 a variation, then

d E(W )|u0 =
∂E(ut)

∂t

∣∣∣∣
0
=

∫
M

g]⊗ u?h(du, dW ) dVM,g =−

∫
M

u?h(trg]∇du,W ) dVM,g, (1)

and hence the gradient of E exists and is given by

∇
G E

∣∣
u =−τ(u), (2)

where τ(u) := trg]∇du is called the tension field of u and ∇ is the connection on T ?M ⊗ u?TN → M
induced from the Levi-Civita connection on (M, g) and the pulled-back Levi-Civita connection from
(N , h). The corresponding gradient flow

∂u
∂t
= τ(u), u|{0}×M = u0, (3)

is the classical harmonic map flow introduced by Eells and Sampson [1964], which has been extensively
studied.

Now the symplectic gradient of E also exists and is given by

∇
�E
∣∣
u =−Jτ(u).

The corresponding Hamiltonian flow

∂u
∂t
=−Jτ(u), u|{0}×M = u0, (4)

on (X, �), introduced in [Ding and Wang 1998; Terng and Uhlenbeck 2006], is called the Schrödinger
map flow.

While the energy decreases along (3), for (4) the flow is contained in an energy level set, since for
maps of finite energy we have by (1)

d E(u(t))
dt

=−

∫
M

u?h
(
τ(u), ∂u

∂t

)
dVM,g = 0. (5)

For (3) one typically expects to converge to a harmonic representative of the homotopy class of u0

under some geometric assumptions (for example, negatively curved target [Eells and Sampson 1964])
while (4) seems to be describing some rather very different behavior. Analytically this may be described
by the transition from the parabolic (3) to the borderline case (4) whose symbol has purely imaginary
eigenvalues. Note also that for the Schrödinger flow there is no preferred time direction.

One problem common to both flows is the question of existence and uniqueness. Indeed since the flows
are defined on infinite-dimensional spaces one cannot expect global existence1 or well-posedness2 in
general. Restricting to the Kähler case, there is a similarity between the two flows as far as local existence
is concerned: Results of Ding, Wang and McGahagan show that at least locally (4) can be approximated
by equations of either parabolic (in the sense of Petrovskiı̆: see, for example, [Eidelman and Zhitarashu
1998]) or hyperbolic character. As a consequence the following result holds for maps of finite energy.

1For the Schrödinger flow the question of global existence is equivalent to the existence of a “symmetry” of (X, �), that is,
a one-parameter subgroup of Hamiltonian diffeomorphisms of (X, �) for the energy function E integrating ∇�E .

2 Until recently no results were known for general symplectic targets; see [Chihara 2008] for recent work on local well-
posedness in this setting.
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Theorem 1.1 [Ding and Wang 2001; McGahagan 2007]. Let (Mm, g) be a complete Riemannian mani-
fold and let (N , J, h) be a complete Kähler manifold with bounded geometry. For integers k > m/2+ 1
the flow equation (4) with u0 ∈W k,2(M, N ) admits a unique solution u ∈C0

(
[0, T ],W k,2(M, N )

)
where

T < T0 and T0 depends on ‖∇u0‖W [m/2]+1,2 and the geometry of N alone. Moreover, there exist positive
constants C1,C2 depending only on these quantities such that

‖∇u(t)‖W [m/2]+1,2 ≤ C1/(T0− t)C2 for all t ∈ [0, T0).

In particular, if u0 ∈W k,2(M, N ) for all k ≥ 2 then u ∈ C∞
(
[0, T ]×M, N

)
.

Here by bounded geometry we mean uniform bounds on the injectivity radius and the curvature tensor
and its derivatives. This is automatically true for compact targets.

The main difficulty lies, therefore, in understanding the global behavior.
Previous results of a global nature are mostly concerned with the one-dimensional domain case and are

all restricted to the case of a special target Kähler manifold. We recall the following nonexhaustive list
of works. The flow on (S1, can)→ (S2, can), where “can” denotes the canonical metric, corresponding
to the classical model for an isotropic ferromagnet was studied from the mathematical point of view by
Sulem et al. [1986], who obtained local well-posedness for the initial value problem as well as partial
global results. Zhou et al. [1991] studied the global well-posedness problem using a parabolic approxi-
mation which was later put to use in [Ding and Wang 1998; Pang et al. 2001] to prove global existence and
uniqueness of smooth solutions of maps from (S1, can) into a constant sectional curvature Kähler target
(that is, a Riemann surface equipped with a constant curvature metric or a flat complex torus) as well as to
Hermitian locally symmetric spaces [Pang et al. 2002] using a conservation law. The latter also treats the
inhomogeneous flow which can be essentially viewed as the Schrödinger flow with domain S1 equipped
with a different metric. Terng and Uhlenbeck [2006] studied in detail the flow from the Euclidean line
into Grassmannians. Chang et al. [2000] proved existence and uniqueness of global smooth solutions
for maps of the Euclidean line into a compact Riemann surface. In addition, they treated maps of the
Euclidean plane into a compact Riemann surface under the assumption of small initial energy and certain
symmetries. Finally, see [Bejenaru et al. 2007; 2008] for recent work on global well-posedness in the
case of maps from Euclidean space into (S2, can) under a certain smallness assumption.

Note that in all of these results one restricts the target to a rather small class of Kähler manifolds.
We recall the following conjecture:

Conjecture 1.2 [Ding 2002]. The Schrödinger map flow is globally well-posed for maps from one-
dimensional domains into compact Kähler manifolds.

The main results of this article are a partial answer to this conjecture. Namely, we establish the global
well-posedness of the one-dimensional Schrödinger flow into general Kähler manifolds when the domain
is the real line, and into Riemann surfaces when the domain is the circle.

Theorem 1.3. Let (M, g) = (R, dx ⊗ dx), let (N , J, h) be a complete Kähler manifold with bounded
geometry, and let k ≥ 2 be an integer. The flow equation (4) with u0 ∈ W k,2(R, N ) admits a unique
solution u ∈ C0(R,W k,2(R, N )). In particular u is smooth if u0 is in W k,2(R, N ) for all k ≥ 2.
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Theorem 1.4. Let (M, g) = (S1, dx ⊗ dx), let (N , J, h) be a complete Riemann surface with bounded
geometry, and let k ≥ 2 be an integer. The flow equation (4) with u0 ∈ W k,2(S1, N ) admits a unique
solution u ∈ C0(R,W k,2(S1, N )). In particular u is smooth if u0 is in W k,2(S1, N ) for all k ≥ 2.

Remark 1.5. From the physical point of view, the Schrödinger map flow may also be introduced as a
generalization of the Heisenberg model for a ferromagnetic spin system. The classical model for this
physical system precisely corresponds to maps from the standard circle into N = S2 with the standard
metric and complex structure [Landau and Lifschitz 1935] (for some background see, for example, [Ding
2002; Ding and Wang 1998; McGahagan 2004; Sulem et al. 1986]). Perhaps the most physically natural
generalization of the classical model would be to vary the metric on the target S2, however it seems
that even for small perturbations of the round metric on S2 global well-posedness was not known before.
Theorem 1.4 establishes the global well-posedness of the Cauchy problem describing this physical model
when the metric on S2 is arbitrary.

The global well-posedness thus established in these cases, several natural questions arise related to
more precise information regarding the long-time behavior of the Schrödinger map flow. For example,
for the case of maps from the real line it would be interesting to determine whether certain scattering
occurs in some cases. In addition, we pose the following conjecture regarding the length of the image
along the flow.

Conjecture 1.6. In the setting of Theorem 1.3 one has limt→∞ ‖u(t)‖W 1,1(R,N ) = ∞. In addition, for
every ε > 0, there exists a time t0 and a geodesic ball B ⊂ N of radius ε such that the image of u(t0) is
contained in B.

Is not hard to show this conjecture holds for the case N = Cn , equipped with the Euclidean metric,
with an estimate ‖u(t)‖W 1,1(R,N ) ≥ Ct1/2.

Outline of proofs and organization of the paper. According to Theorem 1.1 we have existence of a time-
local solution. The strategy of the proof is this: First, using the Kähler condition, we translate the flow
equation into a system of nonlinear Schrödinger (NLS) equations. Then, for this system of equations
we obtain an a priori estimate in a weaker norm than that in Theorem 1.1, namely in an appropriate
Strichartz norm for M =R and in L4 for M = S1. These estimates are crucial since they only depend on
the initial energy (which is a conserved quantity) and that in a manner that can be readily converted into
a global a priori estimate in the same space. Taking derivatives of the flow equation and after additional
work we then obtain global a priori estimates in stronger norms and these in turn may be converted back
to imply global well-posedness for our original Cauchy problem in W k,2 for all k ≥ 2.

While the proofs of both Theorem 1.3 and Theorem 1.4 follow the same general scheme, nevertheless
there are substantial differences between the two, as we now explain.

We start in Section 2 with the case of the real line, which is simpler due to simple connectivity and
dispersiveness. Here we follow Chang, Shatah and Uhlenbeck [2000] and write the flow equation in
terms of a parallel frame, with the added observation that the Kähler condition allows one to readily
generalize their computations from the Riemann surface case to higher dimensions. The flow equation
then reduces to a system of NLS equations. The same Strichartz-type calculations as in their study of
the Riemann surface case then apply.

We then treat in Section 3 the case of maps from M= S1 into a Riemann surface, which is considerably
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more difficult and is the main contribution of this article. There are two main difficulties. First, using a
parallel frame introduces holonomy, so the resulting NLS equation lives on R, the universal cover of S1,
instead of on S1 itself. To overcome this we use a certain space-time transformation in order to obtain
an NLS equation on S1 in terms of the holonomy representation of N . In addition we need to estimate
the variation of the holonomy along the flow. Second, since S1 is compact the equations are no longer
dispersive. To overcome that we adapt Bourgain’s results on the cubic NLS to our setting in order to
prove a time-local a priori estimate in L4 that depends in such a way on the initial data that it may be used
to obtain a global a priori estimate in the same space. Finally, we take derivatives of the NLS equation
and after some more work obtain higher derivative a priori estimates.

In Section 4 we discuss some of the difficulties that arise when trying to apply our approach to treat
maps from the circle into higher-dimensional Kähler manifolds. It is conceivable that some of these ideas
might be related to showing finite time blow-up for higher-dimensional domains.

2. Maps from the real line into a Kähler manifold

In the case of maps from the Euclidean real line into a complete Kähler manifold (N , J, h) of complex
dimension n, the Schrödinger equation (4) becomes

J∇t u−∇x∇x u = 0, u(0)= u0, (6)

and we define the energy as

E(u0)=

∫
R

|du0|
2
∂
∂x⊗

∂
∂x⊗u?h

dx <∞ (7)

(departing from the convention in the Introduction by a factor of 2). Here we have used the abbreviated
notation ∇t = ∇u?∂/∂t , ∇x = ∇u?∂/∂x , ∇t u = u?∂/∂t = ∂u/∂t , ∇x u = u?∂/∂x = ∂u/∂x , and we denote
the derivatives of a function f by f,x and f,t . The key idea in this section, going back to [Chang et al.
2000], is to rewrite (6) in an appropriate frame along the image, in such a way that (6) reduces to a
system of nonlinear Schrödinger (NLS) equations. In fact our proof closely follows their approach for
the Riemann surface case observing that it readily generalizes to Kähler targets of arbitrary dimension.

Assume that u : I × R→ N is a solution of (6), where I is a neighborhood of 0 in R (given, for
example, by Theorem 1.1). Choose an orthonormal frame {e1, . . . , e2n} for u?TN with respect to h. We
further reduce the structure group to U (n)⊆ O(2n) by assuming en+1= Je1, . . . , e2n = Jen . We identify
U (n) with its image in O(2n) under the map ι : GL(n,C)→ GL(2n,R) given by

ι(A+
√
−1 B)=

(
A −B
B A

)
.

Note that if v = x +
√
−1 y ∈ Cn and ι(v)=

(
x
y

)
then

ι(Av)= ι(A)ι(v).

We will use this identification frequently, sometimes omitting the reference to the map ι. In the following
we let Latin indices take values in {1, . . . , 2n} and Greek indices in {1, . . . , n}. For both alphabets we
use the notation

· = ·+ n− 1 (mod 2n) + 1.
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Therefore barred Greek indices take values in {n + 1, . . . , 2n}. As mentioned e = Je j so eᾱ = Jeα
and eα+n =−eα. We abbreviate the spaces L p(R, dx) and L p(R, dt) as L p(Rx) and L p(Rt), and so on.
Finally, given a map u : (M, g)→ (N , h), by u ∈W k,p(M, N )we will mean that

∑k−1
j=0

∥∥|∇ j du|
∥∥

L p <∞.
For example, in this notation we have E(u)= ‖u‖2W 1,2(M,N ).

Now we may view the flow equation (6) in this frame. Write, for each (t, x) ∈ I ×R,

∇x u =
2n∑
j=1

h(∇x u, e j )e j =: a j e j , ∇t u =
2n∑
j=1

h(∇t u, e j )e j =: b j e j , (8)

where we use the Einstein summation convention, namely the appearance of an index both as a subscript
and a superscript indicates summation. Then (6) can be rewritten as

b j e − a j
,x e j − a j

∇x e j = 0. (9)

The conservation of energy (see (5)) is expressed as

E(u(t))= E(u0)=

∫
R

2n∑
l=1

(al)
2dx = ‖a(t)‖2L2(Rx )

for all t ∈ R. (10)

Note that
0= u?

[
∂
∂t
,
∂
∂x

]
= [∇t u,∇x u]. (11)

Since ∇ J = 0, differentiating (6) in space yields J∇x∇t u−∇x∇x∇x u = 0, which becomes, using (11)
and (8),

J (a j
,t e j + a j

∇t e j )− a j
,xx e j − 2a j

,x∇x e j − a j
∇x∇x e j = 0. (12)

We impose the gauge-fixing condition

∇x e j = 0, j = 1, . . . , 2n. (13)

The resulting frame along the image is still unitary, since the complex structure commutes with parallel
transport. Equation (9) becomes

b j
= a,x . (14)

Note that u?TN → R is trivial and that (13) amounts to fixing a trivializing parallel frame. With this
choice, the flow on u?TN is given by

a j
,t e − a j

,xx e j =−a j
∇t e . (15)

Along the image, using (13) and (14), and letting R denote the curvature tensor of (N , h), we have

∇x∇t e = R(∇x u,∇t u)e = akbl R q
kl eq

=
(
aαbβR q

αβ + aᾱbβR q
ᾱβ + aαbβ̄R q

αβ̄
+ aᾱbβ̄R q

ᾱβ̄

)
eq

=
(
aαaβ̄,x R q

αβ + aᾱaβ̄,x R q
ᾱβ − aαaβ,x R q

αβ̄
− aᾱaβ,x R q

ᾱβ̄

)
eq

=
∑
α,β

[
(aαaβ̄),x R q

αβ +
1
2 [(a

ᾱaβ̄),x + (aαaβ),x ]R
q

ᾱβ

]
eq , (16)
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where we have used the Kähler condition once more:

R q
αβ = R q

ᾱβ̄
, R q

ᾱβ =−R q
αβ̄

.

Equation (7) implies limx→±∞ ai (t, x)= 0. Therefore, since ∇x h(∇t e , eq)= h(∇x∇t e , eq), we have

∇t e (t, x)=
2n∑

q=1

h(∇t e , eq)(t,−∞)eq(t, x)

+

(∑
α,β

[
aαaβ̄R q

αβ +
1
2 [a

ᾱaβ̄ + aαaβ]R q
ᾱβ

]
(t, x)

−

∫
(−∞,x]

∑
α,β

[
aαaβ̄R q

αβ ,x +
1
2(a

ᾱaβ̄ + aαaβ)R q
ᾱβ ,x

]
(t, y) dy

)
eq(t, x). (17)

Defining

Aq
 (t,−∞) := h(∇t e , eq)(t,−∞),

Pq
 (t, x) :=

∑
α,β

[
aαaβ̄R q

αβ +
1
2 [a

ᾱaβ̄ + aαaβ]R q
ᾱβ

]
(t, x),

Qq
 (t, x) := −

∫
(−∞,x]

∑
α,β

[
aαaβ̄R q

αβ ,x +
1
2(a

ᾱaβ̄ + aαaβ)R q
ᾱβ ,x

]
(t, y) dy,

we thus have
∇t e (t, x)= Aq

 (t,−∞)eq(t, x)+
[
Pq
 (t, x)+ Qq

 (t, x)
]
eq(t, x). (18)

We now estimate these terms. Using (9) we have

∇t e = bk0
p
kep = ak̄

,x0
p
kep. (19)

Hence, h(∇t e , eq) = ak̄
,x0

q
k and so we may assume that Aq

 vanishes at (t,−∞). To justify this, note
that this is indeed the case for the local solution of our equation given by Theorem 1.1; even though this
assumption makes use of the finiteness of the W 2,2 norm of that local solution, the important point is
that eventually our estimates will not depend on the W 2,2 norm of u (equivalently on the W 1,2 norm of
a), and so the proof of the a priori estimate for the system of NLS equations (23) below (for a) goes
through, with this assumption. Next, using (8), note that R q

klp ,x = as R q
klp ,s . Therefore,

|Pq
j (t, x)|< C |a(t, x)|2, |Qq

j (t, x)|< C
∫

R

|a(t, y)|3dy, (20)

where C > 0 depends only on the geometry and where we use the notation |a| :=
(∑2n

j=1(a
j )2
)1/2.

To summarize the discussion, we have shown that (15) transforms to the following system of NLS
equations

− aγ̄,t − aγ,xx =−a j Pγj − a j Qγ
j , γ = 1, . . . , n, (21)

aγ,t − aγ̄,xx =−a j P γ̄j − a j Q γ̄
j , γ = 1, . . . , n, (22)

or, letting J0 = ι(
√
−1 I ),

J0a,t = a,xx −P · a−Q · a, (23)
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where a= (a1, . . . , a2n)T , P= (Pk
j ), and Q= (Qk

j ). Equivalently, using the aforementioned identification
ι of GL(n,C) with a subset of GL(2n,R),

√
−18,t =8,xx −S ·8−T ·8, (24)

where

8 := ι−1(a)= (a1
+
√
−1 a1̄, . . . , an

+
√
−1 an̄)T , S := (Sβα )= ι

−1(P), T := (T β
α )= ι

−1(Q), (25)

and from (20) we have

|Sβα |< C |8|2, |T β
α |< C

∫
R

|8|3dy. (26)

Here we have set |8| :=
(∑n

j=1 |8
j
|
2
)1/2.

Remark 2.1. In the case of a variable complete smooth metric on the domain (M, g)= (R, α−1dx⊗dx)
with α > 0 the flow equation (4) becomes

bkek̄ = αak
,x ek +

1
2α,xakek, (27)

which can then be transformed, as before, to

J0a,t = αa,xx +
3
2α,x a,x + 1

2α,xx a−P · a−Q · a. (28)

Equivalently, again using the map ι : GL(n,C)→ GL(2n,R),
√
−18,t = α8,xx +

3
2α,x8,x +

1
2α,xx8−S ·8−T ·8. (29)

The only obstacle to treating this equation using the methods below is the first derivative term on the
right-hand side (cf. Remark 3.1).

Therefore we have reduced the original flow equation for the map to a system of NLS equations for
the frame coefficients of the gradient of the map. Thus we have reduced ourselves to the same situation
as in [Chang et al. 2000] (the only difference in (24) from the case where the target is a Riemann surface
is that the equation for each 8 j depends also on the other 8k, k = 1, . . . , n; however this dependence is
only in the nonlinear terms and not in the terms involving derivatives) and their work now implies the
following theorem which is the main result of this section.

Theorem 2.2. Let (M, g)= (R, dx⊗dx) and let (N , J, h) be a complete Kähler manifold with bounded
geometry. Then for integers k ≥ 2 the flow equation (4) with u0 ∈ W k,2(R, N ) admits a unique solution
u ∈ C0(R,W k,2(R, N )).

For the benefit of the reader that may not be familiar with standard Strichartz estimates techniques we
include here the detailed proof of the Chang–Shatah–Uhlenbeck L4(Rt,loc, L∞(Rx)) estimate and how it
implies global well-posedness in W k,2(R, N ). No originality is claimed here. This also serves to provide
some perspective on the differences between this case and the case of the circle, treated in the following
sections. In addition, it serves to explain the three basic steps in obtaining global well-posedness in W k,2

that are also (at least schematically) needed in the case of the circle.
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Proof. First, we have by Theorem 1.1 local well-posedness of the original Schrödinger map flow (6)
in W k,2(R, N ) for k ≥ 2. The key to obtaining global well-posedness in these spaces will be a local a
priori estimate in a space that is morally larger than C0(R,W 2,2(R, N )). Equivalently, we will prove an
estimate for the frame coefficients a in a norm “weaker” than C0(R,W 1,2(R,R2n))≡ C0(R,W 1,2(R)).

More precisely, the proof of global well-posedness is divided into three steps:
First, given an initial data u0 in W 2,2(R, N ) (equivalently, 8(0) ∈W 1,2(R)) we will prove an a priori

estimate on the L4(Rt,loc, L∞(R)) norm of the frame coefficients8 depending only on the initial energy
‖8‖L2(R) and the geometry. In particular it will imply that ‖8‖L4([0,T ],L∞(R)) is finite for all T > 0. This
is the most fundamental step.

Second, taking a derivative of the system of NLS equations (24) for 8, using the estimate from the
first step, and applying similar calculations we prove that ‖8‖L4([0,T ],W 1,∞(R)) and ‖8‖C0([0,T ],W 1,2(R))

are finite for all T > 0.
Third, we let k ≥ 3 and assume our initial data u0 lies in W k,2(R, N ). Taking further derivatives of

the equations (24) and working inductively, one proves that ‖8‖C0([0,T ],W k−1,2(R)) is finite for all T > 0.
This step, sometimes called propagation of regularity, is considered as routine once the first two steps
have been carried out.

The key feature of the analysis involved here is that while one is interested only in proving that the
W 1,2(R) norm of 8(t) stays finite, one is forced to use the auxiliary space L4(Rt ,W 1,∞(Rx)).

In fact, although we will not carry this out here, in the first step one may prove local (and hence global)
a priori estimates for (24) in other Strichartz spaces (these are by definition the spaces Lq(Rt , Lr (Rx))

specified by Lemma 2.3 below) as well, for example, L6(R×R).
Having thus outlined the different steps of the proof, we now turn to the proof itself.

Step 1. Suppose a function c : R×R→ C satisfies the NLS equation
√
−1 c,t = c,xx + F for all t ∈ [0, T ], c(0)= f, (30)

for some function F : [0, T ]×R→C that may depend on c nonlinearly (but not on its derivatives). One
then has the integral expression (Duhamel formula)

c(t, x)=
∫

R

f (y)
e−
√
−1|x−y|2/4t
√

2π t
dy−

√
−1

∫ t

0

∫
R

F(s, y)
e−
√
−1|x−y|2/4(t−s)
√

2π(t − s)
dy ∧ ds. (31)

Denote the Schrödinger operator by

S(t) f := e−
√
−1 t∂2/∂x2

; (32)

more explicitly, we have for M = R,

S(t) f =
∫

R

f (y)
e−
√
−1|x−y|2/4t
√

2π t
dy. (33)

We now recall the Strichartz estimates (on R). For appropriate q, r we denote by Lq(R, Lr (R)) the
Banach space equipped with the norm

‖ f ‖Lq (R,Lr (R)) :=
∥∥‖ f ‖Lr (Rx )

∥∥
Lq (Rt )

. (34)
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Lemma 2.3 [Cazenave 2003, page 33]. Let q, r satisfy 2
q+

1
r =

1
2 with r ∈[2,∞] and let f ∈ L2(Rx). Then

the function t 7→ S(t) f belongs to Lq(Rt , Lr (Rx))∩C0(Rt , L2(Rx)) and there is a constant independent
of (q, r) and of f ∈ L2(R) such that

‖S( · ) f ‖Lq (Rt ,Lr (Rx )) ≤ C‖ f ‖L2(R). (35)

In our situation we know that ‖8‖L2 is constant in time (recall (10)). Assume also that 8 lies in
L4([0, T ], L∞(Rx)). We will now show that the L4([0, T ], L∞(Rx)) norm of 8 is controlled by its L2

norm and the geometry. This will imply local and eventually global estimates in L4(Rt , L∞(Rx)).
Let F =−S ·8−T ·8. In what follows we restrict t to the interval [t1, t2]. Then

8 j (t)= S(t − t1)8 j (t1)−
√
−1

∫ t

t1
S(t − s)F(s, · ) ds. (36)

The first term of (36) is in L4([t1, t2], L∞(R)) by the Strichartz estimate (35). We will now show that
the second term is also in this space.

First, we consider the term S ·8≤ C‖8‖3. We need to estimate∥∥∥∥∫ t

t1
S(t − s)(S ·8)(s, · )ds

∥∥∥∥
L4([t1,t2],L∞(R))

. (37)

From (33) we have the dispersive estimate |S(t) f | ≤ Ct−1/2
‖ f ‖L1(R). Hence,∥∥∥∥∫ t

t1
S(t − s)(S ·8)(s, · )ds

∥∥∥∥
L∞(R)

≤ C
∫ t

t1
(t − s)−1/2∥∥|8(s, · )|3∥∥L1(R)

ds

≤ C · E(u0)

∫ t

t1
(t − s)−1/2

‖8(s, · )‖L∞(R)ds

≤ C ′
(∫ t

t1
((t − s)−1/2)4/3ds

)3/4(∫ t

t1
‖8(s, · )‖4L∞(R)ds

)1/4

= C ′′|t − t1|1/4‖8‖L4([t1,t],L∞(R)), (38)

and it follows that∥∥∥∥∫ t

t1
S(t − s)(S ·8)(s, · )ds

∥∥∥∥
L4([t1,t2],L∞(R))

≤ C |t2− t1|1/2‖8‖L4([t1,t2],L∞(R)). (39)

Next, we consider the term T ·8 ≤ C‖8‖
∫

R
‖8‖3dx . By applying a Strichartz estimate under the

integral sign and using energy conservation we obtain∥∥∥∥∫ t

t1
S(t − s)(T ·8)(s, · ) ds

∥∥∥∥
L4([t1,t2],L∞(R))

≤ C ′
∫ t

t1

∥∥∥8∥∥|8|3∥∥L1(R)

∥∥∥
L2(R)

ds ≤ C ′
∫ t

t1

∥∥8‖8‖L∞(R)‖8‖
2
L2(R)

∥∥
L2(R)

ds

≤ C ′′
∫ t2

t1
‖8‖L∞(R)ds ≤ C ′′|t2− t1|3/4‖8‖L4([t1,t2],L∞(R)). (40)
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Combining (39) and (40) we thus obtain, by choosing |t2− t1| small enough (depending only on the
initial energy and the geometry of (N , h)), an estimate on ‖8‖L4([t1,t2],L∞(R)), depending only on the
geometry of (N , h) and the initial energy. This then implies that for all T > 0 we have the a priori
estimate

‖8‖L4([0,T ],L∞(Rx )) <∞.

Step 2. To prove global well-posedness of the flow equation (6) in W 2,2(R, N ), as outlined earlier,
one differentiates (24) and follows similar computations as above. The main difference from Step 1 is
that now the L2(Rx) norm of 8,x is no longer preserved and one needs to work in the intersection of the
spaces C0([0, T ],W 1,2(Rx)) and L4([0, T ],W 1,∞(Rx)). Nevertheless the nonlinearity becomes milder
after differentiation and can be readily controlled using the estimate from Step 1. We carry out the details
for the sake of completeness.

The differentiated equation takes the form
√
−1(8,x),t = (8,x),xx +G, where

|G|< C
(
|8|4+ |8,x |

(
|8|2+‖8‖3L3(Rx )

))
.

Using the Duhamel formula (31) we have

‖8,x‖C0([t1,t2],L2(Rx )) < C‖8,x(t1)‖L2(Rx )+‖G‖L1([t1,t2],L2(Rx )), (41)

and using the Duhamel formula together with a Strichartz estimate we have

‖8,x‖L4([t1,t2],L∞(Rx )) < C‖8,x(t1)‖L2(Rx )+‖G‖L1([t1,t2],L2(Rx )). (42)

Now, we have rather large freedom in estimating G. For example,

‖|8|4‖L1([t1,t2],L2(Rx )) = ‖8‖
4
L4([t1,t2],L8(Rx ))

≤ ‖8‖4L4([t1,t2],L∞(Rx ))
, (43)

with the latter uniformly bounded from Step 1, while∥∥|8,x ||8|2∥∥L1([t1,t2],L2(Rx ))
≤ E(u0)

1/2
∫ t2

t1
‖8,x‖L∞(R)‖8‖L∞(R)ds

≤ C‖8‖L4([t1,t2],L∞(Rx ))‖8,x‖L4/3([t1,t2],L∞(Rx ))

≤ C‖8‖L4([t1,t2],L∞(Rx ))‖8,x‖L4([t1,t2],L∞(Rx ))|t2− t1|1/2, (44)

and the same calculation applies also to the term |8,x | · ‖8‖3L3(R)
. Plugging (43) and (44) back into (42)

and choosing |t2− t1| small enough (depending only on the energy and the geometry (here we are using
the uniform local estimate found in Step 1)) we obtain an estimate on ‖8,x‖L4([t1,t2],L∞(Rx )) in terms of
‖8,x(t1)‖L2(Rx ), the energy, and the geometry. Using this back in (41) we then obtain an estimate on
‖8,x‖C0([t1,t2],L2(Rx )) in terms of ‖8,x(t1)‖L2(Rx ). This then implies that ‖8,x(t)‖L2(Rx ) increases at most
exponentially in t , in particular remains finite for all t > 0, as desired. More precisely, for all T > 0,

‖8,x‖C0([0,T ],L2(Rx )) < C ′eCT , (45)

for some uniform constants C,C ′ > 0.

Step 3. The higher derivatives estimates follow similar computations; this step is commonly called
propagation of regularity. Essentially, each time the system of NLS equations are differentiated we obtain
a new system of NLS equations where the nonlinearity is milder than in the previous stage. Hence, for
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initial data u0 ∈W k,2(R, N ), inductively using the estimates from the previous k−1 systems of equations
yields an a priori estimate on ‖8‖C0([0,T ],W k−1,2(R)) for each k ≥ 3, again by using the auxiliary spaces
L4([0, T ],W k−1,∞(R)). This concludes the proof of Theorem 2.2. �

Remark 2.4. It is essential to use Theorem 1.1, since even after we reduce the Schrödinger map flow
to a system of NLS equations and after proving that a unique global solution for (24) exists it is not
completely obvious how to go from such a solution for ∇x u to an actual map u into N .

Remark 2.5. The proof of Theorem 2.2 can also be used to obtain uniqueness of solutions for initial
data in W 1,2(R, N ) intersected with the appropriate Strichartz space. In particular this shows that the
uniqueness result of Theorem 1.1 is not optimal.

3. Maps from the circle into a Riemann surface

In this section we consider the Schrödinger map flow with the domain being the round circle. Compared
with the previous section, the discussion here is more delicate due to the fact that the domain is no longer
simply-connected (introduces holonomy) nor noncompact (lack of dispersion).

Let u : I × S1
→ N where I ⊂ R is a neighborhood of 0. The bundle u?TN → I × S1 is no longer

trivial and so fixing a frame satisfying (13) does not yield a trivialization. To describe the solution of
(13) we work instead with Z-invariant objects over R. We therefore make the identifications

Maps(S1, N )∼=Maps(R, N )Z, 0(I × S1, u?TN )∼= 0(I ×R, u?TN )Z, (46)

the superscript denoting Z-invariant objects, and take the freedom to use either one of these identifications
interchangeably. Similar identifications will be made for all the other tensor bundles encountered over
I × S1 (for example, u?(T ?N ⊗ T ?N ⊗ T ?N ⊗ TN )).

Recall that parallel transport is defined as a map P : u 7→ Aut(u(0)?TN , u(1)?TN ) for all u ∈
C∞([0, 1], N ), which on any Kähler manifold restricts to an operator P : C∞((S1, pt), N )→ ι(U (n))
on base-pointed loops. Formally, a solution of (13) is given by e(t, x) = P(u(t)|[0,x])e(t, 0). This can
be described somewhat more explicitly as follows.

Let U denote a contractible open set in N and let e1, . . . , en, en+1 = Je1, . . . , e2n = Jen denote a
local orthonormal frame. Assume u : I ×R→ N is a solution of (4), a collection of loops in N which
we will initially assume to be contained in U (and so, in effect, these loops are all contractible in N ).
Along the image of our flow we denote by α1, . . . , α2n the dual 1-forms to e1, . . . , e2n . The Levi-Civita
connection along our flow restricted to this patch is represented by a section AU =0

k
i jα

i of T ?N |U⊗u(n)
which pulls back to a connection form u?AU = 0

k
i j a

i dx =: BU dx for the pulled-back bundle. A section
e = E j e j of the pulled-back bundle (as in (46)) is then (locally) parallel when

0=∇e =
∂E j

∂x
e j ⊗ dx + BU · e⊗ dx = (E j

,x + BU
j
k Ek)e j ⊗ dx . (47)

The solution of this first-order matrix equation simplifies considerably in the case n= 1. The matrices
BU then lie in the trivial Lie algebra so(2)∼= u(1) and so their exponentials commute. One may therefore
integrate (47) to obtain

e(t, 1)= exp
(
−

∫ 1

0
BU dx

)
e(t, 0). (48)
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If Du is the disc bounded by u and contained in U , and K denotes the Gaussian curvature of N , then
Stokes’ Theorem gives

e(t, 1)= exp
(
−

∫
Du

d AU

)
e(t, 0)= exp

(
−

∫
Du

K dVN ,h

)
e(t, 0) (49)

(possibly up to a factor of 2π , depending on conventions) from which it becomes evident that one may
relax the assumption above (for the moment still restricting to contractible loops) and work globally
(one might have two choices for Du then). Also, we see that the holonomy factor is independent of the
starting point on the loop. In fact this last fact is seen to be true for noncontractible loops as well. We
have therefore a well-defined holonomy map

P : C∞((S1, pt), N )→ SO(2)= ι(U (1)).

Next, for general u, since u(0, S1) and u(t, S1) are homotopic for any t ∈ I we may define the surface
Du = u([0, t]× S1) and as chains on N ∂Du = u(t, S1)−u(0, S1). Let K denote the Gaussian curvature
of (N , h). Then we have once again by Stokes’ Theorem

e(t, 1)= P(u)e(t, 0)= exp
(
−

∫
Du

K dVN ,h

)
P(u0) e(t, 0),

or for any x ∈ R and l ∈ N

e(t, x + l)= P(u)le(t, x)= exp
(
−l
∫

Du

K dVN ,h

)
P(u0)

le(t, 0). (50)

Therefore a solution of (13) produces a parallel section of 0(R, u?TN ) rather than of 0(R, u?TN )Z. In
expressing our Z-invariant tensors in terms of the frame {e j }

2n
j=1 we therefore use coefficients satisfying a

relation appropriately proportional to (50). For example if v ∈0(R, u?TN )Z then we may write v= v j e j

with v j (x+l)= P(u)−lv j (x) (while on the other hand sections of endomorphism tensor bundles require
no adjustment when n = 1).

The main difficulty though is that the lifted frame coefficients that live on R have infinite energy
(L2(R) norm), and so our goal is to still extract an equation for objects that live on S1, eventually.

Going through the computations of Section 2 it follows that (15) still holds. We then obtain

∇t e (t, x)=
2n∑

q=1

h(∇t e , eq)(t, x0)eq(t, x)

+

(∑
α,β

([
aαaβ̄R q

αβ +
1
2 [a

ᾱaβ̄ + aαaβ]R q
ᾱβ

]
(t, x)−

[
aαaβ̄R q

αβ +
1
2(a

ᾱaβ̄ + aαaβ)R q
ᾱβ

]
(t, x0)

)
−

∫
[x0,x]

∑
α,β

[
aαaβ̄R q

αβ ,x +
1
2(a

ᾱaβ̄ + aαaβ)R q
ᾱβ ,x

]
(t, y) dy

)
eq(t, x) (51)

The terms depending on the fixed point x0 are in a sense worse than those that depend on the variable
point x since the former must be evaluated in the L∞(Rx) norm. To overcome this apparent obstacle we
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average over S1 (namely, x0 in the range (x − 1, x)) to obtain

∇t e (t, x)=
2n∑

q=1

(∫
S1

h(∇t e , eq)(t, x0) dx0

)
eq(t, x)

+

[∑
α,β

([
aαaβ̄R q

αβ +
1
2(a

ᾱaβ̄+aαaβ)R q
ᾱβ

]
(t, x)−

∫
S1

[
aαaβ̄R q

αβ +
1
2(a

ᾱaβ̄+aαaβ)R q
ᾱβ

]
(t, x0) dx0

)
−

∫
[x0,x]

∑
α,β

[
aαaβ̄as R q

αβ ,s +
1
2as(aᾱaβ̄ + aαaβ)R q

ᾱβ ,s
]
(t, y) dy

]
eq(t, x), (52)

which, upon setting

Oq
 (t, x) :=

∫
S1

h(∇t e , eq)(t, x0) dx0,

Pq
 (t, x) :=

∑
α,β

[
aαaβ̄R q

αβ +
1
2(a

ᾱaβ̄ + aαaβ)R q
ᾱβ

]
(t, x),

Qq
 (t, x) := −

∫
[x0,x]

∑
α,β

[
aαaβ̄as R q

αβ ,s +
1
2as(aᾱaβ̄ + aαaβ)R q

ᾱβ ,s
]
(t, y) dy,

becomes

∇t e (t, x)=
(
Oq
 + Pq

 −

∫
S1

Pq
 (t, x0) dx0+ Qq



)
eq . (53)

Switching to complex notation, as in (24), we have
√
−18,t =8,xx −U ·8−S ·8+W ·8−T ·8, (54)

8α(t, x + l)= P(u(t)|[0,1])−l8α(t, x), (55)

where we have set

U := ι−1(Oq
 ), S := ι−1(Pq

 ), T := ι−1(Qq
 ), W := ι−1

(∫
S1

Pq
 (t, x0) dx0

)
.

To estimate U we note that according to (19) we have ∇t e = ak̄
,x0

p
kep, hence

h(∇t e , eq)= ak̄
,x0

q
k . (56)

Note that in (56) the left-hand side, hence also the right-hand side, are bona fide functions on S1 (even
though each term separately in the product on the right-hand side is not). Therefore, using (8),∫

S1
h(∇t e , eq)(t, x0) dx0 =

∫
S1

ak̄
,x0

q
kdx0 =−

∫
S1

ak̄0
q
k,x dx0 =−

∫
S1

ak̄a p0
q
k,pdx0.

Hence we have the estimates

‖U‖< C
∫

S1
‖8‖2dx, ‖W‖< C

∫
S1
‖8‖2dx, ‖S‖< C‖8‖2, ‖T‖< C

∫
S1
‖8‖3dx, (57)

where C>0 depends only on the geometry of (N , h). We stress that (54) and (55) are equations on I×R.
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Next, we try to derive equations that will be defined on I × S1. Define a real-valued function θ by

P(u(t)|[0,1])=: e
√
−1 θ(t)

∈U (1), (58)
and set

a :=81
= a1
+
√
−1 a1̄.

Note that the holonomy factor (58) is independent of x as noted after (49). Also note that we cannot
restrict θ to [−π, π) in order not to violate continuity of θ .

As remarked in the paragraph after (50), the functions U = U 1
1 , S = S1

1 , W = W 1
1 , T = T 1

1 are
Z-invariant. Also

ϕ(t, x) := e
√
−1 θxa(t, x) (59)

is Z-invariant. Moreover, so are all of its x-derivatives. To wit,

ϕ(t, x),x =
√
−1 θϕ(t, x)+ e

√
−1 θxa(t, x),x = ϕ(t, x + 1),x (60)

since (e
√
−1 θa(t, x + 1)),x = a(t, x),x , and the claim now follows by induction. It follows that the

estimates we will obtain for ϕ will imply the same estimates for a.
Equation (54) becomes, after the change of variable (59),

√
−1ϕ,t = ϕ,xx − 2

√
−1 θϕ,x −

(
θ2
+ xθ,t + Q1

1+ S1
1 −W 1

1 + T 1
1
)
ϕ. (61)

Let β : I ×R→ I ×R be given by

β(t, x)=
(

t, x − 2
∫
[0,t]

θ ds
)
.

Let
x̃ := x + 2

∫
[0,t]

θ ds.

Writing (t, x)= β
(
t, x + 2

∫
[0,t] θ ds

)
= β(t, x̃), (54) becomes

√
−1(ϕ ◦β),t(t, x̃)= (ϕ ◦β),x̃ x̃(t, x̃)

−
(
θ2(t)+ (x̃ − 2

∫
[0,t]θ ds)θ,t(t)+ (Q1

1 ◦β + S1
1 ◦β −W 1

1 ◦β + T 1
1 ◦β)(t, x̃)

)
(ϕ ◦β)(t, x̃). (62)

This equation is on I × S1.

Remark 3.1. Note that here it was crucial that θ does not depend on x in order to have ∂ x̃/∂x = 1. This
is also the difference from the situation in (29).

The main result of this section is the following a priori estimate:

Theorem 3.2. Let (M, g)= (S1, dx⊗dx) and let (N , J, h) be a complete Riemann surface with bounded
geometry. Given u0 ∈ W 2,2(S1, N ), the solution ϕ(t, x) of the system of NLS equations (62) satisfies for
all T > 0 the a priori estimate

‖ϕ‖L4([0,T ],L4(S1,R2n)) <∞.

This will be shown to imply:

Corollary 3.3. Let (M, g) = (S1, dx ⊗ dx) and let (N , J, h) be a complete Riemann surface with
bounded geometry. Then for integers k ≥ 2 the flow equation (4) with u0 ∈W k,2(S1, N ) admits a unique
solution u ∈ C0(R,W k,2(S1, N )).
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Proof of Theorem 3.2. We will use (62) to obtain a priori estimates on

ϕ̃(t, x̃) := ϕ ◦β(t, x̃).

The estimates on ϕ̃ and on ϕ are equivalent since the two functions only differ by a time-dependent
translation in the space direction. We will localize in time: Indeed it is enough to prove local (in time) a
priori estimates for solutions of (62) in C0(Rt,loc, L2(S1))∩L4(Rt,loc× S1) depending in a good manner
only on ‖ϕ̃‖L2(S1) = E(u0)

1/2 and a bounded constant depending on time, since that will rule out finite-
time blow-up.

We now recall some work of Bourgain that will be of central importance later (see also [Ginibre 1996]
for an exposition). We start with some Fourier restriction estimates:

Lemma 3.4 [Bourgain 1993, page 112]. Let ϕ be a periodic solution of the linear Schrödinger equation
on S1. Then

‖ϕ‖L4(S1×S1) ≤
√

2‖ϕ(0)‖L2(S1),

and dually
‖ϕ‖L2(S1×S1) ≤

√
2‖ϕ‖L4/3(S1×S1).

More generally, Bourgain proved the following fundamental result that allows for the same estimate —
now with appropriate weights — even for an arbitrary function whose Fourier modes are not necessarily
restricted to the parabola {(p, p2) : p ∈ Z}. We state the result although we will only directly use a
consequence of it.

Lemma 3.5 [Bourgain 1993, Proposition 2.33]. Let f (x, t)=
∑

m,n∈Z am,ne
√
−1(mx+nt) be a function on

S1
× S1. Then ( ∑

m,n∈Z

(
|n−m2

| + 1
)−3/4
|am,n|

2
)1/2

≤ C‖ f ‖L4/3(S1×S1).

In addition, if |λm,n| ≤ (1+ |n−m2
|)−3/4, then∥∥∥∥ ∑

m,n∈Z

λm,nam,ne
√
−1(mx+nt)

∥∥∥∥
L4(S1×S1)

≤ C‖ f ‖L4/3(S1×S1).

In both estimates C > 0 is some universal constant.

Using this estimate, Bourgain obtains the following L4 estimate for the nonlinear contribution in
Duhamel’s formula. This estimate will play a central role below. Let f (x)=

∑
m∈Z ame

√
−1 mx

∈ L2(S1).
On M = S1 the Schrödinger operator (see (32)) takes the form

(S(t) f )(x)=
∑
m∈Z

ame
√
−1(mx+m2t). (63)

Lemma 3.6 [Bourgain 1993, §4]. Let F ∈ L4/3(S1
× S1). For any 0 < δ < 1/8 and 0 < B < 1

100δ there
holds ∥∥∥∥∫ 2δ

0
S(t − τ)F(τ, x) dτ

∥∥∥∥
L4(S1×S1)

≤ C(B−1/4
+ δB)‖F‖L4/3(S1×S1),

where C > 0 is some universal constant.
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The constant B can be thought of as a Fourier mode cut-off parameter, measuring distance of a lattice
point in Z2 from the parabola {(m,m2) : m ∈ Z}. The constant δ is the time cut-off parameter.

Equation (62) is equivalent to the integral equation

ϕ̃(t, x̃)= S(t)ϕ̃(0, x̃)−
√
−1

∫ t

0
S(t − τ)F(τ, x̃) dτ, (64)

with

F(τ, x̃)=−
(
θ2(τ )+ (x̃−2

∫
[0,τ ]θds)θ,t(τ )+ (Q1

1 ◦β+ S1
1 ◦β−W 1

1 ◦β+T 1
1 ◦β)(τ, x̃)

)
ϕ̃(τ, x̃). (65)

There is a subtlety here: The time derivative of ϕ̃ (or of ϕ) is not necessarily Z-invariant (in x̃). However,
(62) holds on I × S1 and it is equivalent to the integral equation (64).

We would like to obtain an a priori L4 estimate on ϕ̃. We localize in time, namely multiply (64) by
a smooth cut-off function in time ψ(t) satisfying ψ = 1 on [−δ, δ] and ψ = 0 for |t | ≥ 2δ. Here δ is a
positive number smaller than 1/8 to be specified later. We may thus regard ψϕ̃ as a function on S1

× S1

with period 1 in both the t and x̃ variables and Bourgain’s estimates apply.
First, the linear term satisfies

‖ψS(t)ϕ̃(0, x̃)‖L4(S1×S1) ≤
√

2‖ϕ̃(0, · )‖L2(S1) =

√
2E(u0),

according to Lemma 3.4.
Next, we estimate the integral term. The terms involving Q and W are simpler since |Q| and |W| are

uniformly bounded according to (57) and conservation of energy.
We now turn to the other terms. First, using Lemma 3.4 under the integral sign, and assuming
‖θ‖L∞ ≤ C , we have∥∥∥∥ψ∫ t

0
S(t−τ)

(
θ2(τ )ϕ̃(τ, x̃)

)
dτ
∥∥∥∥

L4(S1×S1)

≤

∫ 2δ

0
‖θ2(τ )ϕ̃(τ, · )‖L2(S1)dτ ≤ 2C2δ‖ϕ(0)‖L2(S1). (66)

To show that this assumption holds, use the representation of the holonomy given by (48): |θ(t)| ≤∫ 1
0 |0

k
i j ||a

i
|dx ≤ C ′E(u0)

1/2, where we have used the assumption of bounded geometry — indeed it
implies that Christoffel symbols are uniformly bounded [Eichhorn 1991].

Second, |x̃ | ≤ 1 and so |x̃ − 2
∫
[0,τ ]θ ds| ≤ 1+ 2 · 1 ·C . Let {α1, α1̄} be an orthonormal coframe dual

to {e1, e1̄}. To compute the time derivative of θ , recall that by (50) we have

θ(t)=
∫

Du

K dVN ,h =

∫
Du

Kα1 ∧α1̄ =

∫
I×S1

K ◦ u(t, x)[a1b1̄
− a1̄b1

] dx ∧ dt,

since u?α1= a1dx+b1dt, u?α1̄= a1̄dx+b1̄dt . Combining this with the equality bk
= ak̄

,x given by (9),
we have

θ,t =

∫
S1

K ◦ u(t, x)(a1b1̄
− a1̄b1) dx =− 1

2

∫
S1

K ◦ u(t, x)((a1)2+ (a1̄)2),x dx .

Integrating by parts this becomes

θ,t =
1
2

∫
S1
(K ◦ u(t, x)),x((a1)2+ (a1̄)2) dx = 1

2

∫
S1

K,s ◦ u(t, x)as((a1)2+ (a1̄)2) dx .
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By bounded geometry we therefore have

‖θ,t‖L∞ ≤ C‖a‖3L3(S1)
. (67)

Therefore the term
(
x̃ − 2

∫
[0,τ ]θ ds

)
θ,t(τ )ϕ̃(τ, x̃) behaves in the same way as the term T 1

1 ◦βϕ̃(τ, x̃) in
(65), and so it’s enough to treat the latter. We will do that shortly.

Third, |S1
1 ◦ β · ϕ̃| < C |ϕ̃|3, and therefore this term may be estimated in L4(S1

× S1) just like in
Bourgain’s estimates for a cubic nonlinearity. More precisely, by Lemma 3.6 we have∥∥∥∥ψ ∫ t

0
S(t − τ)

(
|ϕ̃|3(τ, x̃)

)
dτ
∥∥∥∥

L4(S1×S1)

≤ C(δB+ B−1/4)‖ψϕ̃‖3L4(S1×S1)
, (68)

with B > 0 as in the lemma, δ is as before the time cut-off parameter, and C > 0 is a uniform constant.
Fourth, using Lemma 3.4 and energy conservation we have∥∥∥∥ψ∫ t

0
S(t−τ)

(
ϕ̃

∫
S1
|ϕ̃|3dx̃(τ, x̃)

)
dτ
∥∥∥∥

L4(S1×S1)

≤ C
∫ 2δ

0

∥∥∥∥ϕ̃(τ, · ) ∫
S1
|ϕ̃(τ, · )|3dx̃

∥∥∥∥
L2(S1)

dτ

≤ C ′
∫ 2δ

0

∫
S1
|ϕ̃(τ, · )|3dx̃dτ

≤ C ′′δ1/4
‖ϕ‖3L4(S1×S1)

. (69)

Combining Equations (66)–(69) we have

‖ψϕ̃‖L4([0,2δ]×S1) ≤ C
(
(1+ δ)‖ϕ‖L2(S1)+ (δB+ B−1/4

+ δ1/4)‖ψϕ̃‖3L4([0,2δ]×S1)

)
. (70)

In fact, due to energy conservation, the time interval may be taken to be [t1, t1+2δ] for any t1∈R. Now, by
choosing B large enough and then choosing δ small enough, in such a manner that δB is also small enough
(all of these choices depend only on the initial energy and the geometry) we therefore may argue similarly
to Bourgain to obtain a uniform estimate on ‖ϕ̃‖L4([t1,t1+2δ]×S1)=‖ϕ‖L4([t1,t1+2δ]×S1)=‖a‖L4([t1,t1+2δ]×S1):

‖ϕ‖L4([t1,t1+2δ]×S1) < C, (71)

where C > 0 is a uniform constant depending only on the initial energy and the geometry. We therefore
obtain the global a priori estimate

‖a‖L4([0,T ]×S1) <∞,

for all T > 0. This concludes the proof of Theorem 3.2. �

Remark 3.7. A difference between our situation and that of Bourgain [1993, page 139] is that while
Bourgain actually proves the existence (and uniqueness) of a local solution of the periodic cubic NLS in
L4(Rt,loc × S1) using energy conservation, we only need to prove an a priori estimate in this norm for
the unique local solution given by Theorem 1.1.

Conclusion of the proof of Corollary 3.3. To obtain global well-posedness for our original flow equation
in W k,2 we take k− 1 derivatives of (62). In fact, we obtain certain terms that are worse than those that
arise when one differentiates the cubic NLS. For example, for k = 2 we obtain several extra terms the
worst of which are of order |ϕ̃|4 and |ϕ̃,x | ·‖ϕ̃‖3L3(S1)

. Such terms may be handled nevertheless. We carry
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out the computations in detail in the case k = 2, omitting the details in the case k ≥ 3 as they are similar
(see the remarks in Step 3 of Section 2).

Set w := ϕ̃,x̃ . Taking a derivative of (62) we obtain
√
−1w,t = w,x̃ x̃ +G, (72)

where
|G|< C

(
|ϕ̃|4+ |ϕ̃|2+ |w|

(
1+ |ϕ̃|2+‖ϕ̃‖3L3(S1)

))
. (73)

As before we would like to obtain an L4(Rt,loc × S1) estimate, this time for w. We use Lemma 3.4
in order to handle the term |ϕ̃|4 (more precisely, the corresponding term in the Duhamel formula); the
corresponding contribution is bounded by

C
∫ t1+2δ

t1
‖ϕ(τ, · )4‖L2(S1)dτ.

Using the Gagliardo–Nirenberg inequality [Aubin 1998, page 93], we have

‖ϕ‖4L8(S1) ≤ C
(
1+‖ϕ,x‖

1/2
L4(S1)

)(
1+‖ϕ‖7/2L4(S1)

)
, (74)

Note that the Gagliardo–Nirenberg inequality as cited requires
∫

S1 ϕdx = 0; nevertheless we know that
‖ϕ‖L1(S1) is uniformly bounded in time due to the Cauchy–Schwarz inequality and conservation of en-
ergy, and so (74) holds in our case. It is enough to treat the worst term on the right-hand side of (74),
namely the term ‖ϕ,x‖

1/2
L4(S1)
‖ϕ‖

7/2
L4(S1)

. The Hölder inequality and (71) give∫ t1+2δ

t1
‖ϕ,x‖

1/2
L4(S1)
‖ϕ‖

7/2
L4(S1)

ds ≤‖ϕ,x‖
1/2
L4([t1,t1+2δ]×S1)

‖ϕ‖
7/2
L4([t1,t1+2δ]×S1)

≤C‖ϕ,x‖
1/2
L4([t1,t1+2δ]×S1)

. (75)

Since this is sublinear in the norm we are estimating it will be possible to use this inequality to obtain
the a priori estimate we are after. Next, of course the nonlinear term |ϕ̃|2 in (73) is even easier to handle:

‖ϕ2
‖L1([t1,t1+2δ],L2(S1)).≤ C

√
δ‖ϕ‖L4([t1,t1+2δ],L4(S1)) ≤ C ′

√
δ. (76)

Let us now treat the other nonlinearities. To handle the contribution of the term |ϕ̃2ϕ̃,x | to the Duhamel
formula, we apply Lemma 3.6 and the Hölder inequality∥∥∥∥∫ t

t1
S(t − τ)(ϕ2ϕ,x)(τ, · ) dτ

∥∥∥∥
L4([t1,t1+2δ]×S1)

≤ C(δB+ B−1/4)‖ϕ2ϕ,x‖L4/3([t1,t1+2δ]×S1)

≤ C(δB+ B−1/4)‖ϕ,x‖L4([t1,t1+2δ]×S1)‖ϕ‖
2
L4([t1,t1+2δ]×S1);

(77)

this term can be controlled by a small uniform constant times ‖ϕ,x‖L4([t1,t1+2δ]×S1), by choosing δ, B
appropriately.

Next, using Lemma 3.4, the contribution of the term |ϕ̃,x | · ‖ϕ̃‖3L3(S1)
to the Duhamel formula can be

bounded as follows:∥∥∥∥∫ t

t1
S(t − τ)(|ϕ̃,x | · ‖ϕ̃‖3L3(S1)

)(τ, · ) dτ
∥∥∥∥

L4([t1,t1+2δ]×S1)

≤ C
∫ t1+2δ

t1

∥∥|ϕ,x | · |ϕ‖3L3(S1)

∥∥
L2(S1)

dt, (78)
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and using the interpolation inequality ‖ϕ‖3L3(S1)
≤‖ϕ‖2L4(S1)

‖ϕ‖L2(S1)≤C‖ϕ‖2L4(S1)
, this may be estimated

as follows:

(78)≤ C ′
∫ t1+2δ

t1
‖ϕ,x‖L2(S1)‖ϕ‖

2
L4(S1)dt ≤ C ′′

∫ t1+2δ

t1
‖ϕ,x‖L4(S1)‖ϕ‖

2
L4(S1)dt

≤ C ′′||ϕ,x ||L4([t1,t1+2δ]×S1)

(∫ t1+2δ

t1
‖ϕ‖

8/3
L4(S1)

dt
)3/4

≤ C ′′(2δ)1/4‖ϕ,x‖L4([t1,t1+2δ]×S1)‖ϕ‖
2
L4([t1,t1+2δ]×S1) ≤ C ′′′δ1/4

‖ϕ,x‖L4([t1,t1+2δ]×S1). (79)

To summarize, combining (75), (76), (77), and (79), we may thus find δ,C > 0, depending only on
the initial energy and the geometry, for which (71) still holds and for which we also have the a priori
estimate

‖ϕ,x‖L4([t1,t1+2δ]×S1) ≤ C(1+‖ϕ,x(t1)‖L2(S1)). (80)

The main point here is that δ does not depend on ‖ϕ,x(t1)‖L2(S1).
We now need to “close” the argument by estimating the L∞([t1, t1+2δ], L2(S1)) norm of ϕ,x , making

use of the auxiliary estimate (80). For each t ∈ [t1, t1+ 2δ] we have (see (72))

‖ϕ,x‖L∞([t1,t1+2δ],L2(S1)) ≤ C‖ϕ,x(t1)‖L2(S1)+
∥∥‖G‖L1([t1,t],L2(S1))

∥∥
L∞([t1,t1+2δ])

= C‖ϕ,x(t1)‖L2(S1)+‖G‖L1([t1,t1+2δ],L2(S1)). (81)

With the exception of the term |ϕ|2|ϕ,x |, we have already estimated all of the nonlinearities occurring
in G in L1([t1, t1 + 2δ], L2(S1)) in the process of proving (80) (see (75), (76), and (79)). Let us now
estimate that term in this norm. Using the Gagliardo–Nirenberg inequality (together with the remark
following (74)), energy conservation and the Hölder inequality we have∫ t1+2δ

t1
‖ϕ2ϕ,x‖L2(S1)dτ ≤

∫ t1+2δ

t1
‖ϕ‖L∞(S1)‖ϕ‖L4(S1)‖ϕ,x‖L4(S1)dτ

≤ C
∫ t1+2δ

t1

(
1+‖ϕ‖1/2L2(S1)

)(
1+‖ϕ,x‖

1/2
L2(S1)

)
‖ϕ‖L4(S1)‖ϕ,x‖L4(S1)dτ. (82)

As earlier, it suffices to estimate the worst term on the right-hand side. Namely, we estimate∫ t1+2δ

t1
‖ϕ‖

1/2
L2(S1)
‖ϕ,x‖

1/2
L2(S1)
‖ϕ‖L4(S1)‖ϕ,x‖L4(S1)dτ ≤ C ′

∫ t1+2δ

t1
‖ϕ‖L4(S1)‖ϕ,x‖

3/2
L4(S1)

dτ

≤ C ′′δ3/8
‖ϕ‖L4([t1,t1+2δ]×S1)‖ϕ,x‖

3/2
L4([t1,t1+2δ]×S1)

. (83)

It follows that

‖ϕ,x‖L∞([t1,t1+2δ],L2(S1)) ≤ C
(
1+‖ϕ,x(t1)‖L2(S1)+‖ϕ,x(t1)‖

3/2
L2(S1)

)
. (84)

Therefore there exists uniform constants C,C ′,C ′′ > 0 such that for all T > 0,

‖ϕ,x‖L∞([0,T ],L2(S1)) < C ′′eC ′eCT
<∞. (85)

This concludes the proof of Corollary 3.3. �
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4. Maps of the circle into a Kähler manifold

In this section we explain the difficulties encountered when one tries to apply the same methods to treat
the case of maps from the circle to Kähler manifolds of arbitrary dimension n ≥ 1.

For general n, one gets an expression for a solution of (13) given by the chronological exponential

e(t, x+1)= A−1(t, x)e(t, x)

:= lim
n→∞

exp
(
−

1
n BU (t, x+1)

)
exp

(
−

1
n BU (t, x + n−1

n )
)
· · · exp

(
−

1
n BU (t, x + 1

n )
)
e(t, 0); (86)

see for example [Dubrovin et al. 1985]. Applying ∇x to (86) and using the fact that ∇x e = 0, we obtain
A,x = 0, that is, A(t, x) does not depend on x . From now on we simply write A(t).

Now8(t, x+1)= A(t)8(t, x). Since A(t) is unitary (and hence normal) it is unitarily diagonalizable
and we set

A(t)=U (t)?D(t)U (t), with U (t) ∈U (n) and D(t)= diag(e
√
−1 θ1, . . . , e

√
−1 θn ).

The vector-valued function 8̃ defined by

8̃(t, x) :=U (t)?D(t)−xU (t)8(t, x)= A(t)−x8(t, x).

is periodic in x . Moreover, by a computation similar to (60), so are all of its x-derivatives. We have

8,t = (A(t)x),t8̃+ A(t)x8̃,t ,

8,x =U (t)?D(t)x diag(
√
−1 θi )U (t)8̃+U (t)?D(t)xU (t)8̃,x ,

8,xx =U (t)?D(t)x diag(−θ2
i )U (t)8̃+ 2U (t)?D(t)x diag(

√
−1 θi )U (t)8̃,x +U (t)?D(t)xU (t)8̃,xx .

It follows that
√
−18,t −8,xx = A(t)x

[√
−18̃,t − 8̃,xx + (A(t)x),t8̃

−U (t)?diag(−θ2
i )U (t)8̃− 2U (t)?diag(

√
−1 θi )U (t)8̃,x

]
. (87)

Therefore equations (54)–(55) may be rewritten as
√
−1 8̃,t = 8̃,xx − (A(t)x),t8̃+U (t)?diag(−θ2

i )U (t)8̃

+ 2U (t)?diag(
√
−1 θi )U (t)8̃,x − A(t)−x(Q ·8+S ·8−W ·8+T ·8

)
. (88)

Note that the last term is expressed in terms of 8 instead of 8̃. However as far as the estimates are
concerned this is not important since it involves no derivatives and the two vectors differ by a unitary
transformation. Two problems now arise. First, one needs to obtain an estimate on the variation of the
holonomy matrix A(t) along the flow. Such an estimate was available in the one-dimensional setting due
to the Gauss-Bonnet theorem. Second, the matrix multiplying the first derivative term is not diagonal
and so it is not clear how to eliminate this term.

Although this requires some work, and we will not attempt to provide the details here, the first difficulty
may likely be overcome using the theory developed by Chacon and Fomenko [1991] for a noncommu-
tative version of the Stokes’ Theorem for product integrals (see also the classical references [Nijenhuis



208 IGOR RODNIANSKI, YANIR A. RUBINSTEIN AND GIGLIOLA STAFFILANI

1953; Schlesinger 1928]). To approach the second difficulty one may consider 8̂ := U (t)?D(t)−x8

instead of 8̃. Then the matrix multiplying the first derivative of 8̂ is diagonal. Therefore, we may
apply the space-time transformation as in the Riemann surface case, however for each equation in the
system separately. However, this introduces a new obstacle. Indeed, then one needs to control the time
derivative of D(t) as well as of U (t). The main difficulty comes from the latter. In general, the unitary
diagonalizing matrix does not vary smoothly (or even continuously) even when a family of matrices does
[Kato 1966, page 111]. Instead one may try to diagonalize A(t) smoothly. However, to the best of our
knowledge, even given such a diagonalization, the problem is that even though the diagonalizing matrix
is then smooth one has essentially no control over its derivatives (that is, estimates on these derivatives in
terms of derivatives of A(t)). We hope to come back to this problem in the future. In some sense the two
transformations (to 8̃ and to 8̂) are dual to each other, and one may ask whether for higher-dimensional
domains the two troublesome terms, namely the first derivative term and the derivative of the holonomy,
may be a source for finite-time blow-up.
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