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We show that if A ⊂ Zn
4 contains no three-term arithmetic progressions in which all the elements are

distinct then |A| = o(4n/n).

1. Introduction

Let G be a finite abelian group. A three-term arithmetic progression in G is a triple (x, x+d, x+2d)
with x, d ∈ G; a proper progression is one in which all the elements are different, that is, 2d 6= 0G .

Roth [1953] famously proved that any subset of Z/NZ of sufficiently large density contains a proper
three-term arithmetic progression, a result which was generalised by Meshulam:

Theorem 1.1 [Meshulam 1995]. Suppose that G is a finite abelian group of odd order and A ⊂ G
contains no proper three-term arithmetic progressions. Then

|A| = O
(
|G|/ log�(1) |G|

)
.

An explicit value for the �(1) constant can be read out of the proof, and it seems that in light of
[Bourgain 2008] (itself improving on [Bourgain 1999; Szemerédi 1990; Heath-Brown 1987]) one could
probably take any constant strictly less than 2/3. While this appears to be the limit in general, for
certain groups one can do better. Indeed, for Zn

3 (or, more generally, any abelian group of odd order and
bounded exponent), Roth’s original argument simplifies considerably to give the following result, which
is qualitatively due to Brown and Buhler [1984].

Theorem 1.2 Roth–Meshulam. Suppose that G=Zn
3 and A⊂G contains no proper three-term arithmetic

progressions. Then
|A| = O

(
|G|/ log |G|

)
.

The question of what the true bounds on |A| are arises in many different studies [Frankl et al. 1987;
Yekhanin and Dumer 2004; Edel 2004; Edel et al. 2007] and improving the bound is a well known open
problem, as reported in [Green 2005; Croot and Lev 2007; Tao 2008, Section 3.1]; the closest anyone has
come is in [Croot 2007; 2008]. While we are not able to make progress on this question, it is the purpose
of this paper to show an improvement for a different class of groups.

It was quite natural in Theorem 1.1 to insist that G be of odd order: in the group Zn
2 every arithmetic

progression is easily seen to be of the form (x, y, x), so no set contains a proper progression. Not all
groups of even order are as trivial as Zn

2 and, as part of a more general corpus of results, Lev resolved the
question of which abelian groups Meshulam’s theorem could be extended to.
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Theorem 1.3 [Lev 2004]. Suppose that G = Zn
4 and A ⊂ G contains no proper three-term arithmetic

progressions. Then

|A| = O
(
|G|/ log |G|

)
.

This special case of Lev’s work follows rather easily from the method used to prove the Roth–Meshulam
theorem coupled with a positivity observation. At considerable further expense we are able to establish a
minor improvement:

Theorem 1.4. Suppose that G = Zn
4 and A ⊂ G contains no proper three-term arithmetic progressions.

Then

|A| = O
(
|G|/ log |G| log log�(1) |G|

)
.

The requirement that all the elements of our progressions be distinct is essential in our work. It is easy
to see by the Cauchy–Schwarz inequality that any set A ⊂ G := Zn

4 has at least α2
|G|3/2 progressions. It

follows that if α2
|G|3/2 > |G| then A contains a progression in which not all the elements are the same;

however, this may well be a degenerate one of the form (x, y, x).
The paper now splits as follows. In Section 2, we record the necessary information about the Fourier

transform. In Section 3 and Section 4, we outline our approach to counting progressions and compare
it with the Roth–Meshulam–Lev method to give some indication of where we are able to make gains.
In Section 5 we define the notion of a family which we shall work with for the bulk of the paper and
the proof of Theorem 1.4, which are in Sections 6–11. We close in Section 12 with a conjecture and a
discussion of lower bounds.

2. The Fourier transform

We shall make considerable use of the Fourier transform, for which the classic [Rudin 1962] serves as the
standard reference. Having said this, the style of our work has more in common with [Tao and Vu 2006],
which is also to be recommended.

Suppose that G is a finite abelian group. Ĝ denotes the dual group of G, that is the group of
homomorphisms γ : G→ S1, where S1

:= {z ∈C : |z| = 1}. G is endowed with a natural Haar probability
measure, denoted PG , assigning mass |G|−1 to each element of G; we denote integration against PG by
Ex∈G and, in general, Ex∈S corresponds to integration against the probability measure PS assigning mass
|S|−1 to each s ∈ S.

For p ∈ [1,∞] we define the spaces L p(G) and `p(G) to be the vector space of functions f : G→ C

endowed with the norms

‖ f ‖L p(G) :=
(
Ex∈G | f (x)|p

)1/p and ‖ f ‖`p(G) :=

(∑
x∈G

| f (x)|p
)1/p

,

with the usual conventions when p = ∞. As vector spaces these are all the same (since G is finite),
although the norms are different. A specific consequence of this normalisation is that

〈 f, g〉L2(G) = Ex∈G f (x)g(x) and 〈 f, g〉`2(G) =
∑
x∈G

f (x)g(x).
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We define the Fourier transform in the usual way, mapping a function f ∈ L1(G) to f̂ ∈ `∞(Ĝ), where

f̂ (γ) := Ex∈G f (x)γ(x)=
1
|G|

∑
x∈G

f (x)γ(x).

The significance of the Fourier transform is, in no small part, determined by the effect it has on convolution:
recall that if f, g ∈ L1(G) then their convolution f ∗ g is defined by

( f ∗ g)(x) := Ex∈G f (x)g(y− x).

The Fourier transform functions as an algebra isomorphism from L1(G) under convolution to `∞(Ĝ)
under pointwise multiplication: f̂ ∗ g = f̂ ĝ.

(Note that both convolution and the Fourier transform are used on different groups at the same time
through this work, and although it is always made clear, the reader should be alert to this.)

We are particularly interested in finite (abelian) groups of exponent 2, all of which are isomorphic to
Zn

2 for some n; to avoid introducing an unnecessary parameter we shall refer to them in the former terms.
On these groups the characters correspond to maps x 7→ (−1)r ·x , where r · x is the usual bilinear form on
Zn

2 considered as a vector space over F2.

3. Counting progressions and analytic statement of results

It has been observed in many places that one may estimate the size of the largest subset of an abelian
group not containing a three-term arithmetic progression by establishing a lower bound on the number of
three-term arithmetic progressions. It should, therefore, come as little surprise that we are interested in
the quantity

3(A) := Ex,d∈G1A(x)1A(x+d)1A(x+2d).

which counts three-term arithmetic progressions: specifically 3(A)|G|2 is the number of three-term
arithmetic progressions in A.

Denoting by T (G) the number of trivial (that is, nonproper) three-term arithmetic progressions in G,
we see that if 3(A)|G|2 > T (G) then we must have a nontrivial three-term arithmetic progression. This
perspective is, perhaps, inspired by an equivalence established in [Varnavides 1959], but we shall not
dwell on this relationship here.

Meshulam’s theorem is a simple corollary of the following result.

Theorem 3.1. Suppose that G is a finite abelian group of odd order and A ⊂ G has density α > 0. Then

3(A)> exp(−α−O(1)).

To see how Meshulam’s theorem follows, note that if G is of odd order then (x, x + d, x + 2d) is a
proper progression if and only if d 6= 0G . Thus T (G)= |G| and so if 3(A)|G|2 > |G| then A contains a
proper progression; the result follows on inserting the bound for 3(A) from the theorem and rearranging.

Lev effectively removed the odd-order condition from Theorem 3.1:

Theorem 3.2 [Lev 2004]. Suppose that G is a finite abelian group and A ⊂ G has density α > 0. Then

3(A)> exp(−α−O(1)).
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In general abelian groups T (G) may be comparable to |G|2 which is why we are not able to conclude
Meshulam’s theorem without the odd order condition. Indeed, as noted before it is not always true.

It is instructive to consider two examples. First, in G=Zn
2 one sees that T (G)=|G|2 — all progressions

are trivial — so although we have many progressions,1 none are proper.
Second, the group G = Zn

4 has T (G) = |G|3/2 + O(|G|): any trivial progression (x, y, z) with
x + z = 2 y has x = z, x = y or y = z. In the first case this implies that x − y ∈ {x ′ ∈ G : 2x ′ = 0G}; in
the second and third cases this implies that all three elements are equal. Thus, in the first case we have
|G|

∣∣{x ′ ∈ G : 2x ′ = 0G}
∣∣ progressions and in the second and third |G| each. This leads to the claimed

bound which in turn allows us to establish Meshulam’s theorem for Zn
4 .

In this particular case, however, one may proceed directly along the lines of the proof of the Roth–
Meshulam theorem (coupled with the aforementioned positivity observation) to establish a stronger bound
than in Theorem 3.2.

Theorem 3.3. Suppose that G = Zn
4 and A ⊂ G has density α > 0. Then

3(A)> exp(−O(α−1)).

On arranging α large enough so that 3(A)|G|2 > |G|3/2+O(|G|) is guaranteed by the above theorem
we get Theorem 1.3; the main result of this paper is the following refinement of Theorem 3.3 which by a
similar arrangement implies Theorem 1.4.

Theorem 3.4. Suppose that G = Zn
4 and A ⊂ G has density α > 0. Then

3(A)> exp
(
−O(α−1 log−1/6 α−1 log log5/3 α−1)

)
.

4. Outline of the proof

Our work is strongly influenced by the original Roth–Meshulam–Lev argument; to explain our extra
purchase we shall recall a sketch of this. There are basically three ingredients. First, one has a lemma
passing from a large Fourier coefficient to increased density on a subgroup.

Lemma 4.1. Suppose that G is a group of bounded exponent, that A ⊂ G has density α > 0, and that
supγ 6=0Ĝ

|1̂A(γ)|> εα. Then there is a subgroup G ′ 6 G of bounded index such that ‖1A ∗PG ′‖L∞(G) >
α+�(αε).

The proof of this is easy and we shall use some similar results in Section 6; we make no improvement
on this ingredient and, indeed, the lemma is in many ways best possible.

The core of the argument is the following lemma and it is here that we shall do better. The lemma
expresses the fact that either a set A is “uniform” having about the right number of three-term arithmetic
progressions or else it has increased density on a subgroup of bounded index.

Lemma 4.2. Suppose that G is a group of bounded exponent and A ⊂ G has density α > 0. Then either
3(A)=�(α3) or there is a subgroup G ′ 6 G of bounded index such that ‖1A ∗PG ′‖L∞(G) > α+�(α2).

1It is easy to see this without Theorem 3.2: A ⊂ Zn
2 clearly contains |A|2 progressions since every pair (x, y) ∈ A2 generates

a triple (x, y, x) which is a three-term arithmetic progression in Zn
2 .
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Sketch of proof. By the usual application of the inversion formula one has

3(A)=
∑
γ∈Ĝ

1̂A(γ)
2 1̂A(2γ).

We write H := {γ ∈ Ĝ : 2γ = 0Ĝ}, so that

3(A)= α
∑
γ∈H

1̂A(γ)
2
+ O

(
sup
γ 6=0Ĝ

|1̂A(γ)|α
)

by Parseval’s theorem. Note that if γ ∈ H then γ is a real character, so |1̂A(γ)|
2
= 1̂A(γ)

2; thus we
certainly have ∑

γ∈H

1̂A(γ)
2
=

∑
γ∈H

|1̂A(γ)|
2 > |1̂A(0Ĝ)|

2
= α2.

This is the previously mentioned positivity observation of Lev. It follows that either 3(A)> α3/2 and
we are done or supγ 6=0Ĝ

|1̂A(γ)| =�(α
2) in which case we apply Lemma 4.1 and are done. �

Lemma 4.2 can be iterated to get Theorem 3.3, and again we shall use essentially the same style of
iteration in Section 11 to prove Theorem 3.4.

Sketch of proof of Theorem 3.3. We apply the preceding lemma repeatedly, incrementing the density at
each stage that we are in the second case of the lemma and terminating if we are in the first case.

At each stage we have α 7→ α+�(α2). Thus, after O(α−1) iterations the density will have doubled.
Since density cannot increase above 1, the iteration terminates after

O(α−1)+ O((2α)−1)+ O((4α)−1)+ · · · = O(α−1)

steps.
When the iteration terminates we have some group G ′ 6 G with |G : G ′| = exp(O(α−1)) such that

3(A)=�(α3
|G : G ′|2)= exp(O(α−1)). The result follows. �

We shall exploit some of the additional structure of Zn
4 to effectively improve Lemma 4.2 and thereby

gain our strengthening of the Roth–Meshulam–Lev argument.
In G = Zn

4 a triple (x, y, z) with x + z = 2 y must have x and z in the same coset of im 2, where 2
denotes the map x 7→ 2x . Thus it is natural to partition A by the cosets of im 2, because when counting
three-term arithmetic progressions we only ever need to consider sums x + z with x and z in the same
coset.

Since im 2 = ker 2 we shall index the elements of this partition of A by elements of ker 2 and, for
simplicity later, translate them all so that they lie in im 2. Specifically, then, we proceed as follows.

Suppose that G is a finite abelian group and A ⊂ G. Define

f A : im 2→ [0, 1]; u 7→ Ez∈G:2z=u1A(z),

and note that

3(A)= Ex,d∈G1A(x)1A(x + 2d)Ed ′∈G:2d ′=2d1A(x + d ′)

= Ex,d∈G1A(x)1A(x + 2d) f A(2(x + d))

= Ex,u∈G1A(x)1A(2u− x) f A(2u).
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Now, for each y ∈ im 2 let ty ∈ G be such that 2ty = y, and let Ay := A ∩ (ty + ker 2)− ty ⊂ ker 2.
Furthermore, for each y ∈ im 2 let τy be “translation by y”, defined by

τy : L1(im 2)→ L1(im 2); f 7→ (x 7→ f (x + y)).

In this notation we have

3(A)= Ey∈im 2Ex∈ty+ker 2,v∈im 21Ay (x − ty)1Ay (v− x − ty) f A(v)

= Ey∈im 2Ez∈ker 2,v∈im 21Ay (z)1Ay (v− y− z) f A(v)

= Ey∈im 2〈τy(1Ay ∗ 1Ay ), f A〉L2(im 2). (4-1)

Note that ∗ here denotes convolution on ker 2, since this is where the sets Ay have been arranged to live.
In Zn

4 we have im 2= ker 2, which simplifies this expression so that it only involves one group.
Our argument will consider two cases depending on whether or not f A supports large L2-mass.

(i) Large L2-mass: Suppose that ‖ f A‖
2
L2(im 2) > α

5/3. Then, on average, A has density α2/3 on the
fibres of the points in the set 2.A := {2a : a ∈ A}. We wish to estimate inner products of the form
〈τy(1Ay ∗ 1Ay ), f A〉L2(im 2), where the set Ay is the fibre of y. Plancherel’s theorem tells us that〈

τy(1Ay ∗ 1Ay ), f A
〉
L2(im 2) =

∑
γ∈îm 2

|1̂Ay (γ)|
2γ(y) f̂ A(γ)= α

2
yα+ O

(
sup
γ 6=0îm 2

| f̂ A(γ)|αy
)
,

where αy is the density of the fibre. If αy > α2/3 then we get a nontrivial character at which
f̂ A(γ) = �(α

5/3). This leads to a corresponding density increment which could only be iterated
O(α−2/3) times before the density would have to exceed 1.

(ii) Small L2-mass: Suppose that ‖ f A‖
2
L2(im 2) 6 α

5/3. Then 2.A has density at least α1/3. We now
replace f A with 12.A and find, in much the same way as above, that we have a nontrivial Fourier
mode (this time of a fibre) of size �(α5/3). If one could now perform a density increment in a way
that was simultaneous for all fibres then this could only happen O(α−2/3) times.

These two cases would combine to suggest that A contained exp
(
−O(α−2/3)

)
three-term arithmetic

progressions. Unfortunately the second is too optimistic; the content of this paper is in making a version
of the sketch above work and, in particular, dealing with the harder case of small L2-mass.

5. Families

We make a new definition for the remainder of the paper; it will help simplify some later inductive steps
and should seem fairly natural given the discussion of the previous section.

Suppose that H is a finite (abelian) group of exponent 2. A family on H is a vector A = (Ah)h∈H ,
where Ah ⊂ H for all h ∈ H ; we call the set Ah a fibre of A. We define the density function of A to be

fA : H → [0, 1]; h 7→ PH (Ah),

and refer to Ex∈H fA(x) as the density of A denoted PH (A).
We are interested in the quantity

3(A) := Eh∈H 〈τh(1Ah ∗ 1Ah ), fA〉L2(H),
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and it is useful to note that |H |43(A) is the number of quadruples (a, a′, y, h) with a, a′ ∈ Ah and
y ∈ Aa+a′−h .

If A⊂Zn
4 then the family A := (Ay)y∈im 2 defined earlier for use in (4-1) has3(A)=3(A) and density

α. Conversely, given any family A on Zn
2 we can clearly construct a set A in Zn

4 such that 3(A)=3(A);
families are simply a notational convenience. The bulk of the paper now concerns the proof that 3(A) is
large in terms of the density of A.

6. Density increments on families

The arguments of this section are straightforward and encode the various ways in which we shall try to
increment the density of our family under certain circumstances. The simplest of these is the standard
`∞-density increment lemma which follows.

Lemma 6.1. Suppose that H is a finite abelian group of exponent 2, f : H → [0, 1] and γ is a nontrivial
character. Then the subgroup H ′ := {γ}⊥ has index 2 and ‖ f ∗PH ′‖L∞(H) = Eh∈H f (h)+ | f̂ (γ)|.

Proof. Let h0 ∈ H \ H ′ so that h0+ H ′ is the coset of H ′ in H not equal to H ′. By definition

| f̂ (γ)| =
∣∣Eh∈H 1H ′(h) f (h)− Eh∈H 1h0+H ′(h) f (h)

∣∣.
We also have

Eh∈H f (h)= Eh∈H 1H ′(h) f (h)+ Eh∈H 1h0+H ′(h) f (h),

which on being added to the previous tells us that

2 max
{
Eh∈H 1H ′(h) f (h), Eh∈H 1h0+H ′(h) f (h)

}
= Eh∈H f (h)+ | f̂ (γ)|.

Since the index of H ′ in H is 2 we have 2(PH )|H ′ = PH ′ , whence

max
{
( f ∗PH ′)(0H ), ( f ∗PH ′)(h0)

}
= Eh∈H f (h)+ | f̂ (γ)|,

and the result follows. �

The next lemma is a sort of simultaneous version of the above. If a family has a large number of its
fibres having a large Fourier coefficient at the same nontrivial character γ then there is a related family
with increased density.

Lemma 6.2. Suppose that H is a finite abelian group of exponent 2, A= (Ah)h∈H is a family on H and
γ is a nontrivial character. Then there is a subgroup H ′ 6 H of index 2 and a family A′ on H ′ such that

3(A)> 2−43(A′) and PH ′(A
′)> PH (A)+ Eh∈H |1̂Ah (γ)|.

Proof. Let H ′ := {γ}⊥ and let h0 ∈ H \ H ′ so that h0+ H ′ is the coset of H ′ in H not equal to H ′. For
each h ∈ H apply Lemma 6.1 to see that

‖1Ah ∗PH ′‖L∞(H) > Eh̃∈H 1Ah (h̃)+ |1̂Ah (γ)|.

Now let xh ∈H be such that ‖1Ah∗PH ′‖L∞(H)= (1Ah∗PH ′)(xh) and define Bh := Ah∩(xh+H ′)−xh⊂H ′,
whence

PH ′(Bh)> Eh̃∈H 1Ah (h̃)+ |1̂Ah (γ)| = fA(h)+ |1̂Ah (γ)|.
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It follows that
Eh∈H PH ′(Bh)> Eh∈H fA(h)+ Eh∈H |1̂Ah (γ)|,

whence by averaging we deduce there is a coset h1+ H ′ of H such that

Eh∈h1+H ′PH ′(Bh)> Eh∈H fA(h)+ Eh∈H |1̂Ah (γ)|.

Now we define a family A′ on H ′ as follows: for each h′ ∈ H ′ let A′h′ := Bh1+h′ . Clearly A′ has the
required density; it remains to show that3(A)> 2−43(A′), which is a relatively simple counting exercise.

There are |H ′|43(A′) quadruples (a′0, a′1, y′, h′) with a′0, a′1 ∈ A′h′ and y′ ∈ A′a′0+a′1−h′ . Every such
quadruple corresponds uniquely to a quadruple

(a0, a1, y, h) := (a′0+ xh1+h′, a′1+ xh1+h′, y′+ xa′0+a′1−h′+h1, h1+ h′);

unique since there is an obvious inverse on the image taking (a0, a1, y, h) to

(a′0, a′1, y′, h′)= (a0− xh, a1− xh, y− xa0+a1−h−2xh+2h1, h− h1).

Now,
a0 = a′0+ xh1+h′ ∈ A′h + xh1+h′ = Bh1+h′ + xh1+h′ ⊂ Ah1+h′ = Ah,

and similarly a1 ∈ Ah . Furthermore

y= y′+xa′0+a′1−h′+h1 ∈ A′a′0+a′1−h′+xa′0+a′1−h′+h1= Ba′0+a′1−h′+h1+xa′0+a′1−h′+h1⊂ Aa′0+a′1−h′+h1= Aa0+a1−h,

since 2xh1+h′ = 0H and 2h1 = 0H . It follows that every quadruple (a′0, a′1, y′, h′) with a′0, a′1 ∈ A′h′ and
y′ ∈ A′a′0+a′1−h′ corresponds to a unique quadruple (a0, a1, y, h)with a0, a1 ∈ Ah and y ∈ Aa0+a1−h , whence

|H ′|43(A)6 |H |43(A).

The result follows on noting that |H |4 = 24
|H ′|4. �

The last part of this proof was a rather fiddly verification of a type which we shall have to do repeatedly,
and while we were comprehensive in the details above, in the future we shall include fewer of them.

The final lemma of the section takes a family where the density function is nonuniform and produces a
new family with a larger density, again very much in the spirit of the previous two lemmas.

Lemma 6.3. Suppose that H is a finite abelian group of exponent 2, A= (Ah)h∈H is a family on H and
γ is a nontrivial character. Then there is a subgroup H ′ 6 H of index 2 and a family A′ on H ′ such that

3(A)> 2−43(A′) and PH ′(A
′)> PH (A)+ | f̂A(γ)|.

Proof. Let H ′ := {γ}⊥ and let h0 ∈ H \H ′ so that h0+H ′ is the coset of H ′ in H not equal to H ′. Apply
Lemma 6.1 so that we have

‖ fA ∗PH ′‖L∞(H) = PH (A)+ | f̂A(γ)|.

Let h1 ∈ H ′ be such that ( fA ∗PH ′)(h1) = ‖ fA ∗PH ′‖L∞(H). Now, define a family A′ as follows: for
each h′ ∈ H ′

(i) if Ah1+h′ ∩ H ′ is larger than Ah1+h′ ∩ (h0+ H ′) then put xh1+h′ := 0H and A′h′ := Ah1+h′ ∩ H ′;

(ii) otherwise put xh1+h′ := h0 and A′h′ := Ah1+h′ ∩ (h0+ H ′)− h0.
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By averaging we have PH ′(A′h′)> PH (Ah1+h′), whence

Eh′∈H ′PH ′(A′h′)> ( fA ∗PH ′)(h1)= PH (A)+ | f̂A(γ)|,

which yields the required density condition. It remains, as before, to show that 3(A)> 2−43(A′); we
proceed as in the previous lemma.

There are |H ′|43(A′) quadruples (a′0, a′1, y′, h′) with a′0, a′1 ∈ A′h′ and y′ ∈ A′a′0+a′1−h′ . Every such
quadruple corresponds uniquely to a quadruple

(a0, a1, y, h) := (a′0+ xh1+h′, a′1+ xh1+h′, y′+ xa′0+a′1−h′+h1, h1+ h′)

with a0, a1 ∈ Ah and y ∈ Aa0+a1−h , whence |H ′|43(A) 6 |H |43(A) and the result follows on noting
that |H |4 = 24

|H ′|4. �

7. Families with large mean square density

In this section we show how a family A for which ‖ fA‖L2(H) is large (compared with its trivial lower
bound of PH (A)

2) has 3(A) large. The basic idea is that if ‖ fA‖L2(H) is large then most of the fibres
Ah have large density and so are more easily “uniformised”. When they are uniform the count 3(A) is
easily seen to be large.

It is instructive to consider a simplified situation. Suppose that A is a family which is assumed to
have fibres of density either 0 or δ and the support of fA has density σ . This family has density δσ and
‖ fA‖

2
L2(H) = δ

2σ , which is large compared with the trivial lower bound of (δσ )2 if σ is small. Now,
the standard Roth–Meshulam argument can be used to show that 3(A) = exp

(
O(δ−1σ−1)

)
, and the

proposition below asserts that this can be improved when σ is small.

Proposition 7.1. Suppose that H is a finite abelian group of exponent 2 and A= (Ah)h∈H is a family on
H such that fA = δ1S for some δ ∈ (0, 1] and S ⊂ H of density σ . Then 3(A)= exp

(
−O(δ−1 log σ−1)

)
.

Naturally the proof is iterative with the following lemma acting as the driver.

Lemma 7.2. Suppose that H is a finite abelian group of exponent 2, A= (Ah)h∈H is a family on H and
fA = δ1S for some δ ∈ (0, 1] and S ⊂ H of density σ . Then either

3(A)> δ3σ 2/2

or there is a subgroup H ′ 6 H of index 2, a family A′ on H ′ and set S′ ⊂ H ′ such that fA′ = δ1S′ and

PH ′(S′)> σ(1+ δ/2) and 3(A)> 2−43(A′).

Proof. Since fA = δ1S we have

3(A)= δEh∈H 〈τh(1Ah ∗ 1Ah ), 1S〉L2(H).

Applying Plancherel’s theorem to the inner products we get

3(A)= δEh∈H

∑
γ∈Ĥ

|1̂Ah (γ)|
21̂S(γ)γ(h).
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The triangle inequality may be used on these inner sums to separate out the trivial mode. Indeed, since
1̂Ah (0Ĥ )= fA(h) and 1̂S(0Ĥ )= σ we get, after a little manipulation,

Eh∈H

∑
γ 6=0Ĥ

|1̂Ah (γ)|
2
|1̂S(γ)|> Eh∈H fA(h)2σ − δ−13(A)= δ2σ 2

− δ−13(A).

Now, we are done unless 3(A) 6 δ3σ 2/2 (in fact, unless 3(A) < δ3σ 2/2, but we shall not use this),
whence

Eh∈H

∑
γ 6=0Ĥ

|1̂Ah (γ)|
2
|1̂S(γ)|> δ

2σ 2/2.

On the other hand,

Eh∈H

∑
γ 6=0Ĥ

|1̂Ah (γ)|
2
= Eh∈H ( fA(h)− fA(h)2)= δ(1− δ)σ 6 δσ,

by Parseval’s theorem. Using this with the triangle inequality in the previous expression tells us that S is
linearly biased:

sup
γ 6=0Ĥ

|1̂S(γ)|> δσ/2.

Thus, by Lemma 6.1 there is a subgroup H ′ 6 H of index 2 such that

‖1S ∗PH ′‖L∞(H) > σ(1+ δ/2). (7-1)

Let h1 ∈ H be such that (1S ∗PH ′)(h1)=‖1S ∗PH ′‖L∞(H) and define a family A′ := (A′h′)h′∈H ′ as follows.
For each h′ ∈ H ′ let xh′+h1 be such that (1Ah′+h1

∗PH ′)(xh′+h1) is maximal. If (1Ah′+h1
∗PH ′)(xh′+h1) > 0

then
0< (1Ah′+h1

∗PH ′)(xh′+h1)/26 fA(h′+ h1)= δ1S(h′+ h1),

whence
1Ah′+h1

∗PH ′(xh′+h1)> Eh∈H 1Ah′+h1
(h)= fA(h′+ h1)= δ,

and Ah′+h1 ∩ (xh′+h1 + H ′)− xh′+h1 contains a set of density δ ; let A′h′ be such a set. If

(1Ah′+h1
∗PH ′)(xh′+h1)= 0

then let A′h′ = ∅. Finally, we write S′ := S ∩ (h1+ H ′)− h1 and it remains to check that we have the
required properties.

First, note that
fA′(h′)= PH ′(A′h′)6 2PH (Ah′+h1)= 2 fA(h′+ h1),

thus if fA′(h′) > 0 then h′+ h1 ∈ S and so h′ ∈ S′. Similarly,

fA′(h′)= PH ′(A′h′)> PH (Ah′+h1)= 2 fA(h′+ h1),

so if fA′(h′)= 0 then h′+ h1 6∈ S, whence h′ 6∈ S′. By design, fA′ takes only the values 0 and δ and so
we have the representation fA′ = δ1S′ .

Secondly, we have PH ′(S′)= 1S ∗PH ′(h1), whence PH ′(S′)> σ(1+ δ/2) by (7-1). Lastly, we check
that 3(A)> 2−43(A′) in the usual fashion.
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There are |H ′|43(A′) quadruples (a′0, a′1, y′, h′) with a′0, a′1 ∈ A′h′ and y′ ∈ A′a′0+a′1−h′ . Every such
quadruple corresponds uniquely to a quadruple

(a0, a1, y, h) := (a′0+ xh1+h′, a′1+ xh1+h′, y′+ xa′0+a′1−h′+h1, h1+ h′)

with a0, a1 ∈ Ah and y ∈ Aa0+a1−h , whence |H ′|43(A) 6 |H |43(A) and the result follows on noting
that |H |4 = 24

|H ′|4. �

Proof of Proposition 7.1. Let H0 := H , A0 :=A, α0 := δσ , S0 := S and σ0 := σ . Suppose that we have a
finite abelian group Hi of exponent 2 with a family Ai on Hi of density αi and a set Si of density σi such
that fAi = δ1Si . Apply Lemma 7.2 to see that either

3(Ai )> δ
3σ 2

i /2,

or there is a subgroup Hi+1 of index 2 in Hi , a family Ai+1 and a set Si+1 such that

fAi+1 = δ1Si+1, σi+1 > σi (1+ δ/2) and 3(Ai )> 2−43(Ai+1).

Since σi 6 1 we see that this iteration must terminate at some stage i with (1+ δ/2)i 6 σ−1, that is, with
i 6 2δ−1 log σ−1. It follows that

3(A)> 2−8δ−1 log σ−1
δ3σ 2/2,

which is the result. �

Proposition 7.1 will be used again in Section 9 but it may seem like the rather special form of the family
considered is too restrictive. However, a standard dyadic decomposition lets us apply this proposition to
an arbitrary family; we gain precisely in the case when ‖ fA‖

2
L2(H)α

−2
→∞.

Corollary 7.3. Suppose that H is a finite abelian group of exponent 2, A= (Ah)h∈H is a family on H of
density α and ‖ fA‖L2(H) = Kα2 for some K > 2. Then

3(A)= exp
(
−O(α−1K−1 log2 K )

)
.

Proof. Let Si :=
{
h ∈ H : 2−(i+1) 6 fA(h)6 2−i

}
and S′ :=

{
h ∈ H : fA(h)6 α/2

}
. We may use these

sets to partition the range of summation in ‖ fA‖
2
L2(H): by the triangle inequality∑

i6dlog2 α
−1e

2−2i PH (Si )+ (α/2)2 > ‖ fA‖
2
L2(H).

The Cauchy–Schwarz inequality tells us that ‖ fA‖
2
L2(H) > α

2, whence∑
i6dlog2 α

−1e

2−2i PH (Si )> 3‖ fA‖
2
L2(H)/4. (7-2)

Now let ε ∈ (0, 1] be a parameter to be chosen later and note that∑
i6dlog2 α

−1e

2εi 6 2α−ε
∑

i6dlog2 α
−1e

2ε(i−dlog2 α
−1
e) 6 2α−ε

∞∑
j=0

2−ε j
=

2αε

1− 2−ε
6 2ε−1α−ε .
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Returning to (7-2) we see that ∑
i6dlog2 α

−1e

2εi 2−(2+ε)i PH (Si ) > 3‖ fA‖
2
L2(H)/4,

and so by averaging from our previous calculation there is some i 6 dlog2 α
−1
e such that

(2ε−1α−ε) 2−(2+ε)i PH (Si )> 3‖ fA‖
2
L2(H)/4. (7-3)

Moreover 2−(i+1)PH (Si )6 Eh∈H fA(h)= α; so, recalling that ‖ fA‖
2
L2(H) = Kα2 we have

2−(1+ε)i > 3εKα1+ε/16.

If we take ε = 1/(1+ log K ), we get

2−(i+1)
=�(αK/ log K ). (7-4)

Let A′ be a family defined as follows. If h ∈ Si then A′h is a subset of Ah of density 2−(i+1) and A′h is
empty otherwise. By comparison of the terms in 3(A) with those in 3(A′) we see that 3(A)>3(A′).

We now apply Proposition 7.1 to A′; it is easy to see from (7-3) and (7-4) that δ−1
= 2(i+1)

=

O(α−1K−1 log K ) and

log σ−1
= log PH (Si )

−1
= O

(
log((δα−1)2+εK−1 log K )

)
= O(log K δα−1).

The result follows on noting that

3(A)= exp
(
−O(δ−1 log K δα−1)

)
increases as δ decreases. �

It should be noted that one cannot completely remove the logarithmic term in this corollary. We might
have K ∼ α−1, but 3(A) may still be exp(−�(log K )). To see this consider, for example, the family A,
where every fibre Ah is a random set of density α. Of course, the logarithmic power will not significantly
affect our final result and is only critical when K is much smaller than α−1, in which case it may be
possible to remove it entirely.

8. A quasirandom Balog–Szemerédi–Gowers–Freı̆man theorem

The Balog–Szemerédi–Gowers–Freı̆man theorem is a now ubiquitous result in additive combinatorics
introduced by Gowers [1998]. It combines (a refined proof of) the Balog–Szemerédi theorem [1994] with
the structure theorem of Freı̆man [1973] concerning sets with small sum set. Since we are working in
finite abelian groups of exponent 2 we actually require the far easier torsion version of Freı̆man’s theorem
proved in [Ruzsa 1999]. In fact, in this setting a version of the Balog–Szemerédi–Gowers–Freı̆man
theorem is known with relatively good bounds.

Theorem 8.1 [Green and Tao 2009, Theorem 1.7]. Suppose that H is a group of exponent 2, A ⊂ H has
density α and ‖1A ∗ 1A‖

2
L2(H) > cα3. Then there is an element x ∈ H and a subgroup H ′ 6 H such that

PH (H ′)= exp
(
−O(c−1 log c−1)

)
α and (1A ∗PH ′)(x)> c/2.
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We actually require a slightly modified version of this result which also ensures that A′ behaves
uniformly on H ′. This can essentially be read out of the proof in [Green and Tao 2009]; however, for
completeness, we include a “decoupled” proof here.

Corollary 8.2. Suppose that H is a group of exponent 2, A⊂ H has density α and ‖1A ∗1A‖
2
L2(H) > cα3,

and ε ∈ (0, 1] is a parameter. Then there is an element x ∈ H and a subgroup H ′ 6 H such that

PH (H ′)= exp
(
−O((c−1

+ ε−1) log c−1)
)
α and (1A ∗PH ′)(x)> c/2,

and writing A′ := A∩ (x + H ′)− x ⊂ H ′ one has

sup
γ 6=0Ĥ ′

|1̂A′(γ)|6 εPH ′(A′).

Proof. We apply Theorem 8.1 to get an element x0 ∈ H and a subgroup H0 6 H such that

PH (H0)= exp
(
−O(c−1 log c−1)

)
and (1A ∗PH0)(x0)> c/2.

Put A0 := A∩(x0+H0)−x0⊂ H0 and α0 :=PH0(A0). Now, suppose that we have been given an element
xi ∈ H , a subgroup Hi and a subset Ai of Hi of density αi . If

sup
γ 6=0Ĥi

|1̂Ai (γ)|6 εαi , (8-1)

then we terminate the iteration; otherwise we apply Lemma 6.1 to get a subgroup Hi+1 of index 2 in Hi

such that
‖1Ai∗PHi+1‖L∞(Hi ) > αi (1+ ε).

Let xi+1 be such that (1Ai∗PHi+1)(xi+1)=‖1Ai∗PHi+1‖L∞(Hi ), and Ai+1=Ai∩(xi+1+Hi+1)−xi+1⊂Hi+1.
Since αi 6 1 we see that this iteration must terminate at some stage i with (1+ ε)i 6 α−1

0 , that is,
with i 6 ε−1 logα−1

0 = O(ε−1 log c−1). We put x := x0 + · · · + xi and H ′ := Hi so that Hi has index
O(ε−1 log c−1) in H0 and A′ = Ai has density at least c/2. Thus

PH (H ′)= PH (H0)PH0(Hk)= exp
(
−O((c−1

+ ε−1) log c−1)
)
α,

and it remains to note that the final condition of the corollary holds in view of the fact that we must have
(8-1) for the iteration to terminate. �

The iteration in this proof is essentially the iteration at the core of the usual Roth–Meshulam argument
(given in the sketch proof in Section 4) and consequently if one could improve the ε-dependence in the
above result one could probably improve the Roth–Meshulam argument directly. Unfortunately in our
use of this corollary ε and c are comparable; thus, even in the presence of Marton’s conjecture, more
commonly called the polynomial Freı̆man–Ruzsa conjecture [Green 2005], we would see no significant
improvement in our final result.

9. Families with high fibered energy

In this section we use our previous work to show that if a family A has large additive energy in its fibres
then 3(A) is large. The actual statement of the result is rather technical so we take a moment now to
sketch the approach.
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The key tool is the corollary of the Balog–Szemerédi–Gowers–Freı̆man theorem established in Section
8. This may be applied individually to the fibres of A in each case, producing a subgroup on which the
fibre is very dense. If all of these subgroups are very different then it is easy to see that 3(A) must be
large; if not then by expanding them a little bit we find one subgroup on which a lot of fibres of A are
very dense and we may use Proposition 7.1 to get that 3(A) is large.

Concretely, then, the purpose of this section is to prove the following.

Lemma 9.1. Suppose that H is a finite abelian group of exponent 2, and A= (Ah)h∈H is a family on H
of density α such that

sup
γ 6=0Ĥ

| f̂A(γ)|6 Lα2,

for some parameter L > 1. Suppose further that S is a set of density σ and K > 1 is a parameter such that

(i) Kα > fA(h)> Kα/2 for all h ∈ S;

(ii) and ‖1Ah ∗ 1Ah‖
2
L2(H) > c fA(h)3 for all h ∈ S.

Then

3(A)> exp
(
− O

(
L(log2 α−1

+ log σ−1) exp
(
O
(
(c−1
+ K 1/2c−1/2) log c−1)))).

Proof. By Corollary 8.2 (with ε = 2−2√c/K ) we see that for each h ∈ S there is an element xh ∈ H and
a subgroup Hh 6 H such that the set A′h := Ah ∩ (xh + Hh)− xh has

PH (Hh)= exp
(
−O

(
(c−1
+ K 1/2c−1/2) log c−1)) fA(h) and PHh (A

′

h)> c/2,

and, furthermore,
sup
γ 6=0Ĥh

|1̂A′h (γ)|6 εPHh (A
′

h). (9-1)

Now, let S0 := {h ∈ S : ( fA ∗PHh )(h) > α/2} and S1 := S \ S0; we shall now split into two cases
according to which of S0 or S1 is larger.

Case 1. Suppose that PH (S0)> σ/2. Then

3(A)> α3σ exp
(
−O

(
(c−1
+ K 1/2c−1/2) log c−1)).

Proof. By nonnegativity of the terms in 3(A) we have

3(A)> Eh∈H 1S0(h)〈τh(1Ah ∗ 1Ah ), fA〉L2(H).

We analyse these inner products individually. Suppose that h ∈ S0 and note that〈
τh(1Ah ∗ 1Ah ), fA

〉
L2(H) > PH (Hh)

2
〈τh(1A′h ∗ 1A′h ), fA〉L2(h+Hh).

As usual this inner product is analysed using the Fourier transform: by Plancherel’s theorem we have〈
1A′h ∗ 1A′h , τ−h( fA)

〉
L2(Hh)

=

∑
γ∈Ĥh

|1̂A′h (γ)|
2 ̂τ−h( fA)(γ).
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Separating out the contribution from the trivial character we get〈
1A′h ∗ 1A′h , τ−h( fA)

〉
L2(Hh)

> PHh (A
′

h)
2( fA ∗PHh )(h)−

∑
γ 6=0Ĥh

∣∣1̂A′h (γ)
∣∣2 ∣∣ ̂τ−h( fA)(γ)

∣∣. (9-2)

This last term sum can be estimated as follows using Hölder’s inequality and the Cauchy–Schwarz
inequality:∑

γ 6=0Ĥh

∣∣1̂A′h (γ)
∣∣2 ∣∣ ̂τ−h( fA)(γ)

∣∣6 sup
γ 6=0Ĥh

∣∣1̂A′h (γ)
∣∣ ∑
γ∈Ĥh

∣∣1̂A′h (γ)
∣∣ ∣∣ ̂τ−h( fA)(γ)

∣∣
6 sup
γ 6=0Ĥh

∣∣1̂A′h (γ)
∣∣ ( ∑

γ∈Ĥh

∣∣1̂A′h (γ)
∣∣2)1/2( ∑

γ∈Ĥh

∣∣ ̂τ−h( fA)(γ)
∣∣2)1/2

By Parseval’s theorem,∑
γ∈Ĥh

∣∣1̂A′h (γ)
∣∣2 = PHh (A

′

h) and
∑
γ∈Ĥh

∣∣ ̂τ−h( fA)(γ)
∣∣2 = ∣∣ fA

∣∣2
L2(h+Hh)

,

and combining all this with (9-1) tells us that∑
γ 6=0Ĥh

∣∣1̂A′h (γ)
∣∣2 ∣∣ ̂τ−h( fA)(γ)

∣∣ 6 εPHh (A
′

h)
3/2
‖ fA‖L2(h+Hh) 6 εPHh (A

′

h)
3/2
√

2K ( fA ∗PHh )(h).

The last inequality here follows from the fact that h ∈ S0 ensures that fA(h)6Kα and ( fA∗PHh )(h)>α/2.
Finally, our choice of ε tells us that∑

γ 6=0Ĥh

|1̂A′h (γ)|
2
| ̂τ−h( fA)(γ)|6 PHh (A

′

h)
2( fA ∗PHh )(h)/2,

whence, inserting this in (9-2), we get〈
1A′h ∗ 1A′h , τ−h( fA)

〉
L2(Hh)

> PHh (A
′

h)
2( fA ∗PHh )(h)/2.

Thus, our earlier averaging tells us that

3(A)> Eh∈H 1S0(h)PH (Hh)
2 PHh (A

′

h)
2( fA ∗PHh )(h)/2,

and hence immediately that

3(A)> 2−3c2αEh∈H 1S0(h)PH (Hh)
2
= α3σ exp

(
−O

(
(c−1
+ K 1/2c−1/2) log c−1)).

The case is complete. �

Case 2. Suppose that PH (S1)> σ/2. Then

3(A)> exp
(
− O

(
L(log2 α−1

+ log σ−1) exp
(
O
(
(c−1
+ K 1/2c−1/2) log c−1)))).

Proof. Suppose that h ∈ S1 so that ( fA ∗PHh )(h) 6 α/2. By the Fourier inversion formula we have∑
γ∈H⊥h

f̂A(γ)γ(h) = ( fA ∗PHh )(h) 6 α/2.
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Separating out the trivial mode where f̂A(0Ĥ ) = α and applying the triangle inequality we have∑
0Ĥ 6=γ∈H⊥h

| f̂A(γ)| > α/2.

Write L′ := {γ : | f̂A(γ)| > PH (Hh)α/4} and note that since |H⊥h | = PH (Hh)
−1 we have∑

0Ĥ 6=γ∈L′∩H⊥h

| f̂A(γ)| >
∑

0Ĥ 6=γ∈H⊥h

| f̂A(γ)| −
∑

γ∈H⊥h \L
′

| f̂A(γ)| > α/4.

Since supγ 6=0Ĥ
| f̂A(γ)| 6 Lα2 we conclude that

|L′ ∩ H⊥h | > α−1/4L .

Let Ih ⊂ L′ ∩ H⊥h be a set of d := blog2(α
−1/4L)c independent elements — possible since 2d 6 |L′ ∩

H⊥h |— and put H ′h := I⊥h . Since Ih ⊂ H⊥h , it follows that H ′h = I⊥h ⊃ Hh , whence Hh 6 H ′h . Since
the elements of Ih are independent, we have

PH (H ′h) = |Ih|
−1
= 2−d 6 8Lα.

Since h ∈ S1 we also have

PH (Hh) = exp
(
−O

(
(c−1
+ K 1/2c−1/2) log c−1))α,

whence
|H ′h : Hh| 6 L exp

(
O
(
(c−1
+ K 1/2c−1/2) log c−1)),

and it follows that
PH ′h (A

′

h) > L−1 exp
(
−O

(
(c−1
+ K 1/2c−1/2) log c−1)).

Thus there is some δ with δ |H | an integer and

δ > L−1 exp
(
−O

(
(c−1
+ K 1/2c−1/2) log c−1))

such that PH ′h (A
′

h) > δ for all h ∈ S1; for each h ∈ S1 let A′′h be a subset of A′h of density δ .
Each H ′h is defined by the set Ih ⊂ L′ and there are at most

(
|L′|

d

)
such sets. Hence there is some space

H ′ 6 H such that H ′h = H ′ for at least a proportion
(
|L′|

d

)−1
of the elements of S1; call this set S2.

We now turn to estimating the density of S2. First, by Parseval’s theorem

|L′|(PH (Hh)α/4)2 6
∑
γ∈Ĥ

| f̂A(γ)|
2
= ‖ fA‖

2
L2(H) 6 Kα2.

It follows from the lower bounds in PH (Hh) that

|L′| 6 α−2 exp
(

O
(
(c−1
+ K 1/2c−1/2) log c−1)),

whence (
|L′|

d

)
6 exp

(
O
(
(c−1
+ K 1/2c−1/2) log2 α−1 log c−1)).
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This tells us that

PH (S2) > PH (S1)
/(
|L′|

d

)
> σ exp

(
−O

(
(c−1
+ K 1/2c−1/2) log2 α−1 log c−1

))
.

Finally, by averaging let h1+ H ′ be a coset of H ′ on which S2 has at least the above density and define a
new family A′′′ on H ′ as follows. For each h′ ∈ S2− h1, let A′′′h′ := A′′h1+h′ ; if h′ ∈ H ′ \ (S2− h1) then
let A′′′h′ := ∅. By the definition of S2 for each h′ ∈ S2−h1 A′′h1+h′ is a subset of H ′ = H ′h1+h′ of density
δ . Thus by Proposition 7.1 we have

3(A′′′) = exp
(
−O

(
δ−1(log2 α−1(c−1

+ K 1/2c−1/2) log c−1
+ log σ−1)))

= exp
(
−O

(
L(log2 α−1

+ log σ−1) exp
(
O
(
(c−1
+ K 1/2c−1/2) log c−1)))).

Finally it remains for us to check that |H |43(A) > |H ′|43(A′′′) from which the case follows; we proceed
in the usual manner.

There are |H ′|43(A′) quadruples (a′0, a′1, y′, h′) with a′0, a′1 ∈ A′′′h′ and y′ ∈ A′′′a′0+a′1−h′ . Every such
quadruple corresponds uniquely to a quadruple

(a0, a1, y, h) := (a′0+ xh1+h′, a′1+ xh1+h′, y′+ xa′0+a′1−h′+h1, h1+ h′)

with a0, a1 ∈ Ah and y ∈ Aa0+a1−h , whence |H ′|43(A) 6 |H |43(A) and the result follows. �

Having concluded both cases it remains to note that certainly one of PH (S1) and PH (S0) is at least
σ/2 and so at least one of the cases occurs. �

10. Families with small mean square density

In this section we use our previous work to establish the following lemma which is the main driver in the
proof of Theorem 3.4 in the case when the density function has small mean square.

Lemma 10.1. Suppose that H is a finite abelian group of exponent 2, A = (Ah)h∈H is a family on H
of density α, ‖ fA‖

2
L2(H) = Kα2 and L >max{K , 2} is a parameter. Then there is an absolute constant

CS > 0 such that either

3(A)> exp
(
−(1+ log2 α−1) exp(CSL3 log2 L)

)
or there is a subgroup H ′ 6 H of index 2 and a family A′ on H ′ such that

PH ′(A
′)> α+ Lα2/4K and 3(A)> 2−43(A′).

Proof. Let SL := {h ∈ H : fA(h)> 4Kα} and SS := {h ∈ H : fA(h)6 α/4}. Now,

Eh∈H 1SL (h) fA(h)6
1

4Kα
Eh∈H 1SL (h) fA(h)2 6

α

4
,

and
Eh∈H 1SS (h) fA(h)6 α/4
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trivially, whence, putting S := H \ (SL ∪ SS), we have that

Eh∈H 1S(h) fA(h)> α/2.

Let Si := {h ∈ S : 2i−2α 6 fA(h)6 2i−1α} and note that∑
i6dlog K e+1

Eh∈H 1Si (h) 2i−1α > α/2,

and thus by averaging there is some i 6 dlog K e+ 1 such that

Eh∈H 1Si (h) 2i−1α > α/2
(
dlog K e+ 1

)
.

As a byproduct note that PH (Si )=�(1/K (1+ log K )). We write Ki = 2i−1, so that

Kiα > fA(h)> Kiα/2 for all h ∈ Si

and
Eh∈H 1Si (h) fA(h)=�

(
α/(1+ log K )

)
.

Now suppose that Eh∈H 1Si (h)|1̂Ah (γ)|
2 > Lα3. Since |1̂Ah (γ)|6 4Kα if h ∈ S, we then conclude that

Eh∈H 1Si (h)|1̂Ah (γ)|> Lα2/4K .

Applying Lemma 6.2 we find we are in the second case of Lemma 10.1. Similarly, by Lemma 6.3 we are
done if | f̂A(γ)|> Lα2/4K . Thus we may assume that

sup
γ 6=0Ĥ

Eh∈H 1Si (h)|1̂Ah (γ)|
2 6 Lα3, (10-1)

sup
γ 6=0Ĥ

Eh∈H 1Si (h)|1̂Ah (γ)|6 Lα2/4K , (10-2)

sup
γ 6=0Ĥ

| f̂A(γ)|6 Lα2/4K . (10-3)

As usual, by the nonnegativity of the terms in 3(A), we have

3(A)> Eh∈H 1Si (h)
〈
τh(1Ah ∗ 1Ah ), fA

〉
L2(H).

We apply Plancherel’s theorem to the inner products on the right to get〈
τh(1Ah ∗ 1Ah ), fA

〉
L2(H) =

∑
γ∈Ĥ

|1̂Ah (γ)|
2 f̂A(γ)γ(h).

Separating out the trivial mode and applying the triangle inequality then tells us that〈
τh(1Ah ∗ 1Ah ), fA

〉
L2(H) > fA(h)2α−

∑
γ 6=0Ĥ

|1̂Ah (γ)|
2
| f̂A(γ)|.

Thus ∑
γ 6=0Ĥ

Eh∈H 1Si (h)|1̂Ah (γ)|
2
| f̂A(γ)|> αEh∈H 1Si (h) fA(h)2−3(A).

It follows that either
3(A)> αEh∈H 1Si (h) fA(h)2/2=�

(
α3/(1+ log K )

)
,
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and we are done or ∑
γ 6=0Ĥ

Eh∈H 1Si (h)|1̂Ah (γ)|
2
| f̂A(γ)|> αEh∈H 1Si (h) fA(h)2/2, (10-4)

which we now assume. Let

L :=

{
γ ∈ Ĥ : Eh∈H 1Si (h)|1̂Ah (γ)|

2 >
(Eh∈H 1Si (h) fA(h)2)2

24K Eh∈H 1Si (h) fA(h)

}
.

We shall now show that∑
γ 6∈L

Eh∈H 1Si (h)|1̂Ah (γ)|
2
| f̂A(γ)|6 αEh∈H 1Si (h) fA(h)2/4. (10-5)

We apply the triangle inequality to the left-hand side after swapping the order of summation to get that it
is at most

sup
γ 6∈L

(
Eh∈H 1Si (h)|1̂Ah (γ)|

2)1/2 ∑
γ∈Ĥ

(
Eh∈H 1Si (h)|1̂Ah (γ)|

2)1/2
| f̂A(γ)|.

Now apply the Cauchy–Schwarz inequality to this to see that the sum is at most(∑
γ∈Ĥ

Eh∈H 1Si (h)|1̂Ah (γ)|
2
)1/2(∑

γ∈Ĥ

| f̂A(γ)|
2
)1/2

=

√
Eh∈H 1Si (h) fA(h)Kα2

by Parseval’s theorem, after interchanging the order of summation again. The bound (10-5) now follows
from the definition of L. Combining this with (10-4) we see that∑

0Ĥ 6=γ∈L

Eh∈H 1Si (h)
∣∣1̂Ah (γ)

∣∣2 ∣∣ f̂A(γ)
∣∣> αEh∈H 1Si (h) fA(h)2/4=�

(
Kiα

3/(1+ log K )
)
.

Write
L j :=

{
γ ∈ Ĥ : 2− j Lα3 > Eh∈H 1Si (h)|1̂Ah (γ)|

2 > 2−( j+1)Lα3},
and note that by (10-1) we have L \ {0Ĥ } =

⋃ j0
j=0 L j , where j0 is the smallest integer such that

2−( j0+1)Lα3 6
(
Eh∈H 1Si (h) fA(h)2

)2
/24K Eh∈H 1Si (h) fA(h);

crucially,
j0 = O(log L) and 2−( j0+1)Lα3

=�
(
K 2

i α
3/K (1+ log K )

)
.

It follows by averaging (and since L >max{2, K }) that there is some j 6 j0 such that∑
0Ĥ 6=γ∈L j

Eh∈H 1Si (h)|1̂Ah (γ)|
2
| f̂A(γ)| =�

(
Kiα

3/(1+ log K ) log L
)
.

Inserting (10-3) and dividing gives that∑
0Ĥ 6=γ∈L j

Eh∈H 1Si (h)|1̂Ah (γ)|
2
=�

(
Ki Kα/(1+ log K )L log L

)
.
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Now, the usual convexity of L p-norms tells us that

Eh∈H 1Si (h)|1̂Ah (γ)|
2 6

(
Eh∈H 1Si (h)|1̂Ah (γ)|

)2/3(
Eh∈H 1Si (h)|1̂Ah (γ)|

4)1/3
.

Thus, by (10-2) we have (
Eh∈H 1Si (h)|1̂Ah (γ)|

2)3
6

L2α4

24K 2 Eh∈H 1Si (h)|1̂Ah (γ)|
4.

Dividing out and summing over L j , using the fact that it is a dyadic range, tells us that∑
γ∈Ĥ

Eh∈H 1Si (h)|1̂Ah (γ)|
4
=�

(
α3K 5

i K/(1+ log K )3L3 log L
)
.

Thus Parseval’s theorem reveals that

Eh∈H 1Si (h)‖1Ah ∗ 1Ah‖
2
L2(H) =�

(
α3K 5

i K/(1+ log K )3L3 log L
)
.

Finally, let
S′i :=

{
h ∈ Si : ‖1Ah ∗ 1Ah‖

2
L2(H) > Eh∈H 1Si (h)‖1Ah ∗ 1Ah‖

2
L2(H)/2

}
and note that if h ∈ S′i then fA(h)6 Kiα, whence

‖1Ah ∗ 1Ah‖
2
L2(H) =�

(
α3K 2

i K/(1+ log K )3L3 log L
)
.

Furthermore
Eh∈H 1S′i (h)‖1Ah ∗ 1Ah‖

2
L2(H) >�

(
α3K 5

i K/(1+ log K )3L3 log L
)
,

whence PH (S)=�(L4). We now apply Lemma 9.1 to see that

3(A)> exp
(
−(1+ log2 α−1) exp

(
O
(
K−1(1+ log K )3L3 log L

)))
.

However, K−1(1+ log K )3 = O(1), whence we get the result. �

It may seem bizarre to have thrown away the extra strength of the K−1(1+ log K )3 term at the very
end of this proof. However, in applications we shall have a dichotomy between the case when K is large
and when K is small. In the latter we shall not, in fact, be able to guarantee that K is much bigger than 1
whence the above estimate of K−1(1+ log K )3 = O(1) is tight.

11. Proof of Theorem 3.4

As will have become clear the proof of Theorem 3.4 is iterative and is driven by Lemma 10.1 and Corollary
7.3.

Proof of Theorem 3.4. Let H0 := im 2 and A0 be the family corresponding to the set A, which has
density α0 = α. We shall define a sequence of families (Ai )i on subgroups (Hi )i with density αi and the
properties:

3(Ai+1)6 2−43(Ai )6 2−4i3(A), αi+1 > αi
(
1+�(αi log1/6 α−1

i log log−5/3 α−1
i )

)
.
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It is useful to define auxiliary variables Ki and L i such that

CSL3
i log2 L i = logα−1

i /2 and Ki := α
−2
i ‖ fAi‖

2
L2(Hi )

.

Suppose that we are at stage i of the iteration; we consider two cases:

(i) If L i 6 2+ K 2
i /(1+ log Ki )

2 then apply Corollary 7.3 and terminate the iteration with

3(Ai )= exp
(
−O(α−1

i K−1
i log2 Ki )

)
= exp

(
−O(α−1 log−1/6 α−1 log log5/3 α−1)

)
.

(ii) If L i > 2 + K 2
i /(1 + log Ki )

2 then apply Lemma 10.1 with parameter L i . If we have the first
conclusion of the lemma then

3(Ai )> exp
(
−(1+ logα−1

i )2 exp(CSL3
i log2 L i )

)
.

In view of the definition of L i and the fact that αi > α we conclude that exp(CSL3
i log2 L i )6 α−1/2,

whence we certainly have

3(Ai )= exp
(
−O(α−1 log−1/6 α−1 log log5/3 α−1)

)
again. The other conclusion of Lemma 10.1 tells us that we have a new subgroup Hi+1 6 Hi , and a
family Ai+1 on Hi+1 with

αi+1 > αi (1+ (L i/4Ki )α
−1) and 3(Ai+1)> 2−43(Ai );

this has the desired property for the iteration.

In view of the lower bound on αi we see that the density doubles in

F(α)= O(α−1 log−1/6 α−1 log log5/3 α−1)

steps, whence the iteration must terminate in at most F(α)+ F(2α)+ F(22α)+ · · · steps. Of course
F(2α′)6 F(α′)/

√
2 whenever α′ ∈ (0, c0] for some absolute constant c0. Thus, on summing the geometric

progression we see that the iteration terminates in O(F(α)) steps. It follows that at the time of termination
we have

3(A)> exp
(
−O(α−1 log−1/6 α−1 log log5/3 α−1)

)
3(Ai ),

and we get the result. �

12. Concluding remarks

No doubt some improvement could be squeezed out of our arguments by more judicious averaging, but
there is a natural limit placed on the method by Corollary 8.2, and it seems that to move the 1/6 in
Theorem 3.4 past 1 would require a new idea. This, however, is a little frustrating for the following
reason.

The well-known Erdős–Turán conjecture is essentially equivalent to asking for Roth’s theorem in
Z/NZ for any set of density δ(N ), where δ(N ) is a function with

∑
N N−1δ(N ) = ∞. In particular,

δ(N ) = 1/ log N log log N log log log N satisfies this hypothesis and so to have the analogue of the
Erdős–Turán conjecture in Zn

4 we would need to push the constant 1/6 past 1.
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In light of the heuristic in Section 4 one might reasonably conjecture the following much stronger
result.

Conjecture 12.1. Suppose that G=Zn
4 and A⊂G contains no proper three-term arithmetic progressions.

Then |A| = O
(
|G|/ log3/2

|G|
)
.

Of course much more may be true. We were able to find the following lower bound; as with Zn
3 , where

the best lower bound is due to Edel [2004] (see also [Lin and Wolf 2009]), its density is of power shape.

Proposition 12.2. Suppose that G = Zn
4 . Then there is a set A ⊂ G with no proper three-term arithmetic

progressions and |A| =�(|G|2/3).

Proof. The set

A0 =
{
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 2), (0, 2, 1), (0, 2, 2), (1, 0, 0), (1, 0, 2),
(1, 2, 0), (1, 2, 2), (2, 0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 2), (2, 2, 0), (2, 2, 1)

}
in Z3

4 has size 16 and contains no proper three-term arithmetic progressions. The result now follows on
noting that the product of two sets not containing any proper three-term arithmetic progressions does,
itself, not contain any proper three-term arithmetic progressions:

Suppose that B and C are such sets and (x0, x1), (y0, y1), (z0, z1) ∈ B ×C have x + y = 2z. Then
xi + yi = 2zi for i ∈ {0, 1}. However since B and C do not contain any proper progressions we have
xi = yi for all i ∈ {0, 1} whence x = y and so the progression is not proper. �

We are unaware of any serious search for better choices of A0, though they may exist. Indeed, recently
Elsholtz observed that a more general construction designed for Moser’s cube problem can be used.

Moser asked for large subsets of {0, 1, 2}n not containing three points on a line; Komlós and Chvátal
[Chvátal 1972] note that the sets

Sn :=
{

x ∈ {0, 1, 2}n : xi = 1 for bn/3c values of i ∈ [n]
}

have size �(3n/
√

n) by Stirling’s formula and satisfy Moser’s requirement. Our set A0 is equal to S3.
Embedding Sn in Zn

4 in the obvious way it may be checked that the lack of lines in Sn yields a set
containing no proper three-term arithmetic progressions and hence the following theorem.

Theorem 12.3 [Elsholtz 2008, Theorem 3]. Suppose that G = Zn
4 . Then there is a set A ⊂ G with no

proper three-term arithmetic progressions and

|A| =�
(
|G|log 3/ log 4/

√
log |G|

)
.

The reader may wish to know that log 3/ log 4= 0.792 . . . . The details along with some other results and
generalisations are supplied in Elsholtz’s paper.
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